Science.gov

Sample records for rotavirus vp1 protein

  1. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    SciTech Connect

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C.

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  2. Hydroxyproline in the major capsid protein VP1 of polyomavirus

    SciTech Connect

    Ludlow, J.W.; Consigli, R.A.

    1989-06-01

    Amino acid analysis of (/sup 3/H)proline-labeled polyomavirus major capsid protein VP1 by two-dimensional paper chromatography of the acid-hydrolyzed protein revealed the presence of /sup 3/H-labeled hydroxyproline. Addition of the proline analog L-azetidine-2-carboxylic acid to infected mouse kidney cell cultures prevented or greatly reduced hydroxylation of proline in VP1. Immunofluorescence analysis performed on infected cells over a time course of analog addition revealed that virus proteins were synthesized but that transport from the cytoplasm to the nucleus was impeded. A reduction in the assembly of progeny virions demonstrated by CsCl gradient purification of virus from (/sup 35/S)methionine-labeled infected cell cultures was found to correlate with the time of analog addition. These results suggest that incorporation of this proline analog into VP1, accompanied by reduction of the hydroxyproline content of the protein, influences the amount of virus progeny produced by affecting transport of VP1 to the cell nucleus for assembly into virus particles.

  3. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein

    PubMed Central

    Xu, Juan; Zhang, Chunhua

    2016-01-01

    Abstract Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies.

  4. Human IgG Fc promotes expression, secretion and immunogenicity of enterovirus 71 VP1 protein.

    PubMed

    Xu, Juan; Zhang, Chunhua

    2016-05-01

    Enterovirus (EV71) can cause severe neurological diseases, but the underlying pathogenesis remains unclear. The capsid protein, viral protein 1 (VP1), plays a critical role in the pathogenicity of EV71. High level expression and secretion of VP1 protein are necessary for structure, function and immunogenicity in its natural conformation. In our previous studies, 5 codon-optimized VP1 DNA vaccines, including wt-VP1, tPA-VP1, VP1-d, VP1-hFc and VP1-mFc, were constructed and analyzed. They expressed VP1 protein, but the levels of secretion and immunogenicity of these VP1 constructs were significantly different (P<0.05). In this study, we further investigated the protein levels of these constructs and determined that all of these constructs expressed VP1 protein. The secretion level was increased by including a tPA leader sequence, which was further increased by fusing human IgG Fc (hFc) to VP1. VP1-hFc demonstrated the most potent immunogenicity in mice. Furthermore, hFc domain could be used to purify VP1-hFc protein for additional studies. PMID:27533931

  5. Polymorphism in the assembly of polyomavirus capsid protein VP1.

    PubMed Central

    Salunke, D M; Caspar, D L; Garcea, R L

    1989-01-01

    Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:2557933

  6. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    SciTech Connect

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning; Zhao, Wenran; Zhong, Zhaohua

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  7. Characterization of the enterovirus 71 VP1 protein as a vaccine candidate.

    PubMed

    Zhou, Shi-Li; Ying, Xiao-Ling; Han, Xue; Sun, Xian-Xun; Jin, Qi; Yang, Fan

    2015-02-01

    Enterovirus 71 (EV71) is an important agent responsible for hand-foot-and-mouth disease (HFMD), which can cause severe neurological complications and death in children. However, there is no specific treatment for EV71 infection, and a safe and effective vaccine is needed urgently. In this study, an effective and economical method for the production of EV71-VP1 protein was developed, and the VP1 protein was evaluated in humoral and cellular immune responses as an EV71 vaccine. The results revealed that the VP1 protein induced high titers of cross-neutralizing antibodies for different EV71 subtypes, and elicited significant splenocyte proliferation. The high levels of IFN-r and IL-10 showed the VP1 protein induced a mixed Th1 and Th2 immune response. Vaccinated female mice could confer protection in their neonatal offspring. Compared with the inactivated EV71, the VP1 protein elicited similar humoral and cellular responses, but the engineered protein is safer, less expensive and can be produced more efficiently. Therefore, EV71-VP1 protein can induce effective immunologic protection against EV71 and is an ideal candidate against EV71 infection. PMID:25043151

  8. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.

  9. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1.

    PubMed Central

    Haynes, J I; Consigli, R A

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein. Images PMID:1318417

  10. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    NASA Technical Reports Server (NTRS)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  11. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly.

    PubMed Central

    Rodgers, R E; Chang, D; Cai, X; Consigli, R A

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents. Images PMID:8151798

  12. Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus

    PubMed Central

    Lien, Yi-Yang; Huang, Chi-Hung; Sun, Fang-Chun; Sheu, Shyang-Chwen; Lu, Tsung-Chi; Lee, Meng-Shiunn; Hsueh, Shu-Chin; Chen, Hsi-Jien

    2012-01-01

    Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. In this study, a potential diagnostic monoclonal antibody against the CAV VP1 protein was developed which can precisely recognize the CAV antigen for diagnostic and virus recovery purposes. The VP1 gene of CAV encoding the N-terminus-deleted VP1 protein, VP1Nd129, was cloned into an Escherichia (E.) coli expression vector. After isopropyl-β-D-thiogalactopyronoside induction, VP1Nd129 protein was shown to be successfully expressed in the E. coli. By performing an enzyme-linked immunoabsorbent assay using two coating antigens, purified VP1Nd129 and CAV-infected liver tissue lysate, E3 monoclonal antibody (mAb) was found to have higher reactivity against VP1 protein than the other positive clones according to the result of limiting dilution method from 64 clones. Using immunohistochemistry, the presence of the VP1-specific mAb, E3, was confirmed using CAV-infected liver and thymus tissues as positive-infected samples. Additionally, CAV particle purification was also performed using an immunoaffinity column containing E3 mAb. The monoclonal E3 mAb developed in this study will not only be very useful for detecting CAV infection and performing histopathology studies of infected chickens, but may also be used to purify CAV particles in the future. PMID:22437539

  13. Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae.

    PubMed

    Valaviciute, Monika; Norkiene, Milda; Goda, Karolis; Slibinskas, Rimantas; Gedvilaite, Alma

    2016-07-01

    A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis. PMID:27038828

  14. Human parvovirus B19 VP1u Protein as inflammatory mediators induces liver injury in naïve mice.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Chang, Shun-Chih; Chan, Hsu-Chin; Shi, Ya-Fang; Chen, Tzy-Yen; Tzang, Bor-Show

    2016-01-01

    Human parvovirus B19 (B19V) is a human pathogen known to be associated with many non-erythroid diseases, including hepatitis. Although B19V VP1-unique region (B19-VP1u) has crucial roles in the pathogenesis of B19V infection, the influence of B19-VP1u proteins on hepatic injury is still obscure. This study investigated the effect and possible inflammatory signaling of B19-VP1u in livers from BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. The in vivo effects of B19-VP1u were analyzed by using live animal imaging system (IVIS), Haematoxylin-Eosin staining, gel zymography, and immunoblotting after inoculation. Markedly hepatocyte disarray and lymphocyte infiltration, enhanced matrix metalloproteinase (MMP)-9 activity and increased phosphorylation of p38, ERK, IKK-α, IκB and NF-κB (p-p65) proteins were observed in livers from BALB/c mice receiving COS-7 cells expressing B19-VP1u as well as the significantly increased CRP, IL-1β and IL-6. Notably, IFN-γ and phosphorylated STAT1, but not STAT3, were also significantly increased in the livers of BALB/c mice that were subcutaneously inoculated with VP1u-expressing COS-7 cells. These findings revealed the effects of B19-VP1u on liver injury and suggested that B19-VP1u may have a role as mediators of inflammation in B19V infection. PMID:26632342

  15. Identification of Positively Charged Residues in Enterovirus 71 Capsid Protein VP1 Essential for Production of Infectious Particles

    PubMed Central

    Yuan, Shilin; Li, Guiming; Wang, Ying; Gao, Qianqian; Wang, Yizhuo; Cui, Rui

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) in children, which can cause severe central nervous system disease and death. The capsids of EV71 consist of 60 copies of each of four viral structural proteins (VP1 to VP4), with VP1, VP2, and VP3 exposed on the surface and VP4 arranged internally. VP1 plays a central role in particle assembly and cell entry. To gain insight into the role of positively charged residues in VP1 function in these processes, a charged-to-alanine scanning analysis was performed using an infectious cDNA clone of EV71. Twenty-seven mutants containing single charged-to-alanine changes were tested. Sixteen of them were not viable, seven mutants were replication defective, and the remaining four mutants were replication competent. By selecting revertants, second-site mutations which could at least partially restore viral infectivity were identified within VP1 for four defective mutations and two lethal mutations. The resulting residue pairs represent a network of intra- and intermolecular interactions of the VP1 protein which could serve as a potential novel drug target. Interestingly, mutation K215A in the VP1 GH loop led to a significant increase in thermal stability, demonstrating that conditional thermostable mutants can be generated by altering the charge characteristics of VP1. Moreover, all mutants were sensitive to the EV71 entry inhibitor suramin, which binds to the virus particle via the negatively charged naphthalenetrisulfonic acid group, suggesting that single charged-to-alanine mutation is not sufficient for suramin resistance. Taken together, these data highlight the importance of positively charged residues in VP1 for production of infectious particles. IMPORTANCE Infection with EV71 is more often associated with neurological complications in children and is responsible for the majority of fatalities. No licensed vaccines or antiviral therapies are

  16. Subcellular localisation of Theiler's murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-á-vis host protein Hsp90.

    PubMed

    Ross, Caroline; Upfold, Nicole; Luke, Garry A; Bishop, Özlem Tastan; Knox, Caroline

    2016-08-15

    The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy. At 5h post infection, VP1 was distributed diffusely in the cytoplasm with strong perinuclear staining but was absent from the nucleus of all cells analysed. Dual-label immunofluorescence using anti-TMEV VP1 and anti-Hsp90 antibodies indicated that the distribution of both proteins colocalised in the cytoplasm and perinuclear region of infected cells. This is the first report describing the localisation of TMEV VP1 in infected cells, and the antibodies produced provide a valuable tool for investigating the poorly understood mechanisms underlying the early steps of picornavirus assembly. PMID:27269472

  17. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation

    PubMed Central

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G.; Gee, Gretchen V.; Atwood, Walter J.

    2016-01-01

    ABSTRACT Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. PMID:27006465

  18. Annexin II Binds to Capsid Protein VP1 of Enterovirus 71 and Enhances Viral Infectivity ▿

    PubMed Central

    Yang, Su-Lin; Chou, Ying-Ting; Wu, Cheng-Nan; Ho, Mei-Shang

    2011-01-01

    Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose. PMID:21900167

  19. Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6.

    PubMed

    Liu, Hong-Bo; Yang, Guang-Fei; Liang, Si-Jia; Lin, Jun

    2016-08-01

    This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents. PMID:27465341

  20. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    SciTech Connect

    Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.; Wills, John W.; Courtney, Richard J. . E-mail: rcourtney@psu.edu

    2007-05-10

    The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.

  1. Molecular characterization of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of bovine group B rotaviruses: identification of a novel VP4 genotype.

    PubMed

    Ghosh, Souvik; Kobayashi, N; Nagashima, S; Chawla-Sarkar, M; Krishnan, T; Ganesh, B; Naik, T N

    2010-02-01

    Studies on bovine group B rotaviruses (GBRs) are limited. To date, only the VP6 gene of a single bovine GBR strain and the VP7 and NSP5 genes of a few bovine GBR strains have been sequenced and analyzed. In the present study, using a single-primer amplification method, we have determined the full-length nucleotide sequences of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of three bovine GBR strains from eastern India. In all six of these genes, the bovine GBR strains shared high genetic relatedness among themselves but exhibited high genetic diversity with cognate genes of human, murine and ovine GBRs. Interestingly, as with group A rotaviruses, the bovine GBR VP1, VP2, VP6 and NSP2 genes appeared to be more conserved than the VP4 and NSP1 genes among strains of different species. The present study provides important insights into the genetic makeup and diversity of bovine GBRs, and also identifies a novel GBR VP4 genotype. PMID:19936611

  2. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-01-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis. PMID:27089359

  3. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway.

    PubMed

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-04-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis. PMID:27089359

  4. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  5. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    PubMed Central

    2011-01-01

    Background Chicken anemia virus (CAV), the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3)-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests. PMID:21781331

  6. Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses.

    PubMed

    Silva, Fernanda D F; Gregori, F; McDonald, Sarah M

    2016-09-01

    Group A rotaviruses (RVAs) are 11-segmented, double-stranded RNA viruses and important causes of gastroenteritis in the young of many animal species. Previous studies have suggested that human Wa-like RVAs share a close evolutionary relationship with porcine RVAs. Specifically, the VP1-VP3 and NSP2-5/6 genes of these viruses are usually classified as genotype 1 with >81% nucleotide sequence identity. Yet, it remains unknown whether the genotype 1 genes and proteins of human Wa-like strains are distinguishable from those of porcine strains. To investigate this, we performed comprehensive bioinformatic analyses using all known genotype 1 gene sequences. The RVAs analyzed represent wildtype strains isolated from humans or pigs at various geographical locations during the years of 2004-2013, including 11 newly-sequenced porcine RVAs from Brazil. We also analyzed archival strains that were isolated during the years of 1977-1992 as well as atypical strains involved in inter-species transmission between humans and pigs. We found that, in general, the genotype 1 genes of typical modern human Wa-like RVAs clustered together in phylogenetic trees and were separate from those of typical modern porcine RVAs. The only exception was for the NSP5/6 gene, which showed no host-specific phylogenetic clustering. Using amino acid sequence alignments, we identified 34 positions that differentiated the VP1-VP3, NSP2, and NSP3 genotype 1 proteins of typical modern human Wa-like RVAs versus typical modern porcine RVAs and documented how these positions vary in the archival/unusual isolates. No host-specific amino acid positions were identified for NSP4, NSP5, or NSP6. Altogether, the results of this study support the notion that human Wa-like RVAs and porcine RVAs are evolutionarily related, but indicate that some of their genotype 1 genes and proteins have diverged over time possibly as a reflection of sequestered replication and protein co-adaptation in their respective hosts. PMID

  7. Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy.

    PubMed

    Del Valle, L; Croul, S; Morgello, S; Amini, S; Rappaport, J; Khalili, K

    2000-06-01

    HIV-1 infection can lead to severe central nervous system (CNS) clinical syndromes in more than 50% of HIV-1 positive individuals. Progressive multifocal leukoencephalopathy (PML) is the frequent opportunistic infection of the CNS which is seen in as high as 5% of AIDS patients. Results from previous cell culture studies showed that the HIV-1 regulatory protein, Tat can potentiate transcription of the human neurotropic virus, JCV, the causative agent for PML in cells derived from the human CNS. In this communication we examine the presence of the HIV-1 regulatory protein, Tat, as well as the HIV-1 and JCV structural proteins, p24 and VP1, respectively in AIDS/PML clinical samples. We demonstrate high level expression of the JCV capsid protein, VP1, in oligodendrocytes and to some degree in astrocytes of AIDS with PML. In HIV-1+ samples expression of HIV-1 core protein, p24 was detected in perivascular monocytic cells and to a lesser extent in astrocytes and endothelial cells. A lack of p24 expression in oligodendrocytes suggested no infection of these cells with HIV-1. Interestingly, HIV-1 Tat was detected in various infected cells as well as in uninfected oligodendrocytes from HIV-1+ tissue, supporting the earlier in vitro findings that secreted Tat from the infected cells can be localized in the neighboring uninfected cells. The presence of Tat in oligodendrocytes was particularly interesting as this protein can up-modulate JCV gene transcription and several key cell cycle regulatory proteins including cyclin E, Cdk2, and pRb. The data presented here provide in vivo evidence for a role of HIV-1 Tat in the pathogenesis of AIDS/PML by acting as a positive regulatory protein that affects the expression of JCV and other cell regulatory proteins in the CNS. PMID:10878711

  8. Genetic linkage of capsid protein-encoding RNA segments in group A equine rotaviruses.

    PubMed

    Miño, Samuel; Barrandeguy, María; Parreño, Viviana; Parra, Gabriel I

    2016-04-01

    Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments. PMID:26758293

  9. Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    PubMed Central

    Zhang, Qingxun; Liu, Xinsheng; Fang, Yuzhen; Pan, Li; Lv, Jianliang; Zhang, Zhongwang; Zhou, Peng; Ding, Yaozhong; Chen, Haotai; Shao, Junjun; Zhao, Furong; Lin, Tong; Chang, Huiyun; Zhang, Jie; Wang, Yonglu; Zhang, Yongguang

    2015-01-01

    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown. PMID:25793223

  10. Inhibition of Enterovirus 71 (EV-71) Infections by a Novel Antiviral Peptide Derived from EV-71 Capsid Protein VP1

    PubMed Central

    Tan, Chee Wah; Chan, Yoke Fun; Sim, Kooi Mow; Tan, Eng Lee; Poh, Chit Laa

    2012-01-01

    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC50 values ranging from 6–9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71. PMID:22563456

  11. MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1

    PubMed Central

    Nandi, Satabdi; Chanda, Shampa; Bagchi, Parikshit; Nayak, Mukti Kant; Bhowmick, Rahul; Chawla-Sarkar, Mamta

    2014-01-01

    Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs) of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS), which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1) which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies. PMID:24643253

  12. Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice.

    PubMed

    Chung, Ho Yong; Lee, Hyun Ho; Kim, Kyung Il; Chung, Ha Young; Hwang-Bo, Jeon; Park, Jong Hwa; Sunter, Garry; Kim, Jong Bum; Shon, Dong Hwa; Kim, Wonyong; Chung, In Sik

    2011-08-01

    We describe the expression and immunogenicity of a recombinant chimeric protein (HAV VP1-Fc) consisting of human hepatitis A virus VP1 and an Fc antibody fragment using a replicating vector based on Beet curly top virus (BCTV) in Agrobacterium-infiltrated Nicotiana benthamiana leaves. Recombinant HAV VP1-Fc was expressed with a molecular mass of approximately 68 kDa. Recombinant HAV VP1-Fc, purified using Protein A Sepharose affinity chromatography, elicited production of specific IgG antibodies in the serum after intraperitoneal immunization. Following vaccination with recombinant HAV VP1-Fc protein, expressions of IFN-γ and IL-4 were increased in splenocytes at the time of sacrifice. Recombinant VP1-Fc from infiltrated tobacco plants can be used as an effective experimental immunogen for research into vaccine development. PMID:21442402

  13. Rotavirus.

    PubMed

    Esona, Mathew D; Gautam, Rashi

    2015-06-01

    Group A rotavirus (RVA) is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live, attenuated rotavirus vaccines, Rotarix® and RotaTeq®, has dramatically reduced RVA-associated AGE and mortality. High-throughput, sensitive and specific techniques are required to rapidly diagnose and characterize rotavirus strains in stool samples for proper patient treatment and to monitor circulating vaccine and wild-type rotavirus strains. New molecular assays are rapidly developed that are more sensitive and specific than the conventional assays for detection, genotyping and full genome characterization of circulating rotavirus wild-type and vaccine (Rotarix® and RotaTeq®) strains causing AGE. PMID:26004648

  14. Different Antibody Response against the Coxsackievirus A16 VP1 Capsid Protein: Specific or Non-Specific.

    PubMed

    Ding, Yingying; Wang, Zhihong; Zhang, Xi; Teng, Zheng; Gao, Caixia; Qian, Baohua; Wang, Lili; Feng, Jiaojiao; Wang, Jinhong; Zhao, Chunyan; Guo, Cunjiu; Pan, Wei

    2016-01-01

    Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease worldwide. The non-neutralizing antibody response that targets CA16 VP1 remains poorly elucidated. In the present study, antibody responses against CA16 VP1 in Shanghai blood donors and Shanxi individuals were analyzed by ELISA and inhibitory ELISA using five CA16 VP1 antigens: VP11-297, VP141-297, VP11-60, VP145-58 and VP161-297. The correlation coefficients for most of the reactions against each of the five antigens and the inhibition of the anti-CA16 VP1 antibody response produced by the various antigens were higher in Shanghai blood donors compared to those in Shanxi individuals. VP11-297 and VP141-297 strongly inhibited the anti-CA16 VP1 response in serum samples from both populations, while VP145-58 and VP161-297 intermediately and weakly inhibited the anti-CA16 VP1 response, respectively, in only Shanghai group. A specific type of inhibition (anti-CA16 VP1 was completely inhibited by both VP11-60 and VP141-297) characterized by high neutralizing antibody titers was identified and accounted for 71.4% of the strongly reactive samples from the Shanghai group. These results indicate that the Shanghai blood donors exhibited a consistent and specific antibody response, while the Shanxi individuals showed an inconsistent and non-specific antibody response. These findings may improve the understanding of host humoral immunity against CA16 and help to identify an effective approach for seroepidemiological surveillance and specific diagnosis of CA16 infection based on normal and competitive ELISA. PMID:27622652

  15. Codon Optimization, Expression in Escherichia coli, and Immunogenicity of Recombinant Chinese Sacbrood Virus (CSBV) Structural Proteins VP1, VP2, and VP3

    PubMed Central

    Zhang, Haochun; Jiang, Lili; Wang, Qiang; Zhong, Yi; Fan, Zhaobin; Ma, Mingxiao

    2015-01-01

    Chinese sacbrood virus (CSBV) is a small RNA virus family belonging to the genus Iflavirus that causes larval death, and even the collapse of entire bee colonies. The virus particle is spherical, non-enveloped, and its viral capsid is composed of four proteins, although the functions of the structural proteins are unclear. In this study, we used codon recoding to express the recombinant proteins VP1, VP2, and VP3 in Escherichia coli. SDS-PAGE analysis and Western blotting revealed that the target genes were expressed at high levels. Mice were then immunized with the purified, recombinant proteins, and antibody levels and lymphocyte proliferation were analyzed by ELISA and the MTT assay, respectively. The results show that the recombinant proteins induced high antibody levels and promoted lymphocyte proliferation. Polyclonal antibodies directed against these proteins will aid future studies of the molecular pathogenesis of CSBV. PMID:26067659

  16. Molecular characterization of a 13-amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87

    PubMed Central

    Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-01-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26→Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment. PMID:22122902

  17. Induction of protective immune responses against EV71 in mice by baculovirus encoding a novel expression cassette for capsid protein VP1.

    PubMed

    Premanand, Balraj; Kiener, Tanja K; Meng, Tao; Tan, Yun Rui; Jia, Qiang; Chow, Vincent T K; Kwang, Jimmy

    2012-09-01

    EV71 is a major causative agent of hand, foot and mouth disease (HFMD) and is responsible for large outbreaks in various Asian Pacific countries. In the present study, we generated the recombinant baculovirus (Bac-VP1) encoding VP1 in a novel expression cassette. The transmembrane domain of hemagglutinin of the H3N2 influenza virus was included in the cassette as a minimal membrane anchor for VP1. The protective immunity of Bac-VP1 was investigated in a mouse model. The results showed that mice vaccinated with live Bac-VP1 had strong VP1 specific antibody responses. In an in vitro neutralization assay Bac-VP1 sera exhibited cross-neutralization against homologous and heterologous EV71 strains with a maximum titer of 1:512. Passive immunization studies confirmed that these sera were able to provide 100% protection against 5 MLD(50) of mouse adapted EV71 (B4 strain). This study revealed that baculovirus displaying VP1 with a HA transmembrane domain efficiently induced cross-neutralizing antibody responses in mice. PMID:22691220

  18. Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum).

    PubMed

    Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Conrardy, Christina; Tong, Suxiang; Kuzmin, Ivan V; Agwanda, Bernard; Breiman, Robert F; Banyai, Krisztian; Niezgoda, Michael; Rupprecht, Charles E; Gentsch, Jon R; Bowen, Michael D

    2010-12-01

    Bats are known reservoirs of viral zoonoses. We report genetic characterization of a bat rotavirus (Bat/KE4852/07) detected in the feces of a straw-colored fruit bat (Eidolon helvum). Six bat rotavirus genes (viral protein [VP] 2, VP6, VP7, nonstructural protein [NSP] 2, NSP3, and NSP5) shared ancestry with other mammalian rotaviruses but were distantly related. The VP4 gene was nearly identical to that of human P[6] rotavirus strains, and the NSP4 gene was closely related to those of previously described mammalian rotaviruses, including human strains. Analysis of partial sequence of the VP1 gene indicated that it was distinct from cognate genes of other rotaviruses. No sequences were obtained for the VP3 and NSP1 genes of the bat rotavirus. This rotavirus was designated G25-P[6]-I15-R8(provisional)-C8-Mx-Ax-N8-T11-E2-H10. Results suggest that several reassortment events have occurred between human, animal, and bat rotaviruses. Several additional rotavirus strains were detected in bats. PMID:21122212

  19. Rotavirus RNA Polymerases Resolve into Two Phylogenetically Distinct Classes that Differ in Their Mechanism of Template Recognition

    PubMed Central

    Ogden, Kristen M.; Johne, Reimar; Patton, John T.

    2012-01-01

    Rotaviruses (RVs) are segmented double-stranded RNA viruses that cause gastroenteritis in mammals and birds. Within the RV genus, eight species (RVA-RVH) have been proposed. Here, we report the first RVF and RVG sequences for the viral RNA polymerase (VP1)-encoding segments and compare them to those of other RV species. Phylogenetic analyses indicate that the VP1 RNA segments and proteins resolve into two major clades, with RVA, RVC, RVD and RVF in clade A, and RVB, RVG and RVH in clade B. Plus-strand RNA of clade A viruses, and not clade B viruses, contain a 3′-proximal UGUG cassette that serves as the VP1 recognition signal. VP1 structures for a representative of each RV species were predicted using homology modeling. Structural elements involved in interactions with the UGUG cassette were conserved among VP1 of clade A, suggesting a conserved mechanism of viral RNA recognition for these viruses. PMID:22687427

  20. Analysis of Amino Acid Variation in the P2 Domain of the GII-4 Norovirus VP1 Protein Reveals Putative Variant-Specific Epitopes

    PubMed Central

    Allen, David J.; Gray, Jim J.; Gallimore, Chris I.; Xerry, Jacqueline; Iturriza-Gómara, Miren

    2008-01-01

    Background Human noroviruses are a highly diverse group of viruses classified into three of the five currently recognised Norovirus genogroups, and contain numerous genotypes or genetic clusters. Noroviruses are the major aetiological agent of endemic gastroenteritis in all age groups, as well as the cause of periodic epidemic gastroenteritis. The noroviruses most commonly associated with outbreaks of gastroenteritis are genogroup II genotype 4 (GII-4) strains. The relationship between genotypes of noroviruses with their phenotypes and antigenic profile remains poorly understood through an inability to culture these viruses and the lack of a suitable animal model. Methodology/Principal Findings Here we describe a study of the diversity of amino acid sequences of the highly variable P2 region in the major capsid protein, VP1, of the GII-4 human noroviruses strains using sequence analysis and homology modelling techniques. Conclusions/Significance Our data identifies two sites in this region, which show significant amino acid substitutions associated with the appearance of variant strains responsible for epidemics with major public health impact. Homology modelling studies revealed the exposed nature of these sites on the capsid surface, providing supportive structural data that these two sites are likely to be associated with putative variant-specific epitopes. Furthermore, the patterns in the evolution of these viruses at these sites suggests that noroviruses follow a neutral network pattern of evolution. PMID:18213393

  1. Ovine rotaviruses

    PubMed Central

    Gazal, S.; Mir, I.A.; Iqbal, A.; Taku, A.K.; Kumar, B.; Bhat, M.A.

    2011-01-01

    Rotavirus has been recognized as a predominant cause of acute diarrhea in young animals and humans. Rotavirus has segmented genome composed of 11 segments of double stranded RNA. The virus has a triple layered protein shell consisting of a core, an inner capsid and an outer capsid. The inner capsid protein is responsible for group specificity and based on it rotaviruses are classified into seven groups. Ovine rotavirus strains have only been identified into two serogroups (A and B). The two outer capsid proteins (VP7 and VP4) are responsible for G and P typing of rotavirus, respectively. Although rotavirus has been frequently reported in many animal species, data regarding ovine rotavirus strains is very scanty and limited. Only a few ovine rotaviruses have been isolated and characterized so far. Recently, the G and P types circulating in ovines have been identified. The ovine rotavirus strain NT isolated from a diarrheic lamb in China is being considered as a promising vaccine candidate for human infants. PMID:26623281

  2. Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection

    PubMed Central

    Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A.; Meng, Jihong

    2015-01-01

    Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11–21 aa contain EV-71-specific antigenic sites, whereas positions 1–5 and 51–100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP16–43, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP16–43 is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP16–43 fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6–43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. PMID:24952304

  3. Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4.

    PubMed

    Gorziglia, M; Larralde, G; Kapikian, A Z; Chanock, R M

    1990-09-01

    cDNA clones representing the VP4 gene of symptomatic human rotavirus strain KU (VP7 serotype 1) or DS-1 (VP7 serotype 2) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2) were constructed and inserted into a baculovirus expression vector under the control of the polyhedrin promoter. The resulting recombinants expressed the appropriate authentic VP4 rotavirus outer capsid protein. Guinea pigs immunized with these VP4 proteins developed antibodies that neutralized infectivity of the rotavirus from which the immunizing VP4 was derived. These antisera were then used in neutralization tests to define the extent and distribution of VP4 antigenic polymorphism among human rotaviruses. Three distinct serotypes and one subtype of the VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. For the most part, VP4 serotype segregated independently of VP7 serotype. Ten strains of human rotavirus that were associated with symptomatic infection and that exhibited VP7 serotype 1, 3, 4, or 9 specificity, each possessed a VP4 of the same serotype and subtype, designated VP4 serotype 1A. Both symptomatic human rotavirus strains with VP7 serotype 2 specificity were related by neutralization to the VP4 serotype 1A strains and were classified as a subtype of VP4 serotype 1--i.e., serotype 1B--since viruses of serotype 1A appeared to be prime strains. Four human rotavirus strains that were recovered from healthy infants in newborn nurseries in which virus transmission persisted over a long interval, belonged to VP7 serotype 1, 2, 3, or 4, but each strain possessed the same VP4 antigenic specificity that was designated VP4 serotype 2. Finally, a single strain of symptomatic human rotavirus of VP7 serotype 1 specificity possessed a unique VP4 that was provisionally classified as VP4 serotype 3 but this remains to be confirmed because neutralization tests were performed in only one direction. Among

  4. Molecular characterization of mouse-virulent poliovirus type 1 Mahoney mutants: involvement of residues of polypeptides VP1 and VP2 located on the inner surface of the capsid protein shell.

    PubMed Central

    Couderc, T; Hogle, J; Le Blay, H; Horaud, F; Blondel, B

    1993-01-01

    Most poliovirus (PV) strains, including PV PV-1/Mahoney, are unable to cause paralysis in mice. Determinants for restriction of PV-1/Mahoney in mice have been identified by manipulating PV-1 cDNA and located on the viral capsid protein VP1. These determinants consist of a highly exposed amino acid sequence on the capsid surface corresponding to the B-C loop (M. Murray, J. Bradley, X. Yang, E. Wimmer, E. Moss, and V. Racaniello, Science 241:213-215, 1988; A. Martin, C. Wychowski, T. Couderc, R. Crainic, J. Hogle, and M. Girard, EMBO J. 7:2839-2847, 1988) and of residues belonging to the N-terminal sequence located on the inner surface of the protein shell (E. Moss and V. Racaniello, EMBO J. 10:1067-1074, 1991). Using an in vivo approach, we isolated two mouse-neurovirulent PV-1 mutants in the mouse central nervous system after a single passage of PV-1/Mahoney inoculated by the intracerebral route. Both mutants were subjected to two additional passages in mice, plaque purified, and subsequently characterized. The two cloned mutants, Mah-NK13 and Mah-NL32, retained phenotypic characteristics of the parental PV-1/Mahoney, including epitope map, heat lability, and temperature sensitivity. Mah-NK13 exhibited slightly smaller plaques than did the parental virus. The nucleotide sequences of the mutant genomes were determined, and mutations were identified. Mutations were independently introduced into the parental PV-1/Mahoney genome by single-site mutagenesis. Mutated PV-1/Mahoney viruses were then tested for their neurovirulence in mice. A single amino acid substitution in the capsid proteins VP1 (Thr-22-->Ile) and VP2 (Ser-31-->Thr) identified in the Mah-NK13 and Mah-NL32 genomes, respectively, conferred the mouse-virulent phenotype to the mouse-avirulent PV-1/Mahoney. Ile-22 in VP1 was responsible for the small-plaque phenotype of Mah-NK13. Both mutations arose during the first passage in the mouse central nervous system. We thus identified a new mouse adaptation

  5. Electron microscopic analysis of rotavirus assembly-replication intermediates

    SciTech Connect

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.

  6. Effect of animal plasma proteins on intestinal damage and recovery of neonatal pigs infected with rotavirus.

    PubMed

    Corl, Benjamin A; Harrell, Robert J; Moon, Hong Kil; Phillips, Oulayvahn; Weaver, Eric M; Campbell, Joy M; Arthington, John D; Odle, Jack

    2007-12-01

    Rotaviruses infect and elicit diarrhea in neonates of most mammalian species and cause 800,000 infant deaths a year. We used neonatal piglets to study the effects of dietary animal plasma proteins on intestinal health following rotavirus infection. Plasma protein contains a diverse mixture of functional components with biological activity and improves the health of animals challenged with other diarrhea-causing pathogens. In a 2 x 2 factorial design, we compared plasma protein- and soy protein-based diets in rotavirus-infected and noninfected piglets to determine if plasma protein reduced acute rotavirus intestinal damage or improved recovery. All infected animals shed rotavirus particles in their feces. Infected, plasma protein-fed piglets maintained growth rates similar to noninfected piglets in the first 3 days of infection; however, soy protein-fed piglets experienced reduced gains. Furthermore, infected, plasma protein-fed piglets showed no clinical signs of diarrhea. Infection reduced intestinal villus height and the villus height/crypt depth ratio by Day 3 of infection; however, reductions were not attenuated with dietary plasma protein. Infected, plasma protein-fed pigs maintained greater intestinal mucosa protein and estimated total lactase activity than infected, soy protein-fed piglets. Plasma proteins contain growth factors that may aid in rate of recovery as well as virus-binding proteins that may reduce infection pressure in the intestine. These data, combined with findings from other studies using plasma proteins in animal models of diarrhea, indicate the potential for using plasma proteins to improve the health of diarrheic neonates. PMID:17475463

  7. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens.

    PubMed

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-04-20

    Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines. PMID:22450314

  8. GITRL as a genetic adjuvant enhances enterovirus 71 VP1 DNA vaccine immunogenicity.

    PubMed

    Yuan, Jing; Tang, Xinyi; Yin, Kai; Tian, Jie; Rui, Ke; Ma, Jie; Mao, Chaoming; Chen, Jianguo; Lu, Liwei; Xu, Huaxi; Wang, Shengjun

    2015-05-01

    VP1 protein is the immunodominant capsid protein of enterovirus 71 (EV71) which is responsible for large outbreaks of hand, foot and mouth disease. It has been reported that glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and its ligand (GITRL) are involved in modulating both innate and adaptive immune responses. In this study, a DNA vaccine vector encoding EV71 VP1 gene and mGITRL gene (pIRES/VP1/mGITRL) was constructed. And female Balb/c mice were immunized intramuscularly with the DNA vaccine. Compared with the groups immunized with pIRES, pIRES/VP1, pIRES/mGITRL and PBS, the inoculation of pIRES/VP1/mGITRL induced a higher levels of EV71 VP1-specific antibody and specific antibody-forming cells. However, significantly higher levels of CD4(+)Th1, Th2 and CD8(+)IFN-γ(+)T cells were found in the pIRES/VP1/mGITRL group compared with control groups. Our results demonstrate that a novel DNA vaccine, expressing VP1 and mGITRL, could effectively elicit both humoral and cell-mediated immune responses against EV71 VP1 in mice. Thus, the mGITRL may be used as molecular adjuvant for EV71 DNA vaccine. PMID:25772201

  9. Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge

    PubMed Central

    2014-01-01

    Background Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. Results In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-β) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. Conclusions These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection. PMID:24885121

  10. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    SciTech Connect

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  11. Replication of the Rotavirus Genome Requires an Active Ubiquitin-Proteasome System▿

    PubMed Central

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F.

    2011-01-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication. PMID:21900156

  12. Evidence that Equine Rhinitis A Virus VP1 Is a Target of Neutralizing Antibodies and Participates Directly in Receptor Binding

    PubMed Central

    Warner, Simone; Hartley, Carol A.; Stevenson, Rachel A.; Ficorilli, Nino; Varrasso, Annalisa; Studdert, Michael J.; Crabb, Brendan S.

    2001-01-01

    Equine rhinitis A virus (ERAV) is a respiratory pathogen of horses and is classified as an Aphthovirus, the only non-Foot-and-mouth disease virus (FMDV) member of this genus. In FMDV, virion protein 1 (VP1) is a major target of protective antibodies and is responsible for viral attachment to permissive cells via an RGD motif located in a distal surface loop. Although both viruses share considerable sequence identity, ERAV VP1 does not contain an RGD motif. To investigate antibody and receptor-binding properties of ERAV VP1, we have expressed full-length ERAV VP1 in Escherichia coli as a glutathione S-transferase (GST) fusion protein (GST-VP1). GST-VP1 reacted specifically with antibodies present in serum from a rabbit immunized with purified ERAV virions and also in convalescent-phase sera from horses experimentally infected with ERAV. An antiserum raised in rabbits to GST-VP1 reacted strongly with viral VP1 and effectively neutralized ERAV infection in vitro. Using a flow cytometry-based binding assay, we found that GST-VP1, but not other GST fusion proteins, bound to cell surface receptors. This binding was reduced in a dose-dependent manner by the addition of purified ERAV virions, demonstrating the specificity of this interaction. A separate cell-binding assay also implicated GST-VP1 in receptor binding. Importantly, anti-GST-VP1 antibodies inhibited the binding of ERAV virions to Vero cells, suggesting that these antibodies exert their neutralizing effect by blocking viral attachment. Thus ERAV VP1, like its counterpart in FMDV, appears to be both a target of protective antibodies and involved directly in receptor binding. This study reveals the potential of recombinant VP1 molecules to serve as vaccines and diagnostic reagents for the control of ERAV infections. PMID:11533189

  13. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV) for downstream use in virus characterization

    PubMed Central

    Church, Molly E.; Dela Cruz, Florante N.; Kim, Kevin; Persiani, Michele; Woods, Leslie W.; Pesavento, Patricia A.; Woolard, Kevin D.

    2016-01-01

    Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA), and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV) [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus. PMID:26955649

  14. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV) for downstream use in virus characterization.

    PubMed

    Church, Molly E; Dela Cruz, Florante N; Kim, Kevin; Persiani, Michele; Woods, Leslie W; Pesavento, Patricia A; Woolard, Kevin D

    2016-06-01

    Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA), and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV) [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus. PMID:26955649

  15. RELATIVE CONCENTRATIONS OF SERUM NEUTRALIZING ANTIBODY TO VP3 AND VP7 PROTEINS IN ADULTS INFECTED WITH A HUMAN ROTAVIRUS (JOURNAL VERSION)

    EPA Science Inventory

    Two outer capsid rotavirus proteins, VP3 and VP7, have been found to elicit neutralizing antibody production, but the immunogenicity of these proteins during human rotavirus infection has not been determined. The relative amounts of serum neutralizing antibody against the VP3 and...

  16. Pros and cons of VP1-specific maternal IgG for the protection of Enterovirus 71 infection.

    PubMed

    Kim, Young-In; Song, Jae-Hyoung; Kwon, Bo-Eun; Kim, Ha-Neul; Seo, Min-Duk; Park, KwiSung; Lee, SangWon; Yeo, Sang-Gu; Kweon, Mi-Na; Ko, Hyun-Jeong; Chang, Sun-Young

    2015-11-27

    Enterovirus 71 (EV71) causes hand, foot, and mouth diseases and can result in severe neurological disorders when it infects the central nervous system. Thus, there is a need for the development of effective vaccines against EV71 infection. Here we report that viral capsid protein 1 (VP1), one of the main capsid proteins of EV71, efficiently elicited VP1-specific immunoglobulin G (IgG) in the serum of mice immunized with recombinant VP1. The VP1-specific IgG produced in female mice was efficiently transferred to their offspring, conferring protection against EV71 infection immediately after birth. VP1-specific antibody can neutralize EV71 infection and protect host cells. VP1-specific maternal IgG in offspring was maintained for over 6 months. However, the pre-existence of VP1-specific maternal IgG interfered with the production of VP1-specific IgG antibody secreting cells by active immunization in offspring. Therefore, although our results showed the potential for VP1-specific maternal IgG protection against EV71 in neonatal mice, other strategies must be developed to overcome the hindrance of maternal IgG in active immunization. In this study, we developed an effective and feasible animal model to evaluate the protective efficacy of humoral immunity against EV71 infection using a maternal immunity concept. PMID:26529069

  17. The Spike Protein VP4 Defines the Endocytic Pathway Used by Rotavirus To Enter MA104 Cells

    PubMed Central

    Díaz-Salinas, Marco A.; Romero, Pedro; Espinosa, Rafaela; Hoshino, Yasutaka; López, Susana

    2013-01-01

    Rotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway. PMID:23175367

  18. Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1

    PubMed Central

    Li, Shuo; Ge, Shangshu; Wang, Xi; Sun, Lijuan; Liu, Zewen; Zhou, Yijun

    2015-01-01

    The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus) VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH. PMID:25807055

  19. Rotavirus Vaccine

    MedlinePlus

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  20. Monoclonal antibodies directed against VP7 protein of human group B rotavirus.

    PubMed

    Deng, Xiaojie; Xiong, Guomei; Cong, Wenjuan; Liu, Zhonglai; Qi, Chao; Yang, Jihong

    2014-02-01

    The aim of this study was to prepare and identify a monoclonal antibody that binds the viral proteins 7 (VP7 protein) of human group B rotavirus (GBRV) and to describe its immunologic characterization. Human group B rotavirus vp7 gene was successfully ligated into pGEX-KG vector and transformed into Escherichia coli TOP10 cells. The glutathione S-transferases (GST)-fusion protein GST-VP7 was induced by Isopropyl β-D-1-thiogalactopyranoside (IPTG) and immediately purified to immunize BALB/c mice. Splenocytes were then prepared from the immunized mouse and fused with SP2/0 myeloma cell line. In the end we obtained one positive hybridoma cell line stably secreting monoclonal antibody against GST-VP7 protein by indirect enzyme-linked immunosorbent assay (ELISA) and limiting dilution. The production of the monoclonal antibody against GBRV will benefit the further study of GBRV's structures and functions and also lay a solid foundation for the research of disease prevention, clinical diagnosis, and treatment. PMID:24555935

  1. Bovine Rotavirus Nonstructural Protein 4 Produced by Lactococcus lactis Is Antigenic and Immunogenic

    PubMed Central

    Enouf, Vincent; Langella, Philippe; Commissaire, Jacqueline; Cohen, Jean; Corthier, Gérard

    2001-01-01

    Rotavirus nonstructural protein 4 (NSP4) can induce diarrhea in mice. To get insight into the biological effects of NSP4, production of large quantities of this protein is necessary. We first tried to produce the protein in Escherichia coli, but the nsp4 gene proved to be unstable. The capacity of the generally regarded as safe organism Lactococcus lactis to produce NSP4 either intra- or extracellularly was then investigated by using the nisin-controlled expression system. Production of recombinant NSP4 (rNSP4) was observed in L. lactis for both locations. In spite of a very low secretion efficiency, the highest level of production was obtained with the fusion between a lactococcal signal peptide and rNSP4. Cultures of the rNSP4-secreting strain were injected into rabbits, and a specific immune response was elicited. The anti-rNSP4 antibodies produced in these rabbits recognized NSP4 in MA104 cells infected by rotavirus. We showed that L. lactis is able to produce antigenic and immunogenic rNSP4 and thus is a good organism for producing viral antigens. PMID:11282586

  2. Display of VP1 on the Surface of Baculovirus and Its Immunogenicity against Heterologous Human Enterovirus 71 Strains in Mice

    PubMed Central

    Kiener, Tanja K.; Chow, Vincent T. K.; Kwang, Jimmy

    2011-01-01

    Background Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization. Methodology/Principal Finding In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1) of EV71-Fuyang (subgenogroup C4) was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV) immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4) in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains. Conclusion Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns. PMID:21747954

  3. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  4. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    SciTech Connect

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  5. Rotavirus Infections

    MedlinePlus

    Rotavirus is a virus that causes gastroenteritis. Symptoms include severe diarrhea, vomiting, fever, and dehydration. Almost all ... the U.S. are likely to be infected with rotavirus before their 5th birthday. Infections happen most often ...

  6. Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex

    PubMed Central

    Gratia, Matthieu; Sarot, Emeline; Vende, Patrice; Charpilienne, Annie; Baron, Carolina Hilma; Duarte, Mariela

    2015-01-01

    ABSTRACT Through its interaction with the 5′ translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5′-capped and 3′-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3′ GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3′ end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation

  7. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells.

    PubMed

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-06-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  8. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    PubMed Central

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-01-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  9. Phylogenetic and structural analysis of merkel cell polyomavirus VP1 in Brazilian samples.

    PubMed

    Baez, Camila F; Diaz, Nuria C; Venceslau, Marianna T; Luz, Flávio B; Guimarães, Maria Angelica A M; Zalis, Mariano G; Varella, Rafael B

    2016-08-01

    Our understanding of the phylogenetic and structural characteristics of the Merkel Cell Polyomavirus (MCPyV) is increasing but still scarce, especially in samples originating from South America. In order to investigate the properties of MCPyV circulating in the continent in more detail, MCPyV Viral Protein 1 (VP1) sequences from five basal cell carcinoma (BCC) and four saliva samples from Brazilian individuals were evaluated from the phylogenetic and structural standpoint, along with all complete MCPyV VP1 sequences available at Genbank database so far. The VP1 phylogenetic analysis confirmed the previously reported pattern of geographic distribution of MCPyV genotypes and the complexity of the South-American clade. The nine Brazilian samples were equally distributed in the South-American (3 saliva samples); North American/European (2 BCC and 1 saliva sample); and in the African clades (3 BCC). The classification of mutations according to the functional regions of VP1 protein revealed a differentiated pattern for South-American sequences, with higher number of mutations on the neutralizing epitope loops and lower on the region of C-terminus, responsible for capsid formation, when compared to other continents. In conclusion, the phylogenetic analysis showed that the distribution of Brazilian VP1 sequences agrees with the ethnic composition of the country, indicating that VP1 can be successfully used for MCPyV phylogenetic studies. Finally, the structural analysis suggests that some mutations could have impact on the protein folding, membrane binding or antibody escape, and therefore they should be further studied. PMID:27173789

  10. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells.

    PubMed

    Nava, Porfirio; López, Susana; Arias, Carlos F; Islas, Socorro; González-Mariscal, Lorenza

    2004-11-01

    Rotaviruses constitute a major cause of diarrhea in young mammals. Rotaviruses utilize different integrins as cell receptors, therefore upon their arrival to the intestinal lumen their integrin receptors will be hidden below the tight junction (TJ), on the basolateral membrane. Here we have studied whether the rotavirus outer capsid proteins are capable of opening the paracellular space sealed by the TJ. From the outermost layer of proteins of the rotavirus, 60 spikes formed of protein VP4 are projected. VP4 is essential for virus-cell interactions and is cleaved by trypsin into peptides VP5 and VP8. Here we found that when these peptides are added to confluent epithelial monolayers (Madin-Darby canine kidney cells), VP8 is capable of diminishing in a dose dependent and reversible manner the transepithelial electrical resistance. VP5 exerted no effect. VP8 can also inhibit the development of newly formed TJs in a Ca-switch assay. Treatment with VP8 augments the paracellular passage of non-ionic tracers, allows the diffusion of a fluorescent lipid probe and the apical surface protein GP135, from the luminal to the lateral membrane, and triggers the movement of the basolateral proteins Na+-K+-ATPase, alphanubeta3 integrin and beta1 integrin subunit, to the apical surface. VP8 generates a freeze-fracture pattern of TJs characterized by the appearance of loose end filaments, that correlates with an altered distribution of several TJ proteins. VP8 given orally to diabetic rats allows the enteral administration of insulin, thus indicating that it can be employed to modulate epithelial permeability. PMID:15494377

  11. Rotavirus Infection Induces the Unfolded Protein Response of the Cell and Controls It through the Nonstructural Protein NSP3▿

    PubMed Central

    Trujillo-Alonso, Vicenta; Maruri-Avidal, Liliana; Arias, Carlos F.; López, Susana

    2011-01-01

    The unfolded protein response (UPR) is a cellular mechanism that is triggered in order to cope with the stress caused by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). This response is initiated by the endoribonuclease inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and PKR-like ER kinase, which increase the expression of the genes involved in the folding and degradation processes and decrease the protein input into the ER by inhibiting translation. It has been shown that viruses both induce and manipulate the UPR in order to protect the host cells from an ER stress-mediated death, thus permitting the translation of viral proteins and the efficient replication of the virus. To understand the cellular events that occur during the rotavirus replication cycle, we examined the activation of the three UPR arms following infection, using luciferase reporters driven by promoters of the ER stress-responsive genes and real-time reverse transcription-PCR to determine the levels of the stress-induced mRNAs. Our findings indicated that during rotavirus infection two of the three arms of the UPR (IRE1 and ATF6) become activated; however, these pathways are interrupted at the translational level by the general inhibition of protein synthesis caused by NSP3. This response seems to be triggered by more than one viral protein synthesized during the replication of the virus, but not by the viral double-stranded RNA (dsRNA), since cells transfected with psoralen-inactivated virions, or with naked viral dsRNA, did not induce UPR. PMID:21937647

  12. Functional Analysis of Nuclear Localization Signals in VP1-2 Homologues from All Herpesvirus Subfamilies

    PubMed Central

    Hennig, T.; Abaitua, F.

    2014-01-01

    ABSTRACT The herpes simplex virus (HSV) tegument protein VP1-2 contains an N-terminal nuclear localization signal (NLS) that is critical for capsid routing to the nuclear pore. Here we analyzed positionally conserved determinants in VP1-2 homologues from each of the alpha, beta, and gamma classes of human herpesviruses. The overall architectures of the VP1-2s were similar, with a conserved N-terminal ubiquitin-specific protease domain separated from an internal region by a linker that was quite poorly conserved in length and sequence. Within this linker region all herpesviruses contained a conserved, highly basic motif which nevertheless exhibited distinct class-specific features. The motif in HSV functioned as a monopartite NLS, while in varicella-zoster virus (VZV) activity required an adjacent basic section defining the motif as a bipartite NLS. Neither the beta- nor gammaherpesvirus VP1-2 motifs were identified by prediction algorithms, but they nevertheless functioned as efficient NLS motifs both in heterologous transfer assays and in HSV VP1-2. Furthermore, though with different efficiencies and with the exception of human herpesvirus 8 (HHV-8), these chimeric variants rescued the replication defect of an HSV mutant lacking its NLS motif. We demonstrate that the lysine at position 428 of HSV is critical for replication, with a single alanine substitution being sufficient to abrogate NLS function and virus growth. We conclude that the basic motifs of each of the VP1-2 proteins are likely to confer a similar function in capsid entry in the homologous setting and that while there is flexibility in the exact type of motif employed, specific individual residues are critical for function. IMPORTANCE To successfully infect cells, all herpesviruses, along with many other viruses, e.g., HIV, hepatitis B virus, and influenza virus, must navigate through the cytoplasmic environment and dock with nuclear pores for transport of their genomes into the nucleus. However, we

  13. Rotavirus spike protein VP5* binds alpha2beta1 integrin on the cell surface and competes with virus for cell binding and infectivity.

    PubMed

    Graham, Kate L; Takada, Yoshikazu; Coulson, Barbara S

    2006-05-01

    Rotaviruses recognize several cell-surface molecules, including the alpha2beta1 integrin, and the processes of rotavirus cell attachment and entry appear to be multifactorial. The VP5* subunit of the rotavirus spike protein VP4 contains the alpha2beta1 ligand sequence Asp-Gly-Glu at residues 308-310. Binding to alpha2beta1 and infectivity of monkey rotavirus strain RRV and human rotavirus strain Wa, but not porcine rotavirus strain CRW-8, are inhibited by peptides containing Asp-Gly-Glu. Asp308 and Gly309 are necessary for the binding of RRV VP5* (aa 248-474) to expressed I domain of the alpha2 integrin subunit. Here, the ability of RRV VP5* to bind cells and affect rotavirus-integrin interactions was determined. Interestingly, VP5* bound to cells at 4 and 37 degrees C, both via alpha2beta1 and independently of this integrin. Prior VP5* binding at 37 degrees C eliminated RRV binding to cellular alpha2beta1 and reduced RRV and Wa infectivity in MA104 cells by 38-46 %. VP5* binding did not affect the infectivity of CRW-8. VP5* binding at 4 degrees C did not affect permissive-cell infection by RRV, indicating an energy requirement for VP5* competition with virus for infectivity. Mutagenesis of VP5* Asp308 and Gly309 eliminated VP5* binding to alpha2beta1 and the VP5* inhibition of rotavirus cell binding and infection, but not alpha2beta1-independent cell binding by VP5*. These studies show for the first time that expressed VP5* binds cell-surface alpha2beta1 using Asp308 and Gly309 and inhibits the infection of homologous and heterologous rotaviruses that use alpha2beta1 as a receptor. PMID:16603530

  14. Antibodies induced with recombinant VP1 from human rhinovirus exhibit cross-neutralisation.

    PubMed

    Edlmayr, J; Niespodziana, K; Popow-Kraupp, T; Krzyzanek, V; Focke-Tejkl, M; Blaas, D; Grote, M; Valenta, R

    2011-01-01

    Human rhinoviruses (HRVs) are the major cause of the common cold and account for 30-50% of all acute respiratory illnesses. Although HRV infections are usually harmless and invade only the upper respiratory tract, several studies demonstrate that HRV is involved in the exacerbation of asthma. VP1 is one of the surface-exposed proteins of the viral capsid that is important for the binding of rhinoviruses to the corresponding receptors on human cells. Here we investigated its potential usefulness for vaccination against the common cold. We expressed VP1 proteins from two distantly related HRV strains, HRV89 and HRV14, in Escherichia coli. Mice and rabbits were immunised with the purified recombinant proteins. The induced antibodies reacted with natural VP1 and with whole virus particles as shown by immunoblotting and immunogold electron microscopy. They exhibited strong cross-neutralising activity for different HRV strains. Therefore, recombinant VP1 may be considered a candidate HRV vaccine to prevent HRV-induced asthma exacerbations. PMID:20530036

  15. Diversity of Interferon Antagonist Activities Mediated by NSP1 Proteins of Different Rotavirus Strains▿

    PubMed Central

    Arnold, Michelle M.; Patton, John T.

    2011-01-01

    Studies involving limited numbers of rotavirus (RV) strains have shown that the viral gene 5 product, NSP1, can antagonize beta interferon (IFN-β) expression by inducing the degradation of IFN-regulatory factors (IRFs) (IRF3, IRF5, and IRF7) or a component of the E3 ubiquitin ligase complex responsible for activating NF-κB (β-transducin repeat-containing protein [β-TrCP]). To gain a broader perspective of NSP1 activities, we examined various RV strains for the ability to inhibit IFN-β expression in human cells. We found that all strains encoding wild-type NSP1 impeded IFN-β expression but not always through IRF3 degradation. To identify other degradation targets involved in suppressing IFN-β expression, we used transient expression vectors to test the abilities of a diverse collection of NSP1 proteins to target IRF3, IRF5, IRF7, and β-TrCP for degradation. The results indicated that human RVs rely predominantly on the NSP1-induced degradation of IRF5 and IRF7 to suppress IFN signaling, whereas NSP1 proteins of animal RVs tended to target IRF3, IRF5, and IRF7, allowing the animal viruses a broader attack on the IFN-β signaling pathway. The results also suggested that the NSP1-induced degradation of β-TrCP is an uncommon mechanism of subverting IFN-β signaling but is one that can be shared with NSP1 proteins that induce IRF degradation. Our analysis reveals that the activities of NSP1 proteins are diverse, with no obvious correlations between degradations of pairs of target proteins. Thus, RVs have evolved functionally distinct approaches for subverting the host antiviral response, a property consistent with the immense sequence variation noted for NSP1 proteins. PMID:21177809

  16. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    PubMed Central

    Bugli, Francesca; Caprettini, Valeria; Cacaci, Margherita; Martini, Cecilia; Paroni Sterbini, Francesco; Torelli, Riccardo; Della Longa, Stefano; Papi, Massimiliano; Palmieri, Valentina; Giardina, Bruno; Posteraro, Brunella; Sanguinetti, Maurizio; Arcovito, Alessandro

    2014-01-01

    In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO) fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few microns long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native form with relatively simple, rapid, and economical procedures – opens a new route toward large-scale production of a more efficient antigenic compound to be used as a vaccination tool or as an adjuvant, and also represents a top-quality biomaterial to be further modified for biotechnological purposes. PMID:24936129

  17. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein.

    PubMed

    Bugli, Francesca; Caprettini, Valeria; Cacaci, Margherita; Martini, Cecilia; Paroni Sterbini, Francesco; Torelli, Riccardo; Della Longa, Stefano; Papi, Massimiliano; Palmieri, Valentina; Giardina, Bruno; Posteraro, Brunella; Sanguinetti, Maurizio; Arcovito, Alessandro

    2014-01-01

    In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO) fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few microns long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here - providing a large amount of the viral capsid protein in the native form with relatively simple, rapid, and economical procedures - opens a new route toward large-scale production of a more efficient antigenic compound to be used as a vaccination tool or as an adjuvant, and also represents a top-quality biomaterial to be further modified for biotechnological purposes. PMID:24936129

  18. Comparison of the rotavirus nonstructural protein NSP1 (NS53) from different species by sequence analysis and northern blot hybridization.

    PubMed

    Dunn, S J; Cross, T L; Greenberg, H B

    1994-08-15

    The nucleotide sequence of gene 5 encoding the rotavirus nonstructural protein NSP1 (NS53) of 6 strains (EW, EHP, RRV, I321, OSU, and Gottfried) was determined and compared to 6 previously reported strains (SA11, UK, RF, Hu803, DS-1, and Wa). The 12 rotavirus strains were derived from a total of five separate species (murine, bovine, simian, porcine, and human). Gene sizes ranged from 1564 to 1611 nucleotides in length and the deduced protein sequences were found to be 486 to 495 amino acids in length. Comparisons of NSP1 amino acid sequences showed identities ranging from 36 to 92%. This diversity was most evident between strains from different species. Phylogenetic analysis revealed a clustering of NSP1 sequences according to species origin with the exception that the human and porcine strains were included in a single grouping. Northern blot hybridizations using additional rotavirus strains from the five species confirmed the grouping found by sequence analysis. The species specificity of NSP1 is consistent with the hypothesis that NSP1 plays a role in host range restriction. PMID:8030275

  19. Rotavirus Symptoms

    MedlinePlus

    ... Rotavirus Vaccine Program American Academy of Pediatrics Symptoms Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... PATH's Rotavirus Vaccine Program American Academy of Pediatrics Language: English Español (Spanish) File Formats Help: How do I ...

  20. Rotavirus Treatment

    MedlinePlus

    ... Rotavirus Vaccine Program American Academy of Pediatrics Treatment Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... PATH's Rotavirus Vaccine Program American Academy of Pediatrics Language: English Español (Spanish) File Formats Help: How do I ...

  1. The TATA-less promoter of VP1, a plant gene controlling seed germination.

    PubMed

    Carrari, F; Frankel, N; Lijavetzky, D; Benech-Arnold, R; Sánchez, R; Iusem, N D

    2001-01-01

    Vp1 is a seed-specific gene involved in the control of dormancy and germination. We here present the complete sequence of the sorghum vp1 promoter/enhancer region highlighting its main features, especially the lack of canonical TATA and CAAT boxes and the presence of elements responsive to abscisic acid and light. The region closest to the start of transcription is highly homologous to the partial proximal sequence reported for the maize vp1 promoter. This region is interrupted by a 57-nt stretch containing 14 CT microsatellite repeats. We observed a poor overall homology to the promoter from abi3 gene, the Arabidopsis counterpart bearing a similar coding sequence. However, there exists a high degree of homology (89%) between a TATA-rich 103-bp stretch of the sorghum vp1 promoter located about 700 nt upstream of the startpoint and miniature inverted transposable elements (MITEs) interspersed within the sorghum seed-specific kafirin cluster. This sorghum MITE-like element displays considerable homology (68%) to the TATA-less promoter from the sorghum NADP-malate dehydrogenase gene and lesser similarity to the Tourist, Pilgrim and Batuta MITEs previously identified within the promoter from the maize Abp1 (auxin-binding protein) gene. PMID:11761708

  2. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.

    PubMed

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-03-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  3. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19

    PubMed Central

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-01-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5–80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  4. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application to Picornavirus Classification

    PubMed Central

    Oberste, M. Steven; Maher, Kaija; Kilpatrick, David R.; Pallansch, Mark A.

    1999-01-01

    Sixty-six human enterovirus serotypes have been identified by serum neutralization, but the molecular determinants of the serotypes are unknown. Since the picornavirus VP1 protein contains a number of neutralization domains, we hypothesized that the VP1 sequence should correspond with neutralization (serotype) and, hence, with phylogenetic lineage. To test this hypothesis and to analyze the phylogenetic relationships among the human enteroviruses, we determined the complete VP1 sequences of the prototype strains of 47 human enterovirus serotypes and 10 antigenic variants. Our sequences, together with those available from GenBank, comprise a database of complete VP1 sequences for all 66 human enterovirus serotypes plus additional strains of seven serotypes. Phylogenetic trees constructed from complete VP1 sequences produced the same four major clusters as published trees based on partial VP2 sequences; in contrast to the VP2 trees, however, in the VP1 trees strains of the same serotype were always monophyletic. In pairwise comparisons of complete VP1 sequences, enteroviruses of the same serotype were clearly distinguished from those of heterologous serotypes, and the limits of intraserotypic divergence appeared to be about 25% nucleotide sequence difference or 12% amino acid sequence difference. Pairwise comparisons suggested that coxsackie A11 and A15 viruses should be classified as strains of the same serotype, as should coxsackie A13 and A18 viruses. Pairwise identity scores also distinguished between enteroviruses of different clusters and enteroviruses from picornaviruses of different genera. The data suggest that VP1 sequence comparisons may be valuable in enterovirus typing and in picornavirus taxonomy by assisting in the genus assignment of unclassified picornaviruses. PMID:9971773

  5. The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Liu, Huanan; Li, Dan; Zhang, Keshan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2016-04-01

    One of the proteins encoded by the foot-and-mouth disease virus (FMDV), the VP1 protein, a capsid protein, plays an important role in integrin receptor attachment and humoral immunity-mediated host responses. The integrin receptor recognition motif and an important antigenic epitope exist within the G-H loop, which is comprised of amino acids 134-160 of the VP1 protein. FMDV strain, Asia1/HN/CHA/06, isolated from a pig, was passaged four times in suckling mice and sequenced. Sequencing analyses showed that there was a mutation of the integrin receptor recognition motif Arg-Gly-Asp/Arg-Asp-Asp (RGD/RDD, VP1 143-145) and a VP1 154 serine/Asp (VP1 S154D) mutation in the G-H loop of the VP1 protein. The influence of the RGD/RDD mutation on Asia1 FMDV disease phenotype has been previously studied. In this study, to determine the influence of the VP1 S154D mutation on FMDV Asia1 replication and pathogenicity, two recombinant FMDVs with different residues only at the VP1 154 site were rescued by reverse genetics techniques and their infectious potential in host cells and pathogenicity in pigs were compared. Our data indicates that the VP1 S154D mutation increases the replication level of FMDV Asia1/HN/CHA/06 in BHK-21, IB-RS-2, and PK-15 cells and enhances pathogenicity in pigs. Through the transient transfection-infection assay to compare integrin receptor usage of two recombinant viruses, the result shows that the VP1 S154D mutation markedly increases the ability of type Asia1 FMDV to use the integrin receptors αυβ6 and αυβ8 from pig. This study identifies a key research target for illuminating the role of residues located at G-H loop in FMDV pathogenicity. PMID:26792712

  6. Identification of Cellular Calcium Binding Protein Calmodulin as a Regulator of Rotavirus A Infection during Comparative Proteomic Study

    PubMed Central

    Chattopadhyay, Shiladitya; Basak, Trayambak; Nayak, Mukti Kant; Bhardwaj, Gourav; Mukherjee, Anupam; Bhowmick, Rahul; Sengupta, Shantanu; Chakrabarti, Oishee; Chatterjee, Nabendu S.; Chawla-Sarkar, Mamta

    2013-01-01

    Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (<5years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca2+. Ca2+-CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca2+ chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca2+/CaM during viral pathogenesis. PMID:23437200

  7. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    SciTech Connect

    Kraschnefski, Mark J.; Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von; Blanchard, Helen

    2005-11-01

    The carbohydrate-binding component (VP8*{sub 64–223}) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8*{sub 64–223} structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3{sub 2}21 and monoclinic P2{sub 1}) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*{sub 64–223} structure by molecular replacement.

  8. Co-Expression of Anti-Rotavirus Proteins (Llama VHH Antibody Fragments) in Lactobacillus: Development and Functionality of Vectors Containing Two Expression Cassettes in Tandem

    PubMed Central

    Günaydın, Gökçe; Álvarez, Beatriz; Lin, Yin; Hammarström, Lennart; Marcotte, Harold

    2014-01-01

    Rotavirus is an important pediatric pathogen, causing severe diarrhea and being associated with a high mortality rate causing approximately 500 000 deaths annually worldwide. Even though some vaccines are currently available, their efficacy is lower in the developing world, as compared to developed countries. Therefore, alternative or complementary treatment options are needed in the developing countries where the disease burden is the largest. The effect of Lactobacillus in promoting health and its use as a vehicle for delivery of protein and antibody fragments was previously shown. In this study, we have developed co-expression vectors enabling Lactobacillus paracasei BL23 to produce two VHH fragments against rotavirus (referred to as anti-rotavirus proteins 1 and 3, ARP1 and ARP3) as secreted and/or surface displayed products. ARP1 and ARP3 fragments were successfully co-expressed as shown by Western blot and flow cytometry. In addition, engineered Lactobacillus produced VHH antibody fragments were shown to bind to a broad range of rotavirus serotypes (including the human rotavirus strains 69M, Va70, F45, DS1, Wa and ST3 and simian rotavirus strains including RRV and SA11), by flow cytometry and ELISA. Hereby, we have demonstrated for the first time that when RRV was captured by one VHH displayed on the surface of co-expressor Lactobacillus, targeting other epitope was possible with another VHH secreted from the same bacterium. Therefore, Lactobacillus producing two VHH antibody fragments may potentially serve as treatment against rotavirus with a reduced risk of development of escape mutants. This co-expression and delivery platform can also be used for delivery of VHH fragments against a variety of mucosal pathogens or production of other therapeutic molecules. PMID:24781086

  9. Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms

    PubMed Central

    Niespodziana, Katarzyna; Cabauatan, Clarissa R.; Jackson, David J.; Gallerano, Daniela; Trujillo-Torralbo, Belen; del Rosario, Ajerico; Mallia, Patrick; Valenta, Rudolf; Johnston, Sebastian L.

    2014-01-01

    Background Rhinoviruses (RVs) are a major cause of common colds and induce exacerbations of asthma and chronic inflammatory lung diseases. Methods We expressed and purified recombinant RV coat proteins VP1-4, non-structural proteins as well as N-terminal fragments of VP1 from four RV strains (RV14, 16, 89, C) covering the three known RV groups (RV-A, RV-B and RV-C) and measured specific IgG-subclass-, IgA- and IgM-responses by ELISA in subjects with different severities of asthma or without asthma before and after experimental infection with RV16. Findings Before infection subjects showed IgG1 > IgA > IgM > IgG3 cross-reactivity with N-terminal fragments from the representative VP1 proteins of the three RV groups. Antibody levels were higher in the asthmatic group as compared to the non-asthmatic subjects. Six weeks after infection with RV16, IgG1 antibodies showed a group-specific increase towards the N-terminal VP1 fragment, but not towards other capsid and non-structural proteins, which was highest in subjects with severe upper and lower respiratory symptoms. Interpretation Our results demonstrate that increases of antibodies towards the VP1 N-terminus are group-specific and associated with severity of respiratory symptoms and suggest that it may be possible to develop serological tests for identifying causative RV groups. PMID:26137535

  10. Rotavirus vaccines.

    PubMed

    Barnes, G

    1998-01-01

    Encouraging results have been reported from several large trials of tetravalent rhesus rotavirus vaccine, with efficacy of 70-80% against severe disease. A recent Venezuelan study showed similar results to trials in USA and Europe. The vaccine may soon be licensed in USA. It provides the exciting prospect of a strategy to prevent one of the world's major child killers. Other candidate vaccines are under development including human-bovine reassortants, neonatal strains, non-replicating rotaviruses, vector vaccines and other genetically engineered products. Second and third generation rotavirus vaccines are on the horizon. The need for a rotavirus vaccine is well accepted by paediatricians, but public health authorities need to be lobbied. Other issues which need to be addressed include relative importance of non-group A rotaviruses, possible administration with OPV, the influence of breast feeding, and most importantly, cost. It is essential that rotavirus vaccine is somehow made available to all of the world's children, not just those in developed countries. PMID:9553287

  11. Complete Genome Sequence of a Genotype G23P[37] Pheasant Rotavirus Strain Identified in Hungary.

    PubMed

    Gál, János; Marton, Szilvia; Ihász, Katalin; Papp, Hajnalka; Jakab, Ferenc; Malik, Yashpal S; Bányai, Krisztián; Farkas, Szilvia L

    2016-01-01

    We investigated the genomic properties of a rotavirus A strain isolated from diarrheic pheasant poults in Hungary in 2015. Sequence analyses revealed a shared genomic constellation (G23-P[37]-I4-R4-C4-M4-A16-N10-T4-E4-H4) and close relationship (range of nucleotide sequence similarity: VP2, 88%; VP1 and NSP4, 98%) with another pheasant rotavirus strain isolated previously in Germany. PMID:27034484

  12. Complete Genome Sequence of a Genotype G23P[37] Pheasant Rotavirus Strain Identified in Hungary

    PubMed Central

    Gál, János; Marton, Szilvia; Ihász, Katalin; Papp, Hajnalka; Jakab, Ferenc; Malik, Yashpal S.; Bányai, Krisztián

    2016-01-01

    We investigated the genomic properties of a rotavirus A strain isolated from diarrheic pheasant poults in Hungary in 2015. Sequence analyses revealed a shared genomic constellation (G23-P[37]-I4-R4-C4-M4-A16-N10-T4-E4-H4) and close relationship (range of nucleotide sequence similarity: VP2, 88%; VP1 and NSP4, 98%) with another pheasant rotavirus strain isolated previously in Germany. PMID:27034484

  13. Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein.

    PubMed Central

    Estes, M K; Mason, B B; Crawford, S; Cohen, J

    1984-01-01

    The nucleotide sequence of the gene that codes for the major inner capsid protein of the simian rotavirus SA11 has been determined. A DNA copy of mRNA from gene 6 was cloned in the E. coli plasmid pBR322. The full-length gene is 1357 nucleotides long with a 5'-noncoding region of 23 nucleotides and a 3'-noncoding region of 140 nucleotides. The gene contains a single, long, open reading-frame of 1194 nucleotides capable of coding for a protein of 397 amino acids with a molecular weight of 44,816. The predicted protein product is relatively proline-rich with a net charge at neutral pH of -3.5. One stretch of 53 amino acids (encoded by nucleotides 327-485) is basic. Images PMID:6322125

  14. Full genome characterization of the first G3P[24] rotavirus strain detected in humans provides evidence of interspecies reassortment and mutational saturation in the VP7 gene.

    PubMed

    Mijatovic-Rustempasic, Slavica; Roy, Sunando; Teel, Elizabeth N; Weinberg, Geoffrey A; Payne, Daniel C; Parashar, Umesh D; Bowen, Michael D

    2016-02-01

    During the 2008-2009 rotavirus season of the Centers for Disease Control and Prevention New Vaccine Surveillance Network, one case of paediatric acute gastroenteritis associated with a rotavirus G14P[24] strain was identified. This was the first detection of the genotype G14 and P[24] in humans, and the first detection of the G14P[24] combination. To gain an insight into the origins and the evolution of this strain, we determined the complete ORF sequences of all 11 genes. A majority of the genes identified were similar to the simian strain TUCH, except for the VP1 and VP7 genes that clustered only distantly with the bovine and equine strains, respectively. In addition, this strain carried AU-1-like NSP2 and NSP4 genes. Using codon-partitioning and protein-based phylogenetic approaches, we determined that the VP7 genotype of strain 2009727118 was actually G3; therefore, the proposed full genomic classification of the 2009727118 strain is G3-P[24]-I9-R2-C3-M3-A9-N3-T3-E3-H6. These findings indicate the possibility that the 2009727118 strain originated by interspecies transmission and multiple reassortment events involving human, bovine and equine rotaviruses, resulting in the introduction of some genes into the genome of simian rotaviruses. Additionally, we found evidence of mutational saturation in the third codon position of the VP7 ORF which presented an issue with homoplasy in phylogenetic analyses. PMID:26590163

  15. Full genome characterization of the first G3P[24] rotavirus strain detected in humans provides evidence of interspecies reassortment and mutational saturation in the VP7 gene

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Roy, Sunando; Teel, Elizabeth N.; Weinberg, Geoffrey A.; Payne, Daniel C.; Parashar, Umesh D.; Bowen, Michael D.

    2016-01-01

    During the 2008–2009 rotavirus season of the Centers for Disease Control and Prevention New Vaccine Surveillance Network, one case of paediatric acute gastroenteritis associated with a rotavirus G14P[24] strain was identified. This was the first detection of the genotype G14 and P[24] in humans, and the first detection of the G14P[24] combination. To gain an insight into the origins and the evolution of this strain, we determined the complete ORF sequences of all 11 genes. A majority of the genes identified were similar to the simian strain TUCH, except for the VP1 and VP7 genes that clustered only distantly with the bovine and equine strains, respectively. In addition, this strain carried AU-1-like NSP2 and NSP4 genes. Using codon-partitioning and protein-based phylogenetic approaches, we determined that the VP7 genotype of strain 2009727118 was actually G3; therefore, the proposed full genomic classification of the 2009727118 strain is G3-P[24]-I9-R2-C3-M3-A9-N3-T3-E3-H6. These findings indicate the possibility that the 2009727118 strain originated by interspecies transmission and multiple reassortment events involving human, bovine and equine rotaviruses, resulting in the introduction of some genes into the genome of simian rotaviruses. Additionally, we found evidence of mutational saturation in the third codon position of the VP7 ORF which presented an issue with homoplasy in phylogenetic analyses. PMID:26590163

  16. Rotavirus NSP1 Protein Inhibits Interferon-Mediated STAT1 Activation

    PubMed Central

    Sen, Adrish; Rott, Lusijah; Phan, Nguyen; Mukherjee, Gourab

    2014-01-01

    Rotavirus (RV) replicates efficiently in intestinal epithelial cells (IECs) in vivo despite the activation of a local host interferon (IFN) response. Previously, we demonstrated that homologous RV efficiently inhibits IFN induction in single infected and bystander villous IECs in vivo. Paradoxically, RV also induces significant type I IFN expression in the intestinal hematopoietic cell compartment in a relatively replication-independent manner. This suggests that RV replication and spread in IECs must occur despite exogenous stimulation of the STAT1-mediated IFN signaling pathway. Here we report that RV inhibits IFN-mediated STAT1 tyrosine 701 phosphorylation in human IECs in vitro and identify RV NSP1 as a direct inhibitor of the pathway. Infection of human HT29 IECs with simian (RRV) or porcine (SB1A or OSU) RV strains, which inhibit IFN induction by targeting either IFN regulatory factor 3 (IRF3) or NF-κB, respectively, resulted in similar regulation of IFN secretion. By flow cytometric analysis at early times during infection, neither RRV nor SB1A effectively inhibited the activation of Y701-STAT1 in response to exogenously added IFN. However, at later times during infection, both RV strains efficiently inhibited IFN-mediated STAT1 activation within virus-infected cells, indicating that RV encodes inhibitors of IFN signaling targeting STAT1 phosphorylation. Expression of RV NSP1 in the absence of other viral proteins resulted in blockage of exogenous IFN-mediated STAT1 phosphorylation, and this function was conserved in NSP1 from simian, bovine, and murine RV strains. Analysis of NSP1 determinants responsible for the inhibition of IFN induction and signaling pathways revealed that these determinants are encoded on discrete domains of NSP1. Finally, we observed that at later times during infection with SB1A, there was almost complete inhibition of IFN-mediated Y701-STAT1 in bystander cells staining negative for viral antigen. This property segregated with the

  17. Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation.

    PubMed

    Sen, Adrish; Rott, Lusijah; Phan, Nguyen; Mukherjee, Gourab; Greenberg, Harry B

    2014-01-01

    Rotavirus (RV) replicates efficiently in intestinal epithelial cells (IECs) in vivo despite the activation of a local host interferon (IFN) response. Previously, we demonstrated that homologous RV efficiently inhibits IFN induction in single infected and bystander villous IECs in vivo. Paradoxically, RV also induces significant type I IFN expression in the intestinal hematopoietic cell compartment in a relatively replication-independent manner. This suggests that RV replication and spread in IECs must occur despite exogenous stimulation of the STAT1-mediated IFN signaling pathway. Here we report that RV inhibits IFN-mediated STAT1 tyrosine 701 phosphorylation in human IECs in vitro and identify RV NSP1 as a direct inhibitor of the pathway. Infection of human HT29 IECs with simian (RRV) or porcine (SB1A or OSU) RV strains, which inhibit IFN induction by targeting either IFN regulatory factor 3 (IRF3) or NF-κB, respectively, resulted in similar regulation of IFN secretion. By flow cytometric analysis at early times during infection, neither RRV nor SB1A effectively inhibited the activation of Y701-STAT1 in response to exogenously added IFN. However, at later times during infection, both RV strains efficiently inhibited IFN-mediated STAT1 activation within virus-infected cells, indicating that RV encodes inhibitors of IFN signaling targeting STAT1 phosphorylation. Expression of RV NSP1 in the absence of other viral proteins resulted in blockage of exogenous IFN-mediated STAT1 phosphorylation, and this function was conserved in NSP1 from simian, bovine, and murine RV strains. Analysis of NSP1 determinants responsible for the inhibition of IFN induction and signaling pathways revealed that these determinants are encoded on discrete domains of NSP1. Finally, we observed that at later times during infection with SB1A, there was almost complete inhibition of IFN-mediated Y701-STAT1 in bystander cells staining negative for viral antigen. This property segregated with the

  18. Active Participation of Cellular Chaperone Hsp90 in Regulating the Function of Rotavirus Nonstructural Protein 3 (NSP3)*

    PubMed Central

    Dutta, Dipanjan; Chattopadhyay, Shiladitya; Bagchi, Parikshit; Halder, Umesh Chandra; Nandi, Satabdi; Mukherjee, Anupam; Kobayashi, Nobumichi; Taniguchi, Koki; Chawla-Sarkar, Mamta

    2011-01-01

    Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells. PMID:21489987

  19. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery.

    PubMed

    Zhao, Qinghuan; Chen, Weihong; Chen, Yuanding; Zhang, Liming; Zhang, Jinping; Zhang, Zhijun

    2011-03-16

    Proteins of viral capsid may self-assemble into virus-like particles (VLPs) that can find many biomedical applications such as platform for drug delivery. In this paper, we describe preparation of VLPs by self-assembly of VP6, a rotavirus capsid protein that was chemically conjugated with doxorubicin (DOX), an anticancer drug. VP6 was first highly expressed in E. Coli, followed by purification and renaturation. DOX was then covalently attached to VP6 to form DOX-VP6 (DVP6) conjugates, which were subsequently self-assembled into VLPs under appropriate condition. Next, lactobionic acid (LA) was chemically linked to the surface of the VLPs. We demonstrated that the aforementioned nanosystem shows specific targeting to hepatoma cell line HepG2. The chemically functionalized VLPs, a kind of biological nanoparticles with excellent biocompatibility and biodegradability, can be prepared in large scale from E. Coli through our method, which may find practical applications in biomedicine. PMID:21338097

  20. Rotavirus antigen test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003349.htm Rotavirus antigen test To use the sharing features on this page, please enable JavaScript. The rotavirus antigen test detects rotavirus in the feces. This ...

  1. Uncatalyzed assembly of spherical particles from SV40 VP1 pentamers and linear dsDNA incorporates both low and high cooperativity elements

    SciTech Connect

    Mukherjee, Santanu; Kler, Stanislav; Oppenheim, Ariella; Zlotnick, Adam

    2010-02-05

    The capsid of SV40 virion is comprised of 72 pentamers of the major capsid protein, VP1. We examined the synergism between pentamer-pentamer interaction and pentamer-DNA interaction using a minimal system of purified VP1 and a linear dsDNA 600-mer, comparing electrophoresis with electron microscopy and size exclusion chromatography. At low VP1/DNA ratios, large tubes were observed that apparently did not survive native agarose gel electrophoresis. As the VP1 concentration increased, electrophoretic migration was slower and tubes were replaced by 200 A diameter particles and excess free pentamer. At high VP1/DNA ratios, a progressively larger fraction of particles was similar to 450 A diameter virions. VP1 association with DNA is very strong compared to the concentrations in these experiments yet, paradoxically, stable complexes appear only at high ratios of VP1 to DNA. These data suggest a DNA saturation-dependent nucleation event based on non-specific pentamer-DNA interaction that controls assembly and the ultimate capsid geometry.

  2. Genetic Variation of Capsid Protein VP7 in Genotype G4 Human Rotavirus Strains: Simultaneous Emergence and Spread of Different Lineages in Argentina

    PubMed Central

    Bok, Karin; Matson, David O.; Gomez, Jorge A.

    2002-01-01

    Rotavirus is the most-common cause of severe diarrhea in young children. Complete rotavirus characterization includes determination of the antigenic type of the two outer capsid proteins, VP7 and VP4, designated G and P types, respectively. During a nationwide rotavirus surveillance study, genotype G4 frequency increased during the second year. To evaluate further the mechanism of emergence and the relationship among G4 strains, the genetic diversity of VP7 capsid protein in these samples was studied in detail. Overall nucleotide sequence divergence ranged from less than 0.1 to 19.5%, a higher divergence than that observed for other rotavirus G types (0.1 to 9%). Sequences were classified into two major lineages (designated I and II) based on their nucleotide distances. The most heterogeneous lineage was further subdivided into four sublineages (designated Ia to Id). Most Argentine sequences were of sublineages Ib and Ic, which were confirmed to be independent sequence clusters by parsimony analysis. This study describes different lineages and sublineages within G4 strains and shows that Argentine strains are distantly related to reference strain ST3. The appearance of at least two G4 genotype (sub)lineages during 1998 demonstrates that the increased frequency of these strains was due to the synchronized emergence of different groups of strains. PMID:12037057

  3. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  4. Inflammatory and oxidative stress in rotavirus infection.

    PubMed

    Guerrero, Carlos A; Acosta, Orlando

    2016-05-12

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  5. Two proline residues are essential in the calcium-binding activity of rotavirus VP7 outer capsid protein.

    PubMed Central

    Gajardo, R; Vende, P; Poncet, D; Cohen, J

    1997-01-01

    Rotavirus maturation and stability of the outer capsid are calcium-dependent processes. It has been shown previously that the concentration of Ca2+-solubilizing outer capsid proteins from rotavirus particles is dependent on the virus strain. This property of viral particles has been associated with the gene coding for VP7 (gene 9). In this study the correlation between VP7 and resistance to low [Ca2+] was confirmed by analyzing the origin of gene 9 from reassortant viruses prepared under the selective pressure of low [Ca2+]. After chemical mutagenesis, we selected mutant viruses of the bovine strain RF that are more resistant to low [Ca2+]. The genes coding for the VP7 proteins of these independent mutants have been sequenced. Sequence analysis confirmed that these mutants are independent and revealed that all mutant VP7 proteins have proline 75 changed to leucine and have an outer capsid that solubilized at low [Ca2+]. The mutation of proline 279 to serine is found in all but two mutants. The phenotype of mutants having a single proline change can be distinguished from the phenotype of mutants having two proline changes. Sequence analysis showed that position 75 is in a region (amino acids 65 to 78) of great variability and that proline 75 is present in most of the bovine strains. In contrast, proline 279 is in a conserved region and is conserved in all the VP7 sequences in data banks. This region is rich in oxygenated residues that are correctly allocated in the metal-coordinating positions of the Ca2+-binding EF-hand structure pattern, suggesting that this region is important in the Ca2+ binding of VP7. PMID:9032355

  6. Rotavirus Infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian rotaviruses are members of the Reoviridae family, which is characterized by virions that contain 10-12 linear double-stranded RNA (dsRNA) segments. The Reoviridae consists of 15 genera which can be placed into two recognized subfamilies based upon the presence or absence of structural “tur...

  7. Typing of human enteroviruses by partial sequencing of VP1.

    PubMed

    Oberste, M S; Maher, K; Kilpatrick, D R; Flemister, M R; Brown, B A; Pallansch, M A

    1999-05-01

    Human enteroviruses (family Picornaviridae) are the major cause of aseptic meningitis and also cause a wide range of other acute illnesses, including neonatal sepsis-like disease, acute flaccid paralysis, and acute hemorrhagic conjunctivitis. The neutralization assay is usually used for enterovirus typing, but it is labor-intensive and time-consuming and standardized antisera are in limited supply. We have developed a molecular typing system based on reverse transcription-PCR and nucleotide sequencing of the 3' half of the genomic region encoding VP1. The standard PCR primers amplify approximately 450 bp of VP1 for most known human enterovirus serotypes. The serotype of an "unknown" may be inferred by comparison of the partial VP1 sequence to those in a database containing VP1 sequences for the prototype strains of all 66 human enterovirus serotypes. Fifty-one clinical isolates of known serotypes from the years 1991 to 1998 were amplified and sequenced, and the antigenic and molecular typing results agreed for all isolates. With one exception, the nucleotide sequences of homologous strains were at least 75% identical to one another (>88% amino acid identity). Strains with homologous serotypes were easily discriminated from those with heterologous serotypes by using these criteria for identification. This method can greatly reduce the time required to type an enterovirus isolate and can be used to type isolates that are difficult or impossible to type with standard immunological reagents. The technique may also be useful for the rapid determination of whether viruses isolated during an outbreak are epidemiologically related. PMID:10203472

  8. Typing of Human Enteroviruses by Partial Sequencing of VP1

    PubMed Central

    Oberste, M. Steven; Maher, Kaija; Kilpatrick, David R.; Flemister, Mary R.; Brown, Betty A.; Pallansch, Mark A.

    1999-01-01

    Human enteroviruses (family Picornaviridae) are the major cause of aseptic meningitis and also cause a wide range of other acute illnesses, including neonatal sepsis-like disease, acute flaccid paralysis, and acute hemorrhagic conjunctivitis. The neutralization assay is usually used for enterovirus typing, but it is labor-intensive and time-consuming and standardized antisera are in limited supply. We have developed a molecular typing system based on reverse transcription-PCR and nucleotide sequencing of the 3′ half of the genomic region encoding VP1. The standard PCR primers amplify approximately 450 bp of VP1 for most known human enterovirus serotypes. The serotype of an “unknown” may be inferred by comparison of the partial VP1 sequence to those in a database containing VP1 sequences for the prototype strains of all 66 human enterovirus serotypes. Fifty-one clinical isolates of known serotypes from the years 1991 to 1998 were amplified and sequenced, and the antigenic and molecular typing results agreed for all isolates. With one exception, the nucleotide sequences of homologous strains were at least 75% identical to one another (>88% amino acid identity). Strains with homologous serotypes were easily discriminated from those with heterologous serotypes by using these criteria for identification. This method can greatly reduce the time required to type an enterovirus isolate and can be used to type isolates that are difficult or impossible to type with standard immunological reagents. The technique may also be useful for the rapid determination of whether viruses isolated during an outbreak are epidemiologically related. PMID:10203472

  9. Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy

    PubMed Central

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J.; Ströh, Luisa; Nitsch, Roger M.; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2016-01-01

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show “recognition holes”; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  10. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy.

    PubMed

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J; Ströh, Luisa; Nitsch, Roger M; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2015-09-23

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show "recognition holes"; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  11. Identification of the two rotavirus genes determining neutralization specificities

    SciTech Connect

    Offit, P.A.; Blavat, G.

    1986-01-01

    Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities.

  12. Binding specificity of P[8] VP8* proteins of rotavirus vaccine strains with histo-blood group antigens.

    PubMed

    Sun, Xiaoman; Guo, Nijun; Li, Dandi; Jin, Miao; Zhou, Yongkang; Xie, Guangcheng; Pang, Lili; Zhang, Qing; Cao, Youde; Duan, Zhao-Jun

    2016-08-01

    RotaTeq(®) and Rotarix™ are two common human rotavirus (RV) vaccines currently on the market worldwide. Recent studies indicate histo-blood group antigens (HBGAs) may be attachment factors for RVs. The P[8] VP8* proteins of RotaTeq and Rotarix were expressed and purified, and their binding specificities were evaluated. Saliva-based binding assays showed that the VP8* proteins bound to the saliva samples of secretors irrespective of ABO blood types. However, in the oligosaccharide binding assay, the VP8* proteins displayed no specific binding to the HBGAs tested, including Lewis b and H1. The structure of RotaTeq P[8] VP8* was solved at 1.9Å. Structural comparisons revealed that the putative receptor binding site was different to that of other genotypes and displayed a novel potential binding region. These findings indicate RotaTeq and Rotarix may have better efficiency in areas with a high percentage of secretors. PMID:27209447

  13. Rotavirus gene structure and function.

    PubMed Central

    Estes, M K; Cohen, J

    1989-01-01

    Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly by mediating fusion with the cell membrane) and VP7 (a glycoprotein), show more similarities with those of other viruses such as the orthomyxoviruses, paramyxoviruses, and alphaviruses. Rotavirus morphogenesis is a unique process, during which immature subviral particles bud through the membrane of the endoplasmic reticulum (ER). During this process, transiently enveloped particles form, the outer capsid proteins are assembled onto particles, and mature particles accumulate in the lumen of the ER. Two ER-specific viral glycoproteins are involved in virus maturation, and these glycoproteins have been shown to be useful models for studying protein targeting and retention in the ER and for studying mechanisms of virus budding. New ideas and approaches to understanding how each gene functions to replicate and assemble the segmented viral genome have emerged from knowledge of the primary structure of rotavirus genes and their proteins and from knowledge of the properties of domains on individual proteins. Localization of type-specific and cross-reactive neutralizing epitopes on the outer capsid proteins is becoming increasingly useful in dissecting the protective immune response, including evaluation of vaccine trials, with the practical possibility of enhancing the production of new, more effective vaccines. Finally, future analyses with recently characterized immunologic and gene probes and new animal models can be expected to provide a basic understanding of what regulates the

  14. Analysis of Human Rotaviruses from a Single Location Over an 18-Year Time Span Suggests that Protein Coadaption Influences Gene Constellations

    PubMed Central

    Zhang, Shu; McDonald, Paul W.; Thompson, Travis A.; Dennis, Allison F.; Akopov, Asmik; Kirkness, Ewen F.; Patton, John T.

    2014-01-01

    ABSTRACT Rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses that cause severe gastroenteritis in children. In addition to an error-prone genome replication mechanism, RVs can increase their genetic diversity by reassorting genes during host coinfection. Such exchanges allow RVs to acquire advantageous genes and adapt in the face of selective pressures. However, reassortment may also impose fitness costs if it unlinks genes/proteins that have accumulated compensatory, coadaptive mutations and that operate best when kept together. To better understand human RV evolutionary dynamics, we analyzed the genome sequences of 135 strains (genotype G1/G3/G4-P[8]-I1-C1-R1-A1-N1-T1-E1-H1) that were collected at a single location in Washington, DC, during the years 1974 to 1991. Intragenotypic phylogenetic trees were constructed for each viral gene using the nucleotide sequences, thereby defining novel allele level gene constellations (GCs) and illuminating putative reassortment events. The results showed that RVs with distinct GCs cocirculated during the vast majority of the collection years and that some of these GCs persisted in the community unchanged by reassortment. To investigate the influence of protein coadaptation on GC maintenance, we performed a mutual information-based analysis of the concatenated amino acid sequences and identified an extensive covariance network. Unexpectedly, amino acid covariation was highest between VP4 and VP2, which are structural components of the RV virion that are not thought to directly interact. These results suggest that GCs may be influenced by the selective constraints placed on functionally coadapted, albeit noninteracting, viral proteins. This work raises important questions about mutation-reassortment interplay and its impact on human RV evolution. IMPORTANCE Rotaviruses are devastating human pathogens that cause severe diarrhea and kill >450,000 children each year. The virus can evolve by accumulating mutations and by

  15. Polyomavirus replication in mice: influences of VP1 type and route of inoculation.

    PubMed Central

    Dubensky, T W; Freund, R; Dawe, C J; Benjamin, T L

    1991-01-01

    Patterns of polyomavirus replication and spread have been studied following inoculation of virus into newborn mice. Levels of virus replication in different tissues were followed in situ by using whole mouse section blots and immunoperoxidase staining for the major capsid protein VP1, as well as by tissue extraction and direct quantitation of viral DNA and infectious virus. Patterns of replication and spread were compared between the "high tumor" strain (inducing a high incidence of tumors) PTA and and the "low tumor" strain (inducing a low incidence of tumors) RA, following different routes of inoculation. The ability to induce a high tumor profile correlated with the ability to establish disseminated productive infection, with the kidney as a major site of amplification. Furthermore, results with PTA-RA recombinant viruses and site-directed mutants showed that the VP1 specificity of PTA, demonstrated earlier to be a critical determinant for induction of a high tumor profile (R. Freund, A. Calderone, C. J. Dawe, and T. L. Benjamin, J. Virol. 65:335-341, 1991), is also critical for amplification in the kidney and for establishment of disseminated infections. Images PMID:1845895

  16. Natural history of human rotavirus infection.

    PubMed

    Bishop, R F

    1996-01-01

    Rotavirus infections occur repeatedly in humans from birth to old age. Most are asymptomatic or are associated with mild enteric symptoms. Infection in young children can be accompanied by severe life-threatening diarrhea, most commonly after primary infection. Annual childhood morbidity rates for severe diarrhea are similar worldwide. Mortality rates are low in developed countries but approach 1,000,000 annually in young children in developing countries. Rotaviruses can be classified into Groups A-E according to antigenic groups on VP6, the major capsid antigen. Only Group A,B and C rotaviruses have been shown to infect humans, and most human rotavirus disease is caused by Group A viruses. These are further classified into G and P types based on identification of antigens on the outer capsid proteins VP7 and VP4 respectively. Most severe infections in young children are caused by serotypes G1-4, and during the last two decades, G1 infections appear to have predominated worldwide. In general the more densely populated countries show the most complex patterns of occurrence of serotypes. Clinical rotavirus disease can be accompanied by shedding of > 10(12) rotavirus particles/gm feces. The virus is highly infectious and appears to retain infectivity over many months. In temperate climates, disease is most common during the colder months, when it is likely that rapid spread within families and communities occurs. Nosocomial infections are frequent, and rotaviruses can become endemic within obstetric hospital nurseries for the newborn. Few (if any) human rotavirus infections appear to be zoonoses, even though Group A rotaviruses are widespread in the young of all mammalian species. However infection of humans with reassortant rotavirus strains derived from human-animal sources can occur. The extent to which this contributes to new epidemic strains within particular countries (or worldwide) remains to be determined. PMID:9015109

  17. Complete Genome Characterization of Recent and Ancient Belgian Pig Group A Rotaviruses and Assessment of Their Evolutionary Relationship with Human Rotaviruses

    PubMed Central

    Heylen, Elisabeth; Zeller, Mark; Roukaerts, Inge D. M.; Desmarets, Lowiese M. B.; Van Ranst, Marc; Nauwynck, Hans J.; Matthijnssens, Jelle

    2014-01-01

    ABSTRACT Group A rotaviruses (RVAs) are an important cause of diarrhea in young pigs and children. An evolutionary relationship has been suggested to exist between pig and human RVAs. This hypothesis was further investigated by phylogenetic analysis of the complete genomes of six recent (G2P[27], G3P[6], G4P[7], G5P[7], G9P[13], and G9P[23]) and one historic (G1P[7]) Belgian pig RVA strains and of all completely characterized pig RVAs from around the globe. In contrast to the large diversity of genotypes found for the outer capsid proteins VP4 and VP7, a relatively conserved genotype constellation (I5-R1-C1-M1-A8-N1-T7-E1-H1) was found for the other 9 genes in most pig RVA strains. VP1, VP2, VP3, NSP2, NSP4, and NSP5 genes of porcine RVAs belonged to genotype 1, which is shared with human Wa-like RVAs. However, for most of these gene segments, pig strains clustered distantly from human Wa-like RVAs, indicating that viruses from both species have entered different evolutionary paths. However, VP1, VP2, and NSP3 genes of some archival human strains were moderately related to pig strains. Phylogenetic analysis of the VP6, NSP1, and NSP3 genes, as well as amino acid analysis of the antigenic regions of VP7, further confirmed this evolutionary segregation. The present results also indicate that the species barrier is less strict for pig P[6] strains but that chances for successful spread of these strains in the human population are hampered by the better adaptation of pig RVAs to pig enterocytes. However, future surveillance of pig and human RVA strains is warranted. IMPORTANCE Rotaviruses are an important cause of diarrhea in many species, including pigs and humans. Our understanding of the evolutionary relationship between rotaviruses from both species is limited by the lack of genomic data on pig strains. In this study, recent and ancient Belgian pig rotavirus isolates were sequenced, and their evolutionary relationship with human Wa-like strains was investigated

  18. Mimicking Retention and Transport of Rotavirus and Adenovirus in Sand Media Using DNA-labeled, Protein-coated Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Farkas, Kata; Bennett, Grant; Varsani, Arvind; Easingwood, Richard; Tilley, Richard; Nowostawska, Urszula; Lin, Susan

    2014-05-01

    Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media (e.g. sand filtered used for water treatment and groundwater aquifers due to a lack of representative surrogates. In this study, we developed RoV and AdV surrogates by covalently coating 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, attachment, and filtration efficiencies to the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude, respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected at concentrations down to one particle per PCR reaction and are readily detectable in natural waters and even in effluent. With up-scaling validation in pilot trials, the surrogates can be a useful cost-effective new tool for studying virus retention and transport in porous media, e.g. for assessing filter efficiency in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection.

  19. Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles.

    PubMed

    Pang, Liping; Farkas, Kata; Bennett, Grant; Varsani, Arvind; Easingwood, Richard; Tilley, Richard; Nowostawska, Urszula; Lin, Susan

    2014-10-01

    Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media due to a lack of representative surrogates. We developed RoV and AdV surrogates by covalently coupling 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, filtration efficiencies and attachment kinetics to those of the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over-predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected down to a single particle. Preliminary tests suggest that they were readily detectable in a number of environmental waters and treated effluent. With up-scaling validation in pilot trials, the surrogates developed here could be a cost-effective new tool for studying virus retention and transport in porous media. Examples include assessing filter efficacy in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection. PMID:24954130

  20. Peptide-Recombinant VP6 Protein Based Enzyme Immunoassay for the Detection of Group A Rotaviruses in Multiple Host Species

    PubMed Central

    Sircar, Subhankar; Saurabh, Sharad; Gulati, Baldev R.; Singh, Neeraj; Singh, Arvind Kumar; Joshi, Vinay G.; Banyai, Krisztian; Dhama, Kuldeep

    2016-01-01

    We developed a novel enzyme immunoassay for the detection of group A rotavirus (RVA) antigen in fecal samples of multiple host species. The assay is based on the detection of conserved VP6 protein using anti-recombinant VP6 antibodies as capture antibodies and anti-multiple antigenic peptide (identified and constructed from highly immunodominant epitopes within VP6 protein) antibodies as detector antibodies. The clinical utility of the assay was evaluated using a panel of 914 diarrhoeic fecal samples from four different host species (bovine, porcine, poultry and human) collected from diverse geographical locations in India. Using VP6- based reverse transcription-polymerase chain reaction (RT-PCR) as the gold standard, we found that the diagnostic sensitivity (DSn) and specificity (DSp) of the new assay was high [bovine (DSn = 94.2% & DSp = 100%); porcine (DSn = 94.6% & DSp = 93.3%); poultry (DSn = 74.2% & DSp = 97.7%) and human (DSn = 82.1% & DSp = 98.7%)]. The concordance with RT-PCR was also high [weighted kappa (k) = 0.831–0.956 at 95% CI = 0.711–1.0] as compared to RNA-polyacrylamide gel electrophoresis (RNA-PAGE). The performance characteristics of the new immunoassay were comparable to those of the two commercially available ELISA kits. Our results suggest that this peptide-recombinant protein based assay may serve as a preliminary assay for epidemiological surveillance of RVA antigen and for evaluation of vaccine effectiveness especially in low and middle income settings. PMID:27391106

  1. Differential analyses of major allergen proteins in wild-type rice and rice producing a fragment of anti-rotavirus antibody.

    PubMed

    Yuki, Yoshikazu; Kurokawa, Shiho; Kozuka-Hata, Hiroko; Tokuhara, Daisuke; Mejima, Mio; Kuroda, Masaharu; Oyama, Masaaki; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Kiyono, Hiroshi

    2016-04-01

    To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor-like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor-like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application. PMID:26851506

  2. Molecular and phylogenetic analysis of the porcine kobuvirus VP1 region using infected pigs from Sichuan Province, China

    PubMed Central

    2013-01-01

    Background Porcine kobuvirus (PKoV) is a member of the Kobuvirus genus within the Picornaviridae family. PKoV is distributed worldwide with high prevalence in clinically healthy pigs and those with diarrhea. Methods Fecal and intestinal samples (n = 163) from pig farms in Sichuan Province, China were obtained to determine the presence of PKoV using reverse transcription polymerase chain reaction assays. Specific primers were used for the amplification of the gene encoding the PKoV VP1 protein sequence. Sequence and phylogenetic analyses were conducted to clarify evolutionary relationships with other PKoV strains. Results Approximately 53% (87/163) of pigs tested positive for PKoV. PKoV was widespread in asymptomatic pigs and those with diarrhea. A high prevalence of PKoV was observed in pigs younger than 4 weeks and in pigs with diarrhea. Phylogenetic analysis of 36 PKoV VP1 protein sequences showed that Sichuan PKoV strains formed four distinct clusters. Two pigs with diarrhea were found to be co-infected with multiple PKoV strains. Sequence and phylogenetic analyses revealed diversity within the same host and between different hosts. Significant recombination breakpoints were observed between the CHN/SC/31-A1 and CHN/SC/31-A3 strains in the VP1 region, which were isolated from the same sample. Conclusion PKoV was endemic in Sichuan Province regardless of whether pigs were healthy or suffering from diarrhea. Based on our statistical analyses, we suggest that PKoV was the likely causative agent of high-mortality diarrhea in China from 2010. For the first time, we provide evidence for the co-existence of multiple PKoV strains in one pig, and possible recombination events in the VP1 region. Our findings provide further insights into the molecular properties of PKoV, along with its epidemiology. PMID:24025093

  3. Mutations in the GM1 Binding Site of Simian Virus 40 VP1 Alter Receptor Usage and Cell Tropism

    PubMed Central

    Magaldi, Thomas G.; Buch, Michael H. C.; Murata, Haruhiko; Erickson, Kimberly D.; Neu, Ursula; Garcea, Robert L.; Peden, Keith; Stehle, Thilo

    2012-01-01

    Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution. PMID:22514351

  4. Overlap of Viviparous1 (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation.

    PubMed Central

    Vasil, V; Marcotte, W R; Rosenkrans, L; Cocciolone, S M; Vasil, I K; Quatrano, R S; McCarty, D R

    1995-01-01

    The relationship between promoter sequences that mediate Viviparous1 (VP1) transactivation and regulation by abscisic acid (ABA) in the wheat Em promoter was investigated using deletion analysis and directed mutagenesis. The Em1a G-box is strongly coupled to VP1 transactivation as well as to ABA regulation; however, the Em promoter includes additional components that can support VP1 transactivation without ABA responsiveness or synergism. Oligonucleotide tetramers of several G-box sequences, including Em1a, Em1b, and the dyad G-box element from the UV light-regulated parsley chalcone synthase gene, were sufficient to confer VP1 transactivation and the synergistic interaction with ABA to the -45 cauliflower mosaic virus 35S core promoter. These data suggest that VP1 can activate transcription through at least two classes of cis-acting sequences, including the G-box elements and the Sph regulatory motif found in the C1 promoter. The contrasting roles of these motifs in the Em and C1 promoters suggest a basis for the differential regulation of the corresponding genes by VP1. PMID:8589631

  5. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    PubMed

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-01-01

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis. PMID:24854441

  6. Substantial Receptor-induced Structural Rearrangement of Rotavirus VP8*: Potential Implications for Cross-Species Infection.

    PubMed

    Yu, Xing; Mishra, Rahul; Holloway, Gavan; von Itzstein, Mark; Coulson, Barbara S; Blanchard, Helen

    2015-10-12

    Rotavirus-cell binding is the essential first step in rotavirus infection. This binding is a major determinant of rotavirus tropism, as host cell invasion is necessary to initiate infection. Initial rotavirus-cell interactions are mediated by carbohydrate-recognizing domain VP8* of the rotavirus capsid spike protein VP4. Here, we report the first observation of significant structural rearrangement of VP8* from human and animal rotavirus strains upon glycan receptor binding. The structural adaptability of rotavirus VP8* delivers important insights into how human and animal rotaviruses utilize the wider range of cellular glycans identified as VP8* binding partners. Furthermore, our studies on rotaviruses with atypical genetic makeup provide information expected to be critical for understanding the mechanisms of animal rotavirus gene emergence in humans and support implementation of epidemiologic surveillance of animal reservoirs as well as future vaccination schemes. PMID:26250751

  7. Rotavirus vaccine: a review.

    PubMed

    Kumar, Goel Manish; Arun, Kumar; Bilas, Jain Ram; Ruchi, Jain; Pardeep, Khanna; Pradeep, Siwach

    2012-12-01

    Worldwide, large proportion i.e., 37% of deaths due to diarrhea in young children is attributed to rotavirus. A monovalent P1A[8] G1 vaccine and a pentavalent bovine-human reassortant vaccine human rotavirus vaccine had shown good clinical efficacy without any increase in intussusception among vaccine recipients. WHO recommends that the first dose of rotavirus vaccine should be administered to infants up to age of 6-15 weeks irrespective of the prior history of rotavirus infection and the maximum age for administering the last dose of the vaccine should be 32 weeks. Booster doses are not recommended. The current update reviews the issues related to rotavirus vaccines and their usages like milestones in the development of rotavirus vaccines, concerns regarding their efficacy and cost-effectiveness, immunity after natural infection, potential for changes in virus strains, current recommendations, post marketing surveillance, and future challenges and scope for further research regarding rotavirus vaccines. PMID:25145068

  8. The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model

    PubMed Central

    Kataoka, Chikako; Suzuki, Tadaki; Kotani, Osamu; Iwata-Yoshikawa, Naoko; Nagata, Noriyo; Ami, Yasushi; Wakita, Takaji; Nishimura, Yorihiro; Shimizu, Hiroyuki

    2015-01-01

    Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral

  9. H1PVAT is a novel and potent early-stage inhibitor of poliovirus replication that targets VP1.

    PubMed

    Tijsma, Aloys; Thibaut, Hendrik Jan; Spieser, Stéphane A H; De Palma, Armando; Koukni, Mohamed; Rhoden, Eric; Oberste, Steve; Pürstinger, Gerhard; Volny-Luraghi, Antonia; Martin, Javier; Marchand, Arnaud; Chaltin, Patrick; Neyts, Johan; Leyssen, Pieter

    2014-10-01

    A novel small molecule, H1PVAT, was identified as a potent and selective inhibitor of the in vitro replication of all three poliovirus serotypes, whereas no activity was observed against other enteroviruses. Time-of-drug-addition studies revealed that the compound interfered with an early stage of virus replication. Four independently-selected H1PVAT-resistant virus variants uniformly carried the single amino acid substitution I194F in the VP1 capsid protein. Poliovirus type 1 strain Sabin, reverse-engineered to contain this substitution, proved to be completely insensitive to the antiviral effect of H1PVAT and was cross-resistant to the capsid-binding inhibitors V-073 and pirodavir. The VP1 I194F mutant had a smaller plaque phenotype than wild-type virus, and the amino acid substitution rendered the virus more susceptible to heat inactivation. Both for the wild-type and VP1 I194F mutant virus, the presence of H1PVAT increased the temperature at which the virus was inactivated, providing evidence that the compound interacts with the viral capsid, and that capsid stabilization and antiviral activity are not necessarily correlated. Molecular modeling suggested that H1PVAT binds with high affinity in the pocket underneath the floor of the canyon that is involved in receptor binding. Introduction of the I194F substitution in the model of VP1 induced a slight concerted rearrangement of the core β-barrel in this pocket, which disfavors binding of the compound. Taken together, the compound scaffold, to which H1PVAT belongs, may represent another promising class of poliovirus capsid-binding inhibitors next to V-073 and pirodavir. Potent antivirals against poliovirus will be essential in the poliovirus eradication end-game. PMID:25043639

  10. Rotavirus-associated diarrhoea in foals in Greece.

    PubMed

    Ntafis, V; Fragkiadaki, Eir; Xylouri, E; Omirou, A; Lavazza, A; Martella, V

    2010-08-26

    Severe outbreaks of diarrhoeic syndrome occurred in young foals at the same stud farm during two consecutive breeding periods namely spring 2006 and 2007. Rotavirus-like particles were detected by electron microscopy in the faeces of the affected foals and group A rotavirus infection was confirmed by Reverse-Transcription (RT)-PCR with selected sets of rotavirus-specific primers. Sequence analysis of the genes encoding the outer capsid rotavirus proteins VP7 and VP4 enabled classification of the viruses as G3AP[12] and revealed that the viruses were highly similar to recently reported equine rotavirus strains circulating in Europe. All Greek equine rotavirus isolates were genetically identical, suggesting persistence of the same viral strain in the stud farm, over the two consecutive foaling periods. PMID:20197218

  11. Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we generated a recombinant foot-and-mouth disease virus (FMDV) particle derived from A24 Cruzeiro with a FLAG tag (DYKDDDDK) substitution in the hypervariable antigenic site of the G-H loop of the VP1 capsid protein in an effort to expand the immunogenicity of the virus particle and t...

  12. Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus-like particles produced in Escherichia coli.

    PubMed

    Saccardo, Paolo; Rodríguez-Carmona, Escarlata; Villaverde, Antonio; Ferrer-Miralles, Neus

    2014-01-01

    Protein nanoparticles such as virus-like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self-assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK(-) E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. PMID:24574306

  13. A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions.

    PubMed

    Abraham, Zamira; Iglesias-Fernández, Raquel; Martínez, Manuel; Rubio-Somoza, Ignacio; Díaz, Isabel; Carbonero, Pilar; Vicente-Carbajosa, Jesús

    2016-04-01

    The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination. PMID:26858366

  14. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell.

    PubMed

    Ashkani, Jahanshah; Rees, D J G

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1-VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1-VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1-VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  15. The Critical Role Of VP1 In Forming The Necessary Cavities For Receptor-mediated Entry Of FMDV To The Host Cell

    PubMed Central

    Ashkani, Jahanshah; Rees, D. J. G.

    2016-01-01

    The antigenic inconsistency of the foot-and-mouth disease virus (FMDV) is very broad, such that a vaccine made from one isolate will not offer protection against infection with other isolates from the same serotype. Viral particles (VPs) or surface exposed capsid proteins, VP1–VP3, of FMDV determine both the antigenicity of the virus and its receptor-mediated entry into the host cell. Therefore, modifications of these structural proteins may alter the properties of the virus. Here we show putative cavities on the FMDV-SAT1 (FMDV Southern African Territories1) capsid as possible binding sites for the receptor-mediated viral entry into the host cell. We identified three possible cavities on the FMDV capsid surface, from which the largest one (C2) is shaped in the contact regions of VP1–VP3. Our results demonstrate the significance of VP1, in the formation of FMDV-SAT1 surface cavities, which is the main component in all the identified cavities. Our findings can have profound implications in the protein engineering of FMDV in the contact region of VP1–VP3 found to be embedded in several cavities. Such information is of great significance in the context of vaccine design, as it provides the ground for future improvement of synthetic vaccines to control FMD caused by FMDV-SAT1 serotypes. PMID:27249937

  16. Some serum acute phase proteins and immunoglobulins concentrations in calves with rotavirus, coronavirus, E. coli F5 and Eimeria species

    PubMed Central

    Balikci, E; Al, M

    2014-01-01

    The purpose of this study was to evaluate the changes in the serum concentrations of haptoglobin (Hp), serum amyloid A (SAA) and IgG, IgA in calves with diarrhea caused by rotavirus, coronavirus, Escherichia coli F5 and Eimeria species. The experiment was carried out on 40 diarrhoeic and 10 non-diarrhoeic calves (group C). A total of 13 calves were infected with rotavirus or coronavirus (group V), 12 calves with E. coli F5 (group B) and 15 calves with Eimeria species (group P). SAA and Hp levels of calves in groups V, B and P were statistically higher than group C (P<0.05). SAA and Hp levels of the group B and group P were significantly higher than the group V (P<0.05). SAA and Hp levels in group B were not significantly higher than the group P. The levels of IgG and IgA were found to be lower in groups B and V compared to other groups. There was a negative correlation between immunoglobulins and the levels of serum Hp and SAA in groups B and V (r=-0.315 and r=-0.369, respectively, P<0.05). Serum SAA, Hp, IgA and IgG levels could be useful for the diagnosis and differential diagnosis of diarrhea caused by rotavirus, coronavirus, E. coli F5 and Eimeria species. PMID:27175138

  17. [Rotavirus and other viruses of diarrhea].

    PubMed

    Bajolet, O; Chippaux-Hyppolite, C

    1998-01-01

    Rotaviruses represent 80% of recognized viral etiologies and 140 million cases of diarrhea per year. They strike young children with similar frequency throughout the world, but the mortality rate is high in developing countries only, with some 870,000 deaths per year (WHO, 1997). Rotaviruses belong to the family of Reoviridae; they are segmented bicatenary RNA viruses, which explains their genetic variability, the presence of mixed infections, the establishment for some time already of a molecular epidemiology by electrophore types. The viruses are "naked" and thus resistant to the outside environment; their massive elimination, 10(8) to 10(10)viral particles per gram of faeces, begins with the first day of diarrhea. They are found in used water and can also be concentrated by shellfish; the environment thus constitutes a notable reservoir for the virus. Oral-faecal transmission is facilitated by deficient sanitary conditions. The 11 fragments of the genome each codify for 1 viral protein; 2 surface proteins, VP4 and VP7, bring about the formation of neutralizing antibodies, which are important for the protection and determination of different serotypes. A non structural protein--NSP4--would seem to intervene in the cytopathogenic effect and may act as a veritable viral enterotoxine. Numerous animal species are infected by rotaviruses which are district from the human ones. The pathology as it affects animals is of economic importance and of interest as an experimental and vaccinal model. Between human and animal rotaviruses there can be genetic rematchings and the VP6 protein is an antigen common to the group. The description of the other viruses responsible for diarrhea has benefited from widespread use of electronic microscopes from the very first years of study of rotaviruses. These other viruses belong to 6 different types: adenovirus, calcivirus, astrovirus, Norwalk agent and related viruses, coronavirus, enterovirus. They therefore have a structural and

  18. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    SciTech Connect

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. )

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  19. The outer capsid protein VP4 of equine rotavirus strain H-2 represents a unique VP4 type by amino acid sequence analysis.

    PubMed

    Hardy, M E; Gorziglia, M; Woode, G N

    1993-03-01

    The nucleotide and deduced amino acid sequence of G serotype 3 equine rotavirus strain H-2 was determined. A predicted 776-amino-acid H-2 VP4 shows less than or equal to 85.3% identity to other rotavirus VP4 types sequenced to date and thus represents a new P serotype. A PCR-generated probe derived from a cDNA clone of H-2 gene 4 hybridized to gene 4 of several tissue-culture-adapted equine rotavirus isolates, demonstrating that the gene 4 allele present in the H-2 strain is present in the equine rotavirus population. PMID:8382410

  20. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication

    PubMed Central

    Zhang, Jie; Guo, Hong; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2016-01-01

    Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection. PMID:26871941

  1. Molecular and antigenic characterization of porcine rotavirus YM, a possible new rotavirus serotype.

    PubMed Central

    Ruiz, A M; López, I V; López, S; Espejo, R T; Arias, C F

    1988-01-01

    In 1983, we isolated a porcine rotavirus (strain YM) that was prevalent in several regions of Mexico, as judged by the frequency of its characteristic electropherotype. By a focus reduction neutralization test, rotavirus YM was clearly distinguished from prototype rotavirus strains belonging to serotypes 1 (Wa), 2 (S2), 3 (SA11), 4 (ST3), 5 (OSU), and 6 (NCDV). Minor, one-way cross-neutralization (1 to 5%) was observed when antisera to the various rotavirus strains were incubated with rotavirus YM. In addition, the YM virus was not neutralized by neutralizing monoclonal antibodies with specificity to serotypes 1, 2, 3, and 5. The subgroup of the virus was determined to be I by enzyme-linked immunosorbent assay. To characterize the serotype-specific glycoprotein of the virus at the molecular level, we cloned and sequenced the gene coding for VP7. Comparison of the deduced amino acid sequence with reported homologous sequences from human and animal rotavirus strains belonging to six different serotypes further supported the distinct immunological identity of the YM VP7 protein. Images PMID:2845146

  2. Cell-line-induced mutation of the rotavirus genome alters expression of an IRF3-interacting protein.

    PubMed

    Kearney, Karen; Chen, Dayue; Taraporewala, Zenobia F; Vende, Patrice; Hoshino, Yasutaka; Tortorici, Maria Alejandra; Barro, Mario; Patton, John T

    2004-10-13

    Rotavirus, a cause of severe gastroenteritis, contains a segmented double-stranded (ds)RNA genome that replicates using viral mRNAs as templates. The highly conserved 3'-consensus sequence (3'CS), UGUGACC, of the mRNAs promotes dsRNA synthesis and enhances translation. We have found that the 3'CS of the gene (g5) encoding NSP1, an antagonist of interferon signaling, undergoes rapid mutation when rhesus rotavirus (RRV) is serially passaged at high multiplicity of infection (MOI) in cells permitting high titer growth. These mutations increase the promoter activity of the g5 3'-sequence, but decrease its activity as a translation enhancer. The location of the mutations defines the minimal essential promoter for dsRNA synthesis as URN0-5CC. Under passage conditions where cell-to-cell spread of the virus is required to complete infection (low MOI), the 3'CS is retained due to the need for NSP1 to be expressed at levels sufficient to prevent establishment of the antiviral state. These data demonstrate that host cell type and propagation conditions affect the capacity of RRV to produce the virulence gene product NSP1, an important consideration in producing RRV-based vaccines. PMID:15372078

  3. PCR-based approach to distinguish group A human rotavirus genotype 1 vs. genotype 2 genes.

    PubMed

    McKell, Allison O; Nichols, Joshua C; McDonald, Sarah M

    2013-12-01

    Group A rotaviruses (RVs) are eleven-segmented, double-stranded RNA viruses and important causes of severe diarrhea in children. A full-genome classification system is readily used to describe the genetic makeup of individual RV strains. In this system, each viral gene is assigned a specific genotype based upon its nucleotide sequence and established percent identity cut-off values. However, a faster and more cost-effective approach to determine RV gene genotypes is to utilize specific oligonucleotide primer sets in RT-PCR/PCR. Such primer sets and PCR-based genotyping methods have already been developed for the VP7-, VP6-, VP4- and NSP4-coding gene segments. In this study, primers were developed for the remaining seven RV gene segments, which encode proteins VP1, VP2, VP3, NSP1, NSP2, NSP3, and NSP5/6. Specifically, primers were designed to distinguish the two most common human RV genotypes (1 vs. 2) for these genes and were validated on several cell culture-adapted human and animal RV strains, as well as on human RVs from clinical fecal specimens. As such, primer sets now exist for all eleven genes of common human RVs, allowing for the identification of reassortant strains with mixed constellations of both genotype 1 and 2 genes using a rapid and economical RT-PCR/PCR method. PMID:24012969

  4. Interaction of rotavirus particles with liposomes.

    PubMed

    Nandi, P; Charpilienne, A; Cohen, J

    1992-06-01

    We have studied the interactions of purified viral particles with liposomes as a model to understand the mechanism of entry of rotavirus into the cell. Liposomes, made from pure as well as mixed lipids, that contained encapsulated self-quenching concentrations of the fluorophore carboxyfluorescein (CF) were used. Rotavirus-liposome interactions were studied from the fluorescence dequenching of CF resulting from its release to the bulk solution. Purified infectious double-shelled virus particles induced a concentration- and temperature-dependent release of CF. The rate and extent of CF release was maximum between pH 7.3 and 7.6. The removal of outer structural proteins VP4 and VP7 from virus, which results in the formation of single-shelled particles, prevented virus interaction with liposomes. Rotavirus particles with uncleaved VP4 did not interact with liposomes, but treatment in situ of these particles with trypsin restored the interaction with the liposomes and resulted in CF dequenching. Our data support the view that rotavirus enters the cell through direct penetration of the plasma membrane. In contrast, adenovirus, the only other nonenveloped virus studied by this method, shows the optimum rate of marker release from liposomes at around pH 6 (R. Blumenthal, P. S. Seth, M. C. Willingham, and I. Pastan, Biochemistry 25:2231-2237, 1986). The interaction between rotavirus and liposomes is sensitive to specific divalent metal ions, unlike the adenovirus-liposome interaction, which is independent of them. PMID:1316453

  5. Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions.

    PubMed Central

    Saikawa, T; Anderson, S; Momoeda, M; Kajigaya, S; Young, N S

    1993-01-01

    Presentation of linear epitopes of the B19 parvovirus capsid proteins as peptides might be a useful vaccine strategy. We produced overlapping fusion proteins to span the viral capsid sequence, inoculated rabbits, and determined whether the resulting antisera contained antibodies that neutralized the ability of the virus to infect human erythroid progenitor cells. Antibodies that bound to virus in an enzyme-linked immunosorbent assay were present in antisera raised against 10 of 11 peptides; strongest activity was found for antisera against the carboxyl-terminal half of the major capsid protein. However, strong neutralizing activity was elicited in animals immunized with peptides from the amino-terminal portion of the unique region of the minor capsid protein and peptides containing the sequence of the junction region between the minor and major capsid proteins. The development of neutralizing activity in animals was elicited most rapidly with the fusion peptide from the first quarter of the unique region. A 20-amino-acid region of the unique region of the minor capsid protein was shown to contain a neutralizing epitope. Multiple antigenic peptides, based on the sequence of the unique region and produced by covalent linkage through a polylysine backbone, elicited strong neutralizing antibody responses. Synthetic peptides and fusion proteins containing small regions of the unique portion of the minor capsid protein might be useful as immunogens in a human vaccine against B19 parvovirus. Images PMID:7684458

  6. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain).

    PubMed

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Meng, Tao; Chow, Vincent Tk; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV71) is a neurotrophic virus that causes hand, foot and mouth disease (HFMD) and occasional neurological infection among children. It infects primate cells but not rodent cells, primarily due to the incompatibility between the virus and the expressed form of its receptor, scavenger receptor class B member 2 (SCARB2) protein, on rodent cells (mSCARB2). We previously generated adapted strains (EV71:TLLm and EV71:TLLmv) that were shown to productively infect primate and rodent cell lines and whose genomes exhibited a multitude of non-synonymous mutations compared with the EV71:BS parental virus. In this study, we aimed to identify mutations that are necessary for productive infection of murine cells by EV71:BS. Using reverse genetics and site-directed mutagenesis, we constructed EV71 infectious clones with specific mutations that generated amino acid substitutions in the capsid VP1 and VP2 proteins. We subsequently assessed the infection induced by clone-derived viruses (CDVs) in mouse embryonic fibroblast NIH/3T3 and murine neuroblastoma Neuro-2a cell lines. We found that the CDV:BS-VP1(K98E,E145A,L169F) with three substitutions in the VP1 protein-K98E, E145A and L169F-productively infected both mouse cell lines for at least three passages of the virus in murine cells. Moreover, the virus gained the ability to utilize the mSCARB2 protein to infect murine cell lines. These results demonstrate that the three VP1 residues cooperate to effectively interact with the mSCARB2 protein on murine cells and permit the virus to infect murine cells. Gain-of-function studies similar to the present work provide valuable insight into the mutational trajectory required for EV71 to infect new host cells previously non-susceptible to infection. PMID:27329847

  7. Rotavirus (For Parents)

    MedlinePlus

    ... spring months. It is particularly a problem in childcare centers and children's hospitals because rotavirus infection is ... who care for kids, including health care and childcare workers, also can spread the virus, especially if ...

  8. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain)

    PubMed Central

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Meng, Tao; Chow, Vincent TK; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV71) is a neurotrophic virus that causes hand, foot and mouth disease (HFMD) and occasional neurological infection among children. It infects primate cells but not rodent cells, primarily due to the incompatibility between the virus and the expressed form of its receptor, scavenger receptor class B member 2 (SCARB2) protein, on rodent cells (mSCARB2). We previously generated adapted strains (EV71:TLLm and EV71:TLLmv) that were shown to productively infect primate and rodent cell lines and whose genomes exhibited a multitude of non-synonymous mutations compared with the EV71:BS parental virus. In this study, we aimed to identify mutations that are necessary for productive infection of murine cells by EV71:BS. Using reverse genetics and site-directed mutagenesis, we constructed EV71 infectious clones with specific mutations that generated amino acid substitutions in the capsid VP1 and VP2 proteins. We subsequently assessed the infection induced by clone-derived viruses (CDVs) in mouse embryonic fibroblast NIH/3T3 and murine neuroblastoma Neuro-2a cell lines. We found that the CDV:BS-VP1K98E,E145A,L169F with three substitutions in the VP1 protein—K98E, E145A and L169F—productively infected both mouse cell lines for at least three passages of the virus in murine cells. Moreover, the virus gained the ability to utilize the mSCARB2 protein to infect murine cell lines. These results demonstrate that the three VP1 residues cooperate to effectively interact with the mSCARB2 protein on murine cells and permit the virus to infect murine cells. Gain-of-function studies similar to the present work provide valuable insight into the mutational trajectory required for EV71 to infect new host cells previously non-susceptible to infection. PMID:27329847

  9. Frequently Asked Questions about Rotavirus

    MedlinePlus

    ... from being exposed to rotavirus. Better hygiene and sanitation have not been very good at reducing rotavirus disease. Because the virus is so widespread, even the cleanest environments can be infected. Children who have previously had ...

  10. Recombinant Outer Capsid Glycoprotein (VP7) of Rotavirus Expressed in Insect Cells Induces Neutralizing Antibodies in Rabbits

    PubMed Central

    Khodabandehloo, M; Shahrabadi, M Shamsi; Keyvani, H; Bambai, B; Sadigh, ZA

    2012-01-01

    Background: Rotaviruses cause diarrhea in infants and young children worldwide. Rotavirus outer capsid protein, VP7 is major neutralizing antigen that is important component of subunit vaccine to prevent rotavirus infection. Many efforts have been done to produce recombinant VP7 that maintain native characteristics. We used baculovirus expression system to produce rotavirus VP7 protein and to study its immunogenicity. Methods: Simian rotavirus SA11 full-length VP7 ORF was cloned into a cloning plasmid and then the cloned gene was inserted into the linear DNA of baculovirus Autographa californica Nuclear Polyhedrosis Virus (AcNPV) downstream of the polyhedrin promoter by in vitro recombination reactions. The expressed VP7 in the insect cells was recognized by rabbit hyperimmune serum raised against SA11 rotavirus by Immunofluorescence and western blotting assays. Rabbits were immunized subcutaneously by cell extracts expressing VP7 protein. Results: Reactivity with anti-rotavirus antibody suggested that expressed VP7 protein had native antigenic determinants. Injection of recombinant VP7 in rabbits elicited the production of serum antibodies, which were able to recognize VP7 protein from SA11 rotavirus by Western blotting test and neutralized SA11 rotavirus in cell culture. Conclusion: Recombinant outer capsid glycoprotein (VP7) of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits and may be a candidate of rotavirus vaccine. PMID:23113180

  11. Mapping the hemagglutination domain of rotaviruses.

    PubMed Central

    Fuentes-Pananá, E M; López, S; Gorziglia, M; Arias, C F

    1995-01-01

    Most strains of animal rotaviruses are able to agglutinate erythrocytes, and the surface protein VP4 is the virus hemagglutinin. To map the hemagglutination domain on VP4 while preserving the conformation of the protein, we constructed full-length chimeras between the VP4 genes of hemagglutinating (YM) and nonhemagglutinating (KU) rotavirus strains. The parental and chimeric genes were expressed in insect cells, and the recombinant VP4 proteins were evaluated for their capacity to agglutinate human type O erythrocytes. Three chimeric genes, encoding amino acids 1 to 208 (QKU), 93 to 208 (QC), and 93 to 776 (QYM) of the YM VP4 protein in a KU VP4 background, were constructed. YM VP4 and chimeras QKU and QC were shown to specifically hemagglutinate, indicating that the region between amino acids 93 and 208 of YM VP4 is sufficient to determine the hemagglutination activity of the protein. PMID:7884915

  12. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein.

    PubMed

    Arnold, Michelle M; Brownback, Catie Small; Taraporewala, Zenobia F; Patton, John T

    2012-07-01

    The rotavirus (RV) non-structural protein NSP3 forms a dimer that has binding domains for the translation initiation factor eIF4G and for a conserved 3'-terminal sequence of viral mRNAs. Through these activities, NSP3 has been proposed to promote viral mRNA translation by directing circularization of viral polysomes. In addition, by disrupting interactions between eIF4G and the poly(A)-binding protein (PABP), NSP3 has been suggested to inhibit translation of host polyadenylated mRNAs and to stimulate relocalization of PABP from the cytoplasm to the nucleus. Herein, we report the isolation and characterization of SA11-4Fg7re, an SA11-4F RV derivative that contains a large sequence duplication initiating within the genome segment (gene 7) encoding NSP3. Our analysis showed that mutant NSP3 (NSP3m) encoded by SA11-4Fg7re is almost twice the size of the wild-type protein and retains the capacity to dimerize. However, in comparison to wild-type NSP3, NSP3m has a decreased capacity to interact with eIF4G and to suppress the translation of polyadenylated mRNAs. In addition, NSP3m fails to induce the nuclear accumulation of PABP in infected cells. Despite the defective activities of NSP3m, the levels of viral protein and progeny virus produced in SA11-4Fg7re- and SA11-4F-infected cells were indistinguishable. Collectively, these data are consistent with a role for NSP3 in suppressing host protein synthesis through antagonism of PABP activity, but also suggest that NSP3 functions may have little or no impact on the efficiency of virus replication in widely used RV-permissive cell lines. PMID:22442114

  13. Whole genomic characterization of Korean porcine G8P[7] reassortant rotaviruses.

    PubMed

    Park, Jun-Gyu; Park, Sang-Ik; Woo, Nam-Il; Kim, Deok-Song; Seo, Ja-Young; Alfajaro, Mia Madel; Kim, Ji-Yun; Soliman, Mahmoud; Baek, Yeong-Bin; Cho, Eun-Hyo; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Matthijnssens, Jelle; Cho, Kyoung-Oh

    2016-10-01

    This study analyzed eleven genomic segments of three Korean porcine G8P[7] group A rotavirus (RVA) strains. Phylogenetically, these strains contained two bovine-like and nine porcine-like genomic segments. Eight genes (VP1, VP2, VP6 and NSP1-NSP5) of strains 156-1 and 42-1 and seven genes (VP1, VP2, VP6 and NSP2-NSP5) of strain C-1 clustered closely with porcine and porcine-like animal strains and distantly from typical human Wa-like strains. The VP3-M2 genotype of these strains clustered closely with bovine-like strains, but distantly with typical human DS-1-like strains. These data indicate that multiple reassortments involving porcine and bovine RVA strains in Korea must have occurred. PMID:27393603

  14. Evidence of multiple reassortment events of feline-to-human rotaviruses based on a rare human G3P[9] rotavirus isolated from a patient with acute gastroenteritis.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Kim, Wonyong

    2016-06-01

    A rare human/feline-like rotavirus G3P[9] strain, CAU14-1-262, from a 2-year-old girl with severe gastroenteritis was isolated and sequenced. The 11 gene segments of the CAU14-1-262 strain possessed a novel genotype constellation, G3-P[9]-I3-R3-C3-M3-A3-N3-T1-E3-H6, which was identified for the first time. Phylogenetic analysis of this strain identified the following genome origins: VP7, VP4, VP6, VP1-VP3, NSP1, NSP2, and NSP4 genes possessed an AU-1-like genotype 3 constellation with high sequence identity to those of the feline and human/feline-like rotaviruses; NSP5 possessed a H6 lineage, with highest sequence identity to the human/feline-like E2541 strain; and the NSP3 gene possessed a Wa-like genotype 1 constellation with high sequence identity to those of the of human rotaviruses. These results provided evidence of multiple reassortment events in G3P[9] rotavirus CAU14-1-262 and possibility of feline-to-human interspecies transmission. PMID:27260811

  15. Molecular Characterization of Equine Rotavirus in Ireland▿

    PubMed Central

    Collins, P. J.; Cullinane, A.; Martella, V.; O'Shea, H.

    2008-01-01

    Group A rotaviruses are important causative agents of severe, acute dehydrating diarrhea in foals. A total of 86 rotavirus-positive fecal samples, collected from diarrheic foals from 11 counties in three of the four provinces of Ireland, were obtained from the Irish Equine Centre in Kildare during a 7-year (1999 to 2005) passive surveillance study and were characterized molecularly to establish the VP7 (G type) and VP4 (P type) antigenic specificities. Fifty-eight samples (67.5%) were found to contain G3 viruses, while in 26 samples (30.2%) the rotaviruses were typed as G14 and in 2 samples (2.3%) there was a mixed infection, G3 plus G14. All samples except for two, which were untypeable, were characterized as P[12]. Fifty-eight percent of the samples were obtained from County Kildare, the center of the Irish horse industry, where an apparent shift from G3P[12] to G14P[12] was observed in 2003. By sequence analysis of the VP7 protein, the G3 Irish strains were shown to resemble viruses of the G3A subtype (H2-like) (97.1 to 100% amino acid [aa] identity), while the G14 Irish strains displayed 93.9 to 97.1% aa identity to other G14 viruses. In the VP8* fragment of the VP4 protein, the P[12] Irish viruses displayed high conservation (92.3 to 100% aa) with other equine P[12] viruses. Worldwide, G3P[12] and G14P[12] are the most prevalent equine rotavirus strains, and G3P[12] vaccines have been developed for prevention of rotavirus-associated diarrhea in foals. Investigations of the VP7/VP4 diversity of the circulating equine viruses and the dynamics of strain replacement are important for better assessing the efficacies of the vaccines. PMID:18716232

  16. Rotavirus infection activates the UPR but modulates its activity

    PubMed Central

    2011-01-01

    Background Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. Methods 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). Results The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. Conclusions Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses. PMID:21774819

  17. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine

    PubMed Central

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-01-01

    ABSTRACT Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  18. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine.

    PubMed

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-03-01

    Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  19. Crystallographic and Glycan Microarray Analysis of Human Polyomavirus 9 VP1 Identifies N-Glycolyl Neuraminic Acid as a Receptor Candidate

    PubMed Central

    Khan, Zaigham Mahmood; Liu, Yan; Neu, Ursula; Gilbert, Michel; Ehlers, Bernhard

    2014-01-01

    ABSTRACT Human polyomavirus 9 (HPyV9) is a closely related homologue of simian B-lymphotropic polyomavirus (LPyV). In order to define the architecture and receptor binding properties of HPyV9, we solved high-resolution crystal structures of its major capsid protein, VP1, in complex with three putative oligosaccharide receptors identified by glycan microarray screening. Comparison of the properties of HPyV9 VP1 with the known structure and glycan-binding properties of LPyV VP1 revealed that both viruses engage short sialylated oligosaccharides, but small yet important differences in specificity were detected. Surprisingly, HPyV9 VP1 preferentially binds sialyllactosamine compounds terminating in 5-N-glycolyl neuraminic acid (Neu5Gc) over those terminating in 5-N-acetyl neuraminic acid (Neu5Ac), whereas LPyV does not exhibit such a preference. The structural analysis demonstrated that HPyV9 makes specific contacts, via hydrogen bonds, with the extra hydroxyl group present in Neu5Gc. An equivalent hydrogen bond cannot be formed by LPyV VP1. IMPORTANCE The most common sialic acid in humans is 5-N-acetyl neuraminic acid (Neu5Ac), but various modifications give rise to more than 50 different sialic acid variants that decorate the cell surface. Unlike most mammals, humans cannot synthesize the sialic acid variant 5-N-glycolyl neuraminic acid (Neu5Gc) due to a gene defect. Humans can, however, still acquire this compound from dietary sources. The role of Neu5Gc in receptor engagement and in defining viral tropism is only beginning to emerge, and structural analyses defining the differences in specificity for Neu5Ac and Neu5Gc are still rare. Using glycan microarray screening and high-resolution protein crystallography, we have examined the receptor specificity of a recently discovered human polyomavirus, HPyV9, and compared it to that of the closely related simian polyomavirus LPyV. Our study highlights critical differences in the specificities of both viruses

  20. Rotaviruses from Canadian farm samples.

    PubMed

    Lamhoujeb, Safaa; Cook, Angela; Pollari, Frank; Bidawid, Sabah; Farber, Jeff; Mattison, Kirsten

    2010-07-01

    Animal rotavirus (RoV) strains detected in Canadian swine and dairy cattle farms were characterized by sequence analysis of viral protein 4 (VP4), VP6, VP7 and non-structural protein 4 segments from 15 RoV strains. Some porcine strains were found to contain a mixture of segments typical of human and animal viruses. One strain represented a novel VP6 genotype "I14", G2-P[27]-I14. Other strains detected in porcine samples represented multiple different segment types. These results illustrate the active evolution of animal RoV strains and underline the need for surveillance of both animal and human strains in public health-monitoring programs. PMID:20517624

  1. Systemic features of rotavirus infection.

    PubMed

    Rivero-Calle, Irene; Gómez-Rial, José; Martinón-Torres, Federico

    2016-07-01

    A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions. PMID:27181101

  2. Disease Caused by Rotavirus Infection

    PubMed Central

    Lin, Che-Liang; Chen, Shou-Chien; Liu, Shyun-Yeu; Chen, Kow-Tong

    2014-01-01

    Although rotavirus vaccines are available, rotaviruses remain the major cause of childhood diarrheal disease worldwide. The Rotarix (GlaxoSmithKline Biologicals Rixensart, Belgium) and RotaTeq (Merck and Co., Inc. Whitehouse Station, New Jersey, USA) vaccines are effective for reducing the morbidity and mortality of rotavirus infection. This article aims to assess the epidemiology of rotaviral gastroenteritis and the efficacy and effectiveness of licensed rotavirus vaccines. This review concludes by presenting challenges in the field that require further exploration by and perspectives from basic and translational research in the future. PMID:25553142

  3. Predicted Structure and Domain Organization of Rotavirus Capping Enzyme and Innate Immune Antagonist VP3

    PubMed Central

    Snyder, Matthew J.; Dennis, Allison F.; Patton, John T.

    2014-01-01

    ABSTRACT Rotaviruses and orbiviruses are nonturreted Reoviridae members. The rotavirus VP3 protein is a multifunctional capping enzyme and antagonist of the interferon-induced cellular oligoadenylate synthetase-RNase L pathway. Despite mediating important processes, VP3 is the sole protein component of the rotavirus virion whose structure remains unknown. In the current study, we used sequence alignment and homology modeling to identify features common to nonturreted Reoviridae capping enzymes and to predict the domain organization, structure, and active sites of rotavirus VP3. Our results suggest that orbivirus and rotavirus capping enzymes share a domain arrangement similar to that of the bluetongue virus capping enzyme. Sequence alignments revealed conserved motifs and suggested that rotavirus and orbivirus capping enzymes contain a variable N-terminal domain, a central guanine-N7-methyltransferase domain that contains an additional inserted domain, and a C-terminal guanylyltransferase and RNA 5′-triphosphatase domain. Sequence conservation and homology modeling suggested that the insertion in the guanine-N7-methyltransferase domain is a ribose-2′-O-methyltransferase domain for most rotavirus species. Our analyses permitted putative identification of rotavirus VP3 active-site residues, including those that form the ribose-2′-O-methyltransferase catalytic tetrad, interact with S-adenosyl-l-methionine, and contribute to autoguanylation. Previous reports have indicated that group A rotavirus VP3 contains a C-terminal 2H-phosphodiesterase domain that can cleave 2′-5′ oligoadenylates, thereby preventing RNase L activation. Our results suggest that a C-terminal phosphodiesterase domain is present in the capping enzymes from two additional rotavirus species. Together, these findings provide insight into a poorly understood area of rotavirus biology and are a springboard for future biochemical and structural studies of VP3. IMPORTANCE Rotaviruses are an

  4. Distinct function of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize VP1 enhancement of ABA sensitivity in roots is B3 independent. ABA and VP1 mediated suppression of auxin induced lateral root development is B3 independent. Arabidopsis transgenic system to delineate B3 dependent and COAR domain dependent regulatory functions of VP1. Analyses of ectopic ABA re...

  5. Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-Like G1P[8] Rotavirus Strains.

    PubMed

    Komoto, Satoshi; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Tsuji, Takao; Yoshikawa, Tetsushi; Tharmaphornpilas, Piyanit; Sangkitporn, Somchai; Taniguchi, Koki

    2016-01-01

    The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating

  6. Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-Like G1P[8] Rotavirus Strains

    PubMed Central

    Komoto, Satoshi; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Tsuji, Takao; Yoshikawa, Tetsushi; Tharmaphornpilas, Piyanit; Sangkitporn, Somchai; Taniguchi, Koki

    2016-01-01

    The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating

  7. Trivalent Combination Vaccine Induces Broad Heterologous Immune Responses to Norovirus and Rotavirus in Mice

    PubMed Central

    Tamminen, Kirsi; Lappalainen, Suvi; Huhti, Leena; Vesikari, Timo; Blazevic, Vesna

    2013-01-01

    Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes. PMID:23922988

  8. Diversity and relationships of cocirculating modern human rotaviruses revealed using large-scale comparative genomics.

    PubMed

    McDonald, Sarah M; McKell, Allison O; Rippinger, Christine M; McAllen, John K; Akopov, Asmik; Kirkness, Ewen F; Payne, Daniel C; Edwards, Kathryn M; Chappell, James D; Patton, John T

    2012-09-01

    Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community. PMID:22696651

  9. Diversity and Relationships of Cocirculating Modern Human Rotaviruses Revealed Using Large-Scale Comparative Genomics

    PubMed Central

    McKell, Allison O.; Rippinger, Christine M.; McAllen, John K.; Akopov, Asmik; Kirkness, Ewen F.; Payne, Daniel C.; Edwards, Kathryn M.; Chappell, James D.; Patton, John T.

    2012-01-01

    Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community. PMID:22696651

  10. A computational study of the interaction of the foot and mouth disease virus VP1 with monoclonal antibodies.

    PubMed

    Marrero, Ruben; Limardo, Ramiro Rodríguez; Carrillo, Elisa; König, Guido A; Turjanski, Adrián G

    2015-10-01

    Foot and mouth disease is caused by a non-enveloped virus (FMDV), which disposes several antigenic sites at the surface of their capsid proteins. The most relevant and immunodominant antigenic site of FMDV (site A or AnSA) includes a key virus-cell interaction element (RGD motif) located in the Viral Protein 1 (VP1), more precisely at the GH loop. AnSA includes a set of overlapped and mainly linear epitopes, which are the main targets of the humoral immune response. Taking advantage over specific structural features of the GH loop, we have evaluated the influence of every amino acid residue at AnSA in the interaction with 2 neutralizing antibodies by molecular modeling techniques. Additionally, we constructed diverse interaction complexes with multiple site A mutants and discussed about the structural influence of amino acidic insertions in such relevant antigenic site of FMDV. Our approach is in agreement with previous ELISA experiments and allows the understanding of how FMDV mutations may alter the interaction with different antibodies, as we can estimate the contribution of each amino acid to the interaction. Overall, our work contributes to the development of specific vaccination strategies for FMD control. PMID:26093030

  11. The Rotavirus Interferon Antagonist NSP1: Many Targets, Many Questions.

    PubMed

    Arnold, Michelle M

    2016-06-01

    Rotavirus is a leading cause of death due to diarrhea among young children across the globe. Despite the limited coding capacity that is characteristic of RNA viruses, rotavirus dedicates substantial resources to avoiding the host innate immune response. Among these strategies is use of the interferon antagonist protein NSP1, which targets cellular proteins required for interferon production to be degraded by the proteasome. Although numerous cellular targets have been described, there remain many questions about the mechanism of NSP1 activity and its role in promoting replication in specific host species. PMID:27009959

  12. Global Seasonality of Rotavirus Disease

    PubMed Central

    Patel, Manish M.; Pitzer, Virginia; Alonso, Wladimir J.; Vera, David; Lopman, Ben; Tate, Jacqueline; Viboud, Cecile; Parashar, Umesh D.

    2012-01-01

    Background A substantial number of surveillance studies have documented rotavirus prevalence among children admitted for dehydrating diarrhea. We sought to establish global seasonal patterns of rotavirus disease before widespread vaccine introduction. Methods We reviewed studies of rotavirus detection in children with diarrhea published since 1995. We assessed potential relationships between seasonal prevalence and locality by plotting the average monthly proportion of diarrhea cases positive for rotavirus according to geography, country development, and latitude. We used linear regression to identify variables that were potentially associated with the seasonal intensity of rotavirus. Results Among a total of 99 studies representing all six geographical regions of the world, patterns of year-round disease were more evident in low- and low-middle income countries compared with upper-middle and high income countries where disease was more likely to be seasonal. The level of country development was a stronger predictor of strength of seasonality (P=0.001) than geographical location or climate. However, the observation of distinctly different seasonal patterns of rotavirus disease in some countries with similar geographical location, climate and level of development indicate that a single unifying explanation for variation in seasonality of rotavirus disease is unlikely. Conclusion While no unifying explanation emerged for varying rotavirus seasonality globally, the country income level was somewhat more predictive of the likelihood of having seasonal disease than other factors. Future evaluation of the effect of rotavirus vaccination on seasonal patterns of disease in different settings may help understand factors that drive the global seasonality of rotavirus disease. PMID:23190782

  13. A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71.

    PubMed

    Xu, Longfa; He, Delei; Yang, Lisheng; Li, Zhiqun; Ye, Xiangzhong; Yu, Hai; zhao, Huan; Li, Shuxuan; Yuan, Lunzhi; Qian, Hongliu; Que, Yuqiong; Shih, James Wai Kuo; Zhu, Hua; Li, Yimin; Cheng, Tong; Xia, Ningshao

    2015-01-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops. PMID:26243660

  14. Identification of Equine Lactadherin-derived Peptides That Inhibit Rotavirus Infection via Integrin Receptor Competition*

    PubMed Central

    Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S.; Conti, Amedeo; Lembo, David

    2015-01-01

    Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. PMID:25814665

  15. Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy.

    PubMed

    Medici, Maria Cristina; Tummolo, Fabio; Martella, Vito; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Magrì, Alessandro; Fehér, Enikő; Marton, Szilvia; Calderaro, Adriana; Bányai, Krisztián

    2016-06-01

    After a sporadic detection in 1990s, G3P[8] rotaviruses emerged as a predominant genotype during recent years in many areas worldwide, including parts of Italy. The present study describes the molecular epidemiology and evolution of G3P[8] rotaviruses detected in Italian children with gastroenteritis during two survey periods (2004-2005 and 2008-2013). Whole genome of selected G3P[8] strains was determined and antigenic differences between these strains and rotavirus vaccine strains were analyzed. Among 819 (271 in 2004-2005 and 548 in 2008-2013) rotaviruses genotyped during the survey periods, the number of G3P[8] rotavirus markedly varied over the years (0/83 in 2004, 30/188 in 2005 and 0/96 in 2008, 6/88 in 2009, 4/97 in 2010, 0/83 in 2011, 9/82 in 2012, 56/102 cases in 2013). The genotypes of the 11 gene segments of 15 selected strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1; thus all strains belonged to the Wa genogroup. Phylogenetic analysis of the Italian G3P[8] strains showed a peculiar picture of segregation with a 2012 lineage for VP1-VP3, NSP1, NSP2, NSP4 and NSP5 genes and a 2013 lineage for VP6, NSP1 and NSP3 genes, with a 1.3-20.2% nucleotide difference from the oldest Italian G3P[8] strains. The genetic variability of the Italian G3P[8] observed in comparison with sequences of rotaviruses available in GenBank suggested a process of selection acting on a global scale, rather than the emergence of local strains, as several lineages were already circulating globally. Compared with the vaccine strains, the Italian G3P[8] rotaviruses segregated in different lineages (5-5.3% and 7.2-11.4% nucleotide differences in the VP7 and VP4, respectively) with some mismatches in the putative neutralizing epitopes of VP7 and VP4 antigens. The accumulation of point mutations and amino acid differences between vaccine strains and currently circulating rotaviruses might generate, over the years, vaccine-resistant variants. PMID:26980605

  16. Phylogenetic analysis of probable non-human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil.

    PubMed

    Maestri, Régis Piloni; Kaiano, Jane Haruko Lima; Neri, Darivaldo Luz; Soares, Luana da Silva; Guerra, Sylvia de Fatima Dos Santos; Oliveira, Darleise de Souza; Farias, Yasmin Nascimento; Gabbay, Yvone Benchimol; Leite, José Paulo Gagliardi; Linhares, Alexandre da Costa; Mascarenhas, Joana D'Arc Pereira

    2012-12-01

    Rotaviruses (RVs) are the main cause of acute viral gastroenteritis in both humans and young animals of various species such as calves, horses, pigs, dogs, cats, and birds. The genetic diversity of RVs is related to a variety of evolutionary mechanisms, including point mutation, and genome reassortment. The objective of this study was to characterize molecularly genes that encode structural and nonstructural proteins in unusual RV strains. The clinical specimens selected for this study were obtained from children and newborn with RV gastroenteritis, who participated in research projects on viral gastroenteritis conducted at the Evandro Chagas Institute. Structural (VP1-VP4, VP6, and VP7) and nonstructural (NSP1-NSP6) genes were amplified from stool samples by the polymerase chain reaction and subsequently sequenced. Eight unusual RV strains isolated from children and newborn with gastroenteritis were studied. Reassortment between genes of animal origin were observed in 5/8 (62.5%) strains analyzed. These results demonstrate that, although rare, interspecies (animal-human) transmission of RVs occurs in nature, as observed in the present study in strains NB150, HSP034, HSP180, HST327, and RV10109. This study is the first to be conducted in the Amazon region and supports previous data showing a close relationship between genes of human and animal origin, representing a challenge to the large-scale introduction of RV vaccines in national immunization programs. PMID:23080508

  17. Fabrication of gold nanoparticles in Therminol VP-1 by laser ablation and fragmentation with fs pulses

    NASA Astrophysics Data System (ADS)

    Torres-Mendieta, R.; Mondragón, R.; Juliá, E.; Mendoza-Yero, O.; Cordoncillo, E.; Lancis, J.; Mínguez-Vega, G.

    2014-12-01

    This letter reports on a physical method to produce highly pure, size-controlled and well-dispersed spherical gold nanoparticles (NPs) in Therminol VP-1 by pulsed laser ablation in liquids (PLAL) using a 30 fs Ti:Sapphire laser at a fluence of 1 J cm-2. A second photo-fragmentation of the ablated colloid solution by subsequent treatment with the same laser light yields a mean size and size dispersion of the NPs of 58 ± 31 nm. A study of the nanofluid properties reveals a low agglomeration over time and an enhancement of thermal conductivity of the base fluid by up to 4%. These results improve the characteristics of current nanofluids in thermal oils that may have a potential impact on the improvement of the efficiency of harvesting of solar light.

  18. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    PubMed

    Wise, Michael J

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz. PMID:23613826

  19. Rotavirus Vaccine -- Questions and Answers

    MedlinePlus

    ... to these vaccines. The infant's immune response to influenza vaccine administered at the same time as rotavirus vaccine ... previously that an inactivated vaccine (e.g., inactivated influenza vaccine) may be administered either simultaneously or at any ...

  20. Sudden Death from Systemic Rotavirus Infection and Detection of Nonstructural Rotavirus Proteins▿

    PubMed Central

    Nakano, Ineko; Taniguchi, Koki; Ishibashi-Ueda, Hatsue; Maeno, Yoshimasa; Yamamoto, Naoki; Yui, Akiko; Komoto, Satoshi; Wakata, Yasushi; Matsubara, Tamehito; Ozaki, Nozomu

    2011-01-01

    A 2.5-year-old girl died suddenly during the course of rotavirus gastroenteritis. The autopsy showed encephalopathy with rotavirus systemic infection. Here, we provide evidence of rotavirus replication in multiple organs. Our findings clarify that rotavirus infection in children can extend beyond the intestinal tract through viremia. PMID:21998424

  1. Rotavirus-Like Particles: A Novel Nanocarrier for the Gut

    PubMed Central

    Cortes-Perez, Naima G.; Sapin, Catherine; Jaffrelo, Loïc; Daou, Sabine; Grill, Jean Pierre; Langella, Philippe; Seksik, Philippe; Beaugerie, Laurent; Chwetzoff, Serge; Trugnan, Germain

    2010-01-01

    The delivery of bioactive molecules directly to damaged tissues represents a technological challenge. We propose here a new system based on virus-like particles (VLP) from rotavirus, with a marked tropism for the gut to deliver bio-active molecules to intestinal cells. For this, nonreplicative VLP nanoparticles were constructed using a baculovirus expression system and used to deliver an exogenous biomolecule, the green fluorescent protein (GFP), into either MA104 cells or intestinal cells from healthy and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice. Our results show that expression of rotavirus capsid proteins in baculovirus led to the auto assembly of VLP that display similar properties to rotavirus. In vitro experiments showed that VLP were able to enter into MA104 cells and deliver the reporter protein. Intragastric administration of fluorescent VLP in healthy and TNBS-treated mice resulted in the detection of GFP and viral proteins in intestinal samples. Our results demonstrate an efficient entry of non-replicative rotavirus VLP into the epithelial cell line MA104 and provide the first in vivo evidence of the potential of these nanoparticles as a promising safe candidate for drug delivery to intestinal cells. PMID:20414353

  2. Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells.

    PubMed

    Huang, Haohai; Liao, Dan; Liang, Liping; Song, Lijun; Zhao, Wenchang

    2015-06-01

    Rotavirus (RV) is the primary cause of severe dehydrating gastroenteritis and acute diarrheal disease in infants and young children. Previous studies have revealed that genistein can inhibit the infectivity of enveloped or nonenveloped viruses. Although the biological properties of genistein are well studied, the mechanisms of action underlying their anti-rotavirus properties have not been fully elucidated. Here, we report that genistein significantly inhibits RV-Wa replication in vitro by repressing viral RNA transcripts, and possibly viral protein synthesis. Interestingly, we also found that aquaporin 4 (AQP4) mRNA and protein expression, which was downregulated in RV-infected Caco-2 cells, can be upregulated by genistein in a time- and dose-dependent manner. Further experiments confirmed that genistein triggers CREB phosphorylation through PKA activation and subsequently promotes AQP4 gene transcription. These findings suggest that the pathophysiological mechanism of RV infection involves decreased expression of AQP4 and that genistein may be a useful candidate for developing a new anti-RV strategy by inhibiting rotavirus replication and upregulating AQP4 expression via the cAMP/PKA/CREB signaling pathway. Further studies on the effect of genistein on RV-induced diarrhea are warranted. PMID:25877820

  3. Pathogenicity of rotavirus in rabbits.

    PubMed Central

    Thouless, M E; DiGiacomo, R F; Deeb, B J; Howard, H

    1988-01-01

    The role of rotavirus in diarrheal disease of rabbits was investigated, and a model for human rotavirus infection was established. Orogastric inoculation of 8- and 12-week-old New Zealand White rabbits with a rabbit strain of rotavirus (L:ALA:84) resulted in fecal shedding of virus for 6 to 8 days from 2 to 5 days after inoculation. Most rabbits exhibited diarrhea, coincident with the onset of viral shedding, which persisted for 2 to 4 days. Diarrhea was characterized by soft or fluid stools and fecal staining of the perineum. Inoculation of 3-week-old rabbits resulted in a briefer period of viral shedding and diarrhea of a milder nature. Histopathologic examination during the period of viral shedding revealed a mild, nonsuppurative enteritis. Inoculated rabbits exhibited antibodies in serum to rotavirus by enzyme-linked immunosorbent assay. Sham-inoculated or uninoculated rabbits maintained in the same cage or the same room with inoculated rabbits acquired rotavirus infection. The mild diarrheal disease which resulted with a rotavirus isolate from severe field cases suggests that cofactors were involved. Images PMID:2838507

  4. Rotavirus Prevalence in the Primary Care Setting in Nicaragua after Universal Infant Rotavirus Immunization

    PubMed Central

    Becker-Dreps, Sylvia; Paniagua, Margarita; Zambrana, Luis Enrique; Bucardo, Filemon; Hudgens, Michael G.; Weber, David J.; Morgan, Douglas R.; Espinoza, Félix

    2011-01-01

    Nicaragua was the first developing nation to implement universal infant rotavirus immunization with the pentavalent rotavirus vaccine (RV5). Initial studies of vaccine effectiveness in Nicaragua and other developing nations have focused on the prevention of hospitalizations and severe rotavirus diarrhea. However, rotavirus diarrhea is more commonly treated in the primary care setting, with only 1–3% of rotavirus cases receiving hospital care. We measured the prevalence of rotavirus infection in primary care clinics in León, Nicaragua, after introduction of the immunization program. In the post-vaccine period, 3.5% (95% confidence interval = 1.9–5.8) of children seeking care for diarrhea tested positive for rotavirus. A high diversity of rotavirus genotypes was encountered among the few positive samples. In conclusion, rotavirus was an uncommon cause of childhood diarrhea in this primary care setting after implementation of a rotavirus immunization program. PMID:22049057

  5. Identification of Novel Ghanaian G8P[6] Human-Bovine Reassortant Rotavirus Strain by Next Generation Sequencing

    PubMed Central

    Dennis, Francis E.; Fujii, Yoshiki; Haga, Kei; Damanka, Susan; Lartey, Belinda; Agbemabiese, Chantal A.; Ohta, Nobuo; Armah, George E.; Katayama, Kazuhiko

    2014-01-01

    Group A rotaviruses (RVAs) are the most important etiological agent of acute gastroenteritis in children <5 years of age worldwide. The monovalent rotavirus vaccine Rotarix was introduced into the national Expanded Programme on Immunization (EPI) in Ghana in May 2012. However, there is a paucity of genetic and phylogenetic data on the complete genomes of human RVAs in circulation pre-vaccine introduction. The common bovine rotavirus VP7 genotype G8 has been sporadically detected in Ghanaian children, usually in combination with the VP4 genotype P[6]. To investigate the genomic constellations and phylogeny of RVA strains in circulation prior to vaccine introduction, the full genomes of two unusual G8P[6] strains, GH018-08 and GH019-08, detected during burden of disease surveillance, were characterized by Illumina MiSeq sequencing. The Ghanaian isolates, GH018-08 and GH019-08, exhibited the unusual, previously unreported genotype constellation G8-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H3. Phylogenetic analyses confirmed that 10 out of the 11 genes of GH018-08 and GH019-08 were identical/nearly identical, with significant variation detected only in their VP1 genes, and clearly established the occurrence of multiple independent interspecies transmission and reassortment events between co-circulating bovine/ovine/caprine rotaviruses and human DS-1-like RVA strains. These findings highlight the contribution of reassortment and interspecies transmission events to the high rotavirus diversity in this region of Africa, and justify the need for simultaneous monitoring of animal and human rotavirus strains. PMID:24971993

  6. Rotavirus Infections - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotavirus Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotavirus Infections - Multiple Languages To use the sharing features ...

  7. Protect Your Child from Rotavirus Disease

    MedlinePlus

    ... within the first week after the first or second dose of rotavirus vaccine.​ CDC continues to recommend that infants receive rotavirus vaccine. The benefits of the vaccine far outweigh the small risk ...

  8. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  9. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG).

    PubMed

    Matthijnssens, Jelle; Ciarlet, Max; McDonald, Sarah M; Attoui, Houssam; Bányai, Krisztián; Brister, J Rodney; Buesa, Javier; Esona, Mathew D; Estes, Mary K; Gentsch, Jon R; Iturriza-Gómara, Miren; Johne, Reimar; Kirkwood, Carl D; Martella, Vito; Mertens, Peter P C; Nakagomi, Osamu; Parreño, Viviana; Rahman, Mustafizur; Ruggeri, Franco M; Saif, Linda J; Santos, Norma; Steyer, Andrej; Taniguchi, Koki; Patton, John T; Desselberger, Ulrich; Van Ranst, Marc

    2011-08-01

    In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data. PMID:21597953

  10. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  11. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture

    PubMed Central

    2012-01-01

    Background Glycyrrhizin (GA) and primary metabolite 18β-glycyrrhetinic acid (GRA) are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines. Methods Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein. Results GRA treatment reduced rotavirus yields by 99% when added to infected cultures post-- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry. Conclusions GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway. PMID:22616823

  12. Phylogenetic analysis of VP1 gene sequences of waterfowl parvoviruses from the Mainland of China revealed genetic diversity and recombination.

    PubMed

    Wang, Shao; Cheng, Xiao-Xia; Chen, Shao-Ying; Lin, Feng-Qiang; Chen, Shi-Long; Zhu, Xiao-Li; Wang, Jin-Xiang; Huang, Mei-Qing; Zheng, Min

    2016-03-01

    To determine the origin and evolution of goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) in the Mainland of China, phylogenetic and recombination analyses in the present study were performed on 32 complete VP1 gene sequences from China and other countries. Based on the phylogenetic analysis of the VP1 gene, GPV strains studied here from Mainland China (PRC) could be divided into three genotypes, namely PRC-I, PRC-II and PRC-III. Genotype PRC-I is indigenous to Mainland China. Only one GPV strain from Northeast China was of Genotype PRC-II and was thought to be imported from Europe. Genotype PRC-III, which was the most isolated genotype during 1999-2012, is related to GPVs in Taiwan and has been the predominant pathogen responsible for recent Derzy's disease outbreaks in Mainland China. Current vaccine strains used in Mainland China belong to Genotype PRC-I that is evolutionary distant from Genotypes PRC-II and PRC-III. In comparison, MDPV strains herein from Mainland China are clustered in a single group which is closely related to Taiwanese MDPV strains, and the full-length sequences of the VP1 gene of China MDPVs are phylogenetic closely related to the VP1 sequence of a Hungarian MDPV strain. Moreover, We also found that homologous recombination within VP1 gene plays a role in generating genetic diversity in GPV evolution. The GPV GDFSh from Guangdong Province appears to be the evolutionary product of a recombination event between parental GPV strains GD and B, while the major parent B proved to be a reference strain for virulent European GPVs. Our findings provide valuable information on waterfowl parvoviral evolution in Mainland China. PMID:26692144

  13. Candidate new rotavirus species in sheltered dogs, Hungary.

    PubMed

    Mihalov-Kovács, Eszter; Gellért, Ákos; Marton, Szilvia; Farkas, Szilvia L; Fehér, Enikő; Oldal, Miklós; Jakab, Ferenc; Martella, Vito; Bányai, Krisztián

    2015-04-01

    We identified unusual rotavirus strains in fecal specimens from sheltered dogs in Hungary by viral metagenomics. The novel rotavirus species displayed limited genome sequence homology to representatives of the 8 rotavirus species, A-H, and qualifies as a candidate new rotavirus species that we tentatively named Rotavirus I. PMID:25811414

  14. Structural Correlates of Rotavirus Cell Entry

    PubMed Central

    Abdelhakim, Aliaa H.; Salgado, Eric N.; Fu, Xiaofeng; Pasham, Mithun; Nicastro, Daniela; Kirchhausen, Tomas; Harrison, Stephen C.

    2014-01-01

    Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex—for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼700 Å inner capsid particle (“double-layered particle”, DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration. PMID:25211455

  15. Ability of TESTPACK ROTAVIRUS enzyme immunoassay to diagnose rotavirus gastroenteritis.

    PubMed Central

    Chernesky, M; Castriciano, S; Mahony, J; Spiewak, M; Schaefer, L

    1988-01-01

    TESTPACK ROTAVIRUS, a simple 10-min enzyme immunoassay, was compared with electron microscopy and Pathfinder enzyme immunoassay on feces from 172 patients of various ages with gastroenteritis. The percent sensitivities and specificities before blocking with antiserum were as follows: TESTPACK, 100% sensitivity and 99% specificity; Pathfinder, 95% sensitivity and 98% specificity. After blocking, the sensitivity and specificity, respectively, were 100% and 100% for TESTPACK and 95% and 99% for Pathfinder. TESTPACK ROTAVIRUS was more sensitive, but not significantly, than Pathfinder (P greater than 0.1) and the direct electron microscopy technique (P greater than 0.1). PMID:3069866

  16. PPARγ Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi

    PubMed Central

    Gómez, Dory; Muñoz, Natalia; Guerrero, Rafael; Acosta, Orlando; Guerrero, Carlos A.

    2016-01-01

    Rotavirus infection has been reported to induce an inflammatory response in the host cell accompanied by the increased expression or activation of some cellular molecules including ROS, NF-κB, and COX-2. PPARγ stimulation and N-acetylcysteine (NAC) treatment have been found to interfere with viral infections including rotavirus infection. Small intestinal villi isolated from in vivo infected mice with rotavirus ECwt were analyzed for the percentage of ECwt-infected cells, the presence of rotavirus antigens, and infectious virion yield following treatment with pioglitazone. Isolated villi were also infected in vitro and treated with PPARγ agonists (PGZ, TZD, RGZ, DHA, and ALA), all-trans retinoic acid (ATRA), and NAC. After treatments, the expression of cellular proteins including PPARγ, NF-κB, PDI, Hsc70, and COX-2 was analyzed using immunochemistry, ELISA, immunofluorescence, and Western blotting. The results showed that rotavirus infection led to an increased accumulation of the cellular proteins studied and ROS. The virus infection-induced accumulation of the cellular proteins studied and ROS was reduced upon pioglitazone treatment, causing also a concomitant reduction of the infectious virion yield. We hypothesized that rotavirus infection is benefiting from the induction of a host cell proinflammatory response and that the interference of the inflammatory pathways involved leads to decreased infection. PMID:27382365

  17. Recurrent rotavirus diarrhoea outbreaks in a stud farm, in Italy.

    PubMed

    Monini, M; Biasin, A; Valentini, S; Cattoli, G; Ruggeri, F M

    2011-04-21

    A total of 47 stool samples were collected at the same stud farm from young foals with rotavirus diarrhoea and from their stud mares. Illness involved foals during three consecutive winter seasons. Infection in the farm appeared firstly in January-February 2008. After vanishing in the warm seasons, cases reappeared in March 2009 and 2010. Determination of the rotavirus G- and P-types was carried out using nested RT-PCR in samples collected in 2009 and 2010. A total of 19 of 47 samples resulted positive for rotavirus. The G type was determined in 19/47 samples, whereas the P genotype was determined in 17/47 samples. All equine strains presented a G14 VP7 in combination with a P[12] VP4, suggesting persistence of the same viral strain in the stud farm, during at least two consecutive winter periods. Sequence analysis of the genes encoding the outer capsid rotavirus proteins VP7 and VP4 revealed that the virus had a close relationship between strains recently isolated in the rest of Europe. PMID:21129862

  18. Distribution of serotypes of human rotavirus in different populations.

    PubMed Central

    Woods, P A; Gentsch, J; Gouvea, V; Mata, L; Santosham, M; Bai, Z S; Urasawa, S; Glass, R I

    1992-01-01

    Serotyping is a useful tool to study the epidemiologic characteristics of rotaviruses in large populations and to assess the need for a vaccine to protect against all strains. By using an enzyme immunoassay with serotype-specific monoclonal antibodies to the four most common rotavirus serotypes, we analyzed 1,183 rotavirus-positive specimens from 16 stool collections in eight countries on four continents that were obtained from 1978 to 1989. Of the 926 strains (78%) that could be serotyped, 48% were serotype 1, 8% were serotype 2, 15% were serotype 3, and 7% were serotype 4. Twenty-two percent had insufficient numbers of double-shelled virus particles to react with the monoclonal antibody of the VP4 rotavirus protein and therefore could not be serotyped. Our results indicate that vaccines being developed must provide the greatest coverage against serotype 1 and that the serotype distribution cannot be predicted currently by the geographic area or prevalence in the preceding year. PMID:1315333

  19. Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB.

    PubMed

    Holloway, Gavan; Truong, Thanhmai T; Coulson, Barbara S

    2009-05-01

    A vital arm of the innate immune response to viral infection is the induction and subsequent antiviral effects of interferon (IFN). Rotavirus reduces type I IFN induction in infected cells by the degradation of IFN regulatory factors. Here, we show that the monkey rotavirus RRV and human rotavirus Wa also block gene expression induced by type I and II IFNs through a mechanism allowing signal transducer and activator of transcription 1 (STAT1) and STAT2 activation but preventing their nuclear accumulation. In infected cells, this may allow rotavirus to block the antiviral actions of IFN produced early in infection or by activated immune cells. As the intracellular expression of rotavirus nonstructural proteins NSP1, NSP3, and NSP4 individually did not inhibit IFN-stimulated gene expression, their involvement in this process is unlikely. RRV and Wa rotaviruses also prevented the tumor necrosis factor alpha-stimulated nuclear accumulation of NF-kappaB and NF-kappaB-driven gene expression. In addition, NF-kappaB was activated by rotavirus infection, confirming earlier findings by others. As NF-kappaB is important for the induction of IFN and other cytokines during viral infection, this suggests that rotavirus prevents cellular transcription as a means to evade host responses. To our knowledge, this is the first report of the use of this strategy by a double-stranded RNA virus. PMID:19244315

  20. In Vitro Neutralisation of Rotavirus Infection by Two Broadly Specific Recombinant Monovalent Llama-Derived Antibody Fragments

    PubMed Central

    Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren

    2012-01-01

    Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728

  1. Mice develop effective but delayed protective immune responses when immunized as neonates either intranasally with nonliving VP6/LT(R192G) or orally with live rhesus rotavirus vaccine candidates.

    PubMed

    VanCott, John L; Prada, Anne E; McNeal, Monica M; Stone, Susan C; Basu, Mitali; Huffer, Bert; Smiley, Kristi L; Shao, Mingyuan; Bean, Judy A; Clements, John D; Choi, Anthony H-C; Ward, Richard L

    2006-05-01

    Rotavirus vaccines are delivered early in life, when the immune system is immature. To determine the effects of immaturity on responses to candidate vaccines, neonatal (7 days old) and adult mice were immunized with single doses of either Escherichia coli-expressed rotavirus VP6 protein and the adjuvant LT(R192G) or live rhesus rotavirus (RRV), and protection against fecal rotavirus shedding following challenge with the murine rotavirus strain EDIM was determined. Neonatal mice immunized intranasally with VP6/LT(R192G) were unprotected at 10 days postimmunization (dpi) and had no detectable rotavirus B-cell (antibody) or CD4(+) CD8(+) T-cell (rotavirus-inducible, Th1 [gamma interferon and interleukin-2 {IL-2}]-, Th2 [IL-5 and IL-4]-, or ThIL-17 [IL-17]-producing spleen cells) responses. However, by 28 and 42 dpi, these mice were significantly (P >or= 0.003) protected and contained memory rotavirus-specific T cells but produced no rotavirus antibody. In contrast, adult mice were nearly fully protected by 10 dpi and contained both rotavirus immunoglobulin G and memory T cells. Neonates immunized orally with RRV were also less protected (P=0.01) than adult mice by 10 dpi and produced correspondingly less rotavirus antibody. Both groups contained few rotavirus-specific memory T cells. Protection levels by 28 dpi for neonates or adults were equal, as were rotavirus antibody levels. This report introduces a neonatal mouse model for active protection studies with rotavirus vaccines. It indicates that, with time, neonatal mice develop full protection after intranasal immunization with VP6/LT(R192G) or oral immunization with a live heterologous rotavirus and supports reports that protection depends on CD4(+) T cells or antibody, respectively. PMID:16641286

  2. Rotavirus virus-like particles as surrogates in environmental persistence and inactivation studies.

    PubMed

    Caballero, Santiago; Abad, F Xavier; Loisy, Fabienne; Le Guyader, Françoise S; Cohen, Jean; Pintó, Rosa M; Bosch, Albert

    2004-07-01

    Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20 degrees C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20 degrees C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced. PMID:15240262

  3. Analysis of host range restriction determinants in the rabbit model: comparison of homologous and heterologous rotavirus infections.

    PubMed

    Ciarlet, M; Estes, M K; Barone, C; Ramig, R F; Conner, M E

    1998-03-01

    The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV x D (G1), RRV x DS-1 (G2), and RRV x ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 10(3) 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction

  4. A reverse evidence of rotavirus vaccines impact.

    PubMed

    Martinón-Torres, Federico; Aramburo, Angela; Martinón-Torres, Nazareth; Cebey, Miriam; Seoane-Pillado, María Teresa; Redondo-Collazo, Lorenzo; Martinón-Sánchez, Jose Maria

    2013-06-01

    In 2010, and due to a quality problem identified in the vaccine manufacture, the rotavirus (RV) vaccination was withheld in Spain during 5 months. Our study aimed to evaluate the impact that this sudden cease had on rotavirus acute gastroenteritis (RAGE) hospitalizations. An increase in RAGE hospitalization was observed in parallel to the drop in vaccine coverage. Here, we report the first reverse evidence of rotavirus vaccine impact. PMID:23836258

  5. A reverse evidence of rotavirus vaccines impact

    PubMed Central

    Martinón-Torres, Federico; Aramburo, Angela; Martinón-Torres, Nazareth; Cebey, Miriam; Seoane-Pillado, María Teresa; Redondo-Collazo, Lorenzo; Martinón-Sánchez, Jose Maria

    2013-01-01

    In 2010, and due to a quality problem identified in the vaccine manufacture, the rotavirus (RV) vaccination was withheld in Spain during 5 months. Our study aimed to evaluate the impact that this sudden cease had on rotavirus acute gastroenteritis (RAGE) hospitalizations. An increase in RAGE hospitalization was observed in parallel to the drop in vaccine coverage. Here, we report the first reverse evidence of rotavirus vaccine impact. PMID:23836258

  6. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    PubMed Central

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in E. coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., (P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. PMID:22885016

  7. New Insights into Rotavirus Entry Machinery: Stabilization of Rotavirus Spike Conformation Is Independent of Trypsin Cleavage

    PubMed Central

    Rodríguez, Javier M.; Chichón, Francisco J.; Martín-Forero, Esther; González-Camacho, Fernando; Carrascosa, José L.; Castón, José R.; Luque, Daniel

    2014-01-01

    The infectivity of rotavirus, the main causative agent of childhood diarrhea, is dependent on activation of the extracellular viral particles by trypsin-like proteases in the host intestinal lumen. This step entails proteolytic cleavage of the VP4 spike protein into its mature products, VP8* and VP5*. Previous cryo-electron microscopy (cryo-EM) analysis of trypsin-activated particles showed well-resolved spikes, although no density was identified for the spikes in uncleaved particles; these data suggested that trypsin activation triggers important conformational changes that give rise to the rigid, entry-competent spike. The nature of these structural changes is not well understood, due to lack of data relative to the uncleaved spike structure. Here we used cryo-EM and cryo-electron tomography (cryo-ET) to characterize the structure of the uncleaved virion in two model rotavirus strains. Cryo-EM three-dimensional reconstruction of uncleaved virions showed spikes with a structure compatible with the atomic model of the cleaved spike, and indistinguishable from that of digested particles. Cryo-ET and subvolume average, combined with classification methods, resolved the presence of non-icosahedral structures, providing a model for the complete structure of the uncleaved spike. Despite the similar rigid structure observed for uncleaved and cleaved particles, trypsin activation is necessary for successful infection. These observations suggest that the spike precursor protein must be proteolytically processed, not to achieve a rigid conformation, but to allow the conformational changes that drive virus entry. PMID:24873828

  8. Detection of Novel Rotavirus Strain by Vaccine Postlicensure Surveillance

    PubMed Central

    Teel, Elizabeth N.; Mijatovic-Rustempasic, Slavica; Payne, Daniel C.; Roy, Sunando; Foytich, Kimberly; Parashar, Umesh D.; Gentsch, Jon R.; Bowen, Michael D.

    2013-01-01

    Surveillance for rotavirus-associated diarrhea after implementation of rotavirus vaccination can assess vaccine effectiveness and identify disease-associated genotypes. During active vaccine postlicensure surveillance in the United States, we found a novel rotavirus genotype, G14P[24], in a stool sample from a child who had diarrhea. Unusual rotavirus strains may become more prevalent after vaccine implementation. PMID:23876297

  9. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  10. Rotavirus vaccines: successes and challenges.

    PubMed

    Glass, Roger I; Parashar, Umesh; Patel, Manish; Gentsch, Jon; Jiang, Baoming

    2014-01-01

    Since 2006, the availability of two new rotavirus vaccines has raised enthusiasm to consider the eventual control and elimination of severe rotavirus diarrhea through the global use of vaccines. Rotavirus remains the most severe cause of acute diarrhea in children worldwide responsible for several hundred thousands of deaths in low income countries and up to half of hospital admissions for diarrhea around the world. The new vaccines have been recommended by WHO for all infants and in more than 47 countries, their introduction into routine childhood immunization programs has led to a remarkable decline in hospital admissions and even deaths within 3 years of introduction. Challenges remain with issues of vaccine finance globally and the problem that these live oral vaccines perform less well in low income settings where they are needed most. Ongoing research that will accompany vaccine introduction might help address these issues of efficacy and new vaccines and novel financing schemes may both help make these vaccines universally available and affordable in the decade. PMID:24156947

  11. Marker vaccine potential of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion.

    PubMed

    Fowler, V L; Knowles, N J; Paton, D J; Barnett, P V

    2010-04-26

    Previous work in cattle and pigs demonstrated that protection against foot-and-mouth disease (FMD) could be achieved following vaccination with chimeric foot-and-mouth disease virus (FMDV) vaccines, in which the VP1 G-H loop had been substituted with that from another serotype. This indicated that the VP1 G-H loop may not be essential for the protection of natural hosts against FMDV. If this could be substantiated there would be potential to develop FMD marker vaccines, characterised by the absence of this region. Here, we investigate the serological responses to vaccination with a virus with a partial VP1 G-H loop deletion in order to determine the likelihood of achieving protection and the potential of this virus as a marker vaccine. Inactivated, oil adjuvanted, vaccines, consisting of chemically inactivated virus with or without a partially deleted VP1 G-H loop, were used to immunise cattle. Serum was collected on days 0, 7, 14 and 21 and antibody titres calculated using the virus neutralisation test (VNT) to estimate the likelihood of protection. We predict a good likelihood that cattle vaccinated with a vaccine characterised by a partial VP1 G-H loop would be protected against challenge with the same virus containing the VP1 G-H loop. We also present evidence on the potential of such a construct to act as a marker vaccine, when used in conjunction with a novel serological test. PMID:20199761

  12. Serological detection and analysis of anti-VP1 responses against various enteroviruses (EV) (EV-A, EV-B and EV-C) in Chinese individuals.

    PubMed

    Gao, Caixia; Ding, Yingying; Zhou, Peng; Feng, Jiaojiao; Qian, Baohua; Lin, Ziyu; Wang, Lili; Wang, Jinhong; Zhao, Chunyan; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Rui, Bing; Pan, Wei

    2016-01-01

    The overall serological prevalence of EV infections based on ELISA remains unknown. In the present study, the antibody responses against VP1 of the EV-A species (enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A5 (CA5) and Coxsackievirus A6 (CA6)), of the EV-B species (Coxsackievirus B3 (CB3)), and of the EV-C species (Poliovirus 1 (PV1)) were detected and analyzed by a NEIBM (novel evolved immunoglobulin-binding molecule)-based ELISA in Shanghai blood donors. The serological prevalence of anti-CB3 VP1 antibodies was demonstrated to show the highest level, with anti-PV1 VP1 antibodies at the second highest level, and anti-CA5, CA6, CA16 and EV71 VP1 antibodies at a comparatively low level. All reactions were significantly correlated at different levels, which were approximately proportional to their sequence similarities. Antibody responses against EV71 VP1 showed obvious differences with responses against other EV-A viruses. Obvious differences in antibody responses between August 2013 and May 2014 were revealed. These findings are the first to describe the detailed information of the serological prevalence of human antibody responses against the VP1 of EV-A, B and C viruses, and could be helpful for understanding of the ubiquity of EV infections and for identifying an effective approach for seroepidemiological surveillance based on ELISA. PMID:26917423

  13. Serological detection and analysis of anti-VP1 responses against various enteroviruses (EV) (EV-A, EV-B and EV-C) in Chinese individuals

    PubMed Central

    Gao, Caixia; Ding, Yingying; Zhou, Peng; Feng, Jiaojiao; Qian, Baohua; Lin, Ziyu; Wang, Lili; Wang, Jinhong; Zhao, Chunyan; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Rui, Bing; Pan, Wei

    2016-01-01

    The overall serological prevalence of EV infections based on ELISA remains unknown. In the present study, the antibody responses against VP1 of the EV-A species (enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A5 (CA5) and Coxsackievirus A6 (CA6)), of the EV-B species (Coxsackievirus B3 (CB3)), and of the EV-C species (Poliovirus 1 (PV1)) were detected and analyzed by a NEIBM (novel evolved immunoglobulin-binding molecule)-based ELISA in Shanghai blood donors. The serological prevalence of anti-CB3 VP1 antibodies was demonstrated to show the highest level, with anti-PV1 VP1 antibodies at the second highest level, and anti-CA5, CA6, CA16 and EV71 VP1 antibodies at a comparatively low level. All reactions were significantly correlated at different levels, which were approximately proportional to their sequence similarities. Antibody responses against EV71 VP1 showed obvious differences with responses against other EV-A viruses. Obvious differences in antibody responses between August 2013 and May 2014 were revealed. These findings are the first to describe the detailed information of the serological prevalence of human antibody responses against the VP1 of EV-A, B and C viruses, and could be helpful for understanding of the ubiquity of EV infections and for identifying an effective approach for seroepidemiological surveillance based on ELISA. PMID:26917423

  14. Protection against Foot-and-Mouth Disease Virus in Guinea Pigs via Oral Administration of Recombinant Lactobacillus plantarum Expressing VP1

    PubMed Central

    Wang, Miao; Pan, Li; Zhou, Peng; Lv, Jianliang; Zhang, Zhongwang; Wang, Yonglu; Zhang, Yongguang

    2015-01-01

    Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV). In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses) with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA) and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs. PMID:26629822

  15. Identification of the interaction of VP1 with GM130 which may implicate in the pathogenesis of CVB3-induced acute pancreatitis

    PubMed Central

    Li, Xiuzhen; Xia, Yanhua; Huang, Shengping; Liu, Fadi; Ying, Ying; Xu, Qiufang; Liu, Xin; Jin, Guili; Papasian, Christopher J.; Chen, Jack; Fu, Mingui; Huang, Xiaotian

    2015-01-01

    Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, pancreatitis, and meningitis in humans. Although the susceptibility of CVB3-induced acute pancreatitis is age-dependent, the underlying mechanisms remain unclear. Here we identified the host factor Golgi matrix protein 130 (GM130) as a novel target of CVB3 during CVB3-induced acute pancreatitis. The viral protein VP1 interacted with GM130, disrupted GM130-GRASP65 complexes, and caused GM130 degradation, which may lead to disruption of the Golgi ribbon and development of acute pancreatitis in mice. Interestingly, the expression level of GM130 in mouse pancreas was age-dependent, which was nicely correlated with the age-associated susceptibility of CVB3-induced acute pancreatitis. Furthermore, interference RNA-mediated knockdown of GM130 significantly reduced CVB3 replication in HeLa cells. Taken together, the study identified GM130 as a novel target of CVB3, which may implicate in the pathogenesis of CVB3-induced acute pancreatitis. PMID:26314804

  16. Establishment of indirect immunofluorescence assay for rotavirus.

    PubMed

    Tao, J; Zhang, J; Liu, X; Jin, H; Jiang, C; Yin, Y

    2016-03-01

    Rotavirus infection is the most frequent cause of infantile gastroenteritis worldwide and a significant cause of death in infants and young children, following severe diarrhea and dehydration. Rotavirus vaccines are considered the most effective way to prevent rotavirus infections. In the process of developing rotavirus vaccines, it is crucial to establish a reliable and standardized method to determine vaccine titer. In this study, we developed an indirect immunofluorescence assay (IFA) to determine the infectious titer of Lanzhou lamb rotavirus (LLR) vaccine grown in MA104 cells. The activating concentration of trypsin was 1 µg/ml for healthy monolayers of MA104 cells at 100% confluence. After incubation for 18 hr, a rabbit anti-SA11 polyclonal antibody, diluted at 1:800 in PBS, was added to all wells, followed by an Alexa-488-conjugated secondary antibody diluted at 1:500 in PBS. Cells were examined with a fluorescence microscope. Our results show that IFA was more reproducible, more sensitive, simpler, and more rapid than the log 50% cell culture infectious dose-ELISA (lgCCID50-ELISA) in measuring the rotavirus vaccines. IFA provided a reliable basis for the qualitative and quantitative analysis of rotavirus, and the certification of rotavirus vaccine production. PMID:26982471

  17. Development of a One-Step Duplex RT-PCR Method for the Simultaneous Detection of VP3/VP1 and VP1/P2B Regions of the Hepatitis A Virus.

    PubMed

    Kim, Mi-Ju; Lee, Shin-Young; Kim, Hyun-Joong; Lee, Jeong Su; Joo, In Sun; Kwak, Hyo Sun; Kim, Hae-Yeong

    2016-08-28

    The simultaneous detection and accurate identification of hepatitis A virus (HAV) is critical in food safety and epidemiological studies to prevent the spread of HAV outbreaks. Towards this goal, a one-step duplex reverse-transcription (RT)-PCR method was developed targeting the VP1/P2B and VP3/VP1 regions of the HAV genome for the qualitative detection of HAV. An HAV RT-qPCR standard curve was produced for the quantification of HAV RNA. The detection limit of the duplex RT-PCR method was 2.8 × 10(1) copies of HAV. The PCR products enabled HAV genotyping analysis through DNA sequencing, which can be applied for epidemiological investigations. The ability of this duplex RT-PCR method to detect HAV was evaluated with HAV-spiked samples of fresh lettuce, frozen strawberries, and oysters. The limit of detection of the one-step duplex RT-PCR for each food model was 9.4 × 10(2) copies/20 g fresh lettuce, 9.7 × 10(3) copies/20 g frozen strawberries, and 4.1 × 10(3) copies/1.5 g oysters. Use of a one-step duplex RT-PCR method has advantages such as shorter time, decreased cost, and decreased labor owing to the single amplification reaction instead of four amplifications necessary for nested RT-PCR. PMID:27197668

  18. Longitudinal survey of rotavirus infection in calves.

    PubMed

    McNulty, M S; Logan, E F

    1983-10-01

    A longitudinal survey of rotavirus infection in heifer calves was carried out on a closed Friesian dairy herd over two successive calving seasons. Rotavirus was detected by electron microscopy in the faeces of 45 of 57 (79 per cent) calves examined. On average the virus was first detected at 6.1 days of age. Clinically the disease associated with rotavirus infection was of mild to moderate severity. Only one infected calf required intravenous fluid therapy. Diarrhoea or excretion of abnormal faeces was associated with rotavirus infection in 58 per cent of infected calves, while in the remaining 42 per cent infection was subclinical. The cycle of rotavirus infection was broken by thorough cleansing and disinfection of the calf house. PMID:6316619

  19. Burden of Norovirus and Rotavirus in Children After Rotavirus Vaccine Introduction, Cochabamba, Bolivia.

    PubMed

    McAtee, Casey L; Webman, Rachel; Gilman, Robert H; Mejia, Carolina; Bern, Caryn; Apaza, Sonia; Espetia, Susan; Pajuelo, Mónica; Saito, Mayuko; Challappa, Roxanna; Soria, Richard; Ribera, Jose P; Lozano, Daniel; Torrico, Faustino

    2016-01-01

    The effectiveness of rotavirus vaccine in the field may set the stage for a changing landscape of diarrheal illness affecting children worldwide. Norovirus and rotavirus are the two major viral enteropathogens of childhood. This study describes the prevalence of norovirus and rotavirus 2 years after widespread rotavirus vaccination in Cochabamba, Bolivia. Stool samples from hospitalized children with acute gastroenteritis (AGE) and outpatients aged 5-24 months without AGE were recruited from an urban hospital serving Bolivia's third largest city. Both viruses were genotyped, and norovirus GII.4 was further sequenced. Norovirus was found much more frequently than rotavirus. Norovirus was detected in 69/201 (34.3%) of specimens from children with AGE and 13/71 (18.3%) of those without diarrhea. Rotavirus was detected in 38/201 (18.9%) of diarrheal specimens and 3/71 (4.2%) of non-diarrheal specimens. Norovirus GII was identified in 97.8% of norovirus-positive samples; GII.4 was the most common genotype (71.4% of typed specimens). Rotavirus G3P[8] was the most prevalent rotavirus genotype (44.0% of typed specimens) and G2P[4] was second most prevalent (16.0% of typed specimens). This community is likely part of a trend toward norovirus predominance over rotavirus in children after widespread vaccination against rotavirus. PMID:26598569

  20. Roles of VP4 and NSP1 in determining the distinctive replication capacities of simian rotavirus RRV and bovine rotavirus UK in the mouse biliary tract.

    PubMed

    Feng, Ningguo; Sen, Adrish; Wolf, Marie; Vo, Phuoc; Hoshino, Yasutaka; Greenberg, Harry B

    2011-03-01

    Rotavirus replication and virulence are strongly influenced by virus strain and host species. The rotavirus proteins VP3, VP4, VP7, NSP1, and NSP4 have all been implicated in strain and species restriction of replication; however, the mechanisms have not been fully determined. Simian (RRV) and bovine (UK) rotaviruses have distinctive replication capacities in mouse extraintestinal organs such as the biliary tract. Using reassortants between UK and RRV, we previously demonstrated that the differential replication of these viruses in mouse embryonic fibroblasts is determined by the respective NSP1 proteins, which differ substantially in their abilities to degrade interferon (IFN) regulatory factor 3 (IRF3) and suppress the type I IFN response. In this study, we used an in vivo model of rotavirus infection of mouse gallbladder with UK × RRV reassortants to study the genetic and mechanistic basis of systemic rotavirus replication. We found that the low-replication phenotype of UK in biliary tissues was conferred by UK VP4 and that the high-replication phenotype of RRV was conferred by RRV VP4 and NSP1. Viruses with RRV VP4 entered cultured mouse cholangiocytes more efficiently than did those with UK VP4. Reassortants with RRV VP4 and UK NSP1 genes induced high levels of expression of IRF3-dependent p54 in biliary tissues, and their replication was increased 3-fold in IFN-α/β and -γ receptor or STAT1 knockout (KO) mice compared to wild-type mice. Our data indicate that systemic rotavirus strain-specific replication in the murine biliary tract is determined by both viral entry mediated by VP4 and viral antagonism of the host innate immune response mediated by NSP1. PMID:21191030

  1. Innate immune responses to rotavirus infection in macrophages depend on MAVS but involve neither the NLRP3 inflammasome nor JNK and p38 signaling pathways.

    PubMed

    Di Fiore, Izabel J M; Holloway, Gavan; Coulson, Barbara S

    2015-10-01

    Rotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN). Macrophages, the front-line cells of innate immunity, produce IFN and other cytokines in response to viral infection. However, the role of macrophages during rotavirus infection is not well defined. We demonstrate here that RRV rotavirus triggers the production of proinflammatory cytokines from mouse bone marrow-derived macrophages. IFN and antiviral cytokine production was abolished in rotavirus-infected MAVS (-/-) macrophages. This indicates that rotavirus triggers innate immunity in macrophages through RIG-I and/or MDA5 viral recognition, and MAVS signaling is essential for cytokine responses in macrophages. Rotavirus induced IFN expression in both wild type and MDA5 (-/-) macrophages, showing that MDA5 is not essential for IFN secretion following infection, and RIG-I and MDA5 may act redundantly in promoting rotavirus recognition. Interestingly, rotavirus neither stimulated mitogen-activated protein kinases p38 and JNK nor activated the NLRP3 inflammasome, demonstrating that these components might not be involved in innate responses to rotavirus infection in macrophages. Our results indicate that rotavirus elicits intracellular signaling in macrophages, resulting in the induction of IFN and antiviral cytokines, and advance our understanding of the involvement of these cells in innate responses against rotavirus. PMID:26079065

  2. Therapeutics Insight with Inclusive Immunopharmacology Explication of Human Rotavirus A for the Treatment of Diarrhea

    PubMed Central

    Hossain, Mohammad Uzzal; Hashem, Abu; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Rotavirus is the most common cause of severe infant and childhood diarrhea worldwide, and the morbidity and mortality rate is going to be outnumbered in developing countries like Bangladesh. To mitigate this substantial burden of disease, new therapeutics such as vaccine and drug are swiftly required against rotavirus. The present therapeutics insight study was performed with comprehensive immunoinformatics and pharmacoinformatics approach. T and B-cell epitopes were assessed in the conserved region of outer capsid protein VP4 among the highly reviewed strains from different countries including Bangladesh. The results suggest that epitope SU1 (TLKNLNDNY) could be an ideal candidate among the predicted five epitopes for both T and B-cell epitopes for the development of universal vaccine against rotavirus. This research also suggests five novel drug compounds from medicinal plant Rhizophora mucronata Lamk. for better therapeutics strategies against rotavirus diarrhea based on 3D structure building, pharmacophore, ADMET, and QSAR properties. The exact mode of action between drug compounds and target protein VP4 were revealed by molecular docking analysis. Drug likeness and oral bioavailability further confirmed the effectiveness of the proposed drugs against rotavirus diarrhea. This study might be implemented for experimental validation to facilitate the novel vaccine and drug design. PMID:27445802

  3. The Evolution of Vp1 Gene in Enterovirus C Species Sub-Group That Contains Types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99

    PubMed Central

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared. PMID:24695547

  4. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar.

    PubMed

    Yang, Y; Tang, R J; Li, B; Wang, H H; Jin, Y L; Jiang, C M; Bao, Y; Su, H Y; Zhao, N; Ma, X J; Yang, L; Chen, S L; Cheng, X H; Zhang, H X

    2015-06-01

    The Arabidopsis vacuolar H(+)-pyrophosphatase (AVP1) has been well studied and subsequently employed to improve salt and/or drought resistance in herbaceous plants. However, the exact function of H(+)-pyrophosphatase in woody plants still remains unknown. In this work, we cloned a homolog of type I H(+)-pyrophosphatase gene, designated as PtVP1.1, from Populus trichocarpa, and investigated its function in both Arabidopsis and poplar. The deduced translation product PtVP1.1 shares 89.74% identity with AVP1. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR analyses revealed a ubiquitous expression pattern of PtVP1.1 in various tissues, including roots, stems, leaves and shoot tips. Heterologous expression of PtVP1.1 rescued the retarded-root-growth phenotype of avp1, an Arabidopsis knock out mutant of AVP1, on low carbohydrate medium. Overexpression of PtVP1.1 in poplar (P. davidiana × P. bolleana) led to more vigorous growth of transgenic plants in the presence of 150 mM NaCl. Microsomal membrane vesicles derived from PtVP1.1 transgenic plants exhibited higher H(+)-pyrophosphatase hydrolytic activity than those from wild type (WT). Further studies indicated that the improved salt tolerance was associated with a decreased Na(+) and increased K(+) accumulation in the leaves of transgenic plants. Na(+) efflux and H(+) influx in the roots of transgenic plants were also significantly higher than those in the WT plants. All these results suggest that PtVP1.1 is a functional counterpart of AVP1 and can be genetically engineered for salt tolerance improvement in trees. PMID:25877769

  5. Cloning, expression, and purification of recombinant bovine rotavirus hemagglutinin, VP8*, in Escherichia coli.

    PubMed

    Favacho, Alexsandra R M; Kurtenbach, Eleonora; Sardi, Silvia I; Gouvea, Vera S

    2006-04-01

    Rotavirus VP8* subunit is the minor trypsin cleavage product of the spike protein VP4, which is the major determinant of the viral infectivity and neutralization. To study the structure-function relationship of this fragment and to obtain type-specific reagents, substantial amounts of this protein are needed. Thus, full-length VP8* cDNA, including the entire trypsin cleavage-encoding region in gene 4, was synthesized and amplified by RT-PCR from total RNA purified from bovine rotavirus strain C486 propagated in MA104 cell culture. The extended VP8* cDNA (VP8ext) was cloned into the pGEM-T Easy plasmid and subcloned into the Escherichia coli expression plasmid pET28a(+). The correspondent 30 kDa protein was overexpressed in E. coli BL21(DE3)pLysS cells under the control of the T7 promoter. The identity and the antigenicity of VP8ext were confirmed on Western blots using anti-His and anti-rotavirus antibodies. Immobilized Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 4 mg of VP8ext per liter of induced E. coli culture. Our results indicate that VP8ext maintained its native antigenicity and specificity, providing a good source of antigen for the production of P type-specific immune reagents. Detailed structural analysis of pure recombinant VP8 subunit should allow a better understanding of its role in cell attachment and rotavirus tropism. Application of similar procedure to distinct rotavirus P serotypes should provide valuable P serotype-specific immune reagents for rotavirus diagnostics and epidemiologic surveys. PMID:16275130

  6. VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection.

    PubMed

    Da Costa, Laurène; Roche, Manon; Scheers, Els; Coluccia, Antonio; Neyts, Johan; Terme, Thierry; Leyssen, Pieter; Silvestri, Romano; Vanelle, Patrice

    2016-06-10

    Human rhinoviruses (HRV) are the predominant cause of common colds and flu-like illnesses, but are also responsible for virus-induced exacerbations of asthma and chronic obstructive pulmonary disease. However, to date, no drug has been approved yet for clinical use. In this study, we present the results of the structure-based lead optimization of a class of new small-molecule inhibitors that we previously reported to bind into the pocket beneath the canyon of the VP1 protein. A small series of analogues that we designed based on the available structure and interaction data were synthesized and evaluated for their potency to inhibit the replication of HRV serotype 14. 2-(4,5-Dimethoxy-2-nitrophenyl)-1-(4-(pyridin-4-yl)phenyl)ethanol (3v) was found to be a potent inhibitor exhibiting micromolar activity (EC50 = 3.4 ± 1.0 μM) with a toxicity for HeLa cells that was significantly lower than that of our previous hit (LPCRW_0005, CC50 = 104.0 ± 22.2 μM; 3v, CC50 > 263 μM). PMID:27049678

  7. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    PubMed

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection. PMID:26790940

  8. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1.

    PubMed

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system. PMID:27618897

  9. Rabbit model of rotavirus infection.

    PubMed Central

    Conner, M E; Estes, M K; Graham, D Y

    1988-01-01

    A new small animal model was developed to study parameters of rotavirus infections, including the active immune response. Seronegative New Zealand White rabbits (neonatal to 4 months old) were inoculated orally with cultivatable rabbit rotavirus strains Ala, C11, and R2 and with the heterologous simian strain SA11. The course of infection was evaluated by clinical findings, virus isolation (plaque assay and enzyme-linked immunosorbent assay), and serologic response. All four strains of virus were capable of infecting rabbits as determined by isolation of infectious virus from intestinal contents or fecal samples, by seroconversion, or by a combination of these methods. The responses differed depending on the virus strain used for inoculation. Rabbits remained susceptible to primary infection to at least 16 weeks of age (upper limit examined). Virus excretion in intestinal contents was detected from 6 h to 7 days postinoculation. RNA electropherotypes of inocula and viruses isolated from rabbits were the same in all samples tested. Transmission of Ala virus and R2 virus but not SA11 virus from inoculated animals to uninoculated controls also occurred. In a challenge experiment with Ala virus, 74- and 90-day-old rabbits were rechallenged with Ala 5 weeks after a primary infection with Ala. Virus was excreted in feces from 2 to 8 days after the primary infection but was not excreted after challenge. These results indicate that the rabbit provides an ideal model to investigate both the primary and secondary active immune responses to rotavirus infections and to evaluate candidate vaccines. Images PMID:2833612

  10. Simian rhesus rotavirus is a unique heterologous (non-lapine) rotavirus strain capable of productive replication and horizontal transmission in rabbits.

    PubMed

    Ciarlet, M; Estes, M K; Conner, M E

    2000-05-01

    Simian rhesus rotavirus (RRV) is the only identified heterologous (non-lapine) rotavirus strain capable of productive replication at a high inoculum dose of virus (>10(8) p.f.u.) in rabbits. To evaluate whether lower doses of RRV would productively infect rabbits and to obtain an estimate of the 50% infectious dose, rotavirus antibody-free rabbits were inoculated orally with RRV at inoculum doses of 10(3), 10(5) or 10(7) p.f.u. Based on faecal virus antigen or infectious virus shedding, RRV replication was observed with inoculum doses of 10(7) and 10(5) p.f.u., but not 10(3) p.f.u. Horizontal transmission of RRV to one of three mock-inoculated rabbits occurred 4-5 days after onset of virus antigen shedding in RRV-infected rabbits. Rabbits infected at 10(7) and 10(5), but not 10(3), p.f.u. of RRV developed rotavirus-specific immune responses and were completely (100%) protected from lapine ALA rotavirus challenge. These data confirm that RRV can replicate productively and spread horizontally in rabbits. In attempts to elucidate the genetic basis of the unusual replication efficacy of RRV in rabbits, the sequence of the gene encoding the lapine non-structural protein NSP1 was determined. Sequence analysis of the NSP1 of three lapine rotaviruses revealed a high degree of amino acid identity (85-88%) with RRV. Since RRV and lapine strains also share similar VP7s (96-97%) and VP4s (69-70%), RRV might replicate efficiently in rabbits because of the high relatedness of these three gene products, each implicated in host range restriction. PMID:10769066

  11. A serotype 10 human rotavirus.

    PubMed

    Beards, G; Xu, L; Ballard, A; Desselberger, U; McCrae, M A

    1992-06-01

    Rotaviruses with genome rearrangements isolated from a chronically infected immunodeficient child (F. Hundley, M. McIntyre, B. Clark, G. Beards, D. Wood, I. Chrystie, and U. Desselberger, J. Virol 61:3365-3372, 1987) are the first recognized human isolates of serotype 10. This was shown by both a direct enzyme-linked immunosorbent assay and virus neutralization assays using serotype specific monoclonal antibodies. The serotype was confirmed by sequence analysis of the gene encoding VP7, which revealed a 96% amino acid homology to the bovine serotype 10 isolate B223. PMID:1320627

  12. [Universal vaccination for Rotavirus infection control].

    PubMed

    Mita, Valentin; Capanna, Alessandra; Gervasi, Giuseppe; Zaratti, Laura; Franco, Elisabetta

    2015-01-01

    Rotaviruses are the most common etiological cause for pediatric acute gastroenteritis, particularly in children under 5 years of age or immunocompromised. Since 2008, vaccination program has determined a decrease in Rotavirus-related hospitalization, outpatient's visits, emergency department visits and mortality. These indicators of illness for Rotaviruses diseases remain high in those countries where there is no access to rehydrating therapies. In Italy vaccine coverage is very low, even if the burden of RV disease is well known, and at present vaccination is offered free of charge in a single region. PMID:26519750

  13. Whole-genomic analysis of a human G1P[9] rotavirus strain reveals intergenogroup-reassortment events.

    PubMed

    Ghosh, Souvik; Shintani, Tsuzumi; Urushibara, Noriko; Taniguchi, Koki; Kobayashi, Nobumichi

    2012-08-01

    Group A rotavirus (RVA) strain K8 (RVA/Human-tc/JPN/K8/1977/G1P[9]) was found to have Wa-like VP7 and NSP1 genes and AU-1-like VP4 and NSP5 genes. To determine the exact origin and overall genetic makeup of this unusual RVA strain, the remaining genes (VP1-VP3, VP6 and NSP2-NSP4) of K8 were analysed in this study. Strain K8 exhibited a G1-P[9]-I1-R3-C3-M3-A1-N1-T3-E3-H3 genotype constellation, not reported previously. The VP6 and NSP2 genes of strain K8 were related closely to those of common human Wa-like G1P[8] and/or G3P[8] strains, whilst its VP1-VP3, NSP3 and NSP4 genes were related more closely to those of AU-1-like RVAs and/or AU-1-like genes of multi-reassortant strains than to those of other RVAs. Therefore, strain K8 might have originated from intergenogroup-reassortment events involving acquisition of four Wa-like genes, possibly from G1P[8] RVAs, by an AU-1-like P[9] strain. Whole-genomic analysis of strain K8 has provided important insights into the complex genetic diversity of RVAs. PMID:22592265

  14. Rotavirus immune responses and correlates of protection

    PubMed Central

    Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.

    2012-01-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirus-specific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating post vaccination strains needs further study. PMID:22677178

  15. Rotavirus vaccine - what you need to know

    MedlinePlus

    ... caused by other germs. Another virus called porcine circovirus (or parts of it) can be found in ... get rotavirus vaccine. Babies who have had a type of bowel blockage called "intussusception" should not get ...

  16. Are hospitalizations for rotavirus gastroenteritis associated with meteorologic factors?

    PubMed

    Hervás, D; Hervás-Masip, J; Rosell, A; Mena, A; Pérez, J L; Hervás, J A

    2014-09-01

    Local climatic factors might explain seasonal patterns of rotavirus infections, but few models have been proposed to determine the effects of weather conditions on rotavirus activity. Here, we study the association of meteorologic factors with rotavirus activity, as determined by the number of children hospitalized for rotavirus gastroenteritis on the Mediterranean island of Mallorca (Spain). We conducted a retrospective review of the medical records of children aged 0-5 years admitted for rotavirus gastroenteritis between January 2000 and December 2010. The number of rotavirus hospitalizations was correlated to temperature, humidity, rainfall, atmospheric pressure, water vapor pressure, wind speed, and solar radiation using regression and time-series techniques. A total of 311 patients were hospitalized for rotavirus gastroenteritis in the 11-year study period, with a seasonal pattern from December to June, and a peak incidence in February. After multiple regressions, weekly rotavirus activity could be explained in 82 % of cases (p < 0.001) with a one-week lag meteorologic model. Rotavirus activity was negatively associated to temperature and positively associated to atmospheric pressure, solar radiation, and wind speed. Temperature and solar radiation were the factors that contributed most to the model, with a peak rotavirus activity at 9 °C and 800 10KJ/m(2), respectively. In conclusion, hospitalization for rotavirus was strongly associated with mean temperature, but an association of rotavirus activity with solar radiation, atmospheric pressure, and wind speed was also demonstrated. This model predicted more than 80 % of rotavirus hospitalizations. PMID:24760250

  17. Impact of rotavirus vaccine on premature infants.

    PubMed

    Roué, Jean-Michel; Nowak, Emmanuel; Le Gal, Grégoire; Lemaitre, Thomas; Oger, Emmanuel; Poulhazan, Elise; Giroux, Jean-Dominique; Garenne, Armelle; Gagneur, Arnaud

    2014-10-01

    Infants born preterm are at a higher risk of complications and hospitalization in cases of rotavirus diarrhea than children born at term. We evaluated the impact of a rotavirus vaccination campaign (May 2007 to May 2010) on hospitalizations for rotavirus gastroenteritis in a population of children under 3 years old born prematurely (before 37 weeks of gestation) in the Brest University Hospital birth zone. Active surveillance from 2002 to 2006 and a prospective collection of hospitalizations for rotavirus diarrhea were initiated in the pediatric units of Brest University Hospital until May 2010. Numbers of hospitalizations for rotavirus diarrhea among the population of children born prematurely, before and after the start of the vaccination program, were compared using a Poisson regression model controlling for epidemic-to-epidemic variation. A total of 217 premature infants were vaccinated from 2007 to 2010. Vaccine coverage for a complete course of three doses was 41.9%. The vaccine safety in premature infants was similar to that in term infants. The vaccination program led to a division by a factor of 2.6 (95% confidence interval [CI], 1.3 to 5.2) in the number of hospitalizations for rotavirus diarrhea during the first two epidemic seasons following vaccine introduction and by a factor of 11 (95% CI, 3.5 to 34.8) during the third season. We observed significant effectiveness of the pentavalent rotavirus vaccine on the number of hospitalizations in a population of prematurely born infants younger than 3 years of age. A multicenter national study would provide better assessment of this impact. (This study [Impact of Systematic Infants Vaccination Against Rotavirus on Gastroenteritis Hospitalization: a Prospective Study in Brest District, France (IVANHOE)] has been registered at ClinicalTrials.gov under registration no. NCT00740935.). PMID:25080553

  18. The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans

    PubMed Central

    Ramani, Sasirekha; Cortes-Penfield, Nicolas W.; Hu, Liya; Crawford, Sue E.; Czako, Rita; Smith, David F.; Kang, Gagandeep; Ramig, Robert F.; Le Pendu, Jacques; Prasad, B. V. Venkataram

    2013-01-01

    Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses. PMID:23616650

  19. Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus

    PubMed Central

    Günaydın, Gökçe; Yu, Shengze; Gräslund, Torbjörn; Hammarström, Lennart; Marcotte, Harold

    2016-01-01

    A variable fragment of a heavy chain antibody (VHH) directed against rotavirus, also referred to as anti-rotavirus protein 1 (ARP1), was shown to confer protection against rotavirus induced diarrhea in infant mouse model of rotavirus induced diarrhea. In this study, we have fused the mouse IgG1 Fc to ARP1 to improve the protective capacity of ARP1 by inducing an Fc-mediated effector function. We have shown that the Fc-ARP1 fusion protein confers significantly increased protection against rotavirus in a neonatal mouse model of rotavirus-induced diarrhea by reducing the prevalence, duration and severity of diarrhea and the viral load in the small intestines, suggesting that the Fc part of immunoglobulins may be engaged in Fc-mediated neutralization of rotavirus. Engineered conventional-like antibodies, by fusion of the Fc part of immunoglobulins to antigen-specific heavy-chain only VHH fragments, might be applied to novel antibody-based therapeutic approaches to enhance elimination of pathogens by activation of distinct effector signaling pathways. PMID:27439689

  20. Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus.

    PubMed

    Günaydın, Gökçe; Yu, Shengze; Gräslund, Torbjörn; Hammarström, Lennart; Marcotte, Harold

    2016-01-01

    A variable fragment of a heavy chain antibody (VHH) directed against rotavirus, also referred to as anti-rotavirus protein 1 (ARP1), was shown to confer protection against rotavirus induced diarrhea in infant mouse model of rotavirus induced diarrhea. In this study, we have fused the mouse IgG1 Fc to ARP1 to improve the protective capacity of ARP1 by inducing an Fc-mediated effector function. We have shown that the Fc-ARP1 fusion protein confers significantly increased protection against rotavirus in a neonatal mouse model of rotavirus-induced diarrhea by reducing the prevalence, duration and severity of diarrhea and the viral load in the small intestines, suggesting that the Fc part of immunoglobulins may be engaged in Fc-mediated neutralization of rotavirus. Engineered conventional-like antibodies, by fusion of the Fc part of immunoglobulins to antigen-specific heavy-chain only VHH fragments, might be applied to novel antibody-based therapeutic approaches to enhance elimination of pathogens by activation of distinct effector signaling pathways. PMID:27439689

  1. Identification of immunodominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in Western blots.

    PubMed

    Foo, D G W; Ang, R X; Alonso, S; Chow, V T K; Quak, S H; Poh, C L

    2008-03-01

    A major IgG-specific immunodominant VP1 linear epitope of enterovirus 71 (EV71) strain 41 (5865/SIN/00009), defined by the core sequence LEGTTNPNG, was identified by Pepscan analysis. Oligonucleotides corresponding to the amino-acid sequence of synthetic peptide SP32 were cloned and over-expressed in Escherichia coli as a recombinant glutathione-S-transferase (GST)-SP32 fusion protein. In ELISAs, this protein did not react with human anti-EV71 IgG antibodies, but there was significant immunoreactivity according to western blot analysis. The amino-acid sequence of SP32 was highly specific for detecting EV71 strains in western blot analysis, and showed no immunoreactivity with monoclonal antibodies raised against other enteroviruses, e.g., CA9 and Echo 6. PMID:18076666

  2. Measuring indirect effects of rotavirus vaccine in low income countries.

    PubMed

    Bennett, Aisleen; Bar-Zeev, Naor; Cunliffe, Nigel A

    2016-08-17

    Widespread introduction of rotavirus vaccines has led to major reductions in the burden of rotavirus gastroenteritis worldwide. Vaccine effectiveness is diminished, however, in low income countries, that harbour the greatest burden of rotavirus attributed morbidity and mortality. Indirect effects of rotavirus vaccine (herd immunity and herd protection) could increase population level impact and improve vaccine cost effectiveness in such settings. While rotavirus vaccine indirect effects have been demonstrated in high and middle income countries, there are very little data from low income countries where force of infection, population structures and vaccine schedules differ. Targeted efforts to evaluate indirect effects of rotavirus vaccine in low income countries are required to understand the total impact of rotavirus vaccine on the global burden of rotavirus disease. PMID:27443593

  3. Epidemiology of rotavirus diarrhoea in Africa: a review to assess the need for rotavirus immunization.

    PubMed Central

    Cunliffe, N. A.; Kilgore, P. E.; Bresee, J. S.; Steele, A. D.; Luo, N.; Hart, C. A.; Glass, R. I.

    1998-01-01

    Rapid progress towards the development of rotavirus vaccines has prompted a reassessment of the disease burden of rotavirus diarrhoea in developing countries and the possible impact of these vaccines in reducing diarrhoeal morbidity and mortality among infants and young children. We examined the epidemiology and disease burden of rotavirus diarrhoea among hospitalized and clinic patients in African countries through a review of 43 published studies of the etiology of diarrhoea. The studies were carried out from 1975 through 1992, and only those in which a sample of more than 100 patients with diarrhoea were specifically screened for rotavirus by using an established diagnostic test were included. Rotavirus was detected in a median of 24% of children hospitalized for diarrhoea and in 23% who were treated as outpatients; 38% of the hospitalized patients with rotavirus were < 6 months and 81% were < 1 year of age. Rotavirus was detected year-round in nearly every country and generally exhibited distinct seasonal peaks during the dry months. In 5 countries where rotavirus strains had been G-typed, 74% of strains were of one of the four common serotypes (G1 to G4), G1 was the predominant serotype, and 26% were non-typeable. This cumulative experience from 15 African countries suggests that rotavirus is the most important cause of severe diarrhoea in African children and that most strains in circulation today belong to common G types that are included in reassortant vaccines. Wherever large numbers of cases of rotavirus diarrhoea occur early in infancy, immunization at birth may protect the children before their first symptomatic infection. PMID:9868844

  4. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  5. Association of Rotavirus Gastroenteritis with Histo-blood Group Antigens.

    PubMed

    Mohanty, E; Dwibedi, B; Kar, S K; Pandey, R M

    2016-07-01

    Association of rotavirus gastroenteritis with histo-blood group antigens in children younger than 5 years admitted with diarrhea (n=389) was studied. Distribution of blood groups in rotavirus positive (n=96) and rotavirus negative (n=51) diarrhea gastroenteritis cases did not show any susceptibility to any blood group; blood group O seemed to be protective. PMID:27508550

  6. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    PubMed

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants. PMID:26284097

  7. Rotavirus-associated hospitalization and emergency department costs and rotavirus vaccine program impact☆

    PubMed Central

    Kilgore, April; Donauer, Stephanie; Edwards, Kathryn M.; Weinberg, Geoffrey A.; Payne, Daniel C.; Szilagyi, Peter G.; Rice, Marilyn; Cassedy, Amy; Ortega-Sanchez, Ismael R.; Parashar, Umesh D.; Staat, Mary Allen

    2015-01-01

    Objectives To determine the medical costs of laboratory-confirmed rotavirus hospitalizations and emergency department (ED) visits and estimate the economic impact of the rotavirus vaccine program. Patients and methods During 4 rotavirus seasons (2006–2009), children <3 years of age hospitalized or seen in the ED with laboratory-confirmed rotavirus were identified through active population-based rotavirus surveillance in three US counties. Medical costs were obtained from hospital and physician billing data, and factors associated with increased costs were examined. Annual national costs were estimated using rotavirus hospitalization and ED visit rates and medical costs for rotavirus hospitalizations and ED visits from our surveillance program for pre- (2006–2007) and post-vaccine (2008–2009) time periods. Results Pre-vaccine, for hospitalizations, the median medical cost per child was $3581, the rotavirus hospitalization rate was 22.1/10,000, with an estimated annual national cost of $91 million. Post-vaccine, the median medical cost was $4304, the hospitalization rate was 6.3/10,000 and the estimated annual national cost was $31 million. Increased costs were associated with study site, age <3 months, underlying medical conditions and an atypical acute gastroenteritis presentation. For ED visits, the pre-vaccine median medical cost per child was $574, the ED visit rate was 291/10,000 resulting in an estimated annual national cost of $192 million. Post-vaccine, the median medical cost was $794, the ED visit rate was 71/10,000 with an estimated annual national cost of $65 million. Conclusions After implementation of rotavirus immunization, the total annual medical costs decreased from $283 million to $96 million, an annual reduction of $187 million PMID:23845802

  8. Isolation and molecular characterisation of equine rotaviruses from Germany.

    PubMed

    Elschner, Mandy; Schrader, Christina; Hotzel, Helmut; Prudlo, Jutta; Sachse, Konrad; Eichhorn, Werner; Herbst, Werner; Otto, Peter

    2005-01-31

    A total of 26 rotavirus positive faecal samples of diarrhoeal foals, and 8 equine rotavirus isolates were examined. Viral RNA patterns were generated, G typing was performed by PCR, and a P[12]-specific DNA probe was developed for P typing. Furthermore, five equine rotavirus isolates were sequenced in the genomic regions coding for VP7 and part of VP4. Rotaviruses of genotype G3 P[12] were found in 22 faecal samples and G14 P[12] type could be found in 4 faecal samples. These findings confirm that in Germany G3 P[12] is the predominating type of equine rotaviruses. PMID:15627523

  9. Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: identification of a novel VP6 genotype.

    PubMed

    Guo, Dongchun; Liu, Jiasen; Lu, Yan; Sun, Yan; Yuan, Dongwei; Jiang, Qian; Lin, Huan; Li, Changwen; Si, Changde; Qu, Liandong

    2012-10-01

    Group A rotaviruses (RVAs) are major pathogens associated with acute gastroenteritis in young children and in a wide variety of domestic animals. The full-length genome of a rabbit RVA strain, RVA/Rabbit-tc/CHN/N5/1992/G3P[14], showed a G3-P[14]-I17-R3-C3-M3-A9-N1-T1-E3-H2 genomic configuration. A novel VP6 genotype, I17, was confirmed by the Rotavirus Classification Working Group. Phylogenetic analyses revealed that strain N5 possessed VP1-3, VP7, NSP1-2 and NSP4 genes closely related to those of the simian strain TUCH, NSP3 and NSP5 genes closely related to the human strains Wa and 69M, and a VP4 gene closely related to the rabbit strain 30/96 and sheep strain OVR762. The RRV and TUCH shared their ancestry with canine/feline RVAs and showed a close relationship to the human T152/feline-like RVAs. Comparison with the genotypes of the simian strains TUCH and RRV, canine strains A79-10, CU-1, K9, feline strains Cat2 and Cat97, and human strains T152 and 69M showed that RVA/Rabbit-tc/CHN/N5/1992/G3P[14] was possibly of feline/canine origin, or was a multiple reassortment involving canine, feline and human rotaviruses. The sequencing and phylogenetic analyses of rotavirus genomes is critical to the elucidation of the patterns of virus evolution. PMID:22750552

  10. Rescue of noncultivatable human rotavirus by gene reassortment during mixed infection with ts mutants of a cultivatable bovine rotavirus.

    PubMed Central

    Greenberg, H B; Kalica, A R; Wyatt, R G; Jones, R W; Kapikian, A Z; Chanock, R M

    1981-01-01

    Fastidious human rotaviruses that did not undergo productive infection in tissue culture were rescued by genetic reassortment during mixed infection with a temperature-sensitive (ts) mutant of a cultivatable bovine rotavirus. In this manner, the genes of the fastidious rotavirus that restricted growth in vitro were replaced by the corresponding genes from a tissue culture-adapted rotavirus. We recovered genetically reassorted viruses that grew to high titer and were neutralized specifically by hyperimmune guinea pig type 1 or type 2 human rotavirus antiserum. Preliminary RNA analysis of these clones disclosed that they were indeed viruses with reassorted genes. Images PMID:6264442