Sample records for rotating nuclei studied

  1. Dynamics of hot rotating nuclei

    NASA Astrophysics Data System (ADS)

    Garcias, F.; de La Mota, V.; Remaud, B.; Royer, G.; Sébille, F.

    1991-02-01

    The deexcitation of hot rotating nuclei is studied within a microscopic semiclassical transport formalism. This framework allows the study of the competition between the fission and evaporation channels of deexcitation, including the mean-field and two-body interactions, without shape constraint for the fission channel. As a function of initial angular momenta and excitation energies, the transitions between three regimes is analyzed [particle evaporation, binary (ternary) fussion and multifragmentation], which correspond to well-defined symmetry breakings in the inertia tensor of the system. The competition between evaporation and binary fission is studied, showing the progressive disappearance of the fission process with increasing excitation energies, up to a critical point where nuclei pass directly from evaporation to multifragmentation channels.

  2. Role of the vestibular nuclei in endothelin-1-induced barrel rotation in rats.

    PubMed

    Kozako, Tomohiro; Kawachi, Akio; Cheng, Shi-Bin; Kuchiiwa, Satoshi; Motoya, Toshiro; Nakagawa, Shiro; Yamada, Katsushi

    2002-11-15

    The fourth or lateral ventricular injection of endothelin-1 resulted in a dose-dependent increase in the barrel rotation and produced marked induction of c-Fos-positive cells in the vestibular nuclei. The doses of the former injection were lower and had shorter mean latent periods compared with the later injection. c-Fos expression after endothelin-1 injection was prevented by the pretreatment with the endothelin ET(A) receptor antagonist, cyclo(D-alpha-aspartyl-L-propyl-D-valyl-L-leucyl-D-tryptophyl) (BQ-123), the glutamate NMDA receptor antagonist, dizocilpine maleate (MK-801), or the L-type Ca(2+) channel antagonist, verapamil, in addition to the incidence of the rotational behavior. There was a significant difference in c-Fos expression between the right and left medial vestibular nuclei, and the number of c-Fos-labeled neurons in the medial vestibular nucleus was markedly increased on the opposite side of the rotational direction. These results suggest that the elicitation of the barrel rotation may be mediated by endothelin ET(A) receptors, glutamate NMDA receptors, and L-type Ca(2+) channels. The changes in the receptor and channel systems induced by endothelin-1 injections appeared to exert crucial influences on the vestibular nuclei and then on the maintenance of equilibrium. The direction of the barrel rotation has a deep connection with the imbalance of neuronal activity in the left and right medial vestibular nuclei.

  3. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  4. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1983-01-01

    On the basis of the icy conglometate model of cometary nuclei various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes have been determined. Narrow dust jets near the nuclei of some bright comets require that small sources be embedded in larger active areas. Certain evidence suggests that very dusty areas and very dusty comets may be less active, respectively, than surrounding areas or other comets.

  5. Ensemble of single quadrupolar nuclei in rotating solids: sidebands in NMR spectrum.

    PubMed

    Kundla, Enn

    2006-07-01

    A novel way is proposed to describe the evolution of nuclear magnetic polarization and the induced NMR spectrum. In this method, the effect of a high-intensity external static magnetic field and the effects of proper Hamiltonian left over interaction components, which commute with the first, are taken into account simultaneously and equivalently. The method suits any concrete NMR problem. This brings forth the really existing details in the registered spectra, evoked by Hamiltonian secular terms, which may be otherwise smoothed due to approximate treatment of the effects of the secular terms. Complete analytical expressions are obtained describing the NMR spectra including the rotational sideband sets of single quadrupolar nuclei in rotating solids.

  6. Description of rotating N=Z nuclei in terms of isovector pairing

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Frauendorf, S.

    2005-06-01

    A systematic investigation of the rotating N=Z even-even nuclei in the mass A=68-80 region has been performed within the frameworks of the cranked relativistic mean field, cranked relativistic Hartree-Bogoliubov theories, and cranked Nilsson-Strutinsky approach. Most of the experimental data are well accounted for in the calculations. The present study suggests the presence of strong isovector np pair field at low spin, whose strength is defined by the isospin symmetry. At high spin, the isovector pair field is destroyed and the data are well described by the calculations assuming zero pairing. No clear evidence for the existence of the isoscalar t=0 np pairing has been obtained in the present investigation performed at the mean field level.

  7. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  8. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulshani, P., E-mail: matlap@bell.net

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy,more » cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.« less

  9. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  10. SU(3) gauge symmetry for collective rotational states in deformed nuclei

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2016-09-01

    How do deformed nuclei rotate? The qualitative answer is that a velocity-dependent interaction causes a strong coupling between the angular momentum and the vortex momentum (or Kelvin circulation). To achieve a quantitative explanation, we propose a significant extension of the Bohr-Mottelson legacy model in which collective wave functions are vector-valued in an irreducible representation of SU(3). This SU(3) is not the usual Elliott choice, but rather describes internal vorticity in the rotating frame. The circulation values C of an SU(3) irreducible representation, say the (8,0) for 20Ne, are C = 0, 2, 4, 6, 8, which is the same as the angular momentum spectrum in the Elliott model; the reason is a reciprocity theorem in the symplectic model. The differential geometry of Yang-Mills theory provides a natural mathematical framework to solve the angular-vortex coupling riddle. The requisite strong coupling is a ``magnetic-like'' interaction arising from the covariant derivative and the bundle connection. The model builds on prior work about the Yang-Mills SO(3) gauge group model.

  11. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  12. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  13. Theoretical investigation of α -like quasimolecules in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.; Baran, V. V.

    2018-06-01

    Quasimolecular α -like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states in these nuclei, we investigate the shape of an α -nucleus quasimolecular potential matched to a realistic external α -daughter interaction by using as input data α -decay widths. It turns out that its Gaussian length parameter lies in a narrow interval, b0∈[0.6 ,0.8 ] fm, and the equilibrium radius is slightly larger than the predicted Mott transition point from nucleonic to the α -cluster phase in finite nuclei, confirming that α clusters are born on the nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic factors Sα˜10 % . In addition, we predict that for nuclei with b0>0.75 fm, the first excited vibrational resonant state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it can be evidenced by the structure of the α -scattering cross section versus energy. Moreover, its detection by a highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α molecules in heavy nuclei.

  14. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important

  15. Harmonic oscillator in quantum rotational spectra: Molecules and nuclei

    NASA Technical Reports Server (NTRS)

    Pavlichenkov, Igor M.

    1995-01-01

    The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.

  16. Fission barriers of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.

    1989-04-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.

  17. Structure and density of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Lowry, Stephen C.

    2008-09-01

    Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.

  18. On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 < b ˆ < 0.45 using isospin-dependent quantum molecular dynamics (IQMD) model. Our calculations reveal that the time evolutions of rotational observables for participant and spectator nuclear matter are different in mass asymmetric heavy ion reactions. Theoretical data of BUU model's azimuthal distributions for free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.

  19. A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region

    NASA Astrophysics Data System (ADS)

    Banerjee, P.

    2018-05-01

    Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.

  20. ORBITING CLUSTERS IN ATOMIC NUCLEI

    PubMed Central

    Pauling, Linus

    1969-01-01

    As an alternative to their description as vibrational levels, the low excited states of even-even nuclei can be described as rotational states of a helion, dineutron, diproton, or other cluster about the rest of the nucleus, leading to reasonable values of the average distance between centers of the clusters. Some states involve rotational excitation of two or more helions or other clusters. The nature of the rotating clusters is determined by the relation of the neutron and proton numbers to the magic numbers. PMID:16591799

  1. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  2. Laser ablated hydantoin: A high resolution rotational study.

    PubMed

    Alonso, Elena R; Kolesniková, Lucie; Alonso, José L

    2017-09-28

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14 N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  3. Vibrational and rotational sequences in 101Mo and 103,4Ru studied via multinucleon transfer reactions

    DOE PAGES

    Regan, P. H.; Wheldon, C.; Yamamoto, A. D.; ...

    2005-04-01

    The near-yrast states of 42 101Mo 59 and 44 103,4Ru 59,60 have been studied following their population via heavy-ion multinucleon transfer reactions between a 136 Xe beam and a thin, self-supporting 100Mo target. The ground state sequence in 104Ru can be understood as demonstrating a simple evolution from a quasi-vibrational structure at lower spins to statically deformed, quasi-rotational excitation involving the population of a pair of low-Ω h 11/2 neutron orbitals. The effect of the decoupled h 11/2 orbital on this vibration-to-rotational evolution is demonstrated by an extension of the "E-GOS" prescription to include odd-A nuclei. The experimental results aremore » also compared with self-consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h 11/2 orbital in these nuclei.« less

  4. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  5. Nuclear rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, G.F.; Janssens, R.V.

    1997-07-01

    An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}

  6. Helical modes generate antimagnetic rotational spectra in nuclei

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  7. Open sd-shell nuclei from first principles

    DOE PAGES

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  8. Open sd-shell nuclei from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  9. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    NASA Astrophysics Data System (ADS)

    Palit, R.; Sheikh, J. A.; Sun, Y.; Jain, H. C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A˜70 80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74Rb, using the concept of spontaneous symmetry breaking is also presented.

  10. Deformation of nuclei as a function of angular momentum in the U(6) ⊃ SU(3) model

    NASA Astrophysics Data System (ADS)

    Partensky, A.; Quesne, C.

    1982-08-01

    Moshińsky proposed recently a hybrid rotational model resulting from a comparison between the Gneuss and Greiner extension of the Bohr-Mottelson model and the interacting boson model. In this hybrid rotational model, we study the shape of nuclei by calculating the average of the expectation value of the square of the deformation parameter β with respect to the rotational states with the same angular momentum belonging to a given irreducible representation of SU(3). This work generalizes to three dimensions the corresponding analysis carried out in two dimensions by Chacón, Moshińsky, and Vanagas. We use the canonical chain of U(3) to obtain an analytical formula for the quantity studied. The overall stretching effect of the angular momentum on the shape of nuclei is demonstrated.

  11. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques.

    PubMed

    Newlands, Shawn D; Abbatematteo, Ben; Wei, Min; Carney, Laurel H; Luan, Hongge

    2018-01-01

    Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to

  12. Time-odd mean fields in covariant density functional theory: Rotating systems

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.

    2010-09-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  13. Rotational behavior of comet nuclei under gravitational perturbations

    NASA Technical Reports Server (NTRS)

    Oberti, Pascal; Bois, E.; Froeschle, Claude

    1992-01-01

    A dynamical qualitative study of the rotational motion for cometary-type bodies submitted to gravitational perturbations has been performed by numerical simulations, including the Sun and Jupiter's disturbing torques in the model. Results show small gravitational disturbing effects from the Sun on Halley-type orbits, as well as from Jupiter on most close-approach configurations. Only a very close-approach induces notable effects, presenting then some interesting sensitivity to initial conditions.

  14. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.

  15. An ensemble of paired spin(-1/2) nuclei in a rotating solid: Polarization evolution and NMR spectrum in a wobbling frame.

    PubMed

    Kundla, Enn

    2007-04-01

    The evolution of the magnetic polarization of an ensemble of paired spin(-1/2) nuclei in an MAS NMR (nuclear magnetic resonance) experiment and the induced spectrum are described theoretically by means of a Liouville-von Neumann equation representation in a wobbling rotating frame in combination with the averaged Hamiltonian theory. In this method, the effect of a high-intensity external static magnetic field and the effects of the leftover interaction components of the Hamiltonian that commute with the approximate Hamiltonian are taken into account simultaneously and equivalently. This method reproduces details that really exist in the recorded spectra, caused by secular terms in the Hamiltonian, which might otherwise be smoothed out owing to the approximate treatment of the effects of the secular terms. Complete analytical expressions, which describe the whole NMR spectrum including the rotational sideband sets, and which consider all the relevant intermolecular interactions, are obtained.

  16. Thouless-Valatin rotational moment of inertia from linear response theory

    NASA Astrophysics Data System (ADS)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  17. Analysis of isomeric ratios for medium-mass nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the {sup 86,87}Y, {sup 94,95,96,99}Tc, and {sup 44}Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reasonmore » behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.« less

  18. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  19. Rotation lightcurves of small jovian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer

    2015-07-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.

  20. Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration

    PubMed Central

    Benson, A. J.; Guedry, F. E.; Jones, G. Melvill

    1970-01-01

    1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270

  1. Systematics of first and second shape transition temperatures in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Goodman, Alan L.; Jin, Taihao

    1996-09-01

    Thirty-one even-even isotopes (Z=72-80 and N=110-126) have two shape transition temperatures, where Tc2>~Tc1. For temperatures above Tc1, the equilibrium shape is spherical if the rotational frequency is zero. For these 31 nuclei, a slow rotation of the spherical shape creates a prolate shape rotating about its symmetry axis if the temperature is between Tc1 and Tc2, and an oblate shape rotating about its symmetry axis if the temperature is above Tc2.

  2. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  3. Reaction Studies With Light, Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Ernst Rehm, K.

    2006-10-01

    The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).

  4. NMR Studies of Low-Gamma Nuclei in Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee

    2006-07-24

    Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less

  5. On the dust zoning of rapidly rotating cometary nuclei

    NASA Astrophysics Data System (ADS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-12-01

    The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.

  6. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  7. The link between ejected stars, hardening and eccentricity growth of super massive black holes in galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Long; Berczik, Peter; Spurzem, Rainer

    2014-01-10

    The hierarchical galaxy formation picture suggests that supermassive black holes (SMBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of an MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a 'dry' gas-free environment and change the MBHB's energy and angular momentum (semimajor axis, eccentricity, and orientation). Here we present high-accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order of 10{sup 6} stars and two MBHs that are initially unbound. We analyze the properties of themore » ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte Carlo three-body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that MBHBs tend to switch stars with counter-rotating orbits into corotating orbits during their interactions.« less

  8. Analysis of the energy of the first four excited states of the ground-state rotational bands of the even-even nuclei from 6C8 to 56Ba90 with the model of a single cluster of nucleons revolving about a sphere.

    PubMed Central

    Pauling, L

    1991-01-01

    The results of the analysis of the first four energy levels of the ground-state rotational bands of even-even nuclei from 6C8 to 56Ba90 on the basis of the revolving-cluster model are reported. Values of the nucleon number of the revolving cluster are assigned on the basis in part of the shell model and in part of the expectation that the corresponding values of the radius of revolution would change only slightly from one energy level to an adjacent level or from one nucleus to an adjacent nucleus. The values of the radius of revolution are found to change gradually from about 5 to 6 fm for the lighter nuclei to 7 to 8 fm for the heavier nuclei in the sequence studied. PMID:11607232

  9. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    DOE PAGES

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2015-09-03

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. In this study, we extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. Lastly, in deformed nuclei these are vibrational modes each of whichmore » serves as band head of a rotational band.« less

  10. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    NASA Astrophysics Data System (ADS)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  11. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  12. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, W. Udo

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less

  13. Systematic study of fission barriers of excited superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.

    2009-07-01

    A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM* Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei Pu240 and Fm256, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations.

  14. Brueckner-AMD Study of Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kiyoshi; Yamamoto, Yuhei; Togashi, Tomoaki

    2011-06-28

    We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only {alpha}-nuclei but also N{ne}Z nuclei with A{approx}10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.

  15. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  16. Numerical Simulations of Lightcurves of Non-principal Axis Rotators

    NASA Astrophysics Data System (ADS)

    Mueller, Beatrice E. A.; Samarasinha, N. H.

    2012-10-01

    Theory predicts that most short-period comets should be in non-principal axis (NPA) rotational states (Jewitt 1997) due to torques caused by outgassing from the nuclei. However the fraction that is currently observed to be in such a state is small (less than 15%; Samarasinha et al 2004, and references therein). This suggests that NPA states naturally occurring as a consequence of cometary jetting are more rapidly damped because comets are structurally far weaker than has been assumed. However, there is a serious question whether this discrepancy is real or an artifact of interpreting lightcurve observations. We will present initial results of our numerical simulation of the observational manifestation of lightcurves over the range of possible NPA rotation states and determine the effects of observing geometry, signal-to-noise, and sampling. References: Jewitt, D. 1997. Cometary Rotation: An Overview. Earth, Moon, and Planets 79, 35-53. Samarasinha, N.H., B.E.A. Mueller, M.J.S. Belton,L. Jorda 2004. Rotation of Cometary Nuclei. In Comets II, pp. 281-299.

  17. Deformation of nuclei as a function of angular momentum in the U(6) ⊃ SU(3) model

    NASA Astrophysics Data System (ADS)

    Partensky, A.; Quesne, C.

    1981-10-01

    In the framework of a hybrid rotational model, proposed recently by Moshinsky as a consequence of a comparison between the Gneuss and Greiner extension of the Bohr and Mottelson model and the interacting boson model, we study the shape of nuclei by calculating the average of the expectation value of the square of the deformation parameter β with respect to the rotational states with the same angular momentum belonging to a given irreducible representation of SU(3). This work generalises to three dimensions the corresponding analysis carried out in two dimensions by Chacón, Moshinsky, and Vanagas. We use the canonical chain for U(3), i.e., the chain U(6) ⊃ U(3) ⊃ U(2) ⊃ U(1), to obtain an analytical formula for the quantity studied. We bring out the overall stretching effect of the angular momentum on the shape of nuclei. The influence of other parameters, such as the boson number and the irreducible representation of SU(3), is also studied.

  18. Shell model description of heavy nuclei and abnormal collective motions

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2018-05-01

    In this contribution I present systematic calculations on the spectroscopy and electromagnetic transition properties of intermediate-mass and heavy nuclei around 100Sn and 208Pb. We employed the large-scale configuration interaction shell model approach with realistic interactions. Those nuclei are the longest isotopic chains that can be studied by the nuclear shell model. I will show that the yrast spectra of Te isotopes show a vibrational-like equally spaced pattern but the few known E2 transitions show rotational-like behaviour. These kinds of abnormal collective behaviors cannot be reproduced by standard collective models and provide excellent background to study the competition of single-particle and various collective degrees of freedom. Moreover, the calculated B(E2) values for neutron-deficient and heavier Te isotopes show contrasting different behaviours along the yrast line, which may be related to the enhanced neutron-proton correlation when approaching N=50. The deviations between theory and experiment concerning the energies and E2 transition properties of low-lying 0+ and 2+ excited states and isomeric states in those nuclei may provide a constraint on our understanding of nuclear deformation and intruder configuration in that region.

  19. Detectability of neural tracts and nuclei in the brainstem utilizing 3DAC-PROPELLER.

    PubMed

    Nishikawa, Taro; Okamoto, Kouichirou; Matsuzawa, Hitoshi; Terumitsu, Makoto; Nakada, Tsutomu; Fujii, Yukihiko

    2014-01-01

    Despite clinical importance of identifying exact anatomical location of neural tracts and nuclei in the brainstem, no neuroimaging studies have validated the detectability of these structures. The aim of this study was to assess the detectability of the structures using three-dimensional anisotropy contrast-periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC-PROPELLER) imaging. Forty healthy volunteers (21 males, 19 females; 19-53 years, average 23.4 years) participated in this study. 3DAC-PROPELLER axial images were obtained with a 3T-MR system at four levels of the brainstem: the lower midbrain, upper and lower pons, and medulla oblongata. Three experts independently judged whether five tracts (corticospinal tract, medial lemniscus, medial longitudinal fasciculus, central tegmental and spinothalamic tracts) and 10 nuclei (oculomotor and trochlear nuclei, spinal trigeminal, abducens, facial, vestibular, hypoglossal, prepositus, and solitary nuclei, locus ceruleus, superior and inferior olives) on each side could be identified. In total, 240 assessments were made. The five tracts and eight nuclei were identified in all the corresponding assessments, whereas the locus ceruleus and superior olive could not be identified in 3 (1.3%) and 16 (6.7%) assessments, respectively. 3DAC-PROPELLER seems extremely valuable imaging method for mapping out surgical strategies for brainstem lesions. Copyright © 2013 by the American Society of Neuroimaging.

  20. Systematic study of cluster radioactivity of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Wang, Y. Z.

    2018-01-01

    The probable cluster radioactivity (CR) of 294118, 296120, and 298122 is studied by using the unified description (UD) formula, universal (UNIV) curve, Horoi formula, and universal decay law (UDL). The predictions by the former three models suggest that the probable emitted clusters are lighter nuclei, and the calculations within the UDL formula give a different prediction: that both the lighter clusters and heavier ones can be emitted from the parent nuclei. A further study on the competition between α decay and CR of Z =104 -124 isotopes is performed. The former three models predict that α decay is the dominant decay mode, but the UDL formula suggests that CR dominates over α decay for Z ≥118 nuclei and the isotopes of 118 292 -296 ,308 -318 , 120 , 284 -304 ,308 -324 and 122-322316 are the most likely candidates as the cluster emitters. Because the former three formulas are just preformation models, the lighter cluster emissions can be described. However, the UDL formula can predict the lighter and heavier CR owing to the inclusion of the preformation and fissionlike mechanisms. Finally, it is found that the shortest CR half-lives are always obtained when the daughter nuclei are around the double magic 208Pb within the UDL formula, which indicates that shell effect has an important influence on CR.

  1. Rotational spectrum of 14N 2 · H 35Cl and 14N 2 · H 37Cl: electric field gradients at the nitrogen nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Z.; Pszczólkowski, L.; Fowler, P. W.; Legon, A. C.

    1997-09-01

    Rotational spectra of the most abundant isotopic species of the weakly bound dimer formed between dinitrogen and hydrogen chloride were investigated. Spectroscopic constants for 14N 2 · H 37Cl were determined for the first time and those for 14N 2 · H 35Cl improved. Analysis of observed nuclear quadrupole spliting patterns within the framework of coupling of three nonequivalent nuclear spins allowed determination of splitting constants for both nuclei in the complexed dinitrogen molecule. Electric field gradient calculations at the SCF supermolecule level for the dimer are presented and account for the observed values of the nitrogen splitting constants.

  2. Space telescope searches for black holes in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.

    1989-01-01

    The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.

  3. Adiabatic growth of a black hole in a rotating stellar system

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Goodman, Jeremy

    1989-01-01

    The consequences of slowly adding a massive black hole to the center of a rotating stellar system are considered. Although both the rotation velocity V and the velocity dispersion sigma increase when the black hole is added, the rotation velocity increases faster. The effect goes in the right direction but is too gradual to explain the V/sigma profiles recently observed in several galactic nuclei.

  4. Configuration-constrained cranking Hartree-Fock pairing calculations for sidebands of nuclei

    NASA Astrophysics Data System (ADS)

    Liang, W. Y.; Jiao, C. F.; Wu, Q.; Fu, X. M.; Xu, F. R.

    2015-12-01

    Background: Nuclear collective rotations have been successfully described by the cranking Hartree-Fock-Bogoliubov (HFB) model. However, for rotational sidebands which are built on intrinsic excited configurations, it may not be easy to find converged cranking HFB solutions. The nonconservation of the particle number in the BCS pairing is another shortcoming. To improve the pairing treatment, a particle-number-conserving (PNC) pairing method was suggested. But the existing PNC calculations were performed within a phenomenological one-body potential (e.g., Nilsson or Woods-Saxon) in which one has to deal the double-counting problem. Purpose: The present work aims at an improved description of nuclear rotations, particularly for the rotations of excited configurations, i.e., sidebands. Methods: We developed a configuration-constrained cranking Skyrme Hartree-Fock (SHF) calculation with the pairing correlation treated by the PNC method. The PNC pairing takes the philosophy of the shell model which diagonalizes the Hamiltonian in a truncated model space. The cranked deformed SHF basis provides a small but efficient model space for the PNC diagonalization. Results: We have applied the present method to the calculations of collective rotations of hafnium isotopes for both ground-state bands and sidebands, reproducing well experimental observations. The first up-bendings observed in the yrast bands of the hafnium isotopes are reproduced, and the second up-bendings are predicted. Calculations for rotational bands built on broken-pair excited configurations agree well with experimental data. The band-mixing between two Kπ=6+ bands observed in 176Hf and the K purity of the 178Hf rotational state built on the famous 31 yr Kπ=16+ isomer are discussed. Conclusions: The developed configuration-constrained cranking calculation has been proved to be a powerful tool to describe both the yrast bands and sidebands of deformed nuclei. The analyses of rotational moments of inertia

  5. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  6. Collective and non-collective structures in nuclei of mass region A ≈ 125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, A. K.; Collaboration: INGA Collaboration; Gammasphere Collaboration

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kindmore » of excitation mechanism, where 8-12 particles above the {sup 114}Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.« less

  7. Deformation of nuclei as a function of angular momentum in the U(6)containsSU(3) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partensky, A.

    1981-10-15

    In the framework of a hybrid rotational model, proposed recently by Moshinsky as a consequence of a comparison between the Gneuss and Greiner extension of the Bohr and Mottelson model and the interacting boson model, we study the shape of nuclei by calculating the average of the expectation value of the square of the deformation parameter ..beta.. with respect to the rotational states with the same angular momentum belonging to a given irreducible representation of SU(3). This work generalises to three dimensions the corresponding analysis carried out in two dimensions by Chacon, Moshinsky, and Vanagas. We use the canonical chainmore » for U(3), i.e.,the chain U(6)containsU(3)containsU(2)containsU(1), to obtain an analytical formula for the quantity studied. We bring out the overall stretching effect of the angular momentum on the shape of nuclei. The influence of other parameters, such as the boson number and the irreducible representation of SU(3), is also studied.« less

  8. Scissors mode of Gd nuclei studied from resonance neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, J.; Baramsai, B.; Becker, J. A.

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information.more » Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.« less

  9. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  10. Study of hot thermally fissile nuclei using relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Quddus, Abdul; Naik, K. C.; Patra, S. K.

    2018-07-01

    We have studied the properties of hot 234,236U and 240Pu nuclei in the framework of relativistic mean field formalism. The recently developed FSUGarnet and IOPB-I parameter sets are implemented for the first time to deform nuclei at finite temperature. The results are compared with the well known NL3 set. The said isotopes are structurally important because of the thermally fissile nature of 233,235U and 239Pu as these nuclei (234,236U and 240Pu) are formed after the absorption of a thermal neutron, which undergoes fission. Here, we have evaluated the nuclear properties, such as shell correction energy, neutron-skin thickness, quadrupole and hexadecapole deformation parameters and asymmetry energy coefficient for these nuclei as a function of temperature.

  11. AN EXPERIMENTAL STUDY ON ARTIFICIAL CONDENSATION NUCLEI,

    DTIC Science & Technology

    NH4Cl, CaCl2, P205, NH4NO3, (NH4)2SO4, etc.) and suspensoids such as camphor , silicon minerals, kaolin, lamp black, and calcium lime (CaO). The...findings reveal that the above mentioned soluble nuclei and camphor powder are active artificial hygroscopic condensation nuclei and that lamp black

  12. Self-gravitating axially symmetric disks in general-relativistic rotation

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.

  13. The doubling of stellar black hole nuclei

    NASA Astrophysics Data System (ADS)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  14. Optokinetic and Vestibular Responsiveness in the Macaque Rostral Vestibular and Fastigial Nuclei

    PubMed Central

    Bryan, Ayanna S.; Angelaki, Dora E.

    2009-01-01

    We recorded from rostral vestibular (VN) and rostral fastigial nuclei (FN) neurons that did not respond to eye movements during three-dimensional (3D) vestibular and optokinetic stimulation (OKS). The majority of neurons in both areas (76 and 69% in VN and FN, respectively) responded during both rotational and translational motion. Preferred directions scattered throughout 3D space for translation but showed some preference for pitch/roll over yaw for rotation. VN/FN neurons were also tested during OKS while monkeys suppressed their optokinetic nystagmus by fixating a head-fixed target. Only a handful of cells (VN: 17%, FN: 6%) modulated during 0.5-Hz OKS suppression, but the number of responsive cells increased (VN: 40%, FN: 48%) during 0.02-Hz OKS. Preferred directions for rotation and OKS were not matched on individual neurons, and OKS gains were smaller than the respective gains during rotation. These results were generally similar for VN and FN neurons. We conclude that optokinetic-vestibular convergence might not be as prevalent as earlier studies have suggested. PMID:19073813

  15. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  16. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  17. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  18. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  19. Reflection asymmetry in odd-A and odd-odd actinium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, I.

    1993-09-01

    Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of {sup 224}Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidencemore » for octupole correlations in these nuclides.« less

  20. Rotational-vibrational coupling in the theory of electron-molecule scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Sullivan, E. C.

    1974-01-01

    The adiabatic-nuclei approximation of vibrational-rotational excitation of homonuclear diatomic molecules can be simply augmented to describe the vibrational-rotational coupling by including the dependence of the vibrational wave function on j. Appropriate formulas are given, and the theory, is applied to e-H2 excitation, whereby it is shown that deviations from the simple Born-Oppenheimer approximation measured by Wong and Schultz can be explained. More important, it can be seen that the inclusion of the j-dependent centrifugal term is essential for transitions involving high-rotational quantum numbers.

  1. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  2. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  3. Neutrino-heated winds from rotating protomagnetars

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey D.; Metzger, Brian D.; Thompson, Todd A.

    2014-11-01

    We calculate the steady-state properties of neutrino-driven winds from strongly magnetized, rotating protoneutron stars (PNSs; `protomagnetars') under the assumption that the outflow geometry is set by the force-free magnetic field of an aligned dipole. Our goal is to assess protomagnetars as sites of r-process nucleosynthesis and gamma-ray burst engines using a more realistic outflow geometry than assumed in previous works. One-dimensional solutions calculated along flux tubes corresponding to different polar field lines are stitched together to determine the global properties of the flow at a given neutrino luminosity and rotation period. Protomagnetars with rotation periods of P ˜ 2-5 ms are shown to produce outflows more favourable for the production of third-peak r-process nuclei due to their much shorter expansion times through the seed nucleus formation region, yet only moderately lower entropies, as compared to normal spherical PNS winds. Protomagnetars with moderately rapid birth periods P ˜ 3-5 ms may thus represent a promising galactic r-process site which is compatible with a variety of other observations, including the recent discovery of possible magnetar-powered supernovae in metal-poor galaxies. We also confirm previous results that the outflows from protomagnetars with P ˜ 1-2 ms can achieve maximum Lorentz factors Γmax ˜ 100-1000 in the range necessary to power gamma-ray bursts (GRBs). The implications of GRB jets with a heavy nuclei-dominated composition as sources of ultrahigh energy cosmic rays are also addressed.

  4. Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang

    2011-10-01

    The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.

  5. On observing comets for nuclear rotation

    NASA Astrophysics Data System (ADS)

    Whipple, F. L.

    1981-10-01

    The prevalent non-gravitational motions among comets demonstrate that the sublimination does not reach a maximum at the instant of maximum insolation on the nucleus. The occurrence of halos or "parabolic" envelopes in the comae of some comets and of jets, rays, fans, streamers and similar phenomena very near the nucleus in the brightest comets demonstrates that the sublimation process is not uniform over the nuclei. In other words, the nuclei of many comets contain relatively small active regions which provide much or most of the sublimation when these areas are turned toward the Sun. The period of rotation can be determind by measurement of the diameters of the halos or of the latus recta of the "parabolic" envelopes, if the expansion velocities are averaged from observations as a function of solar distance. Experience from analyses of some 80 well observed comets shows that the nuclei are "spotted" for more than a third of all comets, regardless of the "age" as measured by the original inverse semimajor axis including correction for planetary perturbations.

  6. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  7. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  8. Effective field theory for deformed atomic nuclei

    DOE PAGES

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  9. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex.

    PubMed

    Gonzalez, Megan E; Eckert, Juergen; Aquino, Adelia J A; Poirier, Bill

    2018-04-21

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H) 2 (H 2 )(PEtPh 2 ) 3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm -1 -in excellent agreement with the experimental value of 6.4 cm -1 . This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  10. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    NASA Astrophysics Data System (ADS)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  11. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  12. Rotation Studies of Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.

    2011-08-01

    The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.

  13. Toroidal high-spin isomers in light nuclei with N ≠ Z

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin

    2015-11-01

    The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously (Staszczak and Wong 2014 Phys. Lett. B 738 401) that even-even, N = Z, toroidal high-spin isomeric states have general occurrences for light nuclei with 28≤slant A≤slant 52. We find that in this mass region there are in addition N\

  14. High-K Isomers in Light Superheavy Nuclei by PNC-CSM method

    NASA Astrophysics Data System (ADS)

    He, Xiao-Tao

    2018-05-01

    The high-K isomeric states in light superheavy nuclei around A = 250 mass region are investigated by the Cranked Shell Model (CSM) with pairing treated by a Particle-Number Conserving (PNC) method. With including the higher-order deformation ɛ6, both of the high-K multi-particle state energies and the rotational bands in 254No and N = 150 isotone are reproduced well. The isomeric state energies and the microscopic mechanism of kinematic moment of inertia variations versus rotational frequency are discussed. The irregularity of the two-neutron Kπ = 8- state band at ħω ≈ 0:17 in 252No is caused by the configuration mixing with the two-proton Kπ = 8- band. .

  15. Isolation of Nuclei and Nucleoli.

    PubMed

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  16. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture.

    PubMed

    Blackwell, Robert; Sweezy-Schindler, Oliver; Edelmaier, Christopher; Gergely, Zachary R; Flynn, Patrick J; Montes, Salvador; Crapo, Ammon; Doostan, Alireza; McIntosh, J Richard; Glaser, Matthew A; Betterton, Meredith D

    2017-02-07

    Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  18. On LAM's and SAM's for Halley's rotation

    NASA Technical Reports Server (NTRS)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  19. Time-dependent evolution of the near nuclear coma of cometary nuclei during their rotational motion

    NASA Astrophysics Data System (ADS)

    Szego, K.; Crifo, J.-F.; Fulle, M.; Rodionov, A. V.

    2003-04-01

    The new physical model of Rodionov et al. (Planetary and Space Sci., 50, 983, 2002) that describes the cometary activity based on a 3-d collisional gas dynamical model has been successfully applied to account for the dust features observed by the cameras flying onboard of the VEGA and Giotto probes during the encounter with comet Halley. This indicates, in particular, that these structures are dominantly controlled by the nucleus topography. An upgraded version of this model has been recently developed and is being applied to the vast body of data gathered in 1986 on comet Halley. This new version is tridimensional as previously, and, in addition, time-dependent. This allows the exact, self-consistent computation of the whole coma structure (primary and daughter molecules, dust), allowing to study its dependence upon nucleus shape, composition, and rotation. The results presented here assume that the coma is formed by solar-driven sublimation of a homogeneous dusty-ice nucleus with shape and rotational state derived for P/Halley. The results are, however, of quite general significance -- in particular they remain valid for different shapes and for inhomogeneous nucleus. This presentation focuses on the time dependence of the dust and gas features obtained around the nucleus. Movies will summarize the results of the calculations exhibiting the time development of the dust and gas coma and its relation to the surface orography for a rotating nucleus. The effect of nucleus activity on its rotational motion, and possible constraints hampering the observation of the activity will be also analyzed.

  20. Study of the solar coronal hole rotation

    NASA Astrophysics Data System (ADS)

    Oghrapishvili, N. B.; Bagashvili, S. R.; Maghradze, D. A.; Gachechiladze, T. Z.; Japaridze, D. R.; Shergelashvili, B. M.; Mdzinarishvili, T. G.; Chargeishvili, B. B.

    2018-06-01

    Rotation of coronal holes is studied using data from SDO/AIA for 2014 and 2015. A new approach to the treatment of data is applied. Instead of calculated average angular velocities of each coronal hole centroid and then grouping them in latitudinal bins for calculating average rotation rates of corresponding latitudes, we compiled instant rotation rates of centroids and their corresponding heliographic coordinates in one matrix for further processing. Even unfiltered data showed clear differential nature of rotation of coronal holes. We studied possible reasons for distortion of data by the limb effects to eliminate some discrepancies at high latitudes caused by the high order of scattering of data in that region. A study of the longitudinal distribution of angular velocities revealed the optimal longitudinal interval for the best result. We examined different methods of data filtering and realized that filtration using targeting on the local medians of data with a constant threshold is a more acceptable approach that is not biased towards a predefined notion of an expected result. The results showed a differential pattern of rotation of coronal holes.

  1. An investigation of water production rates by irregularly shaped cometary nuclei.

    NASA Astrophysics Data System (ADS)

    Gutierrez, P. J.; Ortiz, J. L.; Rodrigo, R.; Lopez-Moreno, J. J.

    1999-09-01

    A computer code has been developed to derive water production rates for rotating irregularly shaped nuclei with topography (both craters and mountains) as a function of heliocentric distance. The code solves the surface energy balance equation including heat diffusion in the normal direction and taking into account shadowing effects, for any combination of orbital parameters, spin axis orientation, rotation period, and physical properties of the nucleus (geometric albedo, emissivity, thermodynamical properties). Preliminary results are presented for several representative objects. The research described in this abstract is being carried out at the Instituto de Astrofísica de Andalucía and is supported by the Comision Interministerial de Ciencia y Tecnología under contracts ESP96-0623 and ESP97-1773-CO3-01.

  2. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  3. Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei

    DOE PAGES

    Riley, M. A.; Aguilar, A.; Evans, A. O.; ...

    2009-01-01

    The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less

  4. Tidal waves in 102Pd: a rotating condensate of multiple d bosons.

    PubMed

    Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S

    2013-03-08

    Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.

  5. First lattice QCD study of the gluonic structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Nplqcd Collaboration

    2017-11-01

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A =3 at quark masses corresponding to pion masses of mπ˜450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than ˜10 % in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b1 structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at mπ˜806 MeV . This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.

  6. First lattice QCD study of the gluonic structure of light nuclei

    DOE PAGES

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; ...

    2017-11-28

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less

  7. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  8. A Survey of Rotation Lightcurves of Small Jovian Trojan Asteroids in the L4 Cloud

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert; Warner, Brian; James, David; Rohl, Derrick; Connour, Kyle

    2017-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right and as possible relics of Solar System formation. Several lines of evidence support a common origin for, and possible hereditary link between, Jovian Trojan asteroids and cometary nuclei. Asteroid lightcurves give information about processes that have affected a group of asteroids including their density. Due to their distance and low albedos, few comet-sized Trojans have been studied. We have been carrying out a survey of Trojan lightcurve properties comparing small Trojan asteroids with comets (French et al 2015). We present new lightcurve information for 39 Trojans less than about 35 km in diameter. We report our latest results and compare them with results from the sparsely-sampled lightcurves from the Palomar Transient Factory (Waszazak et al., Chang et al. 2015). The minimum densities for objects with complete lightcurves are estimated and are found to becomparable to those measured for cometary nuclei. A significant fraction (~40%) of thisobserved small Trojan population rotates slowly (P > 24 hours), with measured periods as over 500 hours (Waszczak et al 2015). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size.

  9. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  10. Systematics of the K X-Ray Multiplicity for Transitional Nuclei with A~=200

    NASA Astrophysics Data System (ADS)

    Karwowski, H. J.; Vigdor, S. E.; Jacobs, W. W.; Throwe, T. G.; Wark, D. L.; Kailas, S.; Singh, P. P.; Soga, F.; Ward, T. E.; Wiggins, J.

    1981-11-01

    Measurements of the multiplicity of K x rays accompanying (Li,xn) reactions to residual nuclei with Z~80 exhibit plateaus of high and constant multiplicity for neutron numbers between 110 and 120, with rapid falloff for both smaller and larger N. A proposed explanation for this systematic behavior assumes that strongly coupled, high-K rotational bands are a much more general feature of this transitional mass region than existing data indicate.

  11. Investigation of Rotating Stall Phenomena in Axial Flow Compressors. Volume I. Basic Studies of Rotating Stall

    DTIC Science & Technology

    1976-06-01

    rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers

  12. Low-Spin States From Decay Studies in the Mass 80 Region

    PubMed Central

    Döring, J.; Aprahamian, A.; Wiescher, M.

    2000-01-01

    Neutron-deficient nuclei in the mass 80 region are known to exhibit strongly deformed ground states deduced mainly from yrast-state properties measured in-beam via heavy-ion fusion-evaporation reactions. Vibrational excitations and non-yrast states as well as their interplay with the observed rotational collectivity have been less studied to date within this mass region. Thus, several β-decay experiments have been performed to populate low-spin states in the neutron-deficient 80,84Y and 80,84Sr nuclei. An overview of excited 0+ states in Sr and Kr nuclei is given and conclusions about shape evolution at low-spins are presented. In general, the non-yrast states in even-even Sr nuclei show mainly vibration-like collectivity which evolves to rotational behavior with increasing spin and decreasing neutron number. PMID:27551586

  13. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements

    NASA Technical Reports Server (NTRS)

    Shaikh, Aasef G.; Ghasia, Fatema F.; Dickman, J. David; Angelaki, Dora E.

    2005-01-01

    The most medial of the deep cerebellar nuclei, the fastigial nucleus (FN), receives sensory vestibular information and direct inhibition from the cerebellar vermis. We investigated the signal processing in the primate FN by recording single-unit activities during translational motion, rotational motion, and eye movements. Firing rate modulation during horizontal plane translation in the absence of eye movements was observed in all non-eye-movement-sensitive cells and 26% of the pursuit eye-movement-sensitive neurons in the caudal FN. Many non-eye-movement-sensitive cells recorded in the rostral FN of three fascicularis monkeys exhibited convergence of signals from both the otolith organs and the semicircular canals. At low frequencies of translation, the majority of these rostral FN cells changed their firing rates in phase with head velocity rather than linear acceleration. As frequency increased, FN vestibular neurons exhibited a wide range of response dynamics with most cells being characterized by increasing phase leads as a function of frequency. Unlike cells in the vestibular nuclei, none of the rostral FN cells responded to rotational motion alone, without simultaneously exhibiting sensitivity to translational motion. Modulation during earth-horizontal axis rotation was observed in more than half (77%) of the neurons, although with smaller gains than during translation. In contrast, only 47% of the cells changed their firing rates during earth-vertical axis rotations in the absence of a dynamic linear acceleration stimulus. These response properties suggest that the rostral FN represents a main processing center of otolith-driven information for inertial motion detection and spatial orientation.

  14. General-relativistic rotation: Self-gravitating fluid tori in motion around black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We obtain from the first principles a general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. This is an extension of a former rotation law that was designed mainly for toroids around spinless black holes. We integrate numerically axial stationary Einstein equations with self-gravitating disks around spinless or spinning black holes; that includes the first ever integration of the Keplerian selfgravitating tori. This construction can be used for the description of tight black hole-torus systems produced during coalescences of two neutron stars or modelling of compact active galactic nuclei.

  15. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  16. Magnetized, mass-loaded, rotating accretion flows

    NASA Astrophysics Data System (ADS)

    Toniazzo, T.; Hartquist, T. W.; Durisen, R. H.

    2001-03-01

    We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.

  17. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  18. Effective field theory for triaxially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.

    2017-10-01

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  19. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  20. Determination of Fusion Barrier Distributions from Quasielastic Scattering Cross Sections towards Superheavy Nuclei Synthesis

    NASA Astrophysics Data System (ADS)

    Tanaka, Taiki; Narikiyo, Yoshihiro; Morita, Kosuke; Fujita, Kunihiro; Kaji, Daiya; Morimoto, Kouji; Yamaki, Sayaka; Wakabayashi, Yasuo; Tanaka, Kengo; Takeyama, Mirei; Yoneda, Akira; Haba, Hiromitsu; Komori, Yukiko; Yanou, Shinya; Jean-Paul Gall, Benoît; Asfari, Zouhair; Faure, Hugo; Hasebe, Hiroo; Huang, Minghui; Kanaya, Jumpei; Murakami, Masashi; Yoshida, Atsushi; Yamaguchi, Takayuki; Tokanai, Fuyuki; Yoshida, Tomomi; Yamamoto, Shoya; Yamano, Yuki; Watanabe, Kenyu; Ishizawa, Satoshi; Asai, Masato; Aono, Ryuji; Goto, Shin-ichi; Katori, Kenji; Hagino, Kouichi

    2018-01-01

    In order to study the nucleus-nucleus interactions for syntheses of superheavy nuclei, we measured excitation functions for the quasielastic scattering of 48Ca+208Pb, 50Ti+208Pb, and 48Ca+248Cm using the gas-filled-type recoil ion separator GARIS. The quasielastic scattering events were clearly separated from deep-inelastic events by using GARIS and its focal plan detectors, except for high-incident-energy points. The quasielastic barrier distributions were successfully extracted for these systems, and compared with coupled-channels calculations. The results of the calculations indicate that vibrational and rotational excitations of the colliding nuclei, as well as neutron transfers before contact, strongly affect the structure of the barrier distribution. For the reactions of 48Ca+208Pb and 50Ti+208Pb, a local maximum of the barrier distribution occurred at the same energy as the peak of the 2n evaporation cross section of the system. On the other hand, for the hot fusion reaction of 48Ca+248Cm, the 4n evaporation cross section of the system peaks at energies well above the maximum of the barrier distribution. This may be attributed to the deformation of the target nucleus. We argue that these findings can be utilized to locate the optimal energy for future searches for undiscovered superheavy nuclei.

  1. The rotating wind of the quasar PG 1700+518.

    PubMed

    Young, S; Axon, D J; Robinson, A; Hough, J H; Smith, J E

    2007-11-01

    It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad Halpha emission line in the quasar PG 1700+518 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (approximately 4,000 km s(-1)), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.

  2. Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2010-07-15

    A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.

  3. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  4. The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.

    2009-10-01

    We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 < A < 180 and A > 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.

  5. Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study.

    PubMed

    Eser, Rana A; Ehrenberg, Alexander J; Petersen, Cathrine; Dunlop, Sara; Mejia, Maria B; Suemoto, Claudia K; Walsh, Christine M; Rajana, Hima; Oh, Jun; Theofilas, Panos; Seeley, William W; Miller, Bruce L; Neylan, Thomas C; Heinsen, Helmut; Grinberg, Lea T

    2018-02-01

    The brainstem nuclei of the reticular formation (RF) are critical for regulating homeostasis, behavior, and cognition. RF degenerates in tauopathies including Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although the burden of phopho-tau inclusion is high across these diseases, suggesting a similar vulnerability pattern, a distinct RF-associated clinical phenotype in these diseases indicates the opposite. To compare patterns of RF selective vulnerability to tauopathies, we analyzed 5 RF nuclei in tissue from 14 AD, 14 CBD, 10 PSP, and 3 control cases. Multidimensional quantitative analysis unraveled discernable differences on how these nuclei are vulnerable to AD, CBD, and PSP. For instance, PSP and CBD accrued more tau inclusions than AD in locus coeruleus, suggesting a lower vulnerability to AD. However, locus coeruleus neuronal loss in AD was so extreme that few neurons remained to develop aggregates. Likewise, tau burden in gigantocellular nucleus was low in AD and high in PSP, but few GABAergic neurons were present in AD. This challenges the hypothesis that gigantocellular nucleus neuronal loss underlies REM behavioral disorders because REM behavioral disorders rarely manifests in AD. This study provides foundation for characterizing the clinical consequences of RF degeneration in tauopathies and guiding customized treatment. © 2018 American Association of Neuropathologists, Inc. All rights reserved.

  6. Deformation effect on spectral statistics of nuclei

    NASA Astrophysics Data System (ADS)

    Sabri, H.; Jalili Majarshin, A.

    2018-02-01

    In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.

  7. Projected shell model study on nuclei near the N = Z line

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2003-04-01

    Study of the N ≈ Z nuclei in the mass-80 region is not only interesting due to the existence of abundant nuclear-structure phenomena, but also important in understanding the nucleosynthesis in the rp-process. It is difficult to apply a conventional shell model due to the necessary involvement of the g 9/2 sub-shell. In this paper, the projected shell model is introduced to this study. Calculations are systematically performed for the collective levels as well as the quasi-particle excitations. It is demonstrated that calculations with this truncation scheme can achieve a comparable quality as the large-scale shell model diagonalizations for 48 Cr, but the present method can be applied to much heavier mass regions. While the known experimental data of the yrast bands in the N ≈ Z nuclei (from Se to Ru) are reasonably described, the present calculations predict the existence of high- K states, some of which lie low in energy under certain structure conditions.

  8. Job rotation in nursing: a study of job rotation among nursing personnel from the literature and via a questionnaire.

    PubMed

    Järvi, Maija; Uusitalo, Tarja

    2004-09-01

    To obtain information on job rotation among nursing personnel from the literature and via a questionnaire. A nursing career no longer means a series of steps leading up a hierarchy. It has become more like a process of individual growth, involving improvement of employee expertise and skills. Job rotation in connection with career development in a Finnish hospital is considered essential, and participating in job rotation is one requirement for newly vacant nursing posts. Describing job rotation by means of reference to literature, and studying a survey on attitudes of ophthalmic nurses (n = 84) to job rotation. There has been little theoretical or empirical research on job rotation. In this study, one in three had participated in job rotation that was most often considered a positive experience. Self-development was rated substantially useful, but fewer were interested in participating in various kinds of developmental activities. Employee's motivation is the foundation of successful development activity, e.g. job rotation.

  9. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VIII. Faraday Rotation in Parsec-scale AGN Jets

    NASA Astrophysics Data System (ADS)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  10. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure andmore » the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251

  11. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  12. Analytical and phenomenological studies of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Zhou, YE

    1995-01-01

    A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.

  13. Changes in the structure of nuclei between the magic neutron numbers 50 and 82 as indicated by a rotating-cluster analysis of the energy values of the first 2+ excited states of isotopes of cadmium, tin, and tellurium

    PubMed Central

    Pauling, Linus

    1981-01-01

    Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2+ states of the even isotopes of 48Cd, 50Sn, and 52Te with the assumption that the cluster is α, p2, and α, respectively. R shows a maximum at ≈N = 58, a minimum at ≈N = 62, and a second maximum at ≈N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semi-magic number 14 of neutrons rather than the magic number 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed. PMID:16593084

  14. 13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases

    NASA Astrophysics Data System (ADS)

    Langlais, Denis B.; Hodges, Robert S.; Davis, James H.

    1999-05-01

    A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to

  15. Cerebellar contribution to mental rotation: a cTBS study.

    PubMed

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-12-01

    A cerebellar role in spatial information processing has been advanced even in the absence of physical manipulation, as occurring in mental rotation. The present study was aimed at investigating the specific involvement of left and right cerebellar hemispheres in two tasks of mental rotation. We used continuous theta burst stimulation to downregulate cerebellar hemisphere excitability in healthy adult subjects performing two mental rotation tasks: an Embodied Mental Rotation (EMR) task, entailing an egocentric strategy, and an Abstract Mental Rotation (AMR) task entailing an allocentric strategy. Following downregulation of left cerebellar hemisphere, reaction times were slower in comparison to sham stimulation in both EMR and AMR tasks. Conversely, identical reaction times were obtained in both tasks following right cerebellar hemisphere and sham stimulations. No effect of cerebellar stimulation side was found on response accuracy. The present findings document a specialization of the left cerebellar hemisphere in mental rotation regardless of the kind of stimulus to be rotated.

  16. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  17. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffry Todd

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  18. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0 2 + band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  19. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  20. The forest and the trees. [comments on comet nuclei, cometary origin, and correlations among cometary data

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1991-01-01

    Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.

  1. Proton bombarded reactions of Calcium target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Depedelen, Mesut

    2017-09-01

    In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1-50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α), (p,n), (p,p) have been calculated using the semi-empirical formula Tel et al. [5].

  2. Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone

    NASA Astrophysics Data System (ADS)

    Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando

    2013-03-01

    The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.

  3. Dual origin of pairing in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idini, A.; Potel, G.; Barranco, F.

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairingmore » interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.« less

  4. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  5. A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis.

    PubMed

    Gutierrez, E; Huang, Y; Haglid, K; Bao, F; Hansson, H A; Hamberger, A; Viano, D

    2001-03-01

    Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 x 10(5) rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.

  6. Application of the string method to the study of critical nuclei in capillary condensation.

    PubMed

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  7. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  8. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  9. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  10. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  11. Matter distribution and spin-orbit force in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Co', G.; Anguiano, M.; De Donno, V.; Lallena, A. M.

    2018-03-01

    We investigate the possibility that some nuclei show density distributions with a depletion in the center, a semibubble structure, by using a Hartree-Fock plus Bardeen-Cooper-Schrieffer approach. We separately study the proton, neutron, and matter distributions in 37 spherical nuclei mainly in the s -d shell region. We found a relation between the semibubble structure and the energy splitting of spin-orbit partner single particle levels. The presence of semibubble structure reduces this splitting, and we study its consequences on the excitation spectrum of the nuclei under investigation by using a quasiparticle random-phase-approximation approach. The excitation energies of the low-lying 4+ states can be related to the presence of semibubble structure in nuclei.

  12. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  13. Analysis of variances of quasirapidities in collisions of gold nuclei with track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2012-08-15

    A new method of an analysis of variances was developed for studying n-particle correlations of quasirapidities in nucleus-nucleus collisions for a large constant number n of particles. Formulas that generalize the results of the respective analysis to various values of n were derived. Calculations on the basis of simple models indicate that the method is applicable, at least for n {>=} 100. Quasirapidity correlations statistically significant at a level of 36 standard deviations were discovered in collisions between gold nuclei and track-emulsion nuclei at an energy of 10.6 GeV per nucleon. The experimental data obtained in our present study aremore » contrasted against the theory of nucleus-nucleus collisions.« less

  14. Secular Dynamical Anti-friction in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Levin, Yuri

    2012-07-01

    We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole. We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity; (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration; and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.

  15. Light Collection Efficiency in Thin Strip Plastic Scintillator for the Study of ISGMR in Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Shafer, Jacob

    2011-10-01

    The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.

  16. Rotation curves of LSBGs and dwarf galaxies in a nearly Newtonian solution

    NASA Astrophysics Data System (ADS)

    Capistrano, Abraão J. S.; Barrocas, Guilherme R. G.

    2018-04-01

    The observed motion of stars close to galaxy nuclei shows that the resulting velocities are small of the order of a few hundred of km s-1. In these regions of strong gravity, the Newtonian gravitational field or even a post-Newtonian approximation may not be adequate to describe the motion of stars. In this paper, we study the possibility that the rotation curves problem may be explained mostly in the realm of Einstein's general relativity in a nearly weak field regime. By using the geodesic equations to obtain a gravitational potential generated from a point-like source, we end up in the concept of a nearly Newtonian gravity, and we show that its resulting potential responds to the dark halo mostly attributed to dark matter. We show that it comes essentially from the propagation of the non-linear effects of the obtained effective velocity field. As a test, we study a sample of 27 low surface brightness galaxies (LSBGs) and nine dwarf galaxies obtaining rotation curve shapes in nearly agreement with observations.

  17. On the coherent rotation of diffuse matter in numerical simulations of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, Anna Silvia; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Lamagna, Luca; Rasia, Elena

    2017-03-01

    We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: (I) non-radiative, (II) radiative without active galactic nuclei (AGN) feedback and (III) radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.

  18. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  19. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  20. Rotational seismology

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  1. Excited nuclei, resonances and reactions in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V.

    2018-01-01

    The short review of research results concerning the study of reactions and processes that occur in the neutron star crusts is given. The peculiarities of electron capture reactions by a nucleus in overdense crystalline structures have been demonstrated for various nuclei, in particular some even-even nuclei at electron capture reactions give daughter nuclei in excited states. Excited nuclei due to nonlinear interactions lead to a high-order harmonic generation. High energy gammas interact with charged particles, give a neutrino radiation and also knock out nucleons from neighbour nuclei. It is also shown that interactions of neutrons with two and more nuclei in an overdence lattice give a large number of new resonance states. These resonances result in a formation of specific local oscillations in the corresponding layers of the lattice. The periodic enhancement of these processes in the dependence on the elemental composition of the primary neutron star matter is considered.

  2. Multiple Chirality in Nuclear Rotation: A Microscopic View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.

    Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.

  3. Multiple Chirality in Nuclear Rotation: A Microscopic View

    DOE PAGES

    Zhao, P. W.

    2017-10-10

    Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.

  4. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.

  5. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  6. Studies in the Phonology of Asian Languages VI: Complex Syllable Nuclei in Vietnamese.

    ERIC Educational Resources Information Center

    Han, Mieko S.

    This study is the sixth in the series "Studies in the Phonology of Asian Languages." A phonetic and phonemic analysis of the three complex nuclei of Vietnames (Hanoi dialect), spelled (1) ye-, -ie-, -ia, (2) -u'o'-, -u'a, and (3) -uo-, -ua, was carried out using the sound spectrograph. The relative domains of the target qualities of the…

  7. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  8. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results formore » the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.« less

  9. Influence of fixation point of latissimus dorsi tendon transfer for irreparable rotator cuff tear on glenohumeral external rotation: A cadaver study.

    PubMed

    Bargoin, K; Boissard, M; Kany, J; Grimberg, J

    2016-12-01

    Latissimus dorsi tendon transfer is a surgical option for treating irreparable posterosuperior rotator cuff tears, notably when attempting to reconstruct active external rotation. We hypothesized that the positioning of the transfer's point of fixation would differ depending on the desired elbow-to-body external rotation or external rotation with the elbow abducted. Seven shoulders from four whole frozen cadavers were used. We created two systems to install the subject in a semi-seated position to allow external rotation elbow to body and the arm abducted 90°. Traction sutures were positioned on the latissimus dorsi muscle and a massive tear of the rotator cuff was created. We tested six different transfer positions. Muscle contraction of the latissimus dorsi was stimulated using 10-N and 20-N suspended weights. The point of fixation of the latissimus dorsi on the humeral head had an influence on the elbow-to-body external rotation and with 90° abduction (P<0.001). The fixation point for a maximum external rotation with the elbow to the body was the anterolateral position (P<0.016). The fixation point for a maximum external rotation at 90° abduction was the position centered on the infraspinatus footprint (P<0.078). The optimal point of fixation differs depending on whether external rotation is restored at 0° or 90° abduction. Fundamental study, anatomic study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. N=151Pu,Cm and Cf nuclei under rotational stress: Role of higher-order deformations

    DOE PAGES

    Hota, S. S.; Chowdhury, P.; Khoo, T. L.; ...

    2014-10-18

    The fast-rotating N=151 isotones 245Pu, 247Cm and 249Cf have been studied through inelastic excitation and transfer reactions with radioactive targets. While all have a ground-state band built on a νj 15/2[734]9/2 - Nilsson configuration, new excited bands have also been observed in each isotone. These odd-N excited bands allow a comparison of the alignment behavior for two different configurations, where the νj 15/2 alignment is either blocked or allowed. The effect of higher order deformations is explored through cranking calculations, which help clarify the elusive nature of νj 15/2 alignments.

  11. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  12. A CBCT study of the gravity-induced movement in rotating rabbits

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana

    2018-05-01

    Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7  ±  2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2  ±  0.1 mm and 5.4  ±  2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.

  13. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil

  14. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  15. Investigation to synthesis more isotopes of superheavy nuclei Z = 118

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-07-01

    We have studied the α-decay properties of superheavy nuclei Z = 118 in the range 275 ≤ A ≤ 325. Most of the predicted, unknown nuclei in the range 291 ≤ A ≤ 301 were found to have α-decay chains. Of these the nuclei 293-301118 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory. Fusion barries for different projectile-target combinations to synthesis superheavy nuclei Z = 118 are studied and are also represented in simple relations. We have also studied the evaporation residue cross section, compound nucleus formation probability (PCN) and survival probability (PSurv) of different projectile-target combinations to synthesis superheavy element Z = 118. The selected most probable projectile-target combinations are Ca+Cf, Ti+Cm, Sc+Bk, V+Am, Cr+Pu, Fe+U, Mn+Np, Ni+Th and Kr+Pb. We have formulated simple relations for maximum evaporation residue cross sections and its corresponding energies. This helps to identify the projectile-target combinations quickly. Hence, we have identified the most probable projectile-target combinations to synthesis these superheavy nuclei. We hope that our predictions may be a guide for the future experiments in the synthesis of more isotopes of superheavy nuclei Z = 118.

  16. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  17. Prediction of the shapes of deformed nuclei by the polyspheron theory.

    PubMed

    Pauling, L

    1982-04-01

    It is pointed out that some features of the shapes of (62) (154)Sm, (68) (166)Er, and (70) (176)Yb as reported by Cooper et al. [Cooper, T., Bertozzi, W., Heisenberg, J., Kowalski, S., Turchinetz, W., Williamson, C., Cardman, L., Fivozinsky, S., Lightbody, J., Jr., & Penner, S. (1976) Phys. Rev. C 13, 1083-1094] from electron-scattering experiments agree reasonably well with the description of these nuclei, derived from the values of the rotational energy levels, as consisting of a large spherical part (essentially (132)Sn) and a cap [Pauling, L. (1969) Proc. Natl. Acad. Sci. USA 64, 807-809; Pauling, L. & Robinson, A. B. (1975) Can. J. Phys. 53, 1953-1964].

  18. Prediction of the shapes of deformed nuclei by the polyspheron theory

    PubMed Central

    Pauling, Linus

    1982-01-01

    It is pointed out that some features of the shapes of 62154Sm, 68166Er, and 70176Yb as reported by Cooper et al. [Cooper, T., Bertozzi, W., Heisenberg, J., Kowalski, S., Turchinetz, W., Williamson, C., Cardman, L., Fivozinsky, S., Lightbody, J., Jr., & Penner, S. (1976) Phys. Rev. C 13, 1083-1094] from electron-scattering experiments agree reasonably well with the description of these nuclei, derived from the values of the rotational energy levels, as consisting of a large spherical part (essentially 132Sn) and a cap [Pauling, L. (1969) Proc. Natl. Acad. Sci. USA 64, 807-809; Pauling, L. & Robinson, A. B. (1975) Can. J. Phys. 53, 1953-1964]. Images PMID:16593183

  19. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  20. Maris polarization in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  1. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  2. Studying rotational dynamics with a smartphone—accelerometer versus gyroscope

    NASA Astrophysics Data System (ADS)

    Braskén, Mats; Pörn, Ray

    2017-07-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment of both the physics classroom and the instructional physics laboratory, encouraging an active interaction between measurements and modeling activities. Two useful sensors, available in most modern smartphones and tablets, are the 3-axis acceleration sensor and the 3-axis gyroscope. We explore the strengths and weaknesses of each type of sensor and use them to study the rotational dynamics of objects rotating about a fixed axis. Care has to be taken when interpreting acceleration sensor data, and in some cases the gyroscope will allow for rotational measurements not easily replicated using the acceleration sensor.

  3. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  4. Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei.

    PubMed

    Charpentier; Fermon; Virlet

    1998-06-01

    The quantum mechanical Floquet theory is investigated in order to derive an efficient way of performing numerical calculations of the dynamics of nuclear spin systems in MAS NMR experiments. Here, we take advantage of time domain integration of the quantum evolution over one period as proposed by Eden et al. (1). But a full investigation of the propagator U(t, t0), and especially its dependence with respect to t and t0 within a formalized approach, leads to further simplifications and to a substantial reduction in computation time when performing powder averaging for any complex sequence. Such an approximation is suitable for quadrupolar nuclei (I > 1/2) and can be applied to the simulation of the RIACT (rotational induced adiabatic coherence transfer) phenomenon that occurs under special experimental conditions in spin locking experiments (2-4). The present method is also compared to the usual infinite dimensional Floquet space approach (5, 6), which is shown to be rather inefficient. As far as we know, it has never been reported for quadrupolar nuclei with I >/= 3/2 in spin locking experiments. The method can also be easily extended to other areas of spectroscopy. Copyright 1998 Academic Press.

  5. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  6. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  7. Trunk rotational strength asymmetry in adolescents with idiopathic scoliosis: an observational study

    PubMed Central

    McIntire, Kevin L; Asher, Marc A; Burton, Douglas C; Liu, Wen

    2007-01-01

    Background Recent reports have suggested a rotational strength weakness in rotations to the concave side in patients with idiopathic scoliosis. There have been no studies presenting normative values of female adolescent trunk rotational strength to which a comparison of female adolescents with idiopathic scoliosis could be made. The purpose of this study was to determine trunk rotational strength asymmetry in a group of female adolescents with AIS and a comparison group of healthy female adolescents without scoliosis. Methods Twenty-six healthy adolescent females served as the healthy group (HG) (average age 14 years) and fourteen otherwise healthy adolescent females with idiopathic scoliosis served as the idiopathic scoliosis group (ISG) (average age 13.5 years, average Cobb 28°). Participant's isometric trunk rotational strength was measured in five randomly ordered trunk positions: neutral, 18° and 36° of right and left pre-rotation. Rotational strength asymmetry was compared within each group and between the two groups using several different measures. Results The HG showed strength asymmetry in the 36° pre-rotated trunk positions when rotating towards the midline (p < 0.05). The ISG showed strength asymmetry when rotating towards the concavity of their primary curve from the neutral position (p < 0.05) and when rotating towards the concavity from the 18° (p < 0.05) and 36° (p < 0.05) concave pre-rotated positions. The ISG is significantly weaker than the HG when rotating away from the midline toward the concave (ISG)-left (HG) side from the concave/left pre-rotated 18° (p < 0.05) and 36° (p < 0.05) positions. Conclusion The AIS females were found to be significantly weaker when contracting toward their main curve concavity in the neutral and concave pre-rotated positions compared to contractions toward the convexity. These weaknesses were also demonstrated when compared to the group of healthy female adolescent controls. Possible mechanisms for the

  8. Collectivity in the light radon nuclei measured directly via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.

    2015-06-01

    Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.

  9. Does a critical rotator cuff tear stage exist?: a biomechanical study of rotator cuff tear progression in human cadaver shoulders.

    PubMed

    Oh, Joo Han; Jun, Bong Jae; McGarry, Michelle H; Lee, Thay Q

    2011-11-16

    It is unknown at which stage of rotator cuff tear the biomechanical environment is altered. The purpose of this study was to determine if a critical rotator cuff tear stage exists that alters glenohumeral joint biomechanics throughout the rotational range of shoulder motion, and to evaluate the biomechanical effect of parascapular muscle-loading. Eight cadaver shoulders were used with a custom testing system. Four progressive rotator cuff tear stages were investigated on the basis of footprint anatomy. Three muscle-loading conditions were examined: rotator cuff only; rotator cuff with deltoid muscle; and rotator cuff, deltoid, pectoralis major, and latissimus dorsi muscles. Testing was performed in the scapular plane with 0°, 30°, and 60° of shoulder abduction. The maximum internal and external rotations were measured with 3.4 Nm of torque. The position of the humeral head apex with respect to the glenoid was calculated with use of a MicroScribe 3DLX digitizing system throughout the rotational range of motion. The abduction capability was determined as the abduction angle achieved with increasing deltoid load. Tear of the entire supraspinatus tendon significantly increased maximum external rotation and significantly decreased abduction capability with higher deltoid loads (p < 0.05). Tear of the entire supraspinatus tendon and half of the infraspinatus tendon significantly shifted the humeral head apex posteriorly at the midrange of rotation and superiorly at maximum internal rotation (p < 0.05). Loading the pectoralis major and latissimus dorsi muscles decreased the amount of humeral head elevation due to deltoid loading. Tear of the entire supraspinatus tendon was the critical stage for increasing rotational range of shoulder motion and for decreased abduction capability. Further tear progression to the infraspinatus muscle was the critical stage for significant changes in humeral head kinematics. The pectoralis major and latissimus dorsi muscles played an

  10. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  11. Systematic study on the competition between α-decay and spontaneous fission of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Wang, Y. Z.

    2017-10-01

    The competition between α-decay and spontaneous fission (SF) of Z = 112 isotopes are studied. The α-decay half-lives are estimated by the generalized liquid-drop model (GLDM) and several sets of analytic formulas. These formulas include the Royer formula, Viola-Seaborg semiempirical (VSS) formula and universal decay law (UDL). For the SF, its half-lives are calculated by using the Xu, Ren, Karpov and Santhosh formulas. It is shown that the predicted α-decay half-lives by different approaches are more or less identical. However, the SF half-lives are highly sensitive to models. To test the accuracies of different SF formulas, the half-lives of 56 even-even heavy nuclei are calculated by these formulas. By comparing with the experimental data, it is found that the Xu formula is the most accurate one to reproduce the experimental SF half-lives. This allows us to make a systematic prediction on the competition between α-decay and SF of even-even superheavy nuclei (SHN) with Z = 104- 120 by using the Xu formula and the above mentioned models on α-decay. The calculations suggest that 258,260104, 268-276110, 270-280112, 272-286114, 274-294116, 284-302118 and 292-308120 have smaller α-decay half-lives than those of SF. Thus these nuclei can be synthesized and identified via α-decay in the laboratory. In addition, it is observed that N = 162, 178, 184 and 196 may be the submagic or magic numbers. Finally, an extensive study on the possible α-decay chains for Z = 120 isotopes is performed. It is predicted that six sequential α-decay chains can be observed from 292-296120, four α-decay chains from 298120, three α-decay chains from 300,302120, two α-decay chains from 304,306120, and only one α-decay chain from 308120. These nuclei are the most likely candidates to be synthesized experimentally via α-decay in the near future.

  12. Black-sphere approximation to nuclei and its application to reactions with neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2013-09-01

    We briefly review our formula for a proton-nucleus total reaction cross section, σR, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a "black" sphere of radius "a". An extension to reactions involving neutron-rich nuclei is also reported.

  13. Rotational band on a three-quasineutron isomer in 127Xe

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Sharma, H. P.; Tiwary, S. S.; Majumder, C.; Banerjee, P.; Ganguly, S.; Rai, S.; Pragati, Modi, Swati; Arumugam, P.; Mayank, Kumar, S.; Palit, R.; Kumar, A.; Bhattacharjee, S. S.; Singh, R. P.; Muralithar, S.

    2018-05-01

    Excited states in 127Xe were populated via 122Sn(9Be,4 n γ ) fusion-evaporation reaction at Ebeam=48 MeV. A rotational band above an isomeric state at 2730.3 keV has been established. Jπ=23 /2+ has been assigned unambiguously to the bandhead. Structural features, configuration, and reduced hindrance factor per degree of K -forbiddenness (fν) have been discussed in the context of neighboring nuclei. Half-lives of 7 /2+ (t1 /2=37 ±1 ns) and 23 /2+ (t1 /2=28 ±1 ns) isomeric states have also been estimated and found to be consistent with the earlier reported values. The experimentally observed energy levels of the rotational band have been reproduced successfully by theoretical calculations carried out using the modified particle rotor model (MPRM) with β2˜0.22 and 15∘≲γ ≲22∘ .

  14. Hyperheavy nuclei in covariant density functional theory: the existence and stability

    NASA Astrophysics Data System (ADS)

    Gyawali, Abhinaya; Agbemava, Sylvester; Afanasjev, Anatoli

    2017-09-01

    The limits of existence of finite nuclei is one of interesting questions of modern low-energy nuclear physics. A lot of theoretical efforts have been dedicated to the study of superheavy nuclei with Z < 126. However, very little is known about existence and stability of hyperheavy nuclei with proton numbers Z > 126 . Almost all investigations of such nuclei consider only spherical shapes for the ground states. However, the study of superheavy nuclei indicates that such assumption leads in many cases to misinterpretation of the situation. Thus, we performed a systematic investigation of such nuclei for proton numbers from 122 up to 184 and from two-proton drip line up to two-neutron one within the axial relativistic Hartree-Bogoliubov theory. The calculations are carried out in large deformation space extending from megadeformed oblate shapes via spherical ones up to scission configuration. The stability of such nuclei against fission (including triaxial and octupole shapes) and beta-decays have been investigated and the islands of their stability have been defined. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037 and by Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002925.

  15. Job Rotation at Cardiff University Library Service: A Pilot Study

    ERIC Educational Resources Information Center

    Earney, Sally; Martins, Ana

    2009-01-01

    This paper presents case study research of a job rotation pilot involving six library assistants in Cardiff University Library Service (ULS). Firstly, it investigates whether job rotation improves motivation and secondly, whether there is an improvement in skills, both technical and "soft". Following a review of the literature,…

  16. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  17. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  18. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  19. Experimental studies of rotating exchange flow

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also ] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu<1 are only limited by the Rossby radius. We also show

  20. Task rotation in an underground coal mine: A pilot study.

    PubMed

    Jones, Olivia F; James, Carole L

    2018-01-01

    Task rotation is used to decrease the risk of workplace injuries and improve work satisfaction. To investigate the feasibility, benefits and challenges of implementing a task rotation schedule within an underground coalmine in NSW, Australia. A mixed method case control pilot study with the development and implementation of a task rotation schedule for 6 months with two work crews. A questionnaire including The Nordic Musculoskeletal Questionnaire, The Need for Recovery after Work Scale, and The Australian WHOQOL- BREF Australian Edition was used to survey workers at baseline, 3 and 6 months. A focus group was completed with the intervention crew and management at the completion of the study. In total, twenty-seven participants completed the survey. Significant improvements in the psychological and environmental domains of the WHOQOL-BREF questionnaire were found in the intervention crew. Musculoskeletal pain was highest in the elbow, lower back and knee, and fatigue scores improved, across both groups. The intervention crew felt 'mentally fresher', 'didn't do the same task twice in a row', and 'had more task variety which made the shift go quickly'. Task rotation was positively regarded, with psychological benefits identified. Three rotations during a 9-hour shift were feasible and practical in this environment.

  1. Rotator cuff tendon connections with the rotator cable.

    PubMed

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  2. Predictors of human rotation.

    PubMed

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  3. First observation of rotational structures in Re 168

    DOE PAGES

    Hartley, D. J.; Janssens, R. V. F.; Riedinger, L. L.; ...

    2016-11-30

    We assigned first rotational sequences to the odd-odd nucleus 168Re. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the γ-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the πh 11/2νi 13/2 band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen formore » the signature inversion feature that is well known in this region. Furthermore, the spin assignment for the πh 11/2ν(h 9/2/f 7/2) structure provides additional validation of the proposed spins and configurations for isomers in the 176Au → 172Ir → 168Re α-decay chain.« less

  4. {gamma}-vibrational states in superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000; Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  5. KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David

    2016-03-01

    KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.

  6. Probable alpha and 14C cluster emission from hyper Ac nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.

    2013-10-01

    A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.

  7. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Oliver K.

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguangmore » Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.« less

  8. Laboratory study of forced rotating shallow water turbulence

    NASA Astrophysics Data System (ADS)

    Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio

    2011-12-01

    During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.

  9. Systematization of α-decaying nuclei based on shell structures: The case of odd-even and odd-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, Ozan; Kholmetskii, Alexander; Arık, Metin

    In previous studies, we provided a novel systematization of α-decaying even-even and even-odd nuclei starting with the classically adopted mechanism [T. Yarman et al., Eur. Phys. J. A 52 (2016) 140; Eur. Phys. J. A 53 (2017) 4]. Knowing beforehand the measured decay half-life, we had taken as a parameter the probability of the α-particle as being first born in a unit period of time, within the parent nucleus before it is emitted out. We thence developed a scaffold based on shell properties of families composed of “alike nuclei”. Along the same line, we now present a systematization of odd-even (OE) as well as odd-odd (OO) nuclei. We apply our approach further to the investigation of the effect of pairing (e.g., the effect when the number of nucleons is increased by one neutron), and that of unpairing (e.g., the effect when the number of nucleons is decreased by one neutron); thus it becomes an even number for the case of odd-even nuclei (Case OE), and an odd number in the case of odd-odd nuclei (Case OO). For the first case (OE), we pick the exemplar set 161Re, 217Fr, 243Bk, 263Db; where we delineate by, respectively, Re, Fr, Bk, and Db all of the odd-even or odd-odd isotopes that neighbor the four mentioned odd-even isotopes on the proposed scaffold. We proceed in the same way for the second case (OO). Thus, we choose the exemplar set of odd-odd nuclei 172Ir, 218Ac, 244Es. We then gather all of the Ir, Ac, and Es odd-odd and odd-even isotopes that neighbor the three mentioned odd-odd isotopes on the proposed scaffold. We show that, in the former case, pairing, as expected, generally increases stability of the given nucleus; and in the latter case, unpairing works in just the opposite direction — i.e., it generally increases instability. We disclose “stability peaks” versus Z for both sets of nuclei, we tackle here. Furthermore, we present a study to highlight an outlook of “odd-A nuclei” at hand. Contrary to the general expectation, we unveil no

  10. The effects of Q-nuclei on stellar burning

    NASA Astrophysics Data System (ADS)

    Boyd, R. N.; Turner, R. E.; Sur, B.; Rybarcyk, L.; Joseph, C.

    1985-01-01

    The effects of anomalous nuclei, Q-nuclei, on stellar burning are examined. The baryon binding energies, beta-decay properties, and thermonuclear reaction rates for the Q-nuclei suggest they could catalyze a cycle in which four protons are combined to form a 4He nucleus. The properties required of the Q-nuclei for them to solve the solar neutrino problem are determined. A solar modelling calculation was performed with Q-nuclei included, and several interesting results therefrom are compared to observations. Finally the solar neutrino detection rates for 71Ga and 115In detectors, in addition to that for 37Cl, are estimated when Q-nuclei are included in the solar burning.

  11. Description of deformed nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  12. Structure of positive parity bands and observation of magnetic rotation in 108Ag

    NASA Astrophysics Data System (ADS)

    Sethi, Jasmine; Palit, R.

    2015-10-01

    The interplay of nuclear forces among the neutron particles (holes) and proton holes (particles) in the odd-odd nuclei gives rise to a variety of shapes and hence novel modes of excitations. The odd-odd nuclei in the A ~ 110 region have proton holes in the g9/2 orbital and the neutron particles in the h11/2 orbitals. A systematic study of shears mechanism in A ~ 110 region indicates the presence of magnetic rotation (MR) phenomenon in Ag and In isotopes. Therefore, the structure of doubly odd 108Ag nucleus was probed in two different reactions, i.e, 100Mo(11B, 4n)108Ag at 39 MeV and 94Zr(18O, p3n)108Ag at 72 MeV beam energies. The emitted γ-rays were detected using the Indian National Gamma Array (INGA) at TIFR, Mumbai. A significant number of new transitions and energy levels were identified. Lifetime measurements, using the Doppler shift attenuation method, have been carried out for a positive parity dipole band. Tilted Axis Cranking (TAC) calculations have been performed for two positive parity dipole bands.

  13. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  14. Description of transitional nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Lac, V.-S.; Kuyucak, S.

    1992-03-01

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.

  15. The rotational barrier in ethane: a molecular orbital study.

    PubMed

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  16. Ego-rotation and object-rotation in major depressive disorder.

    PubMed

    Chen, Jiu; Yang, Laiqi; Ma, Wentao; Wu, Xingqu; Zhang, Yan; Wei, Dunhong; Liu, Guangxiong; Deng, Zihe; Hua, Zhen; Jia, Ting

    2013-08-30

    Mental rotation (MR) performance provides a direct insight into a prototypical higher-level visuo-spatial cognitive operation. Previous studies suggest that progressive slowing with an increasing angle of orientation indicates a specific wing of object-based mental transformations in the psychomotor retardation that occurs in major depressive disorder (MDD). It is still not known, however, whether the ability of object-rotation is associated with the ability of ego-rotation in MDD. The present study was designed to investigate the level of impairment of mental transformation abilities in MDD. For this purpose we tested 33 MDD (aged 18-52 years, 16 women) and 30 healthy control subjects (15 women, age and education matched) by evaluating the performance of MDD subjects with regard to ego-rotation and object-rotation tasks. First, MDD subjects were significantly slower and made more errors than controls in mentally rotating hands and letters. Second, MDD and control subjects displayed the same pattern of response times to stimuli at various orientations in the letter task but not the hand task. Third, in particular, MDD subjects were significantly slower and made more errors during the mental transformation of hands than letters relative to control subjects and were significantly slower and made more errors in physiologically impossible angles than physiologically possible angles in the mental rotation hand task. In conclusion, MDD subjects present with more serious mental rotation deficits specific to the hand than the letter task. Importantly, deficits were more present during the mental transformation in outward rotation angles, thus suggesting that the mental imagery for hands and letters relies on different processing mechanisms which suggest a module that is more complex for the processing of human hands than for letters during mental rotation tasks. Our study emphasises the necessity of distinguishing different levels of impairment of action in MDD subjects

  17. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    PubMed

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  18. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    PubMed Central

    Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071

  19. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, S.; Carlson, J.; Cirigliano, V.

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v 18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such asmore » those corresponding to different orders in chiral effective theory.« less

  20. Stability of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  1. The ratio method: A new tool to study one-neutron halo nuclei

    DOE PAGES

    Capel, Pierre; Johnson, R. C.; Nunes, F. M.

    2013-10-02

    Recently a new observable to study halo nuclei was introduced, based on the ratio between breakup and elastic angular cross sections. This new observable is shown by the analysis of specific reactions to be independent of the reaction mechanism and to provide nuclear-structure information of the projectile. Here we explore the details of this ratio method, including the sensitivity to binding energy and angular momentum of the projectile. We also study the reliability of the method with breakup energy. Lastly, we provide guidelines and specific examples for experimentalists who wish to apply this method.

  2. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  3. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  4. Uncovering the cognitive processes underlying mental rotation: an eye-movement study.

    PubMed

    Xue, Jiguo; Li, Chunyong; Quan, Cheng; Lu, Yiming; Yue, Jingwei; Zhang, Chenggang

    2017-08-30

    Mental rotation is an important paradigm for spatial ability. Mental-rotation tasks are assumed to involve five or three sequential cognitive-processing states, though this has not been demonstrated experimentally. Here, we investigated how processing states alternate during mental-rotation tasks. Inference was carried out using an advanced statistical modelling and data-driven approach - a discriminative hidden Markov model (dHMM) trained using eye-movement data obtained from an experiment consisting of two different strategies: (I) mentally rotate the right-side figure to be aligned with the left-side figure and (II) mentally rotate the left-side figure to be aligned with the right-side figure. Eye movements were found to contain the necessary information for determining the processing strategy, and the dHMM that best fit our data segmented the mental-rotation process into three hidden states, which we termed encoding and searching, comparison, and searching on one-side pair. Additionally, we applied three classification methods, logistic regression, support vector model and dHMM, of which dHMM predicted the strategies with the highest accuracy (76.8%). Our study did confirm that there are differences in processing states between these two of mental-rotation strategies, and were consistent with the previous suggestion that mental rotation is discrete process that is accomplished in a piecemeal fashion.

  5. Nuclear structure study for the neutron-rich nuclei beyond 132Sn: In-beam gamma-ray spectroscopy of 136Sn and 132Cd

    NASA Astrophysics Data System (ADS)

    Wang, He; Aoi, Nori; Takeuchi, Satoshi; Matsushita, Masafumi; Doornenbal, Pieter; Motobayashi, Tohru; Steppenbeck, David; Yoneda, Kenichiro; Baba, Hidetada; Dombrádi, Zsolt; Kobayashi, Kota; Kondo, Yosuke; Lee, Jenny; Liu, Hong-Na; Minakata, Ryogo; Nishimura, Daiki; Otsu, Hideaki; Sakurai, Hiroyoshi; Sohler, Dora; Sun, Ye-Lei; Tian, Zheng-Yang; Tanaka, Ryuki; Vajta, Zsolt; Yang, Zai-Hong; Yamamoto, Tetsuya; Ye, Yan-Lin; Yokoyama, Rin

    2018-05-01

    The neutron-rich nuclei 136Sn and 132Cd have been studied in the purpose of nuclear structure for the nuclei beyond the doubly-magic nucleus 132Sn. The 2+1 → 0+ gs transitions were identified for these two nuclei using in-beam γ-ray spectroscopy in coincidence with one- and two-proton removal reactions, respectively, at the RIKEN Radioactive Isotope Beam Factory. The 2+ 1 state in 136Sn is found to be similar to that for 134Sn indicating the seniority scheme may also hold for the heavy tin isotopes beyond N = 82. For 132Cd, the 2+ 1 state provides the first spectroscopic information in the even-even nuclei locating in the region "southeast" of 132Sn and the result is discussed in terms of proton-neutron configuration mixing. In both these two nuclei, it was found that the valence neutrons play an essential role in their low-lying excitations.

  6. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  7. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  8. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Marsden, B. G.; Sekanina, Z.

    1976-01-01

    A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity.

  9. Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dote, Akinobu

    2010-05-12

    Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.

  10. Experimental rotator cuff repair. A preliminary study.

    PubMed

    Gerber, C; Schneeberger, A G; Perren, S M; Nyffeler, R W

    1999-09-01

    The repair of chronic, massive rotator cuff tears is associated with a high rate of failure. Prospective studies comparing different repair techniques are difficult to design and carry out because of the many factors that influence structural and clinical outcomes. The objective of this study was to develop a suitable animal model for evaluation of the efficacy of different repair techniques for massive rotator cuff tears and to use this model to compare a new repair technique, tested in vitro, with the conventional technique. We compared two techniques of rotator cuff repair in vivo using the left shoulders of forty-seven sheep. With the conventional technique, simple stitches were used and both suture ends were passed transosseously and tied over the greater tuberosity of the humerus. With the other technique, the modified Mason-Allen stitch was used and both suture ends were passed transosseously and tied over a cortical-bone-augmentation device. This device consisted of a poly(L/D-lactide) plate that was fifteen millimeters long, ten millimeters wide, and two millimeters thick. Number-3 braided polyester suture material was used in all of the experiments. In pilot studies (without prevention of full weight-bearing), most repairs failed regardless of the technique that was used. The simple stitch always failed by the suture pulling through the tendon or the bone; the suture material did not break or tear. The modified Mason-Allen stitch failed in only two of seventeen shoulders. In ten shoulders, the suture material failed even though the stitches were intact. Thus, we concluded that the modified Mason-Allen stitch is a more secure method of achieving suture purchase in the tendon. In eight of sixteen shoulders, the nonaugmented double transosseous bone-fixation technique failed by the suture pulling through the bone. The cortical-bone-augmentation technique never failed. In definite studies, prevention of full weight-bearing was achieved by fixation of a ten

  11. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  12. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    NASA Astrophysics Data System (ADS)

    Patra, S. K.; Wu, Cheng-Li; Praharaj, C. R.; Gupta, Raj K.

    1999-05-01

    We have studied the structural properties of even-even, neutron deficient, Z = 114-126, superheavy nuclei in the mass region A ˜ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z = 80, 92, (114), 120 and 138, N = 138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z = 114 and N = 164 ˜ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z = 120 and N = 172 or N = 184 double shell closure is also discussed.

  13. Comorbidities in rotator cuff disease: a case-control study.

    PubMed

    Titchener, Andrew G; White, Jonathan J E; Hinchliffe, Sally R; Tambe, Amol A; Hubbard, Richard B; Clark, David I

    2014-09-01

    Rotator cuff disease is a common condition in the general population, but relatively little is known about its associated risk factors. We have undertaken a large case-control study using The Health Improvement Network database to assess and to quantify the relative contributions of some constitutional and environmental risk factors for rotator cuff disease in the community. Our data set included 5000 patients with rotator cuff disease who were individually matched with a single control by age, sex, and general practice (primary care practice). The median age at diagnosis was 55 years (interquartile range, 44-65 years). Multivariate analysis showed that the risk factors associated with rotator cuff disease were Achilles tendinitis (odds ratio [OR] = 1.78), trigger finger (OR = 1.99), lateral epicondylitis (OR = 1.71), and carpal tunnel syndrome (OR = 1.55). Oral corticosteroid therapy (OR = 2.03), oral antidiabetic use (OR = 1.66), insulin use (OR = 1.77), and "overweight" body mass index of 25.1 to 30 (OR = 1.15) were also significantly associated. Current or previous smoking history, body mass index of greater than 30, any alcohol intake, medial epicondylitis, de Quervain syndrome, cubital tunnel syndrome, and rheumatoid arthritis were not found to be associated with rotator cuff disease. We have identified a number of comorbidities and risk factors for rotator cuff disease. These include lateral epicondylitis, carpal tunnel syndrome, trigger finger, Achilles tendinitis, oral corticosteroid use, and diabetes mellitus. The findings should alert the clinician to comorbid pathologic processes and guide future research into the etiology of this condition. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  14. Shape coexistence and shape transition in light nuclei

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Singh, U. K.; Kaushik, M.; Jain, S. K.

    2018-05-01

    A systematic study has been performed to investigate the shape coexistence and shape transition for even-even nuclei between Z = 10-20 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We calculate ground state properties viz. binding energy, deformation etc. for even-even nuclei to find the shape coexistence and shape transition. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.

  15. Degree of tendon degeneration and stage of rotator cuff disease.

    PubMed

    Jo, Chris Hyunchul; Shin, Won Hyoung; Park, Ji Wan; Shin, Ji Sun; Kim, Ji Eun

    2017-07-01

    While tendon degeneration has been known to be an important cause of rotator cuff disease, few studies have objectively proven the association of tendon degeneration and rotator cuff disease. The purpose of this study was to investigate changes of tendon degeneration with respect to the stage of rotator cuff disease. A total of 48 patients were included in the study: 12 with tendinopathy, 12 with a partial-thickness tear (pRCT), 12 with a full-thickness tear (fRCT), and 12 as the control. A full-thickness supraspinatus tendon sample was harvested en bloc from the middle portion between the lateral edge and the musculotendinous junction of the tendon using a biopsy punch with a diameter of 3 mm. Harvested samples were evaluated using a semi-quantitative grading scale with 7 parameters after haematoxylin and eosin staining. There was no significant difference in age, gender, symptom duration, and Kellgren-Lawrence grade between the groups except for the global fatty degeneration index. All of the seven parameters were significantly different between the groups and could be categorized as follows: early responders (fibre structure and arrangement), gradual responder (rounding of the nuclei), after-tear responders (cellularity, vascularity, and stainability), and late responder (hyalinization). The total degeneration scores were not significantly different between the control (6.08 ± 1.16) and tendinopathy (6.67 ± 1.83) (n.s.). However, the score of pRCT group (10.42 ± 1.31) was greater than that of tendinopathy (P < 0.001), and so was the score of fRCT (12.33 ± 1.15) than that of pRCT (p = 0.009). This study showed that the degeneration of supraspinatus tendon increases as the stage of rotator cuff disease progresses from tendinopathy to pRCT, and then to fRCT. The degree of degeneration of tendinopathy was not different from that of normal but aged tendons, and significant tendon degeneration began from the stage of pRCT. The clinical relevance of

  16. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  17. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia

    PubMed Central

    Cobia, Derin J.; Smith, Matthew J.; Salinas, Ilse; Ng, Charlene; Gado, Mohktar; Csernansky, John G.; Wang, Lei

    2016-01-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. PMID:27613507

  18. Light nuclei of even mass number in the Skyrme model

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.; Wood, S. W.

    2009-09-01

    We consider the semiclassical rigid-body quantization of Skyrmion solutions of mass numbers B=4,6,8,10, and 12. We determine the allowed quantum states for each Skyrmion and find that they often match the observed states of nuclei. The spin and isospin inertia tensors of these Skyrmions are accurately calculated for the first time and are used to determine the excitation energies of the quantum states. We calculate the energy level splittings, using a suitably chosen parameter set for each mass number. We find good qualitative and encouraging quantitative agreement with experiment. In particular, the rotational bands of beryllium-8 and carbon-12, along with isospin 1 triplets and isospin 2 quintets, are especially well reproduced. We also predict the existence of states that have not yet been observed and make predictions for the unknown quantum numbers of some observed states.

  19. The Relationship Between Shoulder Stiffness and Rotator Cuff Healing: A Study of 1,533 Consecutive Arthroscopic Rotator Cuff Repairs.

    PubMed

    McNamara, William J; Lam, Patrick H; Murrell, George A C

    2016-11-16

    Retear and stiffness are not uncommon outcomes of rotator cuff repair. The purpose of this study was to evaluate the relationship between rotator cuff repair healing and shoulder stiffness. A total of 1,533 consecutive shoulders had an arthroscopic rotator cuff repair by a single surgeon. Patients assessed their shoulder stiffness using a Likert scale preoperatively and at 1, 6, 12, and 24 weeks (6 months) postoperatively, and examiners evaluated passive range of motion preoperatively and at 6, 12, and 24 weeks postoperatively. Repair integrity was determined by ultrasound evaluation at 6 months. After rotator cuff repair, there was an overall significant loss of patient-ranked and examiner-assessed shoulder motion at 6 weeks compared with preoperative measurements (p < 0.0001), a partial recovery at 12 weeks, and a full recovery at 24 weeks. Shoulders that were stiff before surgery were more likely to be stiff at 6, 12, and, to a lesser extent, 24 weeks after surgery (r = 0.10 to 0.31; p < 0.0001). A stiffer shoulder at 6 and 12 weeks (but not 24 weeks) postoperatively correlated with better rotator cuff integrity at 6 months postoperatively (r = 0.11 to 0.18; p < 0.001). The retear rate of patients with ≤20° of external rotation at 6 weeks postoperatively was 7%, while the retear rate of patients with >20° of external rotation at 6 weeks was 15% (p < 0.001). In patients who developed stiffness after surgery, a rotator cuff repair was more likely to heal. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  20. Processes in massive nuclei reactions and the way to complete fusion of reactants. What perspectives for the synthesis of heavier superheavy elements?

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.

    2012-12-01

    By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.

  1. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that willmore » exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.« less

  2. Source spectral index of heavy cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W. R.

    1985-01-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements.

  3. Polarized electrons, trions, and nuclei in charged quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.

    2003-07-01

    We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.

  4. Pressure ulcers and lateral rotation beds: a case study.

    PubMed

    Russell, Teresa; Logsdon, Angela

    2003-05-01

    During a 6-month period, the WOC nurses at a 500-bed medical treatment facility noticed the development of nosocomial pressure ulcers on the sacrum, occiput, and heel areas of patients who were placed on lateral rotation specialty beds because they had pulmonary disorders. Measures were taken to address the problem by repositioning the patients and through a staff education program. Repositioning included repositioning the patient's head every 2 hours, thorough skin assessments every 2 hours, and ensuring that the patient's heels were subject to zero pressure. Staff education centered on the importance of using a risk assessment tool (the Braden scale) and understanding the clinical uses for lateral rotation beds. During the subsequent 6 months, the incidence of hospital-acquired pressure ulcers decreased by 52%. Efforts to further decrease the number of pressure ulcers related to the use of lateral rotation beds continue. Issues such as length of stay on the bed and the appropriateness of manufacturer's guidelines still need to be addressed at this facility. This case study highlights the potential issues associated with lateral rotation beds and identifies the need for further research.

  5. Coulomb Excitation of Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Augusto O.

    2017-09-01

    The structure of nuclei far from the stability line is a central theme of research in nuclear physics. Key to this program has been the worldwide development of radioactive beam facilities and novel detector systems, which provide the tools needed to produce and study these exotic nuclei. Coulomb Excitation provides a unique probe to characterize the interplay of collective and single-particle degrees of freedom of the atomic nucleus. In particular, the combination of state-of-the-art charged particle detectors and gamma-ray spectroscopy plays a vital and ubiquitous role in these studies. As an introduction to this Mini-Symposium, I will present a short overview of this powerful technique and selected examples of recent experiments. Future opportunities with a 4 π gamma-ray tracking array like GRETA will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

  6. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF STATE [Public Notice: 7643] In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated Global Terrorist...

  7. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  8. Elusive active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  9. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  10. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  11. Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, O.; Kholmetskii, Alexander; Arık, Metin

    2017-01-01

    Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of "pairing" ( e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that "pairing", as expected, definitely increases the stability of the given nucleus.

  12. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  13. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  14. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia.

    PubMed

    Cobia, Derin J; Smith, Matthew J; Salinas, Ilse; Ng, Charlene; Gado, Mokhtar; Csernansky, John G; Wang, Lei

    2017-02-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A study of temporal and radial dependencies of the anomalous helium and oxygen nuclei

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Mcdonald, F. B.; Von Rosenvinge, T. T.; Mewaldt, R. A.

    1982-01-01

    The intensity of the low energy anomalous helium and oxygen components has been continuously monitored by telescopes on the Pioneer 10 and IMP 7 and 8 spacecraft since 1972. After a period of relatively small temporal changes at earth between 1972 and 1978, during which it was possible to study the radial gradients of these components out to about 15 AU, large temporal changes were observed in 1978-1980 associated with the onset of the new solar modulation cycle. During this time period the anomalous He and O intensities at Pioneer 10 have decreased by a factor of greater than 10; however, both anomalous components were still present in the summer of 1980 at about 20 AU. At the earth similar large intensity changes have occurred. At Pioneer 10 the relative modulation of He nuclei is about 1.4x that of O nuclei at the same energy/nuc during this time period.

  16. A Study about the Taboo of Rotation Timing for the Flapping Wing Flight

    NASA Astrophysics Data System (ADS)

    Wang, An-Bang; Hsueh, Chia-Hsien; Chen, Shih-Shen

    2004-11-01

    Influence of rotation timing for flapping wing flight on the flying lift has been experimentally investigated in this study. Since the insects cannot extend and shrink their wings like birds, the rotation timing of wings becomes the major influential factor to affect the flying lift of the flapping wing flight. The results reveal that rotation timing has significant influence on the flying lift. The averaged flying lift increases for high rotation wing velocity. Based on the comparisons of flying lift, too late A-rotation (connecting from wing downward motion to upward one) is the most serious taboo for the motion design of the micro air vehicles with flapping wings. Too late B-rotation (connection from upward motion to downward one) should also be avoided.

  17. Production and investigation of heavy neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon

    2017-11-01

    A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  18. Multipoles and Force on External Points for a Two-layered Spheroidal Liquid Mass Rotating Differentialy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros-Parra, Joel U.; Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel

    We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.

  19. Non-synchronous rotating damping effects in gyroscopic rotating systems

    NASA Astrophysics Data System (ADS)

    Brusa, Eugenio; Zolfini, Giacomo

    2005-03-01

    The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.

  20. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  1. On the thermalization achieved in the reactions involving superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Rajni

    In the present study, we aim to explore the role of Coulomb potential on the thermalization achieved in the reactions involving superheavy nuclei. Particularly, we shall study the degree of the equilibrium attained in a reaction by the 3D density plots, anisotropy ratio as well as by the rapidity distribution of the nucleons. Our study reveals that the degree of the equilibrium attained in the central reactions of the superheavy nuclei remains unaffected by the Coulomb potential.

  2. Heavy neutron rich nuclei: production and investigation

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, S.; Avvakumov, K.; Kazarinov, N.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.

    2018-05-01

    For production and investigation of heavy neutron rich nuclei devoted the new setup, which is under construction at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna now. This setup is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  3. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.

    PubMed

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R

    2018-01-01

    Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

  4. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels

    PubMed Central

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.

    2018-01-01

    Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277

  5. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less

  6. Chaos in nuclei: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  7. Critical care staff rotation: outcomes of a survey and pilot study.

    PubMed

    Richardson, Annette; Douglas, Margaret; Shuttler, Rachel; Hagland, Martin R

    2003-01-01

    Staff rotation is defined as a reciprocal exchange of staff between two or more clinical areas for a predetermined period of time. The rationale for introducing a 'Critical Care Nurse Rotation Programme' includes important issues such as improving nurses' knowledge and skills, providing development opportunities, networking, the ability to recruit and retain nurses and the provision of a more versatile and flexible workforce. To gain the understanding of nurses' views and opinions on critical care rotation programmes, evidence was collected by means of questionnaires involving 153 critical care nurses and by undertaking semi-structured interviews with four nurses. On the basis of the responses, a pilot of three Critical Care Nurse Rotation Programmes was introduced. An evaluation of the pilot project assessed participants, supervisors and senior nurses' experience of rotation and revealed very positive experiences being reported. The benefits highlighted included improving clinical skills and experience, improving interdepartmental relationships, heightened motivation and opportunities to network. The disadvantages focused on the operational and managerial issues, such as difficulties maintaining supervision and providing an adequate supernumerary period. Evidence from the survey and pilot study suggests that in the future, providing rotational programmes for critical care nurses would be a valuable strategy for recruitment, retention and developing the workforce.

  8. Study of Collectivity in n-rich A=80 Nuclei using Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Padilla, E.; Galindo-Uribarri, A.; Baktash, C.; Fuentes, B.; Gross, C.; Mueller, P.; Radford, D. C.; Stracener, D.; Yu, C.-H.; Bijker, R.; Castanos, O.; Batchelder, J.; Hartley, D. J.

    2002-04-01

    We report on recent experiments performed at the HRIBF of Oak Ridge National Laboratory (ORNL) aimed to study neutron-rich nuclei in the A 80 mass region. First time use of Radioactive Ion Beams (RIBs) (78,80)Ge complemented with stable beam information allowed a systematic study of B(E2)-values that characterize the n-rich even-even Ge and Se isotopes. A comparison of the experimental results with IBA2 calculations will be presented. *Supported by US-DOE under the contract DE-AC05-00AOR22725.

  9. On the occurrence of nuclei in mature sieve elements.

    PubMed

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  10. Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.

    2018-03-01

    A beam containing a substantial component of both the J(pi) = 5(+), T-1/2 = 162 ns isomeric state of F-18 and its 1(+), 109.77-min ground state is utilized to study members of the ground-state rotational band in F-19 through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2(+) band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

  11. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  12. Studies of rotating liquid floating zones on Skylab IV

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.

    1975-01-01

    Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.

  13. Superheavy nuclei from 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.

    2015-12-01

    The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.

  14. Genome-wide association study identifies a locus associated with rotator cuff injury

    PubMed Central

    Roos, Thomas R.; Roos, Andrew K.; Avins, Andrew L.; Ahmed, Marwa A.; Kleimeyer, John P.; Fredericson, Michael; Ioannidis, John P. A.; Dragoo, Jason L.

    2017-01-01

    Rotator cuff tears are common, especially in the fifth and sixth decades of life, but can also occur in the competitive athlete. Genetic differences may contribute to overall injury risk. Identifying genetic loci associated with rotator cuff injury could shed light on the etiology of this injury. We performed a genome-wide association screen using publically available data from the Research Program in Genes, Environment and Health including 8,357 cases of rotator cuff injury and 94,622 controls. We found rs71404070 to show a genome-wide significant association with rotator cuff injury with p = 2.31x10-8 and an odds ratio of 1.25 per allele. This SNP is located next to cadherin8, which encodes a protein involved in cell adhesion. We also attempted to validate previous gene association studies that had reported a total of 18 SNPs showing a significant association with rotator cuff injury. However, none of the 18 SNPs were validated in our dataset. rs71404070 may be informative in explaining why some individuals are more susceptible to rotator cuff injury than others. PMID:29228018

  15. Narrow-line region kinematics in Seyfert nuclei

    NASA Astrophysics Data System (ADS)

    Moore, David J.

    1994-01-01

    We present results of a study of narrow-line region (NLR) kinematics in Seyfert nuclei. This study has involved extensive modeling which includes collimated emission, radially dependent rotation and turbulence, explicit photoionization calculations, realistic treatments of both internal and external obscuration, and allows for gradients in the electron density and the radial velocity of clouds throughout the NLR. Line profiles of (O II) lambda 3727, (Ne III) lambda 3869, (O III) lambda 5007, (Fe VII) lambda 6087, (Fe X) lambda 6374, (O I) lambda 6300, H alpha lambda 6563, and (S II) lambda 6731 are calculated for a wide range of physical conditions throughout the NLR. The model profiles are compared with line profiles derived from data taken with the Mount Palomar 5 m Hale Telescope as well as from profiles taken from the literature. The scenario in agreement with the largest of observational considerations consists of clouds which are accelerating outward with v varies as square root of r (i.e., constant force) and ne varies as 1/r2. The cloud start out at the inner NLR radium with ne approximately equal to 106/cu cm and with a very large column density (1023 - 10(exp 24/sq cm). These clouds are uniformly accelerated from a few tens of km/sec to approximately less than 1,000 km/sec. When the clouds reached the outer NLR radius, they have ne approximately greater than 102/cu cm and a column density of 1021-1022/sq cm. The clouds maintain an ionization parameter of about 0.3 throughout the NLR.

  16. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  17. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  18. Size distribution and growth rate of crystal nuclei near critical undercooling in small volumes

    NASA Astrophysics Data System (ADS)

    Kožíšek, Z.; Demo, P.

    2017-11-01

    Kinetic equations are numerically solved within standard nucleation model to determine the size distribution of nuclei in small volumes near critical undercooling. Critical undercooling, when first nuclei are detected within the system, depends on the droplet volume. The size distribution of nuclei reaches the stationary value after some time delay and decreases with nucleus size. Only a certain maximum size of nuclei is reached in small volumes near critical undercooling. As a model system, we selected recently studied nucleation in Ni droplet [J. Bokeloh et al., Phys. Rev. Let. 107 (2011) 145701] due to available experimental and simulation data. However, using these data for sample masses from 23 μg up to 63 mg (corresponding to experiments) leads to the size distribution of nuclei, when no critical nuclei in Ni droplet are formed (the number of critical nuclei < 1). If one takes into account the size dependence of the interfacial energy, the size distribution of nuclei increases to reasonable values. In lower volumes (V ≤ 10-9 m3) nucleus size reaches some maximum extreme size, which quickly increases with undercooling. Supercritical clusters continue their growth only if the number of critical nuclei is sufficiently high.

  19. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  20. Climate model studies of synchronously rotating planets.

    PubMed

    Joshi, Manoj

    2003-01-01

    M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets.

  1. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  2. A probabilistic template of human mesopontine tegmental nuclei from in vivo 7T MRI.

    PubMed

    Bianciardi, Marta; Strong, Christian; Toschi, Nicola; Edlow, Brian L; Fischl, Bruce; Brown, Emery N; Rosen, Bruce R; Wald, Lawrence L

    2018-04-15

    Mesopontine tegmental nuclei such as the cuneiform, pedunculotegmental, oral pontine reticular, paramedian raphe and caudal linear raphe nuclei, are deep brain structures involved in arousal and motor function. Dysfunction of these nuclei is implicated in the pathogenesis of disorders of consciousness and sleep, as well as in neurodegenerative diseases. However, their localization in conventional neuroimages of living humans is difficult due to limited image sensitivity and contrast, and a stereotaxic probabilistic neuroimaging template of these nuclei in humans does not exist. We used semi-automatic segmentation of single-subject 1.1mm-isotropic 7T diffusion-fractional-anisotropy and T 2 -weighted images in healthy adults to generate an in vivo probabilistic neuroimaging structural template of these nuclei in standard stereotaxic (Montreal Neurological Institute, MNI) space. The template was validated through independent manual delineation, as well as leave-one-out validation and evaluation of nuclei volumes. This template can enable localization of five mesopontine tegmental nuclei in conventional images (e.g. 1.5T, 3T) in future studies of arousal and motor physiology (e.g. sleep, anesthesia, locomotion) and pathology (e.g. disorders of consciousness, sleep disorders, Parkinson's disease). The 7T magnetic resonance imaging procedure for single-subject delineation of these nuclei may also prove useful for future 7T studies of arousal and motor mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Experimental study of rotational oscillation of H-shaped bodies in the flow

    NASA Astrophysics Data System (ADS)

    Braun, Oleg; Ryabinin, Anatoly

    2018-05-01

    The rotational oscillations of H-shaped body in the air flow are studied in the wind tunnel. The body is elastically fixed in the test section and can rotate only around axis that is perpendicular to the velocity vector. Tenzometrical technique is used for measurement of amplitude of rotational oscillations. The dependencies of oscillation amplitude on aspect ratio of the H-shaped body and air velocity are obtained. It is found that the increase of the flange height leads to growth of the amplitude of the oscillations.

  4. Direct Reactions with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  5. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  6. Computational Analysis of the Caenorhabditis elegans Germline to Study the Distribution of Nuclei, Proteins, and the Cytoskeleton.

    PubMed

    Gopal, Sandeep; Pocock, Roger

    2018-04-19

    The Caenorhabditis elegans (C. elegans) germline is used to study several biologically important processes including stem cell development, apoptosis, and chromosome dynamics. While the germline is an excellent model, the analysis is often two dimensional due to the time and labor required for three-dimensional analysis. Major readouts in such studies are the number/position of nuclei and protein distribution within the germline. Here, we present a method to perform automated analysis of the germline using confocal microscopy and computational approaches to determine the number and position of nuclei in each region of the germline. Our method also analyzes germline protein distribution that enables the three-dimensional examination of protein expression in different genetic backgrounds. Further, our study shows variations in cytoskeletal architecture in distinct regions of the germline that may accommodate specific spatial developmental requirements. Finally, our method enables automated counting of the sperm in the spermatheca of each germline. Taken together, our method enables rapid and reproducible phenotypic analysis of the C. elegans germline.

  7. An experimental study of helicopter rotor rotational noise in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Harris, W. L.; Widnall, S. E.

    1976-01-01

    The rotational noise of model helicopter rotors in forward flight was studied in an anechoic wind tunnel. The parameters under study were the rotor thrust (blade loading), blade number and advance ratio. The separate effects of each parameter were identified with the other parameters being held constant. The directivity of the noise was also measured. Twelve sets of data for rotational noise as a function of frequency were compared with the theory of Lowson and Ollerhead. In general, the agreement is reasonably good, except for the cases of (1) low and high disk loadings, (2) the four bladed rotor, and (3) low advance ratios. The theory always under-estimates the rotational noise at high harmonics.

  8. QPOs from Random X-ray Bursts around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  9. β-decay studies of r-process nuclei at NSCL

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Schnorrenberger, L.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Pfeiffer, B.; Quinn, M.; Santi, P.; Schatz, H.; Schertz, F.; Smith, E.; Tomlin, B. E.; Walters, W. B.; Wöhr, A.

    2008-06-01

    Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β-decay properties of neutron-rich nuclei. In this context, several r-process motivated β-decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

  10. Ice nuclei emissions from biomass burning

    Treesearch

    Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller

    2009-01-01

    Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...

  11. Representation of the quantum Fourier transform on multilevel basic elements by a sequence of selective rotation operators

    NASA Astrophysics Data System (ADS)

    Ermilov, A. S.; Zobov, V. E.

    2007-12-01

    To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.

  12. Comparison of Muon Capture in Light and in Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Stocki, Trevor J.

    2007-10-01

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  13. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R M; Phair, L W; Descovich, M

    2005-08-09

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  14. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  15. Comparative study on the song behavior and song control nuclei in male and female Mongolian larks (Melanocorypha mongolica).

    PubMed

    Zhang, Xuebo; Zeng, Shaoju; Zhang, Xinwen; Zuo, Mingxue

    2011-09-12

    Songbirds can produce a remarkable diversity of songs, which is well-characterized learned behavior that reflects the basic processes of language learning in humans. As song control nuclei governing song behavior has been identified, bird song provides an excellent model to address the relationship between brain areas and their controlling behavior. The Mongolian lark (Melanocorypha mongolica), a species of the Alaudidae family, is well known for its elaborate singing and ability to learn new songs, even in adulthood. Here, we studied the singing behavior and underlying neural structures of the Mongolian lark in both sexes. We found that the sizes of song bouts and song phrases (song repertoires) in male Mongolian larks are extremely large, and that each song repertoire or phrase has a complex structure, comprising several different syllables that seldom appear in other types of song bouts. In accordance with these complex songs, Mongolian lark song control nuclei are well developed and can be easily detected by Nissl staining. In contrast to male Mongolian larks, females were not observed to sing. However, they possess significant song control nuclei with abundant neural connectivity within them despite their small sizes compared with males. These data provide new evidence that help further clarify the mechanisms by which songbirds sing. Our results also have implications for the evolution of complex birdsongs and song control nuclei in oscine birds. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-11-01

    The two-dimensional rarefied gas flow around a rotating Crookes radiometer and the arising radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The computations are performed in a noninertial frame of reference rotating together with the radiometer. The collision integral is directly evaluated using a projection method, while second- and third-order accurate TVD schemes are used to solve the advection equation and the equation for inertia-induced transport in the velocity space, respectively. The radiometric forces are found as functions of the rotation frequency.

  17. Experimental study of icing accretion on a rotating conical spinner

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Ji, Honghu; Hu, Yaping; Wang, Jian; Cao, Guangzhou

    2015-12-01

    A reduced scale experiment has been conducted to investigate the icing accretion procedure on a rotating spinner of 60° cone angle. The experiment was carried out in a small scale ice wind tunnel with three different rotating speeds of the spinner. The experimental conditions were determined from the actual icing condition of the spinner of a turbofan engine by using the similarity theory, which considers the rotating effects. The ice thickness on the spinner was got from the image taken by the high speed camera, by image processing. The results of this investigation show that under the experimental condition, ice on the spinner's tip of three different rotating speeds are all glaze ice and about the same thick. However, on the downstream surface of the spinner, ice shape on the rotating spinner is different from that on the stationary spinner. It is uneven glaze ice on the stationary spinner while it is `particle ice' when the rotating speed is 8240 rpm and it is `needle ice' when the rotating speed is 15,200 rpm. The experiment also reveals that when the rotating speed is higher, the ice layer is thicker.

  18. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  19. Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor.

    PubMed

    Aucar, I Agustín; Gómez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C

    2013-09-07

    In this work, relativistic effects on the nuclear spin-rotation (SR) tensor originated in the electron-nucleus and electron-electron Breit interactions are analysed. To this end, four-component numerical calculations were carried out in model systems HX (X=H,F,Cl,Br,I). The electron-nucleus Breit interaction couples the electrons and nuclei dynamics giving rise to a purely relativistic contribution to the SR tensor. Its leading order in 1/c is of the same value as that of relativistic corrections on the usual second order expression of the SR tensor considered in previous work [I. A. Aucar, S. S. Gómez, J. I. Melo, C. G. Giribet, and M. C. Ruiz de Azúa, J. Chem. Phys. 138, 134107 (2013)], and therefore it is absolutely necessary to establish its relative importance. For the sake of completeness, the corresponding effect originating in the electron-electron Breit interaction is also considered. It is verified that in all cases these Breit interactions yield only very small corrections to the SR tensors of both the X and H nuclei in the present series of compounds. Results of the present work strongly suggest that in order to achieve experimental accuracy in the theoretical study of the SR tensor both electron-nucleus and electron-electron Breit effects can be safely neglected.

  20. A study of rotational velocity distribution of Be stars

    NASA Astrophysics Data System (ADS)

    Sitko, C.; Janot-Pacheco, E.; Emilio, M.

    2014-10-01

    Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. In spite of their high vsin i, rapid rotation alone cannot explain the ejection episodes as most Be stars do not rotate at their critical rotation rates. In this work we present the distribution of vsin i of 261 Be's stars from BeSS (Be Star Spectra) database. We used two techniques, the Fourier method and the FWHM (Full Width at Half Maximum) method. For the analysis we made use of three absorption lines of Helium (4026r A, 4388 Å and 4471 Å). Stars with projected rotational velocities up to 300 km s^{-1} agree with the ones already published in the literature. 84 of our stars do not have the values of rotational velocity published. The majority of our sample are B1/B2 spectral type, whose have the greatest velocities.

  1. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  2. Three-level mixing model for nuclear chiral rotation: Role of the planar component

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Starosta, K.; Koike, T.

    2018-04-01

    Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.

  3. Towards a Deeper Understanding of the Nucleus with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Ormand, Erich

    2006-10-01

    Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.

  4. Isolation of Cardiomyocyte Nuclei from Post-mortem Tissue

    PubMed Central

    Bergmann, Olaf; Jovinge, Stefan

    2012-01-01

    Identification of cardiomyocyte nuclei has been challenging in tissue sections as most strategies rely only on cytoplasmic marker proteins1. Rare events in cardiac myocytes such as proliferation and apoptosis require an accurate identification of cardiac myocyte nuclei to analyze cellular renewal in homeostasis and in pathological conditions2. Here, we provide a method to isolate cardiomyocyte nuclei from post mortem tissue by density sedimentation and immunolabeling with antibodies against pericentriolar material 1 (PCM-1) and subsequent flow cytometry sorting. This strategy allows a high throughput analysis and isolation with the advantage of working equally well on fresh tissue and frozen archival material. This makes it possible to study material already collected in biobanks. This technique is applicable and tested in a wide range of species and suitable for multiple downstream applications such as carbon-14 dating3, cell-cycle analysis4, visualization of thymidine analogues (e.g. BrdU and IdU)4, transcriptome and epigenetic analysis. PMID:22805241

  5. In touch with mental rotation: interactions between mental and tactile rotations and motor responses.

    PubMed

    Lohmann, Johannes; Rolke, Bettina; Butz, Martin V

    2017-04-01

    Although several process models have described the cognitive processing stages that are involved in mentally rotating objects, the exact nature of the rotation process itself remains elusive. According to embodied cognition, cognitive functions are deeply grounded in the sensorimotor system. We thus hypothesized that modal rotation perceptions should influence mental rotations. We conducted two studies in which participants had to judge if a rotated letter was visually presented canonically or mirrored. Concurrently, participants had to judge if a tactile rotation on their palm changed direction during the trial. The results show that tactile rotations can systematically influence mental rotation performance in that same rotations are favored. In addition, the results show that mental rotations produce a response compatibility effect: clockwise mental rotations facilitate responses to the right, while counterclockwise mental rotations facilitate responses to the left. We conclude that the execution of mental rotations activates cognitive mechanisms that are also used to perceive rotations in different modalities and that are associated with directional motor control processes.

  6. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  7. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms.

    PubMed

    Tashjian, Robert Z; Granger, Erin K; Farnham, James M; Cannon-Albright, Lisa A; Teerlink, Craig C

    2016-02-01

    The precise etiology of rotator cuff disease is unknown, but prior evidence suggests a role for genetic factors. Limited data exist identifying specific genes associated with rotator cuff tearing. The purpose of this study was to identify specific genes or genetic variants associated with rotator cuff tearing by a genome-wide association study with an independent set of rotator cuff tear cases. A set of 311 full-thickness rotator cuff tear cases genotyped on the Illumina 5M single-nucleotide polymorphism (SNP) platform were used in a genome-wide association study with 2641 genetically matched white population controls available from the Illumina iControls database. Tests of association were performed with GEMMA software at 257,558 SNPs that compose the intersection of Illumina SNP platforms and that passed general quality control metrics. SNPs were considered significant if P < 1.94 × 10(-7) (Bonferroni correction: 0.05/257,558). Tests of association revealed 2 significantly associated SNPs, one occurring in SAP30BP (rs820218; P = 3.8E-9) on chromosome 17q25 and another occurring in SASH1 (rs12527089; P = 1.9E-7) on chromosome 6q24. This study represents the first attempt to identify genetic factors influencing rotator cuff tearing by a genome-wide association study using a dense/complete set of SNPs. Two SNPs were significantly associated with rotator cuff tearing, residing in SAP30BP on chromosome 17 and SASH1 on chromosome 6. Both genes are associated with the cellular process of apoptosis. Identification of potential genes or genetic variants associated with rotator cuff tearing may help in identifying individuals at risk for the development of rotator cuff tearing. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking

    DOE PAGES

    Liang, Mengning; Harder, Ross; Robinson, Ian K.

    2014-04-14

    Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT) to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves butmore » also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.« less

  9. ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi; Pu, Hung-Yi, E-mail: hirotani@tiara.sinica.edu.tw

    2016-02-10

    Supermassive black holes (BHs) are believed to be the central powerhouse of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to BH magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating BH. In this particle accelerator (or a gap), electrons and positrons are created by photon–photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null-charge surface formed by the frame-dragging effect, provided that there is nomore » current injection across the gap boundaries. The gap is dissipating a part of the hole’s rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive BH, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC 310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.« less

  10. A Study of volumetric variations of basal nuclei in the normal human brain by magnetic resonance imaging.

    PubMed

    Elkattan, Amal; Mahdy, Amal; Eltomey, Mohamed; Ismail, Radwa

    2017-03-01

    Knowledge of the effects of healthy aging on brain structures is necessary to identify abnormal changes due to diseases. Many studies have demonstrated age-related volume changes in the brain using MRI. 60 healthy individuals who had normal MRI aged from 20 years to 80 years were examined and classified into three groups: Group I: 21 persons; nine males and 12 females aging between 20-39 years old. Group II: 22 persons; 11 males and 11 females aging between 40-59 years old. Group III: 17 persons; eight males and nine females aging between 60-80 years old. Volumetric analysis was done to evaluate the effect of age, gender and hemispheric difference in the caudate and putamen by the slicer 4.3.3.1 software using 3D T1-weighted images. Data were analyzed by student's unpaired t test, ANOVA and regression analysis. The volumes of the measured and corrected caudate nuclei and putamen significantly decreased with aging in males. There was a statistically insignificant relation between the age and the volume of the measured caudate nuclei and putamen in females but there was a statistically significant relation between the age and the corrected caudate nuclei and putamen. There was no significant difference on the caudate and putamen volumes between males and females. There was no significant difference between the right and left caudate nuclei volumes. There was a leftward asymmetry in the putamen volumes. The results can be considered as a base to track individual changes with time (aging and CNS diseases). Clin. Anat. 30:175-182, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. The Study of Leukocyte Functions in a Rotating Wall Vessel

    NASA Technical Reports Server (NTRS)

    Trial, JoAnn

    1998-01-01

    The objective of this study was to investigate the behavior of leukocytes under free-fall conditions in a rotating wall vessel. In such a vessel, the tendency of a cell to fall in response to gravity is opposed by the rotation of the vessel and the culture medium within, keeping the cells in suspension without fluid shear. Previous reports indicated that such functions as lymphocyte migration through collagen matrix or monocyte cytokine secretion are altered under these conditions, and these changes correlate with similar functional defects of cultured cells seen during spaceflight.

  12. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  13. An epidemiological study of rotator cuff pathology using The Health Improvement Network database.

    PubMed

    White, J J E; Titchener, A G; Fakis, A; Tambe, A A; Hubbard, R B; Clark, D I

    2014-03-01

    Little is known about the incidence of rotator cuff pathology or its demographic associations in the general population. We undertook a large epidemiological study of rotator cuff pathology in the United Kingdom using The Health Improvement Network (THIN) database. The incidence of rotator cuff pathology was 87 per 100,000 person-years. It was more common in women than in men (90 cases per 100,000 person-years in women and 83 per 100,000 person-years in men; p < 0.001). The highest incidence of 198 per 100,000 person-years was found in those aged between 55 and 59 years. The regional distribution of incidence demonstrated an even spread across 13 UK health authorities except Wales, where the incidence was significantly higher (122 per 100,000 person-years; p < 0.001). The lowest socioeconomic group had the highest incidence (98 per 100,000 person-years). The incidence has risen fourfold since 1987 and as of 2006 shows no signs of plateauing. This study represents the largest general population study of rotator cuff pathology reported to date. The results obtained provide an enhanced appreciation of the epidemiology of rotator cuff pathology and may help to direct future upper limb orthopaedic services.

  14. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  15. Latissimus dorsi transfer to restore external rotation with reverse shoulder arthroplasty: a biomechanical study.

    PubMed

    Favre, Philippe; Loeb, Michael D; Helmy, Naeder; Gerber, Christian

    2008-01-01

    In patients with pseudoparesis of the shoulder resulting from irreparable rotator cuff tears, reverse shoulder arthroplasty (RSA) can restore active elevation, but external rotation remains less predictable. Latissimus dorsi transfer (LDT) has been shown to be effective in restoring external rotation in patients with posterosuperior tears of the rotator cuff. The aim of this study is to determine the capacity of the LDT to restore external rotation in combination with RSA and to investigate the mechanical advantage produced by 3 different insertion sites. A biomechanical model was created using a reverse total shoulder prosthesis with 3 different transfer insertions. Moment arms were measured for 2 static positions and 1 motion of the humerus. The moment arm analysis showed that LDT can improve active external rotation in the setting of a reverse prosthesis. An insertion site on the posterior side of the greater tuberosity (adjacent to the teres minor insertion) produced a greater external rotation moment arm.

  16. Spatio-temporal brain activity related to rotation method during a mental rotation task of three-dimensional objects: an MEG study.

    PubMed

    Kawamichi, Hiroaki; Kikuchi, Yoshiaki; Ueno, Shoogo

    2007-09-01

    During mental rotation tasks, subjects perform mental simulation to solve tasks. However, detailed neural mechanisms underlying mental rotation of three-dimensional (3D) objects, particularly, whether higher motor areas related to mental simulation are activated, remain unknown. We hypothesized that environmental monitoring-a process based on environmental information and is included in motor execution-is as a key factor affecting the utilization of higher motor areas. Therefore, using magnetoencephalography (MEG), we measured spatio-temporal brain activities during two types (two-dimensional (2D) and 3D rotation tasks) of mental rotation of 3D objects. Only the 3D rotation tasks required subjects to mentally rotate objects in a depth plane with visualization of hidden parts of the visual stimuli by acquiring and retrieving 3D information. In cases showing significant differences in the averaged activities at 100-ms intervals between the two rotations, the activities were located in the right dorsal premotor (PMd) at approximately 500 ms. In these cases, averaged activities during 3D rotation were greater than those during 2D rotation, implying that the right PMd activities are related to environmental monitoring. During 3D rotation, higher activities were observed from 200 to 300 ms in the left PMd and from 400 to 700 ms in the right PMd. It is considered that the left PMd is related to primary motor control, whereas the right PMd plays a supplementary role during mental simulation. Further, during 3D rotation, late higher activities related to mental simulation are observed in the right superior parietal lobule (SPL), which is connected to PMd.

  17. Statistical studies in stellar rotation 2: A method of analyzing rotational coupling in double stars and an introduction to its applications

    NASA Technical Reports Server (NTRS)

    Bernacca, P. L.

    1971-01-01

    The correlation between the equatorial velocities of the components of double stars is studied from a statistical standpoint. A theory of rotational correlation is developed and discussed with regard to its applicability to existing observations. The theory is then applied to a sample of visual binaries which are the least studied for rotational coupling. Consideration of eclipsing systems and spectroscopic binaries is limited to show how the degrees of freedom in the spin parallelism problem can be reduced. The analysis lends support to the existence of synchronism in closely spaced binaries.

  18. Neuronal nuclei isolation from human postmortem brain tissue.

    PubMed

    Matevossian, Anouch; Akbarian, Schahram

    2008-10-01

    Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.

  19. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  20. Direct observation of students during clerkship rotations: a multiyear descriptive study.

    PubMed

    Howley, Lisa D; Wilson, William G

    2004-03-01

    To determine how often students report that they are observed while performing physical examinations and taking histories during clerkship rotations. From 1999-2001, 397 students at the University of Virginia School of Medicine were asked at the end of their third year to report the number of times they had been observed by a resident or faculty member while taking histories and performing physical examinations on six rotations. Three hundred and forty-five students (87%) returned the survey instrument; of these, 322 (81%) returned instruments with complete information. On average, the majority reported that they had never been observed by a faculty member while taking a history (51%), performing a focused physical examination (54%), or a complete physical examination (81%). The majority (60%) reported that they had never been observed by a resident while performing a complete physical examination. Faculty observations occurred most frequently during the four-week family medicine rotation and least frequently during the 12-week surgery rotation. The length of the clerkship rotation was inversely related to the number of reported observations, chi(2) (5, n = 295) = 127.85, p <.000. Although alternative assessments of clinical skills are becoming more common in medical education, faculty ratings based on direct observation are still prominent. The data in this study reflect that these observations may actually be occurring quite infrequently, if at all. Decreasing the evaluative weight of faculty and resident ratings during the clerkship rotation may be necessary. Otherwise, efforts should be made to increase the validity of these ratings.

  1. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  2. Alpha-decay chains of superheavy nuclei 292-296118

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Kumawat, M.; Saxena, G.; Kaushik, M.; Jain, S. K.

    2018-05-01

    We have employed relativistic mean-field plus BCS (RMF+BCS) approach for the study of even-even superheavy nuclei with Z = 118 which is the last and recent observed element in the periodic chart so far. Our study includes binding energies, Qα values, alpha-decay half-lives and spontaneous decay half-lives along with comparison of available experimental data and the results of FRDM calculations. We find an excellent match with the only known decay chain of 294118 for Z = 118 so far and predict decay chain of 292118 and 296118 in consistency with known experimental decay chains and FRDM results. These results may provide a very helpful insight to conduct experiments for realizing the presence of nuclei with Z = 118.

  3. Multifractal-based nuclei segmentation in fish images.

    PubMed

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  4. Mental Rotation, Pictured Rotation, and Tandem Rotation in Depth

    DTIC Science & Technology

    1997-01-01

    field. Such an explanation by natural geometry conflates visual comparison with physical measurement. This application of geometry is called natural in...the theory of vision parasitic on geometry: it is unclear what could be meant by a ’mental operation of rotation’, except by reference to physical ...operation, a mental analogue of the physical operation of rotation in space. Since then the story of mental rotation has become far more complicated

  5. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  6. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Hader, J. D.; Wright, T. P.; Petters, M. D.

    2014-06-01

    Recent studies have suggested that the ice-nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules. These macromolecules may become dispersed by the rupturing of the pollen grain during wetting and drying cycles in the atmosphere. If true, this mechanism might prove to be a significant source of ice nuclei (IN) concentrations when pollen is present. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina, USA. Air samples were collected using a swirling aerosol collector twice per week and the solutions were analysed for ice nuclei activity using a droplet freezing assay. Rainwater samples were collected at times when pollen grain number concentrations were near their maximum value and analysed with the drop-freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Ambient ice nuclei spectra, defined as the number of ice nuclei per volume of air as a function of temperature, are inferred from the aerosol collector solutions. No general trend was observed between ambient pollen grain counts and observed IN concentrations, suggesting that ice nuclei multiplication via pollen grain rupturing and subsequent release of macromolecules was not prevalent for the pollen types and meteorological conditions typically encountered in the southeastern US. A serendipitously sampled collection after a downpour provided evidence for a rain-induced IN burst with an observed IN concentration of approximately 30 per litre, a 30-fold increase over background concentrations at -20 °C. The onset temperature of freezing for these particles was approximately -12 °C, suggesting that the ice-nucleating particles were biological in origin.

  7. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  8. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimately deleterious effect of steroid injection in tendinopathy?

    PubMed

    Dean, Benjamin John Floyd; Franklin, Sarah Louise; Murphy, Richard J; Javaid, Muhammad K; Carr, Andrew Jonathan

    2014-12-01

    Glucocorticoid injection (GCI) and surgical rotator cuff repair are two widely used treatments for rotator cuff tendinopathy. Little is known about the way in which medical and surgical treatments affect the human rotator cuff tendon in vivo. We assessed the histological and immunohistochemical effects of these common treatments on the rotator cuff tendon. Controlled laboratory study. Supraspinatus tendon biopsies were taken before and after treatment from 12 patients undergoing GCI and 8 patients undergoing surgical rotator cuff repair. All patients were symptomatic and none of the patients undergoing local GCI had full thickness tears of the rotator cuff. The tendon tissue was then analysed using histological techniques and immunohistochemistry. There was a significant increase in nuclei count and vascularity after rotator cuff repair and not after GCI (both p=0.008). Hypoxia inducible factor 1α (HIF-1α) and cell proliferation were only increased after rotator cuff repair (both p=0.03) and not GCI. The ionotropic N-methyl-d-aspartate receptor 1 (NMDAR1) glutamate receptor was only increased after GCI and not rotator cuff repair (p=0.016). An increase in glutamate was seen in both groups following treatment (both p=0.04), while an increase in the receptor metabotropic glutamate receptor 7 (mGluR7) was only seen after rotator cuff repair (p=0.016). The increases in cell proliferation, vascularity and HIF-1α after surgical rotator cuff repair appear consistent with a proliferative healing response, and these features are not seen after GCI. The increase in the glutamate receptor NMDAR1 after GCI raises concerns about the potential excitotoxic tendon damage that may result from this common treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. A study of human performance in a rotating environment

    NASA Technical Reports Server (NTRS)

    Green, J. A.; Peacock, J. L.; Holm, A. P.

    1971-01-01

    Consideration is given to the lack of sufficient data relative to the response of man to the attendant oculovestibular stimulations induced by multi-directional movement of an individual within the rotating environment to provide the required design criteria. This was done to determine the overall impact of artificial gravity simulations on potential design configurations and crew operational procedures. Gross locomotion and fine motor performance were evaluated. Results indicate that crew orientation, rotational rates, vehicle design configurations, and operational procedures may be used to reduce the severity of the adverse effects of the Coriolis and cross-coupled angular accelerations acting on masses moving within a rotating environment. Results further indicate that crew selection, motivation, and short-term exposures to the rotating environment may be important considerations for future crew indoctrination and training programs.

  10. Transverse momenta of fragments of relativistic sulfur and lead nuclei after their interaction with track-emulsion nuclei at energies of 200 and 160 GeV per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepekhin, F. G., E-mail: lepfed@yandex.ru; Tkach, L. N.

    2011-05-15

    Transverse-momentum distributions of doubly charged fragments of sulfur and lead nuclei having energies of 200 and 160 GeV per nucleon and interacting with nuclei in a track emulsion were investigated. No trace of compression or heating of nuclear matter in the interaction of these nuclei with track-emulsion nuclei was revealed experimentally. Transverse momenta of fragments of relativistic nuclei were found to obey a normal distribution that corresponds to a degenerate momentum distribution of nucleons in the ground state of a nucleus before its interaction with a track-emulsion nucleus. There is no piece of evidence that fragments of relativistic nuclei originatemore » from some excited state of an intermediate nucleus. This picture of the fragmentation of relativistic nuclei complies with the naive parton model proposed by Feynman and Gribov. In summary, the fragmentation of relativistic nuclei at energies of 160 and 200 GeV per nucleon is cold and fast.« less

  11. Introducing nuclei scatterer patterns into histology based intravascular ultrasound simulation framework

    NASA Astrophysics Data System (ADS)

    Kraft, Silvan; Karamalis, Athanasios; Sheet, Debdoot; Drecoll, Enken; Rummeny, Ernst J.; Navab, Nassir; Noël, Peter B.; Katouzian, Amin

    2013-03-01

    Medical ultrasonic grayscale images are formed from acoustic waves following their interactions with distributed scatterers within tissues media. For accurate simulation of acoustic wave propagation, a reliable model describing unknown parameters associated with tissues scatterers such as distribution, size and acoustic properties is essential. In this work, we introduce a novel approach defining ultrasonic scatterers by incorporating a distribution of cellular nuclei patterns in biological tissues to simulate ultrasonic response of atherosclerotic tissues in intravascular ultrasound (IVUS). For this reason, a virtual phantom is generated through manual labeling of different tissue types (fibrotic, lipidic and calcified) on histology sections. Acoustic properties of each tissue type are defined by assuming that the ultrasound signal is primarily backscattered by the nuclei of the organic cells within the intima and media of the vessel wall. This resulting virtual phantom is subsequently used to simulate ultrasonic wave propagation through the tissue medium computed using finite difference estimation. Subsequently B-mode images for a specific histological section are processed from the simulated radiofrequency (RF) data and compared with the original IVUS of the same tissue section. Real IVUS RF signals for these histological sections were obtained using a single-element mechanically rotating 40MHz transducer. Evaluation is performed by trained reviewers subjectively assessing both simulated and real B-mode IVUS images. Our simulation platform provides a high image quality with a very promising correlation to the original IVUS images. This will facilitate to better understand progression of such a chronic disease from micro-level and its integration into cardiovascular disease-specific models.

  12. Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Chernyavsky, M. M.

    2008-09-15

    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions: nuclear 'white' stars. A complete pattern of the relativistic dissociation of a 8B nucleus with target fragment accompaniment is presented. Relativistic dissociation {sup 9}Be {yields} 2{alpha} is explored using significant statistics, and a relative contribution of {sup 8}Be decays from 0+ and 2+ states is established. Target fragment accompaniments are shown for relativistic fragmentation {sup 14}N {yields} 3He +H and {sup 22}Ne {yields} 5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to breakupsmore » on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of the lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.« less

  13. STUDIES ON ISOLATED NUCLEI. I. ISOLATION AND CHEMICAL CHARACTERIZATION OF A NUCLEAR FRACTION FROM GUINEA PIG LIVER.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This article describes a method for the isolation of nuclei from guinea pig liver. It involves the homogenization of the tissue in 0.88 M sucrose-1.5 mM CaCl(2) followed by centrifugation in a discontinuous density gradient in which the upper phase is the homogenate and the lower phase is 2.2 M sucrose-0.5 mM CaCl(2). Based on DNA recovery, the isolated fraction contains 25 to 30 per cent of the nuclei of the original homogenate. Electron microscopical observations showed that approximately 88 per cent of the isolated nuclei come from liver cells (the rest from von Kupffer cells and leucocytes) and that approximately 90 per cent of the nuclei appear intact, with well preserved nucleoli, nucleoplasm, nuclear envelope, and pores. Cytoplasmic contamination is minimal and consists primarily of the nuclear envelope and its attached ribosomes. The nuclear fraction consists of approximately 22.3 per cent DNA, approximately 4.7 per cent RNA, and approximately 73 per cent protein, the DNA/RNA ratio being 4.7. Data on RNA extractibility by phosphate and salt and on the base composition of total nuclear RNA are included.

  14. Rotating stars in relativity.

    PubMed

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  15. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  16. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25

  17. Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared with apes: a stereological study.

    PubMed

    Barger, Nicole; Stefanacci, Lisa; Schumann, Cynthia M; Sherwood, Chet C; Annese, Jacopo; Allman, John M; Buckwalter, Joseph A; Hof, Patrick R; Semendeferi, Katerina

    2012-09-01

    In human and nonhuman primates, the amygdala is known to play critical roles in emotional and social behavior. Anatomically, individual amygdaloid nuclei are connected with many neural systems that are either differentially expanded or conserved over the course of primate evolution. To address amygdala evolution in humans and our closest living relatives, the apes, we used design-based stereological methods to obtain neuron counts for the amygdala and each of four major amygdaloid nuclei (the lateral, basal, accessory basal, and central nuclei) in humans, all great ape species, lesser apes, and one monkey species. Our goal was to determine whether there were significant differences in the number or percent of neurons distributed to individual nuclei among species. Additionally, regression analyses were performed on independent contrast data to determine whether any individual species deviated from allometric trends. There were two major findings. In humans, the lateral nucleus contained the highest number of neurons in the amygdala, whereas in apes the basal nucleus contained the highest number of neurons. Additionally, the human lateral nucleus contained 59% more neurons than predicted by allometric regressions on nonhuman primate data. Based on the largest sample ever analyzed in a comparative study of the hominoid amygdala, our findings suggest that an emphasis on the lateral nucleus is the main characteristic of amygdala specialization over the course of human evolution. Copyright © 2012 Wiley Periodicals, Inc.

  18. Neuronal Populations in the Basolateral Nuclei of the Amygdala Are Differentially Increased in Humans Compared With Apes: A Stereological Study

    PubMed Central

    Barger, Nicole; Stefanacci, Lisa; Schumann, Cynthia M.; Sherwood, Chet C.; Annese, Jacopo; Allman, John M.; Buckwalter, Joseph A.; Hof, Patrick R.; Semendeferi, Katerina

    2016-01-01

    In human and nonhuman primates, the amygdala is known to play critical roles in emotional and social behavior. Anatomically, individual amygdaloid nuclei are connected with many neural systems that are either differentially expanded or conserved over the course of primate evolution. To address amygdala evolution in humans and our closest living relatives, the apes, we used design-based stereological methods to obtain neuron counts for the amygdala and each of four major amygdaloid nuclei (the lateral, basal, accessory basal, and central nuclei) in humans, all great ape species, lesser apes, and one monkey species. Our goal was to determine whether there were significant differences in the number or percent of neurons distributed to individual nuclei among species. Additionally, regression analyses were performed on independent contrast data to determine whether any individual species deviated from allometric trends. There were two major findings. In humans, the lateral nucleus contained the highest number of neurons in the amygdala, whereas in apes the basal nucleus contained the highest number of neurons. Additionally, the human lateral nucleus contained 59% more neurons than predicted by allometric regressions on nonhuman primate data. Based on the largest sample ever analyzed in a comparative study of the hominoid amygdala, our findings suggest that an emphasis on the lateral nucleus is the main characteristic of amygdala specialization over the course of human evolution. PMID:22473387

  19. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  20. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    NASA Astrophysics Data System (ADS)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  1. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  2. Rotational Quenching Study in Isovalent H+ + CO and H+ + CS Systems

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-06-01

    Cooling and trapping of polar molecules has attracted attention at cold and ultracold temperatures. Extended study of molecular inelastic collision processes of polar interstellar species with proton finds an important astrophysical application to model interstellar medium. Present study includes computation of rate coefficient for molecular rotational quenching process in proton collision with isovalent CO and CS molecules using quantum dynamical close-coupling calculations. Full dimensional ab initio potential energy surfaces have been computed for the ground state for both the systems using internally contracted multireference configuration interaction method and basis sets. Quantum scattering calculations for rotational quenching of isovalent species are studied in the rigid-rotor approximation with CX (X=O, S) bond length fixed at an experimental equilibrium value of 2.138 and 2.900 a.u., respectively. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components. The resulting long-range potentials with the short-range ab initio interaction potentials have been fitted to study the anisotropy of the rigid-rotor surface using the multipolar expansion coefficients. Rotational quenching cross-section and corresponding rates from j=4 level of CX to lower j' levels have been obtained and found to obey Wigner's threshold law at ultra cold temperatures.

  3. Analysis of growth of tetraploid nuclei in roots of Vicia faba.

    PubMed

    Bansal, J; Davidson, D

    1978-03-01

    Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.

  4. Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason

    We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.

  5. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  6. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  7. Cluster preformation law for heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Wei, K.; Zhang, H. F.

    2017-08-01

    The concept of cluster radioactivity has been extended to allow emitted particles with ZC>28 for superheavy nuclei by nuclear theory [Poenaru et al., Phys. Rev. Lett. 107, 062503 (2011), 10.1103/PhysRevLett.107.062503]. The preformation and emission mechanics of heavy-ion particles must be examined again before the fascinating radioactivity is observed for superheavy nuclei in laboratory. We extract the cluster preformation factor for heavy and superheavy nuclei within a preformed cluster model, in which the decay constant is the product of the preformation factor, assault frequency, and penetration probability. The calculated results show that the cluster penetration probability for superheavy nuclei is larger than that for actinide elements. The preformation factor depends on the nuclear structures of the emitted cluster and mother nucleus, and the well-known cluster preformation law S (AC) =S (α) (AC-1 )/3 [Blendowske and Walliser, Phys. Rev. Lett. 61, 1930 (1988), 10.1103/PhysRevLett.61.1930] will break down when the mass number of the emitted cluster Ac>28 , and new preformation formulas are proposed to estimate the preformation factor for heavy and superheavy nuclei.

  8. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  9. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Experimental study of the rotational magnetocaloric effect in KTm(MoO4)2

    NASA Astrophysics Data System (ADS)

    Tarasenko, Róbert; Tkáč, Vladimír; Orendáčová, Alžbeta; Orendáč, Martin; Feher, Alexander

    2018-06-01

    An experimental study is presented of the rotational magnetocaloric effect in a KTm(MoO4)2 single crystal at temperatures above 2 K associated with the rotation of a single crystal between the magnetic easy and hard axis in constant magnetic fields up to 5 T. The magnetocaloric properties of KTm(MoO4)2 single crystals are investigated by isothermal magnetization measurements. The maximal rotational entropy change -ΔSR ≈ 9.8 J/(kgK) is achieved at 10 K in a magnetic field of 5 T. The adiabatic rotation of a single crystal in a field of 5 T at an initial temperature of 4.2 K causes cooling of the sample down to 0.5 K, which indicates an interesting possibility of using this material for cooling processes at low temperatures.

  11. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  12. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  13. Factors affecting rotator cuff healing.

    PubMed

    Mall, Nathan A; Tanaka, Miho J; Choi, Luke S; Paletta, George A

    2014-05-07

    Several studies have noted that increasing age is a significant factor for diminished rotator cuff healing, while biomechanical studies have suggested the reason for this may be an inferior healing environment in older patients. Larger tears and fatty infiltration or atrophy negatively affect rotator cuff healing. Arthroscopic rotator cuff repair, double-row repairs, performing a concomitant acromioplasty, and the use of platelet-rich plasma (PRP) do not demonstrate an improvement in structural healing over mini-open rotator cuff repairs, single-row repairs, not performing an acromioplasty, or not using PRP. There is conflicting evidence to support postoperative rehabilitation protocols using early motion over immobilization following rotator cuff repair.

  14. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGES

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  15. Internal rotation in halogenated toluenes: Rotational spectrum of 2,3-difluorotoluene

    NASA Astrophysics Data System (ADS)

    Nair, K. P. Rajappan; Herbers, Sven; Grabow, Jens-Uwe; Lesarri, Alberto

    2018-07-01

    The microwave rotational spectrum of 2,3-difluorotoluene has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the three-fold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2518.70(15) J/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The molecular structure was derived using the substitution (rs) method. From the rotational constants of the different isotopic species the rs structure as well as the r0 structure was determined. Supporting ab initio (MP2) and DFT (B3LYP) calculations provided comparative values for the potential barrier and molecular parameters.

  16. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.

    PubMed

    Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy

    2013-06-01

    A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.

  17. Space Shuttle ice nuclei

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.

    1982-08-01

    Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.

  18. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  19. The Structure of 34Mg Nuclei

    NASA Astrophysics Data System (ADS)

    Luna, Benjamin

    2017-09-01

    In the chart of nuclei below the beta-stability line, there are regions called islands of inversion where nuclei are expected have a spherical ground state, but it has been determined that these nuclei have a deformed ground state. This project was part of an ongoing investigation with the goal of obtaining new information about 34Mg and 34Al, which lie near an island of inversion. A beam of 34Mg was sent to the center of an array of plastic scintillators and HPGe detectors to collect data from the isotope's beta decay. This isotope beta decays to 34Al and to 34Si. The analysis softwares ROOT and GRSISort were used to sort the data into analysis trees, from which certain histograms were extracted. These histograms were used to determine an initial list of gamma ray transitions associated with the relatively fast decays of 34Mg and 34Al. Since the efficiencies of gamma ray detection are known, the true number of counts from each transition can be determined. This was done to order the gamma ray transitions into a nuclear level scheme. Future work on this subject will include the analysis of the angular correlations of the transitions found to determine spins of states populated in the 34Al and Si daughter nuclei as well as shedding light on the isomer in 34Al.

  20. Nuclei of plants as a sink for flavanols.

    PubMed

    Feucht, W; Polster, J

    2001-01-01

    Onion cepa (L.) and Tsuga canadensis (L.) Carr. were investigated histochemically on the association of flavanols to nuclei. The young roots of Onion cepa are totally devoid of flavanol structures. Therefore, the excised roots tips were directly incubated into different solutions of flavanols. After 3 h of incubation a flavanol binding on the nuclei was recognizable, as seen by a yellowish-brown tanning reaction. Still to ensure the presence of flavanols on the nuclei, subsequent staining with the p-dimethylaminocinnamaldehyde reagent (DMACA) resulted in an intense blue colouration. Tsuga canadensis has significant amounts of vacuolar flavanol deposits in all parts of the tree as indicated by the DMACA reagent. It is obvious that also the nuclei were associated strongly with flavanols which can be demonstrated particularly elegant in the cells of the seed wings by histochemical methods. However, the mode of flavanol release from the original deposits is not yet clear.

  1. Study of Quantum Chaos in the Framework of Triaxial Rotator Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proskurins, J.; Bavrins, K.; Andrejevs, A.

    2009-01-28

    Dynamical quantum chaos criteria--a perturbed wave function entropy W({psi}{sub i}) and a fragmentation width {kappa}({phi}{sub k}) of basis states were studied in two cases of nuclear rigid triaxial rotator models. The first model is characterized by deformation angle {gamma} only, while the second model depends on both quadrupole deformation parameters ({beta},{gamma}). The degree of chaoticity has been determined in the studies of the dependence of criteria W({psi}{sub i}) and {kappa}({phi}{sub k}) from nuclear spin values up to I{<=}101 for model parameters {gamma} and ({beta},{gamma}) correspondingly. The transition from librational to rotational type energy spectra has been considered for both modelsmore » as well.« less

  2. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  3. The study of structure in 224-234 thorium nuclei within the framework IBM

    NASA Astrophysics Data System (ADS)

    Lee, Su Youn; Lee, Young Jun; Lee, J. H.

    2017-09-01

    An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3) limit of the interacting boson model(IBM) in the algebraic nuclear model. Furthermore, 224-232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5) symmetry. However, as 226-230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3) limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5) limit to the SU(3) Hamiltonian in IBM. We compared the results with experimental data of 224-234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224-234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.

  4. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.

    PubMed

    Michaud, Julie M; Jäger, Wolfgang

    2008-10-14

    Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].

  5. Attitudes towards rotating shift work in clinical nurses: a Q-methodology study.

    PubMed

    Ha, Eun-Ho

    2015-09-01

    To identify clinical nurses' attitudes towards rotating shift work. Many hospitals worldwide employ rotating shift work patterns to staff their facilities. Attitudes of clinical nurses towards rotating shift work vary. To understand clinical nurses' attitudes towards rotating shift work, Q-methodology, a method for the analysis of subjective viewpoints with the strengths of both qualitative and quantitative methods, was used. Forty-six selected Q-statements from each of the 39 participants were classified into a normal distribution using an 11-point bipolar scale. The collected data were analysed using pc-QUANL program. Three discrete factors emerged as follows: factor I (rotating shift work is frustrating: objectionable perspective), factor II (rotating shift work is satisfactory: constructive perspective) and factor III (rotating shift work is problematic, but necessary: ambivalent perspective). The subjective viewpoints of the three identified factors can be applied in developing various roster designs for nurses engaging in rotating shift work. The findings provide the baseline for nurse leaders in helping nurses adjust and deal with rotating shift work. © 2015 John Wiley & Sons Ltd.

  6. Enrichment of heavy nuclei in the April 17, 1972 solar flare

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Renshaw, A.; Woods, R. T.

    1974-01-01

    Cosmic ray nuclei from the April 17, 1972 solar flare were recorded in polycarbonate plastic and phosphate glass track detectors exposed on the Apollo 16 flight. The energy spectra of iron group nuclei and of carbon and heavier nuclei were measured down to about 0.02 MeV/nucleon, revealing that the enrichment of iron relative to carbon and heavier nuclei increases markedly in this very low energy region.

  7. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  8. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  9. An Efficient Method for Studying the Stability and Dynamics of the Rotational Motions of Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.; Maciejewski, A. J.

    2003-08-01

    We use the alternative MEGNO (Mean Exponential Growth of Nearby Orbits) technique developed by Cincotta and Simo to study the stability of orbital-rotational motions for plane oscillations and three-dimensional rotations. We present a detailed numerical-analytical study of a rigid body in the case where the proper rotation of the body is synchronized with its orbital motion as 3: 2 (Mercurian-type synchronism). For plane rotations, the loss of stability of the periodic solution that corresponds to a 3: 2 resonance is shown to be soft, which should be taken into account to estimate the upper limit for the ellipticity of Mercury. In studying stable and chaotic translational-rotational motions, we point out that the MEGNO criterion can be effectively used. This criterion gives a clear picture of the resonant structures and allows the calculations to be conveniently presented in the form of the corresponding MEGNO stability maps for multidimensional systems. We developed an appropriate software package.

  10. Yrast excitations of neutron-rich nuclei around doubly magic Tin-132

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Pallab Kumar

    Investigation of the yrast structures of neutron-rich nuclei around the double closed shell nucleus 132Sn is important in the understanding of simple two-body nucleon-nucleon interactions in that region. However conventional fusion-evaporation methods do not populate these nuclei and β-decay studies are useful only in studying low spin states. The spectroscopy of these nuclei from thick target γ-γ coincidence measurements of deep inelastic heavy ion collisions as well as from fission fragment γ-ray studies using large multidetector arrays are presented in this thesis. Analyses of data from the 124Sn + 665 MeV 136Xe and 130Te + 272 MeV 64Ni deep inelastic experiments identified new yrast isomers in the N = 80 nuclei 134Xe and 136Ba which de- excite by γ-ray cascades concluding with their known 4+/to2+ and 2+/to0+ transitions. The isomeric decay characteristics are presented and discussed in light of the systematic features in N = 80 isotones. By analyzing fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast level structures of the two-, three- and four-proton N = 82 isotones 134Te, 135I and 136Xe were developed, and the proton-proton interactions from the two-body nucleus 134Te were used in interpreting 135I and 136Xe levels using shell model calculations. From the same data the yrast states in the N = 83 isotones 134Sb, 135Te, 136I and 137Xe were explored, and key proton-neutron interactions were extracted from the 134Sb level spectrum which were used in interpreting the levels of the other N = 83 isotones. Similarly yrast states in previously unexplored N = 81 isotones 132Sb and 133Te were also identified and interpreted with shell model calculations; the 132Sb level spectrum yielded important proton-neutron hole interactions. Neutron core-excited states at higher energies were also identified in most of these nuclei. For establishing isotopic assignments of unknown cascades, the γgamma cross coincidences between heavy and light

  11. [Changes in the chromatin structure of hepatocyte nuclei of rats trained to hypoxia].

    PubMed

    Domkina, L K; Bresler, V M; Simanovskiĭ, L N

    1976-03-01

    Structure of chromatin in the nuclei of the isolated surviving hepatocytes and in the isolated nuclei of hepatocytes were studied by fluorochroming with acridine orange and by microfluorimetry of fluorescenc connected with the stain chromatin at 530 and 590 nm in intact rats and in the animals trained to hypoxia in a pressure chamber for 60 days. The nuclei of hepatocytes of intact rats were distributed by fluorescence at 530 nm into three classes with the intensity ratio of 1:2:4; as to the nuclei of hepatocytes of the rats trained to hypoxia - they formed a single class corresponding to the second class of control. In intact rats the ratio of the fluorescence intensity at 590 nm to such at 530 nm (alpha coefficient) formed normal distribution; in trained rats - a bimodal distribution with a shift of the maximum in the direction of reduction and increase of alpha in comparison with control. It is supposed that in hypoxia there is a repression of one and depression of other genes in the chromatine of the nuclei of the liver.

  12. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  13. Occurrence of Partial Nuclei in Eggs of the Sand Dollar, Clypeaster japonicus.

    PubMed

    Yoneda, M; Nemoto, S I

    1990-10-01

    Females of Clypeaster japonicus bearing eggs with multiple nuclei were occasionally found. DAPI (4'-6-diamidino-2-phenylindole) stained all these nuclei. The summed volume of the two nuclei in binucleate eggs was similar to the nuclear volume in mononucleate eggs from the same batch. On fertilization, two partial nuclei migrated to the center of the egg with a time-course similar to that taken by a single nucleus; they then participated in forming the zygote nucleus, which subsequently formed a single mitotic spindle. These multiple nuclei thus appear to function as genuine nuclei. Possibly they result from the failure of a single nucleus to form during oogenesis.

  14. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  15. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS

    DOE PAGES

    Paukert, M.; Hoose, C.; Simmel, M.

    2017-02-21

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  16. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paukert, M.; Hoose, C.; Simmel, M.

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  17. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.

    2017-12-01

    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin i ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin i and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin i ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  18. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone

    PubMed Central

    Kuiken, Todd A.

    2011-01-01

    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual limb skeletal structures; thus, this control system should be natural and easy-to-use. In this study, simulations have been conducted in an upper arm model to assess the feasibility and performance of sensing the voluntary rotation of residual humerus with an implanted magnet. A sensitivity analysis of the magnet size and arm size was presented. The influence of relative position of the magnet to the magnetic sensors, orientation of the magnet relative to the limb axis, and displacement of the magnetic sensors on the magnetic field was evaluated. The performance of shielding external magnetostatic interference was also investigated. The simulation results suggest that the direction and angle of rotation of residual humerus could be obtained by decoding the magnetic field signals with magnetic sensors built into a prosthetic socket. This pilot study provides important guidelines for developing a practical interface between the residual bone rotation and the prosthesis for control of prosthetic rotation. PMID:18713682

  19. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  20. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel

  1. New Techniques for Investigating the Morphology and Rotation of Component C of the Periodic Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa J.; Samarasinha, N. H.; Mueller, B. E. A.; Storm, S. P.

    2012-10-01

    Observations of temporal variations in the dust and gas morphology of comet nuclei can be used to infer the rotation states of the nuclei. The rotation of component C of Comet 73P/Schwassmann-Wachmann 3 is of particular interest, as it could place constraints on the damping timescale for non-principal axis rotation following the comet's breakup event of 1995 (Crovisier et al. 1995, IAU Circ., 6227). We obtained narrowband H-B and broadband R images of component C from May 3-10, 2006 UT, near the comet's perigee passage, using the 4-meter Mayall telescope on Kitt Peak. We identified the morphological features in the images using the enhancement method of division by azimuthal average. In addition, we binned the data to alleviate issues related to poor guiding and to increase the signal-to-noise. A new method for quantifying measurements of the features allowed for the development of a more robust statistic to evaluate the results, which yielded different period constraints than those found previously in Storm et al. (2007). Analysis of the dust morphology suggests a minimum periodicity of repeatability of the features of about 15 hours. This value is consistent with the lower limit of 10 hours determined from radar data (Nolan et al. 2006, BAAS 38, 504); however, it does not agree with the values around 3-4 hours determined using HST lightcurves and HCN morphology (Toth et al. 2006, BAAS 38, 489; Drahus et al. 2010, A&A 510, respectively). MJD's work was supported by a National Science Foundation Graduate Research Fellowship. NHS and BEAM were supported by the NASA Planetary Atmospheres Program.

  2. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration

    2015-01-01

    On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly magic nuclei such as 16O and 40Ca are investigated. We found that those nuclei are bound for the pseudoscalar meson mass MPS≃470 MeV. The mass number dependence of the binding energies, single-particle spectra, and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.

  3. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  4. Properties of r-process nuclei near N=82 shell closure

    NASA Astrophysics Data System (ADS)

    Farhan, A. R.; Sharma, M. M.

    2004-10-01

    We have studied properties of nuclei in r-process region near N=82 shell closure with the RMF calculations in a deformed basis using the force NL-SV1 that includes vector self-coupling of w meson. It is shown that nuclei above N=82 in several isotopic chains in the r-process region exhibit an onset of deformation beyond the drip line. Consequently, induced by the deformation these nuclei show an extra stability above the shell closure. This stability of nuclei is expected to contribute to the r-process nucleosynthesis of nuclei below the abundance peak at A ˜130. A comparison with the mass formulae shows that our microscopic calculations with NL-SV1 show a decrease of shell strength with increase in isospin. This is in contrast to the strong shell effects shown by FRDM and ETF-SI in going to the drip line. The stiffness of the shell structure with FRDM and ETF-SI is known to lead to a shortfall in the r-process abundances. This shortcoming of the above mass formulae has inspired an ad-hoc inclusion of shell quenching in the mass formula ETF-SI(Q) with a view to better reproduce the r-process abundances. In comparison, our model shows a decrease of the shell strength in going from the r-process path to the drip line. Therefore, this represents a natural behaviour as required by r-process abundances. It may, however, be confirmed in network chain calculations using inputs from our microscopic model.

  5. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  6. Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.

    PubMed

    Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R

    2007-01-01

    The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.

  7. A simple method for estimating the size of nuclei on fractal surfaces

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  8. The triaxiality and Coriolis effects on the fission barrier in isovolumic nuclei with mass number A = 256 based on multidimensional total Routhian surface calculations

    NASA Astrophysics Data System (ADS)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Wang, Hua-Lei; Liu, Min-Liang; Xu, Fu-Rong

    2018-05-01

    The triaxiality and Coriolis effects on the first fission barrier in even-even nuclei with A=256 have been studied in terms of the approach of multidimensional total Routhian surface calculations. The present results are compared with available data and other theories, showing a good agreement. Based on the deformation energy or Routhian curves, the first fission barriers are analyzed, focusing on their shapes, heights, and evolution with rotation. It is found that, relative to the effect on the ground-state minimum, the saddle point, at least the first one, can be strongly affected by the triaxial deformation degree of freedom and Coriolis force. The evolution trends of the macroscopic and microscopic (shell and pairing) contributions as well as the triaxial fission barriers are briefly discussed.

  9. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui

    2018-02-01

    In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.

  10. The role of mental rotation and memory scanning on the performance of laparoscopic skills: a study on the effect of camera rotational angle.

    PubMed

    Conrad, J; Shah, A H; Divino, C M; Schluender, S; Gurland, B; Shlasko, E; Szold, A

    2006-03-01

    The rotational angle of the laparoscopic image relative to the true horizon has an unknown influence on performance in laparoscopic procedures. This study evaluates the effect of increasing rotational angle on surgical performance. Surgical residents (group 1) (n = 6) and attending surgeons (group 2) (n = 4) were tested on two laparoscopic skills. The tasks consisted of passing a suture through an aperture, and laparoscopic knot tying. These tasks were assessed at 15 degrees intervals between 0 degrees and 90 degrees , on three consecutive repetitions. The participant's performance was evaluated based on the time required to complete the tasks and number of errors incurred. There was an increasing deterioration in suturing performance as the degree of image rotation was increased. Participants showed a statistically significant 20-120% progressive increase in time to completion of the tasks (p = 0.004), with error rates increasing from 10% to 30% (p = 0.04) as the angle increased from 0 degrees to 90 degrees. Knot-tying performance similarly showed a decrease in performance that was evident in the less experienced surgeons (p = 0.02) but with no obvious effect on the advanced laparoscopic surgeons. When evaluated independently and as a group, both novice and experienced laparoscopic surgeons showed significant prolongation to completion of suturing tasks with increased errors as the rotational angle increased. The knot-tying task shows that experienced surgeons may be able to overcome rotational effects to some extent. This is consistent with results from cognitive neuroscience research evaluating the processing of directional information in spatial motor tasks. It appears that these tasks utilize the time-consuming processes of mental rotation and memory scanning. Optimal performance during laparoscopic procedures requires that the rotation of the camera, and thus the image, be kept to a minimum to maintain a stable horizon. New technology that corrects the

  11. Rotation Elastogram Estimation Using Synthetic Transmit-aperture Technique: A Feasibility Study.

    PubMed

    B, Lokesh; Chintada, Bhaskara Rao; Thittai, Arun Kumar

    2017-05-01

    It is well-documented in literature that benign breast lesions, such as fibroadenomas, are loosely bonded to their surrounding tissue and tend to slip under a small quasi-static compression, whereas malignant lesions being firmly bonded to their surrounding tissue do not slip. Recent developments in quasi-static ultrasound elastography have shown that an image of the axial-shear strain distribution can provide information about the bonding condition at the lesion-surrounding tissue boundary. Further studies analyzing the axial-shear strain elastograms revealed that nonzero axial-shear strain values appear inside the lesion, referred to as fill-in, only when a lesion is loosely bonded and asymmetrically oriented to the axis of compression. It was argued that the fill-in observed in axial-shear strain elastogram is a surrogate of the actual rigid-body rotation undergone by such a benign lesion due to slip boundary condition. However, it may be useful and perhaps easy to interpret, if the actual rigid-body rotation of the lesion can itself be visualized directly. To estimate this rotation tensor and its spatial distribution map (called a Rotation Elastogram [RE]), it would be necessary to improve the quality of lateral displacement estimates. Recently, it has been shown in the context of Non-Invasive Vascular Elastography (NIVE) that the Synthetic Transmit Aperture (STA) technique can be adapted for elastography to improve the lateral displacement estimates. Therefore, the focus of this work was to investigate the feasibility of employing the STA technique to improve the lateral displacement estimation and assess the resulting improvement in the RE quality. This investigation was done using both simulation and experimental studies. The image quality metric of contrast-to-noise ratio (CNR) was used to evaluate the quality of rotation elastograms. The results demonstrate that the contrast appeared in RE only in the case of loosely bonded inclusion, and the quality of RE

  12. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    DOE PAGES

    Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...

    2017-02-06

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H 2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H 2 scattering length is calculated as A = $-$ 2.70 a 0 for the ground state and A = $-$ 3.16 a 0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand totalmore » cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our R m = 1.448 a 0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less

  13. Studies of chondrogenesis in rotating systems

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Daane, E. L.; Montufar-Solis, D.

    1993-01-01

    A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.

  14. A Study of 2-Iodobutane by Rotational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Eric A.; Obenchain, Daniel A.; Choi, Yoon Jeong

    2016-09-15

    The rotational transitions belonging to 2-iodobutane (sec-butyl-iodide, CH3CHICH2CH3) have been measured over the frequency range 5.5-16.5 GHz via jet-pulsed Fourier transform microwave (FTMW) spectroscopy. The complete nuclear quadrupole coupling tensor of iodine, ¬, has been obtained for the gauche (g)-, anti (a)-, and gauche0 (g0)-conformers, as well as the four 13C isotopologues of the gauche species. Rotational constants, centrifugal distortion constants, quadrupole coupling constants, and nuclear spin-rotation constants were determined for each species. Changes in the ¬ of the iodine nucleus, resulting from conformational and isotopic dierences, will be discussed. Isotopic substitution of g-2-iodobutane allowed for a rs structure tomore » be determined for the carbon backbone. Additionally, isotopic substitution, in conjunction with an ab initio structure, allowed for a t of various r0 structural parameters belonging to g-2-iodobutane.« less

  15. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers

    PubMed Central

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-01-01

    Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members

  16. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  17. Octupole deformation in odd-odd nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.

    1988-01-01

    Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.

  18. An investigation of the structure and bond rotational potential of some fluorinated ethanes by NMR spectroscopy of solutions in nematic liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.

    2006-06-01

    NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.

  19. X-ray Reverberation Mapping in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2018-01-01

    Active Galactic Nuclei can produce as much or more electromagnetic and kinetic luminosities than the combined stellar luminosity of an entire galaxy. The energy output from AGN comes from the gravitational potential energy of the infalling material and the rotational energy of the black hole, both of which are released very close to the black hole. Therefore, probing the relativistic region of the inner accretion flow is essential to understanding how AGN work and effect their environments. In this talk, I will present a new technique for probing these relativistic environments: X-ray reverberation mapping. Similar to Optical reverberation mapping, where time delays of days or weeks between the continuum and Broad Line Region lines map out centiparsec scales, X-ray reverberation reveals time delays of tens of seconds, which map out microparsec scales in the accretion flow—well beyond the spatial resolution power of any instrument. This technique has been discovered in the past decade, so I will give a brief overview of how the measurements are made, and highlight some recent discoveries, which allow us to map the gas falling on to the black hole and measure the effects of strongly curved spacetime close to the event horizon.

  20. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.

    PubMed

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi

    2013-08-26

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation

    PubMed Central

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M.; Kobayashi, Yasushi

    2013-01-01

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. PMID:23756176

  2. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  3. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  4. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  5. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    PubMed

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration

    2016-11-01

    Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.

  7. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  8. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  9. Experimental study of the convection in a rotating tangent cylinder

    NASA Astrophysics Data System (ADS)

    Aujogue, Kélig; Pothérat, Alban; Sreenivasan, Binod; Debray, François

    2018-05-01

    This paper experimentally investigates the convection in a fast rotating Tangent Cylinder (TC), for Ekman numbers down to $E=3.36\\times10^{-6}$, in a configuration relevant to the liquid core of the Earth. In the apparatus, the TC results from the Proudman-Taylor constraint incurred by rotating a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_c\\sim E^{4/3}$ and $a_c\\sim E^{1/3}$ with the Ekman number $E$. Though exhibiting the same exponents as for plane rotating convection, these laws are indicative of much larger convective plumes at onset. The structure and dynamics of these plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor-Proudman constraint influences convection in a similar way as solid walls would do. There is further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitudes (close to the heater), depending on the criticality and the Ekman number. Nevertheless the intensity of the thermal wind measured by the Rossby number scales as $Ro\\sim 0.85(Ra_q^*)^{0.41}$ with the Rayleigh number based on the heat flux $Ra_q^*$. This scaling suggests that the convection in the TC is driven by quasi-geostrophic dynamics, a finding supported by the scaling for the rotation-normalised Nusselt number $Nu^{*} \\sim (Ra_{q}^{*})^{5/9}$.

  10. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  11. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  12. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  13. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  14. The Mirror Nuclei 3H and 3He Program at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Javier

    2017-02-28

    Jefferson Lab plans to carry out in the near future a group of four experiments involving the mirror nuclei 3H and 3He, using electron beam energies of up to 11 GeV. Our experiments aim to, (A) extract the deep inelastic neutron to proton structure function ratio Fmore » $$n\\atop{2}$$F$$p\\atop{2}$$ (and u / d quark distributions) for 0.2 ≤ x ≤ 0.9 , (B) study the isospin structure of two-nucleon and search for three-nucleon Short Range Correlations (SRC) for x < 3 , (C) measure the proton momentum distribution of both nuclei at $x = 1.2$ to further our understanding of SRCs in the few-body and (D) extract the charge radii of both nuclei at Q 2 ≤ 0.1 GeV 2.« less

  15. Adaptive segmentation of nuclei in H&S stained tendon microscopy

    NASA Astrophysics Data System (ADS)

    Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.

  16. Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study

    PubMed Central

    Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng

    2017-01-01

    During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day−6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the “down-up-down” pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test. PMID:29270115

  17. Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study.

    PubMed

    Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng

    2017-01-01

    During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day-6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the "down-up-down" pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test.

  18. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  19. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: A population-based cohort study.

    PubMed

    Huang, Shih-Wei; Wang, Wei-Te; Chou, Lin-Chuan; Liou, Tsan-Hon; Chen, Yi-Wen; Lin, Hui-Wen

    Rotator cuff tears are the most common cause of shoulder disability in people older than 50years, and surgical intervention is usually required for restoring functioning. However, in patients undergoing rotator cuff repair surgery, patients with DM had poorer functional outcomes than those without DM, and hence, DM is one of the possible risks factor for rotator cut off tear. The aim of this population-based study was to investigate the relationship between DM and the risk of rotator cuff tear in patients receiving rotator cuff repair surgery. In this retrospective longitudinal population-based 7-year cohort study, we investigated the risk of rotator cuff repair surgery in patients with DM. We performed a case-control matched analysis by using data from the Taiwan Longitudinal Health Insurance Database 2005. Patients were enrolled on the basis of the International Classification of Diseases, Ninth Revision, Clinical Modification diagnostic codes for DM between January 1, 2004, and December 31, 2007. The prevalence and the adjusted hazard ratios (HRs) of a rotator cuff repair surgery in patients with and without DM were estimated according to the Cox proportional hazard regression analysis using the frailty model. The DM and non-DM cohorts comprised 58,652 patients with DM and 117,304 (1:2) patients without DM after matching for age and sex. The incidence of rotator cuff repair surgery was 41 per 100,000 and 26 per 100,000 person-years in the DM and non-DM cohorts, respectively. The HR of rotator cuff repair surgery during the follow-up period was 1.56 (95% confidence interval [CI] 1.25-1.93, p<0.001) for patients with DM. After adjustment for covariates, the adjusted HR of rotator cuff repair surgery was 1.33 (95% CI, 1.05-1.68, p<0.001) in the DM cohort. DM is an independent risk factor for rotator cuff tear repair surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Enrichment of heavy nuclei in the 17 April 1972 solar flare.

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.

    1973-01-01

    Polycarbonate and glass detectors exposed on Apollo 16 to the Apr. 17, 1972, solar flare were used to measure the spectrum of iron-group cosmic-ray nuclei down to about 0.02 MeV/nucleon. The enrichment of iron relative to lighter nuclei previously seen at higher energies increases markedly in this new, very-low-energy region. The energy spectrum of carbon and heavier nuclei inferred from sensitized Lexan polycarbonate reveals the enrichment of iron relative to carbon and heavier nuclei down to about 0.03 MeV/nucleon.

  1. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema

    Oganessian, Yuri

    2018-01-24

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  2. Postural Effects on the Mental Rotation of Body-Related Pictures: An fMRI Study.

    PubMed

    Qu, Fangbing; Wang, Jianping; Zhong, Yuan; Ye, Haosheng

    2018-01-01

    This study investigated the embodied effects involved in the mental rotation of pictures of body parts (hands and feet). Blood oxygen level-dependent (BOLD) signals were collected from 18 healthy volunteers who performed mental rotation tasks of rotated drawings of hands under different arm postures. Congruent drawings of hands (those congruent with left-hand posture) evoked stronger activation in the left supplementary motor area (SMA), left precentral gyrus, and left superior parietal lobule (SPL) than did incongruent drawings of hands. Congruent drawings of hands (those congruent with right-hand posture) evoked significant activation in the left inferior parietal lobule (IPL), right SMA, bilateral middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), and bilateral superior frontal gyrus (SFG) compared to that evoked by the incongruent drawings of hands. Similar methodology was implemented with drawings of feet. However, no significant differences in brain activation were observed between congruent and incongruent drawings of feet. This finding suggests that body posture influences body part-related mental rotation in an effector-specific manner. A direct comparison between the medially and laterally rotated drawings revealed activation in the right IPL, left precentral gyrus, bilateral IFG, and bilateral SFG. These results suggest that biomechanical constraints affect the cognitive process of mental rotation.

  3. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Walter

    2010-12-23

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less

  4. Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M. P.; Chen, J.; Deibel, C. M.; Hood, A. A.; Hoffman, C. R.; Janssens, R. V. F.; Jiang, C. L.; Kay, B. P.; Kuvin, S. A.; Lauer, A.; Schiffer, J. P.; Sethi, J.; Talwar, R.; Wiedenhöver, I.; Winkelbauer, J.; Zhu, S.

    2018-03-01

    A beam containing a substantial component of both the Jπ=5+ , T1 /2=162 ns isomeric state of F 18 and its 1+, 109.77-min ground state is utilized to study members of the ground-state rotational band in F 19 through the neutron transfer reaction (d ,p ) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13 /2+ band-terminating state. The agreement between shell-model calculations using an interaction constructed within the s d shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

  5. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  6. Microscopic description of fission properties for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Giuliani, S. A.; Martínez-Pinedo, G.; Robledo, L. M.

    2018-01-01

    Fission properties of 886 even-even nuclei in the region 84 ≤ Z ≤ 120 and 118 ≤ Z ≤ 250 were computed using the Barcelona-Catania-Paris-Madrid energy density functional. An extensive study of both the potential energy surfaces and collectives inertias was performed. Spontaneous fission half-lives are computed using the semiclassical Wentzel-Kramers-Brillouin formalism. By comparing these three quantities we found that the stability of the nucleus against the fission process is driven by the interplay between both the potential energy and the collective inertias. In our calculations, nuclei with relative long half-lives were found in two regions around Z = 120, N = 182 and Z = 104, N = 222.

  7. Ultrahigh energy cosmic ray nuclei from remnants of dead quasars

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto J.; Colon, Rafael A.; Guerra, Juan J.; O'Dowd, Matthew J.; Anchordoqui, Luis A.

    2017-03-01

    We re-examine the possibility of ultrahigh energy cosmic rays being accelerated in nearby dormant quasars. We particularize our study to heavy nuclei to accommodate the spectrum and nuclear composition recently reported by the Pierre Auger Collaboration. Particle acceleration is driven by the Blandford-Znajek mechanism, which wires the dormant spinning black holes as Faraday unipolar dynamos. We demonstrate that energy losses are dominated by photonuclear interactions on the ambient photon fields. We argue that the local dark fossils of the past quasar activity can be classified on the basis of how source parameters (mass of the central engine and photon background surrounding the accelerator) impact the photonuclear interaction. In this classification it is possible to distinguish two unequivocal type of sources: those in which nuclei are completely photodisintegrated before escaping the acceleration region and those in which photopion production is the major energy damping mechanism. We further argue that the secondary nucleons from the photodisintegrated nuclei (which have a steep spectral index at injection) can populate the energy region below ;the ankle; feature in the cosmic ray spectrum, whereas heavy and medium mass nuclei (with a harder spectral index) populate the energy region beyond ;the ankle;, all the way to the high energy end of the spectrum. In addition, we show that five potential quasar remnants from our cosmic backyard correlate with the hot-spot observed by the Telescope Array.

  8. Iron accumulation in deep brain nuclei in migraine: A population-based Magnetic Resonance Imaging study

    PubMed Central

    Kruit, Mark C.; Launer, Lenore J.; Overbosch, Jelle; van Buchem, Mark A.; Ferrari, Michel D.

    2011-01-01

    Background A small MRI study showed increased iron depositions in the periaqueductal grey matter in migraineurs, suggestive of a disturbed central antinociceptive neuronal network. Procedures With 1.5T MRI, we assessed iron concentrations in seven deep brain nuclei in a large population-based cohort. We compared T2 values between migraineurs (n=138) and controls (n=75), with multivariate regression analysis. Analyses were conducted in age strata (<50, n=112; ≥50) because iron measures are increasingly influenced by non-iron related factors in the older group. Findings Overall, migraineurs and controls did not differ, nor did migraineurs with vs. without aura. In the younger migraineurs compared to controls, T2-values were lower in the putamen (p=0.02), globus pallidus (p=0.03) and red nucleus (p=0.03). Similarly, in these younger migraineurs, controlling for age, those with longer migraine-history had lower T2 values in the putamen (p=0.01), caudate (p=0.04) and red nucleus (p=0.001). Conclusions Repeated migraine attacks are associated with increased iron concentration / accumulation in multiple deep nuclei that are involved in central pain processing and migraine pathophysiology. It remains unclear whether iron accumulation in the antinociceptive network has a causative role in the development of (chronic) migraine headache. PMID:19025553

  9. Motor Processes in Children's Mental Rotation

    ERIC Educational Resources Information Center

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  10. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  11. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main

  12. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  13. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  14. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    NASA Astrophysics Data System (ADS)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  15. Units of rotational information

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  16. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than

  17. Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…

  18. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1993-01-01

    An extensive flight series was carried out during May-June 1990 in the remote North and South Pacific free tropospheric aboard the NASA DC-8. Condensation nuclei counters and optical particle counters provided information on aerosol particles with diameters between 0.003 and 7.0 micrometers. Vertical profiles revealed aerosol layers to be a common feature of the free troposphere. Regions with highest aerosol mass tended to have the highest concentrations of surface-derived nuclei but the lowest concentrations of total nuclei. Regions with lowest aerosol mass tended to have the highest concentrations of the smaller 'ultrafine' condensation nuclei with diameters below 0.02 mircometers. Horizontal transects totaling over 35,000 km at about 9 to 10-km altitude exhibited variability of approximately 3 orders of magnitude in both aerosol mass and number concentrations over spatial scales ranging from 1 to 1000 km. At these altitudes an approximate inverse relationship between ultrafine concentrations and the surface area of the larger aerosol was evident. Regions having lowest aerosol mass were characterized by aerosol thermal volatility, indicative of a predominately sulfuric acid composition, and by very high concentrations of ultrafine nuclei, indicative of recent homogeneous nucleation. These conditions were frequently observed but were conspicuously evident above cloud over the intertropical convergence zone. The clean, free troposphere appears to be a significant source region for new tropospheric nuclei. A simplified model of the lifetime, coagulation, and cycling of these nuclei suggests that they constitute a source of cloud condensation nuclei in the lower troposphere.

  19. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    PubMed

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family

  20. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  1. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  2. Pion-less effective field theory for real and lattice nuclei

    NASA Astrophysics Data System (ADS)

    Bansal, Aaina; Binder, Sven; Ekström, Andreas; Hagen, Gaute; Papenbrock, Thomas

    2017-09-01

    We compute the medium-heavy nuclei 16O and 40Ca using pion-less effective field theory (EFT) at leading order (LO) and next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to A = 2 , 3 nuclei data from experiments, or alternatively to data from lattice QCD at unphysical pion mass mπ = 806 MeV. The EFT is implemented through discrete variable representation of finite harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space and allows us to compute heavier atomic and lattice nuclei. The atomic nuclei 16O and 40Ca are bound with respect to decay into alpha particles at NLO, but not at LO.

  3. Spatial distribution of nuclei in progressive nucleation: Modeling and application

    NASA Astrophysics Data System (ADS)

    Tomellini, Massimo

    2018-04-01

    Phase transformations ruled by non-simultaneous nucleation and growth do not lead to random distribution of nuclei. Since nucleation is only allowed in the untransformed portion of space, positions of nuclei are correlated. In this article an analytical approach is presented for computing pair-correlation function of nuclei in progressive nucleation. This quantity is further employed for characterizing the spatial distribution of nuclei through the nearest neighbor distribution function. The modeling is developed for nucleation in 2D space with power growth law and it is applied to describe electrochemical nucleation where correlation effects are significant. Comparison with both computer simulations and experimental data lends support to the model which gives insights into the transition from Poissonian to correlated nearest neighbor probability density.

  4. Effective Rotations: Action Effects Determine the Interplay of Mental and Manual Rotations

    ERIC Educational Resources Information Center

    Janczyk, Markus; Pfister, Roland; Crognale, Michael A.; Kunde, Wilfried

    2012-01-01

    The last decades have seen a growing interest in the impact of action on perception and other concurrent cognitive processes. One particularly interesting example is that manual rotation actions facilitate mental rotations in the same direction. The present study extends this research in two fundamental ways. First, Experiment 1 demonstrates that…

  5. β decay of the exotic Tz=-2 nuclei 48Fe,52Ni , and 56Zn

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Blank, B.; Cáceres, L.; Cakirli, R. B.; Ganioǧlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2016-04-01

    The results of a study of the β decays of three proton-rich nuclei with Tz=-2 , namely 48Fe,52Ni , and 56Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total β -delayed proton emission branching ratios. We have measured the individual β -delayed protons and β -delayed γ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between β -delayed protons and γ rays is observed in the de-excitation of the T =2 isobaric analog states in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case 56Zn, where the exotic β -delayed γ -proton decay has been observed.

  6. Pairing and (9/2)n configuration in nuclei in the 208Pb region

    NASA Astrophysics Data System (ADS)

    Stepanov, M.; Imasheva, L.; Ishkhanov, B.; Tretyakova, T.

    2018-04-01

    Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.

  7. Nuclear spectroscopy of r-process nuclei around N = 126 using KISS

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.

    2017-09-01

    The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.

  8. In vivo imaging of cell nuclei by photoacoustic microscopy without staining

    NASA Astrophysics Data System (ADS)

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V.

    2012-02-01

    Ultraviolet photoacoustic microscopy (UVPAM) can image cell nuclei in vivo with high contrast and resolution noninvasively without staining. Here, we used UV light at wavelengths of 210-310 nm for excitation of DNA and RNA to produce photoacoustic waves. We applied the UVPAM to in vivo imaging of cell nuclei in mouse skin, and obtained UVPAM images of the unstained cell nuclei at wavelengths of 245-282 nm as ultrasound gel was used for acoustic coupling. The largest ratio of contrast to noise was found for the images of cell nuclei at a 250 nm wavelength.

  9. Projected shell model description of N = 114 superdeformed isotone nuclei

    NASA Astrophysics Data System (ADS)

    Guo, R. S.; Chen, L. M.; Chou, C. H.

    2006-03-01

    A systematic description of the yrast superdeformed (SD) bands in N = 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed.

  10. [Risk factors for the development of rotator cuff tears in individuals with paraplegia : A cross-sectional study].

    PubMed

    Pepke, W; Brunner, M; Abel, R; Almansour, H; Gerner, H J; Hug, A; Zeifang, F; Kentar, Y; Bruckner, T; Akbar, M

    2018-02-27

    Shoulder pain and rotator cuff tears are highly prevalent among wheelchair dependent individuals with paraplegia. The purpose of this study was to identify potential risk factors associated with the development of rotator cuff tears in this population. A total of 217 wheelchair dependent individuals with paraplegia were included in this cross-sectional study (level of evidence III). The mean age of this population was 47.9 years and the mean duration of wheelchair dependence was 24.1 years. Each individual was asked to complete a questionnaire designed to identify risk factors for rotator cuff tears and underwent a standardized clinical examination with the documentation of the Constant-Murley shoulder outcome score and magnetic resonance imaging (MRI) of both shoulder joints. MRI analysis revealed at least one rotator cuff tear in 93 patients (43%). Multiple logistic regression analysis identified the following factors to be associated with the presence of rotator cuff tear: patient age, duration of spinal cord injury/wheelchair dependence, gender, and wheelchair athletic activity. Neither BMI nor the level of spinal cord injury was found to pose a risk factor in the population studied. With respect to patient age, the risk of developing a rotator cuff tear increased by 11% per annum. In terms of duration of spinal cord injury, the analysis revealed a 6% increased risk per year of wheelchair dependence (OR = 1.06). Females had a 2.6-fold higher risk of developing rotator cuff tears than males and wheelchair sport activity increased the risk 2.3-fold. There is a high prevalence of rotator cuff tears in wheel-chair dependent persons with paraplegia. Risk factors such as age, gender, duration of paraplegia, and wheel chair sport activity seem to play an important role in the development of rotator cuff tears.

  11. Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2017-10-01

    While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.

  12. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K. L.; Shields, G. A.; Salviander, S.

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotatingmore » ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.« less

  13. Opioid Rotation in Cancer Pain Treatment.

    PubMed

    Schuster, Michael; Bayer, Oliver; Heid, Florian; Laufenberg-Feldmann, Rita

    2018-03-02

    Rotating several different WHO level III opioid drugs is a therapeutic option for patients with chronic cancer-related pain who suffer from inadequate analgesia and/or intolerable side effects. The evidence favoring opioid rotation is controversial, and the current guidelines in Germany and other countries contain only weak recommendations for it. This review is based on pertinent publications retrieved by a systematic review of the literature on opioid rotation for adult patients with chronic cancerrelated pain who are regularly taking WHO level III opioids by the oral or trans - dermal route. 9 individual studies involving a total of 725 patients were included in the analysis, and 3 previous systematic reviews of studies involving a total of 2296 patients were also analyzed. Morphine, oxycodone, fentanyl, hydromorphone, and buprenorphine were used as first-line opioid drugs, and hydromorphone, bupre - norphine, tapentadol, fentanyl, morphine, oxymorphone, and methadone were used as second-line opioid drugs. In all of the studies, pain control was achieved for 14 days after each rotation. In most of them, the dose of the new drug introduced in each rotation needed to be increased above the dose initially calculated from a rotation ratio, with the exception of rotations to methadone. The frequency of side effects was only rarely lessened, but patients largely considered the result of opioid rotation to be positive. No particular opioid drug was found to be best. Opioid rotation can improve analgesia and patient satisfaction. The success of opioid rotation appears to depend on the magnitude of the initial dose, among other factors. Tables of equianalgesic doses should be considered no more than a rough guide for determining the dose of the new drug. Rotations to methadone should be carried out under clinical supervision in experienced hands.

  14. Ground states of larger nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wavemore » functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.« less

  15. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  16. Experimental study on rotating instability mode characteristics of axial compressor tip flow

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua

    2018-04-01

    This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.

  17. Rotated balance in humans due to repetitive rotational movement.

    PubMed

    Zakynthinaki, M S; Milla, J Madera; De Durana, A López Diaz; Martínez, C A Cordente; Romo, G Rodríguez; Quintana, M Sillero; Molinuevo, J Sampedro

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  18. Systematic shell-model study of β -decay properties and Gamow-Teller strength distributions in A ≈40 neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Yoshida, Sota; Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu

    2018-05-01

    We perform large-scale shell-model calculations of β -decay properties for neutron-rich nuclei with 13 ≤Z ≤18 and 22 ≤N ≤34 , taking the first-forbidden transitions into account. The natural-parity and unnatural-parity states are calculated in the 0 ℏ ω and 1 ℏ ω model spaces, respectively, within the full s d +p f +s d g valence shell. The calculated β -decay half-lives and β -delayed neutron emission probabilities show good agreement with the experimental data. The first-forbidden transitions make a non-negligible contribution to the half-lives of N ≳28 nuclei. The low-lying Gamow-Teller strengths of even-even nuclei are considerably larger than those of the neighboring odd-A and odd-odd nuclei, strongly affecting the half-lives and neutron emission probabilities. It is shown that this even-odd effect is caused by the Jπ=1+ proton-neutron pairing interaction. We derive a formula to represent the positions of the Gamow-Teller giant resonances from the calculated strength distributions.

  19. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  20. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  1. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  2. Syndesmotic fixation in supination-external rotation ankle fractures: a prospective randomized study.

    PubMed

    Pakarinen, Harri J; Flinkkilä, Tapio E; Ohtonen, Pasi P; Hyvönen, Pekka H; Lakovaara, Martti T; Leppilahti, Juhana I; Ristiniemi, Jukka Y

    2011-12-01

    This study was designed to assess whether transfixion of an unstable syndesmosis is necessary in supination-external rotation (Lauge-Hansen SE/Weber B)-type ankle fractures. A prospective study of 140 patients with unilateral Lauge-Hansen supination-external rotation type 4 ankle fractures was done. After bony fixation, the 7.5-Nm standardized external rotation (ER) stress test for both ankles was performed under fluoroscopy. A positive stress examination was defined as a difference of more than 2 mm side-to-side in the tibiotalar or tibiofibular clear spaces on mortise radiographs. If the stress test was positive, the patient was randomized to either syndesmotic transfixion with 3.5-mm tricortical screws or no syndesmotic fixation. Clinical outcome was assessed using the Olerud-Molander scoring system, RAND 36-Item Health Survey, and Visual Analogue Scale (VAS) to measure pain and function after a minimum 1-year of followup. Twenty four (17%) of 140 patients had positive standardized 7.5-Nm ER stress tests after malleolar fixation. The stress view was positive three times on tibiotalar clear space, seven on tibiofibular clear space, and 14 times on both tibiotalar and tibiofibular clear spaces. There was no significant difference between the two randomization groups with regards to Olerud-Molander functional score, VAS scale measuring pain and function, or RAND 36-Item Health Survey pain or physical function at 1 year. Relevant syndesmotic injuries are rare in supination-external rotation ankle fractures, and syndesmotic transfixion with a screw did not influence the functional outcome or pain after the 1-year followup compared with no fixation.

  3. Gravity versus manual external rotation stress view in evaluating ankle stability: a prospective study.

    PubMed

    LeBa, Thu-Ba; Gugala, Zbigniew; Morris, Randal P; Panchbhavi, Vinod K

    2015-06-01

    The purpose of this prospective study was to determine whether gravity versus manual external rotation stress testing effectively detects widening of the medial clear space in isolated ankle fractures when compared with the uninjured contralateral side. Manual external rotation stress and gravity stress tests were performed on injured and uninjured ankles of ankle fracture patients in a clinic setting. Medial clear space measurements were recorded and differences between gravity and manual stress views were determined. Twenty consecutive patients with ankle injury were enrolled in the study. When compared with the uninjured side, gravity stress views showed a statistically significant (P = .017) increase in medial clear space widening (1.85 ± 1.07 mm) compared with manual stress view widening (1.35 ± 1.04 mm). This study suggests that gravity stress views are as effective as manual external rotation stress views in detecting medial clear space widening in isolated fibular fractures. Diagnostic, Level II: Prospective, comparative trial. © 2014 The Author(s).

  4. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; Petrie, C.; Carlson, J.; Schmidt, K. E.; Schwenk, A.

    2018-04-01

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3 ≤A ≤16 . Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.

  5. A Study of the 3-D Reconstruction of Heliospheric Vector Magnetic Fields From Faraday-Rotation Inversion

    DTIC Science & Technology

    2009-12-30

    FA9550-06-1-0107 for “A Study of the 3-D Reconstruction of Heliospheric Vector Magnetic Fields from Faraday-Rotation Inversion” for work performed...from 2005 – 2009 by the University of California at San Diego. There are three aspects to this research: 1) The inversion of simple synthetic Faraday...rotation measurements that can be used to demonstrate the feasibility of performing this inversion when and if Faraday-rotation observations become

  6. Practising Mental Rotation Using Interactive Desktop Mental Rotation Trainer (iDeMRT)

    ERIC Educational Resources Information Center

    Rafi, Ahmad; Samsudin, Khairulanuar

    2009-01-01

    An experimental study involving 30 undergraduates (mean age = 20.5 years) in mental rotation (MR) training was conducted in an interactive Desktop Mental Rotation Trainer (iDeMRT). Stratified random sampling assigned students into one experimental group and one control group. The former trained in iDeMRT and the latter trained in conventional…

  7. Physics of rotation: problems and challenges

    NASA Astrophysics Data System (ADS)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  8. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  9. Unveiling epimerization effects: a rotational study of α-D-galactose.

    PubMed

    Peña, Isabel; Cabezas, Carlos; Alonso, José L

    2015-06-25

    By studying its C4 epimer α-D-galactose, the effects of epimerization on the conformational behaviour of α-D-glucose have been unveiled. Using laser ablation of crystalline samples, four conformers of α-D-galactopyranose have been observed, for the first time, in a supersonic expansion by analyzing the Fourier transform rotational spectrum.

  10. Target fragments in collisions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion nuclei, and the cascade-evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Benton, E. V.; Crawford, H. J.

    1995-01-01

    Nuclear photographic emulsion is used to study the dependence of the characteristics of target-nucleus fragments on the masses and impact parameters of interacting nuclei. The data obtained are compared in all details with the calculation results made in terms of the Dubna version of the cascade-evaporation model (DCM).

  11. The Energetic Trans-Iron Nuclei Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Cummings, A. C.; Labrador, A. W.; Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Denolfo, G. A.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)" which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.3 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of 20 m2sr. Measurements made in space for a period of 3 years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized heavy elements (Pu and Cm), what the age of that component is, and test the model of the OB association origin of galactic cosmic rays. Additionally, it will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas.

  12. The ionizing radiation of Seyfert 2 galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.

    1993-01-01

    We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.

  13. Visual information processing in the lion-tailed macaque (Macaca silenus): mental rotation or rotational invariance?

    PubMed

    Burmann, Britta; Dehnhardt, Guido; Mauck, Björn

    2005-01-01

    Mental rotation is a widely accepted concept indicating an image-like mental representation of visual information and an analogue mode of information processing in certain visuospatial tasks. In the task of discriminating between image and mirror-image of rotated figures, human reaction times increase with the angular disparity between the figures. In animals, tests of this kind yield inconsistent results. Pigeons were found to use a time-independent rotational invariance, possibly indicating a non-analogue information processing system that evolved in response to the horizontal plane of reference birds perceive during flight. Despite similar ecological demands concerning the visual reference plane, a sea lion was found to use mental rotation in similar tasks, but its processing speed while rotating three-dimensional stimuli seemed to depend on the axis of rotation in a different way than found for humans in similar tasks. If ecological demands influence the way information processing systems evolve, hominids might have secondarily lost the ability of rotational invariance while retreating from arboreal living and evolving an upright gait in which the vertical reference plane is more important. We therefore conducted mental rotation experiments with an arboreal living primate species, the lion-tailed macaque. Performing a two-alternative matching-to-sample procedure, the animal had to decide between rotated figures representing image and mirror-image of a previously shown upright sample. Although non-rotated stimuli were recognized faster than rotated ones, the animal's mean reaction times did not clearly increase with the angle of rotation. These results are inconsistent with the mental rotation concept but also cannot be explained assuming a mere rotational invariance. Our study thus seems to support the idea of information processing systems evolving gradually in response to specific ecological demands.

  14. Isolation of the constitutive heterochromatin from mouse liver nuclei.

    PubMed

    Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N

    2008-01-01

    A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.

  15. Interaction of 160-GeV muon with emulsion nuclei

    NASA Astrophysics Data System (ADS)

    Othman, S. M.; Ghoneim, M. T.; Hussein, M. T.; El-Samman, H.; Hussein, A.

    In this work we present some results of the interaction of high-energy muons with emulsion nuclei. The interaction results in emission of a number of fragments as a consequence of electromagnetic dissociation of the excited target nuclei. This excitation is attributed to absorption of photons by the target nuclei due to the intense electric field of the very fast incident muon particles. The interactions take place at impact parameters that allow ultra-peripheral collisions to take place, leading to giant resonances and hence multifragmentation of emulsion targets. Charge identification, range, energy spectra, angular distribution and topological cross-section of the produced fragments are measured and evaluated.

  16. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    PubMed

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  17. Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    PubMed Central

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-01-01

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151

  18. Feasibility of using PZT actuators to study the dynamic behavior of a rotating disk due to rotor-stator interaction.

    PubMed

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-07-07

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.

  19. The migration and growth of nuclei in an ideal vortex flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lingxin; Chen, Linya; Shao, Xueming

    2016-12-01

    Tip vortex cavitation occurs on ship propellers which can cause significant noise compared to the wet flow. In order to predict the inception of tip vortex cavitation, numerous researches have been investigated about the detailed flow field around the tip. According to informed studies, the inception of tip vortex cavitation is affected by many factors. To understand the effect of water quality on cavitation inception, the motion of nuclei in an ideal vortex flow, i.e., the Rankine vortex flow, was investigated. The one-way coupling point-particle tracking model was employed to simulate the trajectory of nuclei. Meanwhile, Rayleigh-Plesset equation was introduced to describe the growth of nuclei. The results show that the nucleus size has a significant effect on nucleus' trajectory. The capture time of a nucleus is approximately inversely proportional to its radius. The growth of nucleus accelerates its migration in the vortex flow and shortens its capture time, especially for the case of explosive growth.

  20. Experimental and numerical studies of rotating drum grate furnace

    NASA Astrophysics Data System (ADS)

    Basista, Grzegorz; Szubel, Mateusz; Filipowicz, Mariusz; Tomczyk, Bartosz; Krakowiak, Joanna

    Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips) combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland) and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  1. Systematic study of the isotopic dependence of fusion dynamics for neutron- and proton-rich nuclei using a proximity formalism

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Gharaei, R.; Lari, F.

    2012-08-01

    The behaviors of barrier characteristics and fusion cross sections are analyzed by changing neutrons over a wide range of colliding systems. For this purpose, we have extended our previous study [Ghodsi and Gharaei, Eur. Phys. J. AEPJAFV1434-600110.1140/epja/i2012-12021-x 48, 21 (2012), it is devoted to the colliding systems with neutron-rich nuclei] to 125 isotopic systems with the condition of 0.5⩽N/Z⩽1.6 for their compound nuclei. The AW 95, Bass 80, Denisov DP, and Prox. 2010 potentials are used to calculate the nuclear part of the interacting potential. The obtained results show that the trend of barrier heights VB and positions RB as well as nuclear VN and Coulomb VC potentials (at R=RB) as a function of (N/Z-1) quantity are nonlinear (second order) whereas the fusion cross sections follow a linear dependence.

  2. Sleep disturbance associated with rotator cuff tear: correction with arthroscopic rotator cuff repair.

    PubMed

    Austin, Luke; Pepe, Matthew; Tucker, Bradford; Ong, Alvin; Nugent, Robert; Eck, Brandon; Tjoumakaris, Fotios

    2015-06-01

    Sleep disturbance is a common complaint of patients with a rotator cuff tear. Inadequate and restless sleep, along with pain, is often a driving symptom for patients to proceed with rotator cuff repair. To date, no studies have examined sleep disturbance in patients undergoing rotator cuff repair, and there is no evidence that surgery improves sleep disturbance. Sleep disturbance is prevalent in patients with a symptomatic rotator cuff tear, and sleep disturbance improves after arthroscopic rotator cuff repair. Case series; Level of evidence, 4. A total of 56 patients undergoing arthroscopic rotator cuff repair for full-thickness tears were enrolled in a prospective study. Patients were surveyed preoperatively and postoperatively at intervals of 2, 6, 12, 18, and 24 weeks. Patient outcomes were scored using the Pittsburgh Sleep Quality Index (PSQI), Simple Shoulder Test (SST), visual analog scale for pain (VAS), and single assessment numeric evaluation (SANE). Demographic and surgical factors were also collected for analysis. Preoperative PSQI scores indicative of sleep disturbance were reported in 89% of patients. After surgery, a statistically significant improvement in PSQI was achieved at 3 months (P = .0012; 91% follow-up) and continued through 6 months (P = .0179; 93% follow-up). Six months after surgery, only 38% of patients continued to have sleep disturbance. Multivariable linear regression of all surgical and demographic factors versus PSQI was performed and demonstrated that preoperative and prolonged postoperative narcotic use negatively affected sleep. Sleep disturbance is common in patients undergoing rotator cuff repair. After surgery, sleep disturbance improves to levels comparable with those of the general public. Preoperative and prolonged postoperative use of narcotic pain medication negatively affects sleep. © 2015 The Author(s).

  3. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  4. Properties of the nuclei and comae of 10 ecliptic comets from Hubble Space Telescope multi-orbit observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; A'Hearn, M. F.; Jorda, L.

    2011-04-01

    We report on our on-going effort to detect and characterize cometary nuclei with the Hubble Space Telescope (HST). During cycle 9 (2000 July to 2001 June), we performed multi-orbit observations of 10 ecliptic comets with the Wide Field Planetary Camera 2. Nominally, eight contiguous orbits covering a time interval of ˜11 h were devoted to each comet but a few orbits were occasionally lost. In addition to the standard R band, we could additionally observe four of them in the V band and the two brightest ones in the B band. Time series photometry was used to constrain the size, shape and rotational period of the 10 nuclei. Assuming a geometric albedo of 0.04 for the R band, a linear phase law with a coefficient of 0.04 mag deg-1 and an opposition effect similar to that of comet 19P/Borrelly, we determined the following mean values of the effective radii 47P/Ashbrook-Jackson: 2.86±0.08 km, 61P/Shajn-Schaldach: 0.62±0.02 km, 70P/Kojima: 1.83±0.05 km, 74P/Smirnova-Chernykh: 2.23±0.04 km, 76P/West-Kohoutek-Ikemura: 0.30±0.02 km, 82P/Gehrels 3: 0.69±0.02 km, 86P/Wild 3: 0.41±0.03 km, 87P/Bus: 0.270.01 km, 110P/Hartley 3: 2.15±0.04 km and 147P/Kushida-Muramatsu: 0.21±0.01 km. Because of the limited time coverage (˜11 h), the rotational periods could not be accurately determined, multiple solutions were sometime found and three periods were not constrained at all. Our estimates range from ˜5 to ˜32 h. The lower limits for the ratio a/b of the semi-axis of the equivalent spheroids range from 1.10 (70P) to 2.20 (87P). The four nuclei for which we could measure (V-R) are all significantly redder than the Sun, with 86P/Wild 3 (V-R) = 0.86 ± 0.10 appearing as an ultrared object. We finally determined the dust activity parameter Afρ of their coma in the R band, the colour indices and the reflectivity spectra of four of them. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at Space Telescope Science Institute, which is operated by the

  5. A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008

    NASA Technical Reports Server (NTRS)

    Kliem, B.; Toeroek, T.; Thompson, W. T.

    2012-01-01

    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of

  6. Detection of high-grade atypia nuclei in breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Noël, Henri; Roux, Ludovic; Lu, Shijian; Boudier, Thomas

    2015-03-01

    Along with mitotic count, nuclear pleomorphism or nuclear atypia is an important criterion for the grading of breast cancer in histopathology. Though some works have been done in mitosis detection (ICPR 2012,1 MICCAI 2013,2 and ICPR 2014), not much work has been dedicated to automated nuclear atypia grading, especially the most difficult task of detection of grade 3 nuclei. We propose the use of Convolutional Neural Networks for the automated detection of cell nuclei, using images from the three grades of breast cancer for training. The images were obtained from ICPR contests. Additional manual annotation was performed to classify pixels into five classes: stroma, nuclei, lymphocytes, mitosis and fat. At total of 3,000 thumbnail images of 101 × 101 pixels were used for training. By dividing this training set in an 80/20 ratio we could obtain good training results (around 90%). We tested our CNN on images of the three grades which were not in the training set. High grades nuclei were correctly classified. We then thresholded the classification map and performed basic analysis to keep only rounded objects. Our results show that mostly all atypical nuclei were correctly detected.

  7. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  8. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE PAGES

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; ...

    2018-04-24

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  9. Microscopic study of heavy-ion reactions with n-rich nuclei: dynamic excitation energy and capture

    NASA Astrophysics Data System (ADS)

    Oberacker, Volker; Umar, A. S.

    2010-11-01

    Heavy-ion reactions at RIB facilities allow us to form new exotic neutron-rich nuclei. These experiments present numerous challenges for a microscopic theoretical description. We study reactions between neutron-rich ^132Sn nuclei and ^96Zr within a dynamic microscopic theory, and we compare the properties to those of the stable system ^124Sn+^96Zr. The calculations are carried out on a 3-D lattice using the density-constrained Time-Dependent Hartree-Fock (DC-TDHF) method [1- 3]. In particular, we calculate the dynamic excitation energy E^*(t) and the quadrupole moment of the dinuclear system Q20(t) during the initial stages of the collision. Regarding the heavy-ion interaction potential V(R), we find that the fusion barrier height and width increase dramatically with increasing beam energy. The fusion barriers of the neutron-rich system ^132Sn+^96Zr are systematically 1-2 MeV higher than those of the stable system. Large differences (9 MeV) are found in the interaction barriers of the two systems. Capture cross sections are analyzed in terms of dynamic effects and a comparison with recently measured capture-fission data is given. [1] Umar and Oberacker, PRC 76, 014614 (2007). [2] Umar, Oberacker, Maruhn, and Reinhard, PRC 80, 041601(R) (2009). [3] Umar, Maruhn, Itagaki, and Oberacker, PRL 104, 212503 (2010).

  10. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.

  11. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    DOE PAGES

    Shen, Hao; Zhu, Wenxin; Li, Yao; ...

    2016-04-18

    In this paper we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in themore » grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.« less

  12. Impact of Resident Rotations on Critically Ill Patient Outcomes: Results of a French Multicenter Observational Study.

    PubMed

    Chousterman, Benjamin G; Pirracchio, Romain; Guidet, Bertrand; Aegerter, Philippe; Mentec, Hervé

    2016-01-01

    The impact of resident rotation on patient outcomes in the intensive care unit (ICU) has been poorly studied. The aim of this study was to address this question using a large ICU database. We retrospectively analyzed the French CUB-REA database. French residents rotate every six months. Two periods were compared: the first (POST) and fifth (PRE) months of the rotation. The primary endpoint was ICU mortality. The secondary endpoints were the length of ICU stay (LOS), the number of organ supports, and the duration of mechanical ventilation (DMV). The impact of resident rotation was explored using multivariate regression, classification tree and random forest models. 262,772 patients were included between 1996 and 2010 in the database. The patient characteristics were similar between the PRE (n = 44,431) and POST (n = 49,979) periods. Multivariate analysis did not reveal any impact of resident rotation on ICU mortality (OR = 1.01, 95% CI = 0.94; 1.07, p = 0.91). Based on the classification trees, the SAPS II and the number of organ failures were the strongest predictors of ICU mortality. In the less severe patients (SAPS II<24), the POST period was associated with increased mortality (OR = 1.65, 95%CI = 1.17-2.33, p = 0.004). After adjustment, no significant association was observed between the rotation period and the LOS, the number of organ supports, or the DMV. Resident rotation exerts no impact on overall ICU mortality at French teaching hospitals but might affect the prognosis of less severe ICU patients. Surveillance should be reinforced when treating those patients.

  13. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  14. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing

    NASA Astrophysics Data System (ADS)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds

  15. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  16. Proxy-SU(3) symmetry in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.

    2017-06-01

    Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.

  17. [Some morphometric parameters of nucleoli and nuclei in invasive ductal breast carcinomas in women].

    PubMed

    Karpinska-Kaczmarczyk, Katarzyna

    2009-01-01

    The purpose of this study was to correlate seven morphometric parameters of nucleoli and nuclei of invasive ductal cancer cells with some clinico-pathological factors such as age, tumor size, axillary lymph node status, MIB-1 proliferation index, and estrogen receptor expression in tumor cells. Methyl green-pyronin Y (MG-PY) was used for simultaneous staining of nuclei and nucleoli in histological sections of 150 invasive ductal breast carcinomas. Next, morphometric parameters of nucleoli and nuclei of tumor cells were measured with computerized image analysis. Nuclear area and number of nucleoli in breast tumor cells were greater in younger axillary node-negative patients. The number of nucleoli and nucleolar shape polymorphism were reduced in tumors measuring 20 mm or less or with lower histological grade. Nuclear area, nucleolar number, and nucleolar polymorphism in carcinomas with low proliferation index and estrogen receptor expression were smaller than in carcinomas with high proliferation index and no estrogen receptor expression. Nucleolar area in primary tumors without axillary node involvement was greater than in tumors with more than three axillary nodes positive. MG-PY selectively and simultaneously stains nucleoli and nuclei of tumor cells enabling standardized and reproducible examination of these structures with computerized image analysis. Univariate statistical analysis disclosed that some morphometric parameters of nucleoli and nuclei of tumor cells correlated with several established clinico-pathological prognostic factors. Therefore, the prognostic significance of these parameters should be studied in a larger group of patients with invasive ductal breast carcinomas.

  18. Infant perception of the rotating Kanizsa square.

    PubMed

    Yoshino, Daisuke; Idesawa, Masanori; Kanazawa, So; Yamaguchi, Masami K

    2010-04-01

    This study examined the perception of the rotating Kanizsa square by using a fixed-trial familiarization method. If the Kanizsa square is rotated across the pacmen, adult observers perceive not only a rotating illusory square, but also an illusory expansion/contraction motion of this square. The phenomenon is called a "rotational dynamic illusion". In experiments 1 and 2, we investigated whether infants perceived the rotational dynamic illusion, finding that 3-8-month-old infants perceived the rotational dynamic illusion as a simple rotation of the Kanizsa square. In experiment 3, we investigated whether infants perceived the rotational dynamic illusion as a rotation of the Kanizsa square or as a deformation of shape, finding that 3-4-month-old infants did perceive the rotational dynamic illusion as a rotation of the Kanizsa square. Our results show that while 3-8-month-old infants perceive the rotating Kanizsa square, however, it is difficult for the infants to extract expansion/contraction motion from the rotational dynamic illusion. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Performance after rotator cuff tear and operative treatment: a case-control study of major league baseball pitchers.

    PubMed

    Namdari, Surena; Baldwin, Keith; Ahn, Albert; Huffman, G Russell; Sennett, Brian J

    2011-01-01

    Little is known about pitching performance or lack of it among Major League Baseball (MLB) pitchers who undergo operative treatment of rotator cuff tears. To assess pitching performance outcomes in MLB players who needed operative treatment of rotator cuff tears and to compare performance in these athletes with that in a control group of MLB players. Case-control study. Publicly available player profiles, press releases, and team injury reports. Thirty-three MLB pitchers with documented surgery to treat rotator cuff tears and 117 control pitchers who did not have documented rotator cuff tears were identified. Major League Baseball pitching attrition and performance variables. Players who underwent rotator cuff surgery were no more likely not to play than control players. Performance variables of players who underwent surgery improved after surgery but never returned to baseline preoperative status. Players who needed rotator cuff surgery typically were more experienced and had better earned run averages than control players. Pitchers who had symptomatic rotator cuff tears that necessitated operative treatment tended to decline gradually in performance leading up to their operations and to improve gradually over the next 3 seasons. In contrast to what we expected, they did not have a greater attrition rate than their control counterparts; however, their performances did not return to preoperative levels over the course of the study.

  20. Hydrodynamic interactions between a self-rotation rotator and passive particles

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenyu; Lin, Jian-Zhong; Ku, Xiaoke

    2017-10-01

    In this paper, we numerically investigate the hydrodynamic interaction between a self-rotation rotator and passive particles in a two-dimensional confined cavity at two typical Reynolds numbers according to the different flow features. Both the fluid-particle interaction and particle-particle interaction through fluid media are taken into consideration. The results show that from the case of a rotator and one passive particle to the case of a rotator and two passive particles, the system becomes much more complex because the relative displacement between the rotator and the passive particles and the velocity of passive particles are strongly dependent on the Reynolds number and the initial position of passive particles. For the system of two particles, the passive particle gradually departs from the rotator although its relative displacement to the rotator exhibits a periodic oscillation at the lower Reynolds number. Furthermore, the relative distance between the two particles and the rotator's rotational frequency are responsible for the oscillation amplitude and frequency of the passive particle's velocity. For the system of three particles, the passive particle's velocities exhibit a superposition of a large amplitude oscillation and a small amplitude oscillation at the lower Reynolds number, and the large amplitude oscillation will disappear at the higher Reynolds number. The change of the included angle of the two passive particles is dependent on the initial positions of the passive particles at the lower Reynolds number, whereas the included angle of the two passive particles finally approaches a fixed value at the higher Reynolds number. It is interesting that the two passive particles periodically approach and depart from each other when the included angle is not equal to π, while all the three particles (including the rotator) keep the positions in a straight line when the included angle is equal to π because the interference between two passive