Science.gov

Sample records for rough surface scattering

  1. Modeling surface roughness scattering in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  2. Surface roughness scattering in multisubband accumulation layers

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  3. Scattering of light by molecules over a rough surface.

    PubMed

    Long, Maureen; Khine, Michelle; Kim, Arnold D

    2010-05-01

    We present a theory for the multiple scattering of light by obstacles situated over a rough surface. This problem is important for applications in biological and chemical sensors. To keep the formulation of this theory simple, we study scalar waves. This theory requires knowledge of the scattering operator (t-matrix) for each of the obstacles as well as the reflection operator for the rough surface. The scattering operator gives the field scattered by the obstacle due to an exciting field incident on the scatterer. The reflection operator gives the field reflected by the rough surface due to an exciting field incident on the rough surface. We apply this general theory for the special case of point scatterers and a slightly rough surface with homogeneous Dirichlet and Neumann boundary conditions. We show examples that demonstrate the utility of this theory. PMID:20448766

  4. Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis

    NASA Astrophysics Data System (ADS)

    Bahar, Ezekiel; Huang, Guorong; Lee, Bom Son

    1995-05-01

    Full wave solutions are derived for vertically and horizontally polarized waves diffusely scattered across an interface that is two-dimensionally rough separating two different propagating media. Since the normal to the rough surface is not restricted to the reference plane of incidence, the waves are depolarized upon scattering; and the single scattered radiation fields are expressed as integrals of a surface element transmission scattering matrix that also accounts for coupling between the vertically and horizontally polarized waves. The integrations are over the rough surface area as well as the complete two-dimensional wave spectra of the radiation fields. The full wave solutions satisfy the duality and reciprocity relationships in electromagnetic theory, and the surface element scattering matrix is invariant to coordinate transformations. It is shown that in the high-frequency limit the full wave solutions reduce to the physical optics solutions, while in the low-frequency limit (for small mean square heights and slopes) the full wave solutions reduce to Rice's (1951) small perturbation solutions. Thus, the full wave solution accounts for specular point scattering as well as diffuse, Bragg-type scattering in a unified, self-consistent manner. It is therefore not necessary to use hybrid, perturbation and physical optics approaches (based on two-scale models of composite surfaces with large and small roughness scales) to determine the like- and cross-polarized fields scattered across the rough surface.

  5. Surface roughness scattering of electrons in bulk mosfets

    SciTech Connect

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented on both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The

  6. Full Wave Single and Double Scatter from Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Bahar, E.; El-Shenawee, M.

    1994-12-01

    Using the full wave approach, the single and double scattered electromagnetic fields from deterministic one-dimensional rough surfaces are computed. Full wave expressions for the single and double scattered far fields are given in terms of multidimensional integrals. These integrals are evaluated using the Cornell National Supercomputer IBM/3090. Applying the steepest descent approximation to the double scattered field expressions, the dimensions of the integrals are reduced from four to two in the case of one-dimensional rough surfaces. It is shown that double scatter in the backward direction is significant for near normal incidence when the rough surface is highly conducting and its mean square slope is very large. Even for one-dimensional rough surfaces, depolarization occurs when the reference plane of incidence is not parallel to the local planes of incidence and scatter. A geometrical optics approximation is used to interpret the results of the double scattered fields for normal incidence near backscatter. The physical interpretation of the results could shed light on the observed fluctuations in the enhanced backscatter phenomenon as the angle of incidence increases from near normal to grazing angles. The results show that double scatter strongly depends upon the mean square slope, the conductivity of the rough surface and the angle of incidence.

  7. Depolarization of Light Scattered from Rough Cylindrical Surfaces

    NASA Astrophysics Data System (ADS)

    Aparicio, R.; Quintián, F. Perez; Rebollo, M. A.

    2008-04-01

    In this work we study the state of polarization of light scattered from rough cylindrical surfaces. The experimental results show that the amount of cross-polarized light at a particular observation angle is correlated with the roughness of the cylinders. We compare these results with those obtained using the Kirchhoff's vector theory and analyze if the differences can be modeled on multiple-scattering effects.

  8. Scattering from a rough surface in presence of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Basu, Santasri; Hyde, Milo W.; McCrae, Jack E.; Fiorino, Steven T.

    2013-05-01

    A Gaussian Schell Model (GSM) might be a convenient way to model extended beacons created on diffuse targets. Earlier, we used a full wave computational technique called the Method of Moments (MoM) to evaluate the scattered field from a rough impedance surface in vacuum. The MoM model showed several deviations from GSM. The present work uses a simulation approach based on physical optics approximation to study the scattering behavior in presence of atmospheric turbulence. A fully coherent beam is propagated through weak turbulence and is incident on the rough surface. The light scattered from the rough surface is again propagated through turbulence back to the source plane and the properties of the scattered radiation are studied through numerical simulations. The simulation results are compared with a GSM.

  9. Speckle size of light scattered from slightly rough cylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Berlasso, Ricardo G.; Quintian, Fernando Perez; Rebollo, Maria A.; Gaggioli, Nestor G.; Brea, Luis Miguel Sanchez; Martinez, Eusebio Bernabeu

    2002-04-01

    This research is an extension of the optical method of quality control presented in a previous paper [Appl. Opt. 39, 5811 (2000)] to the case of slightly rough cylindrical surfaces. Applying the Kirchhoff scalar diffraction theory yields an analytical expression of the autocorrelation function of the intensity scattered from slightly rough cylindrical surfaces. This function, which is related to speckle size and shape, is shown to depend on the surface correlation length, unlike for plane surfaces for which the speckle depends on the illuminated area only. The theoretical expression is compared with that for the speckle produced by the light scattered from a cylindrical bearing and from various high-quality wires, showing that the method allows the correlation lengths of high-quality cylindrical surfaces to be determined.

  10. Rough surface scattering from moving ocean surfaces as an indicator of scattering mechanisms

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin

    1993-01-01

    Ever since Crombie used the Doppler spectrum of RF signals scattered from the ocean surface to provide conclusive evidence for Bragg resonant scattering, scattering from the ocean surface has served as a testing ground for the identification of governing scattering mechanisms in rough surface scattering. The moving ocean surface has the advantage for rough surface scattering that, being a dispersive medium, features with different spatial scales the tendency to travel at different speeds. Thus, by looking at the temporal signature of the scattered field, one can try to isolate the scattering mechanism. This feature has been exploited by various authors. To give a recent example, we cite the work of Plant, who examined the Doppler spectrum of the return signal to infer the presence of two-scale scattering in scattering at medium incidence angles. The problem with restricting oneself to the examination of the Doppler spectrum, as has been done traditionally, is that one restricts the phenomena under investigation to temporally homogeneous phenomena: transient phenomena, which are localized in time, are not localized in frequency space. There is increasing evidence that this type of phenomena, due to specular scattering or breaking waves, may also play an important role in determining the scattering mechanism in ocean-like surfaces. To overcome this problem, we introduce the use of the Wavelet Transform to study the frequency-temporal signatures of the scattered field from moving ocean waves. We calculate this signature using various analytic scattering theories and show that the Wavelet Transform provides a useful tool for separating the different scattering mechanisms operating in scattering in ocean-like surfaces. Next we simulate realistic nonlinear moving ocean waves and calculate the temporal scattered field signature by using the method of moments and the stop-start approximation: the surface is assumed stationary during a scattering event, but moves between

  11. Effects of a rough boundary surface on polarization of the scattered field from an inhomogeneous medium

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Eom, H. J.

    1983-01-01

    A combination of the standard Kirchhoff method for rough surface scattering with the Rayleigh phase function radiative transfer method for volume scattering is employed in the present study of the effect of surface roughness on the polarization of the scattered field. It is found that for pure surface scattering, the polarization ratio between zero and 20 deg incidence angles is sensitive to surface roughness change. When both surface and volume scattering are present, however, copolarization nulls by colatitude or degree of polarization at zero to 15 deg incidence angle, and copolarization or crosspolarization nulls by longitude at large incidence angles, are better indicators of surface roughness changes. It is noted that degree of polarization and copolarization nulls by colatitude vary monotonously with incidence angle, while in combined surface and volume scattering these have, respectively, a minimum and a maximum. This characteristic allows the separation of combined surface and volume scattering from pure surface or volume scattering.

  12. The phenomenon of simplified scattering from rough surfaces to reflection in fractional space

    NASA Astrophysics Data System (ADS)

    Safdari, Hadiseh; Vahabi, Mahsa; Jafari, Gholamreza

    2015-11-01

    In this paper, the scattering of incident plane waves from rough surfaces has been modeled in a fractional space. It is shown how wave scattering from a rough surface could correspond to a simple reflection problem in a fractional space. In an integer dimensional space, fluctuations of the surface result in wave scattering, while in the fractional space, these fluctuations are compensated by the geometry of space. In the fractional space, reflection is equivalent to scattering from the integer dimensional space. Comparing scattered wave functions from different self-affine rough surfaces in the framework of the Kirchhoff theory with the results from the fractional space, we see good agreement between them.

  13. Retrieval of terahertz spectroscopic signatures in the presence of rough surface scattering using wavelet methods

    NASA Astrophysics Data System (ADS)

    Arbab, M. H.; Winebrenner, D. P.; Thorsos, E. I.; Chen, A.

    2010-11-01

    Scattering of terahertz waves by surface roughness can obscure spectral signatures of chemicals at these frequencies. We demonstrate this effect using controlled levels of surface scattering on α-lactose monohydrate pellets. Furthermore, we show an implementation of wavelet methods that can retrieve terahertz spectral information from rough surface targets. We use a multiresolution analysis of the rough-surface-scattered signal utilizing the maximal overlap discrete wavelet transform (MODWT) to extract the resonant signature of lactose. We present a periodic extension technique to circumvent the circular boundary conditions of MODWT, which can be robustly used in an automated terahertz stand-off detection device.

  14. Surface enhanced Raman scattering in electrochemical systems: The complex roles of surface roughness

    NASA Astrophysics Data System (ADS)

    Pemberton, Jeanne E.; Guy, Anita L.; Sobocinski, Raymond L.; Tuschel, David D.; Cross, Nathan A.

    1988-06-01

    A series of experiments designed to elucidate the presence and properties of large-scale and atomic-scale roughness produced on Ag electrodes with electrochemical oxidation-reduction cycle (ORC) pretreatments are presented. This report reviews surface enhanced Raman scattering (SERS) and scanning electron microscopic (SEM) characterization of Ag electrodes roughened with controlled-rate ORCs, and presents new results for the laser-induced thermal decay of SERS as a probe of Ag surface active sites and differential reflectance spectroscopy of electrochemically roughened Ag electrodes. These results are interpreted in terms of the presence and properties of both large-scale and atomic-scale roughness on these surfaces.

  15. An iterative analytic—numerical method for scattering from a target buried beneath a rough surface

    NASA Astrophysics Data System (ADS)

    Xu, Run-Wen; Guo, Li-Xin; Wang, Rui

    2014-11-01

    An efficiently iterative analytical—numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.

  16. On high-frequency radiation scattering sensitivity to surface roughness in particulate media

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-06-01

    This paper analyzes the sensitivity of high-frequency radiation scattering in particulate media, to particle surface roughness. Ray-tracing theory and computation are employed. Since the magnitude of the Poynting vector ray, the irradiance, is the appropriate quantity to be tracked, the behavior of the reflectance, which controls the ratio of the reflected and incident Poynting vector magnitudes, is of primary concern. The reflectance is a highly nonlinear function of the refractive indices and angle of incidence. The present work first addresses the relationship between a single scatterer's sensitivity to its surface roughness and then the response of a large number of scatterers to the surface roughness. The analysis indicates that, for a single scatterer, the sensitivity of the response to roughness decreases, up to a point, and then increases again, i.e., it is nonmonotone. However, for a system of multiple scatterers, this effect vanishes, due to multiple internal reflections which dominate the overall response characteristics. While it was relatively straightforward to compute the overall sensitivity of a single scattering body, for example a sphere, when multiple reflecting bodies are considered, numerical simulations are necessary because the reflected rays from one "rough" body will, in turn, be reflected to another "rough" body, etc. Examples are given for a system of randomly distributed scatterers.

  17. Investigation on global positioning system signal scattering and propagation over the rough sea surface

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Guo, Li-Xin; Wu, Zhen-Sen

    2010-05-01

    This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.

  18. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness.

    PubMed

    Grynko, Yevgen; Shkuratov, Yuriy; Förstner, Jens

    2016-08-01

    We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of X=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the scattering angle curves of intensity and polarization. If a wavelength-scale surface roughness is introduced, diffuse scattering at rough interface results in smooth and featureless curves for all scattering matrix elements which is consistent with the laboratory measurements of real samples. PMID:27472601

  19. Interference between magnetism and surface roughness in coherent soft X-ray scattering

    SciTech Connect

    Rahmim, A.; Tixier, S.; Tiedje, T.; Eisebitt, S.; Lorgen, M.; Scherer, R.; Eberhardt, W.; Luning, J.; Scholl, A.

    2002-06-15

    In coherent soft x-ray scattering from magnetically ordered surfaces there are contributions to the scattering from the magnetic domains, from the surface roughness, and from the diffraction associated with the pinhole aperture used as a coherence filter. In the present work, we explore the interplay between these contributions by analyzing speckle patterns in diffusely scattered x rays from the surface of magnetic thin films. Magnetic contrast from the surface of anti ferro magnetically ordered LaFeO3 films is caused by magnetic linear dichroism in resonant x-ray scattering. The samples studied possess two types of domains with their magnetic orientations perpendicular to each other. By tuning the x-ray energy from one of the two Fe-L3 resonant absorption peaks to the other, the relative amplitudes of the x-ray scattering from the two domains is inverted which results in speckle pattern changes. A theoretical expression is derived for the intensity correlation between the speckle patterns with the magnetic contrast inverted and not inverted. The model is found to be in good agreement with the x-ray-scattering observations and independent measurements of the surface roughness. An analytical expression for the correlation function gives an explicit relation between the change in the speckle pattern and the roughness, and magnetic and aperture scattering. Changes in the speckle pattern are shown to arise from beating of magnetic scattering with the roughness scattering and diffraction from the aperture. The largest effect is found when the surface roughness scatter is comparable in intensity to the magnetic scatter.

  20. Scattering of surface plasmon-polaritons and volume waves by a rough gold film.

    PubMed

    Sterligov, V A; Grytsaienko, I A; Men, Y

    2016-08-15

    A discrepancy between the theories of volume and surface plasmon-polaritons (SPPs) wave scattering was found. Its tentative explanation is related to the resonance-like emission of SPPs energy due to SPPs diffraction by a surface relief Fourier decomposition component. It was also shown that the sum of surface wave scattered intensity along a plane of incidence is proportional to surface roughness value. PMID:27519069

  1. Fluctuation correlation of the scattered intensity from two-dimensional rough surfaces.

    PubMed

    Zhang, Geng; Wu, Zhensen

    2012-01-16

    The fourth-order moment of the scattered light, namely, the correlation function of the scattered intensity fluctuation from two-dimensional optically weak homogeneous and isotropic rough surfaces obeying Gaussian distribution are investigated based on Beckmann theory and Gaussian moment theorem. Analytical and numerical results are given for the correlation functions of the scattered intensity fluctuation. Also two important special cases, two-frequency correlation and angular correlation, are discussed, as well as the influence of the incident and observation conditions and the characteristic parameters of the rough surfaces on the correlation function which could lead to a more clear understanding of the scattering property of the rough surface and provide a theoretical basis for the 3D target recognition. PMID:22274493

  2. Diffuse scattered field of elastic waves from randomly rough surfaces using an analytical Kirchhoff theory

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Xi, X.; Craster, R. V.

    2016-07-01

    We develop an elastodynamic theory to predict the diffuse scattered field of elastic waves by randomly rough surfaces, for the first time, with the aid of the Kirchhoff approximation (KA). Analytical expressions are derived incorporating surface statistics, to represent the expectation of the angular distribution of the diffuse intensity for different modes. The analytical solutions are successfully verified with numerical Monte Carlo simulations, and also validated by comparison with experiments. We then apply the theory to quantitatively investigate the effects of the roughness and the shear-to-compressional wave speed ratio on the mode conversion and the scattering intensity, from low to high roughness within the valid region of KA. Both the direct and the mode converted intensities are significantly affected by the roughness, which leads to distinct scattering patterns for different wave modes. The mode conversion effect is very strong around the specular angle and it is found to increase as the surface appears to be more rough. In addition, the 3D roughness induced coupling between the out-of-plane shear horizontal (SH) mode and the in-plane modes is studied. The intensity of the SH mode is shown to be very sensitive to the out-of-plane correlation length, being influenced more by this than by the RMS value of the roughness. However, it is found that the depolarization pattern for the diffuse field is independent of the actual value of the roughness.

  3. Scattering of electromagnetic waves from a periodic surface with random roughness

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1988-01-01

    Equations for the scattering of electromagnetic waves from a randomly perturbed periodic surface have been formulated using the extended boundary condition method and solved using the small perturbation method. Surface currents and scattered fields are solved for up to the second order. The results indicate that as the correlation length of the random roughness increases, the bistatic scattering patterns of the scattered fields show several beams associated with each Bragg diffraction direction of the periodic surface. The beam shape becomes broader with smaller correlation length. Results obtained using the Kirchhoff approximation are found to agree well with the present results for the hh and vv polarized backscattering coefficients for small angles of incidence.

  4. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Tchvialeva, Lioudmila; Markhvida, Igor; Lee, Tim K.; Meglinski, Igor

    2016-07-01

    In the framework of further development of a unified computational tool for the needs of biomedical optics, we introduce an electric field Monte Carlo (MC) model for simulation of backscattering of coherent linearly polarized light from a turbid tissue-like scattering medium with a rough surface. We consider the laser speckle patterns formation and the role of surface roughness in the depolarization of linearly polarized light backscattered from the medium. The mutual phase shifts due to the photons' pathlength difference within the medium and due to reflection/refraction on the rough surface of the medium are taken into account. The validation of the model includes the creation of the phantoms of various roughness and optical properties, measurements of co- and cross-polarized components of the backscattered/reflected light, its analysis and extensive computer modeling accelerated by parallel computing on the NVIDIA graphics processing units using compute unified device architecture (CUDA). The analysis of the spatial intensity distribution is based on second-order statistics that shows a strong correlation with the surface roughness, both with the results of modeling and experiment. The results of modeling show a good agreement with the results of experimental measurements on phantoms mimicking human skin. The developed MC approach can be used for the direct simulation of light scattered by the turbid scattering medium with various roughness of the surface.

  5. Development of a laser-scattering-based probe for on-line measurement of surface roughness.

    PubMed

    Wang, Shihua; Tian, Yunhui; Tay, Cho Jui; Quan, Chenggen

    2003-03-01

    The design and properties of an optical probe for on-line measurement of surface roughness are discussed. Based on light scattering, a probe that consists of a laser diode, a measuring lens, and a linear photodiode array was designed to detect surface roughness, in which the light scattered from a test surface at a relatively large scattering angle phi (=28 degrees) can be collected to enhance measuring range and repeatability. A coaxial design that incorporates a dual-laser probe and compressed air makes the proposed system insensitive to the position of the test surface and to surface conditions such as the presence of debris, vibration, and lubricants that result from machining. The results from measurements of several sets of specimens have demonstrated the feasibility of measuring surface roughness by using light scattering. On-line measurement on a diamond-turning lathe has shown that the proposed technique is stable and compact enough to be applicable to on-line measurement of surface roughness of an engineering surface. PMID:12638888

  6. Effect of shadowing on electromagnetic scattering from rough ocean wavelike surfaces at small grazing angles

    SciTech Connect

    West, J.C.

    1997-03-01

    A hybrid moment-method/geometrical-theory-of-diffraction technique (MM/GTD) has been implemented to numerically calculate the electromagnetic scattering from one-dimensionally rough surfaces at extreme illumination angles (down to 0{degree} grazing). The hybrid approach allows the extension of the modeled scattering surface to infinity, avoiding the artificial edge diffraction that prevents use of the standard moment method at the smallest grazing angles. Numerical calculation of the backscattering from slightly rough large-scale surfaces approximating ocean wave features shows that roughness in strongly shadowed regions can contribute significantly to the total backscatter at vertical polarization. This is observed when the shadowing obstacle is several wavelengths high, and the magnitude of the shadow-region contribution does not depend on the radius-of-curvature of the shadowing feature. Strongly shadowed roughness does not significantly contribute to the backscatter at horizontal polarization, although weakly shadowed roughness near the incidence shadow boundary does. The calculations indicate that a shadowing-corrected two-scale model may be able to predict the distributed-surface portion of the sea-surface scattering from the ocean surface at grazing angles down to about 15{degree}, but at lower grazing the shadowing and large-scale curvature of the surface prevent the establishment of a Bragg resonance and invalidate the model.

  7. Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Bi, Lei; Liu, Jianping; Panetta, R. Lee; Yang, Ping; Kattawar, George W.

    2016-07-01

    Constructing an appropriate particle morphology model is essential for realistic simulation of optical properties of atmospheric particles. This paper presents a model for generating surface roughness based on a combination of methods from discrete differential geometry combined with a stochastic partial differential equation for surface evolution introduced by Edwards and Wilkinson. Scattering of light by roughened particles is simulated using the Invariant Imbedding T-Matrix (II-TM) method. The effects of surface roughness on the single-scattering properties, namely, the phase matrix, asymmetry factor, and extinction efficiency, are investigated for a single wavelength in the visible range and for a range of size parameters up to x=50. Three different smooth shapes are considered: spherical, spheroidal, and hexagonal, the latter two in just the "compact particle" case of unit aspect ratio. It is shown that roughness has negligible effects on the optical scattering properties for size parameters less than 20. For size parameters ranging from 20 to 50, the phase matrix elements are more sensitive to the surface roughness than are two important integral optical properties, the extinction efficiency and asymmetry factor. As has been seen in studies using other forms of roughening, the phase function is progressively smoothed as roughness increases. The effect on extinction efficiency is to increase it, and on asymmetry factor is to decrease it. Each of these effects is relatively modest in the size range considered, but the trend of results suggests that greater effects will be seen for size parameters larger than ones considered here.

  8. A new method to model x-ray scattering from random rough surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Van Speybroeck, Leon P.

    2003-03-01

    This paper presents a method for modeling the X-ray scattering from random rough surfaces. An actual rough surface is (incompletely) described by its Power Spectral Density (PSD). For a given PSD, model surfaces with the same roughness as the actual surface are constructed by preserving the PSD amplitudes and assigning a random phase to each spectral component. Rays representing the incident wave are reflected from the model surface and projected onto a flat plane, which approximates the model surface, as outgoing rays and corrected for phase delays. The projected outgoing rays are then corrected for wave densities and redistributed onto an uniform grid where the model surface is constructed. The scattering is then calculated by taking the Fast Fourier Transform (FFT) of the resulting distribution. This method is generally applicable and is not limited to small scattering angles. It provides the correct asymmetrical scattering profile for grazing incident radiation. We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expect this method to be useful for other X-ray telescope missions.

  9. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-10-31

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues. (biophotonics)

  10. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2013-10-01

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues.

  11. Full wave two-dimensional modeling of scattering and inverse scattering for layered rough surfaces with buried objects

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Hao

    Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties

  12. A valuable method for online wire quality control: light scattering from cylindrical rough surfaces

    NASA Astrophysics Data System (ADS)

    Perez Quintian, Fernando; Rebollo, Maria A.; Berlasso, Ricardo G.; Gaggioli, Nestor G.

    2003-05-01

    In several applications, it is necessary to measure the surface characteristics of a wire so, it is important to do it during the manufacturing process. This work presents two main results: First, an analytical expression for the angular distribution of the mean scattered intensity from cylindrical rough surfaces as a function of the characteristic statistical parameters of the heights. This expression allows to measure the ratio T/σ between the correlation length and the roughness. Second, a quantitative relationship between the size and shape of the speckle grains in the Fraunhofer zone and the statistical properties of the cylindrical rough surface. In the first case, it is shown that the scanning process inherent to usual detection systems can be replaced by single step detection using a screen and a CCD camera. Therefore, this method can be applied to on line wire surface testing where conventional procedures are inadequate. In the second one, the experimental autocorrelation functions at different angles gives another method for measuring the parameter T/σ. Then, the study of the light scattered from cylindrical rough surfaces seem to be of great interest because of its potential application in NDT of manufacturing and finishing processes of components like pipes, junctions, wires and bearings.

  13. Rough-surface effects on incoherent scattering from random volumetric scatterers: Approximate analytic series solution

    SciTech Connect

    Bilgen, M.; Rose, J.H. )

    1994-11-01

    An approximate analytic series solution is obtained for the effects of randomly rough surfaces on the time-dependent ultrasonic backscatter that are due to beam-microstructure interactions. The transmission of sound through the rough surface is modeled by scalar waves by use of the phase-screen and Fresnel approximations, whereas the transducer is assumed to produce a focused normally oriented Gaussian beam. The beam-microstructure interaction is described by a simple, generic model that attributes backscattering to inhomogeneities in the elastic constants of the sample; density variations are ignored. Key predictions of the approximate series solution are that (a) acoustic backscatter is relatively insensitive to surface roughness for unfocused probes, (b) roughness can dramatically reduce the backscatter noise seen by focused probes, (c) backscatter is increased at early times because of weak localization, and (d) backscatter is reduced at late times because of increased diffraction. The predictions of the series solution are briefly compared with available experiment. 32 refs., 10 figs.

  14. Ray model of light scattering by flake pigments or rough surfaces with smooth transparent coatings.

    PubMed

    Germer, Thomas A; Marx, Egon

    2004-02-20

    We derive expressions for the intensity and polarization of light singly scattered by flake pigments or a rough surface beneath a smooth transparent coating using the ray or facet model. The distribution of local surface normals is used to calculate the bidirectional reflectance distribution function (BRDF). We discuss the different distribution functions that can be used to characterize the distribution of local surface normals. The light-scattering model is validated by measurements of the BRDF and polarization by a metallic flake pigmented coating. The results enable the extraction of a slope distribution function from the data, which is shown to be consistent over a variety of scattering geometries. These models are appropriate to estimate or predict the appearance of flake pigment automotive paints. PMID:15008529

  15. Lunar single-scattering, porosity, and surface-roughness properties with SMART-1/AMIE

    NASA Astrophysics Data System (ADS)

    Parviainen, H.; Muinonen, K.; Näränen, J.; Josset, J.-L.; Beauvivre, S.; Pinet, P.; Chevrel, S.; Koschny, D.; Grieger, B.; Foing, B.

    2009-04-01

    We analyze the single-scattering albedo and phase function, local surface roughness and regolith porosity, and the coherent backscattering, single scattering, and shadowing contributions to the opposition effect for specific lunar mare regions imaged by the SMART-1/AMIE camera. We account for shadowing due to surface roughness and mutual shadowing among the regolith particles with ray-tracing computations for densely-packed particulate media with a fractional-Brownian-motion interface with free space. The shadowing modeling allows us to derive the hundred-micron-scale volume-element scattering phase function for the lunar mare regolith. We explain the volume-element phase function by a coherent-backscattering model, where the single scatterers are the submicron-to-micron-scale particle inhomogeneities and/or the smallest particles on the lunar surface. We express the single-scatterer phase function as a sum of three Henyey-Greenstein terms, accounting for increased backward scattering in both narrow and wide angular ranges. The Moon exhibits an opposition effect, that is, a nonlinear increase of disk-integrated brightness with decreasing solar phase angle, the angle between the Sun and the observer as seen from the object. Recently, the coherent-backscattering mechanism (CBM) has been introduced to explain the opposition effect. CBM is a multiple-scattering interference mechanism, where reciprocal waves propagating through the same scatterers in opposite directions always interfere constructively in the backward-scattering direction but with varying interference characteristics in other directions. In addition to CBM, mutual shadowing among regolith particles (SMp) and rough-surface shadowing (SMr) have their effect on the behavior of the observed lunar surface brightness. In order to accrue knowledge on the volume-element and, ultimately, single-scattering properties of the lunar regolith, both SMp and SMr need to be accurately accounted for. We included four

  16. MOLA-derived Roughness Data Used to Predict Surface Scattering for Mars Subsurface Radar Sounding

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Garneau, S.

    1999-01-01

    The Mars Express orbiter, to be launched by the European Space Agency in 2003, will carry a low-frequency radar sounding instrument, MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding). The primary goal of MARSIS is to map the distribution of water, both solid and (if present) liquid, in the upper several km of the martian crust. Detecting discontinuities in the crust, such as an ice-water transition, presents many challenges for a Mars orbital radar sounder. One challenge that must be overcome is the presence of radar scattering (echoes) from the surface of Mars, expected to be detected by the sounder antennas at the same time as any echoes aris-ing from subsurface interfaces. As the transmitted spherical wavefront spreads within the crust of Mars,. it also interacts with surface topography at off-nadir positions, creating a "clutter" signal that can mask the subsurface echoes. The MARSIS instrument will utilize Doppler filtering to limit the off-nadir clutter in the along-track direction, and a nadir-null secondary antenna to identify strong off-nadir clutter from the cross-track direction. To evaluate the effects of off-nadir surface clutter and the capability of these schemes to reduce the clutter, it is necessary to predict the range of scattering behavior that may be expected from martian surface topography. In this paper, we utilize Mars Orbital Laser Altimeter (MOLA) data from the current Mars Global Surveyor mission to characterize the topographic roughness of a variety of martian terrain types, at scales relevant to the MARSIS clutter problem. Segments of MOLA altimetry profiles are reduced to the topographic parameters rms slope and fractal dimension, which then are used as inputs to a near-nadir radar scattering model to predict the strength of the clutter signal. Additional information is contained in the original extended abstract.

  17. Electromagnetic wave scattering at near-grazing incidence from a gently undulating, rough surface

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Sperley, E. J.; Zebker, H. A.

    1988-01-01

    Models to estimate the reflection coefficient of a statistically rough surface, for example the works of Beckmann, Smith, and Vesecky are discussed. Bistatic radar experiments carried out during the Apollo 16 mission provide a data set with which to compare theoretical models and experimental data. These bistatic S-band radar experiments provide experimental estimates of the Moon's bistatic, forward scatter, reflection coefficient for grazing angles of 2.5 to 78 deg. Theoretical expressions for the reflection coefficient are developed for comparison with these experimental data. At grazing angles below 10 deg the models of Smith and Vesecky compare favorably with the data. Beckmann's model falls significantly more rapidly with decreasing grazing angle than does the data.

  18. Scattering of Rarefied Gas Atoms from Rough Surface Simulated with Fractals

    NASA Astrophysics Data System (ADS)

    Aksenova, Olga A.

    2003-05-01

    The fractal approach to the model of surface roughness in the problem of gas-surface interaction is developed on the base of the generalization of two-dimensional model of roughness proposed by Blackmore and Zhou. The relation between the parameters of the model and the values influencing the aerodynamic coefficients is investigated. Computed results are compared with the values obtained using statistical model of roughness — the isotropic Gaussian random field.

  19. Effects on the Electromagnetic Scattering of a Plane Wave due to the Surface Roughness of a Buried Perfectly Conducting Pipeline

    NASA Astrophysics Data System (ADS)

    Frezza, Fabrizio; Mangini, Fabio; Stoja, Endri; Tedeschi, Nicola

    2013-04-01

    In this work we present a numerical study of the effects that can be observed in the electromagnetic scattering of a plane wave due to the surface roughness of a buried scatterer. The latter is supposed to be a metallic pipeline modeled as a perfect-electric conducting cylinder immersed in a half-space occupied by a lossy medium. Considering the pipeline's cross-section, the surface roughness is modeled as a sinusoidal variation of the radius of the cylinder's surface with respect to the revolution angle. A linearly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium excites the structure. As a result, we monitor the three components of the scattered electric field along a line just above the interface between the two media. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. In order to discriminate the effects due only to the surface roughness, we compare the results obtained by the rough surface scatterers with the reference case of a perfect cylinder in which the surface roughness is absent, for a fixed depth and a fixed mean radius of the cylinder. In our study, we vary the amplitude and the angular frequency of the sinusoidal disturbance to model different surface roughness scenarios. For all the scenarios taken in consideration, a frequency sweep of the impinging radiation is performed. This allows us to investigate the relation between the excitation frequency and the sinusoidal disturbance frequency of the rough surface. The study has several implications in the field of civil engineering. One example might be the one in which the geometrical characteristics of the buried pipeline are known in advance, and it is important to continuously monitor the structural variations of its external surface due to the deterioration in time under the action of various environmental factors.

  20. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    NASA Astrophysics Data System (ADS)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-08-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  1. Random rough surface photofabrication

    NASA Astrophysics Data System (ADS)

    Brissonneau, Vincent; Escoubas, Ludovic; Flory, François; Berginc, Gérard

    2011-10-01

    Random rough surfaces are of primary interest for their optical properties: reducing reflection at the interface or obtaining specific scattering diagram for example. Thus controlling surface statistics during the fabrication process paves the way to original and specific behaviors of reflected optical waves. We detail an experimental method allowing the fabrication of random rough surfaces showing tuned statistical properties. A two-step photoresist exposure process was developed. In order to initiate photoresist polymerization, an energy threshold needs to be reached by light exposure. This energy is brought by a uniform exposure equipment comprising UV-LEDs. This pre-exposure is studied by varying parameters such as optical power and exposure time. The second step consists in an exposure based on the Gray method.1 The speckle pattern of an enlarged scattered laser beam is used to insolate the photoresist. A specific photofabrication bench using an argon ion laser was implemented. Parameters such as exposure time and distances between optical components are discussed. Then, we describe how we modify the speckle-based exposure bench to include a spatial light modulator (SLM). The SLM used is a micromirror matrix known as Digital Micromirror Device (DMD) which allows spatial modulation by displaying binary images. Thus, the spatial beam shape can be tuned and so the speckle pattern on the photoresist is modified. As the photoresist photofabricated surface is correlated to the speckle pattern used to insolate, the roughness parameters can be adjusted.

  2. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  3. Nanowetting of rough superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Lamb, R. N.; Cookson, D. J.

    2007-12-01

    Small angle x-ray scattering has been used to investigate the in situ immersive wetting of ultrarough surfaces which exhibit superhydrophobicity with extreme water contact angle (θA=169°). Reduced scattering contrast observed from rough surfaces when partially or totally wetted reveals significant physical differences between superhydrophobic surfaces not otherwise apparent from conventional contact angle measurements.

  4. Roughness of free surfaces of bulk amorphous polymers as studied by x-ray surface scattering and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stone, V. W.; Jonas, A. M.; Nysten, B.; Legras, R.

    1999-08-01

    The morphology of free surfaces of polyetherimide (PEI) samples has been characterized using atomic force microscopy in noncontact mode (NC-AFM), x-ray reflectivity (XRR), and x-ray diffuse scattering (XDS). PEI slabs have been prepared by molding pellets onto float glass. In order to characterize the roughness and morphology mathematically, we considered the surfaces as being self-affine with a rms roughness σ and Hurst coefficient H up to a finite correlation length ξ. NC-AFM topographs with σ=61+/-6.3 Å showed the presence of blobs on the surface having a slight tendency to form clusters. These features are reflected in the height-height correlation function which shows the presence of ``strong'' short-range (ξ1=1064 Å, H1=0.46) and ``weak'' long-range (ξ2=14537 Å, H2=0.99) correlations. The detection of the specularly reflected contribution in XRR scans only gives access to σ, the lateral fluctuations being averaged out over the coherence area. Scans in XDS include the detection of the diffuse (off-specular) scattering arising from lateral correlations in the surface fluctuations profile and are hence sensitive to σ, ξ, and H. The XDS data have been analyzed by simultaneous fits using the distorted-wave Born approximation up to the first order. Calculations were performed using previously published approximations. Best fits to the experimental data provided strongly different correlations length values (7570 Å<=ξ<=1245 Å) indicating that the estimation of the latter by XDS is somewhat ambiguous. This is in agreement with the strong discrepancy between the correlation lengths determined with x rays and NC-AFM, which can be accounted for by the limits of the perturbation theory for interfaces with high rms roughnesses.

  5. Application of multiregion model to EM scattering from a dielectric target above or below a dielectric rough surface

    NASA Astrophysics Data System (ADS)

    Wei, Yiwen; Guo, Lixin

    2016-04-01

    This paper is aimed at applying the multiregion model to the composite EM scattering from a dielectric target and a dielectric rough surface. In the multiregion model, the rough surface is divided into multiple regions, the method of moment (MoM) is only adopted in the dominant region. Hence, this model can markedly reduce the number of unknowns. Firstly, we derived the single integral equation (SIE) in which the number of unknowns is half of those in the conventional MoM and the equations will be easier to deal with. Then the multiregion model is extended by SIE. With the multiregion model, one can obtain the accurate equivalent currents on the dominant region and accurate bistatic scattering coefficient in small and moderate scattering angles with much less time and memory requirement.

  6. X-ray specular scattering from statistically rough surfaces: a novel theoretical approach based on the Green function formalism.

    PubMed

    Chukhovskii, F N; Polyakov, A M

    2010-11-01

    The Green function formalism is applied to the problem of grazing-incidence small-angle X-ray scattering from statistically rough surfaces. Kirchhoff's integral equation is used to describe the X-ray wavefield propagation through a single rough surface separating vacuum and medium. Taking into account multiple diffuse X-ray scattering effects, the reflection R(coh)(θ) and transmission T(coh)(θ) coefficients of the specular wave are obtained using the Gaussian statistical model of rough surfaces in terms of the two-point height-height correlation function. In the limiting cases when the correlation length xi is equal to zero or infinity, analytical formulae for the reflection R(coh)(θ) and transmission T(coh)(θ) coefficients of the specular wave are obtained. It is important that in the case xi --> infinity they coincide with the corresponding reflection R(DW)(θ) and transmission T(DW)(θ) coefficients related to the conventional Debye-Waller approximation for describing the grazing X-ray scattering from a rough surface. In the case of finite values of correlation length \\xi the reflection |R(coh)(θ)|(2) and transmission |T(coh)(θ)|(2) scans are numerically calculated. PMID:20962372

  7. The relationship between radar scattering and surface roughness of lunar volcanic features

    NASA Astrophysics Data System (ADS)

    Jawin, Erica R.; Kiefer, Walter S.; Fassett, Caleb I.; Bussey, D. Benjamin J.; Cahill, Joshua T. S.; Dyar, M. Darby; Lawrence, Samuel J.; Spudis, Paul D.

    2014-11-01

    Lunar roughness measurements derived from the Lunar Orbiter Laser Altimeter are compared to 12.6 cm wavelength radar data collected by the Miniature Radio Frequency instrument and 70 cm wavelength radar data collected by the Arecibo Observatory. These data are compared to assess how surface and subsurface roughness are correlated and affected by parameters including age and composition at length scales between 0.1 and 100 m. A range of features are analyzed including volcanic domes (Marius Hills, Rümker Hills, Gruithuisen, and Mairan Domes); mare (Imbrium, Serenitatis, and Oceanus Procellarum); pyroclastic dark mantle deposits (Sinus Aestuum, Sulpicius Gallus, and Mare Vaporum); and two young craters (Copernicus and Tycho). Statistically significant positive correlations exist between topographic roughness and both P- and S-band circular polarization ratios. The strongest correlation is observed at the longest length scales. Correlations weaken as length scales become less similar, potentially due to distinct processes controlling surface modification. Roughness is not significantly correlated with local slope. Although the Marius Hills are compositionally distinct from the Gruithuisen and Mairan domes, they are indistinguishable in roughness characteristics. Conversely, the Rümker Hills, mare, and dark mantle deposits are smoother at the length scales examined, possibly due to fine-grained mantling of regolith or pyroclastic deposits. The floor and ejecta of Tycho are the roughest surfaces measured in this study, while the floor and ejecta of Copernicus overlap the roughness distribution of the volcanic features. This study shows that many factors control the evolution of roughness over time on various length scales.

  8. Validity of Kirchhoff Theory for Electromagnetic Wave Scattering from Random Rough Surfaces with Emphasis on Fractal Models

    NASA Astrophysics Data System (ADS)

    Sultan Salem, A. K.; Tyler, G. L.

    2002-09-01

    Understanding of electromagnetic scattering from surfaces is essential to interpretation of planetary radar observation of solid bodies, radio wave surface sounding from orbit, and many planetary remote sensing problems. The validity of Kirchhoff theory (KT) for analysis of scattering from fractal surfaces has not been clearly established. KT is exact for surfaces that are infinite, planar, and smooth. For other types of surfaces, KT is an approximation that has limited validity. The first limitation pertains to the local radius of curvature of the rough surface. The second pertains to the surface correlation length. By comparing the results from KT with empirical results, many authors assert the prime importance of the ratio of the correlation length to the wavelength (e.g., J.A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, 104-110, Adam Hilger 1991). The larger this ratio, the better KT agrees with experimental results. We reformulate the second limitation as follows: The maximum wavelength should not exceed the correlation length of the surface for a valid application of KT. Since fractal functions are nowhere differentiable, band-limited fractals are used as models for physical surfaces. As first steps, some ad hoc procedures are used to band-limit the fractal surfaces before calculating the correlation length and local radius of curvature. Afterwards, a check is made to make sure that scattering can be analyzed accurately using KT. This check is extended to previous works that employ KT with fractal models (G. Franceschetti et al. 1999, M.K. Shepard and B.A. Campell 1999). The obtained results refer to the rigorous determination of a hypothesized filtering function (previously alluded to by Hagfors) to band-limit the mathematical fractal, transforming it into a physical representation for scattering calculations. The filtering function, if found, is expected to be helpful in understanding scattering from many types of surface models.

  9. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  10. Light reflection from a rough liquid surface including wind wave effects in a scattering atmosphere

    NASA Astrophysics Data System (ADS)

    Salinas, Santo V.; Liew, S. C.

    2007-07-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region.

  11. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  12. Light scattering by a rough surface of human skin. 1. The luminance factor of reflected light

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-08-31

    Based on the analytical solution of Maxwell's equations, we have studied the angular structure of the luminance factor of light reflected by the rough skin surface with large-scale relief elements, illuminated by a directed radiation beam incident at an arbitrary angle inside or outside the medium. The parameters of the surface inhomogeneities are typical of human skin. The calculated angular dependences are interpreted from the point of view of the angular distribution function of micro areas. The results obtained can be used for solving direct and inverse problems in biomedical optics, in particular for determining the depth of light penetration into a biological tissue, for studying the light action spectra on tissue chromophores under the in vivo conditions, for developing diagnostic methods of structural and biophysical parameters of a medium, and for optimising the mechanisms of interaction of light with biological tissues under their noninvasive irradiation through skin. (biomedical optics)

  13. Roughness reduction on aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Kiontke, S.; Kokot, Sebastian

    2015-02-01

    For a lot of applications like spectrometer and high power laser roughness as an important parameter has been discussed over and over again. Especially for high power systems the surface quality is crucial for determining the damage threshold and therefore the field of application. Above that, it has often been difficult to compare roughness measurements because of different measurement methods and the usage of filters and surface fits. Measurement results differ significantly depending on filters and especially on the measured surface size. Insights will be given how values behave depending on the quality of surface and the size of measured area. Many applications require a high quality of roughness in order to reduce scattering. Some of them in order to prevent from damage like high power laser applications. Others like spectrometers seek to increase the signal-to-noise ratio. Most of them have already been built with spherical surfaces. With higher demands on efficiency and more sophisticated versions aspherical surfaces need to be employed. Therefore, the high requirement in roughness known from spherical surfaces is also needed on aspherical surfaces. For one thing, the constant change of curvature of an aspherical surface accounts for the superior performance, for another thing, it prevents from using classical polishing technics, which guarantied this low roughness. New methods need to be qualified. In addition, also results of a new manufacturing process will be shown allowing low roughness on aspheric even with remarkable departure from the best fit sphere.

  14. Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm.

    PubMed

    Sun, Wenbo; Loeb, Norman G; Videen, Gorden; Fu, Qiang

    2004-03-20

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional microroughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 microm, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than approximately 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than approximately 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than approximately 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light. PMID:15065727

  15. Modeling of surface roughness scattering in nanowires based on atomistic wave function: Application to hole mobility in rectangular germanium nanowires

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Suda, Jun; Kimoto, Tsunenobu

    2016-04-01

    The authors present a calculation model of surface roughness scattering (SRS) in nanowires (NWs) based on atomistic description of electronic states by an s p3d5s* tight-binding scheme, and then this model is applied to hole transport in rectangular cross-sectional germanium (Ge) NWs. In this SRS model, the change of electronic band structures due to width or height reduction is first computed, and then it is expressed using an equivalent potential near the surface. The perturbation corresponding to a surface roughness is calculated from this equivalent potential. Using the aforementioned SRS model, hole mobility in Ge NWs was computed taking into account phonon scattering and SRS. The impacts of SRS on hole mobility in Ge NWs were analyzed, focusing on the valence band structure and hole states of NWs. The main results are as follows. At low hole density, the impacts of SRS are strongly dependent on NW geometry, and Ge NWs with high phonon-limited hole mobility, such as rectangular cross-sectional [110]-oriented NWs with large height along the [001] direction and square cross-sectional [111]-oriented NWs, tend to be less affected by SRS. At high hole density, however, the geometry dependence of hole mobility becomes weaker. These are understood from the nature of hole states and the valence band structure.

  16. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  17. Determination of the normalized-surface-height autocorrelation function of a two-dimensional randomly rough dielectric surface by the inversion of light-scattering data

    NASA Astrophysics Data System (ADS)

    Simonsen, I.; Hetland, Ø. S.; Kryvi, J. B.; Maradudin, A. A.

    2016-04-01

    An expression is obtained on the basis of phase perturbation theory for the contribution to the mean differential reflection coefficient from the in-plane co-polarized component of the light scattered diffusely from a two-dimensional randomly rough dielectric surface when the latter is illuminated by s -polarized light. This result forms the basis for an approach to inverting experimental light-scattering data to obtain the normalized-surface-height autocorrelation function of the surface. Several parametrized forms of this correlation function, and the minimization of a cost function with respect to the parameters defining these representations, are used in the inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant of the dielectric substrate if it is not known in advance. The input data used in validating this inversion consist of computer simulation results for surfaces defined by exponential and Gaussian surface-height correlation functions, without and with the addition of multiplicative noise, for a single or multiple angles of incidence. The reconstructions obtained by this approach are quite accurate for weakly rough surfaces, and the proposed inversion scheme is computationally efficient.

  18. Scattering of near normal incidence SH waves by sinusoidal and rough surfaces in 3-D: comparison to the scalar wave approximation.

    PubMed

    Jarvis, Andrew J C; Cegla, Frederic B

    2014-07-01

    The challenge of accurately simulating how incident scalar waves interact with rough boundaries has made it an important area of research within many scientific disciplines. Conventional methods, which in the majority of cases focus only on scattering in two dimensions, often suffer from long simulation times or reduced accuracy, neglecting phenomena such as multiple scattering and surface self-shadowing. A simulation based on the scalar wave distributed point source method (DPSM) is presented as an alternative which is computationally more efficient than fully meshed numerical methods while obtaining greater accuracy than approximate analytical techniques. Comparison is made to simulated results obtained using the finite element method for a sinusoidally periodic surface where scattering only occurs in two dimensions, showing very good agreement (<0.2 dB). In addition to two-dimensional scattering, comparison to experimental results is also carried out for scattering in three dimensions when the surface has a Gaussian roughness distribution. Results indicate that for two-dimensional scattering and for rough surfaces with a correlation length equal to the incident wavelength (λ) and a root mean square height less than 0.2λ, the scalar wave approximation predicts reflected pulse shape change and envelope amplitudes generally to within 1 dB. Comparison between transducers within a three-element array also illustrate the sensitivity pulse amplitude can have to sensor position above a rough surface, differing by as much as 17 dB with a positional change of just 1.25λ. PMID:24960707

  19. Optical methods for cylindrical rough surface testing

    NASA Astrophysics Data System (ADS)

    Perez Quintian, F.; Rebollo, Maria A.; Gaggioli, Nestor G.; Raffo, C. A.

    1999-07-01

    This work studies theoretically the scattering of light from cylindrical rough surfaces. It is shown, for the conical diffraction configuration, that the mean intensity on an observation plane perpendicular to the cylinder longitudinal axis, is related to the statistical parameters that characterize the surface: the roughness (sigma) and the correlation length T.

  20. Water-scattered signal to compensate for the rough sea surface effect on bottom lidar imaging.

    PubMed

    Dolin, Lev S; Luchinin, Alexander G

    2008-12-20

    We investigate the possibility of using the water-backscattered radiation from a bottom sounding airborne imaging light detection and ranging (lidar) system to determine the surface slope at the point where the laser beam intersects the surface. We show that the refraction angle of the beam can be determined using receivers whose sensitivities vary linearly over their field of view. Equations are derived to estimate the statistical mean and variance values of this refracted angle. We demonstrate that the proposed algorithm improves lidar imaging. Numerical examples with reference to typical marine conditions are given. PMID:19104538

  1. Simple ray-tracing model for a rough surface of an ink layer including internal scattering particles printed on a light guide plate.

    PubMed

    Sekiguchi, Yoshifumi; Kaneko, Hiroki

    2016-02-01

    For simulating light guide lighting systems, we have developed a ray-tracing model for an ink layer extracting light from a light guide. The model consists of the volume and the rough surface scattering calculated on the basis of Mie theory and the facet model, respectively. The model of an ink layer was required to conserve energy for analyzing how much light loss occurs in each component in the lighting system. Though a single-scattering rough surface model with a shadowing/masking function successfully describes the scattering distribution, shadowing light violates the energy conservation law because of a lack of multiple scattering. We developed the rough surface ray-tracing model (RSRT model), which includes the multiple scattering instead of the shadowing/masking effect. We investigated the applicability of the RSRT model for an ink layer by comparing the RSRT model with recent physical and facet models. Finally, we compared the calculated and measured scattering distributions of an ink layer, applied the developed ink layer model to the lighting system, and confirmed the developed model to be valid. PMID:26836100

  2. A rough earth scattering model for multipath prediction

    NASA Technical Reports Server (NTRS)

    Page, L. J.; Chestnut, P. C.

    1970-01-01

    The most important phenomena to be considered in a model of radio wave communication between earth satellites are scattering from the surface of the earth. A model is derived and implemented on a computer to predict the field received after reflection from a rough, spherical earth. The scattering integrals are computed numerically; the domain of integration is the appropriate region on the surface of the earth. Calculations have been performed at VHF frequencies and for terrain which could be described as marshy land. Rough surface scattering calculations must be performed over a spherical earth when satellites are involved. There is a definite dependence on the values of the roughness, and the correlation length.

  3. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  4. Polarimetric scattering behavior of rough dielectric materials at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Digiovanni, David Anthony

    Technologies in the terahertz region of the spectrum are finding increased usage in areas such as communications, remote sensing, and imaging, For example, driven by the promise of greater data transfer rates, free-space communication that traditionally operate in the radio and microwave bands are being developed at terahertz frequencies. Successful transition of communication systems to higher frequencies, particularly for systems located in indoor or urban environments, will require a thorough understanding of the reflection, transmission, absorption, and scattering behavior of a wide variety of materials and surface types. Scattering properties of rough surfaces have been studied extensively at radio and microwave frequencies, however, such properties have only recently become of interest at higher frequencies. The goal of this thesis was to develop a better understanding of electromagnetic scattering from dielectric rough surfaces at millimeter wavelengths and terahertz frequencies. This goal was achieved by measuring the polarimetric scattering behavior of dielectric materials and comparing the measured data to predictions made by rough surface scattering theory. The dielectric properties and the roughness of the samples were tailored in order to provide a controlled parameter space to investigate. Fully polarimetric radar imagery of the rough surfaces were acquired at 160 GHz, 240 GHz, and 1.55 THz. The backscattering measurements were collected as a function of polarization, incident angle, and frequency. The applicability of various rough surface scattering theories was determined for the different roughness regimes studied.

  5. Reconstruction of scattering properties of rough air-dielectric boundary

    NASA Astrophysics Data System (ADS)

    Sokolov, V. G.; Zhdanov, D. D.; Potemin, I. S.; Garbul, A. A.; Voloboy, A. G.; Galaktionov, V. A.; Kirilov, N.

    2016-08-01

    The article is devoted to elaboration of the method of reconstruction of rough surface scattering properties. The object with rough surface is made of transparent dielectric material. Typically these properties are described with bi-directional scattering distribution function (BSDF). Direct measurement of such function is either impossible or very expensive. The suggested solution provides physically reasonable method for the rough surface BSDF reconstruction. The method is based on Monte-Carlo ray tracing simulation for BSDF calculation. Optimization technique is further applied to correctly reconstruct the BSDF. The results of the BSDF reconstruction together with measurement results are presented in the article as well.

  6. Solvation forces between rough surfaces

    SciTech Connect

    Frink, L.J.; van Swol, F.

    1998-04-01

    We investigate the role of surface roughness on solvation forces and solvation free energies. Roughness is introduced by dividing a surface into an array of square tiles that are then randomly displaced in the direction perpendicular to the wall. The integrated wall strength of these tiled surfaces is independent of the surface roughness and hence this class of rough walls is ideally suited for isolating roughness effects. We use grand canonical Monte Carlo simulations of a Lennard-Jones fluid confined in a slit pore with rough walls to generate the solvation interactions as a function of roughness, tile size, and surface area. The simulation data are compared to a simple superposition approximation of smooth wall solvation interactions (obtained from simulation or density functional theory), based on a distribution of wall separations. We find that this approximation provides a surprisingly accurate route to the solvation interaction of rough surfaces. In general, increased roughness leads to a reduction of oscillations in the solvation forces and surface free energies. However, nonmonotonic behavior of the oscillation amplitude with roughness can be observed for finite surfaces. The washing out of the oscillations found for large surface roughness produces a solvation force that exhibits a broad repulsive peak with separation. The broad repulsion is a consequence of the resistance to squeezing out fluid from the smallest gaps between two opposing rough surfaces. It is as much a reflection of packing effects as are the solvation oscillations for perfectly smooth pores. In addition, we present results for patterned and undulating surfaces produced by an analogous modification of the one-body external field for smooth walls. Finally, we discuss the implications of our results for a number of experimental systems including self-assembled monolayers, microporous materials, protein solutions, and DNA crystals. {copyright} {ital 1998 American Institute of Physics.}

  7. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  8. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  9. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  10. Surface roughness of flat and curved optical surfaces

    NASA Technical Reports Server (NTRS)

    George, M. C.; Reddy, Bandi Jagannadha; Jagannath, H.; Perera, M.; Venkateswarlu, P.

    1989-01-01

    Surface roughness measurement has several applications. Even a few A roughness will cause scattered light in optical systems. Smooth surfaces are required in a wide variety of instruments. For example, the outputs of the high power lasers are limited by the surface roughness of mirrors and windows. Similarly, the information storage capacity of magnetic media is limited by the roughness of the surface. Roughness reduces the resolving power of optics and distorts images. The performance of certain thin film components in electronic industries is affected by the roughness on the film surface. X-ray astronomical telescopes require smooth curved surfaces. To improve the surface quality, super sensitive detection methods are required. Wide ranging measurement techniques are developed based on interferometry, electron microscopy, C-rays, ellipsometry, light scattering, and using mechanical stylus, etc. Though there are several techniques available for measurement and evaluation of the surfaces, no single technique is fully adequate. Also, the technique used should be nondestructive and highly sensitive. So, an optical heterodyne profilometer was fabricated. Its current sensitivity is much better than 10A rms. It is a noncontact and nondestructive technique. The instrument can be operated even by unskilled personnel for routine measurements.

  11. Estimating surface roughness using stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    David, V.; Krasa, J.

    2009-04-01

    At the Department of Drainage, Irrigation and Landscape Engineering (CTU Prague) we use several mathematical models for soil erosion, sediment transport and surface runoff assessment. Here we continuously struggle for successful models parameterizations. One of the typical coefficients usually taken from literature instead of measurements is surface roughness, eg. Manning roughness (Maidment, 1993). Roughness is a key to surface runoff velocity and surface runoff depth estimation but often it is very roughly estimated. Within the COST 22 Action research we focused on estimating actual surface roughness using stereophotogrammetry. Our aim was to set up a simple low cost system useful for roughness measurements in nature conditions - mainly on agricultural fields. Our system consists of Canon EOS 400 digital camera with angle viewfinder, two robust tripods and a horizontal bar with sliding 3D tripod head. We tested different camera heights and focal distances as well as various parallaxes to obtain reasonable results. Finally we shot the surfaces from 1600 millimeters with 24 and 35 mm lens and parallaxes close to 100 mm. For 3D scene development we use Geomatica 10 GIS and its OrthoEngine module. Testing the proper system and many variables of the 3D scene modelling was an important part of the first year of the project. For these purposes we first prepared a calibrated and known 3D surface consisting of 70 by 70 cm grid and several geometrical objects of different sizes and shapes. Preparing the correct lighting conditions, finding the resolving power of the system and solving the problems with low contrast areas of measured surfaces was a time consuming but interesting task. After the system calibration we started with the actual terrain measurements. Our setup, system testing and preliminary results of the roughness computations are presented on the poster. Acknowledgement This research was acomplished within national COST project OC189 „Flood risk and its

  12. Polymer Transport Near Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Bloom, Moses; Whitmer, Jonathan; Luijten, Erik

    2011-03-01

    The rheology of dilute polymer solutions under confinement is important in biology, medicine, microfluidic device design, synthetic polymer processing, and even geologic porous media. However, the solution's specific interactions with the confining surface are poorly understood. This situation is exacerbated for composite nanoparticles, such as polymer/metallic hybrids. Using multi-particle collision dynamics, we find a rich array of transport regimes depending on small-scale surface roughness and the specific surface/solute interactions. These factors couple to hydrodynamic conditions, including flow strength and confinement geometry in unexpected ways. Our findings may be relevant to transport phenomena in certain rough-walled capillaries, such as the distribution of various nanoconjugates in vivo.

  13. Polarimetric thermal emission from rough surfaces

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Oneill, K.; Lohanick, A.

    1993-01-01

    Recent theoretical works have suggested the potential of passive polarimetry in the remote sensing of geophysical media. It was shown that the third Stokes parameter U of the thermal emission may become larger for azimuthally asymmetric fields of observation. In order to investigate the potential applicability of passive polarimetry to the remote sensing of ocean surface, measurements of the polarimetric thermal emission from a sinusoidal water surface and a numerical study of the polarimetric thermal emission from randomly rough ocean surfaces were performed. Measurements of sinusoidal water surface thermal emission were performed using a sinusoidal water surface which was created by placing a thin sheet of fiberglass with a sinusoidal profile in two dimensions extended infinitely in the third dimension onto a water surface. The theory of thermal emission from a 'two-layer' periodic surface is derived and the exact solution is performed using both the extended boundary condition method (EBC) and the method of moments (MOM). The theoretical predictions are found to be in good agreement with the experimental results once the effects of the radiometer antenna pattern are included and the contribution of background noise to the measurements is modeled. The experimental results show that the U parameter indicates the direction of periodicity of the water surface and can approach values of up to 30 K for the surface observed. Next, a numerical study of polarimetric thermal emission from randomly rough surfaces was performed. A Monte Carlo technique utilizing an exact method for calculating thermal emission was chosen for the study to avoid any of the limitations of the commonly used approximate methods in rough surface scattering. In this Monte Carlo technique, a set of finite rough surface profiles in two dimensions with desired statistics was generated and extended periodically. The polarimetric thermal emission from each surface of the set was then calculated using

  14. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  15. Surface roughness of anodized titanium coatings.

    SciTech Connect

    Dugger, Michael Thomas; Chinn, Douglas Alan

    2010-10-01

    Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

  16. Surface roughness and infrared emission from the lunar surface

    NASA Astrophysics Data System (ADS)

    Vogler, Karl Joseph

    1994-01-01

    In order to understand thermal infrared spectra of the moon and solid-surfaced planetary bodies in terms of surface roughness and composition, a two-part project involving thermophysical computer models and infrared photometry has been pursued. The computer models calculate the infrared radiation emitted by an atmosphereless body with a macroscopically rough surface using radiative heat transfer methods. Multiple scattering of incident solar radiation, and multiple scattering and remission of thermal infrared radiation onto surrounding surface elements are included in the model. Surface roughness is modeled as paraboloidal holes characterized by a fractional coverage of a spherical object and a single depth-to-diameter ratio. Thermal emission from the rough surface is anisotropic and deviates from a gray body emission assumed by standard thermal models. The model explains to first-order published, mid infrared, measurements of the moon and Galilean Satellites. Surface composition is included by using results from Hapke for reflectance and emittance properties of a particulate surface. It is concluded that negative surface relief is required to explain the continuum behavior of the lunar thermal spectrum. An infrared photometer was constructed from an existing design and was configured in order to perform whole disk photometry of the moon at various phase angles. Measurements at 5.03, 8.4 and 11.5 micron were made at seven phase angles, ranging from -151 deg 55 min to 53 deg 27 min. The thermophysical computer models were modified so that disk-integrated emission as a function of phase angle could be calculated. Effects due to thermal inertia of the surface are not included in this simplified version of the model. The model calculations compare favorably with measurements of the moon made by the author, Sarri and Shorthill and Murdock. It is concluded that surface roughness is necessary in explaining the shape of the lunar thermal emission with phase angle.

  17. Calibration of surface roughness standards

    NASA Astrophysics Data System (ADS)

    Thalmann, R.; Nicolet, A.; Meli, F.; Picotto, G. B.; Matus, M.; Carcedo, L.; Hemming, B.; Ganioglu, O.; De Chiffre, L.; Saraiva, F.; Bergstrand, S.; Zelenika, S.; Tonmueanwai, A.; Tsai, C.-L.; Shihua, W.; Kruger, O.; de Souza, M. M.; Salgado, J. A.; Ramotowski, Z.

    2016-01-01

    The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology organisations. Five surface texture standards of different type were circulated and on each of the standards several roughness parameters according to the standard ISO 4287 had to be determined. 32 out of 395 individual results were not consistent with the reference value. After some corrective actions the number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results help to support the calibraton and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Monte Carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: mine detection application using the steepest-descent fast multipole method.

    PubMed

    El-Shenawee, M; Rappaport, C; Silevitch, M

    2001-12-01

    We present a statistical study of the electric field scattered from a three-dimensional penetrable object buried under a two-dimensional random rough surface. Monte Carlo simulations using the steepest-descent fast multipole method (SDFMM) are conducted to calculate the average and the standard deviation of the near-zone scattered fields. The SDFMM, originally developed at the University of Illinois at Urbana-Champaign, has been modified to calculate the unknown surface currents both on the rough ground and on the buried object that are due to excitation by a tapered Gaussian beam. The rough ground medium used is an experimentally measured typical dry Bosnian soil with 3.8% moisture, while the buried object represents a plastic land mine modeled as an oblate spheroid with dimensions and burial depth smaller than the free-space wavelength. Both vertical and horizontal polarizations for the incident waves are studied. The numerical results show that the TNT mine signature is almost 5% of the total field scattered from the ground. Moreover, relatively recognizable object signatures are observed even when the object is buried under the tail of the incident beam. Interestingly, even for the small surface roughness parameters considered, the standard deviation of the object signature is almost 30% of the signal itself, indicating significant clutter distortion that is due to the roughness of the ground. PMID:11760205

  19. Modeling Radar Scatter from Icy and Young Rough Lunar Craters

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas (Tommy); Ustinov, Eugene; Spudis, Paul; Fessler, Brian

    2012-01-01

    For lunar orbital synthetic aperture radars, such as the Chandrayaan Mini-RF operating at S- band (13-cm) wavelength and the Lunar Reconnaissance Orbiter Mini-RF operating at S- band and X-band (3-cm) wavelengths, it is important to understand the radar backscattering characteristics of the icy and young, rough craters. Assuming a mixing model consisting of diffuse and quasi-specular scattering components, we have modeled the opposite-sense circular (OC) and same-sense circular (SC) backscattering characteristics. The specular component, consisting of only OC echoes, represents the echoes from the surface and subsurface layers that are oriented perpendicular to the radar's line-of-sight. The diffuse component, consisting of both SC and OC echoes, represents the echoes associated with either rocks or ice. Also, diffuse echoes have backscatter that is proportional to the cosine of the incidence angle. We modeled how these two (specular and diffuse) radar scattering components could be modulated by factors such as surface roughness associated with young craters. We also modeled how ice radar scattering components could be modulated by a thin regolith covering, and/or by the situation where ice occupies small patches within a larger radar pixel. We tested this modeling by examining 4 nonpolar craters and 12 polar craters using LRO Mini-RF data. Results indicate that icy and young rough craters can be distinguished based upon their SC enhancements (Alpha) and OC enhancements (Gamma). In addition, we also examined the craters that have unusual circular polarization ratios (CPRs) that likely result from a double bounce mode of scattering. Blocky fresh craters, icy craters, and craters exhibiting double bounce scattering can be separated based on the values of Alpha, Gamma, the ratio of Alpha/Gamma and the weighted sum of Alpha and Gamma.

  20. Wind tunnel model surface gauge for measuring roughness

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.

    1987-01-01

    The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.

  1. Martian surface roughness and stratigraphy

    NASA Astrophysics Data System (ADS)

    Beyer, Ross Alan

    2004-12-01

    Orbital datasets can be combined and manipulated to learn about the three- dimensional structure of planetary surfaces, and the processes that have acted on them. The Mars Orbital Camera (MOC) is providing high-resolution images. These images allow qualitative inspection of features, and contain quantitative information about the shape of the surface. Using a photoclinometry technique derived from a lunar-Lambert photometric function, I am able to obtain estimates of the down-sun slope of each pixel in an image. This technique was calibrated against synthetic topography, compared to an area photoclinometry technique, and applied to the Viking and Pathfinder landing sites. It is a robust technique for obtaining the roughness and slope characteristics of large areas. It was applied to the potential landing sites for the Mars Exploration Rovers to evaluate site safety. The slopes from this point photoclinometry technique can be used to obtain a rough estimate of topography, which I used in a number of studies where topographic information was crucial. MOC images have shown that layering is pervasive on the martian surface. Mars Orbital Laser Altimeter (MOLA) data can be registered to MOC images to provide elevation constraints on layer outcrops. Such layers are observed in eastern Coprates Chasma both in the chasma rim and in a flat-topped massif. Observations indicate that the chasma stratigraphy consists of thin sequences of resistant layers and intervening thicker sequences of relatively less resistant layers. More resistant units cap the massif against erosion and result in steeper slopes than the weaker units would otherwise allow. These resistant layers can be used as stratigraphic markers which have allowed me to measure the subsidence and tilting of the massif relative to the chasma walls, providing evidence for tectonic motion in this portion of the Valles Marineris. These outcrops indicate that some of these layers may be analogus to terristrial flood

  2. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Wentz, Frank J.; Ricciardulli, Lucrezia

    2014-09-01

    In order to achieve the required accuracy in sea surface salinity (SSS) measurements from L-band radiometers such as the Aquarius/SAC-D or SMOS (Soil Moisture and Ocean Salinity) mission, it is crucial to accurately correct the radiation that is emitted from the ocean surface for roughness effects. We derive a geophysical model function (GMF) for the emission and backscatter of L-band microwave radiation from rough ocean surfaces. The analysis is based on radiometer brightness temperature and scatterometer backscatter observations both taken on board Aquarius. The data are temporally and spatially collocated with wind speeds from WindSat and F17 SSMIS (Special Sensor Microwave Imager Sounder) and wind directions from NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System). This GMF is the basis for retrieval of ocean surface wind speed combining L-band H-pol radiometer and HH-pol scatterometer observations. The accuracy of theses combined passive/active L-band wind speeds matches those of many other satellite microwave sensors. The L-band GMF together with the combined passive/active L-band wind speeds is utilized in the Aquarius SSS retrieval algorithm for the surface roughness correction. We demonstrate that using these L-band wind speeds instead of NCEP wind speeds leads to a significant improvement in the SSS accuracy. Further improvements in the roughness correction algorithm can be obtained by adding VV-pol scatterometer measurements and wave height (WH) data into the GMF.

  3. Wetting properties of molecularly rough surfaces

    SciTech Connect

    Svoboda, Martin; Lísal, Martin; Malijevský, Alexandr

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  4. Wetting properties of molecularly rough surfaces.

    PubMed

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel's law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves. PMID:26374050

  5. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  6. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random

  7. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  8. Measurement and modeling of rough surface effects on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, S. C.; Schecklman, S.; Kniffin, G. P.; Zurk, L. M.; Chen, A.

    2010-02-01

    Recent improvements in sensing technology have driven new research areas within the terahertz (THz) portion of the electromagnetic (EM) spectrum. While there are several promising THz applications, several outstanding technical challenges need to be addressed before robust systems can be deployed. A particularly compelling application is the potential use of THz reflection spectroscopy for stand-off detection of drugs and explosives. A primary challenge for this application is to have sufficient signal-to-noise ratio (SNR) to allow spectroscopic identification of the target material, and surface roughness can have an impact on identification. However, scattering from a rough surface may be observed at all angles, suggesting diffuse returns can be used in robust imaging of non-cooperative targets. Furthermore, the scattering physics can also distort the reflection spectra, complicating classification algorithms. In this work, rough surface scattering effects were first isolated by measuring diffuse scattering for gold-coated sandpaper of varying roughness. Secondly, we measured scattering returns from a rough sample with a spectral signature, namely α-lactose monohydrate mixed with Teflon and pressed with sandpaper to introduce controlled roughness. For both the specular and diffuse reflection measurements, the application of traditional spectroscopy techniques provided the ability to resolve the 0.54 THz absorption peak. These results are compared with results from a smooth surface. Implications of the results on the ability to detect explosives with THz reflection spectroscopy are presented and discussed. In addition, the Small Perturbation Method (SPM) is employed to predict backscatter from lactose with a small amount of roughness.

  9. Effect of Surface Roughness on Hydrodynamic Bearings

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Hamrock, B. J.

    1981-01-01

    A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.

  10. Surface roughness effects on bidirectional reflectance

    NASA Technical Reports Server (NTRS)

    Smith, T. F.; Hering, R. G.

    1972-01-01

    An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.

  11. ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES

    SciTech Connect

    Reece, Charles E.; Kelley, Michael J.; Xu, Chen

    2012-09-01

    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  12. Roughness Perception of Haptically Displayed Fractal Surfaces

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)

    2000-01-01

    Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.

  13. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  14. Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness

    NASA Astrophysics Data System (ADS)

    George, Simi A.; Naulleau, Patrick P.; Gullikson, Eric M.; Mochi, Iacopo; Salmassi, Farhad; Goldberg, Kenneth A.; Anderson, Erik H.

    2011-04-01

    To quantify the roughness contributions to speckle, a programmed roughness substrate was fabricated with a number of areas having different roughness magnitudes. The substrate was then multilayer coated. Atomic force microscopy (AFM) surface maps were collected before and after multilayer deposition. At-wavelength reflectance and total integrated scattering measurements were also completed. Angle resolved scattering based power spectral densities are directly compared to the AFM based power spectra. We show that AFM overpredicts the roughness in the picometer measurements range. The mask was then imaged at-wavelength for the direct characterization of the aerial image speckle using the SEMATECH Berkeley Actinic Inspection Tool (AIT). Modeling was used to test the effectiveness of the different metrologies in predicting the measured aerial-image speckle. AIT measured contrast values are 25% or more than the calculated image contrast values obtained using the measured rms roughness input. The extent to which the various metrologies can be utilized for specifying tolerable roughness limits on EUV masks is still to be determined. Further modeling and measurements are being planned.

  15. Replicated mask surface roughness effects on EUV lithographic pattering and line edge roughness

    SciTech Connect

    George, Simi A.; Naulleau, Patrick P.; Gullikson, Eric M.; Mochi, Iacopo; Salmassi, Farhad; Goldberg, Kenneth A.; Anderson, Erik H.

    2011-03-11

    To quantify the roughness contributions to speckle, a programmed roughness substrate was fabricated with a number of areas having different roughness magnitudes. The substrate was then multilayer coated. Atomic force microscopy (AFM) surface maps were collected before and after multilayer deposition. At-wavelength reflectance and total integrated scattering measurements were also completed. Angle resolved scattering based power spectral densities are directly compared to the AFM based power spectra. We show that AFM overpredicts the roughness in the picometer measurements range. The mask was then imaged at-wavelength for the direct characterization of the aerial image speckle using the SEMATECH Berkeley Actinic Inspection Tool (AIT). Modeling was used to test the effectiveness of the different metrologies in predicting the measured aerial-image speckle. AIT measured contrast values are 25% or more than the calculated image contrast values obtained using the measured rms roughness input. The extent to which the various metrologies can be utilized for specifying tolerable roughness limits on EUV masks is still to be determined. Further modeling and measurements are being planned.

  16. Surface roughness characterization of dental fillings: a diffractive analysis

    NASA Astrophysics Data System (ADS)

    April, Gilbert V.; Bouchard, Michel; Doucet, Michel

    1993-02-01

    The large number of new materials such as amalgams and the variety of techniques for finishing and polishing in operative dentistry has stimulated interest in simple, nondestructive methods of surface roughness evaluation. We studied an optical method based on the scattering of reflected coherent light on prepared samples of composite resins submitted to different surface treatments. The method should be able to measure the degree of flatness of the samples, thus enabling a classification procedure according to a figure of merit to be defined. The diffraction properties of such moderately rough surfaces has been correlated with mechanical profilometer measurements of the residual granular structure after polishing. Different surface treatments of composite resins result in distinctive levels of surface flatness, and it is shown that a relation between the intensity of the normalized specular reflection of a beam of coherent light and the rms surface roughness can be established for characterization purposes.

  17. Layering of ionic liquids on rough surfaces

    NASA Astrophysics Data System (ADS)

    Sheehan, Alexis; Jurado, L. Andres; Ramakrishna, Shivaprakash N.; Arcifa, Andrea; Rossi, Antonella; Spencer, Nicholas D.; Espinosa-Marzal, Rosa M.

    2016-02-01

    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by atomic force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact.Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by atomic force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact. Electronic supplementary information (ESI) available: Optimized geometries and sizes for [HMIM] Ntf2, SEM images of the smooth and rough colloids, frequency of occurrence of layering in the resolved force-distance curves for all investigated systems with [HMIM] Ntf2, layer size and layering force measured with a sharp tip on mica for the same IL, and results of the kinetics experiments. See DOI: 10.1039/c5nr07805a

  18. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Stripf, M.

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  19. Simplified Approach to Predicting Rough Surface Transition

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  20. Photochemistry on rough metal surfaces

    SciTech Connect

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-09-13

    The general question of laser-induced photochemistry on metal surfaces is addressed. Specifically, the authors have studied resonant photodecomposition of a variety of aromatic molecules on roughened silver surfaces in ultrahigh vacuum. A continuous ion laser source at a number of different wavelengths in the region 350-410 nm was used to produce graphitic carbon on the surface which was monitored by Raman spectroscopy at the 1580-cm/sup -1/ band of surface carbon. Laser power-dependence studies of fragmentation rate for several molecules at 406.7nm indicate that the initial absorption step is a two-photon process. Energetic considerations imply that photochemistry for other molecules studied is also due to multiphoton absorption, except for benzaldehyde fragmentation at 350.7-nm excitation, where the photodecomposition rate is linear. Distance-dependence studies of photofragmentation rates by use of an inert spacer layer to separatte the molecule undergoing photochemistry from the surface indicate that energy transfer to the metal surface is important in determining the reaction rate. Decomposition mechanism has not been fully evaluated.

  1. Thermal smoothing of rough surfaces in vacuo

    NASA Technical Reports Server (NTRS)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  2. Multiphonon scattering from surfaces

    NASA Astrophysics Data System (ADS)

    Manson, J. R.; Celli, V.; Himes, D.

    1994-01-01

    We consider the relationship between several different formalisms for treating the multiphonon inelastic scattering of atomic projectiles from surfaces. Starting from general principles of formal scattering theory, the trajectory approximation to the scattering intensity is obtained. From the trajectory approximation, the conditions leading to the fast-collision approximation for multiquantum inelastic scattering are systematically derived.

  3. Surface roughness effects on equilibrium temperature.

    NASA Technical Reports Server (NTRS)

    Houchens, A. F.; Hering, R. G.

    1972-01-01

    An analysis is presented for evaluation of equilibrium temperature distribution on radiatively adiabatic, adjoint planes which are uniformly irradiated by a collimated solar flux. The analysis employs a semigrey spectral model. Radiation properties for surface emitted radiation are obtained from the expressions of electromagnetic theory for smooth surfaces. Rough surface properties for solar radiation are given by the Beckmann bidirectional reflectance model. Numerical solutions to the governing equations yield equilibrium temperature distributions for a range of the influencing parameters. Surface roughness has little influence on equilibrium temperature for materials with high values for solar absorptance. However, for low or intermediate values of solar absorptance, roughness effects on the spatial distribution of reflected solar radiation can significantly alter equilibrium temperature particularly at surface elements where radiant interaction is small.

  4. Ghost imaging for a reflected object with a rough surface

    SciTech Connect

    Wang Chunfang; Zhang Dawei; Chen Bin; Bai Yanfeng

    2010-12-15

    Ghost imaging for the reflected object with rough surface is investigated. The surface height variance {sigma}{sub h}{sup 2} and the correlation length l{sub c} have been introduced to characterize the rough surface. Based on a simple scattering model, we derive the analytical expressions which are used to describe the effects of {sigma}{sub h}{sup 2} and l{sub c} on ghost imaging. The results show that both {sigma}{sub h}{sup 2} and l{sub c} have no influence on the image resolution, while the convergence of the correlation decreases as {sigma}{sub h}{sup 2} increases. Additionally, the bucket detector used in the test arm can dramatically improve the visibility of ghost images. The results are backed up by numerical simulations, in which a Monte Carlo approach to generate a rough surface has been used.

  5. The effect of roughness model on scattering properties of ice crystals

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, Igor; van Diedenhoven, Bastiaan

    2016-07-01

    We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5° to 20°, where the uniform roughness model produces a plateau while the Weibull model does not.

  6. In situ surface roughness measurement during PECVD diamond film growth

    SciTech Connect

    Zuiker, C.D.; Gruen, D.M.; Krauss, A.R.

    1995-06-01

    To investigate the development of surface morphology and bulk optical attenuation in diamond films, we have followed diamond film growth on silicon by in-situ laser reflection interferometry in a microwave plasma chemical vapor deposition system. A model for the interpretation of the reflectivity data in terms of film thickness, rms surface roughness and bulk losses due to scattering and absorption is presented. Results are compared with ex situ measurements of these quantities and found to be in good agreement.

  7. A rough-surface thermophysical model for airless planets

    SciTech Connect

    Spencer, J.R. )

    1990-01-01

    A model for determining diurnal temperatures in spherical-section depressions and which encompasses both subsurface heat-flow and direct and scattered sunlight effects is presently applied to the disk-integrated thermal emission of a rough planetary surface with nonzero thermal inertia. Attention is given to the variation with roughness and thermal inertia of the beaming parameter eta, which characterizes zero-phase thermal emission by comparison with a smooth, nonrotating body and is almost independent of albedo for a given surface roughness. The thermal phase curve of Ceres is noted to be well matched by the model features of (1) prograde rotation, (2) 44-deg rms surface slope, and (3) a thermal inertia that is 30 percent of the lunar value. 23 refs.

  8. A rough-surface thermophysical model for airless planets

    NASA Technical Reports Server (NTRS)

    Spencer, John R.

    1990-01-01

    A model for determining diurnal temperatures in spherical-section depressions and which encompasses both subsurface heat-flow and direct and scattered sunlight effects is presently applied to the disk-integrated thermal emission of a rough planetary surface with nonzero thermal inertia. Attention is given to the variation with roughness and thermal inertia of the beaming parameter eta, which characterizes zero-phase thermal emission by comparison with a smooth, nonrotating body and is almost independent of albedo for a given surface roughness. The thermal phase curve of Ceres is noted to be well matched by the model features of (1) prograde rotation, (2) 44-deg rms surface slope, and (3) a thermal inertia that is 30 percent of the lunar value.

  9. Forward and inverse models of electromagnetic scattering from layered media with rough interfaces

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, Seyed Alireza

    This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.

  10. Correlation of Windspeed and Antarctic Surface Roughness

    NASA Astrophysics Data System (ADS)

    Stockham, Mark; Anita Collaboration

    2015-04-01

    When electromagnetic waves interact with a media interface the transmitted and reflected portions of the incoming wave depend on the incident angle of the wave and wavelength (as well as the material properties of the media). The roughness of the surface of Antarctica affects the radio frequency signals received by airborne experiments, such as the balloon-borne experiment ANITA (ANtarctic Impulsive Transient Antenna) which observes the reflected radio waves from cosmic ray-induced extensive air showers (EAS). Roughness of a given scale can cause decoherence of the reflected signal and is an important effect to understand when estimating the amplitude of the incoming wave based on the reflected wave. It is challenging to get a survey of surface roughness over many of the areas that these experiments are likely to pass over. Correlating historical wind speed records with statistical roughness as observed by the backscatter of satellite [Rémy F, Parouty S. Remote Sensing. 2009] and airborne experiments operating at different frequencies can possibly be used to predict time-dependent surface roughness with surface wind speed as the input. These correlations will be presented for a variety of areas on the Antarctic ice shelf. NASA Grant NNX11AC47G.

  11. Degree of ice particle surface roughness inferred from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome

    2016-06-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1-month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extratropics, the roughness parameter is inferred but 74 % of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  12. Venus surface roughness and Magellan stereo data

    NASA Technical Reports Server (NTRS)

    Maurice, Kelly E.; Leberl, Franz W.; Norikane, L.; Hensley, Scott

    1994-01-01

    Presented are results of some studies to develop tools useful for the analysis of Venus surface shape and its roughness. Actual work was focused on Maxwell Montes. The analyses employ data acquired by means of NASA's Magellan satellite. The work is primarily concerned with deriving measurements of the Venusian surface using Magellan stereo SAR. Roughness was considered by means of a theoretical analyses based on digital elevation models (DEM's), on single Magellan radar images combined with radiometer data, and on the use of multiple overlapping Magellan radar images from cycles 1, 2, and 3, again combined with collateral radiometer data.

  13. Surface roughness modulations by submesoscale currents

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Chapron, Bertrand; Nouguier, Frederic; Ponte, Aurelien; Mouche, Alexis; Molemaker, Jeroen

    2016-04-01

    At times, high resolution images of sea surface roughness can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present two major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using surface roughness observations at multiple azimuth viewing angles. They also pave the way towards a better understanding of the coupling between ocean, waves and atmosphere at high resolution.

  14. Root mean square roughness of nano porous silicon by scattering spectra

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Ebrahimnasab, S.

    2014-10-01

    We demonstrate that surface roughness can be obtained by scattering spectra and is more accurate than mechanical devices such as scanning probe microscopy (SPM) and profilometry techniques such as stylus (contact) profilometry. Due to the probe effect in these techniques, most of the information may be lost. Root mean square ( σ) is obtained experimentally by scattering spectra and theoretically by the Davies-Bennett/Porteus equation. Then, σ is compared with AFM results. Roughness behaviour is studied for four nano porous silicon surfaces, which have been fabricated using the electrochemical method at different etching times. Also, a band gap region can be determined directly from reflection spectrum.

  15. The geological interpretation of photometric surface roughness

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul

    1988-01-01

    A computer-generated km-scale relief map, whose topographic facets on scales of less than a few m are assumed to have smooth particulate surfaces, is the basis of the present investigation of the relationship between photometrically-derived values of Hapke's (1984) roughness parameter theta and topographic scale. The addition of m-km scale-range relief to the otherwise smooth surface alters integral photometric behavior in a way that is consistent with Hapke's equation; the roughness characterized by theta is an integral property over all scales up to the resolution limit of the photometric data used in its determination. With sufficient phase angle coverage, theta can distinguish terrains with very different integral roughnesses.

  16. Surface forces: Surface roughness in theory and experiment

    SciTech Connect

    Parsons, Drew F. Walsh, Rick B.; Craig, Vincent S. J.

    2014-04-28

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  17. Surface Roughness and Snow Accumulation in East Antarctica

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Vornberger, P. L.; Bohlander, J. A.; Das, I.; Klinger, M.; Pope, A.; Lenaerts, J.; Fahnestock, M. A.

    2015-12-01

    A complex relationship exists between snow accumulation (e.g., net surface mass balance) and meter-scale surface roughness as represented by sastrugi and erosional structures over the East Antarctic Ice Sheet (EAIS). The morphology of the ice sheet at this scale is a result of a complex interaction between katabatic winds, synoptic storms, and the slope of the surface, all driving local patterns of snow accretion and sublimation. In megadune regions, the accumulation, surface slope, and surface roughness are highly correlated with slope. Smooth glazed surfaces are present on the steeper leeward wind-faces, and much rougher snow-accreting megadunes are present on the windward (depositional) slope. However, the highest elevation areas near the ridge crest of the EAIS (above ~3200 m) have a converse relationship between roughness and accumulation. Here, very low wind ridge crest areas are smooth and have higher accumulation than adjacent, slightly steeper regions that exhibit a slight increase in roughness. Below the main regions of megadunes (<~2000 m) wind glaze areas gradually become rougher as wind scouring and erosion dominate locally steeper regions. In coastal areas (<~1000), roughness is highly variable, and is tied to frequent synoptic storm deposition. We compare roughness data derived from MISR (Multi-angle Imaging SpectroRadiometer) and Landsat 8 acquisitions with available wind and accumulation data from climate model results and field measurements. Roughness is determined by sunlight scattering relative to viewing geometry (MISR) or from the amplitude of textural characteristics tied to surface sastrugi (Landsat 8). Both are validated by comparison with meter-scale images (WorldView-1) and field observations. MISR roughness mapping shows persistent qualitative patterns of surface roughness across the EAIS, but an absolute roughness scale mapping is difficult to generate because of complex viewing, illumination, and bi-directional reflectance variations

  18. Surface roughness limited contrast to clutter ratios THz medical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Goell, Jacob; Taylor, Zachary

    2016-03-01

    The THz electromagnetic properties of rough surface are explored and their effect on the observed contrast in THz images is quantified. Rough surface scatter is a major source of clutter in THz imaging as the rough features of skin and other tissues result in non-trivial reflection signal modulation. Traditional approaches to data collection utilize dielectric windows to flatten surfaces for THz imaging. However, there is substantial interest surrounding window free imaging as contact measurements are not ideal for a range of candidate diseases and injuries. In this work we investigate the variation in reflected signal in the specular direction from rough surfaces targets with known roughness parameters. Signal to clutter ratios are computed and compared with that predicted by Rayleigh Rough surface scattering theory. It is shown that Rayleigh rough surface scattering theory, developed for rough features larger than the interacting wavelength, holds acceptable at THz frequencies with rough features much smaller than the wavelength. Additionally, we present some biological tissue imaging examples to illustrate the impact of rough surface scattering in image quality.

  19. Industrial characterization of nano-scale roughness on polished surfaces

    NASA Astrophysics Data System (ADS)

    Feidenhans'l, Nikolaj A.; Hansen, Poul-Erik; Pilný, Lukáš; Madsen, Morten H.; Bissacco, Giuliano; Petersen, Jan C.; Taboryski, Rafael

    2015-10-01

    We report a correlation between the scattering value "Aq" and the ISO standardized roughness parameter Rq. The Aq value is a measure for surface smoothness, and can easily be determined from an optical scattering measurement. The correlation equation extrapolates the Aq value from a narrow measurement range of +/-16° from specular to a broader range of +/-80°, corresponding to spatial surface wavelengths of 0.8 μm to 25 μm, and converts the Aq value to the Rq value for the surface. Furthermore, we present an investigation of the changes in scattering intensities, when a surface is covered with a thin liquid film. It is shown that the changes in the angular scattering intensities can be compensated for the liquid film, using empirically determined relations. This allows a restoration of the "true" scattering intensities which would be measured from a corresponding clean surface. The compensated scattering intensities provide Aq values within 5.7 % +/- 6.1 % compared to the measurements on clean surfaces.

  20. Three-tier rough superhydrophobic surfaces.

    PubMed

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. PMID:26184512

  1. Surface Roughness Reduction on Divinylbenzene Foam Shells

    NASA Astrophysics Data System (ADS)

    Streit, Jon; Karnes, John; Motta, Brian; Petta, Nicole

    2009-11-01

    Inertial fusion energy targets for the Naval Research Laboratory's High Average Power Laser Program require millimeter-scale, low density foam capsules with a gas permeation barrier and an outer surface roughness less than 50 nm RMS. Divinylbenzene (DVB) foam is a candidate for the capsule wall material, but its porous, open celled surface has been both too rough and difficult to seal. To overcome this difficulty we have repurposed a previously reported dual stage initiator emulsion microencapsulation method, adding an additional step that enhances the surface of the foam capsules. Using both low and high temperature initiators allows the DVB foam to gel in the low temperature stage and a water soluble monomer to be added and polymerized during the high temperature stage without breaking down the emulsion. This method forms a submicron skin that covers the open celled DVB foam surface, resulting in a superior substrate for gas permeation barrier deposition.

  2. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  3. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  4. Rough Fresnel zone plates over metallic surfaces.

    PubMed

    Salgado-Remacha, Francisco Javier; Sanchez-Brea, Luis Miguel; Alvarez-Rios, Francisco Javier; Bernabeu, Eusebio

    2010-04-01

    We analyze the focusing properties of Fresnel zone plates fabricated over steel tapes using laser ablation. Our intention is to implement the use of micro-optical elements when the use of conventional chrome-glass elements is not indicated. Because of the manufacture process, the surface presents a certain anisotropic roughness, which reduces the focusing properties. First, we develop numerical simulations by means of the Rayleigh-Sommerfeld approach, showing how roughness in both levels of the Fresnel zone plate affects the focalization of the lens. We also manufacture Fresnel zone plates over steel tape, and perform experimental verification that corroborates the numerical results. PMID:20357856

  5. Surface roughness effects in elastohydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Tripp, J. H.; Hamrock, B. J.

    1985-01-01

    Surface roughness effects in full-film EHL contacts were studied. A flow factor modification to the Reynolds equation was applied to piezoviscous-elastic line contacts. Results for ensemble-averaged film shape, pressure distribution, and other mechanical quantities were obtained. Asperities elongated in the flow direction by a factor exceeding two decreased both film shape and pressure extrema at constant load; isotropic or transverse asperities increased these extrema. The largest effects are displayed by traction, which increased by over 5% for isotropic or transverse asperities and by slightly less for longitudinal roughness.

  6. Degree of ice particle surface roughness inferred from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Hioki, S.; Yang, P.; Baum, B. A.; Platnick, S.; Meyer, K. G.; King, M. D.; Riedi, J.

    2015-12-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed in the analysis that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global one-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global one-month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. The present theoretical results are in close agreement with observations in the extratropics but not in the tropics. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  7. Wenzel Wetting on Slippery Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Stogin, Birgitt; Dai, Xianming; Wong, Tak-Sing

    2015-11-01

    Liquid repellency is an important surface property used in a wide range of applications including self-cleaning, anti-icing, anti-biofouling, and condensation heat transfer, and is characterized by apparent contact angle (θ*) and contact angle hysteresis (Δθ*). The Wenzel equation (1936) predicts θ* of liquids in the Wenzel state, and is one of the most fundamental equations in the wetting field. However, droplets in the Wenzel state on conventional rough surfaces exhibit large Δθ* , making it difficult to experimentally verify the model with precision. As a result, precise verification of the Wenzel wetting model has remained an open scientific question for the past 79 years. Here we introduce a new class of liquid-infused surfaces called slippery rough surfaces -- surfaces with significantly reduced Δθ* compared to conventional rough surfaces--and use them to experimentally assess the Wenzel equation with the highest precision to date. We acknowledge the funding support by National Science Foundation (NSF) CAREER Award #: 1351462 and Office of Navy Research MURI Award #: N00014-12-1-0875. Stogin acknowledges the support from the NSF Graduate Research Fellowship (Grant No. DGE1255832).

  8. Wetting on rough self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Palasantzas, George

    1995-05-01

    In this paper, we present a general investigation of the effective potential for complete wetting on self-affine rough surfaces. The roughness effect is investigated by means of the height-height correlation model in Fourier space ~(1+aξ2q2)-1-H. The parameters H and ξ are, respectively, the roughness exponent and the substrate in-plane correlation length. It is observed that the effect of H on the free interface profile is significant for ξ>ξ) regime is characterized by a power-law scaling ~Y-2.

  9. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    SciTech Connect

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be applied in numerical DSMC methods as well as in analytical investigations.

  10. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  11. Soil Surface Roughness through Image Analysis

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Saa-Requejo, A.; Valencia, J. L.; Moratiel, R.; Paz-Gonzalez, A.; Agro-Environmental Modeling

    2011-12-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on several factors being one of them surface micro-topography, usually quantified trough soil surface roughness (SSR). SSR greatly affects surface sealing and runoff generation, yet little information is available about the effect of roughness on the spatial distribution of runoff and on flow concentration. The methods commonly used to measure SSR involve measuring point elevation using a pin roughness meter or laser, both of which are labor intensive and expensive. Lately a simple and inexpensive technique based on percentage of shadow in soil surface image has been developed to determine SSR in the field in order to obtain measurement for wide spread application. One of the first steps in this technique is image de-noising and thresholding to estimate the percentage of black pixels in the studied area. In this work, a series of soil surface images have been analyzed applying several de-noising wavelet analysis and thresholding algorithms to study the variation in percentage of shadows and the shadows size distribution. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010- 21501/AGR and by Xunta de Galicia through project no INCITE08PXIB1621 are greatly appreciated.

  12. Modeling superhydrophobic surfaces comprised of random roughness

    NASA Astrophysics Data System (ADS)

    Samaha, M. A.; Vahedi Tafreshi, H.; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  13. Wetting failure of hydrophilic surfaces promoted by surface roughness

    PubMed Central

    Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing

    2014-01-01

    Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390

  14. Enhancing capillary rise on a rough surface

    NASA Astrophysics Data System (ADS)

    Chow, Melissa; Wexler, Jason; Jacobi, Ian; Stone, Howard

    2014-11-01

    Liquid-infused surfaces have been proposed as a robust alternative to traditional air-cushioned superhydrophobic surfaces. However, if these surfaces are held vertically the lubricating oil can drain from the surface, and cause the surface to lose its novel properties. To examine this failure mode, we measure the drainage from a surface with model roughness that is scaled-up to allow for detailed measurements. We confirm that the bulk fluid drains from the surface until it reaches the level of the capillary rise height, although the detailed dynamics vary even in simple surface geometries. We then test different substrate architectures to explore how the roughness can be designed to retain greater amounts of oil. Supported under MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja), PREM CSUN Prime # NSF 1205734 and ONR MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr. Ki-Han Kim).

  15. Estimation of planetary surface roughness by HF sounder observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    Japanese Martian exploration project "Nozomi" was to carry out several science missions. Plasma Wave Sounder, one of those onboard missions, was an HF sounder to study Martian plasma environment, and Martian surface with the altimetry mode (Oya and Ono, 1998) as well. The altimetry mode observation was studied by means of computer simulations utilizing the KiSS code which had been originally designed to simulate the SELENE Lunar Radar Sounder, a spaceborne HF GPR, based on Kirchhoff approximation theory (Kobayashi, Oya and Ono, 2002). We found an empirical power law for the standard deviation of observed altitudes over Gaussian random rough surfaces: it varies in proportion to the square of the RMS gradient of the surface √{2} hRMS{λ_0, where hRMS and λ_0 are the RMS height of the surface and the correlation distance of the surface, respectively. We applied Geometrical optics to understand this empirical power law, and derived a square power law for the standard deviation of the observed altitude. Our Geometrical optics model assumed the followings: 1) the observed surface is a Gaussian random rough surface, 2) the mean surface is a flat horizontal plane, 3) the observed surface echo is the back scattering echoes, 4) the observed altitude is the mean value of the apparent range of those back scattering echoes. These results imply that HF sounder may be utilized to measure the surface roughness of planetary bodies in terms of the RMS gradient of the surface. Refrence: H. Oya and T. Ono, A new altimeter for Mars land shape observations utilizing the ionospheric sounder system onboard the Planet-B spacecraft, Earth Planets Space, Vol. 50, pp.229-234, 1998 T. Kobayashi, H. Oya, and T. Ono, A-scope analysis of subsurface radar sounding of lunar mare region, Earth Planets Space, Vol. 54, pp.973-982, 2002

  16. Studies on argon collisions with smooth and rough tungsten surfaces.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2013-09-01

    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow. PMID:24007943

  17. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  18. Quantifying surface roughness over debris covered ice

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rounce, David; Ross, Andrew

    2016-04-01

    Aerodynamic roughness length (z0) remains a major uncertainty when determining turbulent heat fluxes over glacier surfaces, and can vary by an order of magnitude even within a small area and through the melt season. Defining z0 over debris-covered ice is particularly complex, because the surface may comprise clasts of greatly varying size, and the broader-scale surface relief can be similarly heterogeneous. Several recent studies have used Structure from Motion to data model debris-covered surfaces at the centimetric scale and calculate z0 based on measurements of surface microtopography. However, few have validated these measurements with independent vertical wind profile measurements, or considered how the measurements vary over a range of different surface types or scales of analysis. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post-monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed measured over both sites enable us to derive measurements of aerodynamic roughness that are similar in magnitude, with z0 at the second site exceeding that at the first by < 1 cm. During our observation period, snow covered the second site for three days, but the impact on z0 is small, implying that roughness is predominantly determined by major rock size obstacles rather than the general form of the surface. To complement these aerodynamic measurements we also conducted a Structure from Motion survey across each patch and calculated z0 using microtopographic methods published in a range of recent studies. We compare the outputs of each of these algorithms with each other and with the aerodynamic measurements, assess how they perform over a range of scales, and evaluate the validity of using microtopographic methods where aerodynamic measurements

  19. Investigations of Titan's topography and surface roughness

    NASA Astrophysics Data System (ADS)

    Sharma, Priyanka

    Saturn's moon, Titan is a geomorphologically active planetary object, and its surface is influenced by multiple processes like impact cratering, fluvial and aeolian erosion, lacustrine processes, tectonics, cryovolcanism and mantling. Disentangling the processes that compete to shape Titan's landscape is difficult in the absence of global topography data. In this thesis, I utilize techniques in topographic statistics, fractal theory, study of terrestrial analogs and landscape evolution modeling to characterize Titan's topography and surface roughness and investigate the relative roles of surface processes in sculpting its landscape. I mapped the shorelines of 290 North Polar Titanian lakes using the Cassini Synthetic Aperture Radar dataset. The fractal dimensions of the shorelines were calculated via the divider/ruler method and box-counting method, at length scales of (1--10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan's topography was found to be ≤ 2, which is lower than the values obtained from the global topography of the Earth or Venus. In order to interpret fractal dimensions of Titan's shorelines in terms of the surficial processes at work, I repeated a similar statistical analysis with 114 terrestrial analogous lakes formed by different processes, using C-band radar backscatter data from the Shuttle Radar Topography Mission (SRTM). I found different lake generation mechanisms on Earth produce 'statistically different' shorelines; however, no specific set of processes could be identified for forming Titanian lake basins. Using the Cassini RADAR altimetry data, I investigated Titan's global surface roughness and calculated median absolute slopes, average relief and Hurst exponent (H) for the surface of Titan. I detected a clear trend with latitude in these roughness parameters. Equatorial regions had the smallest slopes, lowest values of H and smallest intra-footprint relief, compared to the mid

  20. Robust surface roughness indices and morphological interpretation

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery

  1. Multilayer X-ray mirrors - Interfacial roughness, scattering, and image quality

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Stearns, Daniel; Krumrey, Michael

    1993-01-01

    Scattering of the multilayer coatings used for our normal incidence soft X-ray telescope at a wavelength of 63.5 A has been measured at 1.54 A and grazing angles of incidence and at soft X-rays near normal incidence. Furthermore, the edge of the moon is used as a known test target to estimate the amount of scattering in the arcsec range from images obtained on the date of the solar eclipse on July 11, 1991. The internal surfaces of the coating are inspected by high-resolution electron microscopy. A theoretical model describing the evolution and replication of roughness from layer to layer throughout the structure, which is in agreement with all experimental data, is presented. We find that practically all roughness caused by the growth of the multilayer structure occurs at spatial frequencies which are too high to produce scattering. The substrate roughness is replicated at lower spatial frequencies which might produce scattering within the field of view of an instrument. However, roughness in this range is below the 0.5 A level, again resulting in insignificant amounts of scatter.

  2. Quantifying the effects of roughness scattering on reflection loss measurements.

    PubMed

    Isakson, Marcia J; Chotiros, Nicholas P; Yarbrough, R Abraham; Piper, James N

    2012-12-01

    Seafloor reflection loss and roughness measurements were taken at the Experimental Validation of Acoustic Modeling Techniques experiment in 2006. The magnitude and phase of the reflection loss was measured at frequencies from 5 to 80 kHz and grazing angles from 7° to 77°. Approximately 1500 samples were taken for each angle. The roughness was measured with a laser profiler. Geoacoustic parameters such as water and sediment sound speed and density were measured concurrently. The reflection loss data were compared with three models: A flat interface elastic model based on geoacoustic measurements; a flat interface poro-elastic model based on the Biot/Stoll model; and a rough interface model based on the measured interface roughness power spectrum. The data were most consistent with the poro-elastic model including scattering. The elastic model consistently predicted values for the reflection loss which were higher than measured. The data exhibited more variability than the model due to layering and fluctuations in the propagating medium. PMID:23231100

  3. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    SciTech Connect

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.; Goldberg, Kenneth A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  4. Experimental Investigation of the Problem of Surface Roughness

    NASA Technical Reports Server (NTRS)

    Schlichting, H

    1937-01-01

    Based on the universal laws of turbulent velocity distribution at rough and smooth walls, there is in the present work presented a method that allows surface roughness tests and in particular, measurements on the roughness of ship surfaces to be carried out in a much simpler manner. The types of roughness investigated were in the form of flat, rough plates installed in a square-section rectangular channel, the other three walls always being smooth. Twenty-one plates of various roughness were investigated, the roughness elements being the following: spheres of diameter 0.41 and 0.21, respectively, spherical segments, cones, and "short" and "long" angles.

  5. Meaningful surface roughness and quality tolerances

    NASA Astrophysics Data System (ADS)

    Aikens, David M.

    2010-08-01

    Most tolerances on optical elements can be derived or calculated from the application requirements using computeraided optical design programs. For surface quality and surface roughness, however, there are few guidelines or tools for calculating appropriate tolerances. Typically, we simply use a legacy specification (e.g. 60-40 and 3 A RMS) with little thought for either the cost of achieving the specification or the penalty for failing to achieve it. Often these legacy specifications are ambiguous, unnecessarily costly and in some cases completely meaningless. This paper provides some basic rules and equations for calculation of the real or perceived impact of these specifications, and some guidelines for the initiate (and for some of us veterans as well) as to how to compose a meaningful tolerance.

  6. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films

    NASA Astrophysics Data System (ADS)

    Jacob, U.; Vancea, J.; Hoffmann, H.

    1990-06-01

    The influence of surface roughness on the electrical conductivity of polycrystalline metal films has to be considered at two different length scales. The large-scale surface roughness due to the granular arrangement of these films gives rise to a fluctuating film cross section. One-dimensional models of these fluctuations lead to roughness values consistent with scanning-tunneling-microscopy images of film surfaces. The microscopic surface roughness, mainly given by atomic steps on the crystallite surfaces, represents centers for surface scattering of conduction electrons. With this concept we were able to describe not only the thickness-dependent conductivity of films with natural (as-deposited) surface roughness, but also the increase in the resistance during subsequent coating with adatoms at 80 K owing to an artificial microscopic roughening of their surfaces.

  7. Interactions between surface roughness and airflow turbulence affecting drying dynamics of rough porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James; Or, Dani

    2016-04-01

    Evaporative drying of porous surfaces interacting with turbulent airflows is common in various industrial and natural applications. The intrinsic relief and roughness of natural porous surfaces are likely to influence the structure of interacting turbulent airflow boundary layers, and thus affect rates and patterns of heat and vapor fluxes from the surface. These links have been formalized in new mechanistic models that consider intermittent and localized turbulence-induced boundary layers, resulting in rich surface evaporation and energy exchange dynamics. The models were evaluated experimentally by systematically varying surface roughness elements in drying experiments of wavy and bluff-body covered sand surfaces in a wind tunnel. Thermal infrared signatures of localized evaporative fluxes as well as mean evaporative mass losses were recorded. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Experimental and theoretical results suggest that evaporative water losses from wavy sand surfaces can be either enhanced or suppressed (relative to a flat surface), due to the complex interplay between the local boundary layer thickness and internal limitations on water flow to the evaporating surface. For sand surfaces covered by isolated cylindrical elements (bluff bodies), model predictions and measurements show persistent enhancement of evaporative fluxes from bluff-rough surfaces compared to a flat surface under similar conditions. This enhancement is attributed to the formation of vortices that thin the boundary layer over part of the interacting surface footprint. The implications of this study for interpreting and upscaling evapotranspiration rates from terrestrial surfaces will be discussed.

  8. Speckle pattern texture analysis method to measure surface roughness

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I.; Sadovoy, A.; Doronin, A.; Meglinski, I.

    2013-02-01

    Speckle pattern texture analysis method is applied to measure surface roughness of human skin. The method is based on analyzing of a gray level co-occurrence matrix occurred from a speckle image of a rough surface. Paper with different surface roughness is used as a skin phantom. The roughness is controlled by profilometry measurements. The developed methodology could find wide application in dermatology and tissue diagnostics.

  9. Thermodynamics of capillary adhesion between rough surfaces.

    PubMed

    de Boer, M P; de Boer, P C T

    2007-07-01

    According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process. PMID:17368659

  10. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  11. Incorporating Skew into RMS Surface Roughness Probability Distribution

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  12. The roughness of the Martian surface: A scale dependent model

    NASA Technical Reports Server (NTRS)

    Shepard, M. K.; Guinness, E. A.; Arvidson, R. E.

    1993-01-01

    In the coming decade, several lander missions to Mars are planned (e.g., MESUR Pathfinder, MESUR). One of the dangers facing planners of these missions is the rough topography observed at both Viking Lander sites. Both landing sites are ubiquitously covered with meter-scale boulders. Objects of this size pose obvious threats to soft landers, especially at Mars where the distance from Earth causes prohibitive time lags between the transmission of commands and feedback from the spacecraft. An obvious solution is to scout for a 'smooth' site prior to the landing. However, the best resolutions realizable on current and future missions (i.e., Mars Observer) are on the order of several meters. Even at this scale, boulders of 1-2 meters in size are unresolvable. Additionally, the amount of time and spacecraft resources required to search even a small area of the planet are unrealistic given other mission objectives. An alternative is to determine the 'roughness' of the surface at a subpixel scale using bidirectional reflectance observations. Much larger areas of the planet can be searched, and much of the search can easily be automated. The morphology of the martian plains observed by the Viking Landers is physically simple. The surface is covered with a layer (approximately flat lying) of aeolian sediment from which numerous outcrops of bedrock and boulders protrude. This morphology, while simple, will be difficult to characterize from orbit using traditional bidirectional reflectance models for two reasons. First, modeling the surface as facets with Gaussian or exponential slope distributions is not realistic given the morphology described above. Second, the roughness parameter is an 'average' of the roughness at scales ranging from the wavelength of light being scattered to the pixel size of the observation. Thus, there is no definite scale of roughness that can be extracted from the Hapke roughness parameter. Using the concepts of geometric and boolean models

  13. Rough surface scattering based on facet model

    NASA Technical Reports Server (NTRS)

    Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.

    1974-01-01

    A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.

  14. The influence of roughness of the surface on the interchange of momentum between gas flow and solid surface

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Friedlander, O. G.; Nikiforov, A. P.; Nesterov, S. B.; Nezhmetdinova, R. A.

    2012-11-01

    The interaction of high velocity free-molecular gas flow with the solid surface is studied. The influence of the surface structure on the momentum and scattering indicatrix of reflected molecular flow are investigated. The results of theoretical and experimental investigation of the gas flow scattered by a rough surface are given. Data about the surface structure, received by atomic force microscope are also reported.

  15. Application of wavelet transforms in terahertz spectroscopy of rough surface targets

    NASA Astrophysics Data System (ADS)

    Arbab, M. Hassan; Winebrenner, Dale P.; Thorsos, Eric I.; Chen, Antao

    2010-02-01

    Previously, it has been shown that scattering of terahertz waves by surface roughness of a target can alter the terahertz absorption spectrum and thus obscure the detection of some chemicals in both transmission and reflection geometries. In this paper it is demonstrated that by employing Maximal Overlap Discrete Wavelet Transform (MODWT) coefficients, wavelet-based methods can be used to retrieve spectroscopic information from a broadband terahertz signal reflected from a rough surface target. It is concluded that while the commonly used direct frequency domain deconvolution method fails to accurately characterize and detect the resonance in the dielectric constant of rough surface lactose pellets, wavelet techniques were able to successfully identify such features.

  16. Influence of surface roughness on the efficiency of X-ray mirrors with whispering gallery modes

    SciTech Connect

    Kozhevnikov, I. V.

    2009-03-15

    The influence of roughness on the propagation of an X-ray beam along a concave surface in the whispering gallery mode has been investigated. The transfer equation of beam intensity is derived and the conditions of concave surface smoothness necessary for effective beam rotation are obtained. It is shown that the influence of roughness on the beam rotation efficiency is not very strong: the roughness height should not exceed several nanometers. The point is that the scattered radiation is not lost but rotated by a concave surface and makes a significant contribution to the intensity of the output beam.

  17. Backscatter from a periodic rough surface at near grazing incidence

    NASA Technical Reports Server (NTRS)

    Dominek, A. K.; Shamansky, H. T.

    1987-01-01

    The effect of periodic surface roughness on the radar cross section (RCS) was studied. The surface roughness was formed by a small sinusoidal variation in a planar surface. RCS measurements were obtained for two different sinusoidal variations near grazing incidence for both principle polarizations. Significant grating lobes were observed in the measurements which directly correspond to the roughness characteristics. A physical optics solution was generated and compared to the measurements with reasonable agreement.

  18. Soil surface roughness characterization for microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Rieke-Zapp, D.; Ludwig, R.

    2012-04-01

    With this poster we present a simple and efficient method to measure soil surface roughness in an agricultural environment. Micro scale soil surface roughness is a crucial parameter in many environmental applications. In recent studies it is strongly recognized that soil surface roughness significantly influences the backscatter of agricultural surface, especially on bare fields. Indeed, while different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscattering. In this study, we introduce a photogrammetric system which consists of a customized consumer grade Canon EOS 5d camera and a reference frame providing ground control points. With the system one can generate digital surface models (DSM) with a minimum size of 1 x 2.5 m2, extendable to any desired size, with a ground x,y- resolution of 2 mm. Using this approach, we generated a set of DSM with sizes ranging from 2.5 m2 to 22 m2, acquired over different roughness conditions representing ploughed, harrowed as well as crusted fields on different test sites. For roughness characterization we calculated in microwave remote sensing common roughness indices such as the RMS- height s and the autocorrelation length l. In an extensive statistical investigation we show the behavior of the roughness indices for different acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated out of the dataset, that using a three dimensional measuring device, the calculated roughness indices are more robust in their estimation. In addition, a strong directional dependency of the proposed roughness indices was observed which could be related to the orientation of the seedbed rows to the acqusition direction. In a geostatistical analysis, we decomposed the acquired roughness indices into different scales, yielding a roughness quantity

  19. Quantification of soil surface roughness evolution under simulated rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. The objective of this study was to compare several existing soil surface roughness indices and to test the Revised Triangular Prism surface area Method (RTPM) as a new approach to cal...

  20. Interactions of light with rough dielectric surfaces - Spectral reflectance and polarimetric properties

    NASA Technical Reports Server (NTRS)

    Yon, S. A.; Pieters, C. M.

    1988-01-01

    The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.

  1. An eigenvalue correction due to scattering by a rough wall of an acoustic waveguide.

    PubMed

    Krynkin, Anton; Horoshenkov, Kirill V; Tait, Simon J

    2013-08-01

    In this paper a derivation of the attenuation factor in a waveguide with stochastic walls is presented. The perturbation method and Fourier analysis are employed to derive asymptotically consistent boundary-value problems at each asymptotic order. The derived approximation predicts the attenuation of the propagating mode in a rough waveguide through a correction to the eigenvalue corresponding to smooth walls. The proposed approach can be used to derive results that are consistent with those obtained by Bass et al. [IEEE Trans. Antennas Propag. 22, 278-288 (1974)]. The novelty of the method is that it does not involve the integral Dyson-type equation and, as a result, the large number of statistical moments included in the equation in the form of the mass operator of the volume scattering theory. The derived eigenvalue correction is described by the correlation function of the randomly rough surface. The averaged solution in the plane wave regime is approximated by the exponential function dependent on the derived eigenvalue correction. The approximations are compared with numerical results obtained using the finite element method (FEM). An approach to retrieve the correct deviation in roughness height and correlation length from multiple numerical realizations of the stochastic surface is proposed to account for the oversampling of the rough surface occurring in the FEM meshing procedure. PMID:23927093

  2. Effect of surface roughness pattern on transient mixed elastohydrodynamic lubrication

    NASA Astrophysics Data System (ADS)

    Torabi, Amir; Akbarzadeh, Saleh; Salimpour, Mohammad Reza; Taei, Morteza

    2016-03-01

    Besides the surface roughness of two contacting surfaces, the surface roughness pattern i.e. longitudinal, transverse and isotropic significantly influences the tribological performance of the mechanical element. Their impression is more pronounced under the mixed elasto-hydrodynamic lubrication condition. The cam and flat follower mechanism is a typical sample in which adverse tribological conditions, including direct boundary interactions occurs. In this paper, the effect of surface roughness pattern on the film thickness and friction coefficient in a cam follower mechanism is investigated. Asperity interaction and friction coefficient analysis is conducted based on a novel elasto-plastic model. The lubrication model is qualitatively compared with the experimental results obtained from the pin on disk experiments for various surface roughness orientations. The results of transient lubrication analysis for a cam and follower lubrication problem are presented. It is shown that the longitudinal surface roughness pattern has a more desirable tribological performance than transverse surface pattern.

  3. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  4. Droplet morphologies on particles with macroscopic surface roughness.

    PubMed

    Stepánek, Frantisek; Rajniak, Pavol

    2006-01-31

    The equilibrium configuration of liquid droplets on the surface of macroscopically rough solid particles was determined by numerical simulations using the volume-of-fluid (VOF) method. The fractional surface coverage of the particle as a function of the droplet size, equilibrium contact angle, and the particle surface roughness amplitude and correlation length has been systematically investigated. Droplet size and contact angle were found to generally have a stronger effect on surface coverage than particle surface roughness. Because of droplet coalescence, a relatively large variation in surface coverage was observed for any given total liquid volume, particularly for larger values of the equilibrium contact angle. PMID:16430249

  5. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  6. Rough surface improves stability of air- sounding balloons

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.

    1965-01-01

    Aerodynamic stability of balloons used for measuring the intensity and direction of atmospheric winds at various elevations is improved by incorporating a rough surface on the balloons. The rough-surfaced balloon is useful for collecting wind profiles and other meteorological data.

  7. Counterintuitive MCNPX Results for Scintillator Surface Roughness Effect

    SciTech Connect

    2012-08-12

    We have reported on our recent MCNPX simulation results of energy deposition for a group of 8 scintillation detectors, coupled with various rough surface patterns. The MCNPX results generally favored the detectors with various rough surface patterns. The observed MCNPX results are not fully explained by this work.

  8. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    PubMed

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing. PMID:17348511

  9. Fine tuning the roughness of powder blasted surfaces

    NASA Astrophysics Data System (ADS)

    Wensink, Henk; Schlautmann, Stefan; Goedbloed, Martijn H.; Elwenspoek, Miko C.

    2002-09-01

    Powder blasting (abrasive jet machining) has recently been introduced as a bulk-micromachining technique for brittle materials. The surface roughness that is created with this technique is much higher (with a value of Ra between 1-2.5 μm) compared to general micromachining techniques. In this paper we study the roughness of powder blasted glass surfaces, and show how it depends on the process parameters. The roughness can also be changed after blasting by HF etching or by using a high-temperature anneal step. Roughness measurements and scanning electron microscopy images show the quantitative and qualitative changes in roughness. These post-processes will allow us to investigate the influence of surface roughness on the microsystem performance in future research.

  10. Prediction of Frictional Drag over Rough Walls using Surface Statistics

    NASA Astrophysics Data System (ADS)

    Flack, Karen; Schultz, Michael

    2014-11-01

    Although the frictional drag of rough-wall-bounded flows has been studied extensively, several practical questions remain largely unresolved. First, the relationship between the shape of the roughness function in transitionally-rough regime and the surface topography which gives rise to it are not well understood. Second, it is not completely clear which textural parameters best describe a rough surface in a hydraulic sense. Furthermore, the range of roughness wavelengths that influence the skin-friction is not well established. The focus of the present work is to attempt to address these questions with a systematic study of the skin-friction of fifteen rough surfaces that were generated by grit blasting. The hydrodynamic tests were carried out over a large Reynolds number range. Five surfaces were prepared by grit blasting with a single scale blast media. These underwent hydrodynamic testing and were subsequently blasted with secondary and tertiary scale media in order to investigate the role that the incorporation of additional roughness length scales plays in determining the shape of the roughness function and the resulting hydraulic length scale. The presentation will focus on the appropriate statistical scales for prediction of the roughness function. Spatial filtering prior to the calculation of surface statistics will also be discussed. Work supported by the Office of Naval Research.

  11. Determining Surface Roughness in Urban Areas Using Lidar Data

    NASA Technical Reports Server (NTRS)

    Holland, Donald

    2009-01-01

    An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.

  12. Effect of surface roughness on flexural strength of veneer ceramics.

    PubMed

    Fischer, H; Schäfer, M; Marx, R

    2003-12-01

    The strength of ceramic restorations depends on the occlusal surface roughness of the veneering porcelain, which is influenced by the final preparation. The hypothesis of the study was that roughnesses below a critical microscopic defect size--based only on fracture mechanics considerations--also affect flexural strength. The bending failure stress was evaluated on standard specimens of 4 veneer ceramics with 4 different surfaces of defined roughnesses, respectively. A linear correlation was found between roughness and failure stress. A "roughness-free" failure stress value was predicted for each tested material. This theoretical value can represent the "true" strength of the respective ceramic material. We conclude from our results that the final preparation of a ceramic restoration is critical to the strength of the material, and that ceramic veneering materials can be compared more objectively with respect to their strength by means of roughness-free strength values. PMID:14630897

  13. Effect of surface roughness on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Schmugge, T. J.; Newton, R. W.; Chang, A. T. C.

    1978-01-01

    The effect of surface roughness on the brightness temperature of a moist terrain was studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are greatest for wet soils where the difference between smooth and rough surfaces can be as great as 50K.

  14. Effect of surface roughness on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Schmugge, T. J.; Chang, A.; Newton, R. W.

    1979-01-01

    The effect of surface roughness on the brightness temperature of a moist terrain has been studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are great for wet soils where the difference between smooth and rough surfaces can be as great as 50 K.

  15. Topological Analysis of Rough Surfaces Using Persistent Homology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ken

    2015-11-01

    This letter investigates rough surfaces using a topological method. The horizontal cross section of a rough surface consists of "islands", and we focus on the topological changes in the island shapes (generation and annihilation of islands and lakes) with changes in elevation. We apply persistent homology to track these topological changes. We numerically confirm that the life spans of the islands and lakes follow power-law distributions, whose scaling exponents vary according to the roughness of the surface. We also provide a theoretical explanation for the relation between these scaling exponents and the roughness exponent with a simple scaling argument. The proposed method successfully connects a topological property with the roughness of a surface.

  16. Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Zhang, Lei

    2016-08-01

    We consider the problem of reconstructing the shape of multi-scale sound-soft large rough surfaces from phases measurements of the scattered field generated by tapered waves with multiple frequencies impinging on a rough surface. To overcome both the ill-posedness and nonlinearity of this problem for a single frequency, the Landweber regularization method based on the adjoint of the nonlinear objective functional is used. When the multi-frequency data is available, an approximation method is introduced to estimate the large-scale structure of the rough surface using the data measurements at the lowest frequency. The obtained estimate serves as an initial guess for a recursive linearization algorithm in frequency, which is used to capture the small scale structure of the rough surface. Numerical experiments are presented to illustrate the effectiveness of the method.

  17. Examining the validity of using a Gaussian Schell Model for modeling an extended beacon on a rough perfectly reflecting surface

    NASA Astrophysics Data System (ADS)

    Basu, Santasri; Hyde, Milo W.; McCrae, Jack E.; Spencer, Mark F.; Fiorino, Steven T.

    2014-10-01

    In military applications that use adaptive optics, an extended beacon instead of a point source beacon is created at the target due to atmospheric turbulence and other factors. These beacons, which have a finite spatial extent and exhibit varying degrees of coherence, are typically modeled in existing literature as a Gaussian Schell Model (GSM) due to its analytical tractability. Earlier, we used a full wave computational technique to evaluate the scattered field from a rough impedance surface in vacuum. The results showed some deviations from GSM behavior. The present work uses a simulation approach based on Physical Optics (PO) approximation to study the scattering behavior in presence of atmospheric turbulence. A fully coherent Gaussian beam is propagated through atmospheric phase screens to the rough surface target plane. The PO current is computed on the rough surface and the scattered field right above the surface is determined. The scattered light is propagated through a second set of atmospheric phase screens and thus the double passage through the atmosphere is realized. The rough surface is simulated using statistical parameters derived from profilometer measurements of standard targets. Through multiple realizations of the atmosphere and the rough surface, the statistics of the scattered field is determined. The simulations are done with different strengths of turbulence and different roughness scales of the target. The results are compared with a GSM. An effects model where the rough surface is modeled as a phase screen has also been implemented in order to verify the nature of the speckle returns.

  18. Theoretical model for the wetting of a rough surface.

    PubMed

    Hay, K M; Dragila, M I; Liburdy, J

    2008-09-15

    Many applications would benefit from an understanding of the physical mechanism behind fluid movement on rough surfaces, including the movement of water or contaminants within an unsaturated rock fracture. Presented is a theoretical investigation of the effect of surface roughness on fluid spreading. It is known that surface roughness enhances the effects of hydrophobic or hydrophilic behavior, as well as allowing for faster spreading of a hydrophilic fluid. A model is presented based on the classification of the regimes of spreading that occur when fluid encounters a rough surface: microscopic precursor film, mesoscopic invasion of roughness and macroscopic reaction to external forces. A theoretical relationship is developed for the physical mechanisms that drive mesoscopic invasion, which is used to guide a discussion of the implications of the theory on spreading conditions. Development of the analytical equation is based on a balance between capillary forces and frictional resistive forces. Chemical heterogeneity is ignored. The effect of various methods for estimating viscous dissipation is compared to available data from fluid rise on roughness experiments. Methods that account more accurately for roughness shape better explain the data as they account for more surface friction; the best fit was found for a hydraulic diameter approximation. The analytical solution implies the existence of a critical contact angle that is a function of roughness geometry, below which fluid will spread and above which fluid will resist spreading. The resulting equation predicts movement of a liquid invasion front with a square root of time dependence, mathematically resembling a diffusive process. PMID:18586259

  19. Light scattering by a reentrant fractal surface.

    PubMed

    Mendoza-Suárez, A; Méndez, E R

    1997-05-20

    Recently, rigorous numerical techniques for treating light scattering problems with one-dimensional rough surfaces have been developed. In their usual formulation, these techniques are based on the solution of two coupled integral equations and are applicable only to surfaces whose profiles can be described by single-valued functions of a coordinate in the mean plane of the surface. In this paper we extend the applicability of the integral equation method to surfaces with multivalued profiles. A procedure for finding a parametric description of a given profile is described, and the scattering equations are established within the framework of this formalism. We then present some results of light scattering from a sequence of one-dimensional flat surfaces with defects in the form of triadic Koch curves. Beyond a certain order of the prefractal, the scattering patterns become stationary (within the numerical accuracy of the method). It can then be argued that the results obtained correspond to a surface with a fractal structure. These constitute, to our knowledge, the first rigorous calculations of light scattering from a reentrant fractal surface. PMID:18253371

  20. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian; Potapczuk, M.

    1989-01-01

    The cause and effects of roughness on accreting glaze ice surfaces were studied with microvideo observations. Distinct zones of surface water behavior were observed, including a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where roughness elements grow into horn shapes. In addition, a zone where surface water ran back as rivulets and a dry zone where rime feathers formed were observed. The locations and behaviors of these zones are discussed. A simple multizone modification to the glaze ice accretion model is proposed to include spatial variability in surface roughness. Two test cases using the multizone model showed significant improvements for the prediction of glaze ice shapes.

  1. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    NASA Astrophysics Data System (ADS)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi; Matschuk, Maria; Murthy, Swathi; Taboryski, Rafael

    2013-09-01

    Surface roughness or texture is the most visible property of any object, including injection molded plastic parts. Roughness of the injection molding (IM) tool cavity directly affects not only appearance and perception of quality, but often also the function of all manufactured plastic parts. So called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts with hydrogen silsesquioxane (HSQ) to reduce their surface roughness. Results from the testing of surfaces made from two starting roughnesses are presented; one polished with grit 2500 sandpaper, another with grit 11.000 diamond polishing paste. We characterize the two surfaces with AFM, SEM and optical profilometry before and after coating. We show that the HSQ coating is able to reduce peak-to-valley roughness more than 20 times on the sandpaper polished sample, from 2.44(±0.99) μm to 104(±22) nm and more than 10 times for the paste polished sample from 1.85(±0.63) μm to 162(±28) nm while roughness averages are reduced 10 and 3 times respectively. We completed more than 10,000 injection molding cycles without detectable degradation of the HSQ coating. This result opens new possibilities for molding of affordable plastic parts with perfect surface finish.

  2. Surface roughness effect on finite oil journal bearings

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Hamrock, B. J.

    1981-01-01

    A theoretical study of the performance of finite oil journal bearings is made, considering the surface roughness effect. The total load supporting ability under such a condition derives from the hydrodynamic as well as asperity contact pressure. These two components of load are calculated separately. The average Reynolds equation for partially lubricated surfaces is used to evaluate hydrodynamic pressure. An analytical expression for average film thickness is obtained and introduced to modify the average Reynolds equation. The resulting differential equation is then solved numerically by finite difference methods for mean hydrodynamic pressure, which in turn gives the hydrodynamic load. Assuming the surface height distribution as Gaussian, the asperity contact pressure is found. The effect of surface roughness parameter, surface pattern, eccentricity ratio, and length to diameter ratio on hydrodynamic load and on side leakage is investigated. It is shown that hydrodynamic load increases with increasing surface roughness when both journal and bearing surfaces have identical roughness structures or when the journal only has a rough surface. The trend of hydrodynamic load is reversed if the journal surface is smooth and the bearing surface is rough.

  3. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated

  4. Estimating aerodynamic resistance of rough surfaces from angular reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current wind erosion and dust emission models neglect the heterogeneous nature of surface roughness and its geometric anisotropic effect on aerodynamic resistance, and over-estimate the erodible area by assuming it is not covered by roughness elements. We address these shortfalls with a new model wh...

  5. Characterization of super smooth surfaces by light scattering techniques

    NASA Astrophysics Data System (ADS)

    Mattsson, Lars H.

    1989-03-01

    A characteristic feature of a supersmooth surface is its low scatter. The scatter is proportional to the square of the rms surface roughness. Therefore, light scattering is a suitable and nondestructive method for characterization of smooth surfaces. It is possible to detect scattering created by height differences of a few atomic layers but the lateral sensitivity is limited to the order of the wavelength, ~0.5μm. The new F 1048-87 ASTM standard test method for measuring the effective surface roughness of optical components is based on total integrated scattering (TIS). The amount of scattering, caused by the surface roughness, is of primary interest for optical applications, while the roughness itself is of greater concern in the fields of microelectronics and magnetic memory storage. This paper will highlight the use of a low noise TIS instrument for characterization of sub-Å roughness on semiconductor wafers, for thin film characterization, and for detection of traces of contamination on silicon surfaces.

  6. Roughness assessment and wetting behavior of fluorocarbon surfaces.

    PubMed

    Terriza, Antonia; Álvarez, Rafael; Borrás, Ana; Cotrino, José; Yubero, Francisco; González-Elipe, Agustín R

    2012-06-15

    The wetting behavior of fluorocarbon materials has been studied with the aim of assessing the influence of the surface chemical composition and surface roughness on the water advancing and receding contact angles. Diamond like carbon and two fluorocarbon materials with different fluorine content have been prepared by plasma enhanced chemical vapor deposition and characterized by X-ray photoemission, Raman and FT-IR spectroscopies. Very rough surfaces have been obtained by deposition of thin films of these materials on polymer substrates previously subjected to plasma etching to increase their roughness. A direct correlation has been found between roughness and water contact angles while a superhydrophobic behavior (i.e., water contact angles higher than 150° and relatively low adhesion energy) was found for the films with the highest fluorine content deposited on very rough substrates. A critical evaluation of the methods currently used to assess the roughness of these surfaces by atomic force microscopy (AFM) has evidenced that calculated RMS roughness values and actual surface areas are quite dependent on both the scale of observation and image resolution. A critical discussion is carried out about the application of the Wenzel model to account for the wetting behavior of this type of surfaces. PMID:22483335

  7. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2016-04-01

    Recent studies demonstrate that roughness and morphologies of the textures play essential roles on the dynamics of water drop impacting onto superhydrophobic substrates. Particularly, significant reduction of contact time has greatly attracted people's attention. We experimentally investigate drop impact dynamics onto three types of superhydrophobic surfaces, consisting of regular micropillars, two-tier textures with nano/micro-scale roughness, and hierarchical textures with random roughness. It shows that the contact time is controlled by the Weber number and the roughness of the surface. Compared with drop impact on regular micropillared surfaces, the contact time can be finely reduced by increasing the Weber number on surfaces with two-tier textures, but can be remarkably reduced on surfaces with hierarchical textures resulting from the prompt splash and fragmentation of liquid lamellae. Our study may shed lights on textured materials fabrication, allowing a rapid drop detachment to realize broad applications.

  8. Contribution of surface roughness to simulations of historical deforestation

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Wang, Zhaomin

    Surface roughness which partitions surface net radiation into energy fluxes is a key parameter for estimation of biosphere-atmosphere interactions and climate variability. An earth system model of intermediate complexity (EMIC), MPM-2, is used to derive the impact of surface roughness on climate from simulations of historical land cover change effects. The direct change in surface roughness leads to a global surface warming of 0.08 °C through altering the turbulence in the boundary layer. The regional temperature response to surface roughness associated deforestation is very strong at northern mid-latitudes with a most prominent warming of 0.72 °C around 50°N in the Eurasia continent during summer. They can be explained mainly as direct and indirect consequences of decreases in surface albedo and increases in precipitation in response to deforestation, although there are a few significant changes in precipitation. There is also a prominent warming of 0.25 °C around 40°N in the North American continent. This study indicates that land surface roughness plays a significant role which is comparable with the whole land conversion effect in climate change. Therefore, further investigation of roughness-climate relationship is needed to incorporate these aspects.

  9. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  10. Computer simulation of RBS spectra from samples with surface roughness

    NASA Astrophysics Data System (ADS)

    Malinský, P.; Hnatowicz, V.; Macková, A.

    2016-03-01

    A fast code for the simulation of common RBS spectra including surface roughness effects has been written and tested on virtual samples comprising either a rough layer deposited on a smooth substrate or smooth layer deposited on a rough substrate and simulated at different geometries. The sample surface or interface relief has been described by a polyline and the simulated RBS spectrum has been obtained as the sum of many particular spectra from randomly chosen particle trajectories. The code includes several procedures generating virtual samples with random and regular (periodical) roughness. The shape of the RBS spectra has been found to change strongly with increasing sample roughness and an increasing angle of the incoming ion beam.

  11. Influence of particle surface roughness on creeping granular motion.

    PubMed

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ, shear rate in the flowing layer γ[over ̇], and the creeping region decay constant y_{0} were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion. PMID:27575202

  12. Influence of particle surface roughness on creeping granular motion

    NASA Astrophysics Data System (ADS)

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ , shear rate in the flowing layer γ ˙, and the creeping region decay constant y0 were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion.

  13. Counterintuitive MCNPX Results for Scintillator Surface Roughness Effect

    SciTech Connect

    Yuan, Ding; Guss, Paul

    2012-10-01

    We performed a number of comparative MCNPX simulations of gamma energy depositions of scintillation crystals with smooth and rough surfaces. In the study, nine surface patterns (8 micro-roughness + 1 smooth) were coupled with eight common scintillation crystals for a total of 72 possible combinations. Although this was a preliminary study, the outcome was counterintuitive; results generally favored surfaces with micro-roughness over a conventional smooth surface as measured in terms of average energy depositions. The advantage gained through surface roughness is less significant for CdSe and LaCl3, but is most significant for the common NaI and the glass-like SiO2 scintillators. Based on the results of the 64 rough-surface coupled MCNPX simulations, 57 of the 64 (~89%) simulations showed some improvement in energy deposition. The mean improvement in energy deposition was 2.52%. The maximum improvement was about 8.75%, which was achieved when roughening the surface of a SiO2 scintillator using a micro cutting pattern. Further, for a conventional NaI scintillator, MCNPX results suggest that any roughness pattern would improve the energy deposition, with an average improvement of 3.83%. Although the likely causes remain unclear, we intend to focus on presenting simulation results instead of offering a sound explanation of the underlying physics.

  14. Analysis of Surface Roughness at Overlapping Laser Shock Peening

    NASA Astrophysics Data System (ADS)

    Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.

    2016-02-01

    The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.

  15. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  16. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    NASA Astrophysics Data System (ADS)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  17. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  18. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    SciTech Connect

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-15

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  19. Equilibrium of wetting layers on rough surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Yu

    The objective of this dissertation is to study physical adsorption on solids with complex surface geometry--especially on self-similar and self-affine fractal surfaces--in the context of three phase equilibria. Such studies will facilitate the prediction of the adsorbed film from known surface properties, e.g., topography or interactions (direct problem), and the inference of unknown surface properties from experimental data (inverse problem). These results will then be compared against wetting phenomena on planar surfaces and with other methods of probing complex surface geometries of solids. Chapter One offers the basic context, including wetting phenomena on planar surfaces, the cornerstone prediction of wetting transition on planar surfaces by Cahn, the concepts of fractal geometry, and the formation of fractal objects, for later comparison. The rest of this dissertation will be devoted to the study of multilayer adsorption on fractal surfaces. When a liquid film completely wets the surface, the number of adsorbed molecules as a function of the vapor pressure will depend strongly on the underlying surface geometry. The fractal structure leads to the Frenkel-Halsey-Hill type isotherms with the exponents in the corresponding power laws depending on the fractal dimension and on whether the dominant influence is from the substrate potential (van der Waals wetting) or from the film-vapor surface tension (capillary wetting). The transition between the two is the analog of Cahn's transition: The thermal disorder is replaced by the quenched disorder. This analogy is studied in Chapter Two for self-similar surfaces, and in Chapter Four for self-affine surfaces. In Chapter Two the derivation framework also automatically identifies well-defined coexistence lines in the pressure-dimension diagram. The effect of the repulsive part is examined there too. A simple analysis of adsorption/desorption hysteresis on self-similar surfaces in Chapter Three concludes that the

  20. Surface roughness and three-dimensional heat conduction in thermophysical models

    NASA Astrophysics Data System (ADS)

    Davidsson, Björn J. R.; Rickman, Hans

    2014-11-01

    A thermophysical model is presented that considers surface roughness, cast shadows, multiple or single scattering of radiation, visual and thermal infrared self heating, as well as heat conduction in one or three dimensions. The code is suitable for calculating infrared spectral energy distributions for spatially resolved or unresolved minor Solar System bodies without significant atmospheres or sublimation, such as the Moon, Mercury, asteroids, irregular satellites or inactive regions on comet nuclei. It is here used to explore the effects of surface roughness on spatial scales small enough for heat conduction to erase lateral temperature gradients. Analytically derived corrections to one-dimensional models that reproduce the results of three-dimensional modeling are presented. We find that the temperature of terrains with such small-scale roughness is identical to that of smooth surfaces for certain types of topographies and non-scattering material. However, systematic differences between smooth and rough terrains are found for scattering materials, or topographies with prominent positive relief. Contrary to common beliefs, the roughness on small spatial scales may therefore affect the thermal emission of Solar System bodies.

  1. A possibility of avoiding surface roughness due to insects

    NASA Technical Reports Server (NTRS)

    Wortmann, F. X.

    1984-01-01

    Discussion of a method for eliminating turbulence caused by the formation of insect roughness upon the leading edges and fuselage, particularly in aircraft using BLC. The proposed technique foresees the use of elastic surfaces on which insect roughness cannot form. The operational characteristics of highly elastic rubber surface fastened to the wing leading edges and fuselage edges are examined. Some preliminary test results are presented. The technique is seen to be advantageous primarily for short-haul operations.

  2. Surface Roughness Parameter Uncertainties on Radar Based Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; vanderVelde, R.; O'Neill, P. E.; Lang, R.; Su, Z.; Gish, T.

    2012-01-01

    Surface roughness variations are often assumed to be negligible for the retrieval of sol moisture. Although previous investigations have suggested that this assumption is reasonable for natural vegetation covers (i.e. Moran et al. 2002), in-situ measurements over plowed agricultural fields (i.e. Callens et al. 2006) have shown that the soil surface roughness can change considerably due to weathering induced by rain.

  3. Noncontact surface roughness measurement using a vision system

    NASA Astrophysics Data System (ADS)

    Koçer, Erdinç; Horozoǧlu, Erhan; Asiltürk, Ilhan

    2015-02-01

    Surface roughness measurement is one of the basic measurement that determines the quality and performance of the final product. After machined operations, tracer end tools are commonly used in industry in order to measure the surface roughness that occurred on the surface. This measurement technique has disadvantages such as user errors because it requires calibration of the device occurring during measurement. In this study, measuring and evaluation techniques were conducted by using display devices over surface image which occurred on the processed surfaces. Surface measurement which performed by getting image makes easier measurement process because it is non-contact, and does not cause any damage. Measurement of surface roughness, and analysis was conducted more precise and accurate. Experimentally obtained results of the measurements on the parts in contact with the device is improved compared with the results of the non-contact image processing software, and satisfactory results were obtained.

  4. Heat Transfer Variation on Protuberances and Surface Roughness Elements

    NASA Technical Reports Server (NTRS)

    Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.

    1995-01-01

    In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.

  5. Computer-aided surface roughness measurement system

    SciTech Connect

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisition/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined.

  6. Characteristics of density currents over regular and irregular rough surfaces

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.

    2013-12-01

    Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).

  7. Optical system design of surface roughness photoelectric inspection instrument

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Li, Peng; Cao, Jie; Xiao, Ran

    2010-11-01

    The light-section method for roughness measurement is one of the most classical measuring methods. According to light-section method which combine visual observation with photomicrography for testing surface roughness, domestic type of 9J is a traditional device. The surface roughness photoelectric inspection instrument which designed by the authors are also based on the theory of light-section, which integrates subjects of optics, mechanical, electronics and calculation. Surface roughness of object image can be obtained on the CCD sensor through the optical system. Using the autonomous software in the computer, the average height of workpiece unevenness Ra value can be measured and read in the monitor. Therefor, surface roughness level can be obtained. In order to design the optical system of device, there are three main aspects which should be finished: 1.Start with requirements of detective object, according to the detective range from Ra12.5 to Ra0.04 ruled by CNS(China National Standards) GB3505-83 the Surface Roughness Term Surface and the Parameters ,parameters on β(magnify power), NA(numerical aperture), WD(work distance), filed of object etc are defined and optimized. Meanwhile, good complementation and compatibility are noticed among three kinds magnification objectives. 2. Special type infinity image distance double telecentricity optical system is constructed. The main point is to design a set of objectives of long WD and infinity image distance flat field semi-apochromat. 3. How to match and optimize the CCD image sensor and lens.

  8. Nanopatterning on rough surfaces using optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Tsai, Y.-C.; Fardel, R.; Arnold, C. B.

    2011-06-01

    While nanofabricated structures find an increasingly large number of applications, few techniques are able to pattern rough or uneven surfaces, or surfaces with pre-existing structure. In this letter we show that optical trap assisted nanopatterning (OTAN), a near-field laser based technique, is able to produce nanoscale features on surfaces with large roughness but without the need for focus adjustment. Patterning on model surfaces of polyimide with vertical steps greater than 0.5 μm shows a high degree of uniformity, demonstrating that OTAN is a suitable technique to pattern nontraditional surfaces for emerging technologies.

  9. Self-consistent approach to x-ray reflection from rough surfaces

    SciTech Connect

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-02-15

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed.

  10. Effect of surface morphology on drag and roughness sublayer in flows over regular roughness elements

    NASA Astrophysics Data System (ADS)

    Placidi, Marco; Ganapathisubramani, Bharathram

    2014-11-01

    The effects of systematically varied roughness morphology on bulk drag and on the spatial structure of turbulent boundary layers are examined by performing a series of wind tunnel experiments. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO™ bricks are employed. Twelve different patterns are adopted in order to methodically examine the individual effects of frontal solidity (λF, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λP, plan area of roughness elements per unit wall-parallel area), on both the bulk drag and the turbulence structure. A floating element friction balance based on Krogstad & Efros (2010) was designed and manufactured to measure the drag generated by the different surfaces. In parallel, high resolution planar and stereoscopic Particle Image Velocimetry (PIV) was applied to investigate the flow features. This talk will focus on the effects of each solidity parameter on the bulk drag and attempt to relate the observed trends to the flow structures in the roughness sublayer. Currently at City University London.

  11. Interfacial thermodynamics of confined water near molecularly rough surfaces

    PubMed Central

    Mittal, Jeetain; Hummer, Gerhard

    2012-01-01

    We study the effects of nanoscopic roughness on the interfacial free energy of water confined between solid surfaces. SPC/E water is simulated in confinement between two infinite planar surfaces that differ in their physical topology: one is smooth and the other one is physically rough on a nanometer length scale. The two thermodynamic ensembles considered, with constant pressure either normal or parallel to the walls, correspond to different experimental conditions. We find that molecular-scale surface roughness significantly increases the solid-liquid interfacial free energy compared to the smooth surface. For our surfaces with a water-wall interaction energy minimum of −1.2 kcal/mol, we observe a transition from a hydrophilic surface to a hydrophobic surface at a roughness amplitude of about 3 Å and a wave length of 11.6 Å, with the interfacial free energy changing sign from negative to positive. In agreement with previous studies of water near hydrophobic surfaces, we find an increase in the isothermal compressibility of water with increasing surface roughness. Interestingly, average measures of the water density and hydrogen-bond number do not contain distinct signatures of increased hydrophobicity. In contrast, a local analysis indicates transient dewetting of water in the valleys of the rough surface, together with a significant loss of hydrogen bonds, and a change in the dipole orientation toward the surface. These microscopic changes in the density, hydrogen bonding, and water orientation contribute to the large increase in the interfacial free energy, and the change from a hydrophilic to a hydrophobic character of the surface. PMID:21043431

  12. Effect of surface roughness on characteristics of spherical shock waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W; Mcfarland, Donald R

    1955-01-01

    An investigation has been conducted on a small-scale test layout in which direct observation of the shock wave movement with time could be made in order to determine the effects of surface roughness on the characteristics of spherical shock waves. Data were obtained with 15-gram pentolite charges at four heights of burst, both for a smooth surface and for a surface completely covered with pyramid-shaped roughness elements. The observations resulted in determinations of shock peak overpressure and Mach stem height as a function of distance for each test. Comparison of the smooth-surface data with those obtained for the extremely rough condition showed a small net effort of roughness on the shock peak overpressures at the surface for all burst heights, the effect being to lower the overpressures. The effect of surface roughness on the Mach stem formation and growth was to delay the formation at the greatest charge height and to lower the height of the Mach stem for all heights.Comparison of the free-air shock peak overpressures with larger scale data showed good similarity of the overpressure-distance relationships. The data did not fit a geometrical similarity parameter for the path of the triple point at different heights of burst suggested by other investigators. A simple similarity parameter (relating the horizontal distance to the theoretical point of Mach formation) was found which showed only a small influence of burst height on the path of the triple point. While the data presented provide knowledge of the effect of many surface-roughness elements on the overall shock characteristics, the data do not provide insight into the details of the air-flow characteristics along the surface, nor the relative contribution of individual roughness elements to the results obtained.

  13. Roughness and waviness requirements for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Holmes, Bruce J.

    1986-01-01

    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  14. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  15. X-ray reflectivity and surface roughness

    SciTech Connect

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  16. Parametric optical surface roughness measurement by means of polychromatic speckle autocorrelation

    NASA Astrophysics Data System (ADS)

    Patzelt, Stefan; Ciossek, Andreas; Lehmann, Peter; Schoene, Armin

    1998-10-01

    A method for determining surface roughness of engineering surfaces that is applicable to in-process measurements under harsh circumstances of industrial production plants (e.g. vibrations, humidity) is introduced. The rough surface is illuminated with polychromatic laser light. The angular distribution of scattered light intensities, i.e. a polychromatic speckle pattern, is the result of an incoherent superposition of monochromatic speckle intensities. The angular dispersion leads to increasing speckle widths with an increasing distance to the optical axis an effect called speckle elongation. This gives rise to a radial structure of the speckle pattern. However, with increasing surface roughness the radial structure vanishes because of a decreasing similarity of the monochromatic speckle patterns of the different wavelengths. The markedness of this effect is analyzed by digital image processing algorithms, e.g. the procedure of polychromatic speckle autocorrelation. The latest approach to an in-process roughness measurement device was made by the use of singlemode fiber-pigtailed laser diodes in order to supply a trichromatic, temporally partially coherent laser beam. A brief introduction to the theoretical background is followed by the presentation of the experimental setup. The image processing algorithms for calculating an optical roughness measure from digitalized speckle patterns are explained, and first results of surface roughness determination are presented.

  17. Investigation Into the Accuracy of 3D Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Kumermanis, M.; Rudzitis, J.; Mozga, N.; Ancans, A.; Grislis, A.

    2014-04-01

    The existing standards for surface roughness cover only two dimensions, while in reality this is three-dimensional (3D). In particular, the 3D surface roughness parameters are important for solving the contact surface mechanics problems as related to the accuracy of 3D surface roughness characteristics. One of the most important factors for determination of 3D characteristics is the number of data points (NDP) on the x- and y-axes (i.e. in cut-off length). The NDP has a profound effect on the accuracy of measurement results, measuring time and volume of the output data (especially along the y-axis, where the NDP is identical to the number of parallel profiles). At a too small NDP the results will be incorrect and with too broad scatter, while a too large NDP - though not enlarging the range of basic information - considerably increases the measuring time. Therefore, the aim of the work was to find the optimal NDP for such surface processing methods as grinding, spark erosion and shot methods of surface treatment. Eksistējošie virsmas raupjuma standarti apskata virsmas raupjumu tikai divās dimensijās. Tomēr reālais virsmas raupjums pēc savas dabas ir trīsdimensiju (3D) objekts. Līdz ar to virsmas raupjums ir jāraksturo ar 3D parametriem. Un no šo parametru noteikšanas precizitātes ir atkarīgi tālākie virsmas aprēķini, piemēram, virsmu kontaktēšanās process. Viens no svarīgākajiem faktoriem, raksturojot virsmas raupjumu 3D, pielietojot kontakta tipa mēriekārtas, ir datu punktu skaits pa abām mērīšanas asīm x un y. Ar datu punktu skaitu mēs saprotam to skaitu mērīšanas bāzes garumā. Datu punktu skaits būtiski ietekmē sagaidāmo mērījumu rezultātu precizitāti, mērīšanai nepieciešamo laiku un izejas datu faila izmērus (sevišķi y-ass virzienā, kur katrs datu punkts ir paralēls profils). Datu punktu skaitam ir jābūt optimālam. Pārāk mazs punktu skaits noved pie neprecīziem rezultātiem un lielas to izkliedes, savuk

  18. Interaction of fast charges with a rough metal surface

    NASA Astrophysics Data System (ADS)

    Lyon, Keenan; Zhang, Ying-Ying; Mišković, Z. L.; Song, Yuan-Hong; Wang, You-Nian

    2015-09-01

    We use the Green function formulation of a dielectric response formalism to study the dynamic polarization of a rough metal surface by a single charged particle and by a pair of charged particles that move parallel to the surface. While the surface roughness is treated nonperturbatively, the plasmon excitation of the metal electron gas is described locally. We find that the magnitudes of both the image potential and the stopping power of a single particle are increased by the increasing roughness and decreasing correlation length of the surface. On the other hand, both the long-range wake potential of a single charged particle and the interaction potential between two particles are weakly affected by the surface roughness. However, the strongest effects of the surface roughness are seen in the correlated stopping power of two charged particles, giving rise to oscillations in the dependence of the stopping ratio on their distance, both when the interparticle axis is perpendicular to their direction of motion and when the wake-related oscillations are damped by adiabatic suppression of plasmon excitations at low particle speeds.

  19. Correlation between frictional force and surface roughness of orthodontic archwires.

    PubMed

    Choi, Samjin; Hwang, Eun-Young; Park, Hun-Kuk; Park, Young-Guk

    2015-01-01

    Lateral force microscopy measures the lateral bending of the cantilever depending on the frictional force acting between the tip and surface. The aim of this study was to investigate and compare the relationship between the surface roughness and frictional resistance of four archwire and bracket combinations consisting of the 0.016-inch NiTi and 0.019 × 0.025-inch stainless steel archwires interacting clinically with two representative self-ligating brackets, active-type Clippy-C(®) ceramic self-ligating brackets, and passive-type Damon(®) stainless steel self-ligating brackets, using the lateral force microscopy technique. A 0.016-inch NiTi archwire interacting with passive-type Damon(®) stainless steel self-ligating brackets showed the smoothest surface roughness and the lowest frictional resistance compared to other combinations. The archwires interacting with passive-type Damon(®) stainless steel self-ligating brackets showed significantly lower surface roughness and frictional resistance than those interacting with active-type Clippy-C(®) ceramic self-ligating brackets. The frictional force in the in vivo archwire and bracket system increased with increasing surface roughness of the archwire. This positive correlation suggests that surface roughness can be used as an evaluating marker for estimating the efficiency of orthodontic treatment, rather than the direct measurement of frictional force. PMID:26018223

  20. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect

    Butashin, A. V.; Muslimov, A. E. Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E.

    2013-05-15

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  1. Experiments to test theoretical models of the polarization of light by rough surfaces

    NASA Technical Reports Server (NTRS)

    Geake, J. E.; Geake, M.; Zellner, B. H.

    1984-01-01

    A number of attempts have been made to provide theoretical models of the physical processes involved in the polarization of light scattered by a rough surface, such as the regolith of an atmosphereless planet. Some laboratory experiments designed to test different aspects of these models are described. It is concluded that double Fresnel reflection is usually the dominant process in producing negative polarization, but that diffraction effects may play a significant part in double events involving small-scale surface features.

  2. Thermal slip for liquids at rough solid surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Chengbin; Chen, Yongping; Peterson, G. P.

    2014-06-01

    Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).

  3. Response Ant Colony Optimization of end milling surface roughness.

    PubMed

    Kadirgama, K; Noor, M M; Abd Alla, Ahmed N

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  4. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  5. Analysis of surface roughness generation in aircraft ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.; Reehorst, Andrew; Sims, James

    1992-01-01

    Patterns of roughness evolution have been studied analysis of high magnification video observations of accreting ice surfaces provided by the NASA Lewis Research Center. Three distinct patterns of surface roughness generation have been identified within the parametric regions studied. They include: Rime, Multi-Zone Glaze, and Uniform Glaze. Under most icing conditions, a brief period of transient rime ice growth was observed caused by heat conduction into the body. The resulting thin rime layer explains previously observed insensitivity of some ice accretions to substrate insensitivity of some ice accretions to substrate surface chemistry and may provide justification for simplifying assumptions in ice accretion sailing and modeling effects.

  6. Surface roughness effects with solid lubricants dispersed in mineral oils

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Goglia, P. R.; Sliney, H. E.

    1983-01-01

    The lubricating effectiveness of solid-lubricant dispersions are investigated in both point and line contacts using surfaces with both random and directional roughness characteristics. Friction and wear data obtained at relatively low speeds and at room temperature, indicate that the existence of solid lubricants such as graphite, MoS2, and PTFE in a plain mineral oil generally will not improve the effectiveness of the oil as a lubricant for such surfaces. Under boundary lubrication conditions, the friction force, as a function of time, initially depends upon the directional roughness properties of the contacting surfaces irrespective of whether the base oil or dispersions are used as lubricants.

  7. Reflection of polarized light by rough surfaces: Monte Carlo modeling compared to measurements

    NASA Astrophysics Data System (ADS)

    Guirado, Daniel; Marcos Sanz, Juan; María Saiz, José; Muñoz, Olga; Stam, Daphne M.

    2013-04-01

    A Monte Carlo model of light scattering in a dense medium was developed in order to simulate the reflection of polarized light by rough surfaces [1]. This model calculates all four Stokes parameters of light scattered in all directions by a surface made of any material. Although multiple scattering is allowed, there is a limitation in the packing density of the medium, as independent scattering is assumed. The model can be applied to the study of light scattering by fluffy icy/dusty surfaces, e.g., various types of planetary or lunar regolith-type surfaces, icy moons or comets. The main goal of this work is to test the model by comparing scattering matrix elements calculated with the Monte Carlo model to experimentally measured scattering matrix elements as functions of the phase angle. We use a Sahara sand surface for this. The experimental scattering matrix is measured at the new apparatus developed at the University of Cantabria (Spain) [2]. Sample surfaces are prepared by putting together dust grains with a water-diluted glue coating. A surface's top layer was made with pure sand, to preserve the air-sand refractive index ratio. Calibration measurements have already been carried out successfully by using Spectralon as a Lambertian surface. After calibration, measurements of a surface made of Sahara sand were performed. In such measurements, deviations from Lambertian behavior were found, as well as a very prominent forward peak in the (1,1)-element of the matrix for grazing illumination angles. The values of I and -Q/I calculated by the model for the vertical scattering plane and non-polarized incident light were compared to the measured F11 and -F21/F11 elements for several incident directions. A good agreement between measurements and calculations was achieved. The forward-scattering peak of the (1,1)-element can be interpreted as a result of single scattering of horizontally incident light by the small features of the non-flat surface. In this case, light

  8. Studies of the 3D surface roughness height

    SciTech Connect

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-16

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  9. Studies of the 3D surface roughness height

    NASA Astrophysics Data System (ADS)

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-01

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings' surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  10. Improved detection of rough defects for ultrasonic NDE inspections based on finite element modeling of elastic wave scattering

    SciTech Connect

    Pettit, J. R.; Walker, A.; Lowe, M. J. S.

    2014-02-18

    Defects which posses rough surfaces greatly affect ultrasonic wave scattering behaviour, often reducing the magnitude of reflected signals. Ultrasonic inspections rely upon this response for detecting and sizing flaws. For safety critical components reliable characterisation is crucial. Therefore, providing an accurate means to predict reductions in signal amplitude is essential. An extension of Kirchhoff theory has formed the basis for the UK power industry inspection justifications. However, it is widely recognised that these predictions are pessimistic owing to analytical approximations. A numerical full field modelling approach does not fall victim to such limitations. Here, a Finite Element model is used to aid in setting a non-conservative reporting threshold during the inspection of a large pressure vessel forging that might contain embedded rough defects. The ultrasonic response from multiple rough surfaces defined by the same statistical class is calculated for normal incident compression waves. The approach is validated by comparing coherent scattering with predictions made by Kirchhoff theory. At lower levels of roughness excellent agreement is observed, whilst higher values confirm the pessimism of Kirchhoff theory. Furthermore, the mean amplitude in the specular direction is calculated. This represents the information obtained during an inspection, indicating that reductions due to increasing roughness are significantly less than the coherent component currently being used.

  11. Reflectance for an approximately one-dimensional rough surface that has rms roughness greater than a wavelength

    NASA Astrophysics Data System (ADS)

    Mendeleev, Vladimir Y.; Skovorod'ko, Sergey N.

    2004-02-01

    A relation between the intensity reflectances of approximately one-dimensional and one-dimensional rough surfaces within the diffraction solid angle in the specular direction for normal incidence is derived for an rms roughness greater than a wavelength. The relation shows that the reflectance of an approximately one-dimensional rough surface is proportional to the reflectance of a one-dimension rough surface. The validity of the derived relation is studied for an approximately one-dimensional rough steel surface with an rms roughness of 1.3 μm and a correlation length of 15.2 μm. The wavelength was 0.6328 μm and the angle of incidence was 4°. The reflectance of the rough steel surface was measured and estimated from the derived relation. Satisfactory agreement was found between the estimated and measured reflectance values.

  12. How surface roughness affects chemical transfer from soil to surface runoff?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness affects transport processes, e.g., runoff generation, infiltration, sediment detachment, etc., occurring on the surface. Nevertheless, how soil roughness affects chemical transport is less known. In this study, we partitioned roughness elements into mounds which diverge water ...

  13. On the Effects of Surface Roughness on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  14. Scaling of surface roughness in perfectly plastic disordered media

    SciTech Connect

    Barai, Pallab; Nukala, Phani K; Sampath, Rahul S; Simunovic, Srdjan

    2010-01-01

    This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly plastic disordered material. We model the plastic disordered material using perfectly plastic random spring model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macroscopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials. On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents ({zeta}{sub loc} and {zeta}, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be {zeta}{sub loc} = {zeta} = 0.67 {+-} 0.03. The probability density distribution p[{Delta}h({ell})] of the height differences {Delta}h({ell}) = [h(x+{ell})-h(x)] of the crack profile follows a Gaussian distribution.

  15. Scattering and Chemical Investigations of Semiconductor Surfaces.

    NASA Astrophysics Data System (ADS)

    Wallace, Robert Milo

    1988-12-01

    This two-part thesis describes: (i) the design of an ion scattering system to examine the surface and near-surface region of semiconductors, and (ii) the chemical reaction channels of unsaturated hydrocarbons on the silicon (100) surface. Details on the design and construction of an ultrahigh vacuum, high-energy ion scattering system are presented. The use of MeV ion scattering to investigate surface and near -surface regions of materials is described and the combination of ion scattering with complimentary surface science techniques is stressed. The thermal activation of chemical bonds of the adsorbed unsaturated hydrocarbon molecules ethylene, propylene, and acetylene is investigated on the Si(100)-(2 times 11) surface with a goal of understanding the surface chemistry of Si-C formation. The use of precision dosing techniques, Low Energy Electron Diffraction, Auger Electron Spectroscopy, and Temperature Programmed Desorption in the investigation of the remaining carbonaceous species is described. Comparisons of the adsorption and desorption behavior of these molecules is made in terms of the carbon -carbon double and triple bonds (ethylene to acetylene) and the methyl functional group (ethylene to propylene). We find that the monolayer saturation coverage of these hydrocarbons is in very good agreement with the number of dimer sites on the surface estimated from scanning-tunneling microscopy, which suggests that the bonding of these hydrocarbons to the Si(100) surface is similar. It is also found that ethylene, in particular, does not provide an efficient Si-C reaction channel upon thermal activation, with nearly 100% of the ethylene molecules desorbing. In contrast, acetylene is found to be very efficient in SiC formation: >=q90% of the adsorbed acetylene thermally dissociates and eventually leads to SiC formation. Propylene has an efficiency of roughly 70% upon heating. Evidence for the diffusion of carbon into the bulk is seen at >=q850 K for propylene and

  16. Simulation of synthetic gecko arrays shearing on rough surfaces

    PubMed Central

    Gillies, Andrew G.; Fearing, Ronald S.

    2014-01-01

    To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. PMID:24694893

  17. Simulation of synthetic gecko arrays shearing on rough surfaces.

    PubMed

    Gillies, Andrew G; Fearing, Ronald S

    2014-06-01

    To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson-Kendall-Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. PMID:24694893

  18. The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness

    NASA Technical Reports Server (NTRS)

    HOCKER RAY W

    1933-01-01

    The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

  19. Analysis of microwave backscatter measured by radar altimeter on land to study surface aerodynamic roughness

    NASA Astrophysics Data System (ADS)

    Yang, Le; Liu, Qinhuo

    2012-10-01

    The aerodynamic surface roughness z0 is a key parameter for climate and land-surface models to study surfaceatmosphere exchanges of mass and energy. The roughness length is difficult to estimate without wind speed profile data, which is intractable at regional to global scale. Theoretical formulations of roughness have been developed in terms of canopy attributes such as frontal area, height, and drag coefficient. This paper discusses the potential of radar altimetry, which provides the backscatter coefficient of the land surface at nadir view, to characterise the surface roughness at km scale. The AIEM model and ProSARproSIM are employed to simulate the backscatter coefficient under different surface condition and different observation geometry at bare soil and at pine forest, respectively. The altimetry backscatter decreases with increase of geometric roughness. The microwave backscatter measured at the nadir view is more sensitive to the surface roughness than that at the oblique observation, especially for the smooth surface. The direct forest return is the dominated scattering mechanism for normal incidence at forest area. Since we failed to collect the z0 measurement at arid and semi-arid area with sparse vegetation, the backscatter measurements at Ku and C band of altimeter Jason1 were analyzed with the ground measured aerodynamic surface roughness at three vegetated sites (Da yekou, Yin ke, and Chang Baisan) of China. The relationships we found between Jason1 sigma0 and z0 is not significant, since Jason1 lost track seriously at the three sites. Further research using the altimeter data of Jason2 and Cryosat is possible to demonstrate the potential to map z0 from orbit using radar altimeters.

  20. Process entanglement as a neuronal anchorage mechanism to rough surfaces

    NASA Astrophysics Data System (ADS)

    Sorkin, Raya; Greenbaum, Alon; David-Pur, Moshe; Anava, Sarit; Ayali, Amir; Ben-Jacob, Eshel; Hanein, Yael

    2009-01-01

    The organization of neurons and glia cells on substrates composed of pristine carbon nanotube islands was investigated using high resolution scanning electron microscopy, immunostaining and confocal microscopy. Neurons were found bound and preferentially anchored to the rough surfaces; moreover, the morphology of the neuronal processes on the small, isolated islands of high density carbon nanotubes was found to be conspicuously curled and entangled. We further demonstrate that the roughness of the surface must match the diameter of the neuronal processes in order to allow them to bind. The results presented here suggest that entanglement, a mechanical effect, may constitute an additional mechanism by which neurons (and possibly other cell types) anchor themselves to rough surfaces. Understanding the nature of the interface between neurons and carbon nanotubes is essential to effectively harness carbon nanotube technology in neurological applications such as neuro-prosthetic and retinal electrodes.

  1. Light depolarization in off-specular reflection on submicro rough metal surfaces with imperfectly random roughness.

    PubMed

    Liu, Linsheng; Li, Xuefeng; Nonaka, Kazuhiro

    2015-02-01

    Depolarization at a rough surface relates to its roughness and irregularity (e.g., sags and crests) besides the material property. However, there is still lack of general theory to clearly describe the relationship between depolarization ratios and surface conditions, and one important reason is that the mechanism of depolarization relates to geometric parameters such as microcosmic height/particle distributions of sub-micro to nm levels. To study the mechanism in more detail, a compact laser instrument is developed, and depolarization information of a linearly polarized incident light is used for analyzing the roughness, during which a He-Ne laser source (λ = 632.8 nm) is used. Three nickel specimens with RMS roughness (Rq) less than λ/4 are fabricated and tested. Six different areas in each specimen are characterized in detail using an AFM. Rq are in the range of 34.1-155.0 nm, and the heights are non-Gaussian distribution in the first specimen and near-Gaussian distribution in the others. Off-specular inspection is carried out exactly on these 18 characterized areas, and results show that the cross-polarization ratios match quite well with Rq values of the first sample that has Rq ≤ λ/10 (or Rt ≤ λ), while they match well with maximum height, Rt, values of the other two that have Rt > λ (the maximum derivation is 11%). In addition, since this instrument is simple, portable, stable, and low-cost, it has great potential for practical online roughness testing after a linear calibration. PMID:25725823

  2. Surface roughness of orthodontic band cements with different compositions

    PubMed Central

    van de SANDE, Françoise Hélène; da SILVA, Adriana Fernandes; MICHELON, Douver; PIVA, Evandro; CENCI, Maximiliano Sérgio; DEMARCO, Flávio Fernando

    2011-01-01

    Objectives The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. Material and Methods eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP), compomer (C), resin-modified glass ionomer cement (RMGIC) and resin cement (RC). Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0) or 0.1 M lactic acid solution (pH 4.0) for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200) before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions) or paired t-test (comparison before and after the storage period) at 5% significance level. Results The values for average surface roughness were statistically different (p<0.001) among cements at both baseline and after storage. The roughness values of cements in a decreasing order were ZP>RMGIC>C>R (p<0.001). After 15 days, immersion in lactic acid solution resulted in the highest surface roughness for all cements (p<0.05), except for the RC group (p>0.05). Compared to the current threshold (0.2 µm) related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. Conclusions Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions. PMID:21625737

  3. TLS - a tool for channel bed surface roughness determination?

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Morche, David

    2013-04-01

    Channel bed surface roughness has a significant influence on flow characteristics of a stream. Since decades roughness coefficient determination is an integral part of fluvial geomorphological research. The methods used to directly measure channel bed roughness often require an exact knowledge of grain size distributions of a given stream reach. In some cases this method is impractical, especially for large catchments and systems involving a large degree of form roughness. In this context, the determination of bed surface roughness using Terrestrial Laser Scanning (TLS) provides new possibilities. The application of laser scanning has been increasingly used recently for channel morphology research (Heritage & Hetherington 2007, Milan et al. 2007, Hodge et al. 2009). However, the use of TLS data to quantify bed surface roughness leads to new methodological problems. One of these problems is known as the 'Shading Effect'. Because of this, portions of the channel surface situated behind a large obstacle cannot be surveyed. Hence, the first goal of this study is to determine the minimum number of scanning positions to accurately characterize channel bed roughness. For roughness calculation, the investigation area is divided into an orthogonal grid. The question about this is: Which grid cell size should be chosen? In general, the cell size is defined by the largest particle in the test area. This requires sediment sampling and leads to additional field work. To avoid this, this study further assesses the importance of grid cell size on bed roughness calculation. The ultimate goal of this study is to improve the application of TLS for roughness calculation in gravel-bed rivers. For this purpose several channel reaches in two different study sites were surveyed with an ILRIS 36D. One investigation area is situated in the Reintal valley located in the northern limestone Alps (Wettersteingebirge) Bavaria/Germany. The other one is situated in the proglacial area of the

  4. Effect of Surface Roughness on Characteristics of Spherical Shock Waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; McFarland, Donald R.

    1959-01-01

    Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.

  5. Scanning tunneling microscopy on rough surfaces-quantitative image analysis

    NASA Astrophysics Data System (ADS)

    Reiss, G.; Brückl, H.; Vancea, J.; Lecheler, R.; Hastreiter, E.

    1991-07-01

    In this communication, the application of scanning tunneling microscopy (STM) for a quantitative evaluation of roughnesses and mean island sizes of polycrystalline thin films is discussed. Provided strong conditions concerning the resolution are satisfied, the results are in good agreement with standard techniques as, for example, transmission electron microscopy. Owing to its high resolution, STM can supply a better characterization of surfaces than established methods, especially concerning the roughness. Microscopic interpretations of surface dependent physical properties thus can be considerably improved by a quantitative analysis of STM images.

  6. Adhesion: role of bulk viscoelasticity and surface roughness.

    PubMed

    Lorenz, B; Krick, B A; Mulakaluri, N; Smolyakova, M; Dieluweit, S; Sawyer, W G; Persson, B N J

    2013-06-01

    We study the adhesion between smooth polydimethylsiloxane (PDMS) rubber balls and smooth and rough poly(methyl methacrylate) (PMMA) surfaces, and between smooth silicon nitride balls and smooth PDMS surfaces. From the measured viscoelastic modulus of the PDMS rubber we calculate the viscoelastic contribution to the crack-opening propagation energy γeff(v,T) for a wide range of crack tip velocities v and for several temperatures T. The Johnson-Kendall-Roberts (JKR) contact mechanics theory is used to analyze the ball pull-off force data, and γeff(v,T) is obtained for smooth and rough surfaces. We conclude that γeff(v,T) has contributions of similar magnitude from both the bulk viscoelastic energy dissipation close to the crack tip, and from the bond-breaking process at the crack tip. The pull-off force on the rough surfaces is strongly reduced compared to that of the flat surface, which we attribute mainly to the decrease in the area of contact on the rough surfaces. PMID:23649298

  7. Adhesion: role of bulk viscoelasticity and surface roughness

    NASA Astrophysics Data System (ADS)

    Lorenz, B.; Krick, B. A.; Mulakaluri, N.; Smolyakova, M.; Dieluweit, S.; Sawyer, W. G.; Persson, B. N. J.

    2013-06-01

    We study the adhesion between smooth polydimethylsiloxane (PDMS) rubber balls and smooth and rough poly(methyl methacrylate) (PMMA) surfaces, and between smooth silicon nitride balls and smooth PDMS surfaces. From the measured viscoelastic modulus of the PDMS rubber we calculate the viscoelastic contribution to the crack-opening propagation energy γeff(v,T) for a wide range of crack tip velocities v and for several temperatures T. The Johnson-Kendall-Roberts (JKR) contact mechanics theory is used to analyze the ball pull-off force data, and γeff(v,T) is obtained for smooth and rough surfaces. We conclude that γeff(v,T) has contributions of similar magnitude from both the bulk viscoelastic energy dissipation close to the crack tip, and from the bond-breaking process at the crack tip. The pull-off force on the rough surfaces is strongly reduced compared to that of the flat surface, which we attribute mainly to the decrease in the area of contact on the rough surfaces.

  8. The Effect of Surface Irregularities on Wing Drag. 3; Roughness

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.

  9. Scatter of X-rays on polished surfaces

    NASA Technical Reports Server (NTRS)

    Hasinger, G.

    1981-01-01

    In investigating the dispersion properties of telescope mirrors used in X-ray astronomy, the slight scattering characteristics of X-ray radiation by statistically rough surfaces were examined. The mathematics and geometry of scattering theory are described. The measurement test assembly is described and results of measurements on samples of plane mirrors are given. Measurement results are evaluated. The direct beam, the convolution of the direct beam and the scattering halo, curve fitting by the method of least squares, various autocorrelation functions, results of the fitting procedure for small scattering, and deviations in the kernel of the scattering distribution are presented. A procedure for quality testing of mirror systems through diagnosis of rough surfaces is described.

  10. Modelling surface roughness and rocks in LRO Diviner observations

    NASA Astrophysics Data System (ADS)

    Williams, J.-P.; Hayne, P. O.; Paige, D. A.

    2012-09-01

    The Diviner Lunar Radiometer Experiment on NASA's Lunar Reconnaissance Orbiter (LRO) observes radiance in 7 infrared spectral channels from which brightness temperatures of the lunar surface are derived. In general, Diviner's surface footprint contains small scale variations in temperature. This anisothermality results in different observed brightness temperatures in Diviner's individual channels. A three-dimensional heat diffusion model is used to explore anisothermality in Diviner observations resulting from surface roughness and rocks at multiple length-scales and illumination conditions.

  11. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    SciTech Connect

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2010-05-15

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that reported a large discrepancy of neutron lifetime with the current particle data value. Our partial reanalysis suggests the possibility of systematic effects that were not included in this publication.

  12. Soil surface roughness and porosity under different tillage systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gonzalez, J.; Saa-Requejo, A.; Gómez, J. A.; Valencia, J. L.; Zarco, P.; Tarquis, A. M.

    2012-04-01

    Both soil porosity and surface elevation can be altered by tillage operation. Even though the surface porosity is an important parameter of a tilled field, however, no practical technique for rapid and non-contact measurement of surface porosity has been developed yet. On the contrary, the surface elevation of tilled soil can be quickly determined with a laser profiler. Working under the assumption that the surface elevation of a tilled field is a complicated superposition of the soil terrain profile at a larger-scale and the roughness at a fine-scale, this study included three aspects: (i) to establish an index (Roughness Index, RI) at a fine-scale to associate the surface roughness with porosity; (ii) to examine the correlation between surface porosity and the proposed RI by three types of tillage treatment in the field; and (iii) to check the scaling/multiscaling behavior among different grid sizes of calculating RI on predicting surface porosity. Consequently, the statistical results from each tilled plot show a strong correlation between the surface porosity and the defined RI in an early stage (ca. 2 days) after tillage. Acknowledgements Funding provided by CEIGRAM (Research Centre for the Management of Agricultural and Environmental Risks)and Spanish Ministerio de Ciencia e Innovación (MICINN) through project AGL2010-21501/AGR is greatly appreciated.

  13. Fractal prediction model of thermal contact conductance of rough surfaces

    NASA Astrophysics Data System (ADS)

    Ji, Cuicui; Zhu, Hua; Jiang, Wei

    2013-01-01

    The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.

  14. The Impedance Due to the Roughness of Metallic Surface

    SciTech Connect

    Bane, Karl L.F.; Chao, Alex W.; Ng, Cho-K.; /SLAC

    2011-08-26

    In some future accelerator designs, such as that of the Linear Coherent Light Source (LCLS), the bunch is very short, with an rms length on the order of 10's of microns, and the effective skin depth of the vacuum chamber walls can be very small compared to 1 micron. If the skin depth is small compared to the scale of the surface roughness then the wakefield due to the walls will be dominated by the roughness, and not by the wall resistance. To estimate the wakefields of a rough, metallic surface we begin with a simple, analytical model. Then we apply the MAFIA 3-dimensional, time-domain computer module, T3 to check and find the correct coefficient for the model.

  15. Physical Interpretation of the Sensitivity of Polarisation Coherence to Soil Surface Roughness

    NASA Astrophysics Data System (ADS)

    Mattia, F.; Le Toan, T.

    2003-04-01

    Surface roughness is an important geo-physical parameter required for numerous applications such as agronomy, geology, risk assessment, etc. In addition, the estimate of soil roughness may provide valuable a priori information to simplify the problem of soil moisture retrieval from SAR data. In the past, roughness discriminators based on the ratio between soil backscatter at different polarisations (i.e. sigmaHH/ sigmaVV ) and on the correlation coefficient between HH and VV channels (i.e. rhoHHVV) have been suggested. More recently, the potential of the correlation coefficient between co-polarised channels (i.e. polarisation coherence) in an arbitrary state of polarisation has been investigated. In particular, the correlation coefficient between co-polarised channels at circular polarisation (i.e. rhoRRLL ) has been found extremely sensitive to surface roughness and weakly sensitive to soil moisture content. However, notwithstanding these observations have been confirmed by several experimental studies a complete physical understanding of the phenomenon is still missing, at least in the remote sensing community. One of the main reasons for this lack of understanding is that in general, only lowest order approximations of theoretical surface scattering models are exploited in remote sensing applications. These approximations do not include the effect of multiple reflections. They cannot therefore predict accurately the whole covariance matrix often required to synthesise roughness discriminators, such as rhoRRLL. In this respect, despite the fact that higher order approximations of theoretical surface scattering models are mathematically very complex, they are necessary to give indications to understand the phenomenon and they can provide physical guidelines to develop semi-empirical approaches. In this context, the objective of this paper is to present a simple physical framework to interpret the sensitivity of different roughness discriminators to soil roughness

  16. Roughness in sputtered multilayers analyzed by transmission electron microscopy and x-ray diffuse scattering.

    SciTech Connect

    Macrander, A. T.; Liu, C.; Csencsits, R.; Cook, R.; Kirk, M.; Headrick, R.

    1999-11-08

    Sputtered W/C muhilayers with a period of 25 {angstrom} have been studied both by cross-section TEM and by x-ray diffuse scattering using 10 keV synchrotrons radiation. Fitting to the x-ray data is aided by the TEM images in modeling the roughness and roughness propagation within the Born approximation. We report on a study of the correctness of the often applied small roughness approximation, and we find that is not well justified in the present case. In order to probe short lateral length scales at q{sub y} = 0.1 {angstrom}{sup -1}, diffuse scattering data were obtained in an unconventional scattering geometry.

  17. Rigorous and asymptotic models of coherent scattering from random rough layers with applications to roadways and geoscience

    NASA Astrophysics Data System (ADS)

    Pinel, Nicolas; Bourlier, Christophe; Le Bastard, Cédric

    2014-05-01

    This paper presents the rigorous efficient PILE (Propagation-Inside-Layer Expansion) numerical method [1] and an extension of the Ament model [2] to calculate the field scattered by three homogeneous media separated by two random rough surfaces. Here, the study is applied to ground penetrating radar (GPR) (nadir angle, wide band) for nondestructive survey by taking the roughness of the surfaces into account and by calculating the contribution of each echo coming from the multiple scattering inside the layer. Applications to roadways and geoscience are investigated. The PILE method starts from the Method of Moments (MoM), and the impedance matrix is inverted by blocks from the Taylor series expansion of the inverse of the Schur complement. Its great advantage is that it is rigorous, with a simple formulation and has a straightforward physical interpretation. Actually, this last property relies on the fact that each block of the impedance matrix is linked to a particular and quasi-independent physical process occurring during the multiple scattering between the two rough surfaces. Furthermore, the PILE method allows us to use any acceleration algorithm (MLFMM, BMIA/CAG, Forward-Backward with or without Spectral Acceleration, etc.) developed for a single interface. In addition, an asymptotic approach is extended to rough layered media: the scalar Kirchhoff-tangent plane approximation (SKA), for calculating the coherent scattering from the rough layer. The numerical rigorous PILE method is used as a reference to validate this asymptotic model. The study focuses on 2D problems with so-called 1D surfaces, for computational ease of the reference numerical method. Nevertheless, it must be highlighted that the SKA approach can readily be applied to 3D problems. This approach is applied to rough layers with two slightly rough surfaces characterized by either Gaussian or exponential correlation functions. The height probability density function (PDF) is assumed to be Gaussian

  18. Average wave function method for gas-surface scattering

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Dacol, Dalcio K.; Rabitz, Herschel

    1986-02-01

    The average wave function method (AWM) is applied to scattering of a gas off a solid surface. The formalism is developed for both periodic as well as disordered surfaces. For an ordered lattice an explicit relation is derived for the Bragg peaks along with a numerical illustration. Numerical results are presented for atomic clusters on a flat hard wall with a Gaussian-like potential at each atomic scattering site. The effect of relative lateral displacement of two clusters upon the scattering pattern is shown. The ability of AWM to accommodate disorder through statistical averaging over cluster configurations is illustrated. Enhanced uniform backscattering is observed with increasing roughness on the surface.

  19. Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Waalkens, Holger; Svetovoy, Vitaly B.; Knoester, Jasper; Palasantzas, George

    2015-11-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments performed with MEMS.

  20. Cleanliness evaluation of rough surfaces with diffuse IR reflectance

    NASA Technical Reports Server (NTRS)

    Pearson, L. H.

    1995-01-01

    Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.

  1. Gravel-bed surface roughness from airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Huang, G.; Wang, C.

    2011-12-01

    The roughness of gravel-bed surface is of great importance for fluvial geomorpholoy. Numerous studies have demonstrated that the fractal theory and the log-log variogram are useful for describing the multi-scaling behavior(grain scale and form scale) of the gravel-bed surface. In this study, we obtained the 3D surface information of the gravel surface of a central bar in Nan-Shih River, Taiwan using an airborne laser scanning with a nominal point density of 100 points/m2. The data were divided into 6m × 6m grids. The roughness characteristics of the gravel bar were discussed using the anisotropy axes (also called the directions of maximum and minimum continuity, respectively) determined from the variogram map for each grid. And, the fractal dimension of the two directions were also calculated.

  2. Thrust Bearing with Rough Surfaces Lubricated by an Ellis Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2014-11-01

    In the paper the influence of bearing surfaces roughness on the pressure distribution and load-carrying capacity of a thrust bearing is discussed. The equations of motion of an Ellis pseudo-plastic fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and using the Christensen theory of hydrodynamic rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of a squeeze film bearing and an externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.

  3. Surface roughness change on sandstone induced by temperature increase

    NASA Astrophysics Data System (ADS)

    Vlcko, J.; Kompanikova, Z.; Gomez-Heras, M.; Greif, V.; Durmekova, T.; Brcek, M.

    2012-04-01

    Optical surface profilometer allows capturing the information necessary to provide 3D surface measurements in a single image acquisition with a vertical micrometric resolution. The surface topography can be used for analyses, such as roughness evaluation. In this research, roughness changes of two types of sandstone samples were studied before and after heating to 60, 200, 400, 600 and 800 °C. Measurements obtained were converted into 3D 5 mm x 5 mm (25 mm2) topographic maps with a resolution of 2.5 µm. Surface roughness parameter Sq represents quantifies roughness from the maximum deviation along a mean surface and it is calculated as the root mean squared of five peaks and valleys of the specimen using Gaussian filter and 0.80 mm cut-off. The high spatial resolution obtained from visible-light optical surface profilometer is an ideal tool for observing rock surface alterations caused by decay factors. The authors present complete original process of surface roughness determination on rock samples adopting the portable profilometer using free accessible software packages. The different stability of the fabric of sandstones from Králiky and Oravská Jasenica after heating is due to their different mineral composition and different ratio of minerals that are more or less chemically stable at high temperatures, their resistance to thermal stress and other textural factors related to the distribution of grains and matrix. Percentage of minerals chemically stable at higher temperature, such as quartz, calcite, illite and muscovite, in fresh sandstone samples from Králiky is approximately 48%. Conversely, sandstones from Oravská Jasenica have significantly greater percentage of minerals stable at higher temperatures, such as quartz, albite, orthoclase, muscovite, illite and calcite than of other, less stable, minerals such as chlorite, biotite and kaolinite. Hence, percentage of minerals stable at higher temperatures was approximately 81 %. The results show how the

  4. Surface roughness when diamond turning RSA 905 optical aluminium

    NASA Astrophysics Data System (ADS)

    Otieno, T.; Abou-El-Hossein, K.; Hsu, W. Y.; Cheng, Y. C.; Mkoko, Z.

    2015-08-01

    Ultra-high precision machining is used intensively in the photonics industry for the production of various optical components. Aluminium alloys have proven to be advantageous and are most commonly used over other materials to make various optical components. Recently, the increasing demand from optical systems for optical aluminium with consistent material properties has led to the development of newly modified grades of aluminium alloys produced by rapid solidification in the foundry process. These new aluminium grades are characterised by their finer microstructures and refined mechanical and physical properties. However the machining database of these new optical aluminium grades is limited and more research is still required to investigate their machinability performance when they are diamond turned in ultrahigh precision manufacturing environment. This work investigates the machinability of rapidly solidified aluminium RSA 905 by varying a number of diamond-turning cutting parameters and measuring the surface roughness over a cutting distance of 4 km. The machining parameters varied in this study were the cutting speed, feed rate and depth of cut. The results showed a common trend of decrease in surface roughness with increasing cutting distance. The lowest surface roughness Ra result obtained after 4 km in this study was 3.2 nm. This roughness values was achieved using a cutting speed of 1750 rpm, feed rate of 5 mm/min and depth of cut equal to 25 μm.

  5. Surface roughness from MOLA backscatter pulse-widths

    NASA Astrophysics Data System (ADS)

    Poole, W. D.; Muller, J.-P.; Gupta, S.; Grindrod, P. M.

    2013-09-01

    The time-spread of backscatter laser altimeter pulses, known as pulse-widths, are thought to be capable of being used to infer variations in topography within the footprint of the laser pulse. Here, Mars Orbiter Laser Altimeter (MOLA) pulse-widths have been compared to surface roughness and slope, as measured from high-resolution digital terrain models (DTMs), over different terrains in order to understand how this dataset can be used in the selection of landing and roving sites, and in inferring surface formation and evolution. The results are varied, and suggest that pulsewidths do not respond consistently to variations in terrain. The results show that over Mars Science Laboratory (MSL) candidate landing sites, the pulse-widths can be used as a rough estimate of surface roughness at baselines much larger than the footprint of the pulse. Over much rougher terrain, these pulse-widths respond best to footprint scale slope, which suggests that an additional slope correction for 75 m baselines slopes is required to infer finer scale roughness. However, this is shown not to be the case, as correcting the pulse-widths for 75 m slopes at the MSL candidate sites, and detrending the DTM data, produced poorer results.

  6. Shear Stress Partitioning in Airflow over Rough Surfaces: Roughness Form Effects and Influence on the Distribution of Shear Stress

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nickling, W. G.; King, J.

    2004-12-01

    Roughness elements distributed across a surface can significantly decrease the entrainment and transport of underlying fine-grained sediments by wind. The parameterization of roughness effects on wind erosion thresholds and sediment transport is critical to the development of models that can provide realistic predictions of sediment thresholds and fluxes due to wind erosion. Raupach et al. (1993) present a model for predicting the protective role of roughness elements in terms of a threshold friction velocity ratio as a function of the roughness geometry and the aerodynamic properties of the surface and roughness elements. The predictive capacity of this model remains uncertain and the work presented here represents part of an on-going effort of our group to improve the parameterization of the Raupach et al. (1993) model. To gain additional understanding of how roughness elements influence the magnitude and nature of the shear stress acting on the surface among the elements and evaluate strength and weaknesses of the roughness density parameter to characterize these effects, a wind tunnel study using model roughness arrays of similar roughness density composed of cube-shaped elements of different length dimensions was undertaken. Roughness density is defined as the total frontal area of all the elements to the total surface area that they occupy. Shear stress in the above element air flow was determined from vertical wind speed profile measurements. Point measurements of near surface shear stresses within the roughness array were made with simple omni-directional skin friction meters in order to investigate the partitioning of shear stress to the intervening surface. The results suggest that the roughness density parameter has severe limitations in describing the shear stress partitioning for these regularly arrayed rough surfaces. For surfaces with identical roughness densities, the surface composed of more and smaller elements was observed to have average and

  7. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    SciTech Connect

    Berginc, G

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  8. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  9. Measuring skew in average surface roughness as a function of surface preparation

    NASA Astrophysics Data System (ADS)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  10. Delayed lubricant depletion on liquid-infused randomly rough surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan P.

    2016-05-01

    In this study, pressure drops on liquid-infused superhydrophobic surfaces were measured through a microchannel. A number of different superhydrophobic surfaces were prepared and tested. These surfaces included several PDMS surfaces containing precisely patterned microposts and microridges as well as a number of PTFE surfaces with random surface roughness created by sanding the PTFE with different sandpapers. Silicone oil was selected as the lubricant fluid and infused into the microstructures of the superhydrophobic surfaces. Several aqueous glycerin solutions with different viscosities were used as working fluids so that the viscosity ratio between the lubricant and the working fluid could be varied. The lubricant layer trapped within the precisely patterned superhydrophobic PDMS surfaces was found to be easily depleted over a short period of time even in limit of low flow rates and capillary numbers. On the other hand, the randomly rough superhydrophobic PTFE surfaces tested were found to maintain the layer of lubricant oil even at moderately high capillary numbers resulting in drag reduction that was found to increase with increasing viscosity ratio. The pressure drops on the liquid-infused PTFE surfaces were measured over time to determine the longevity of the lubricant layer. The pressure drops for the randomly rough PTFE surfaces were found to initially diminish with time before reaching a short-time plateau which is equivalent to maximum drag reduction. This minimum pressure drop was maintained for at least three hours in all cases regardless of feature size. However, as the depletion of the oil from the lubricant layer was initiated, the pressure drop was observed to grow slowly before reaching a second long-time asymptote which was equivalent to a Wenzel state.

  11. The variation of ice adhesion strength with substrate surface roughness

    NASA Astrophysics Data System (ADS)

    Hassan, M. F.; Lee, H. P.; Lim, S. P.

    2010-07-01

    The purpose of this study is to determine whether a relationship exists between the mean surface roughness Ra of an aluminium sample and the interfacial bonding strength σ between it and ice that has been frozen onto its surface. A method of forced vibration of a cantilevered composite beam at 10.0 Hz was used to study the interfacial fracture of the metal-ice interface. Low-cost strain gauges instead of piezoelectric PVDF sensors used in other reported studies were used for the adhesion strength measurements. It was found that increasing surface roughness would lead to a higher interfacial bonding strength, although there was no clearly defined mathematical relationship between Ra and σ. For smooth beams, the adhesion strength was found to be between 0.142 and 0.267 MPa, which was in good agreement with the range of values reported in other studies.

  12. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    PubMed Central

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases. PMID:24994963

  13. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A.

    2014-06-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  14. Dependence of metal-enhanced fluorescence on surface roughness

    NASA Astrophysics Data System (ADS)

    François, Alexandre; Sciacca, Beniamino; Zuber, Agnieszka; Klantsataya, Elizaveta; Monro, Tanya M.

    2014-03-01

    Metal Enhanced Fluorescence (MEF) takes advantage of the coupling between surface plasmons, in either a metallic thin film or metallic nanoparticles, and fluorophores located in proximity of the metal, yielding an increase of the fluorophore emission. While MEF has been widely studied on metallic nanoparticles with the emphasis on creating brighter fluorescent labels, planar surfaces have not benefitted from the same attention. Here we investigate the influence of the surface roughness of a thin metallic film on the fluorescence enhancement. 50nm thick silver films were deposited on glass slides using either thermal evaporation with different evaporation currents or an electroless plating method based on the Tollens reaction to vary the surface roughness. Multiple layers of positively and negatively charged polyelectrolytes were deposited on top of the metallic coating to map out the enhancement factor as function of the gap between the metallic coating and fluorophore molecules covalently bound to the last polyelectrolyte layer. We show that fluorescence is enhanced by the presence of the metallic film, and in particular that the enhancement increases by a factor 3 to 40 for roughness ranging from 3 nm to 8 nm. Although these enhancement factors are modest compared to the enhancement produced by complex metallic nanoparticles or nano-patterned metallic thin films, the thin films used here are capable of supporting a plasmonic wave and offer the possibility of combining different techniques, such as surface plasmon resonance (with its higher refractive index sensitivity compared to localized plasmons) and MEF within a single device.

  15. Capillary adhesion between elastic solids with randomly rough surfaces

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2008-08-01

    I study how the contact area and the work of adhesion between two elastic solids with randomly rough surfaces depend on the relative humidity. The surfaces are assumed to be hydrophilic, and capillary bridges form at the interface between the solids. For elastically hard solids with relatively smooth surfaces, the area of real contact and therefore also the sliding friction are maximal when there is just enough liquid to fill out the interfacial space between the solids, which typically occurs for dK≈3hrms, where dK is the height of the capillary bridge and hrms the root-mean-square roughness of the (combined) surface roughness profile. For elastically soft solids, the area of real contact is maximal for very low humidity (i.e. small dK), where the capillary bridges are able to pull the solids into nearly complete contact. In both cases, the work of adhesion is maximal (and equal to 2γcosθ, where γ is the liquid surface tension and θ the liquid-solid contact angle) when d_{\\mathrm {K}} \\gg h_{\\mathrm {rms}} , corresponding to high relative humidity.

  16. Data fusion for accurate microscopic rough surface metrology.

    PubMed

    Chen, Yuhang

    2016-06-01

    Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology. PMID:27058888

  17. Derivation of Mars Surface Scattering Properties from OMEGA Spot Pointing Observations

    NASA Astrophysics Data System (ADS)

    Pinet, P. C.; Daydou, Y.; Cord, A.; Chevrel, S. C.; Poulet, F.; Erard, S.; Bibring, J.-P.; Langevin, Y.; Melchiorri, R.; Bellucci, G.; Altieri, F.; Arvidson, R. E.; OMEGA Co-Investigator Team

    2005-03-01

    OMEGA emission phase function (EPF) observation shows that one may access from orbit to geology-driven surface scattering properties such as surface roughness. It has implications for spectroscopic interpretation and for CRISM observations to come.

  18. Surface roughness, asperity contact and gold RF MEMS switch behavior

    NASA Astrophysics Data System (ADS)

    Rezvanian, O.; Zikry, M. A.; Brown, C.; Krim, J.

    2007-10-01

    Modeling predictions and experimental measurements were obtained to characterize the electro-mechanical response of radio frequency (RF) microelectromechanical (MEM) switches due to variations in surface roughness and finite asperity deformations. Three-dimensional surface roughness profiles were generated, based on a Weierstrass-Mandelbrot fractal representation, to match the measured roughness characteristics of contact bumps of manufactured RF MEMS switches. Contact asperity deformations due to applied contact pressures were then obtained by a creep constitutive formulation. The contact pressure is derived from the interrelated effects of roughness characteristics, material hardening and softening, temperature increases due to Joule heating and contact forces. This modeling framework was used to understand how contact resistance evolves due to changes in the real contact area, the number of asperities in contact, and the temperature and resistivity profiles at the contact points. The numerical predictions were qualitatively consistent with the experimental measurements and observations of how contact resistance evolves as a function of deformation time history. This study provides a framework that is based on integrated modeling and experimental measurements, which can be used in the design of reliable RF MEMS devices with extended life cycles.

  19. Prediction of incidence and surface roughness effects on turbine performance

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1993-01-01

    The results of a Navier-Stokes analysis for predicting the change in turbine efficiency due to a change in either incidence or surface roughness is discussed. It was experimentally determined by Boynton, Tabibzadeh, and Hudson that polishing the SSME high pressure fuel turbine blades improved turbine efficiency by about 2 points over a wide range of operating conditions. These conditions encompassed the range of incidence seen by the turbine blading during flight. It is also necessary to be able to predict turbine performance at various operating points for future rocket turbopump applications. The code RVCQ3D, developed by Rod Chima, was used to determine the effects of changes in incidence angle on turbine blade row efficiency. The midspan Navier-Stokes results were used in conjunction with an inviscid flow analysis code to predict the efficiency of the two stage SSME over a wide range of operating conditions for smooth and rough turbine blades. The use of the Navier-Stokes analysis to predict changes in turbine efficiency due to variation in incidence angles was found to be superior to other incidence loss correlations available in the literature. The sensitivity of the Navier-Stokes results to grid parameters is discussed. The effects of the surface roughness were accounted for using the Cebeci-Chang rough wall turbulence model. This model was implemented in the code RVCQ3D. The implementation of this model for predicting the change in efficiency is also discussed.

  20. Friction and roughness of a melting rock surface

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Griffith, W. A.

    2010-07-01

    Under extreme conditions like those encountered during earthquake slip, frictional melt is likely to occur. It has been observed on ancient faults that the melt is mostly extruded toward local extensional jogs or lateral tension cracks. In the case of laboratory experiments with a rotary shear apparatus, melt is extruded from the sample borders. When this happens, a thin and irregular melt layer is formed whereby the normal load is still in part supported by contact asperities under an incipient yield condition (as in dry friction models), but also, in the interstices between asperities, by the pressure of the viscous fluid wetting the interface. In addition, roughness of the surface is dynamically reshaped by the melting process of an inhomogeneous material (polymineralic rock). In particular, we argue that the roughness of the melting surface decreases with melting rate and temperature gradient perpendicular to the fault. Taking into account the above conditions, we obtain an expression for the average melt layer thickness and viscous pressure that may be used in estimates of friction in the presence of melt. We argue that the ratio of melt thickness to roughness depends on sliding velocity; such a ratio may be used as a gauge of slip-rate during fossil earthquakes on faults bearing pseudotachylite (solidified melt). Finally, we derive an improved analytical solution for friction in the presence of melt including the effect of roughness evolution.

  1. Real-time studies of surface roughness development and reticulation mechanism of advanced photoresist materials during plasma processing

    NASA Astrophysics Data System (ADS)

    Pal, A. R.; Bruce, R. L.; Weilnboeck, F.; Engelmann, S.; Lin, T.; Kuo, M.-S.; Phaneuf, R.; Oehrlein, G. S.

    2009-01-01

    Surface roughness development of photoresist (PR) films during low pressure plasma etching has been studied using real-time laser light scattering from photoresist materials along with ellipsometric and atomic force microscopy (AFM) characterization. We show that evolution of the intensity of light scattered from a film surface can be used to study the development of surface roughness for a wide range of roughness starting from subnanometer to few hundred nanometers. Laser light scattering in combination with ellipsometry and AFM is also used to study the reticulation mechanism of 193 and 248 nm PRs during argon plasma processing. We employ a three-layer model (modified layer, rough layer, and bulk film) of the modified PR surface (193 and 248 nm PRs) to simulate and understand the behavior of ellipsometric Ψ-Δ trajectories. Bruggeman's effective medium approximation is employed to study the roughness that develops on the surface after reticulation. When the glass transition temperature of the organic materials is reached during Ar plasma processing, the PR films reticulate and roughness develops rapidly. Roughness development is more pronounced for 248 nm PR than for 193 nm PR. Simulation of Ψ-Δ shows that the growth of roughness is accompanied by strong expansion in the materials, which is stronger for 248 nm PR than 193 nm PR. The leading factors responsible for reticulation are found to be compressive stress that develops in the modified surface layer as it is created along with strong molecular chain motion and expansion of the material when the temperature is increased past the glass transition temperature. Reticulation leads to a significantly different surface morphology for 248 nm PR as compared to 193 nm PR and can be related to differences in molecular structure and composition leading to different responses when a modified surface layer is formed by ion bombardment accompanying plasma etching.

  2. Anisotropy and edge roughness scattering in the thermal conductivity of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Aksamija, Zlatan; Knezevic, Irena

    2011-03-01

    We present a calculation of the thermal conductivity of graphene nanoribbons, based on solving the Boltzmann transport equation with the full phonon dispersions, a momentum-dependent model for edge roughness scattering, as well as three-phonon and isotope scattering. The interplay between strong edge roughness scattering and the anisotropy of the phonon dispersions results in thermal conduction that strongly depends on the chiral angle of the nanoribbon. A minimum occurs in the armchair direction and a maximum is attained in zig-zag nanoribbons. We also show that both the thermal conductivity and the amount of armchair/zig-zag anisotropy depend strongly on the width of the nanoribbon and the rms height of the edge roughness, with smallest and most anisotropic thermal conductivities occuring in narrow GNRs with rough edges. We conclude that physical width of the nanoribbon and the rms roughness of its line edges can be used along with angular direction as parameters to tailor the value of the thermal conductivity. This work has been supported by the Computing Innovation Fellows Project (NSF award No. 0937060 to the Computing Research Association, sub-award CIF-146 to the University of Wisconsin) and by the AFOSR YIP program (award No. FA9550-09-1-0230).

  3. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann Y.; ONeill, Peggy E.; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quad-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by the Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well- managed watershed in southwest Oklahoma. Prior to its application for soil moisture inversion, a good agreement was found between the single-scattering IEM simulations and the L band measurements of SIR-C and AIRSAR over a wide range of soil moisture and surface roughness conditions. The sensitivity of soil moisture variation to the co-polarized signals were then examined under the consideration of the calibration accuracy of various components of SAR measurements. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  4. Measurement of surface roughness and correlation length using dichromatic speckle

    NASA Astrophysics Data System (ADS)

    Deka, M.

    1980-03-01

    A computer simulation study of the dichromatic speckle was conducted and the surface roughness and correlation length of sample surfaces were measured using a stylus instrument and similar measurements with dichromatic speckle. The rms difference of the two speckle intensities was analyzed for spot sizes smaller than, comparable and larger than the correlation length of the surface. The rms roughness of the sample ground glasses was calculated from the data obtained from the stylus instrument. The correlation length was obtained from an online multichannel FFT processor connected to the stylus instrument. The correlation length was estimated from the correlation function. The rms difference between the speckle intensities of two different wavelengths were measured for various spot sizes. For each intensity 64 K data samples was collected and processed in a PDP 11/40 computer. These data were used to calculate the second moment of the monochromatic speckle, the cross correlation of these and the rms difference. The roughness and the correlation length of the surface were estimated from these results. The results obtained from the dichromatic speckle are in good agreement with the values obtained from the stylus instrument.

  5. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Chen, Jin-Ming; Kuo, Rong-Rong; Lin, Ta-Sen; Wu, Chu-Fu

    2005-02-01

    Various rough surfaces coated with titanium oxide nanoparticles and perfluoroalkyl methacrylic copolymer were conducted to explore the influence of surface roughness on the performance of water- and oil-repellence. Surface characteristics determined from nitrogen physisorption at -196 °C showed that the surface area and pore volume increased significantly with the extent of nanoparticle ratio, indicating an increase of surface roughness. Due to the surface nano-coating, the maximum contact angles of water and ethylene glycol (EG) droplets increased up to 56 and 48%, respectively, e.g. from 105° to 164° for water droplets and from 96° to 144° for EG droplets. The excellent water- and oil-repellence of the prepared surfaces was ascribed to this increase of surface roughness and fluorinated-contained surface. Compared with Wenzel model, the Cassie model yielded a fairly good fit to the simulation of contact angle with surface roughness. However, a derivation of 3°-10° at higher roughness still existed. This phenomenon was very likely due to the surface heterogeneity with different pore size distributions of the fractal surfaces. In this case, it was unfavorable for super repellency from rough surface with larger mesopore fraction because of its capillary condensation, reflecting that micropore provided more air resistance against wettability.

  6. X-ray fluorescence from rough rocky surfaces of asteroids

    NASA Astrophysics Data System (ADS)

    Okada, T.

    2014-07-01

    X-ray fluorescence (XRF) from orbit is a frequently-used technique to determine the elemental composition of atmosphereless planetary bodies. So far, XRF observations have been conducted for asteroids by the Near-Earth Asteroid Rendezvous Shoemaker mission at (433) Eros [1] and the Hayabusa mission at (25143) Itokawa [2]. There has been difficulties to interpret the XRF data to derive the composition quantitatively. One of the reasons is the surface-roughness effect. We have investigated the XRF intensity influenced by a powdery surface as an analogue to fine regolith [3,4]. However, the surfaces of asteroids explored by the spacecraft at, e.g., (25143) Itokawa or (433) Eros, were not always covered with fine regolith but with pebbles or boulders. Thus, we have performed laboratory experiments to study the roughness effect for rocky surfaces to interpret the XRF observations of those asteroids and the observations of future missions. For the powdery surface, we have obtained the following results: 1) the XRF with lower energy is more effective for the same roughness; 2) the XRF intensity decreases for rougher surfaces but converges to a constant value almost 50--60 % of that of a flat surface; and 3) the XRF intensity decreases for larger phase angles, but does not change so for a varying incident angle when when the phase angle remains fixed. We started the experiments for rocky surfaces to investigate the elemental composition of natural unprepared rocks as well as ground rocks for past and future planetary missions. We prepared the basaltic rock samples with different surface roughness. The roughness of the rock surface is measured with a laser microscope to obtain the three-dimensional surface features and characterize the roughness in <10, 30, 60, 100-micron scales by a rectangular function as in our previous studies. We used the X-ray generator (RIGAKU RINT-2000) using an X-ray tube of Cr-target (V-filter) at 20 kV and 10mA, and detected with the Si-PIN diode

  7. Effects of surface roughness on ultrasonic flaw signals

    NASA Astrophysics Data System (ADS)

    Nagy, Peter B.; Adler, Laszlo; Rose, James H.

    In order to demonstrate the effect of random phase modulation on a well-collimated coherent ultrasonic beam, a simple computer simulation is run using the so-called angular-spectrum representation method. The experiments verify the conclusion derived from theoretical results that the ratio of the surface roughness induced transmission loss to the reflection loss at normal incidence is basically a simple constant determined by the sound velocities in the fluid and the solid. The normalized transmission loss is independent of both frequency and rms roughness. It is also almost entirely independent of the densities of the fluid and the solid and, at least in the two angular ranges of high practical importance in ultrasonic NDE, it is marginally sensitive to the autocorrelation length of the surface topography and to the angle of incidence.

  8. Long distance roughness of fracture surfaces in heterogeneous materials

    SciTech Connect

    Hinojosa, M.; Bouchaud, E.; Nghiem, B.

    1999-08-01

    The long distance roughness of fatigue fracture surfaces of a nickel-based superalloy is reported for two samples of different grain size. Statistical analysis over a wide range of length scales, from a few nanometers to a few millimeters, using scanning electron microscopy and atomic force microscopy allows to obtain accurately the self-affine correlation length. Long distance fracture profiles of 14,000 points were obtained and digitized from overlapping electron micrographs at a resolution of 0.22 micrometers/point. The authors have also analyzed the long distance roughness of the mirror zone on a soda-lime glass using atomic force microscopy. In the case of the nickel superalloy, correlation lengths are found to correspond well to the grain size. This result gives information about the mechanism of crack propagation in heterogeneous materials and shows that the correlation length of fracture surfaces is of the order of the largest microstructural heterogeneity.

  9. Surface roughness estimation by inversion of the Hapke photometric model on optical data simulated using a ray tracing code

    NASA Astrophysics Data System (ADS)

    Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.

    2013-12-01

    Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles

  10. Near grazing scattering from non-Gaussian ocean surfaces

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; Rodriguez, Ernesto

    1993-01-01

    We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.

  11. Measurement and simulation of surface roughness noise using phased microphone arrays

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Dowling, A. P.; Shin, H.-C.

    2008-07-01

    A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency.

  12. Converting surface roughness data into PSD and BSDF

    NASA Astrophysics Data System (ADS)

    Pfisterer, Richard N.

    2012-10-01

    The process to convert raw profilometer data describing surface roughness into PSD and BSDF is discussed, but not well-documented in the open optical engineering literature, and is therefore prone to procedural mistakes. This paper describes the step-by-step numerical process as well as the three "check points" that insure that errors have not been introduced into the calculation. A numerical example is discussed.

  13. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface

  14. Correlated diffuse x-ray scattering from periodically nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Soltwisch, V.; Haase, A.; Wernecke, J.; Probst, J.; Schoengen, M.; Burger, S.; Krumrey, M.; Scholze, F.

    2016-07-01

    Laterally periodic nanostructures were investigated with grazing incidence small angle x-ray scattering. To support an improved reconstruction of nanostructured surface geometries, we investigated the origin of the contributions to the diffuse scattering pattern which is correlated to the surface roughness. Resonant diffuse scattering leads to a palmlike structure of intensity sheets. Dynamic scattering generates the so-called Yoneda band caused by a resonant scatter enhancement at the critical angle of total reflection and higher-order Yoneda bands originating from a subsequent diffraction of the Yoneda enhanced scattering at the grating. Our explanations are supported by modeling using a solver for the time-harmonic Maxwell's equations based on the finite-element method.

  15. Friction and roughness of a melting rock surface

    NASA Astrophysics Data System (ADS)

    Nielsen, Stefan; di Toro, Giulio; Griffith, Ashley

    2010-05-01

    Under extreme conditions like those encountered during earthquake slip, frictional melt is likely to occur. It has been observed on fossil faults that the melt is mostly extruded toward local extensional jogs or lateral tension cracks. A similar condition is reproduced in laboratory experiments with a rotary shear apparatus. When this happens, a thin and irregular melt layer is formed whereby the normal load is still in part supported by contact asperities under an incipient yield condition (as in dry friction models), but also, in the interstices between asperities, by the pressure of the viscous fluid wetting the interface. In addition, roughness of the surface is dynamically reshaped by the melting process of an inhomogeneous material (polymineral rock). In particular, we argue that the roughness decreases with temperature gradient and the melting rate. Taking into account the above conditions, we obtain an expression for the average melt layer thickness and viscous pressure that may be used in estimates of friction in the presence of melt. We argue that the ratio of melt thickness to roughness depends on sliding velocity; such a ratio may be used as a gauge of slip-rate during fossil earthquakes on faults bearing pseudotachylite (solidified melt). Finally, we derive an improved analytical solution for friction in the presence of melt including the effect of roughness evolution.

  16. Correlation Between Eddy Current Signal Noise and Peened Surface Roughness

    NASA Astrophysics Data System (ADS)

    Wendt, S. E.; Hentscher, S. R.; Raithel, D. C.; Nakagawa, N.

    2007-03-01

    For advanced uses of eddy current (EC) NDE models in, e.g., model-assisted POD, there is a need to understand the origin of EC noise sources so that noise estimations can be made for a given set of inspection conditions, in addition to defect signal predictions. This paper focuses on the material-oriented noise sources that exhibit some universality when isolated from electrical and mechanical noises. Specifically, we report on experimental measurements that show explicit correlations between surface roughness and EC noise as seen in post-peen EC measurements of shot-peened roughness specimens. The samples are 3″-by-3″ Inconel 718 and Ti-6A1-4V blocks, pre-polished and shot-peened at Almen intensities ranging from a low of 4N to as high as 16A, created by smaller (˜350 μm) and larger (˜1 mm) diameter zirconium oxide shots. Strong correlations are observed between the Almen intensities and the measured surface roughness. The EC noise correlates equally strongly with the Almen intensities for the superalloy specimens. The correlation for the Ti-alloy samples is only apparent at higher intensities, while being weak for lower intensities, indicating the grain noise dominance for smoother surfaces.

  17. Structure of turbulent wedges created by isolated surface roughness

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew S.; White, Edward B.

    2016-04-01

    Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.

  18. Correlation Between Eddy Current Signal Noise and Peened Surface Roughness

    SciTech Connect

    Wendt, S. E.; Hentscher, S. R.; Raithel, D. C.; Nakagawa, N.

    2007-03-21

    For advanced uses of eddy current (EC) NDE models in, e.g., model-assisted POD, there is a need to understand the origin of EC noise sources so that noise estimations can be made for a given set of inspection conditions, in addition to defect signal predictions. This paper focuses on the material-oriented noise sources that exhibit some universality when isolated from electrical and mechanical noises. Specifically, we report on experimental measurements that show explicit correlations between surface roughness and EC noise as seen in post-peen EC measurements of shot-peened roughness specimens. The samples are 3''-by-3'' Inconel 718 and Ti-6A1-4V blocks, pre-polished and shot-peened at Almen intensities ranging from a low of 4N to as high as 16A, created by smaller ({approx}350 {mu}m) and larger ({approx}1 mm) diameter zirconium oxide shots. Strong correlations are observed between the Almen intensities and the measured surface roughness. The EC noise correlates equally strongly with the Almen intensities for the superalloy specimens. The correlation for the Ti-alloy samples is only apparent at higher intensities, while being weak for lower intensities, indicating the grain noise dominance for smoother surfaces.

  19. Decoherence phenomenon in X-ray diffraction and scattering from rough multilayers

    NASA Astrophysics Data System (ADS)

    Chernov, V. A.; Kondratiev, V. I.; Kovalenko, N. V.; Mytnichenko, S. V.; Zolotarev, K. V.

    2005-02-01

    High-resolution X-ray diffractometry was used to study the diffuse scattering from a series of rough multilayers. Reciprocal-space maps were obtained around the small- and wide-angle Bragg reflections using SR from the VEPP-3 storage ring. The data obtained reveal well-known quasi-Bragg diffuse-scattering sheets caused by conformal behavior of interfacial roughness as well as amplification of diffuse scattering when the incoming or outgoing angle is nearly equal to the Bragg angle (incoming and outgoing Bragg scattering) and when incoming and outgoing angles are nearly equal (quasi-specular diffuse scattering). The observed domination in intensity of the incoming Bragg features over outgoing ones, which demonstrates the breakdown of the reciprocity principle, is shown to reflect the decay rate of the coherent X-ray field through the diffuse-scattering channel, which becomes predominant as the spatial coherence of the incident X-ray beam increases. This diffuse-scattering behavior can be considered as a decoherence phenomenon inherent to open quantum systems.

  20. Improvement of PET surface hydrophilicity and roughness through blending

    SciTech Connect

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J.

    2015-05-22

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  1. Improvement of PET surface hydrophilicity and roughness through blending

    NASA Astrophysics Data System (ADS)

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre. J.

    2015-05-01

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  2. A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.

    1996-01-01

    In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

  3. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann; ONeill, Peggy; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quasi-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well-managed watershed in southwest Oklahoma. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  4. The effect of heterogeneity and surface roughness on soil hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated

  5. Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media

    NASA Astrophysics Data System (ADS)

    Hetland, Ø. S.; Maradudin, A. A.; Nordam, T.; Simonsen, I.

    2016-05-01

    The scattering of polarized light incident from one dielectric medium on its two-dimensional randomly rough interface with a second dielectric medium is studied. A reduced Rayleigh equation for the scattering amplitudes is derived for the case where p- or s-polarized light is incident on this interface, with no assumptions being made regarding the dielectric functions of the media. Rigorous, purely numerical, nonperturbative solutions of this equation are obtained. They are used to calculate the reflectivity and reflectance of the interface, the mean differential reflection coefficient, and the full angular distribution of the intensity of the scattered light. These results are obtained for both the case where the medium of incidence is the optically less dense medium and in the case where it is the optically more dense medium. Optical analogs of the Yoneda peaks observed in the scattering of x rays from metal surfaces are present in the results obtained in the latter case. Brewster scattering angles for diffuse scattering are investigated, reminiscent of the Brewster angle for flat-interface reflection, but strongly dependent on the angle of incidence. When the contribution from the transmitted field is added to that from the scattered field it is found that the results of these calculations satisfy unitarity with an error smaller than 10-4.

  6. Exploring the Surface Roughness of Asteroid Vesta using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, Elizabeth Marie; Heggy, Essam; Kofman, Wlodek

    2015-08-01

    NASA’s Dawn spacecraft conducted an opportunistic bistatic radar (BSR) experiment at asteroid Vesta using its communications antennas to transmit, and the 70-m DSN antennas on Earth to receive. Dawn’s high-gain antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength) while pointed toward Earth. This configuration results in high grazing incidence angles of scatter from Vesta’s surface as Dawn passes behind Vesta (entering occultation) and again as Dawn re-emerges from behind Vesta (exiting occultation). This leads to a small Doppler shift of only ~2 Hz between the directly transmitted signal and surface echoes from Vesta given a small relative velocity between the spacecraft’s orbit and the asteroid’s rotation. We calculated power spectra from the received radar scatter using a frequency resolution of 0.5 Hz, and a temporal resolution of 5 seconds, and have detected 20 cases of surface echoes at mid-latitudes. Surface echoes detected during occultation entry exhibit a negative Doppler shift relative to the direct signal, while echoes detected during occultation exit exhibit a positive Doppler shift. We then compare Vesta’s surface roughness with that of the Moon by analyzing the power and Doppler spreading of Vesta’s surface echoes, and correcting for shadowing effects inherent at high-incidence angle observations. We expect the Vestan surface to exhibit greater roughness at centimeter scales based on previous Earth-based radar studies.

  7. The interaction of surfaces across rough, metal-containing interfaces

    NASA Astrophysics Data System (ADS)

    Knarr, Randolph Frederick

    1999-10-01

    This thesis probes the interfacial and contact mechanical behavior between an optically smooth (nanometer-scale roughness) metal surface and an opposing surface of either a similar metal or a molecularly smooth mica surface (sub-Angstrom-scale roughness). This was carried out in a surface forces apparatus (SFA) equipped with extended spectral analysis of multiple beam interferometry (ESA-MBI) allowing Angstrom-scale deformations at the interface to be probed. During this work the SFA was enhanced to include an electrical resistance probe. The contact mechanics theory of Johnson, Kendall, and Roberts (JKR), 1971, originally developed for smooth, elastic bodies, is applied in broad new ways to describe the contact mechanical behavior of rough-metal contacts. The effects of depositing a self assembled monolayer (SAM) on one or both metal surfaces were also investigated. Finally, three new metals were introduced successfully into the SFA with the aid of optical theory to define the geometry of the metal films. In the JKR theory, the fundamental work of adhesion, W, is replaced with an effective work of adhesion that is shown to correlate with asperity deformations at the interface both in the loading and unloading cycles. For the case of metal-metal contact cold welding is observed and characterized. In the case of silver-silver contact, JKR theory is used to postulate that cold welding occurs in only a fraction of the whole contact zone. SAMs deposited on metals, gold in this case, are shown to inhibit cold welding in most cases and result in adequate description by JKR theory during unloading. Adhesion between SAM-coated metal surfaces correlates with terminal chemistry, with polar groups interacting more strongly. Optical theory was used to design experiments to successfully introduce three alternative metals into the SFA.

  8. Multiple scattering in the remote sensing of natural surfaces

    SciTech Connect

    Li, Wen-Hao; Weeks, R.; Gillespie, A.R.

    1996-07-01

    Radiosity models predict the amount of light scattered many times (multiple scattering) among scene elements in addition to light interacting with a surface only once (direct reflectance). Such models are little used in remote sensing studies because they require accurate digital terrain models and, typically, large amounts of computer time. We have developed a practical radiosity model that runs relatively quickly within suitable accuracy limits, and have used it to explore problems caused by multiple-scattering in image calibration, terrain correction, and surface roughness estimation for optical images. We applied the radiosity model to real topographic surfaces sampled at two very different spatial scales: 30 m (rugged mountains) and 1 cm (cobbles and gravel on an alluvial fan). The magnitude of the multiple-scattering (MS) effect varies with solar illumination geometry, surface reflectivity, sky illumination and surface roughness. At the coarse scale, for typical illumination geometries, as much as 20% of the image can be significantly affected (>5%) by MS, which can account for as much as {approximately}10% of the radiance from sunlit slopes, and much more for shadowed slopes, otherwise illuminated only by skylight. At the fine scale, radiance from as much as 30-40% of the scene can have a significant MS component, and the MS contribution is locally as high as {approximately}70%, although integrating to the meter scale reduces this limit to {approximately}10%. Because the amount of MS increases with reflectivity as well as roughness, MS effects will distort the shape of reflectance spectra as well as changing their overall amplitude. The change is proportional to surface roughness. Our results have significant implications for determining reflectivity and surface roughness in remote sensing.

  9. The use of new index for surface roughness of vegetation

    NASA Astrophysics Data System (ADS)

    Konda, Asako; Yamamoto, Hirokazu; Kajiwara, Koji; Honda, Yoshiaki

    2005-01-01

    Propose of a new Vegetation Index is purposes. Ordinal vegetation Index can show intensity of vegetation on the ground. It can not show structure of vegetation surface or texture. Proposed vegetation index utilizes BRF property. It is generated from data from 2 orbit of satellite and be able to show structure of vegetation surface or texture. Principles of this index is coming from field observation using RC helicopter. Each vegetation canopy has different texture and roughness. New index, named BSI (Bi-directional reflectance Structure Index) shows difference of vegetation canopy. It is calculated by using the data of NOAA/AVHRR, ADEOS OCTS. ADEOS-II GLI can derive BSI.

  10. Rough spacecraft surfaces -a threat to Planetary Protection issues

    NASA Astrophysics Data System (ADS)

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    Inadvertent introduction of terrestrial microorganisms to foreign solar bodies could compromise the integrity of present and future life detection missions. For Planetary Protection purposes space agencies measure the aerobic, mesophilic spore load of a spacecraft as a proxy indicator in order to determine its bioload. Emerging novel hardware in space science implicates novel surface structures and materials that need to be controlled with regard to contaminations. For instance (roughened) carbon fiber reinforced plastic and Vectran fabric for construction of landing platforms and airbags, respectively, have been used in some Mars exploration missions. These materials have different levels of roughness and their potential risk to retain spores for insufficient sampling success has never been in scope of investigation. In this comprehensive study we evaluated ESA's novel nylon flocked swab protocol on stainless steel and other tech-nical surfaces with regard to Bacillus spore recovery. Low recovery efficiencies of the ESA standard wipe assay for large surface sampling were demonstrated with regard to Bacillus at-rophaeus spore detection. Therefore another protocol designed for rough surface sampling was evaluated on Vectran fabric and (roughened) carbon fiber reinforced plastic. Moreover, scan-ning electron micrographs of the technical surfaces studied allowed a more detailed view on their properties. The evaluated sampling protocols and the corresponding results are of high interest for future life detection missions in order to preserve their scientific integrity throughout spacecraft assembly.

  11. Radiometric Trouble with Rough Surfaces? ... The von Neumann Series can Help!

    NASA Astrophysics Data System (ADS)

    Davis, A. B.

    2004-05-01

    Operational retrieval methods used in surface remote sensing will generally assume that the interrogated terrain is uniform as well as flat (if not outright horizontal) at least at sub-pixel scales. Both assumptions are highly questionable. There are spectral techniques (linear un-mixing, end-members, etc.) designed to address the non-uniformity issue and adjacency effects (nonlinear mixing) near large gradients in surface albedo can be unraveled with techniques using the Green function of the aerosol atmosphere. But strong deviations from local flatness define a challenging problem in three-dimensional radiative transfer; this is especially true when the terrain has a very rough fractal shape with height variability over a wide range of scales. The source of the problem is the multiple reflections between surface elements in view of each other and is mathematically akin to the problem of multiple scattering in heterogeneous turbid media like clouds. The fundamental solution to the multiple scattering/reflection problem in transport theory is called ``successive orders-of-scattering/reflection'' by physicists and a ``von Neumann expansion'' by mathematicians. I have applied this method to the analysis of two remote sensing problems that appear to be vastly different: (1) angular dependence of effective emissivity in thermal remote sensing, and (2) biases in fine laser altimetry (such as attempted by NASA's present GLAS mission which focuses on polar ice caps). The thermal problem can be reduced to a question of mean aspect ratio in the macro-roughness of the surface. The altimetry problem calls furthermore for a roughness scale. In both cases, corrections can be made to obtain the surface property of interest: actual emissivity, and actual altitude. In both cases, Monte Carlo simulation ---another seminal contribution of John von Neumann, with others--- was the key to first inspiring and then validating the proposed analytical models with one or two free parameters

  12. A general rough-surface inversion algorithm: Theory and application to SAR data

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  13. A theoretical analysis of sliding of rough surfaces

    NASA Astrophysics Data System (ADS)

    Walsh, J. B.

    2003-08-01

    I used a model proposed by [1966], who analyzed closure between a rough surface and a smooth surface under normal stress, to analyze the growth of slip under increasing shear stress, normal stress remaining constant. The two bodies are elastic half-spaces, one rough and one smooth, and Coulomb friction resists slip at sliding contacts. The elastic and dissipative components of the constitutive relation in shear depend upon statistical parameters which describe the topography of the rough surface. I made a parametric study of the effect of topography on the constitutive relations in shear by comparing a model in which the progress of slip at a contact is continuous with one in which the contact goes discontinuously from "stuck" to sliding. The effect of topography was also studied by assuming that the probability density distribution of the heights of asperities is Gaussian or, alternatively, a negative exponential. These variations in topography produced only minor differences in the constitutive behavior. This insensitivity of the constitutive behavior to differences in the statistical description of the topography arises in part because, only relatively, a small range of asperity heights is active in typical experiments. Work done against friction introduces a dissipative component into the constitutive behavior which I evaluated analytically; I show that the components have a simple graphical construction on plots of shear stress versus displacement developed from experimental observations. Sliding in the reverse sense which occurs when the applied shear stress is relaxed is analyzed, resulting in expressions which describe the shape of hysteresis loops formed when shear stress is cycled. Introducing measurements made on surfaces of specimens of granite and quartzite into the theoretical relations, I found reasonable agreement with experimental data.

  14. Subsurface Sounding of Mars: The Effects of Surface Roughness

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Jordan, R.; Safaeinili, A.; Safaenelli, A.; Seu, R.; Orosei, R.

    2001-01-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) will conduct a global survey of Mars from the Mars Express Orbiter starting in 2004. The primary objective of the subsurface observations is to detect material interfaces in the upper several kilometers of the crust of Mars, with a particular emphasis on mapping the 3D distribution of water and ice in that portion of the crust. In order to detect subsurface interfaces, the returned echo from the subsurface must be distinguished from noise and clutter, which can arise from a variety of sources. One source of clutter is surface topography that generates backscattered energy at the same time delay as the subsurface region of interest. Surface topography can affect the detectability of subsurface features in several other ways. Surface roughness at scales comparable or somewhat smaller than the radar wavelength reduces the coherency of the wave as it passes the upper interface. Also, surface slope (tilt) at scales of the radar footprint and larger (> 5 km) affects the apparent Doppler signature of the echoes, and effectively disperses the wave transmitted into the subsurface, making processing and interpretation difficult. In this paper, we report on the roughness characteristics of Mars at these various scales as measured by the Mars Global Surveyor Laser Altimeter (MOLA), and consider the implications for achieving the subsurface sounding goals of MARSIS. Additional information is contained in the original extended abstract.

  15. Roughness measurements over an agricultural soil surface with Structure from Motion

    NASA Astrophysics Data System (ADS)

    Snapir, B.; Hobbs, S.; Waine, T. W.

    2014-10-01

    This paper presents an accessible and reliable method to measure surface roughness of agricultural soils with a setup designed to tackle some of the challenges posed by roughness to SAR remote sensing. The method relies on Structure from Motion (SfM). From a large collection of unconstrained images (∼700 images) acquired with a commercial-grade camera, digital elevation models (DEMs) are generated for a SAR-pixel-size plot (2 × 11 m), with horizontal and vertical RMS errors of respectively 1.5 mm and 3.1 mm. Example results highlight the need for individually detrending all sampled sub-DEMs when studying the convergence of the roughness parameters for increasing DEM length. This point appears to be missing in previous publications. The efficiency of the Fourier-based method used to compute the roughness parameters allows investigating anisotropy at a 1° angular resolution. This could benefit investigations on the flashing fields phenomenon observed within narrow direction bands over tilled fields. The inclusion of permanent reference targets into the soil makes multitemporal measurements over the same plot straightforward. Ten acquisitions from April to July 2013 show noticeable natural changes in roughness with cracking during dry periods and smoothing during rainfalls. As expected, changes in RMS height and correlation length appear inversely correlated and can be related to in situ measurements of soil moisture, soil temperature, and rainfall. Analysis of changes in power spectral density indicates that the observed roughness changes only affect scales below 50 cm, i.e. scales relevant for microwave scattering. Even though it seems that millimetric changes for horizontal scales below 1 cm are not observable, measurement performance could be improved by adding more detailed pictures to the image set. This SfM-based method appears to be well-suited to study the dynamics and characterization of roughness for SAR and more generally for geosciences.

  16. Roughness of human enamel surface submitted to different prophylaxis methods.

    PubMed

    Castanho, Gisela Muassab; Arana-Chavez, Victor E; Fava, Marcelo

    2008-01-01

    The purpose of this in vitro study was to evaluate alterations in the surface roughness and micromorphology of human enamel submitted to three prophylaxis methods. Sixty-nine caries-free molars with exposed labial surfaces were divided into three groups. Group I was treated with a rotary instrument set at a low speed, rubber cup and a mixture of water and pumice; group II with a rotary instrument set at a low speed, rubber cup and prophylaxis paste Herjos-F (Vigodent S/A Indústria e Comércio, Rio de Janeiro, Brazil); and group III with sodium bicarbonate spray Profi II Ceramic (Dabi Atlante Indústrias Médico Odontológicas Ltda, Ribeirão Preto, Brazil). All procedures were performed by the same operator for 10 s, and samples were rinsed and stored in distilled water Pre and post-treatment surface evaluation was completed using a surface profilometer (Perthometer S8P, Marh, Perthen, Germany) in 54 samples. In addition, the other samples were coated with gold and examined in a scanning electron microscope (SEM). The results of this study were statistically analyzed with the paired t-test (Student), the Kruskal-Wallis test and the Dunn (5%) test. The sodium bicarbonate spray led to significantly rougher surfaces than the pumice paste. The use of prophylaxis paste showed no statistically significant difference when compared with the other methods. Based on SEM analysis, the sodium bicarbonate spray presented an irregular surface with granular material and erosions. Based on this study, it can be concluded that there was an increased enamel surface roughness when teeth were treated with sodium bicarbonate spray when compared with teeth treated with pumice paste. PMID:18767461

  17. Observations of swell influence on ocean surface roughness

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.

    2008-12-01

    Field measurements of the ocean surface wave spectrum focusing on the slope-contributing components are used to construct a spectral model of the ocean surface roughness. The spectral parameterization is established with the observed empirical power law relation between the dimensionless wave spectral density and wind speed. The power law parameters (proportionality coefficient and exponent) are shown to be modified by swell. Discussions are presented on the swell effects of spectral properties, including their wind speed dependence and swell modification of roughness components characterizing Bragg resonance and surface tilting in radar application. Several notable results include the following: (1) With increasing swell intensity, the spectral density increases in the long-wave portion and decreases in the short-wave portion of the intermediate-scale waves. (2) There is a nodal point with respect to swell impact in the wave number dependence of the coefficient and exponent of the spectral parameterization function in the vicinity of wave number near 3 rad/m, suggesting that waves about a couple of meters long are insensitive to swell influence. (3) Spectral density in the decimeter length scale becomes less sensitive to wind speed variation as swell intensity increases. (4) Increasing swell influence shifts wave breaking toward shorter and broader scales.

  18. Influence of Surface Roughness in Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Wiednig, C.; Stiefler, F.; Enzinger, N.

    2016-03-01

    The requirements of welded components are rising continuously through increasing demands in engineering. But in engineering not only the quality of welds is important also an economic and timesaving production is crucial. Especially in welding of large cross sections economization potential is existing and significant. Beside the welding technique itself the joint preparation is a major part of work. Electron beam welding has some major advantages in this area. Due the high energy density a very short welding time as well as a small heat affected zone can be achieved. Furthermore the joint preparation can be held simple. Nevertheless, a careful machining and cleaning of the joint surfaces is recommended in literature. In addition to geometric tolerances a specific surface roughness should be kept. These statements are quite general and unspecific. In this contribution a systematic investigation on the influence of joint preparation on the joint properties is presented. By performing several welding experiments with different surface roughness this study provides empirical conclusions. Beside the microscopic investigation of different cross sections and mechanical tests of the welded samples also the process stability during welding was reviewed.

  19. Radar, visual and thermal characteristics of Mars - Rough planar surfaces

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1980-01-01

    High-resolution Viking Orbiter images contain significant information on Martian surface roughness at 25- to 100-m lateral scales, while earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns are qualitatively confirmed by the Viking image data. Large-scale, curvilinear ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.

  20. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.

  1. The Turbulent Boundary Layer on a Rough Curvilinear Surface

    NASA Technical Reports Server (NTRS)

    Droblenkov, V. F.

    1958-01-01

    A number of semiempirical approximate methods exist for determining the characteristics of the turbulent boundary layer on a curvilinear surface. At present, among these methods, the one proposed by L. G. Loitsianskii is given frequent practical application. This method is sufficiently effective and permits, in the case of wing profiles with technically smooth surfaces, calculating the basic characteristics of the boundary layer and the values of the overall drag with an accuracy which suffices for practical purposes. The idea of making use of the basic integral momentum equation ((d delta(sup xx))/dx) + ((V' delta(sup xx))/V) (2 + H) = (tau(sub 0))/(rho V(exp 2)) proves to be fruitful also for the solution of the problems in the determination of the characteristics of the turbulent boundary layer on a rough surface.

  2. Grafting of alumina on SBA-15: effect of surface roughness.

    PubMed

    Zukal, A; Siklová, H; Cejka, J

    2008-09-01

    Alumina-grafted materials were prepared by postsynthesis alumination of mesoporous SBA-15 silica in an aqueous solution of aluminum chlorhydrol. Prepared samples were characterized by nitrogen adsorption, scanning electron microscopy, X-ray powder diffraction, and (27)Al magic-angle-spinning NMR. The successive grafting of alumina on SBA-15 leads to a gradual filling of the corona surrounding the mesopores. As a consequence smoothing of the mesopore surface takes place. The in-depth analysis of nitrogen adsorption data proves that the alpha s method affords real values of the structure parameters, while the Kruk, Jaroniec, and Sayari (KJS) procedure based on the BJH algorithm provides only effective data corresponding to cylindrical mesopores of smooth geometrical surface. The quantification of the roughness of the SBA-15 mesopore surface based on the comparison of data obtained from the alpha s plot and KJS method was carried out. PMID:18683961

  3. The effects of the substrate surface roughness on graphene plasmons

    SciTech Connect

    Lyon, Keenan A.; Miskovic, Zoran L.

    2014-03-31

    We investigate the effects of variation in the gap size between mono-layer graphene and a substrate with a randomly rough surface on the linear response of graphene’s π electron bands within the approximation of Dirac fermions. We adopt the electrostatic Green’s function developed by Rahman and Maradudin [Phys. Rev. B 21, 2137–2143 (1980)] for the surface of a dielectric medium, which exhibits a Gaussian distributed height profile and combine it with the polarization function of graphene described as a zero-thickness planar layer at a fixed distance from the mean position of the substrate surface. We specifically consider the effects of a random gap size on the two-dimensional sheet plasmon mode in heavily doped graphene, both on its dispersion relation in the long-wavelength limit and its broadening due to Landau damping in the continuum of inter-band electron-hole excitations at shorter wavelengths.

  4. A model for bistatic scattering of electromagnetic waves from foliage covered rough terrain

    NASA Astrophysics Data System (ADS)

    Papa, Robert J.; Tamasanis, Douglas T.

    1991-09-01

    The problem of determining the electromagnetic (EM) power received by an antenna located over foliage covered rough terrain in a bistatic scattering geometry is important and quite complex. A model was developed which can quantitatively determine the effect of a foliage layer on EM waves scattered from rough terrain. The theoretical approximations obtained from this model are compared with data at two levels; the loss in penetrating the foliage and the total normalized scattering cross section sigma degrees. The results of this theoretical modeling are compared with experimental data at two levels. First, the effective dielectric constants for a foliage environment were used to calculate the attenuation constants of coherent waves propagating through a dense forest. The attenuation constants given by the model were compared with data taken at 200MHz, 500MHz and 800MHz, resulting in good agreement. Then, the entire bistatic scattering model was used to calculate an effective normalized scattering cross section (sigma degrees) for a sod field, grass, and forest covered terrain. This was compared with L-band data resulting in excellent agreement between theory and experimental data.

  5. Numerical surface-scattering laws for asteroid applications

    NASA Astrophysics Data System (ADS)

    Wilkman, O.; Muinonen, K.; Penttilä, A.; Peltoniemi, J.

    2014-07-01

    We present a database of numerically computed surface-scattering laws for surfaces consisting of close-packed spherical volume elements of particles. Simple analytical scattering laws, such as the Lommel-Seeliger law, are commonly used to model the scattering of sunlight by asteroid surfaces. In their simple form, however, they are only valid for smooth surfaces, while the surfaces of asteroids are roughened by a loose regolith. The particulate surface structure causes subtle photometric features [1], but taking them into account is difficult with a simple analytic scattering law. Our intention is to allow a user to efficiently simulate light scattering from this type of surfaces by using pre-computed values. We use a ray-tracing technique [2] to compute the scattering of light from a surface medium composed of spherical volume elements of particles. The medium has a variable volume-element size distribution, packing density, and macroscale roughness. The scattering is discretized over the angles of incidence, emergence, and azimuth using an efficient and simple hemisphere discretization scheme. The numerical scattering laws are provided as data files containing the sky hemisphere and descriptive metadata. In practice, the user will load the hemisphere array from the file and compute the scattering-law values in his/her software through interpolation between the array values, then multiplying by a desired phase function. The first release of data contains scattering laws computed for media of low-to-moderate geometric albedo, with packing densities in the range of 0.15 to 0.55 and a uniform size distribution. Documentation and example source code are also provided to help users integrate our scattering-law approach to their software.

  6. Effects of surface roughness on evaporation from porous surfaces into turbulent airflows

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2014-05-01

    The ubiquitous and energy intensive mass transfer between wet porous surfaces and turbulent airflows is of great importance for various natural and industrial applications. The roughness of natural surfaces is likely to influence the structure of adjacent boundary layer and thus affecting heat and mass fluxes from surfaces. These links were formalized in a new model that considers the intermittent turbulence-induced boundary layer with local mass and energy exchange rates. We conducted experiments with regular surface roughness patterns subjected to constant turbulent airflows and monitored mass loss and thermal signatures of localized evaporative fluxes using infrared thermography. The resulting patterns were in good agreement with model predictions for local and surface averaged turbulent exchange rates. Preliminary results obtained for evaporation from sinusoidal wavy soil surfaces reveal that evaporative fluxes can be either enhanced or suppressed (relative to a flat surface) owing to relative contribution of downstream (separation zone) and rising (reattachment zone) surfaces of the wave with thick and thin viscous sublayer thicknesses, respectively. For isolated roughness elements (bluff bodies) over a flat evaporating surface, the resulting fluxes are enhanced (relative to a smooth surface) due to formation of vortices that induce thinner boundary layer. Potential benefits of the study for interpretation and upscaling of evaporative and heat fluxes from natural (rough) terrestrial surfaces will be discussed. Keywords: Turbulent Evaporation, Porous Media, Surface Roughness, Infrared Thermography.

  7. PREFACE: Atom-surface scattering Atom-surface scattering

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  8. A full-field perturbation approach to scattering and reverberation in range-dependent environments with rough interfaces.

    PubMed

    Ivakin, Anatoliy N

    2016-07-01

    A perturbation approach to roughness scattering and reverberation in range-dependent environments is developed treating each interface as a superposition of a smooth reference interface, which may include large-scale deterministic features (such as bathymetry changes), and small compared to the acoustic wavelength vertical deviations from this interface that are considered as random roughness perturbations. The reference interface is assumed to be smooth enough to allow analytic or numerical solution for the field in the vicinity of this interface that can then be used in perturbation theory. Expressions for both the reverberation field and average reverberation intensity in a general case of an arbitrary number of rough interfaces are obtained in a form convenient for numerical simulations. In the case of long-range ocean reverberation, several approximations for these expressions are developed, relevant to various environmental scenarios and different types of interfaces: sea-surface, water-sediment interface, buried sediment interfaces, and bottom basement. The results are presented in a simple form and provide a direct relationship of the reverberation intensity with three critical characteristics defined at each interface: (1) local spectrum of roughness, (2) local contrast of acoustic parameters, and (3) two-way full-field transmission intensity calculated taking into account only large-scale changes of the environment. PMID:27475187

  9. Modeling of surface roughness: application to physical properties of paper

    NASA Astrophysics Data System (ADS)

    Bloch, Jean-Francis; Butel, Marc

    2000-09-01

    Papermaking process consists in a succession of unit operations having for main objective the expression of water out of the wet paper pad. The three main stages are successively, the forming section, the press section and finally the drying section. Furthermore, another operation (calendering) may be used to improve the surface smoothness. Forming, pressing and drying are not on the scope of this paper, but the influence of formation and calendering on surface roughness is analyzed. The main objective is to characterize the materials and specially its superficial structure. The proposed model is described in order to analyze this topographical aspect. Some experimental results are presented in order to illustrate the interest of this method to better understand physical properties. This work is therefore dedicated to the description of the proposed model: the studied surface is measured at a microscopic scale using for example, a classical stylus profilometry method. Then the obtained surface is transformed using a conformal mapping that retains the surface orientations. Due to the anisotropy of the fiber distribution in the plane of the sheet, the resulting surface is often not isotropic. Hence, the micro facets that identify the interfaces between pores and solid (fibers in the studied case) at the micro level are transformed into a macroscopic equivalent structure. Furthermore, an ellipsoid may be fit to the experimental data in order to obtain a simple model. The ellipticities are proved to be linked for paper to both fiber orientation (through other optical methods) and roughness. These parameters (ellipticities) are shown to be very significant for different end-use properties. Indeed, they shown to be correlated to printing or optical properties, such as gloss for example. We present in a first part the method to obtain a macroscopic description from physical microscopic measurements. Then measurements carried on different paper samples, using a classical

  10. Variation of soil surface roughness under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Saa-Requejo, A.; Valencia, J. L.; Moratiel, R.; Paz-Gonzalez, A.

    2012-04-01

    Soil surface micro-topography or roughness (SSR) defines the physical boundary between overland flow and soil. Due to its unique position, soil roughness potentially affects surface processes such as infiltration, flow routing, erosion and sedimentation. Thus the decay of SSR under different rainfall intensities is of most interest in soil erosion. While some authors have chosen exponent function of cumulative rainfall to describe the decay of SSR, others have used the kinetic energy of rainfall. SSR at the field level is an easy visually perceptible notion, but difficult to describe numerically. In this study we didn't use pin-meter or laser techniques to quantify SSR. Percentage of micro-topographic shadows, under fixed sunlight conditions, has been applied based on former works that proved it is an easy and reliable method to estimate SSR. Two experimental plots, of 1m x 1m, were subjected to successive simulated rainfall events with an intensity of 67 mm/h and a height of 2 m. Both plots were a harrowed plot with an oriented roughness and 6% slope. Images were obtained each 15 minutes of rainfall with an incident angle of light of 45° approximately. The image was acquired by an OLYMPUS X-925, having a size of 2976x3968 pixels and corresponding to an area of 75 cm x 100 cm. For denoising process, the image was cropped to 590x800 pixels and for image binarization Indicator Kriging (IK) method was used. Comparisons of both plots respect to SSR evolution, runoff accumulation and shadows morphology are showed. Acknowledgements Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  11. Correlation between x-ray reflectivity measurements and surface roughness of AXAF coated witness samples

    NASA Astrophysics Data System (ADS)

    Clark, Anna M.; Bruni, Ricardo J.; Romaine, Suzanne E.; Schwartz, Daniel A.; van Speybroeck, Leon P.; Yip, P. W.; Drehman, A. J.; Shapiro, Alan P.

    1996-07-01

    One of the specifications used to polish the AXAF witness samples was that the rms surface roughness be scatter to a minimum. However, it is not necessarily the best indication of the expected performance of the soft x-ray reflectivity of the surfaces. In particular, the reflectivity data from the AXAF flight optic witness samples indicate sample to sample differences of a few percent which do not correlate with the optical profilometry results for these samples. Further investigations were carried out to measure rms surface roughness using atomic force microscopy (AFM). The differences shown by AFM surface roughness measurements correlates to differences found in reflectivity for these same samples. One-dimensional power spectral density data is presented from both AFM and WYKO measurements along with the reflectivity results at 8 keV for the AXAF witness samples. The results indicate that to obtain accurate prediction of x-ray performance it is necessary to look at the scanning probe metrology data provided by the AFM, in addition to the optical profilometry data.

  12. Thermal Conductivity of Quantum Wires with Surface Roughness

    NASA Astrophysics Data System (ADS)

    Hershfield, Selman; Muttalib, Khandker

    Quantum wires have been shown to have greatly reduced thermal conductivity compared to bulk systems because of the increased role of surface scattering. The lattice thermal conductance and conductivity is calculated in the harmonic approximation for a long quantum wire placed between two heat baths using the Landauer formula for phonons and a recursive Green function technique to compute the transmission probabilities. The width of the wires is varied in the transverse direction so as to have a root mean square value σ and correlation length L. As observed experimentally, we find that the thermal conductance is decreased with increasing σ and increased as L increases. The full scaling of the thermal conductance as a function of σ, L, the width and the length of the sample is discussed. The simulations are also compared to approximate techniques such as modeling the surfaces as having diffusive scattering.

  13. A surface-scattering model satisfying energy conservation and reciprocity

    NASA Astrophysics Data System (ADS)

    Sasihithlu, Karthik; Dahan, Nir; Hugonin, Jean-Paul; Greffet, Jean-Jacques

    2016-03-01

    Roughness scattering models based on Kirchhoff's approximation or perturbation theory give a good account of the angular distribution of the scattered intensity but do not satisfy energy conservation and reciprocity rigorously. For applications such as solar cells with rough interfaces producing a quasi isotropic intensity in the multiple scattering regime, an accurate model of the angular pattern is not required. Instead, energy conservation and reciprocity must be satisfied with great accuracy. Here we present a surface scattering model based on analysis of scattering from a layer of particles on top of a substrate in the dipole approximation which satisfies both energy conservation and reciprocity and is thus accurate in all frequency ranges. The model takes into account the absorption in the substrate induced by the particles but does not take into account the near-field interactions between the particles. In arriving at this model, we use the effective-medium approach to show how we can proceed from modeling the electromagnetic scattering from a single particle to modeling the scattering from a layer of particles positioned above a substrate, and finally relate this to the bidirectional scattering distribution function of the substrate.

  14. Influence of a prophylaxis paste on surface roughness of different composites, porcelain, enamel and dentin surfaces

    PubMed Central

    Yurdaguven, Haktan; Aykor, Arzu; Ozel, Emre; Sabuncu, Hilmi; Soyman, Mubin

    2012-01-01

    Objective: To investigate the effect of a prophylaxis paste on surface roughness of different composites, enamel, dentin and porcelain surfaces. Methods: Three different composites (FiltekZ250/Group1, Filtek Supreme XT/Group2, Premise/Group3), enamel/Group4, dentin/Group5 and porcelain/Group6 samples were used in this study. All specimens were prepared flat by SiC discs and polished with a diamond polishing paste. The surface roughness measurements were determined with a profilometer after polishing (initial surface roughness). Prophylaxis paste was applied to the samples for 12 seconds, renewing every 6 seconds. After cleaning the samples, roughness values were measured again. Data were analyzed by Kruskal Wallis and Dunn’s multiple comparison test. Wilcoxon test was performed for the comparison of the initial and final surface roughness values (P<.05). The results were evaluated within the P<.05 confidence level. Results: The initial and final surface roughness values (μm) were determined as follows: Group1: 0.039±0.009 and 0.157±0.018, Group2: 0.023±0.005 and 0.145±0.027, Group3: 0.028±0.008 and 0.109±0.012, Group4: 0.024±0.006 and 0.071±0.015, Group5: 0.030±0.007 and 0.143±0.029, Group6: 0.024±0.006 and 0.064±0.014. Significant difference was determined between the initial and final values for all groups. Conclusions: Composite and dentin surfaces were more affected by the application of prophylaxis paste than enamel and porcelain surfaces. The prophylaxis paste increased the surface roughness of all groups, but did not reach the bacterial retention roughness rate of 0.2μm. PMID:22229001

  15. The effect of surface roughness on Triton's volatile distribution

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    1992-01-01

    Calculations of radiative equilibrium temperatures on Triton's rough surface suggest that significant condensation of N2 may be occurring in the northern equatorial regions, despite their relatively dark appearance. The bright frost is not apparent in the Voyager images because it tends to be concentrated in relatively unilluminated facets of the surface. This patchwork of bright frost-covered regions and darker bare ground may be distributed on scales smaller than that of the Voyager resolution; as a result the northern equatorial regions may appear relatively dark. This hypothesis also accounts for the observed wind direction in the Southern Hemisphere because it implies that the equatorial regions are warmer than the south polar regions.

  16. Surface Roughness Effects on Runoff and Soil Erosion Rates Under Simulated Rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness is identified as one of the controlling factors governing runoff and soil loss, yet, most studies pay little attention to soil surface roughness. In this study, we analyzed the influence of random soil surface roughness on runoff and soil erosion rates. Bulk samples of a silt ...

  17. Surface Roughness effects on Runoff and Soil Erosion Rates Under Simulated Rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness is identified as one of the controlling factors governing runoff and soil loss yet, most studies pay little attention to soil surface roughness. In this study, we analyzed the influence of random soil surface roughness on runoff and soil erosion rates. Bulk samples of a silt l...

  18. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  19. Free-Surface Roughness Correlations with the Near-Surface Turbulence

    NASA Astrophysics Data System (ADS)

    Dabiri, Dana; Gharib, Morteza

    1999-11-01

    Free-Surface Roughness Correlations with the Near-Surface Turbulence Dana Dabiri & Morteza Gharib CALTECH Understanding the correlation of the free-surface roughness with the near-surface turbulence can provide correct and proper models for LES and RANS codes. Measurements of both the near surface turbulence, and the free surface deformation are obtained simultaneously. The near surface turbulence is measured using DPIV, and the free surface roughness is measured using a two-dimensional gradient detector. These measurements were done looking at a shear layer interacting with a free surface. The Reynold's number and Froude number are 7000, and 0.07, respectively. Statistical calculations provide interesting u'v', h'v', h'u', h'u'v', and h'w' results. Spanwise Reynold's stress (u'v') plots show a gaussian behavior, while its centerline value is roughly constant with y. h'u' is symmetric with respect to the shear layer's centerline, showing a negative correlation on the high speed side and a positive correlation on the low speed side. Correlation of h' with the vorticity fluctuation, w', shows a skewed gaussian spanwise behavior. Lastly, the roughness spectrum shows a -11/3 spectra, as shown by George et al. (JFM, 1984). *Sponsored by ONR (N00014-98-1-0017)

  20. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-05-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  1. Quantifying trends in surface roughness and the effect on surface wind speed observations

    NASA Astrophysics Data System (ADS)

    Wever, N.

    2012-06-01

    Many studies analyzing surface wind speed observations find a decrease in wind speed over the last 30 to 50 years. A cause sometimes proposed is increasing surface roughness, although to date the evidence that this is the primary factor is still inconclusive. In this study, changes in surface roughness are investigated for 20 stations in the Netherlands and 137 stations in 7 other European countries. From the Dutch data set, local aerodynamic roughness lengths were calculated from hourly gust factors. Trends in wind speed for individual stations and wind direction sectors correlate negatively with trends in surface roughness. For 1962-2009, typically a doubling of the local roughness length was found, with the strongest increase after 1981. An accompanying average decrease in wind speed by 3.1% (0.13 m/s) per decade was found for 1981-2009. A conceptual boundary layer model was used to show that 70% of the wind speed trend can be attributed to surface roughness changes; the remaining 30% of the trend remains unresolved. Changes in land use, including urbanization, forestation, and a decrease in pasture land area, are probable causes for the increasing surface roughness. For the European station data from the European Climate Assessment and Dataset (ECA&D) and the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), the analysis was restricted to daily gust factors. Observed trends in wind speed at stations correlate negatively with trends in gust factors. Averaged over all stations, the wind speed decreased 1.2% (0.05 m/s) per decade over 1982-2009, consistent with increasing surface roughness.

  2. Surface plasmon scattering: an alternative approach for optical fibers biosensors

    NASA Astrophysics Data System (ADS)

    François, A.; Sciacca, B.; Klantsataya, E.; Zuber, A.; Hoffmann, P.; Klinger-Hoffmann, M.; Monro, T. M.

    2015-07-01

    Surface Plasmon Resonance has been one of the corner stone of label free biosensing for decades with a wide range of architectures, including fiber based SPR. Here we present the work we have achieved, using SPR scattering as an alternative approach for fiber based sensors, using rough metallic coating enabling to turn an intrinsically non radiative process into a radiative one. Although the use of rough metallic coating induces some inherent limitations, the architectural advantages and higher efficiency in some application such as Metal Enhanced Fluorescence as well as ways forward to overcome these limitation will be presented.

  3. Radar, visual and thermal characteristics of Mars: Rough planar surfaces

    USGS Publications Warehouse

    Schaber, G.G.

    1980-01-01

    High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249-4291), were found to possess such a recent mantle. At predawn residual temperatures ??? -10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin. ?? 1980.

  4. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.

    1986-01-01

    An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.

  5. Planetary surface roughness derived from ice penetrating radar data: Method and concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.

    2013-12-01

    Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.

  6. Evaluation of the Surface Roughness using AE method with Air Blowing

    NASA Astrophysics Data System (ADS)

    Yasuda, T.; Takata, S.; Hino, T.; Yoshida, K.

    2014-06-01

    This study aims to find the development for the evaluation of the surface roughness by the Acoustic Emission (AE) method with air blowing. We paid attention to the AE wave due to air blowing on the specimen plate with different surface roughness. The relationship between the AE wave and surface roughness of specimen plates was investigated. As the result, there is large and continuous difference in the Root Mean Square (RMS) value of their AE waveform. The RMS value decreases by increasing of the surface roughness of specimen plates. It suggested that this characteristic has the possibility to establish a new method of nondestructive surface roughness testing.

  7. Frictional dynamics of viscoelastic solids driven on a rough surface

    NASA Astrophysics Data System (ADS)

    Landes, François P.; Rosso, Alberto; Jagla, E. A.

    2015-07-01

    We study the effect of viscoelastic dynamics on the frictional properties of a (mean-field) spring-block system pulled on a rough surface by an external drive. When the drive moves at constant velocity V , two dynamical regimes are observed: at fast driving, above a critical threshold Vc, the system slides at the drive velocity and displays a friction force with velocity weakening. Below Vc the steady sliding becomes unstable and a stick-slip regime sets in. In the slide-hold-slide driving protocol, a peak of the friction force appears after the hold time and its amplitude increases with the hold duration. These observations are consistent with the frictional force encoded phenomenologically in the rate-and-state equations. Our model gives a microscopical basis for such macroscopic description.

  8. Frictional dynamics of viscoelastic solids driven on a rough surface.

    PubMed

    Landes, François P; Rosso, Alberto; Jagla, E A

    2015-07-01

    We study the effect of viscoelastic dynamics on the frictional properties of a (mean-field) spring-block system pulled on a rough surface by an external drive. When the drive moves at constant velocity V, two dynamical regimes are observed: at fast driving, above a critical threshold V(c), the system slides at the drive velocity and displays a friction force with velocity weakening. Below V(c) the steady sliding becomes unstable and a stick-slip regime sets in. In the slide-hold-slide driving protocol, a peak of the friction force appears after the hold time and its amplitude increases with the hold duration. These observations are consistent with the frictional force encoded phenomenologically in the rate-and-state equations. Our model gives a microscopical basis for such macroscopic description. PMID:26274186

  9. The effect of surface roughness on the fretting corrosion of 316L stainless steel biomaterial surfaces

    NASA Astrophysics Data System (ADS)

    Shenoy, Aarti

    The medical device industry is still seeking answers to the mechanically-assisted corrosion (MAC) problem, which becomes increasingly important due to modularity in design. MAC manifests in various forms, some of which are fretting corrosion, crevice corrosion and stress corrosion. Several studies have been conducted to understand the causes and the factors that affect fretting corrosion. Some of the factors are the applied load, surface potential, oxide film characteristics and solution chemistry near the interface. Surface properties such as surface roughness determine the topography of the surface and the nature of asperity-asperity contact, which is a factor that would determine the mechanically assisted corrosion behavior of the interface, like the stem-neck and head-neck taper junctions in modular hip replacement devices. This study aims to understand the correlation between surface roughness of 316L stainless steel samples and fretting corrosion behavior using a variable load pin-on-disc test. It was found that the smoother surfaces are associated with lower fretting currents. However, smoother surfaces also created the conditions for fretting initiated crevice corrosion to occur more readily. Fretting corrosion regimes and the severity are thus dependent upon the surface roughness. A possible explanation could be due to the inverse relationship between the interasperity distance parameter, Delta, and fretting currents. The coefficient of friction between the two surfaces in contact however remained unaffected by surface roughness, but decreased with increasing load. Smoother surfaces, while lowering fretting corrosion reactions can enhance crevice corrosion reactions in 316L stainless steel interfaces.

  10. Single-scatter vector-wave scattering from surfaces with infinite slopes using the Kirchhoff approximation.

    PubMed

    Bruce, Neil C

    2008-08-01

    This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods. PMID:18677363

  11. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor.

    PubMed

    Zhang, Meijia; Chen, Jianrong; Ma, Yuanjun; Shen, Liguo; He, Yiming; Lin, Hongjun

    2016-09-01

    In this paper, fractal reconstruction of rough membrane surface with a modified Weierstrass-Mandelbrot (WM) function was conducted. The topography of rough membrane surface was measured by an atomic force microscopy (AFM), and the results showed that the membrane surface was isotropous. Accordingly, the fractal dimension and roughness of membrane surface were calculated by the power spectrum method. The rough membrane surface was reconstructed on the MATLAB platform with the parameter values acquired from raw AFM data. The reconstructed membrane was much similar to the real membrane morphology measured by AFM. The parameters (including average roughness and root mean square (RMS) roughness) associated with membrane morphology for the model and real membrane were calculated, and a good match of roughness parameters between the reconstructed surface and real membrane was found, indicating the feasibility of the new developed method. The reconstructed membrane surface can be potentially used for interaction energy evaluation. PMID:27318159

  12. Numerical surface scattering laws for asteroid applications

    NASA Astrophysics Data System (ADS)

    Wilkman, O.; Muinonen, K.; Penttilä, A.; Peltoniemi, J.

    2014-04-01

    Simple analytical scattering laws such as the Lommel-Seeliger law is commonly used to model the scattering of sunlight by asteroid surfaces. In their simple form, however, they are only valid for smooth surfaces, while the surfaces of asteroids are covered by a loose regolith. The particulate surface structure causes subtle photometric features [1], but taking them into account is difficult with a simple analytic scattering law. Our intention is to allow a user to efficiently simulate light scattering from this type of surfaces by using pre-computed values.

  13. Surface roughness effects on the solar reflectance of cool asphalt shingles

    SciTech Connect

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem; Jacobs, Jeffry; Klink, Frank

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.

  14. Surface Roughness Derived from Ground and Orbital Imagery: A Case Study at the MSL Landing Site

    NASA Astrophysics Data System (ADS)

    Calef, F. J.; Arvidson, R.; Deen, R.; Lewis, K.; Sletten, R.; Williams, R.; Grotzinger, J.

    2014-07-01

    We’ve derived a simple metric based on image texture in a High Resolution Imaging Science Experiment (HiRISE) orthophoto to provide an assessment of vertical surface roughness on the decimeter scale. Ground and orbital roughness metrics correlate.

  15. Graphene thickness dependent adhesion force and its correlation to surface roughness

    SciTech Connect

    Pourzand, Hoorad; Tabib-Azar, Massood

    2014-04-28

    In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesion force measurement results.

  16. Fabrication and qualification of roughness reference samples for industrial testing of surface roughness levels below 0.5 nm Sq

    NASA Astrophysics Data System (ADS)

    Faehnle, O.; Langenbach, E.; Zygalsky, F.; Frost, F.; Fechner, R.; Schindler, A.; Cumme, M.; Biskup, H.; Wünsche, C.; Rascher, R.

    2015-08-01

    Applying reactive ion beam etching (RIBE) processes at the Leibniz Institute of Surface Modification (IOM), several reference samples to be used in industry for calibrating of roughness testing equipment have been generated with the smoothest sample featuring 0.1 nm rms Sq. Subsequently these reference samples have been measured cross-site applying atomic force microscopy (AFM), white light interferometry (WLI), Nomarski1 microscopy (NM) and scatterometry (iTIRM2) determining the appropriate range of measurable rms surface roughness for each industrial measuring device.

  17. Surface-Roughness Monitoring For Industrial Quality Control

    NASA Astrophysics Data System (ADS)

    Cielo, P.; Vaudreuil, G.; Dufour, M.

    1987-01-01

    A number of surface-monitoring optical techniques are presented for the on-line quality control of materials produced at high production rates. A laser-scattering approach is described for surface-quality inspection of the hot-dip zinc coating in a steel galvanizing line. The detection of localized specular reflectivity, coupled to the fast sheet motion, proved to be an effective method to monitor coating properties such as spangle grain size. Similar investigations are described for the on-line inspection of polymer-coated electric cable. Our approach for such an inspection problem is based on the projection of a uniform-intensity laminar beam across the cable and on the bandpass-filtered detection of the transmitted beam to obtain a resolution better than 5 μm independently of the extruded-cable vibrations. Results of in-plant trials are reported.

  18. Ptychographic coherent x-ray surface scattering imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jong Woo; Jiang, Zhang; Sun, Tao; Wang, Jin

    Lensless x-ray coherent diffraction imaging enables the determination of nano-scaled structures in physical and biological sciences. Several coherent diffractive imaging (CDI) methods have been developed in both transmission and reflection modes such as Bragg CDI, plane-wave CDI, Fresnel CDI, coherent surface scattering imaging (CSSI) and so on. The grazing-incidence coherent surface scattering (CSSI) technique, which is recently developed by T. Sun et al., takes advantage of enhanced x-ray surface scattering and interference near total external reflection, and thereby overcomes some limitations that the transmission mode have. However, the sample size can be investigated is limited by x-ray beam size because the sample is supposed to be isolated. We incorporated ptychographic algorithm with coherent surface scattering imaging to overcome this limitation and make it more useful and applicable. The ptychographic coherent surface scattering imaging technique enables us to measure 2D roughness of the flat surface such as thin film and silicon wafer regardless of the surface area. LDRD.

  19. Wetting, spreading, and adsorption on randomly rough surfaces.

    PubMed

    Herminghaus, S

    2012-06-01

    The wetting properties of solid substrates with customary (i.e., macroscopic) random roughness are considered as a function of the microscopic contact angle of the wetting liquid and its partial pressure in the surrounding gas phase. Analytic expressions are derived which allow for any given lateral correlation function and height distribution of the roughness to calculate the wetting phase diagram, the adsorption isotherms, and to locate the percolation transition in the adsorbed liquid film. Most features turn out to depend only on a few key parameters of the roughness, which can be clearly identified. It is shown that a first-order transition in the adsorbed film thickness, which we term "Wenzel prewetting", occurs generically on typical roughness topographies, but is absent on purely Gaussian roughness. It is thereby shown that even subtle deviations from Gaussian roughness characteristics may be essential for correctly predicting even qualitative aspects of wetting. PMID:22661267

  20. Effect of fracture surface roughness on shear crack growth

    SciTech Connect

    Gross, T.S.; Watt, D.W. . Dept. of Mechanical Engineering); Mendelsohn, D.A. . Dept. of Engineering Mechanics)

    1992-12-01

    A model of fracture surface interference for Mode I fatigue crack profiles was developed and evaluated. Force required to open the crack faces is estimated from point contact expressions for Mode I stress intensity factor. Force transfer across contacting asperities is estimated and used to calculate Mode II resistance stress intensity factor (applied factor is sum of effective and resistance factors). Electro-optic holographic interferometry was used to measure 3-D displacement field around a Mode I fatigue pre-crack in Al loaded in Mode II shear. Induced Mode I crack face displacements were greater than Mode II displacements. Plane stress shear lip caused displacement normal to surface as the crack faces are displaced. Algorithms are being developed to track the displacements associated with the original coordinate system in the camera. A 2-D boundary element method code for mixed mode I and II loading of a rough crack (sawtooth asperity model) has been completed. Addition of small-scale crack tip yielding and a wear model are completed and underway, respectively.

  1. Flow Measurements over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2007-11-01

    Certain species of sharks (e.g. shortfin mako) have a skin structure that results in a bristling of their denticles (scales) during increased swimming speeds. This unique surface geometry results in the formation of a 3D array of cavities* (d-type roughness geometry) within the shark skin, thus causing it to potentially act as a means of boundary layer control. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies over a shark skin model. The hypothesized formation of cavity vortices within the shark skin replica has been measured using DPIV. We have also shown that with the sufficient growth of a boundary layer upstream of the model (local Re = 200,000), transition is not tripped by the surface and the flow skips over the cavities. Support for this research by a NSF SGER grant (CTS-0630489), Lindbergh Foundation Grant and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  2. Mode-expansion method for predicting radar signature above rough ocean surfaces at low-grazing angle

    NASA Technical Reports Server (NTRS)

    Zhang, Y.

    2005-01-01

    The Mode-Expansion Method (MEM) is introduced to calculate the electromagnetic (EM) waves scattered by 2-D rough water surfaces at low-grazing angles. The Electric Field Integral Equation (EFIE) is used in defining the problem and is simplified by using the Impedance Boundary Condition (IBC). The surface currents are expressed as the sum of modes expanded as the Fourier series with incident wave as the dominant mode. It is shown that, by the MEM and for the geometry with transmitting and receiving waves at low-grazing angles, very few modes are needed in solving the forward scattering field with reasonable accuracy.

  3. Profiling and light scattering studies of Si surfaces

    SciTech Connect

    Church, E.L.; Takacs, P.Z.; Stover, J.C.

    1994-10-01

    There is great interest in the semiconductor industry in developing light-scattering techniques for detecting ``killer particles`` on Si wafer surfaces. The surface power spectral density (PSD) is important since it determines the intensity and angular dependence of the background scattering; understanding it will lead to a deeper understanding of finishing processes. Scattering measurements showed that Si wafer surfaces have the radiation-wavelength and angular dependences expected for weak topographic scattering. The data and independent profile measurements were used to deduce consistent values of the surface PSDs over the wavelength range 50 nm to 1 mm. The profile PSDs were found to consist of a sum of inverse power-law components, i.e., the surfaces are fractal-like. There is an analogy between the results and spontaneous thermodynamic roughening of solid surfaces: Below the critical roughening temperature, the surface topography is determined by the underlying crystal structure, while above it, the surface ``melts`` and the roughness is determined by capillary-wave excitations of the surface. Capillary waves have the well-known 1/f{sub x} profile power spectrum.

  4. Determination of Hurst exponent by optical signal processing applied on surface roughness measurements

    NASA Astrophysics Data System (ADS)

    Marbán Salgado, José Antonio; Sarmiento Martínez, Oscar; Mayorga Cruz, Darwin; Uruchurtu Chavarín, Jorge

    2009-09-01

    In this work a surface roughness measurement performed by Hurst exponent determination, calculated at the same time from data processing of an optical reflected signal is presented. An industrial plate roller rod covered with a polymeric coating is illuminated using a laser source. A lens is used for casting the scattered light reflected from several sectors of the plate roller, and also to focus it into a power meter connected to a computer where corresponding data series are stored. Information related to specific points of the considered object is contained into the optical reflected signal and post-processing of related data signal series allows calculation of the Hurst exponent, also known as roughness exponent. A wear analysis on considered surface sectors of the roller is performed and as a result a relation between Hurst exponent and the coating thickness for each surface sector is clearly established. The simplicity of the opto-mechanical setup among other evident advantages may suggest the application of this non-destructive technique on surface metrology.

  5. A numerical study of electromagnetic scattering from ocean like surfaces

    NASA Technical Reports Server (NTRS)

    Lentz, R. R.

    1972-01-01

    The integral equations describing electromagnetic scattering from one dimensional conducting surfaces are formulated and numerical results are presented. The results are compared with those obtained using approximate methods such as physical optics, geometrical optics, and perturbation theory. The integral equation solutions show that the surface radius of curvature must be greater than 2.5 wavelengths for either the physical optics or geometric optics to give satisfactory results. It has also been shown that perturbation theory agrees with the exact fields as long as the root mean square surface roughness is less than one-tenth of a wavelength.

  6. Wear resistance and surface roughness of a newly devised adhesive patch for sealing smooth enamel surfaces.

    PubMed

    Schmidlin, Patrick R; Göhring, Till N; Roos, Malgorzata; Zehnder, Matthias

    2006-01-01

    A laboratory study assessed the wear resistance and surface roughness after chemical and mechanical wear of a newly devised adhesive patch when used as a smooth surface sealant. Forty-eight enamel discs were prepared from bovine lower central incisors. Sixteen specimens were treated with one of two sealing options: the prototype of an adhesive patch or a flowable resin. Unsealed enamel served as the positive control. Wear and surface roughness was measured at baseline and after all the samples were immersed in saliva or lactic acid (n=8 per treatment group) for up to 21 days, during which the experimental and control enamel surfaces were exposed to 10 double-stroke toothbrush cycles per day. In saliva and lactic acid, the sealed specimens showed no significant wear during the observation period (p=0.1841). Only untreated specimens exposed to lactic acid showed a significant substance loss after 14 and 21 days (p=0.0186). The patch and flowable resin showed no differences in surface roughness values at respective times (p=0.385); whereas the surface roughness of the unsealed specimens in lactic acid was significantly higher (p<0.0001). It was concluded that the adhesive patch under investigation merits further study to assess its potential as a sealant for smooth enamel surfaces. PMID:16536202

  7. Classical And Quantum Rainbow Scattering From Surfaces

    SciTech Connect

    Winter, H.; Schueller, A.; Busch, M.; Seifert, J.; Wethekam, S.

    2011-06-01

    The structure of clean and adsorbate covered surfaces as well as of ultrathin films can be investigated by grazing scattering of fast atoms. We present two recent experimental techniques which allow one to study the structure of ordered arrangements of surface atoms in detail. (1) Rainbow scattering under axial surface channeling conditions, and (2) fast atom diffraction. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in studies on the structure of surfaces. We will concentrate our discussion on the structure of ultrathin silica films on a Mo(112) surface and of adsorbed oxygen atoms on a Fe(110) surface.

  8. On the effect of surface roughness on the vapor flow under Leidenfrost-levitated droplets

    SciTech Connect

    Prat, M.; Schmitz, P.; Poulikakos, D.

    1995-09-01

    In this paper a theoretical investigation is reported on the effect of surface roughness on the phenomenon of Leidenfrost-levitation of droplets above a hot surface. The problem is solved first approximately using a macroscopic approach in which the roughness is replaced by a semi-empirical slip conditions of the Beavers-Joseph type. Next, a microscopic model which determines the vapor flow in the close vicinity of the rough surface is solved numerically. Three basic periodic roughnesses are examined: triangular, rectangular, and semi-cylindrical. The effect of the relative size of the droplet and the roughness elements on the vapor flow is investigated in the course of the study.

  9. Measurement of defects by measuring of light scattering from surfaces using focused illumination

    NASA Astrophysics Data System (ADS)

    Rodríguez-Núñez, O.; Bruce, Neil C.

    2016-04-01

    Light scattering has been used as a method of characterizing material or surface roughness in different areas of the science and technology, usually the surface is illuminated with light and the pattern of scattering is measured above the surface. In the literature, the scattered light has been measured using an incident beam with a diameter on the order of a few cm for surfaces with roughness scales of the order of microns, mainly to avoid problems with the speckle pattern of light. However, this kind of measurement does not give information on local variations in roughness or defects present in the sample. Also, it has been reported in many studies that the polarization of the scattered light is affected by the surface material and roughness. In this paper we present a novel experimental device used to identify local defects on surfaces by the measurement of the scattered light pattern using laser light focused onto the surface. We present results of experimental measurements for two surfaces with roughness and defects of the order of 6 to 60 microns using sizes of incident beam of the same order and we compare the results of experimental cases with results of numerical calculation based on the Kirchhoff Approximation of light scattering by rough surfaces. We include preliminary results from the effect on the pattern of light scattering as a function of the polarization state by using focused light to illuminate the surface, we calculate the Mueller matrix for the equivalent period of the surface micro-manufactured experimentally. Finally we conclude about the validity of the method.

  10. Surface wave dispersion from small vertical scatterers

    NASA Astrophysics Data System (ADS)

    van Wijk, K.; Levshin, A. L.

    2004-10-01

    Heterogeneity in the subsurface creates conflicting types of dispersion of seismic waves. A laboratory and numerical experiment show that multiple scattering of elastic waves from isolated heterogeneities near the surface not only attenuates, but also delays coherent events. Because scattering off these impedance contrasts is frequency dependent, multiple scattering is a source of dispersion. If ignored, multiple scattering dispersion could be erroneously attributed to a model with horizontal homogeneous layers of different wave speeds.

  11. Four-parameter model for polarization-resolved rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria. PMID:21263641

  12. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    PubMed

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p < 0.0001). Significant hardness reduction was observed in the positive control and DIY group (p < 0.0001). Mean surface roughness changes (ΔRa) were significantly different among the groups (Kruskal-Wallis test, p < 0.0001). Surface roughness increased in the OTC group (p = 0.03) and in the positive control (p < 0.0001). The four whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness. PMID:24972882

  13. The effect of roughness elements on wind erosion: The importance of surface shear stress distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Drag partitioning schemes are used to account for roughness by scaling the soil entrainment threshold by the ratio of shear stress on roughness elements to that on the veg...

  14. Visual and digital comparative tooth colour assessment methods and atomic force microscopy surface roughness.

    PubMed

    Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J

    2013-10-01

    This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies. PMID:24660413

  15. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.

  16. Lateral Casimir force between self-affine rough surfaces

    NASA Astrophysics Data System (ADS)

    Tajik, Fatemeh; Masoudi, Amir Ali; Khorrami, Mohammad

    2016-03-01

    The effect of self-affine roughness on the lateral Casimir force between two plates is studied using a perturbative expansion method. The PWS (pairwise summation) method is applicable only at lateral correlation lengths much larger than the separation between two plates. The effect of the roughness parameters on the lateral Casimir force is investigated, and it is seen that this effect is significant, enabling one to tailor roughness parameters so that to obtain the desirable Casimir force and increase the yield of micro- or nano-electromechanical devices based on the vacuum fluctuations.

  17. Mechanical interactions of rough surfaces. Quarterly progress report, July 1-September 30, 1986

    SciTech Connect

    McCool, J.I.

    1986-09-01

    Objectives are to study lubricated contacts of rough surfaces under combined rolling, sliding, and spinning, and to develop techniques for analyzing digitized rough surface profiles. A summary is presented of annual progress and of the papers presented at conferences and those published. An example is given of the use of the computer tool MICROCOND. Rq (surface roughness), q, and microfracture data are discussed for silicon nitride coupons. (DLC)

  18. Unit cell finite element modelling for ultrasonic scattering from periodic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, W.; Skelton, E.; Lowe, M. J. S.; Craster, R.

    2013-01-01

    Ultrasound wave scattering from the rough surfaces of defects is an important consideration for the qualification of safety-critical inspections because some species of fabrication and service-induced defects are rough. Whereas the surfaces of flat defects only reflect specularly, an incident wave reflects over a range of angles when the surface is rough. This affects the inspection performance because the coefficient of the specular reflection is reduced, while the detection of reflections at other angles becomes possible. An infinite periodic surface is a simple form of rough surface, which has been well investigated since Rayleigh, and can be useful to provide general insight into the nature of the wave scattering. Furthermore, in the context of scattering from cracks, the study of an infinite surface enables examination of the reflections from the surface and behavior at the surface without the presence of the crack tip diffraction fields. In this paper, an infinite periodic surface is modelled by a unit cell FE model with cyclic symmetric boundary conditions, allowing the model to be small, and elastic wave scattering from the surface is simulated in the time domain. This cell model is demonstrated using the commercial FE package ABAQUS and examples of the scattered wave results are compared with large FE model results.

  19. The estimation of surface roughness with the utilization of Mueller matrix

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Zhou, Xiaojun; Xu, Fuyuan; Ren, Kan

    2016-05-01

    Roughness is an important parameter to describe the microtopography of target surface. In the field of roughness detection, constraints on traditional methods are significant. Meanwhile, polarization imaging technology is gradually mature in recent years. In this paper, a method of roughness estimation with Mueller matrix is presented. Battery of lenses with fixed orientation have been introduced to produce a facula on the measured surface. Polarized information of each pixel can be obtained with the lenses of known position. According to the polarized information and Lambertian model, Stocks vector, Mueller matrix, and reflected Mueller matrix of each pixel can be acquired. Therefore, the roughness information of target surface can be obtained according to the relationship between roughness information and elements of matrix. Experimental results show that with the proposed method, efficiency of roughness detection can be improved without precision deducing. It can lay a foundation for extending the application of roughness into the field of object identification.

  20. The effect of surface roughness on the adhesion of elastic plates with application to biological systems

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Gorb, S.

    2003-12-01

    We study the influence of surface roughness on the adhesion of elastic plates. Most real surfaces have roughness on many different length scales, and this fact is taken into account in our analysis. We consider in detail the case when the surface roughness can be described as a self-affine fractal, and study the plate-substrate pull-off force as a function of the surface roughness. Based on the theoretical results we discuss adhesion in biological systems, focusing on the adhesive pads of lizards.

  1. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels. PMID:23005537

  2. A parameterization of the effect of surface roughness on microwave emission

    NASA Technical Reports Server (NTRS)

    Mo, Tsan; Schmugge, Thomas J.

    1987-01-01

    A simple model is developed to represent the net effect of surface roughness on the microwave emission from soils. The reflectivity of a rough soil surface is defined in a theoretical model that includes both coherent and incoherent reflectivities in terms of the statistical properties of the rough surface, i.e., the surface height standard deviation and its horizontal correlation length. It is shown that the rough surface reflectivity obtained from this theoretical model can be presented in a form that is simply the reflectivity of a smooth surface attenuated by a 'rough thickness'. It is found that the rough thickness can be parameterized as a function of the statistical slope ratio of a rough surface by a simple power-law relationship. Since the slope of a rough surface can be determined experimentally, the rough thickness can be quantitatively estimated from the parametric representation. Model calculations show that this simple model can provide reasonably accurate results of predicted brightness temperatures that agree well with field measurements within experimental uncertainty.

  3. Effect of surface roughness on EPES and AREPES measurements: Flat and crenels silicon surfaces

    NASA Astrophysics Data System (ADS)

    Chelda, S.; Robert-Goumet, C.; Gruzza, B.; Bideux, L.; Monier, G.

    2008-06-01

    EPES (elastic peak electron spectroscopy) and AREPES (angle resolved elastic peak electron spectroscopy) are non destructive methods and very sensitive to the surface region. These techniques allow to measure the percentage ηe of elastically backscattered electrons from the surface excited by an electron beam. Both methods are combined with Monte-Carlo (MC) simulations to interpret experimental results. In this work, we underline the importance of a micrometric scale roughness at the surface. The use of an original Monte-Carlo method was fruitful for the simulation, moreover 3D representations have been developed for visualization and qualitative interpretation of the results. For a more precise quantitative study, a 2D representation was necessary. The calculated results have been compared with published experimental ones got for different incidence angles and primary energies, on a silicon surface having triangular saw-tooth aspect (crenels) obtained by photolithography. We have observed that the effect due to the roughness increases with the incidence angle.

  4. Recognition of hand motions via surface EMG signal with rough entropy.

    PubMed

    Zhong, Jin; Shi, Jun; Cai, Yin; Zhang, Qi

    2011-01-01

    The rough entropy (RoughEn) is developed based on the rough set theory. It has the advantage of low computational complexity, because there is no parameter to set in RoughEn. In this paper, we characterized the feature of surface electromyography (SEMG) signal with RoughEn and then used support vector machine to classify six different hand motions. The sample entropy, wavelet entropy and approximate entropy were compared with RoughEn to evaluate the performance of characterizing SEMG signals. The experimental results indicated that the RoughEn-based classification outperformed other entropy based methods for recognizing six hand motions from four-channel SEMG signals with the best recognition accuracy of 95.19 ± 2.99%. The results suggest that RoughEn has the potential to be used in the SEMG-based prosthetic control as a method of feature extraction. PMID:22255241

  5. Measuring grinding surface roughness based on the sharpness evaluation of colour images

    NASA Astrophysics Data System (ADS)

    Huaian, Y. I.; Jian, L. I. U.; Enhui, L. U.; Peng, A. O.

    2016-02-01

    Current machine vision-based detection methods for metal surface roughness mainly use the grey values of images for statistical analysis but do not make full use of the colour information and ignore the subjective judgment of the human vision system. To address these problems, this paper proposes a method to measure surface roughness through the sharpness evaluation of colour images. Based on the difference in sharpness of virtual images of colour blocks that are formed on grinding surfaces with different roughness, an algorithm for evaluating the sharpness of colour images that is based on the difference of the RGB colour space was used to develop a correlation model between the sharpness and the surface roughness. The correlation model was analysed under two conditions: constant illumination and varying illumination. The effect of the surface textures of the grinding samples on the image sharpness was also considered, demonstrating the feasibility of the detection method. The results show that the sharpness is strongly correlated with the surface roughness; when the illumination and the surface texture have the same orientation, the sharpness clearly decreases with increasing surface roughness. Under varying illumination, this correlation between the sharpness and surface roughness was highly robust, and the sharpness of each virtual image increased linearly with the illumination. Relative to the detection method for surface roughness using gray level co-occurrence matrix or artificial neural network, the proposed method is convenient, highly accurate and has a wide measurement range.

  6. Improving the Surface Roughness of Pickled Steel Strip by Control of Rolling Temperature

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Nan; Lin, Szu-Ning; Liou, Horng-Yih; Chang, Chu-Wei; Wu, Chia-Chan; Wang, Ying-Chun

    2013-01-01

    This investigation is to analyze the surface roughness problem of low carbon pickled steel strips from the view points of prior hot rolling conditions and the hot-rolled scales. The results showed that, compared with other parameters, the most important factor in hot rolling to affect the surface roughness was the rolling temperature. As the temperature was increased, the amount of the outer brittle α-Fe2O3 increased, leading to rough scale/substrate interface and rough surface after pickling. However, the effect of coiling temperature was almost negligible because no further rolling existed after that stage. Quantitative estimation showed that decrease in rolling temperature in this investigation reduced the surface roughness, Ra, from 1.06-1.78 μm to 0.88-1.10 μm after pickling in laboratory. Similar degree of improvement in roughness was also observed after pickling in mill.

  7. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.

    PubMed

    Nishimura, Ryo; Hyodo, Kengo; Sawaguchi, Haruna; Yamamoto, Yoshiaki; Nonomura, Yoshimune; Mayama, Hiroyuki; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2016-08-17

    Double roughness structure, the origin of the lotus effect of natural lotus leaf, was successfully reproduced on a diarylethene microcrystalline surface. Static superwater-repellency and dynamic water-drop-bouncing were observed on the surface, in the manner of natural lotus leaves. Double roughness structure was essential for water-drop-bouncing. This ability was not observed on a single roughness microcrystalline surface showing the lotus effect of the same diarylethene derivative. The double roughness structure was reversibly controlled by alternating irradiation with UV and visible light. PMID:27455376

  8. Automated assessment of renal cortical surface roughness from computerized tomography images and its association with age

    PubMed Central

    Duan, Xinhui; Rule, Andrew D.; Elsherbiny, Hisham E.; Vrtiska, Terri J.; Avula, Ramesh T.; Alexander, Mariam P.; Lerman, Lilach O.; McCollough, Cynthia H.

    2014-01-01

    Rationale and Objectives Nephrosclerosis occurs with aging and is characterized by increased kidney sub-capsular surface irregularities at autopsy. Assessments of cortical roughness in-vivo could provide an important measure of nephrosclerosis. The purpose of this study was to develop and validate an image-processing algorithm for quantifying renal cortical surface roughness in-vivo and determine its association with age. Materials and methods Renal cortical surface roughness was measured on contrast-enhanced abdominal CT images of potential living kidney donors. A roughness index was calculated based on geometric curvature of each kidney from 3D images, and compared with visual observation scores. Cortical roughness was compared between the oldest and youngest donors, and its interaction with cortical volume and age assessed. Results The developed quantitative roughness index identified significant differences in kidneys with visual surface roughness scores of 0 (minimal), 1 (mild), and 2 (moderate) (p<0.001) in a random sample of 200 potential kidney donors. Cortical roughness was significantly higher in the 94 oldest (64–75y) versus 91 youngest (18–25y) potential kidney donors (p<0.001). Lower cortical volume was associated with older age but not with roughness (r=−0.03, p=0.75). The association of oldest age group with roughness (OR=1.8 per SD of roughness index) remained significant after adjustment for total cortex volume (OR=2.0 per SD of roughness index). Conclusion A new algorithm to measure renal cortical surface roughness from CT scans detected rougher surface in older compared to younger kidneys, independent of cortical volume loss. This novel index may allow quantitative evaluation of nephrosclerosis in vivo using contrast-enhanced CT. PMID:25086950

  9. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux

    NASA Astrophysics Data System (ADS)

    O'Hanley, Harry; Coyle, Carolyn; Buongiorno, Jacopo; McKrell, Tom; Hu, Lin-Wen; Rubner, Michael; Cohen, Robert

    2013-07-01

    The separate effects of surface wettability, porosity, and roughness on the critical heat flux (CHF) of water were examined using engineered surfaces. Values explored were 0, 5, 10, and 15 μm for Rz (roughness), <5°, ˜75°, and >110° for static contact angle (wettability), and 0 and 50% for pore volume fraction. The porous hydrophilic surface enhanced CHF by 50%-60%, while the porous hydrophobic surface resulted in a reduction of CHF by 97%. Wettability had little effect on the smooth non-porous surface CHF. Surface roughness (Ra, Rq, Rz) had no effect on CHF within the limit of this database.

  10. Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Hung, Shih-Wei; Kuo, Shiao-Wei; Chang, Chi-Jung

    2014-11-01

    Surfaces exhibiting superhydrophobicity are attracting commercial and academic attention because of their potential applications in, for example, self-cleaning utensils, microfluidic systems, and microelectronic devices. In this study, we prepared a fluorinated superhydrophobic surface displaying nanoscale roughness, a superhydrophobic surface possessing a micro- and nanoscale binary structure, and a fluorinated superhydrophobic surface possessing such a binary structure. We investigated the effects of the (i) hierarchy of the surface topography and (ii) the surface chemical composition of the superhydrophobic carbon nanotube/polybenzoxazine coatings on their ability to retain superhydrophobicity upon contamination with particles and organic matter, an important characteristic for maintaining non-wetting properties under outdoor conditions. We have found that the topographical microstructure and the surface chemical composition are both important factors for preservation of the non-wetting properties of such superhydrophobic surfaces upon contamination with organic matter.

  11. In-plane light scattering from fractal surfaces: Principles and experiments

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping

    Random rough surfaces play key roles not only in fundamental research but also in technological applications. There are two major experimental methods used by scientists and engineers to study the properties of random rough surfaces: real space techniques such as stylus profilometer, scanning force microscopy, etc., and reciprocal space techniques, namely scattering. The advantages of scattering techniques are non- destructive and can be used in a hostile environment. Based on roughening phenomena observed in thin film growth/etch fronts, we have established models to characterize different kinds of random rough surfaces such as self-affine and mound surfaces. We have also developed scattering theories corresponding to these surface models as well as experimental in-plane light scattering to measure the reciprocal space structures corresponding to these growth/etch surface fronts. We found that measurements using in-plane light scattering are particularly convenient for mapping reciprocal space characteristics. Specifically, we will present three experimental examples using in-plane light scattering: unpolished Si wafer surfaces, pitting corrosion of Al films on Si, and wet chemical etching of Si surfaces. We measured the detailed characteristics of the reciprocal space structures from rough Si (backside) surfaces using in-plane light scattering intensity distribution or an angular profile at various incident angles. Since the backsides of Si wafers can be characterized as self-affine surfaces, all the relevant roughness parameters such as the interface width w, lateral correlation length ξ, and the roughness exponent α can be quantitatively extracted from the scattering characteristics that we developed for self-affine surfaces. The roughness parameters which we extracted from the in-plane light scattering are consistent with those obtained from real space imaging techniques such as atomic force microscopy and stylus profilometry. We also studied the pitting

  12. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  13. Surface roughness effects on concentrated flow erosion processes in rangelands pre- and post-fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated flow erosion is a major mechanism of soil erosion on disturbed rangeland hillslopes and is strongly influenced by surface roughness. In this study we evaluated the utility of terrestrial laser scanning (TLS) to assess effects of surface roughness on concentrated flow erosion processes ...

  14. [Polarization Modeling and Analysis of Light Scattering Properties of Multilayer Films on Slightly Rough Substrate].

    PubMed

    Gao, Hui; Gao, Jun; Wang, Ling-mei; Wang, Chi

    2016-03-01

    To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology. PMID:27400497

  15. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    SciTech Connect

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-17

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si{sub 3}N{sub 4} in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  16. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model.

    PubMed

    Barnes, M J; Brade, T K; MacKenzie, A R; Whyatt, J D; Carruthers, D J; Stocker, J; Cai, X; Hewitt, C N

    2014-02-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. PMID:24212233

  17. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-01

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si3N4 in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  18. Using Multi-Dimensional Microwave Remote Sensing Information for the Retrieval of Soil Surface Roughness

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Ludwig, R.

    2016-06-01

    In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  19. Skid resistance and surface roughness testing of historic stone surfaces: advantages and limitations

    NASA Astrophysics Data System (ADS)

    Török, Ákos

    2013-04-01

    Skid resistance tests are mostly applied for testing road surfaces and almost never applied for testing stones at cultural heritage sites. The present study focuses on the possibilities of using these techniques in assessing the surface roughness of paving stones at a historic site. Two different methods were used in a comparative way to evaluate the surface properties of various types of stones ranging from travertine to non-porous limestone and granite. The applied techniques included the use of SRT pendulum (Skid Resistance Tester) providing USRV values and a mobile equipment to analyze the surface properties (Floor Slide Control) by surface profiling and providing angle of friction. The main aims of tests were to understand the wearing of stone materials due to intense pedestrian use and to detect surface changes/surface roughness and slip resistance within few year periods. The measured loss in surface slip resistance (i.e. USRV values) was in the order of 20% for granites, while most limestones lost at least 40% in terms of USRV values. An opposite trend was detected for a porous travertine type, where the surface became rougher after years of use. The limitations of these techniques are also addressed in the paper. The tests have shown that the introduction of the use of these equipments in heritage studies provide useful information on the longevity of historic stone pavements that are open for public use.

  20. Effect of surface roughness on retention and removal of Escherichia coli O157:H7 on surfaces of selected fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was undertaken to evaluate the effect of surface roughness on the attachment and removal of Escherichia coli O157:H7 on selected fruit surfaces. A new method to determine surface roughness was developed using confocal laser scanning microscopy (CLSM). A series of 2-D layered images were t...

  1. Investigation of Surface Roughness Effect on Transition Edge Sensor Microcalorimeters Using Multilayer Readout Wiring

    NASA Astrophysics Data System (ADS)

    Kuromaru, G.; Kuwabara, K.; Miyazaki, N.; Suzuki, S.; Hosoya, S.; Koizumi, Y.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Mitsuda, K.; Hidaka, M.; Satoh, T.

    2016-02-01

    We are developing a transition edge sensor (TES) using multilayer readout wiring for future X-ray astronomy satellites. Although we fabricated a first full 20 × 20 pixels TES array, we could not confirm transition of the TES. Considering possible causes, we focused on surface roughness of the TES film. We checked the fabrication process steps that can influence the surface roughness step by step, and changed wiring material (Al to Nb) and also a process condition of an ion milling. As a result, we succeeded to reduce the surface roughness from 4.5 to 2.5 nm rms at 1 \\upmu m scale. However, the transition was not observed probably because the TES films in our samples with surface roughness more than {˜ }1 nm rms tend not to show the transition. Therefore, to suppress the surface roughness even more, we discuss possible process effects and mitigations.

  2. Investigation of Surface Roughness Effect on Transition Edge Sensor Microcalorimeters Using Multilayer Readout Wiring

    NASA Astrophysics Data System (ADS)

    Kuromaru, G.; Kuwabara, K.; Miyazaki, N.; Suzuki, S.; Hosoya, S.; Koizumi, Y.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Mitsuda, K.; Hidaka, M.; Satoh, T.

    2016-07-01

    We are developing a transition edge sensor (TES) using multilayer readout wiring for future X-ray astronomy satellites. Although we fabricated a first full 20 × 20 pixels TES array, we could not confirm transition of the TES. Considering possible causes, we focused on surface roughness of the TES film. We checked the fabrication process steps that can influence the surface roughness step by step, and changed wiring material (Al to Nb) and also a process condition of an ion milling. As a result, we succeeded to reduce the surface roughness from 4.5 to 2.5 nm rms at 1 \\upmu m scale. However, the transition was not observed probably because the TES films in our samples with surface roughness more than {˜ }1 nm rms tend not to show the transition. Therefore, to suppress the surface roughness even more, we discuss possible process effects and mitigations.

  3. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm

    NASA Astrophysics Data System (ADS)

    Peng, Z. L.; Chen, S. H.

    2011-05-01

    Inspired by the gecko's climbing ability, adhesion between an elastic nanofilm with finite length and a rough substrate with sinusoidal roughness is studied in the present paper, considering the effects of substrate roughness and film thickness. It demonstrates that the normal adhesion force of the nanofilm on a rough substrate depends significantly on the geometrical parameters of the substrate. When the film length is larger than the wavelength of the sinusoidal roughness of the substrate, the normal adhesion force decreases with increasing surface roughness, while the normal adhesion force initially decreases then increases if the wavelength of roughness is larger than the film length. This finding is qualitatively consistent with a previously interesting experimental observation in which the adhesion force of the gecko spatula is found to reduce significantly at an intermediate roughness. Furthermore, it is inferred that the gecko may achieve an optimal spatula thickness not only to follow rough surfaces, but also to saturate the adhesion force. The results in this paper may be helpful for understanding how geckos overcome the influence of natural surface roughness and possess such adhesion to support their weights.

  4. Marius Hills: Surface Roughness from LROC and Mini-RF

    NASA Astrophysics Data System (ADS)

    Lawrence, S.; Hawke, B. R.; Bussey, B.; Stopar, J. D.; Denevi, B.; Robinson, M.; Tran, T.

    2010-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Team is collecting hundreds of high-resolution (0.5 m/pixel) Narrow Angle Camera (NAC) images of lunar volcanic constructs (domes, “cones”, and associated features) [1,2]. Marius Hills represents the largest concentration of volcanic features on the Moon and is a high-priority target for future exploration [3,4]. NAC images of this region provide new insights into the morphology and geology of specific features at the meter scale, including lava flow fronts, tectonic features, layers, and topography (using LROC stereo imagery) [2]. Here, we report initial results from Mini-RF and LROC collaborative studies of the Marius Hills. Mini-RF uses a hybrid polarimetric architecture to measure surface backscatter characteristics and can acquire data in one of two radar bands, S (12 cm) or X (4 cm) [5]. The spatial resolution of Mini-RF (15 m/pixel) enables correlation of features observed in NAC images to Mini-RF data. Mini-RF S-Band zoom-mode data and daughter products, such as circular polarization ratio (CPR), were directly compared to NAC images. Mini-RF S-Band radar images reveal enhanced radar backscatter associated with volcanic constructs in the Marius Hills region. Mini-RF data show that Marius Hills volcanic constructs have enhanced average CPR values (0.5-0.7) compared to the CPR values of the surrounding mare (~0.4). This result is consistent with the conclusions of [6], and implies that the lava flows comprising the domes in this region are blocky. To quantify the surface roughness [e.g., 6,7] block populations associated with specific geologic features in the Marius Hills region are being digitized from NAC images. Only blocks that can be unambiguously identified (>1 m diameter) are included in the digitization process, producing counts and size estimates of the block population. High block abundances occur mainly at the distal ends of lava flows. The average size of these blocks is 9 m, and 50% of observed

  5. Surface roughness and phonon transport in thin Si nanowires: an atomistic study

    NASA Astrophysics Data System (ADS)

    Carrete, Jesus; Gallego, Luis Javier; Varela, Luis Miguel; Mingo, Natalio

    2011-03-01

    Good thermal insulation is much harder to achieve than electrical insulation. Thus, the astonishingly low thermal conductivities recently reported on Si nanowires came as a surprise, since the displayed values were an order of magnitude lower than predicted by the diffuse boundary limit of Casimir's theory. Recent theoretical work has employed the Born approximation to predict a very much enhanced boundary scattering rate that would lead to a thermal conductivity well below the Casimir limit. We present a Green's function calculation that answers the question of whether the Casimir limit to the phonon mean free path can be overcome by roughness. Our results show that the mean free path (MFP) and the thermal conductivity of a nanowire are very close to the Casimir limit for shallow disorder, and can only be pushed below it using very deep surface roughness, well beyond previous estimates. We also explore the limits of the Born approximation in this context using vacancies and isotopic impurities as defects. This work was supported by the Spanish MICINN/FEDER (FIS2008-04894/FIS) and the Xunta de Galicia (INCITE09E2R206033ES). J.Carrete thanks the Spanish Ministry of Education for a FPU grant.

  6. The forward scattering of microwave solar radiation from a water surface

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The forward scattering of microwave solar radiation from both smooth and rough water surfaces is computed. The smooth surface is assumed specular, and the rough surface is represented by a two-scale surface, for which two small-scale perturbation parameters, 0.10 and 0.25, are considered. The contribution of the scattered sunlight to the antenna temperature is found using the scalar approximation, and the results are compared with radiometer measurements. The overall agreement is good, but in some cases the smooth-surface measurements are higher than the computations. This discrepancy possibly indicates an absolute calibration error or a slight misalignment of the antennas' boresights. The computations for the two perturbation parameters bracket the rough-surface measurements except when the sun's mirror image is far removed from the boresight direction. The small disagreement in this case may be due to a peaked large-scale slope distribution.

  7. Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light

    NASA Astrophysics Data System (ADS)

    Elias, Mady; René de la Rie, E.; Delaney, John K.; Charron, Eric; Morales, Kathryn M.

    2006-10-01

    Modification of the visual appearance when a rough surface is covered by a varnish is mostly attributed to the levelling of the substrate surface, which depends on the molecular weight of the varnish. The topography of varnished surfaces, however, has never been measured directly. Surfaces of varnishes applied over glass substrates of varying roughness were studied, therefore, using mechanical profilometry. Two different varnishes made with a low and a high molecular weight resin were studied. Both varnishes lower the r.m.s. roughness of the substrates and filter the high spatial frequencies. These results are amplified for the varnish containing the low molecular weight resin. The light reflected by the varnished samples is modelled from these topographical data. Its angular distribution, calculated from the probability density of slopes is presented, taking into account separately the air/varnish and the varnish/substrate interfaces. These analyses are presented in a back-scattering configuration. They show that varnishing significantly reduces the angular width of the reflected light and that this effect is magnified for the low molecular weight resin. Modelling furthermore shows that the influence of the roughness of the varnish/substrate interface is negligible in the total reflected light.

  8. Novel Approach to Surface Plasmon Resonance: A Third Dimension in Data Interpretation Through Surface Roughness Changes.

    PubMed

    Manole, Claudiu Constantin; Pîrvu, C; Maury, F; Demetrescu, I

    2016-06-01

    In a Surface Plasmon Resonance (SPR) experiment two key parameters are classically recorded: the time and the angle of SPR reflectivity. This paper brings into focus a third key parameter: SPR reflectivity. The SPR reflectivity is proved to be related to surface roughness changes. Practical investigations on (i) gold anodizing and (ii) polypyrrole film growth in presence of oxalic acid is detailed under potentiostatic conditions. These experimental results reveal the potential of using the SPR technique to investigate real-time changes both on the gold surface, but also in the gold film itself. This extends the versatility of the technique in particular as sensitive in-situ diagnostic tool. PMID:27427713

  9. Influences of various cutting parameters on the surface roughness during turnings stainless steel

    NASA Astrophysics Data System (ADS)

    Zhimin, Zhou; Yuanliang, Zhang; Xiaoyan, Li; Huiyuan, Zhou; Baoyuan, Sun

    2011-01-01

    This paper presents an investigation of the process factors affecting the surface roughness in ultra-precision diamond turning with ultrasonic vibration. Stainless steel was turned by diamond tools with ultrasonic vibration applied in the feed direction with an auto-resonant control system. Surface roughness was measured and compared along with the change of the cutting parameters. The relation curves between the cutting parameters and surface roughness were achieved by comparing the experimental results with different cutting speeds, feed rates, cutting depths. Experimental results indicate that cutting parameters have an obvious effect on the surface roughness. The conclusions are draw in given conditions, the smaller amplitude of the vibration, the worse the surface quality and the higher vibrating frequency, the better surface quality, and the deeper the cutting depth and the more the feed rate, the worse the surface quality. Among these parameters, the feed rate was the most important factor on surface quality.

  10. Experimental research of surface roughness effects on highly-loaded compressor cascade aerodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Shao-wen; Xu, Hao; Wang, Song-tao; Wang, Zhong-qi

    2014-08-01

    Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.

  11. Single-photon, Dual-color, Polarimetric Laser Altimeter Measurements of Lake Ice Freeboard, Roughness and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Harding, D. J.; Dabney, P.; Valett, S.; Shuman, C. A.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an advanced technology airborne laser altimeter developed with a focus on remote sensing of ice sheets and sea ice including their melt state. Its development was sponsored by the NASA Earth Science Technology Office Instrument Incubator Program. SIMPL utilizes micropulse single photon laser ranging at 532 nm (green) and 1064 nm (near-infrared) wavelengths in a four-beam push-broom configuration. Currently, the instrument is capable of flight altitudes of up to 5000 m; this spreads the 4 profiles over a cross-track distance of 30 m providing an estimate of both along-track and cross-track slope magnitudes and directions. For both wavelengths on each beam, depolarization is measured as the ratio of received energy perpendicular and parallel to the plane-polarized transmit beams. The precision of the single photon ranges is 8 cm and a range observation is acquired every 5 to 10 cm at airborne flight speeds. This performance enables measurement of ice freeboard and surface roughness at 5 m length scales based on the height dispersion of single photon ranges aggregated along the profiles. The depolarization ratio is a function of the scattering properties of the target, specifically the proportions of specular reflection and surface and volume scattering. The relationship between surface roughness and depolarization at green and near-IR wavelengths will be illustrated using data acquired during flights over Lake Erie ice cover in February 2009, an analog for sea ice. Observed in simultaneously acquired digital video frames, the ice cover appears to be a heterogeneous amalgamation of ice types, thicknesses and ages. The lake ice is covered by snow in places and contains numerous open water leads to enable ice freeboard detection relative to the water surface. The depolarization ratio differentiates open water, young clear ice, older granular ice and snow cover. The variability of the ratio along a

  12. Review of Surface Roughness Effect on Beam Quality

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Palumbo, L.; Alesini, D.

    2003-12-01

    In recent years a strong attention arose around the problem of the e.m. interaction of an ultra-relativistic beam with the residual roughness inside a beam tube, in particular in the framework of future 4th generation coherent light sources. The main concern was the effect of the wake-fields on the relative energy spread of the beam which has to be of the order of 10-4, as for example in the LCLS and TESLA case. Although the real roughness has a stochastic feature, most studies dealt with periodic structure, or dielectric-equivalent layer which are considered to be conservative with respect the stochastic case. In this paper we will review the main theoretical models, and the most significant measurements trying to provide to the reader a complete picture of the present status of understanding.

  13. Soil surface roughness decay in contrasting climates, tillage types and management systems

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  14. Estimating aerodynamic roughness over complex salt pan and sandur dust emitting surfaces

    NASA Astrophysics Data System (ADS)

    Nield, Joanna; King, James; Wiggs, Giles; Leyland, Julian; Bryant, Robert; Chiverrell, Richard; Darby, Stephen; Eckardt, Frank; Thomas, David; Vircavs, Larisa; Washington, Richard

    2014-05-01

    Salt pan and sandur surfaces typically consist of complex patterns of small-scale roughness which differ to more commonly studied larger roughness elements. It is important to understand how these surfaces interact with the wind as both sandar and salt pans (or playas) are potential dust emitters, and so improving our understanding of surface-atmosphere interactions over surfaces in these areas is vital. These complexly patterned surfaces are also relative flat, lack vegetation and typically have a large fetch which makes them the ideal experimental surfaces to develop empirical estimations of aerodynamic roughness from terrestrial laser scanner (TLS) datasets. We investigated 20 surfaces with element heights ranging from 1 to 199mm during four field campaigns. Co-located anemometer towers at each location measured actual aerodynamic roughness to compare to a myriad of surface metrics derived from TLS datasets. Using cluster analysis height, shape, spacing and variability metric groups were compared to decipher which best estimated aerodynamic roughness. When height metrics were employed, it was found that over 90% of the variability was explained and height is a better predictor than both shape and spacing. This finding is in juxtaposition to wind erosion models that assume the spacing of larger-scale isolated roughness elements is most important in determining aerodynamic roughness. The study recognizes that when small-scale surface roughness is accurately quantified (with millimetre accuracy using TLS), height is most significance for estimating aerodynamic roughness, irrespective of comparator metric choice. This has very significant implications for the development of aerodynamic roughness predictors which are fundamental to the efficiency of wind erosion models, and, particularly, dust emission schemes in climate models.

  15. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet; Selby, Gregory V.

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting (T-S) mode shapes due to surface-roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong nonlinear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of nonlinear receptivity effects for certain combinations of surface roughness elements.

  16. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  17. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  18. Influence of emitter surface roughness on high power fusion gyrotron operation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghua; Illy, Stefan; Pagonakis, Ioannis Gr; Avramidis, Konstantinos A.; Thumm, Manfred; Jelonnek, John

    2016-02-01

    Emitter surface roughness is one of the important factors of electron beam degradation in magnetron injection gun (MIG) and the decrease of gyrotron efficiency. This paper surveys the influence of emitter surface roughness on the operation of the EU 1 MW 170 GHz gyrotron for ITER for two different gun designs. The emitter surface roughness was taken into account using a simple model. The ESRAY code was used for gun simulation and the EURIDICE code for calculation of the RF interaction in the cavity. The degradation of the beam quality due to the surface roughness is quantitatively studied and, furthermore, the influence on the gyrotron efficiency and the mode competition are investigated. Some dramatic phenomena, such as the generation of magnetically trapped electrons, are predicted at a very high level of roughness.

  19. Scattering from a random surface

    SciTech Connect

    Abarbanel, H.D.I.

    1980-11-01

    We give a formulation of the problem of propagation of scalar waves over a random surface. By a judicious choice of variables we are able to show that this situation is equivalent to propagation of these waves through a medium of random fluctuations with fluctuating source and receiver. The wave equation in the new coordinates has an additional term, the fluctuation operator, which depends on derivatives of the surface in space and time. An expansion in the fluctuation operator is given which guarantees the desired boundary conditions at every order. We treat both the cases where the surface is time dependent, such as the sea surface, or fixed in time. Also discussed is the situation where the source and receiver lie between the random surface and another, possibly also random, surface. In detail we consider acoustic waves for which the surfaces are pressure release. The method is directly applicable to electromagnetic waves and other boundary conditions.

  20. Surface roughness estimation at three points on the lunar surface using 23-CM monostatic radar

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.

    1976-01-01

    Differences in quasi-specular scattering by the lunar surface have been observed at 23-cm wavelength by using earth-based radar. By taking advantage of libration, three subradar points were isolated, and distinct scattering laws were identified for terrain near Hipparchus, Sinus Medii, and the crater Schroeter F. Interpretations of lunar radar data should henceforth incorporate a recognition that these variations take place. Unidirectional rms surface slope estimates of 6-8 deg in the Central Highlands and 4-5 deg in old mare are appropriate to horizontal scales of 100 m.

  1. Impact of Silicon Surface Roughness upon MOS after TMAH and KOH Silicon Etching

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Ibrahim, K.; Aziz, A. Abdul; Ooi, P. K.

    2010-07-01

    Wet Si etching was explored via different concentrations of tetramethylammonium hydroxide (TMAH) and potassium hydroxide (KOH). It was verified that lower concentrations give rise to higher etching rates thus higher surface roughness for both TMAH and KOH. Impact on MOS capacitor includes C-V curve distortion and flatband voltage (VFB) reduction with increasing surface roughness. Using KOH solution resulted in hysteresis of C-V curve which was not observed in TMAH. TMAH at concentration >18 wt.% has been identified as promising Si wet etchant for smoother surface. In producing VMOSFET, lower concentrations of TMAH and using KOH are to be avoided to evade surface roughness and C-V hysteresis.

  2. The effectiveness of polishing kits: influence on surface roughness of zirconia.

    PubMed

    Preis, Verena; Grumser, Katharina; Schneider-Feyrer, Sibylle; Behr, Michael; Rosentritt, Martin

    2015-01-01

    This study investigated the effectiveness of intraoral and technical polishing kits. Zirconia specimens were sintered, ground, and polished with 14 different two-step or three-step polishing kits. Surface roughness (Ra, Rz) after each treatment step was determined, and scanning electron micrographs were made. Except for one system, all polishing kits were effective in reducing the surface roughness of ground zirconia. Differences in surface roughness were high after the first polishing step but were reduced to Ra/Rz values similar to or lower than those of the sintered reference after the final polishing step. Achieving smooth surfaces depended on a sequential application of all polishing steps. PMID:25822299

  3. Surface roughness of rock faces through the curvature of triangulated meshes

    NASA Astrophysics Data System (ADS)

    Lai, P.; Samson, C.; Bose, P.

    2014-09-01

    In this paper, we examine three different measures of roughness based on a geometric property of surfaces known as curvature. These methods were demonstrated using an image of a large rock face made up of a smooth blocky limestone in contact with a rough friable dolostone. The point cloud analysed contained 10,334,288 points and was acquired at a distance of 3 m from the rock face. The point cloud was first decimated using an epsilon-net and then meshed using the Poisson surface reconstruction method before the proposed measures of roughness were applied. The first measure of roughness is defined as the difference in curvature between a mesh and a smoothed version of the same mesh. The second measure of roughness is a voting system applied to each vertex which identifies the subset of vertices which represent rough regions within the mesh. The third measure of roughness uses a combination of spatial partitioning data structures and data clustering in order to define roughness for a region in the mesh. The spatial partitioning data structure allows for a hierarchy of roughness values which is related to the size of the region being considered. All of the proposed measures of roughness are visualised using colour-coded displays which allows for an intuitive interpretation.

  4. Investigation of the influence of a step change in surface roughness on turbulent heat transfer

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.

    1991-01-01

    The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.

  5. Low-coherence interferometry based roughness measurement on turbine blade surfaces using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Zou, Yibo; Li, Yinan; Kaestner, Markus; Reithmeier, Eduard

    2016-07-01

    In this paper, a non-contact optical system, a low-coherence interferometer (LCI), is introduced for the purpose of measuring the surface roughness of turbine blades. The designed system not only possesses a high vertical resolution and is able to acquire the roughness topography, but also it has a large vertical scanning range compared to other commonly used optical systems. The latter characteristic allows us to measure turbine blades surfaces with large curvature without collisions between the lens and the measurement object. After obtaining the surface topography, wavelet analysis is applied to decompose the original surface into multiple bandwidths to conduct a multiscale analysis. The results show that the developed LCI system proofs a good performance not only in obtaining the surface topography in the roughness scale but also in being able to measure surfaces of objects that possess a complex geometry in a large vertical range. Furthermore, the applied biorthogonal wavelet in this study has performed good amplitude and phase properties in extracting the roughness microstructures from the whole surface. Finally, the traditional roughness parameters, such as the mean surface roughness Sa and the Root Mean Square (RMS) roughness Sq, are evaluated in each decomposed subband and their correlations with the scale of each subband are analyzed.

  6. The boundary layer over turbine blade models with realistic rough surfaces

    NASA Astrophysics Data System (ADS)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  7. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    PubMed

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-01

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives. PMID:22779923

  8. Investigation of techniques for the measurement of articular cartilage surface roughness.

    PubMed

    Ghosh, Siddharth; Bowen, James; Jiang, Kyle; Espino, Daniel M; Shepherd, Duncan E T

    2013-01-01

    Articular cartilage is the bearing surface of synovial joints and plays a crucial role in the tribology to enable low friction joint movement. A detailed understanding of the surface roughness of articular cartilage is important to understand how natural joints behave and the parameters required for future joint replacement materials. Bovine articular cartilage on bone samples was prepared and the surface roughness was measured using scanning electron microscopy stereoscopic imaging at magnifications in the range 500× to 2000×. The surface roughness (two-dimensional, R(a), and three-dimensional, S(a)) of each sample was then measured using atomic force microscopy (AFM). For stereoscopic imaging the surface roughness was found to linearly increase with increasing magnification. At a magnification of 500× the mean surface roughness, R(a), was in the range 165.4±5.2 nm to 174±39.3 nm; total surface roughness S(a) was in the range 183-261 nm. The surface roughness measurements made using AFM showed R(a) in the range 82.6±4.6 nm to 114.4±44.9 nm and S(a) in the range 86-136 nm. Values obtained using SEM stereo imaging were always larger than those obtained using AFM. Stereoscopic imaging can be used to investigate the surface roughness of articular cartilage. The variations seen between measurement techniques show that when making comparisons between the surface roughness of articular cartilage it is important that the same technique is used. PMID:22771276

  9. Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear

    PubMed Central

    de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel

    2014-01-01

    In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391

  10. Effect of Geometry on the Preparation of Fatigue Specimens with Predetermined Surface Roughness

    NASA Astrophysics Data System (ADS)

    Kuroda, Masatoshi; Mori, Takayuki

    In the present study, the applicability of the design of experiments (DOE) approach to the design of the long fatigue specimens of austenitic stainless steels with controlled surface roughness has been studied. The response surface models which can predict the surface roughness parameters Ra and Rz as a function of the final cutting conditions (axial feed rate and radial cutting depth) of the lathe were obtained by the analysis of variance (ANOVA) for the experimental data. It was found that the surface roughness parameters Ra and Rz obtained by the model prediction were in good accordance with the experiments. However, special care should be taken to minimise the specimen deflection generated during the machining process. It was concluded that the response surface models obtained were applicable to design the long fatigue specimens with controlled surface roughness.

  11. Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass.

    PubMed

    Pashmforoush, Farzad; Rahimi, Abdolreza; Kazemi, Mehdi

    2015-10-01

    Magnetic abrasive finishing (MAF) is one of the advanced machining processes efficiently used to finish hard-to-machine materials. Simulation and modeling of the process is of particular importance to understand the mechanics of material removal and consequently achieve a high-quality surface with a minimum of surface defects. Hence, in this paper, we performed a numerical-experimental study to mathematically model the surface roughness during the MAF of BK7 optical glass. For this purpose, the initial roughness profile was estimated using fast Fourier transform (FFT) and a Gaussian filter. We obtained the final surface profile based on the material removal mechanisms and the corresponding chipping depth values evaluated by finite element analysis. We then validated experimentally the simulation results in terms of the arithmetic average surface roughness (R(a ). The comparison between the obtained results demonstrates that the theoretical and experimental findings are in good agreement when predicting the parameters' effect on surface roughness behavior. PMID:26479596

  12. Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation.

    PubMed

    Su, Tianquan; Wang, Shanshan; Parks, Robert E; Su, Peng; Burge, James H

    2013-10-10

    Current metrology tools have limitations when measuring rough aspherical surfaces with 1-2 μm root mean square roughness; thus, the surface cannot be shaped accurately by grinding. To improve the accuracy of grinding, the scanning long-wave optical test system (SLOTS) has been developed to measure rough aspherical surfaces quickly and accurately with high spatial resolution and low cost. It is a long-wave infrared deflectometry device consisting of a heated metal ribbon and an uncooled thermal imaging camera. A slope repeatability of 13.6 μrad and a root-mean-square surface accuracy of 31 nm have been achieved in the measurements of two 4 inch spherical surfaces. The shape of a rough surface ground with 44 μm grits was also measured, and the result matches that from a laser tracker measurement. With further calibration, SLOTS promises to provide robust guidance through the grinding of aspherics. PMID:24217728

  13. Mathematical Modeling of Surface Roughness of Castings Produced Using ZCast Direct Metal Casting

    NASA Astrophysics Data System (ADS)

    Chhabra, M.; Singh, R.

    2015-04-01

    Aim of this investigation is to develop a mathematical model for predicting surface roughness of castings produced using ZCast process by employing Buckingham's π-theorem. A relationship has been proposed between surface roughness of castings and shell wall thickness of the shell moulds fabricated using 3D printer. Based on model, experiments were performed to obtain the surface roughness of aluminium, brass and copper castings produced using ZCast process based on 3D printing technique. Based on experimental data, three best fitted third-degree polynomial equations have been established for predicting the surface roughness of castings. The predicted surface roughness values were then calculated using established best fitted equations. An error analysis was performed to compare the experimental and predicted data. The average prediction errors obtained for aluminium, brass and copper castings are 10.6, 2.43 and 3.12 % respectively. The obtained average surface roughness (experimental and predicted) values of castings produced are acceptable with the sand cast surface roughness values range (6.25-25 µm).

  14. Atomic beam scattering from single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Frankl, Daniel R.

    Application of atom-scattering to a variety of surface problems is expanding rapidly, owing in large part to the extreme surface- sensitivity of this probe. Helium is particularly useful because of its low mass and chemical inertness. Beams with velocity spreads of less than one percent and wavelength of the order of one Angstrom can be formed by nozzle expansion. The scattered flux from a clean, well-ordered crystal surface contains elastic and inelastic, coherent and incoherent, components. The coherent elastic component (i.e., the specular and diffracted beams) contains information about the crystallographic structure of the outer- most atomic layer of the crystal and about the interaction potential between the crystal and the scattered particle. The latter manifests itself in the form of resonances between the incoming free-particle state, and the two-dimensional Bloch states bound in the potential well at the surface. Elastic scattering theory has reached the point where the resonance signatures in the various diffracted beams can be predicted accurately. Crystallographic information resides in the diffracted beam intensities. Theoretical interpretation is less well advanced, though some progress has been made with “hard-wall” models. Experimental studies of reconstructed surfaces and chemisorbed overlayers appear very promising. In inelastic scattering, energy resolution has been achieved by both time-of-flight and diffraction methods. High-resolution studies on alkali halide surfaces have led to experimental determination of Rayleighwave dispersion relations over the full Brillouin zone. Preliminary results have also been obtained on some metals.

  15. The Effect of Remin Pro and MI Paste Plus on Bleached Enamel Surface Roughness

    PubMed Central

    Heshmat, Haleh; Ganjkar, Maryam Hoorizad; Jaberi, Solmaz; Fard, Mohammad Javad Kharrazi

    2014-01-01

    Objective The growing demand for enhanced esthetic appearance has led to great developments in bleaching products. The exposure of hard tissues of the tooth to bleaching agents can affect the roughness of the enamel surface. The freshly bleached enamel surface exposed to various surface treatments such as fluoride and other remineralizing agents have been assessed in this study. The aim of this experimental study was to compare the effect of Casein Phosphopeptide-Amorphous Calcium Phosphate with Fluoride (MI Paste Plus) and Remin Pro on the enamel surface roughness after bleaching. Materials and Methods: Thirty enamel samples of sound human permanent molars were prepared for this study. After initial roughness measurement with profilometer, the samples were exposed to 37% carbamide peroxide bleaching agent 20 minutes twice, and randomly divided into three groups of ten. In group 1, a CPP-ACPF containing paste (MI Paste Plus) and in group 2, Remin Pro were applied to the teeth during a 15 day period for 5 minutes, twice a day. Samples of group 3 (control) were immersed in artificial saliva for 15 days. The roughness of all samples were measured at the beginning, after bleaching and after the study intervention and statistically analyzed. Results: The surface roughness significantly increased in all groups following bleaching, and then it showed a decrease after application of both Remin Pro and CPP-ACPF in comparison to using bleaching agent (P<0.005). The surface roughness after using Remin Pro and CPP-ACPF was statistically similar to each other (P>0.05). Conclusion: There was no difference between surface roughness of MI Paste Plus and Remin Pro groups. Also the surface roughness was decreased compared to the initial enamel surface roughness. PMID:24910687

  16. Roughness modification of surfaces treated by a pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Dumitrascu, N.; Borcia, G.; Apetroaei, N.; Popa, G.

    2002-05-01

    Local modifications of surface roughness are very important in many applications, as this surface property is able to generate new mechano-physical characteristics of a large category of materials. Roughness is one of the most important parameters used to characterize and control the surface morphology, and techniques that allow modifying and controlling the surface roughness present increasing interest. In this respect we propose the dielectric barrier discharge (DBD) as a simple and low cost method that can be used to induce controlled roughness on various surfaces in the nanoscale range. DBD is produced in helium, at atmospheric pressure, by a pulsed high voltage, 28 kV peak to peak, 13.5 kHz frequency and 40 W power. This type of discharge is a source of energy capable of modifying the physico-chemical properties of the surfaces without affecting their bulk properties. The discharge is characterized by means of electrical probes and, in order to analyse the heat transfer rate from the discharge to the treated surface, measurements of temperature distribution on the surface are performed. Influence of DBD on the roughness of surfaces with various properties, a semiconductor (tin oxide), a dielectric (polyvinylchloride) and a metallic (silver) surface, respectively, are investigated. Modifications of the surface morphology are detected by atomic force microscopy images, statistic roughness parameters and contact angle measurements. Results show an important increase of roughness and porosity of the thin films after DBD treatment, depending on the type of the material (semiconductor, dielectric and metallic). In the case of dielectric surfaces, this new morphology is correlated with adhesion work estimations. DBD treatments should be a convenient tool to induce a controlled roughness of various types of materials.

  17. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Arifvianto, B.; Suyitno; Mahardika, M.

    2012-03-01

    Surface mechanical attrition treatment (SMAT) improves mechanical properties of metallic materials through the formation of nanocrystallites at their surface layer. It also modifies the morphology and roughness of the work surface. Surface roughening by the SMAT has been reported previously in a smooth specimen, however in this study the starting point was a rough surface and a smoothening phenomenon is observed. In this paper, the mechanisms involved in the surface smoothening of AISI 316L stainless steel during the SMAT are elucidated. The SMAT was conducted on a specimen with a roughness of Ra = 3.98 μm for 0-20 min. The size of milling balls used in the SMAT was varied from 3.18 mm to 6.35 mm. The modification of subsurface microhardness, surface morphology, roughness and mass reduction of the specimen due to the SMAT were studied. The result shows the increasing microhardness of the surface and subsurface of the steel due to the SMAT. The impacts of milling balls deform the surface and produce a flat-like structure at this layer. Surface roughness decreases until its saturation is achieved in the SMAT. The mass reduction of the specimens is also detected and may indicate material removal or surface erosion by the SMAT. The size of milling ball is found to be the important feature determining the pattern of roughness evolution and material removal during the SMAT. From this study, two principal mechanisms in the evolution of surface morphology and roughness during the SMAT are proposed, i.e. indentation and surface erosion by the multiple impacts of milling balls. A comparative study with the results of the previous experiment indicates that the initial surface roughness has no influence in the work hardening by the SMAT but it does slightly on the saturated roughness value obtained by this treatment.

  18. Application of IEM model on soil moisture and surface roughness estimation

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.

    1995-01-01

    Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.

  19. Effects of surface roughness on the VIRTIS/Rosetta thermal measurements

    NASA Astrophysics Data System (ADS)

    Leyrat, C.; Erard, S.; Capria, M.; Capaccioni, F.

    2014-07-01

    Thermal emission from planetary surfaces depends on many physical processes/parameters such as the Bond albedo, the heat capacity, the thermal inertia, the sublimation of ices at the surfaces, but also on the small-scale surface roughness. Distinguishing the effect of both thermal inertia and surface roughness on the infrared measurements is not trivial. In particular, surface roughness, that cannot be resolved within the pixels of instruments frame, can produce both shadows at small scales and mutual heating, which affect the thermal flux and the temperature estimations. The effect of roughness also varies with local incidence and emission angles, and local time, being significantly stronger closed to terminator when the local hills cast their shadows at far distances. In this poster, we present a thermo-physical model based on thermal conduction of heat over several diurnal and seasonal skin depths and show how surface roughness affects the retrieved temperature, especially, in the near-infrared domain [1--5 microns], where the VIRTIS/Rosetta instrument will observe comet CG 67/P starting in July 2014. We first compute the surface temperature of CG 67P using a simple thermo-physical model that takes into account the global shape of the nucleus. Then, we investigate (1) how the surface roughness can modify the apparent surface temperature and the thermal inertia, and (2) what are the best geometries of observation to distinguish between topographic effects and physical thermal processes.

  20. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    NASA Astrophysics Data System (ADS)

    Chaghazardi, Zahra; Touski, Shoeib Babaee; Pourfath, Mahdi; Faez, Rahim

    2016-08-01

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping rate and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.

  1. Influence Of Runout On The Surface Roughness Obtained In Side Milling Processes

    NASA Astrophysics Data System (ADS)

    González Rojas, H.; Buj Corral, I.; Vivancos Calvet, J.

    2009-11-01

    In this paper a numerical model was used to predict the surface roughness of parts machined by contour milling processes, taking into account the runout of the tool as differences in the tool edge radii. The computational model allows determining the value of both average roughness Ra and peak-to-valley roughness Rt, and is based on the geometric tool-part intersection. 8000 runs were performed for each fz value using a random runout in each run in order to get simulated roughness values. Several graphics were obtained with the maximum and minimum value of average roughness Ra and of peak-to-valley roughness Rt for each value of feed per tooth and per turn fz, as well as the theoretical or geometric upper and lower reference limits. In addition, frequency histograms were obtained for Ra and Rt. For low feed values, the median of the roughness values is quite similar to the upper limit, which corresponds to the effect of one tool teeth having a higher radius than other radii. For higher feed values, the median of the roughness values remains between the lower and the upper limit. It was observed that the obtained values of average roughness Ra and peak-to-valley roughness Rt do not follow a normal distribution even though the values of the radii were randomly taken according to a normal law.

  2. Relevance of roughness parameters of surface finish in precision hard turning.

    PubMed

    Jouini, Nabil; Revel, Philippe; Bigerelle, Maxence

    2014-01-01

    Precision hard turning is a process to improve the surface integrity of functional surfaces. Machining experiments are carried out on hardened AISI 52100 bearing steel under dry condition using c-BN cutting tools. A full factorial experimental design is used to characterize the effect of cutting parameters. As surface topography is characterized by numerous roughness parameters, their relative relevance is investigated by statistical indices of performance computed by combining the analysis of variance, discriminant analysis and the bootstrap method. The analysis shows that the profile Length ratio (Lr) and the Roughness average (Ra) are the relevant pair of roughness parameters which best discriminates the effect of cutting parameters and enable the classification of surfaces which cannot be distinguished by one parameter: low profile length ratio Lr (Lr = 100.23%) is clearly distinguished from an irregular surface corresponding to a profile length ratio Lr (Lr = 100.42%), whereas the roughness average Ra values are nearly identical. PMID:23868394

  3. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    PubMed

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used. PMID:7012322

  4. Study on the roughness evolution of optical surfaces during ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Wang, Xiang; Gu, Yong-Qiang; Zheng, Jin-Jin; Yang, Huai-Jiang; Sui, Yong-Xin

    2015-10-01

    Ion beam machining technology has been extensively adopted to obtain an ultraprecision surface in ultraviolet lithography optics. However, there exist complex mechanisms leading the surface to evolve complicated topographies and increasing roughness. We build a kinetic model integrating with the typical sputter theory and a bond-counting Monte Carlo algorithm based on the compound materials to investigate the surface roughness evolution during ion beam sputtering. The influences of primary sputter, reflection, secondary sputter, geometrical shadowing, redeposition, and thermal diffusion were all taken into consideration to compose a dynamic evolution process. In calculation, using this model the surface first possesses a period of smoothing and then goes into a roughening stage, where the roughness follows the regular power law. Quantitative analyses of surface roughness derived from calculations are also examined and compared with experiments.

  5. A nanodrop on the surface of a lubricating liquid covering a rough solid surface

    NASA Astrophysics Data System (ADS)

    Berim, Gersh O.; Ruckenstein, Eli

    2015-09-01

    A two-component fluid consisting of a lubricating fluid (LF) that covers a rough solid surface (surface decorated by periodic array of identical pillars) and a test fluid (TF) as a nanodrop over LF is considered. A horizontal external perturbative force is applied to TF and the density functional theory is used for the treatment of the system. The concepts of advancing and receding contact angles as well as of leading edges of the drop are revisited. Three different definitions of the contact angles are analyzed and the most plausible selected. The contact angles are calculated as functions of drop size and magnitude of the perturbative force. For small drops, both angles change nonmonotonously with increasing perturbative force. For larger drops, the advancing contact angle has the tendency to increase and the receding contact angle to decrease with increasing force. The sticking force which maintains the drop equilibrium in the presence of an external perturbative force is determined as function of the contact angles. It is shown that this dependence is similar to that for a drop on a rough solid surface in the absence of LF. A critical sticking force, defined as the largest value of the perturbative force for which the drop remains at equilibrium, is determined.A two-component fluid consisting of a lubricating fluid (LF) that covers a rough solid surface (surface decorated by periodic array of identical pillars) and a test fluid (TF) as a nanodrop over LF is considered. A horizontal external perturbative force is applied to TF and the density functional theory is used for the treatment of the system. The concepts of advancing and receding contact angles as well as of leading edges of the drop are revisited. Three different definitions of the contact angles are analyzed and the most plausible selected. The contact angles are calculated as functions of drop size and magnitude of the perturbative force. For small drops, both angles change nonmonotonously with

  6. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  7. Effect on surface roughness of zerodur material in atmospheric pressure plasma jet processing

    NASA Astrophysics Data System (ADS)

    Jin, H. L.; Wang, B.; Zhang, F. H.

    2010-10-01

    Zerodur material is considered as the ideal material in the high performance optic systems because of its excellent thermal stability characteristics. This paper deals with the impacting factors on the zerodur material surface roughness during atmospheric pressure plasma jet(APPJ) processing. At first, based on multiphase and multi-component in zerodur material, the effect on the zerodur surface chemical components and surface roughness is studied when the element contained Si is etched during the chemical machining process. The change of surface microcosmic topography is observed, it is proved that the technology of atmospheric pressure plasma jet can modify the surface roughness of zerodur material. Moreover, in consideration of the re-deposition phenomenon in the machining process, the composition of the re-deposition are studied and the genesis of the re-deposition were analysed. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray spectrometry (EDX) were utilized to obtain the elemental composition of the sample powder residuum on zerodur surface. The relationship between substrate roughness and the process parameters is established based on the experimental results. Experimental results indicate that it is beneficial to add certain amount O2 to modify the surface roughness of zerodur material. This finding provides an important basis for the improvement of surface roughness in APPJ of zerodur material.

  8. The effects of crushing surface roughness on the crushing characteristics of composite tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Wolterman, Richard L.; Kennedy, John M.

    1992-01-01

    The effects of crushing-surface roughness on the energy-absorption capability of graphite and glass-epoxy composite tubes were investigated. Fifty different combinations of fiber, matrix, and specimen ply orientation were evaluated. Two different crushing surface roughnesses were used in this investigation. Crushing surface significantly influences the energy-absorption capability only of tubes that crush in the lamina bending crushing mode; tubes that crush in other modes are not influenced because their lamina bundles do not slide against the crushing surface. Those tubes that crush in the lamina bending mode can achieve higher, lower, or no change in energy-absorption capability as crushing surface roughness increases. If the fiber failure strain of tubes that crush in the lamina bending crushing mode exceeds the matrix failure strain then the energy-absorption capability increases as crushing surface roughness increases. However, if the matrix failure strain exceeds the fiber failure strain then the energy-absorption capability increases as crushing surface roughness decreases. Energy-absorption capability is uninfluenced by crushing surface roughness for tubes that have equal fiber and matrix failure strains.

  9. Evaporites, surface roughness, and inundation in a playa dust source; implications of surface composition for erodibility

    NASA Astrophysics Data System (ADS)

    Tollerud, H.; Fantle, M.

    2013-12-01

    An understanding of fundamental controls on dust emission is critical in order to predict and model geochemical fluxes in the Earth system. Crucial parameters for dust emission include surface properties such as roughness, strength, and composition, which affect the erodibility of surface sediments. Accordingly, knowledge of the processes that govern surface properties is vital for predicting geochemical dust fluxes. In this study, we examine the spatial distribution of mineralogy within a playa dust source (Black Rock Desert, NV, USA) and its association with the spatial distribution of annual inundation, and employ a numerical model to assess the importance of transport by inundation for producing the distribution of mineralogy that we observe. Additionally, we experimentally investigate the effect of evaporite mineralogy on the development of surface roughness in a playa analog surface. We hypothesize that evaporite minerals in playa surface crusts reduce erodibility by contributing to sediment aggregation, promoting smoothing of the surface and a decrease in the availability of particles for saltation. Heterogeneity in surface mineralogy will then affect erodibility. Thus, it is useful to identify controls on the distribution of mineralogy (specifically evaporites) across a playa dust source. In particular, a connection between inundation and surface heterogeneity suggests that inundation could influence erodibility. Semi-quantitative X-ray diffraction analysis of surface sediments from the Black Rock Desert shows that evaporite content is variable; halite content varies from 0-40 wt%, and calcite from 2-15 wt%, with average sediment compositions of 30% quartz, 45% clay, and 10% plagioclase. Average calcite content is lower (7.6%) for sites within the inundated area of the previous year's playa lake (detected using MODIS satellite imagery; band 6, 1640 nm) than for sites outside this area (average calcite content 9.5%). Sites inundated the previous year are

  10. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling.

    PubMed

    Jin, Chao; Normani, Stefano D; Emelko, Monica B

    2015-07-01

    Column tests were conducted to investigate media roughness impacts on particle deposition in absence of an energy barrier (i.e., high ionic strength). Media/collector surface roughness consistently influenced colloid deposition in a nonlinear, nonmonotonic manner such that a critical roughness size associated with minimum particle deposition could be identified; this was confirmed using a convection-diffusion model. The results demonstrate that media surface roughness size alone is inadequate for predicting media roughness impacts on particle deposition; rather, the relative size relationship between the particles and media/collectors must also be considered. A model that quantitatively considers media surface roughness was developed that described experimental outcomes well and consistently with classic colloid filtration theory (CFT) for smooth surfaces. Dimensionless-scaling factors froughness and fPCIF were introduced and used to develop a model describing particle deposition rate (kd) and colloid attachment efficiency (α). The model includes fitting parameters that reflect the impact of critical system characteristics such as ionic strength, loading rate, hydrophobicity. Excellent agreement was found not only between the modeled outcomes for colloid attachment efficiency (α) and experimental results from the column tests, but also with experimental outcomes reported elsewhere. The model developed herein provides a framework for describing media surface roughness impacts on colloid deposition. PMID:26053116

  11. Evolution of surface roughness of some metallic materials in cavitation erosion.

    PubMed

    Chiu, K Y; Cheng, F T; Man, H C

    2005-10-01

    The evolution of surface roughness of three common metallic materials (316L stainless steel, CP titanium, and brass) in ultrasonic vibratory cavitation tests was monitored using profilometric measurements. Three stages of roughness change, based on the rate of change of the mean surface roughness d(Ra)/dt, may be identified. In stage I (initial stage), Ra increases almost linearly with the test time; in stage II (transition stage), the rate decreases until stage III (steady-state stage) is reached, in which Ra remains unchanged. Concurrent measurements of mass loss in the ultrasonic cavitation test indicated that stage I approximately coincides with the incubation stage, stage II approximately coincides with the acceleration stage, and stage III approximately coincides with the maximum erosion rate stage as defined by ASTM Standard G 32. Compared with conventional mass loss measurements in assessing material degradation in cavitation erosion, surface roughness measurements provide an alternative and convenient method which possesses several advantages. In the first place, change in surface roughness provides information of material response before mass loss is detected. Secondly, there is no restriction of the size of the component, while weighing is suitable for small samples only. Thirdly, mass loss reflects erosion of the whole surface under cavitation attack, and the mean depth of penetration or erosion only gives an average loss, while in roughness measurement, damage in specific locations may be studied. The present study indicates that roughness measurement may constitute a practical method for monitoring damage in industrial ultrasonic cleaners. PMID:16126092

  12. Surface slope and roughness measurement using ICESat/GLAS elevation and laser waveform

    NASA Astrophysics Data System (ADS)

    Li, Xiaolu; Xu, Kai; Xu, Lijun

    2016-09-01

    Surface slope and roughness are important geomorphological variables which have been used in the Earth and planetary sciences to infer material properties. For the ICESat/GLAS measurement, roughness and slope are two surface properties for broadening the width of the returned pulse. Based on this, a new method (GLAS waveform-derived roughness, GWR in short) is investigated to invert roughness from waveform broadening after excluding slope effect. Surface slope is estimated from the repeat tracks elevation of ICESat/GLAS, which is verified to be coincidence with geography facts (Landsat-7 images). Extensive experiments are performed using the proposed methods to evaluate the performance of surface properties (roughness, slope and elevation) in the Jakobshavn area. The experimental results demonstrate that, compared with the elevation-derived roughness method (GER in short), GWR is more sensitive to local surface properties in the gentle slope zone because it is a small-scale estimation. Additionally, GWR is a more stable roughness estimation which is immune to a strong elevation change.

  13. Measurement and calculation of surface roughness effects on turbulent flow and heat transfer

    NASA Astrophysics Data System (ADS)

    Hosni, Mohammad Hosein

    Fluid dynamics and heat transfer data for turbulent boundary layer flow of air over a smooth surface and three well-defined rough surfaces were taken in the Turbulent Heat Transfer Test Facility (THTTF) for x-Reynolds numbers ranging up to 10,000,000. The smooth wall data provided base line data for comparison with the data from rough surfaces. The three rough surfaces were composed of 1.27 mm diameter hemispheres spaced 2, 4, and 10 diameters apart, respectively, in staggered arrays on otherwise smooth flat plates. Skin friction coefficient distributions and boundary layer profiles of mean velocity and Reynolds stresses were obtained using hot-wire anemometry. The THTTF heat transfer data taken in aerodynamically smooth, transitionally rough, and fully rough flow regimes over the three well-defined rough surfaces for freestream velocities of 6, 12, 28, 43, 58, and 67 m/s were compared with the data sets taken at Stanford University using a single well-defined rough surface. It was observed that the Stanton numbers for a given surface collapse together in x-Reynolds number coordinates as the freestream velocity increases, with the Stanton number level being larger for rougher surfaces. The THTTF heat transfer data and the Stanford data were used to modify the roughness energy transport model in the discrete element prediction method. This method was used in calculation of the fluid dynamics and heat transfer for the THTTF and Stanford surfaces. The predictions were in excellent agreement with all data sets within the data uncertainty.

  14. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates. PMID:25019516

  15. Surface roughness and wettability of dentin ablated with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Lü, Peijun; Sun, Yuchun; Wang, Yong

    2015-05-01

    The aim of this study was to evaluate the surface roughness and wettability of dentin following ultrashort pulsed laser ablation with different levels of fluence and pulse overlap (PO). Twenty-five extracted human teeth crowns were cut longitudinally into slices of approximately 1.5-mm thick and randomly divided into nine groups of five. Samples in groups 1 to 8 were ablated with an ultrashort pulsed laser through a galvanometric scanning system. Samples in group 9 were prepared using a mechanical rotary instrument. The surface roughness of samples from each group was then measured using a three-dimensional profile measurement laser microscope, and wettability was evaluated by measuring the contact angle of a drop of water on the prepared dentin surface using an optical contact angle measuring device. The results showed that both laser fluence and PO had an effect on dentin surface roughness. Specifically, a higher PO decreased dentin surface roughness and reduced the effect of high-laser fluence on decreasing the surface roughness in some groups. Furthermore, all ablated dentin showed a contact angle of approximately 0 deg, meaning that laser ablation significantly improved wettability. Adjustment of ultrashort pulsed laser parameters can, therefore, significantly alter dentin surface roughness and wettability.

  16. On the Correlation of Effective Terahertz Refractive Index and Average Surface Roughness of Pharmaceutical Tablets

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mousumi; Bawuah, Prince; Tan, Nicholas; Ervasti, Tuomas; Pääkkönen, Pertti; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-08-01

    In this paper, we have studied terahertz (THz) pulse time delay of porous pharmaceutical microcrystalline compacts and also pharmaceutical tablets that contain indomethacin (painkiller) as an active pharmaceutical ingredient (API) and microcrystalline cellulose as the matrix of the tablet. The porosity of a pharmaceutical tablet is important because it affects the release of drug substance. In addition, surface roughness of the tablet has much importance regarding dissolution of the tablet and hence the rate of drug release. Here, we show, using a training set of tablets containing API and with a priori known tablet's quality parameters, that the effective refractive index (obtained from THz time delay data) of such porous tablets correlates with the average surface roughness of a tablet. Hence, THz pulse time delay measurement in the transmission mode provides information on both porosity and the average surface roughness of a compact. This is demonstrated for two different sets of pharmaceutical tablets having different porosity and average surface roughness values.

  17. On the Correlation of Effective Terahertz Refractive Index and Average Surface Roughness of Pharmaceutical Tablets

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mousumi; Bawuah, Prince; Tan, Nicholas; Ervasti, Tuomas; Pääkkönen, Pertti; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-03-01

    In this paper, we have studied terahertz (THz) pulse time delay of porous pharmaceutical microcrystalline compacts and also pharmaceutical tablets that contain indomethacin (painkiller) as an active pharmaceutical ingredient (API) and microcrystalline cellulose as the matrix of the tablet. The porosity of a pharmaceutical tablet is important because it affects the release of drug substance. In addition, surface roughness of the tablet has much importance regarding dissolution of the tablet and hence the rate of drug release. Here, we show, using a training set of tablets containing API and with a priori known tablet's quality parameters, that the effective refractive index (obtained from THz time delay data) of such porous tablets correlates with the average surface roughness of a tablet. Hence, THz pulse time delay measurement in the transmission mode provides information on both porosity and the average surface roughness of a compact. This is demonstrated for two different sets of pharmaceutical tablets having different porosity and average surface roughness values.

  18. Procedure for estimating fracture energy from fracture surface roughness

    DOEpatents

    Williford, Ralph E.

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  19. Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR).

    PubMed

    Sun, Bo; Koh, Yee Kan

    2016-06-01

    Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals. We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR. PMID:27370481

  20. Sol-gel replicated optics made from single point diamond turned masters exhibit fractal surface roughness

    SciTech Connect

    Bernacki, B.E.; Miller, A.C. Jr.; Evans, B.M. III; Moreshead, W.V.; Nogues, J.L.R.

    1996-05-01

    Deterministic optics manufacturing, notably single point diamond turning (SPDT) has matured such that the current generation of machines is capable of producing refractive and reflective optics for the visible wavelength region that are quite acceptable for many applications. However, spiral tool marks are still produced that result in unwanted diffractive scattering from grating-like features having a spatial frequency determined by the machine feed, tool radius, and other influences such as vibration and material removal effects. Such regular artifacts are the characteristic of deterministic manufacturing methods such as SPDT. The authors present some initial findings suggesting that fractal, or non-deterministic surfaces can be produced by SPDT through sol-gel replication. The key is the large isotropic shrinkage that occurs through monolithic sol-gel replication (a factor of 2.5) that results in all features, including tooling marks, being reduced by that amount. The large shrinkage itself would be a laudable-enough feature of the replication process. However, by an as-yet-not understood manner, the replication process itself seems to alter the roughness character of the replicated surface such that it appears to be fractal when analyzed using contact profilometry and the power spectrum approach.

  1. Surface roughness of cellulose hollow fiber dialysis membranes and platelet adhesion.

    PubMed

    Tsunoda, N; Kokubo, K; Sakai, K; Fukuda, M; Miyazaki, M; Hiyoshi, T

    1999-01-01

    A great deal of research has been conducted focusing on membrane materials with reference to their blood compatibility, but blood compatibility is influenced both by the material used in membranes and their structure, and by the flow conditions at the membrane surface. Accordingly, the relationship between membrane surface roughness and hemocompatibility has been evaluated using five types of membranes of differing surface roughness by evaluating the inner surfaces of the hollow fibers by atomic force microscopy (AFM) and by measuring platelet adhesion ratios using bovine blood. The yield stress, which equates to flow characteristics, was also evaluated using a glycerol suspension of polymethylmethacrylate (PMMA), a Bingham fluid. It was found that membranes having rough surfaces had high platelet adhesion ratios and poor hemocompatibility, whereas those with smoother surfaces had lower platelet adhesion ratios and better hemocompatibility. Measurement of the yield stresses for these membranes revealed higher values for those with rough surfaces, and lower values for those with smoother polyethylene glycol (PEG) grafted surfaces. This suggests that flow conditions at the membrane surface differ according to its surface roughness, and that this difference in flow conditions also influences hemocompatibility. PMID:10503618

  2. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of ˜70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  3. [Inelastic electron scattering from surfaces]. [Progress report

    SciTech Connect

    Not Available

    1993-10-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.

  4. Light scattering from cylindrical structures on surfaces.

    PubMed

    Taubenblatt, M A

    1990-03-01

    Light scattering from a dielectric cylindrical structure on a surface by a plane wave with field vector along the cylinder axis is calculated with a modification of the coupled-dipole method. The interaction matrix is calculated with the use of both the direct contribution of a polarization current filament and its reflection from the surface. The reflected cylindrical waves are computed with the use of the Sommerfeld-type integral expression. Light scattering from structures of arbitrary cross section and the size of the order of a wavelength can be quickly determined with this method. PMID:19759774

  5. Surface Roughness Characterization of Niobium Subjected to Incremental BCP and EP Processing Steps

    SciTech Connect

    Hui Tian; Guihem Ribeill; Charles Reece; Michael Kelley

    2008-02-12

    The surface of niobium samples polished under incremental Buffered Chemical Polish (BCP) and Electro-Polishing (EP) have been characterized through Atomic Force Microscopy (AFM) and stylus profilometry across a range of length of scales. The results were analyzed using Power Density Spectral (PSD) technique to determine roughness and characteristic dimensions. This study has shown that the PSD method is a valuable tool that provides quantitative information about surface roughness at different length scales.

  6. Interferometric microscopy study of the surface roughness of Portland cement under the action of different irrigants

    PubMed Central

    Berástegui-Jimeno, Esther M.; Parellada-Esquius, Neus; Canalda-Sahli, Carlos

    2013-01-01

    Objectives: Some investigations suggested common Portland cement (PC) as a substitute material for MTA for endodontic use; both MTA and PC have a similar composition. The aim of this study was to determine the surface roughness of common PC before and after the exposition to different endodontic irrigating solutions: 10% and 20% citric acid, 17% ethylenediaminetetraacetic (EDTA) and 5% sodium hypochlorite. Study Design: Fifty PC samples in the form of cubes were prepared. PC was mixed with distilled water (powder/liquid ratio 3:1 by weight). The samples were immersed for one minute in 10% and 20% citric acid, 17% EDTA and 5% sodium hypochlorite. After gold coating, PC samples were examined using the New View 100 Zygo interferometric microscope. It was used to examine and register the surface roughness and the profile of two different areas of each sample. Analysis of variance (ANOVA) was carried out, and as the requirements were not met, use was made of the Kruskal-Wallis test for analysis of the results obtained, followed by contrasts using Tukey’s contrast tests. Results: Sodium hypochlorite at a concentration of 5% significantly reduced the surface roughness of PC, while 20% citric acid significantly increased surface roughness. The other evaluated citric acid concentration (10%) slightly increased the surface roughness of PC, though statistical significance was not reached. EDTA at a concentration of 17% failed to modify PC surface roughness. Irrigation with 5% sodium hypochlorite and 20% citric acid lowered and raised the roughness values, respectively. Conclusions: The surface texture of PC is modified as the result of treatment with different irrigating solutions commonly used in endodontics, depending on their chemical composition and concentration. Key words:MTA, Portland cement, citric acid, ethylenediaminetetraacetic acid, sodium hypochlorite, surface roughness. PMID:23722143

  7. Electron Scattering at Surfaces and Interfaces of Transition Metals

    NASA Astrophysics Data System (ADS)

    Zheng, Pengyuan

    , the growth of epitaxial W(001) layers on MgO(001) substrates by ultra-high vacuum magnetron sputtering is studied, in order to obtain an alternative W layer orientation in addition to the well-known growth of epitaxial W(011) on Al2O3 substrates. X-ray diffraction o-2theta scans, o-rocking curves, and pole figures show that 5-400 nm thick W(001) layers grown at Ts = 900 °C are monocrystalline with a relaxed lattice constant of 3.167+/-0.001 nm, as determined from high resolution reciprocal space mapping. The magnitude of the residual in-plane compressive strain decreases from -1.2+/-0.1% to 0.1+/-0.1% with increasing dw. This is attributed to the glide of threading dislocations which increases the average misfit dislocation length, causing relaxation of the stress associated with differential thermal contraction. X-ray reflectivity measurements indicate smooth surfaces with a root-mean-square surface roughness ≤1.0 nm and a roughness exponent of 0.38 for dw below 20 nm. Secondly, the effect of surface roughness on surface scattering is investigated to ensure its contribution to the resistivity size effect is properly included when comparing W films grown on different substrates. In fact it is found the rho of in situ annealed 4-20 nm thick epitaxial W(001) layers grown on MgO(001) samples show weaker dw dependence than that of unannealed samples in vacuum and air at both 295 and 77 K although completely diffuse surface scattering are present on both sets of films. No significant change in the structural quality of the samples after annealing is observed for d ≤ 20 nm. While a combination of X-ray reflectivity and Atomic Force Microscope study on surface morphology shows flatter surface mounds after annealing. Consequently, in situ annealing treatment is carried out on both epitaxial W(110) and W(001) from dw =4-320 nm to obtain surface with comparable rms roughness and lateral correlation length. Thus the rho increase due to the surface roughness is estimated in

  8. The effect of electrode surface roughness on the motional heating rate of electromagnetic trapped ions

    NASA Astrophysics Data System (ADS)

    Lin, Kuan-Yu; Low, Guang Hao; Chuang, Isaac

    Electric field noise is a major source of motional heating in trapped ion quantum computation. While it is well known that this noise is influenced by trap electrode geometry in patch potential and surface adsorbate models, this has only been analyzed for smooth surfaces. We investigate the dependence of electric field noise on the roughness of surface electrodes by deriving a Green's function describing this roughness, and evaluating its effects on adsorbate-surface binding energies. At cryogenic temperature, surface roughness is found to exponentially enhance or suppress heating rate, depending on the density distribution of surface adsorbates. Our result suggests that heating rates can be tuned over orders of magnitude by careful engineering of electrode surface profiles.

  9. Surface roughness analysis after machining of direct laser deposited tungsten carbide

    NASA Astrophysics Data System (ADS)

    Wojciechowski, S.; Twardowski, P.; Chwalczuk, T.

    2014-03-01

    In this paper, an experimental surface roughness analysis in machining of tungsten carbide is presented. The tungsten carbide was received using direct laser deposition technology (DLD). Experiments carried out included milling of tungsten carbide samples using monolithic torus cubic boron nitride (CBN) tool and grinding with the diamond cup wheel. The effect of machining method on the generated surface topography was analysed. The 3D surface topographies were measured using optical surface profiler. The research revealed, that surface roughness generated after the machining of tungsten carbide is affected by feed per tooth (fz) value related to kinematic-geometric projection only in a minor extent. The main factor affecting machined surface roughness is the occurrence of micro grooves and protuberances on the machined surface, as well as other phenomena connected, inter alia, with the mechanism for material removal.

  10. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  11. Scaling of the wall-pressure spectrum from turbulent boundary-layer flows over rough surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Natasha; Forest, Jonathan; Rast, Joshua

    2015-11-01

    Seafaring applications require predictions of noise and drag from rough surfaces at high Reynolds numbers. Glegg and Devenport (2009) have shown that roughness noise is directly proportional to the wall pressure spectrum. As a means to develop an empirical model of the surface pressure spectra from rough surfaces, experiments were conducted in a fully-developed turbulent boundary layer flow at the Anechoic Flow Facility located at the Naval Surface Warfare Center, Carderock Division in West Bethesda MD. A variety of inhomogeneous roughness types were tested where the momentum thickness Reynolds number ranged from 4000 to 40000 while the flow based non-dimensional equivalent sand grain roughness height, ks+, ranged from 24 to 1500. Mean and fluctuating velocities, as well as fluctuating surface pressure and radiated far-field results were collected and analyzed. The surface pressure spectra are collapsed with inner and outer flow variables in an attempt to obtain an empirical model that can be used to scale the spectra for higher Reynolds number applications. Glegg, S., and Devenport, W., 2009. ``The far-field sound from rough-wall boundary layers.'' Proceedings of the Royal Society, Vol 465, pp 1717 - 1734.

  12. Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic

    PubMed Central

    Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi

    2013-01-01

    Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0–S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. PMID:22724660

  13. Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory.

    PubMed

    Lorenz, B; Persson, B N J

    2009-01-01

    We study the average separation between an elastic solid and a hard solid, with a nominally flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulsive pressure acts between the surfaces of the form p∼exp(-u/u(0)), where u is the average separation between the surfaces and u(0) a constant of the order of the root-mean-square roughness, in good agreement with the experimental results. PMID:21817215

  14. Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    NASA Astrophysics Data System (ADS)

    Lorenz, B.; Persson, B. N. J.

    2009-01-01

    We study the average separation between an elastic solid and a hard solid, with a nominally flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulsive pressure acts between the surfaces of the form p~exp(-u/u0), where u is the average separation between the surfaces and u0 a constant of the order of the root-mean-square roughness, in good agreement with the experimental results.

  15. Surface-integral formulation of scattering theory

    SciTech Connect

    Kadyrov, A.S. Bray, I.; Mukhamedzhanov, A.M.; Stelbovics, A.T.

    2009-07-15

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the two-body and three-body scattering wavefunctions. This formulation is valid for both short-range and long-range Coulombic interactions. New general definitions for the potential scattering amplitude are presented. For the Coulombic potentials, the generalized amplitude gives the physical on-shell amplitude without recourse to a renormalization procedure. New post and prior forms for the Coulomb three-body breakup amplitude are derived. This resolves the problem of the inability of the conventional scattering theory to define the post form of the breakup amplitude for charged particles. The new definitions can be written as surface-integrals convenient for practical calculations. The surface-integral representations are extended to amplitudes of direct and rearrangement scattering processes taking place in an arbitrary three-body system. General definitions for the wave operators are given that unify the currently used channel-dependent definitions.

  16. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone.

    PubMed

    Wennerberg, A; Ektessabi, A; Albrektsson, T; Johansson, C; Andersson, B

    1997-01-01

    Screw-shaped implants were prepared with three different surface topographies: One was left as machined, ie, a turned surface, and two were blasted surfaces with differing degrees of surface roughness. The surface topography was measured with a confocal laser scanning profilometer and the surface roughness was characterized using height and spatial descriptive parameters. The turned surface had an average surface roughness of 0.96 micron and an average peak spacing of 8.6 microns. The two blasted surfaces had surface roughness values of 1.16 microns and 1.94 microns, respectively; the corresponding values for the peak spacing parameter were 10.00 microns and 13.22 microns, respectively. After 1 year in rabbit bone, the bone response to the turned implants was compared with the response to the two blasted implant surfaces. Firmer bone fixation was found for the two blasted surfaces, with statistically significant increases in removal torque and percentage of bone-to-metal contact. Furthermore, about 2 mm from the implant surface, the titanium release was similar for the turned and the 25-micron aluminum oxide-blasted implants. PMID:9274077

  17. Geometrical evolution of interlocked rough slip surfaces: The role of normal stress

    NASA Astrophysics Data System (ADS)

    Badt, Nir; Hatzor, Yossef H.; Toussaint, Renaud; Sagy, Amir

    2016-06-01

    We study the evolution of slip surface topography using direct shear tests of perfectly mating surfaces. The tests are performed under imposed constant normal stress and constant slip rate conditions, to a sliding distance comparable to the roughness scale of the studied surfaces. Prismatic limestone blocks are fractured in tension using four-point bending and the generated surface topographies are measured using a laser profilometer. The initially rough fracture interfaces are tested in direct shear while ensuring a perfectly mating configuration at the beginning of each test. The predetermined sliding distance in all tests is 10 mm and the sliding velocity is 0.05 mm/s. A constant normal stress is maintained throughout the tests using closed loop servo control. The range of normal stresses applied is between 2 MPa and 15 MPa. After shearing, the surface topographies are re-scanned and the geometrical evolution is analyzed. We find that surface roughness increases with increasing normal stress: under normal stresses below 5 MPa the surfaces become smoother compared to the original geometry, whereas under normal stresses between 7.5 MPa and 15 MPa the surfaces clearly become rougher following shear. Statistical spectral analyses of the roughness profiles indicate that roughness increases with length-scale. Power spectral density values parallel to the slip orientation are fitted by power-law with typical power value of 2.6, corresponding to a Hurst exponent of 0.8, assuming self-affine roughness. This power value is consistent for the post-sheared surfaces and is obtained even when the original surface roughness does not follow initially a power-law form. The value of the scaling-law prefactor however increases with increasing normal stress. We find that the deformation associated with shearing initially rough interlocked surfaces extends beyond the immediate tested surface, further into the intact rock material. The intensity of the damage and its spatial

  18. Parallel optical trap assisted nanopatterning on rough surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Y.-C.; Leitz, K.-H.; Fardel, R.; Otto, A.; Schmidt, M.; Arnold, C. B.

    2012-04-01

    There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces.

  19. Parallel optical trap assisted nanopatterning on rough surfaces.

    PubMed

    Tsai, Y C; Leitz, K H; Fardel, R; Otto, A; Schmidt, M; Arnold, C B

    2012-04-27

    There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces. PMID:22469693

  20. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  1. Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

    SciTech Connect

    Kozioziemski, B J; Sater, J D; Moody, J D; Montgomery, D S; Gautier, C

    2006-04-19

    Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

  2. Reduction of vortex induced forces and motion through surface roughness control

    SciTech Connect

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  3. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M.; Raghavan, Kamaldev

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  4. Sub-micrometer scale surface roughness of titanium reduces fibroblasts function.

    PubMed

    Migita, Satoshi; Okuyama, So; Araki, Kunitaka

    2016-01-01

    Titanium and its alloys are conventionally used to produce medical devices, but their biocompatibility has not yet been optimized. Surface modification, especially control of the surface roughness of titanium, is one strategy for improving biocompatibility and providing effective binding to hard tissue. However, the soft tissue compatibility of metallic materials is currently poorly understood, and effective techniques for tight binding between metal surfaces and soft tissue are still under development. Therefore, we here investigated whether the surface roughness of titanium affects fibroblast adhesion and proliferation. Our results showed that a surface roughness of ~100 nm reduces fibroblast function. On such surfaces, distinct focal adhesion was not observed. These findings improve the general understanding of the binding compatibility between soft tissues and metallic materials. PMID:26689819

  5. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    The wind tunnel models and instrumentation used as well as data reduction and error analysis techniques employed are described for an experimental study conducted to measure directly skin friction and obtain profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary on a large diameter axisymmetric body. Results are given for such a body with a (1) smooth, solid surface; (2) a sandpaper roughened, solid surface; (3) a sintered metal, porous surface; (4) a ""smooth'' performated titanium surface; (5) a rough, solid surface made of fine diffusion bonded screening; and (6) a rough, porous surface made of the same screening. The roughness values were in low range (k+ 5 to 7) just above what is normally considered ""hydraulically smooth''. Measurements were taken at several axial locations and tow or normal stream freestream velocities, 45.1 m/sec and 53.5 m/sec.

  6. A new method for modeling rough membrane surface and calculation of interfacial interactions.

    PubMed

    Zhao, Leihong; Zhang, Meijia; He, Yiming; Chen, Jianrong; Hong, Huachang; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    Membrane fouling control necessitates the establishment of an effective method to assess interfacial interactions between foulants and rough surface membrane. This study proposed a new method which includes a rigorous mathematical equation for modeling membrane surface morphology, and combination of surface element integration (SEI) method and the composite Simpson's approach for assessment of interfacial interactions. The new method provides a complete solution to quantitatively calculate interfacial interactions between foulants and rough surface membrane. Application of this method in a membrane bioreactor (MBR) showed that, high calculation accuracy could be achieved by setting high segment number, and moreover, the strength of three energy components and energy barrier was remarkably impaired by the existence of roughness on the membrane surface, indicating that membrane surface morphology exerted profound effects on membrane fouling in the MBR. Good agreement between calculation prediction and fouling phenomena was found, suggesting the feasibility of this method. PMID:26519696

  7. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present