Science.gov

Sample records for roughened silver electrodes

  1. Specific adsorption of halide and pseudohalide ions at electrochemically roughened versus smooth silver-aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Hupp, Joseph T.; Larkin, D.; Weaver, Michael J.

    1983-02-01

    The differential capacitance of electrochemically roughened silver surfaces in mixed perchlorate electrolytes containing chloride, bromide, iodide, thiocyanate, or azide anions has been measured as a function of electrode potential and anion concentration. These results are compared with corresponding data for electropolished silver in order to ascertain the influence of surface roughening on the double-layer structure and composition of polycrystalline silver-aqueous interfaces. The surface concentrations of specifically adsorbed anions were obtained from these capacitance-potential data using a "Hurwitz-Parsons" type of analysis. Although electrochemical roughening by means of a conventional oxidation-reduction cycle in chloride media is a prerequisite to the appearance of Surface-Enhanced Raman Scattering (SERS) for these adsorbates, it yields only moderate (ca. 1.5- to 2-fold) increases in the actual surface area and has a relatively minor effect on their average surface concentration. However, roughening does induce noticeable changes in the morphology of the capacitance-potential curves which are traced to alterations in the surface-crystallite structure. Comparisons between the potential dependence of SERS with corresponding capacitance-potential data indicate that anion coverages close to a monolayer are necessary for stable SERS. This is attributed to the stabilization of Raman-active silver clusters by surrounding adsorbed anions.

  2. Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation.

    PubMed

    Weremfo, Alexander; Carter, Paul; Hibbert, D Brynn; Zhao, Chuan

    2015-03-01

    Platinum electrodes have been electrochemically roughened (roughness factors up to 430) and evaluated for use as neural stimulation electrodes. The roughened electrodes show superior interfacial properties with increasing surface roughness. The roughened electrode (fR = 250) has a charge injection limit of 1.0 mC cm(-2) (400 μs pulse width), which is superior to that of titanium nitride (0.87 mC cm(-2)) but comparable to that of carbon nanotubes (1.0-1.6 mC cm(-2)). The surface roughness can also be optimized for different neural stimulation applications based on the available charge density at a particular pulse width of stimulation. The roughened platinum electrodes demonstrated good mechanical stability under harsh ultrasonication and electrochemical stability under continuous biphasic stimulation, indicating the potential of this biological interface to be safe and stable. PMID:25669232

  3. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study

    NASA Astrophysics Data System (ADS)

    Li, Wu-Hu; Li, Xiao-Yuan; Yu, Nai-Teng

    1999-10-01

    Surface-enhanced resonance hyper-Raman scattering (SERHRS) and surface-enhanced resonance Raman scattering (SERRS) of three dyes, rhodamine 6G, crystal violet and basic fuchsin, are studied comparatively on electrochemically roughened silver electrode and silver colloid, respectively. All three dyes show a better SERHRS efficiency on the silver colloid than on the silver electrode, a phenomenon just opposite to what we have recently observed for pyridine and pyrazine [Chem. Phys. Lett. 305 (1999) 303]. These results suggest that the efficiency of SEHRS depends not only on the active surfaces employed (colloidal metals versus roughened electrodes) but also on the types of the adsorbed molecules.

  4. Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase

    PubMed Central

    Yang, Chengliang; Xiang, Xiangjun; Zhang, Ying; Peng, Zenghui; Cao, Zhaoliang; Wang, Junlin; Xuan, Li

    2015-01-01

    Large-scale controllable fabrication of highly roughened flower-like silver nanostructures is demonstrated experimentally via electrodeposition in the liquid crystalline phase. Different sizes of silver flowers are fabricated by adjusting the deposition time and the concentration of the silver nitrate solution. The density of the silver flowers in the sample is also controllable in this work. The flower-like silver nanostructures can serve as effective surface-enhanced Raman scattering and surface-enhanced fluorescence substrates because of their local surface plasmon resonance, and they may have applications in photoluminescence and catalysis. This liquid crystalline phase is used as a soft template for fabricating flower-like silver nanostructures for the first time, and this approach is suitable for large-scale uniform fabrication up to several centimetres. PMID:26216669

  5. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  6. Surface-enhanced Raman spectroscopy of surfactants on silver electrodes

    SciTech Connect

    Sun, Soncheng; Birke, R.L.; Lombardi, J.R. )

    1990-03-08

    Surface-enhanced Raman spectroscopy (SERS) has been used to study different kinds of surfactants (cationic, anionic, and nonionic surfactants) adsorbed on a roughened Ag electrode. Spectral assignments are made for the SERS spectrum of cetylpyridinium chloride (CPC), and it is shown that the molecule is oriented with its pyridinium ring end-on at the electrode surface at potentials positive to the point of zero charge (pzc) on Ag.

  7. Failure of silver nanowire transparent electrodes under current flow

    PubMed Central

    2013-01-01

    Silver nanowire transparent electrodes have received much attention as a replacement for indium tin oxide, particularly in organic solar cells. In this paper, we show that when silver nanowire electrodes conduct current at levels encountered in organic solar cells, the electrodes can fail in as little as 2 days. Electrode failure is caused by Joule heating which causes the nanowires to breakup and thus create an electrical discontinuity in the nanowire film. More heat is created, and thus failure occurs sooner, in more resistive electrodes and at higher current densities. Suggestions to improve the stability of silver nanowire electrodes are given. PMID:23680014

  8. Silver electrodes for reversible oxygen sensor applications

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-09-01

    We report a single oxygen atomic sensor based on a scanning tunneling microscope break-junction (STM-BJ) technique by using silver electrodes at room temperature. The oxygen concentration was adjusted with argon gas in a glove box. An oxygen atom was inserted in the gap of the Ag electrodes after the Ag metal point contact had been ruptured during stretching of the Ag atomic junctions by moving a piezo. We successfully measured the conductance of a single oxygen atom by forming a series with the Ag contact, Ag-O-Ag bond. We found that the probability of Ag-O-Ag junction formation increased with increasing oxygen concentration. Furthermore, we observed that the peak height in the oxygen conductance histogram was changed reversibly depending on the oxygen concentration in a glove box. It confirms that our STM-BJ can be used for atomic sensor applications in the future.

  9. Preparation of thin film silver fluoride electrodes from constituent elements

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.

  10. Life capability of the silver electrode in alkaline electrochemical cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1976-01-01

    Estimates of silver electrode degradation rates were made by comparing the recently measured capacities with the reported early life capacities. Chemical analyses were carried out to determine the extent of silver loss from the electrode and its distribution throughout the cell components. The results established that the silver electrode is very stable when stored at reduced temperatures in the range of 0 to -51 C, in which it exhibits a permanent degradation in capacity of 0.5%/year. The results also indicated that the silver electrode is not quite as stable when operated and stored at room temperature, where it exhibits permanent degradation in the range of 3% to 14%/year. These results were employed in predicting the life capability of the proposed new Ag-H2 cell and also in assessing the merits of employing silver electrodes in long-life probe batteries.

  11. A nano-silver enzyme electrode for organophosphorus pesticide detection.

    PubMed

    Zheng, Qiqi; Yu, Yonghua; Fan, Kai; Ji, Feng; Wu, Jian; Ying, Yibin

    2016-08-01

    A nano-silver electrode immobilizing acetylcholinesterase (AChE) for the detection of organophosphorus (OPPs) pesticides is reported. Scanning electron microscopy (SEM) was used to characterize the surface structure of two kinds of electrodes fabricated with different sizes of silver powders and the interface between chitosan layer and nano-silver powder layer. Cyclic voltammetry was carried out to characterize the response of silver/chitosan electrode in the absence and in the presence of thiocholine (TCh). It was also used to evaluate the insulativity of the chitosan layer. An amperometric method was performed to measure the response of the electrode to TCh, which is the product of the enzymatic reaction for detecting organophosphorus pesticides indirectly. Although there are many kinds of nanoparticles, silver was chosen for its internal advantage in detecting TCh at low potential without further modification. The result shows nano-silver powder has better performance than usual silver powder, and the limit of detection of paraoxon is 4 ppb under optimized conditions. One percent (w/v) chitosan solution was used as binder for the immobilization of nano-silver powder and AChE, which made it possible for independent electrode fabrication at room temperature, whereas 3% (w/v) chitosan solution was used as insulating compound for controlling the electrode area. Unlike traditional organic insulating ink, chitosan is safe and environmentally friendly, and it is used as insulating material for the first time. The flexible nano-silver/AChE/chitosan electrode was evaluated in Chinese chives and cabbage, and the recoveries of standard addition were 105.11 and 96.41%, respectively. Owing to the antibacterial property of nano-silver and the biocompatibility, safety, and biodegradability of chitosan, the proposed method is safe, facile, environmentally friendly, and has great potential in organophosphorus pesticide detection for food safety. Graphical Abstract Current

  12. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity.

    PubMed

    Hauger, Tate C; Al-Rafia, S M Ibrahim; Buriak, Jillian M

    2013-12-11

    Silver nanowire mesh electrodes represent a possible mass-manufacturable route toward transparent and flexible electrodes for plastic-based electronics such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), and others. Here we describe a route that is based upon spray-coated silver nanowire meshes on polyethylene terephthalate (PET) sheets that are treated with a straightforward combination of heat and pressure to generate electrodes that have low sheet resistance, good optical transmission, that are topologically flat, and adhere well to the PET substrate. The silver nanowire meshes were prepared by spray-coating a solution of silver nanowires onto PET, in air at slightly elevated temperatures. The as-prepared silver nanowire electrodes are highly resistive due to the poor contact between the individual silver nanowires. Light pressure applied with a stainless steel rod, rolled over the as-sprayed silver nanowire meshes on PET with a speed of 10 cm s(-1) and a pressure of 50 psi, results in silver nanowire mesh arrays with sheet resistances of less than 20 Ω/□. Bending of these rolled nanowire meshes on PET with different radii of curvature, from 50 to 0.625 mm, showed no degradation of the conductivity of the electrodes, as shown by the constant sheet resistance before and after bending. Repeated bending (100 times) around a rod with a radius of curvature of 1 mm also showed no increase in the sheet resistance, demonstrating good adherence and no signs of delamination of the nanowire mesh array. The diffuse and direct transmittance of the silver nanowires (both rolled and as-sprayed) was measured for wavelengths from 350 to 1200 nm, and the diffuse transmission was similar to that of the PET substrate; the direct transmission decreases by about 7-8%. The silver nanowires were then incorporated into OPV devices with the following architecture: transparent electrode/PEDOT:PSS/P3HT:PC61BM/LiF/Al. While slightly lower in efficiency than the

  13. Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Brown, Curtis

    The instability of silver(II) oxide electrodes used in silver/zinc reserve batteries is the well known cause of capacity loss and delayed activation in reserve batteries after they are stored in the dry, unactivated state for extended periods of time. Metal contaminants in sintered/electroformed electrodes destabilize the oxide and the solid state reaction between AgO and elemental silver results in the formation of the lower capacity monovalent oxide Ag 2O. Chemically prepared (CP) AgO can be used to avoid the metal contaminants and to minimize the interfacial contact area between AgO and Ag, thus minimizing the affects of aging on the electrodes. Electrodes were fabricated with CP AgO and polytetrafluoroethylene (PTFE) binder and expanded silver metal current collectors. Experimentally, both electrode active material compacts (AgO and binder only) and electrodes complete with AgO/binder and silver current collector were tested to evaluate the influence of the current collector on aging. The electrode samples were discharged at a constant rate of 50 mA cm -2 before and after storage at 60°C for 21 days as well as after storage at room ambient temperature conditions for 91 months. The results indicate that the affects of aging upon the AgO/binder compacts are insignificant for long term storage at room temperature. However, thermally accelerated aging at high temperature (60°C) affects both transient and stabilized load voltage as well as capacity. In terms of capacity, the AgO/binder mix itself looses about 5% capacity after 21 days dry storage at 60°C while electrodes complete with current collector loose about 8%. The 60% increase in capacity loss is attributed to the solid state reaction between AgO and elemental silver.

  14. Highly Robust Silver Nanowire Network for Transparent Electrode.

    PubMed

    Song, Tze-Bin; Rim, You Seung; Liu, Fengmin; Bob, Brion; Ye, Shenglin; Hsieh, Yao-Tsung; Yang, Yang

    2015-11-11

    Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes. PMID:26488682

  15. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.

    PubMed

    Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

    2014-10-28

    Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics. PMID:25285984

  16. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  17. Inkjet printed fractal-connected electrodes with silver nanoparticle ink.

    PubMed

    Vaseem, Mohammad; Lee, Kil Mok; Hong, A-Ra; Hahn, Yoon-Bong

    2012-06-27

    The development of a simple and reliable method for nanoparticles-based ink in an aqueous solution is still a challenge for its inkjet printing application. Herein, we demonstrate the inkjet printing of fractal-aggregated silver (Ag) electrode lines on substrates. Spherical, monodisperse Ag nanoparticles have been synthesized using silver nitrate as a precursor, ethylene glycol as a reducing agent, and polyvinyl pyrrollidone as a capping agent. As-synthesized pure Ag nanoparticles were well dispersed in water-ethylene glycol mixture, which was directly used as an ink for inkjet printing. Using this ink, the Ag electrodes of fractal-connected lines were printed on Si/SiO2, glass, and polymer substrates. The fractal-connected Ag lines were attributed to the diffusion-limited aggregation of Ag nanoparticles and the effect of annealing on conductivity was also examined. PMID:22670766

  18. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  19. Ionic polymer metal composites with polypyrrole-silver electrodes

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  20. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    PubMed

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants. PMID:22850931

  1. Amperometric Sensor Used for Determination of Thiocyanate with a Silver Nanoparticles Modified Electrode

    PubMed Central

    Wang, Guang-Feng; Li, Mao-Guo; Gao, Ying-Chun; Fang, Bin

    2004-01-01

    A novel electrode modified with silver nanoparticles was fabricated. It is found that the reducibility of silver nanoparticles is higher than for bulk silver by comparing a silver nanoparticles modified electrode with a silver micro-disk electrode. When SCN- was added, a new oxidation peak occurred and the anodic peak current of silver nanoparticles decreased. The new anodic peak current is proportional to the thiocyanate concentration in the range of 5.0×10-7∼4.0×10-4 mol/L in pH 6.0 NaH2PO4-Na2HPO4 buffer solutions (PBS). The detection limit (S/N=3) is 4×10-8 mol/L. This method has been applied to the determination of saliva (smoker and non-smoker).

  2. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver-silver sulfate

    NASA Astrophysics Data System (ADS)

    Ventosa, Edgar; Skoumal, Marcel; Vázquez, Francisco Javier; Flox, Cristina; Morante, Joan Ramon

    2014-12-01

    In-depth evaluation of the electrochemical performance of all-vanadium redox flow batteries (VRFBs) under operando conditions requires the insertion of a reliable reference electrode in the battery cell. In this work, an easy-to-make reference electrode based on silver-silver sulfate is proposed and described for VRFBs. The relevance and feasibility of the information obtained by inserting the reference electrode is illustrated with the study of ammoxidized graphite felts. In this case, we show that the kinetic of the electrochemical reaction VO2+/VO2+ is slower than that of V2+/V3+ at the electrode. While the slow kinetics at the positive electrode limits the voltage efficiency, the operating potential of the negative electrode, which is outside the stability widow of water, reduces the coulombic efficiency due to the hydrogen evolution.

  3. Modified silver nanowire transparent electrodes with exceptional stability against oxidation.

    PubMed

    Idier, J; Neri, W; Labrugère, C; Ly, I; Poulin, P; Backov, R

    2016-03-11

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. PMID:26866415

  4. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    NASA Astrophysics Data System (ADS)

    Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R.

    2016-03-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones.

  5. Screen printed silver top electrode for efficient inverted organic solar cells

    SciTech Connect

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  6. Roll to plate printed stretchable silver electrode using single walled carbon nanotube on elastomeric substrate.

    PubMed

    Jung, Minhun; Noh, Jinsoo; Kim, Junseok; Kim, Donghwan; Cho, Gyoujin

    2013-08-01

    Stretchable electronics may open new applications in display, sensors and actuators. To attain the stretchable electronics, the ink formulation should be compatible with elastomeric substrates. Here, we present the formulation of silver nanoparticles and single walled carbon nanotubes (SWNTs) for printing stretchable silver electrodes on the elastomeric substrates. Highly conductive stretchable electrodes can be printed directly on the poly(styrene-b-butadiene-b-styrene) (PSBS) substrates by roll to plate (R2P) gravure printer. During the stretching test, R2P printed silver based stretchable electrodes show the high conductivity of 1000 S cm(-1) at 0.27 wt% of SWNT loading. Furthermore, the resistance of the printed silver electrode was not changed up to 15% of tensile strain. PMID:23882805

  7. Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field.

    PubMed

    Su, Yuan-Bo; Li, Qing-Biao; Wang, Yuan-Peng; Wang, Hai-Tao; Huang, Jia-le; Yang, Xin

    2009-10-30

    Silver was reclaimed from silver-plating wastewater by using a pulsed electric field (PEF) combined with static cylinder electrodes (SCE). The conditions that produced the maximal silver recovery rate (RR(Ag)) (99%) were as follows: average retention time of 10 min, interelectrode gap of 50mm, solution pH of 9.0, temperature of 45 degrees C, initial Ag(I) concentration of 1000 mg L(-1), PEF pulse frequency of 1200 Hz, current density of 5.0 A m(-2) and a pulse duty cycle of 60%. Compared with the conventional direct current (DC) technology, the PEF process exhibited improvements in the silver recovery rate (RR(Ag)), total energy consumption (TEC) and physical properties of the silver deposits, especially for low Ag(I) concentrations, for example, from 500 to 1000 mg L(-1). For an initial Ag(I) concentration of 500 mg L(-1), the PEF process produced an RR(Ag) of up to 99%, and the TEC was 4.56 kWh (kg Ag)(-1). In comparison, the RR(Ag) and TEC were 90% and 5.66 kWh (kg Ag)(-1), respectively, in the DC process. The results of SEM observation and XRD analysis indicated that the silver deposits formed by the PEF process were smaller, denser, and of a higher purity than those produced by the DC process. Therefore, the presented method was effective for reclaiming silver from silver-plating wastewater. PMID:19545945

  8. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles.

    PubMed

    Janrungroatsakul, Wanwisa; Lertvachirapaiboon, Chutiparn; Ngeontae, Wittaya; Aeungmaitrepirom, Wanlapa; Chailapakul, Orawon; Ekgasit, Sanong; Tuntulani, Thawatchai

    2013-11-21

    Films of silver nanoparticles are used for the first time as an electrical conductor and ion-to-electron transducer to fabricate coated-wire ion selective electrodes (ISEs) on paper. The film of nano silver ink (nano silver film), synthesized from the reduction of AgNO3 by NaBH4, was screen printed on paper. Transmission electron microscopy showed that the synthesized silver nanoparticles (AgNPs) possessed a spherical shape with diameter ca. 5 nm. Energy-dispersive X-ray spectroscopy supported the purity and good stability of the synthesized AgNPs. Nano silver films were sintered at room temperature, 100 °C and 200 °C. Upon increasing the sintering temperature, atomic force microscopy showed that the size of AgNPs of nano silver films increased, but the sheet resistivity decreased. Silver ISEs were then fabricated from nano silver films and o-NPOE-plasticized polymeric membranes containing benzothiazolyl calix[4]arene () as ionophore and KTpClPB as anionic site. The performance of the developed Ag-ISEs was investigated by potentiometric measurements, potentiometric water layer tests, current reversal chronopotentiometry and electrochemical impedance spectroscopy. The coated-wire electrode fabricated from the nano silver film sintering at room temperature showed the best characteristics of Ag-ISEs giving a near Nernstian response slope of 59.7 ± 1.0 mV per decade, 10(-6) to 10(-2) M linear range, detection limit of 4.5 × 10(-7) M, long-term potential stability and good reversibility. PMID:24071789

  9. Evidence for the conformational rigidity of triplex d(C +T) 8-d(AG) 8·d(CT) 8 on silver electrode revealed by Fourier transform Raman scattering studies

    NASA Astrophysics Data System (ADS)

    Fang, Ye; Bai, Chunli; Wang, Ting; Zhong, Faping; Tang, Youqi; Lin, S. B.; Kan, Lou-sing

    1996-03-01

    Fourier transform surface enhanced Raman scattering spectroscopy (FT-SERS) has been first applied to characterize the triple stranded helix d(C +T) 8-d(AG) 8·d(CT) 8 (pH 4.5) (triplex) and its corresponding double-stranded helix d(AG) 8·d(CT) 8 (pH 7.0) (duplex) at an ex situ roughened silver electrode polarized at between 0.0 and -1.0 V vs. {Ag}/{AgCl}. The triplex adsorbed on the silver electrode yields five intense and one weak SERS bands located at 241, 839, 1189, 1293, 1643, and 1530 cm -1, respectively. These bands are not seen in the FT-SERS spectrum of the duplex, which showed a pattern similar to that of an oligo-DNA duplex observed by Koglin and Sequaries (Top. Curr. Chem., 134 (1989) 1). In the case of the triplex, the occurrence of the 839 cm -1 band with concomitant disappearance of the adsorbed adenine ring-breathing band at 734 cm -1 of the duplex indicates that the helical structure of the triplex near the surface of the silver electrode is well preserved and exhibits conformational rigidity. We observed a desorption process of the triplex from the silver electrode when the electrode approached -0.9 V (potential of zero charge of the triplex) vs. {Ag}/{AgCl}. This indicates that the highly negatively charged triplex shows a more favorable absorption on a highly positively charged silver surface. The structure of the triplex has also been studied by Fourier transform infrared (FTIR) and Raman spectroscopy. The vibrational spectra obtained clearly revealed that the conformation of the sugar moiety of the purine strand and one pyrimidine strand in the triplex is C 2'-endo/anti, whereas that of the other pyrimidine strand is C 3'-endo/anti.

  10. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells. PMID:23206541

  11. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring

    PubMed Central

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F.; Abächerli, Roger; Meyer, Veronika R.; Rossi, René M.

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  12. Embroidered electrode with silver/titanium coating for long-term ECG monitoring.

    PubMed

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F; Abächerli, Roger; Meyer, Veronika R; Rossi, René M

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  13. Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes

    NASA Astrophysics Data System (ADS)

    Layani, Michael; Darmawan, Peter; Foo, Wan Ling; Liu, Liang; Kamyshny, Alexander; Mandler, Daniel; Magdassi, Schlomo; Lee, Pooi See

    2014-04-01

    Printed electrochromic flexible films were obtained by combining transparent silver grid electrodes formed by self-assembly and inkjet printed WO3 nanoparticles. Concentrated dispersions of WO3 nanoparticles were inkjet printed on transparent plastic silver grid electrodes with a high transparency of 83% in the spectral range of 400-800 nm, and a low sheet resistance in the range of 1-5 Ω sq-1. These electrodes were used for electrochromic applications for the first time. The resultant patterned nanostructured electrochromic films maintained their coloring and bleaching performance after bending of the flexible films.Printed electrochromic flexible films were obtained by combining transparent silver grid electrodes formed by self-assembly and inkjet printed WO3 nanoparticles. Concentrated dispersions of WO3 nanoparticles were inkjet printed on transparent plastic silver grid electrodes with a high transparency of 83% in the spectral range of 400-800 nm, and a low sheet resistance in the range of 1-5 Ω sq-1. These electrodes were used for electrochromic applications for the first time. The resultant patterned nanostructured electrochromic films maintained their coloring and bleaching performance after bending of the flexible films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06890k

  14. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective.

    PubMed

    Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C

    2016-04-21

    Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant. PMID:26969912

  15. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-10-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  16. Investigation of spray-coated silver-microparticle electrodes for ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Meis, Catherine; Hashemi, Nastaran; Montazami, Reza

    2014-04-01

    We have employed the easy-to-scale-up method of spray-coating in combination with layer-by-layer self-assembly technique to fabricate ionic electroactive polymer actuators (IEAPAs). IEAPAs with spray-coated silver microparticle electrodes demonstrate enhanced strain and response time when compared to nearly identical, optimized conventional IEAPA with gold leaf electrodes. The results demonstrate that strain of these IEAPAs increases with the decrease of thickness of the outer silver microparticle electrodes. In addition, the response time of the actuators at frequencies of 1 and 10 Hz improves compared to optimized conventionally fabricated IEAPA. It was found that samples consisting of spray-coated silver electrodes can charge up to ˜3 times faster than conventional actuators at 1 Hz frequency. Faster charging/discharging results in higher mobility of ions within the actuator and thus, faster actuation. Given the relatively large thickness of the silver microparticle electrodes (˜50× gold leaf), similar strain was observed due to the lower Young's modulus of spray-coated layers compared to that of bulk material.

  17. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  18. Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver.

    PubMed

    Davies, Trevor J

    2016-08-01

    Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag(+) in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis. PMID:27276994

  19. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    NASA Astrophysics Data System (ADS)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  20. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m‑1 versus 0.47  ±  0.20 S m‑1) and specific membrane capacitance values (41  ±  25 mF m‑2 versus 55  ±  26 mF m‑2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  1. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  2. Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes.

    PubMed

    Kim, Jisoo; Nam, Yun Seok; Song, Myoung Hoon; Park, Hyung Wook

    2016-08-17

    Mechanical properties of transparent electrodes, including flexibility, are important in flexible electronics for sustaining electrical conductivity under bending with small radius of curvature. Low contact resistance of junctions in metal nanowire percolation networks is the most important factor to produce electrodes with excellent optical, electrical and mechanical performance. Here, we report the fabrication of welded silver nanowire percolation networks using large pulsed electron beam (LPEB) irradiation as a welding process of silver nanowires (AgNWs). It results in modification of electrical and mechanical properties because of the low contact resistance at welded junctions. Consequently, the flexible and transparent AgNW electrodes fabricated by LPEB irradiation showed lower sheet resistance of 12.63 Ω sq(-1) at high transmittance of 93% (at 550 nm), and superb mechanical flexibility, compared with other AgNW electrodes prepared by thermal treatement and without any treatment. Polymer light-emitting diodes (PLEDs) using AgNWs by LPEB irradiation were fabricated to confirm that the AgNW electrode by LPEB irradiation was able to become alternative to indium tin oxide (ITO) and they showed good device performance as a maximum luminous efficiency of 7.37 cd A(-1), and excellent mechanical flexibility under bending with small radius of curvature. PMID:27463783

  3. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  4. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode.

    PubMed

    Solovyeva, Elena V; Myund, Liubov A; Denisova, Anna S

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd(2+) ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd(2+) complex which desorption causes the loss of SERS signal. PMID:25956332

  5. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    SciTech Connect

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai Kim, Sang-Ho

    2014-09-15

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  6. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-02-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq-1). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed.

  7. Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides.

    PubMed

    de Lima, Camila Alves; Santana, Edson Roberto; Piovesan, Jamille Valéria; Spinelli, Almir

    2016-04-01

    This paper reports the electroanalytical determination of pendimethalin and ethyl parathion by square-wave adsorptive stripping voltammetry using a material comprised of chitosan-stabilized silver nanoparticles to modify a glassy carbon electrode. Under optimized experimental conditions, the peak current was found to vary linearly with the concentration of pendimethalin in the range of 70 to 2000 nmol L(-1) and with concentration of ethyl parathion in the range of 40 to 8000 nmol L(-1). Detection limits of 36 and 40 nmol L(-1) were obtained for pendimethalin and ethyl parathion, respectively. The silver - nanoparticle-modified electrode was successfully employed for the analysis of pesticides in tap and mineral water (pendimethalin) and in lettuce and honey (ethyl parathion) samples. Pendimethalin recovery was between 94 and 100 %, and ethyl parathion recovery was between 97 and 101 %, indicating no significant matrix interference effects on the analytical results. The accuracy of the electroanalytical methodology using the proposed modified electrode was also compared to that of the UV-vis spectrophotometric method. PMID:26873207

  8. Tailored silver grid as transparent electrodes directly written by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Yuan; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Ren, Xue-Liang; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2016-05-01

    We present the design and realization of silver grid transparent electrodes (SGTEs) easily fabricated by femtosecond laser direct writing of silver aqueous solution. The fabricated SGTEs with a sheet resistance down to 47 Ω/□ and optical transmittance up to 93% are demonstrated. These sheet resistance and transmittance values are comparable to commercially available indium tin oxide. High uniform morphology of the directly written SGTEs results in the ultra-stable tailored performance parameter at electronic and optical fields. The sheet resistance and transmittance can be tailored precisely by manipulating the filling fraction of the uniform SGTEs. This study provides an approach for creating SGTEs in a controllable fashion, and the SGTEs exhibit high transmittance and low sheet resistance, which could open up new avenues towards widespread application in electronics, photovoltaics, and optoelectronics.

  9. Surface Modification of Silver Nanowires for Morphology and Processing Control in Composite Transparent Electrodes.

    PubMed

    Liang, Zhiming; Graham, Kenneth R

    2015-10-01

    Silver nanowires are attractive components for a number of materials and applications, including silver nanowire (AgNW)-polymer composites, electrically conductive coatings, and transparent electrodes. In this manuscript, the ability of thiols with hydrophobic to ionic end groups to bind to AgNW surfaces is investigated, followed by how the polarity of the surface modifying thiol influences the morphological and electrical properties of both AgNW/PEDOT:PSS blend films and pure AgNW networks. Utilizing surface modification of AgNWs with sodium 3-mercapto-1-propanesulfonate (MPS), morphologically homogeneous AgNW/PEDOT:PSS thin films with an order of magnitude lower sheet resistance at similar transmittance values than unmodified AgNWs are obtained with a one-step processing method. Brief optimization of MPS-AgNW/PEDOT:PSS blends yields a sheet resistance of 22.6 Ω/□ at 81.4% transmittance. PMID:26389535

  10. Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices.

    PubMed

    Kang, Saewon; Kim, Taehyo; Cho, Seungse; Lee, Youngoh; Choe, Ayoung; Walker, Bright; Ko, Seo-Jin; Kim, Jin Young; Ko, Hyunhyub

    2015-12-01

    Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes. PMID:26540011

  11. Fabrication of self-forming silver network as transparent conductive electrode with photoresist

    NASA Astrophysics Data System (ADS)

    Yang, Chaobin; Merlo, Juan M.; Burns, Michael J.; Kempa, Krzysztof; Naughton, Michael J.

    It has been reported that a metal wire network, obtained by sputtering with a self-cracking gel film mask, can function as a TCO replacement, perhaps reducing end device cost. Toward further process simplification and cost reduction, we are investigating various electroless deposition schemes to template a wire network electrode. We report here that a conventional photoresist film can be prepared with a network of microcracks and can be used as a mask to electrolessly deposit metal, e.g. silver. With this method, no vacuum chambers are required, and undeposited metal can even be recycled for additional depositions.

  12. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode

    NASA Astrophysics Data System (ADS)

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Perumal Veeramalai, Chandrasekar; Guo, Tailiang

    2016-03-01

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.

  13. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode.

    PubMed

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-03-01

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%. PMID:26821871

  14. Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.

    PubMed

    Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok

    2016-01-01

    Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. PMID:26612081

  15. 3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors.

    PubMed

    Kim, Jiye; Lee, So Hee; Kim, Haekyoung; Kim, Se Hyun; Park, Chan Eon

    2015-07-01

    We successfully fabricated high performance bottom-contact organic field-effect transistors (OFETs) using silver nanowire (AgNW) network electrodes by spray deposition. The synthesized AgNWs have the dimensions of 40-80 nm in diameter and 30-80 μm in length and are randomly distributed and interconnected to form a 3D hollow framework. The AgNWs networks, deposited by spray coating, yield an average optical transmittance of up to 88% and a sheet resistance as low as 10 ohm/sq. For using AgNWs as source/drain electrodes of OFETs with a bottom-contact configuration, the large contact resistance at the AgNWs/organic channel remains a critical issue for charge injection. To enhance charge injection, we fabricate semiconductor crystals on the AgNW using an adsorbed residual poly(N-vinylpyrrolidone) layer. The resulting bottom-contact OFETs exhibit high mobility up to 1.02 cm(2)/(V s) and are similar to that of the top-contact Au electrodes OFETs with low contact resistance. A morphological study shows that the pentacene crystals coalesced to form continuous morphology on the nanowires and are highly interconnected with those on the channel. These features contribute to efficient charge injection and encourage the improvement of the bottom-contact device performance. Furthermore, the large contact area of individual AgNWs spreading out to the channel at the edge of the electrode also improves device performance. PMID:26083099

  16. From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection.

    PubMed

    Wen, Ying; Lin, Ai-Jing; Chen, Hui-Fen; Jiao, Ying-Zhi; Yang, Hai-Feng

    2013-03-15

    A facile method of multi-potential step-scan has been employed to fabricate the dendritic silver nanostructures on a silver thin film based digital video disc (DVD) electrode. The morphologies of the nanostructures, the chemical composition, and the crystal structure have been characterized by field-emission scanning electron microscopy, energy-dispersed x-ray spectroscopy, and x-ray diffraction, respectively. The electrocatalytic activity of the resulting electrode toward the electro-reduction of hydrogen peroxide (H(2)O(2)) has been examined via cyclic voltammetry and amperometric analysis. The excellent linear relationship between current response and H(2)O(2) concentration is observed in the range from 5.88×10(-7) to 6.73×10(-5) mol L(-1) and the detection limit is 2×10(-7) mol L(-1) (S/N=3). The as-developed method has been employed to determine H(2)O(2) concentration in real samples. PMID:23017675

  17. Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics.

    PubMed

    Miller, Michael S; O'Kane, Jessica C; Niec, Adrian; Carmichael, R Stephen; Carmichael, Tricia Breen

    2013-10-23

    We present new flexible, transparent, and conductive coatings composed of an annealed silver nanowire network embedded in a polyurethane optical adhesive. These coatings can be applied to rigid glass substrates as well as to flexible polyethylene terephthalate (PET) plastic and elastomeric polydimethylsiloxane (PDMS) substrates to produce highly flexible transparent conductive electrodes. The coatings are as conductive and transparent as indium tin oxide (ITO) films on glass, but they remain conductive at high bending strains and are more durable to marring and scratching than ITO. Coatings on PDMS withstand up to 76% tensile strain and 250 bending cycles of 15% strain with a negligible increase in electrical resistance. Since the silver nanowire network is embedded at the surface of the optical adhesive, these coatings also provide a smooth surface (root mean squared surface roughness<10 nm), making them suitable as transparent conducting electrodes in flexible light-emitting electrochemical cells. These devices continue to emit light even while being bent to radii as low as 1.5 mm and perform as well as unstrained devices after 20 bending cycles of 25% tensile strain. PMID:24007382

  18. Optical properties and electrochemical dealloying of Gold-Silver alloy nanoparticles immobilized on composite thin-film electrodes

    NASA Astrophysics Data System (ADS)

    Starr, Christopher A.

    Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (lambdamax = 404 nm) for pure silver to 4.1 x 107 M-1 cm -1 (lambdamax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl 4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The

  19. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors.

    PubMed

    Mayousse, Céline; Celle, Caroline; Moreau, Eléonore; Mainguet, Jean-François; Carella, Alexandre; Simonato, Jean-Pierre

    2013-05-31

    Transparent flexible electrodes made of metallic nanowires, and in particular silver nanowires (AgNWs), appear as an extremely promising alternative to transparent conductive oxides for future optoelectronic devices. Though significant progresses have been made the last few years, there is still some room for improvement regarding the synthesis of high quality silver nanowire solutions and fabrication process of high performance electrodes. We show that the commonly used purification process can be greatly simplified through decantation. Using this process it is possible to fabricate flexible electrodes by spray coating with sheet resistance lower than 25 Ω sq⁻¹ at 90% transparency in the visible spectrum. These electrodes were used to fabricate an operative transparent flexible touch screen. To our knowledge this is the first reported AgNW based touch sensor relying on capacitive technology. PMID:23619480

  20. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    NASA Astrophysics Data System (ADS)

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  1. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    SciTech Connect

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai Kim, Sang-Ho

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  2. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics.

    PubMed

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics. PMID:26778621

  3. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    PubMed Central

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37–0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics. PMID:26778621

  4. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Li, Fushan; Yang, Kaiyu; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-04-01

    In this paper, we reported a low temperature processed planar heterojunction perovskite solar cell employing silver nanowires as the top electrode and ZnO nanoparticles as the electron transport layer. The CH3NH3PbI3 perovskite was grown as the light absorber via two-step spin-coating technique. The as-fabricated perovskite solar cell exhibited the highest power conversion efficiency of 9.21% with short circuit current density of 19.75 mA cm-2, open circuit voltage of 1.02, and fill factor value of 0.457. The solar cell's performance showed negligible difference between the forward and reverse bias scan. This work paves a way for realizing low cost solution processable solar cells.

  5. Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankun; Huang, Lei; Lin, Youjie; Chen, Lu; Zeng, Ziyan; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2015-04-01

    The pencil-drawn sensor is expected to enable a simple, low-cost, and reproducible paper-based sensor platform for widely deployed wireless environmental monitoring of NO2. Herein, we demonstrated a rapid prototyping of chemiresistor-type NO2 sensor by mechanical abrasion of an 8B pencil to form a stripe of uniform graphitic coating on printed silver interdigitated electrodes (IDEs). The Ag IDEs not only offer a low resistance but also provide the assembly of Ag nanoparticles into exfoliated graphene sheets for the paper-based NO2 gas sensors in order to realise much higher sensitivity and better reproducibility comparing with pencil-drawn sensors directly on weighing paper.

  6. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  7. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.

    PubMed

    Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki

    2015-02-21

    The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected. PMID:25588044

  8. Interface Roughening Dynamics of Spreading Droplets

    NASA Astrophysics Data System (ADS)

    Taitelbaum, Haim; Be'Er, Avraham; Hecht, Inbal; Frydman, Aviad; Lereah, Yossi

    2006-03-01

    We review our recent experimental data of interface roughening dynamics of spreading mercury droplets on thin films (silver or gold), obtained using optical microscopy and other techniques (AFM, SEM). We discuss the various results obtained for the roughness and growth exponents associated with the interface dynamics, and their universality classes. We analyze the temporal width fluctuations, obtained for single interfaces, and show that these fluctuations contain information on the lateral correlation length of these interfaces. We show how to extract this length from experimental data, and demonstrate the validity of this method in a wide range of growing interfaces (droplet spreading experiments as well as water imbibition on paper). References: 1. A. Be'er, Y. Lereah and H. Taitelbaum, Physica A, 285, 156 (2000). 2. A. Be'er, Y. Lereah, I. Hecht and H. Taitelbaum, Physica A, 302, 297 (2001). 3. A. Be'er, Y. Lereah, A. Frydman and H. Taitelbaum, Physica A, 314, 325 (2002). 4. A. Be'er and Y. Lereah, J. of Microscopy, 208, 148 (2002). 5. I. Hecht and H. Taitelbaum, Phys. Rev. E, 70, 046307 (2004). 6. A. Be'er, I. Hecht and H. Taitelbaum, Phys. Rev. E, 72, 031606 (2005). 7. I. Hecht, A. Be'er and H. Taitelbaum, Fluctuation and Noise Letters, 5, L319 (2005).

  9. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    PubMed Central

    Decharat, Adit; Wagle, Sanat; Jacobsen, Svein; Melandsø, Frank

    2015-01-01

    High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag) nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices. PMID:25903552

  10. Using silver nano-particle ink in electrode fabrication of high frequency copolymer ultrasonic transducers: modeling and experimental investigation.

    PubMed

    Decharat, Adit; Wagle, Sanat; Jacobsen, Svein; Melandsø, Frank

    2015-01-01

    High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag) nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices. PMID:25903552

  11. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10-3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  12. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    PubMed Central

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-01-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10−3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters. PMID:26333768

  13. Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing.

    PubMed

    Lagrange, M; Langley, D P; Giusti, G; Jiménez, C; Bréchet, Y; Bellet, D

    2015-11-01

    Silver nanowire (AgNW) networks are efficient as flexible transparent electrodes, and are cheaper to fabricate than ITO (Indium Tin Oxide). Hence they are a serious competitor as an alternative to ITO in many applications such as solar cells, OLEDs, transparent heaters. Electrical and optical properties of AgNW networks deposited on glass are investigated in this study and an efficient method to optimize them is proposed. This paper relates network density, nanowire dimensions and thermal annealing directly to the physical properties of the nanowire networksusing original physical models. A fair agreement is found between experimental data and the proposed models. Moreover thermal stability of the nanowires is a key issue in thermal optimization of such networks and needs to be studied. In this work the impact of these four parameters on the networks physical properties are thoroughly investigated via in situ measurements and modelling, such a method being also applicable to other metallic nanowire networks. We demonstrate that this approach enables the optimization of both optical and electrical properties through modification of the junction resistance by thermal annealing, and a suitable choice of nanowire dimensions and network density. This work reports excellent optical and electrical properties of electrodes fabricated from AgNW networks with a transmittance T = 89.2% (at 550 nm) and a sheet resistance of Rs = 2.9 Ω □(-1), leading to the highest reported figure of merit. PMID:26437607

  14. Stability of silver nanowire based electrodes under environmental and electrical stresses.

    PubMed

    Mayousse, Céline; Celle, Caroline; Fraczkiewicz, Alexandra; Simonato, Jean-Pierre

    2015-02-01

    Flexible transparent electrodes fabricated with random networks of silver nanowires (AgNWs) have been widely studied in recent years. This approach appears to be a promising alternative to replace ITO (indium tin oxide) in many optoelectronic applications. Many successful integrations in functional devices have already evidenced the high potential of this technology, but unfortunately only very few studies have been dedicated so far to the stability of this material. We present here a study dealing with the alteration of the electrical properties of AgNW meshes when subjected to different stresses. We demonstrate that AgNW electrodes are very stable when stored under ambient atmosphere up to, at least, two and a half years. Accelerated ageing processes also reveal that concentrated H2S or exposure to light does not cause any significant sheet resistance modification. However, the combination of high relative humidity and high temperature seems to be more critical. In addition, long lasting contact (two years) with PEDOT:PSS can induce deterioration of the electrical properties. Similarly, AgNW/PEDOT:PSS hybrid materials exhibit weaker stability under electrical stress when compared to pristine AgNW networks. PMID:25559872

  15. Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Cheng

    To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.

  16. High-Performance Silver Window Electrodes for Top-Illuminated Organic Photovoltaics Using an Organo-molybdenum Oxide Bronze Interlayer.

    PubMed

    Tyler, Martin S; Walker, Marc; Hatton, Ross A

    2016-05-18

    We report an organo-molybdenumn oxide bronze that enables the fabrication of high-performance silver window electrodes for top-illuminated solution processed organic photovoltaics without complicating the process of device fabrication. This hybrid material combines the function of wide-band-gap interlayer for efficient hole extraction with the role of metal electrode seed layer, enabling the fabrication of highly transparent, low-sheet-resistance silver window electrodes. Additionally it is also processed from ethanol, which ensures orthogonality with a large range of solution processed organic semiconductors. The key organic component is the low cost small molecule 3-mercaptopropionic acid, which (i) promotes metal film formation and imparts robustness at low metal thickness, (ii) reduces the contact resistance at the Ag/molybdenumn oxide bronze interface, (iii) and greatly improves the film forming properties. Silver electrodes with a thickness of 8 nm deposited by simple vacuum evaporation onto this hybrid interlayer have a sheet resistance as low as 9.7 Ohms per square and mean transparency ∼80% over the wavelength range 400-900 nm without the aid of an antireflecting layer, which makes them well-matched to the needs of organic photovoltaics and applicable to perovskite photovoltaics. The application of this hybrid material is demonstrated in two types of top-illuminated organic photovoltaic devices. PMID:27135377

  17. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki

    2015-02-01

    The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa-1. The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present

  18. Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor.

    PubMed

    Li, Mao-Guo; Shang, Yong-Jia; Gao, Ying-Chun; Wang, Guang-Feng; Fang, Bin

    2005-06-01

    A novel mercury-doped silver nanoparticles film glassy carbon (Ag/MFGC) electrode was prepared in this study. Electrochemical behaviors of cysteine on the Ag/MFGC electrode were investigated by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The results indicated that cysteine could be strongly adsorbed on the surface of the Ag/MFGC electrode to form a thin layer. The doped electrode could catalyze the electrode reaction process of cysteine, and the cysteine displayed a pair of well-defined and nearly reversible CV peaks at the electrode in an acetate buffer solution (pH 5.0). The Ag/MFGC electrode was used for determination of cysteine by differential pulse voltammetry. The linear range was between 4.0x10(-7) and 1.3x10(-5) mol/L, with a detection limit of 1.0x10(-7) mol/L and a signal-to-noise ratio of 3. The relative standard deviation was 2.4% for seven successive determinations of 1.0x10(-5) mol/L cysteine. The determinations of cysteine in synthetic samples and urinal samples were carried out and satisfactory results were obtained. Amperometric application of the Ag/MFGC electrode as biosensors is proposed. PMID:15866527

  19. Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Yubo; Wang, Fucun; Chen, Dengjie; Dong, Feifei; Park, Hee Jung; Kwak, Chan; Shao, Zongping

    2012-07-01

    The long-term stability for oxygen reduction reaction (ORR) of two typical perovskite cathode materials of SOFCs, i.e., Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and Sm0.5Sr0.5CoO3-δ (SSC), is investigated in a symmetric cell configuration under air condition at 700 °C using Sm0.2Ce0.8O1.9 (SDC) electrolyte substrate and silver current collectors. Moreover, two different methods of silver current collection are tested, i.e., whole electrode surface deposited with a diluted silver paste (CC-01) and a mesh-like current collector using concentrated silver paste (CC-02). Electrochemical impedance spectra are applied for stability investigations. With the CC-01 current collector, the performance of the electrode deteriorates significantly, although the initial performance is good. By contrast, fairly stable performance is obtained from symmetric cells with either BSCF or SSC + SDC electrodes using the CC-02 current collector, even though a phase transition is observed for BSCF. For instance, after approximately 800 h of continuous stability testing, the area-specific resistance of the BSCF electrode retains a value of approximately 0.065 Ω cm2, except for a slight fluctuation within the range of 0.06-0.07 Ω cm2. These findings reveal that both BSCF and SSC can be stably operated for ORR under symmetric cell conditions; however, an appropriate current collection method is crucial to achieving stable performance.

  20. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  1. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes.

    PubMed

    Zhou, Lei; Xiang, Heng-Yang; Shen, Su; Li, Yan-Qing; Chen, Jing-De; Xie, Hao-Jun; Goldthorpe, Irene A; Chen, Lin-Sen; Lee, Shuit-Tong; Tang, Jian-Xin

    2014-12-23

    Because of their mechanical flexibility, organic light-emitting diodes (OLEDs) hold great promise as a leading technology for display and lighting applications in wearable electronics. The development of flexible OLEDs requires high-quality transparent conductive electrodes with superior bendability and roll-to-roll manufacturing compatibility to replace indium tin oxide (ITO) anodes. Here, we present a flexible transparent conductor on plastic with embedded silver networks which is used to achieve flexible, highly power-efficient large-area green and white OLEDs. By combining an improved outcoupling structure for simultaneously extracting light in waveguide and substrate modes and reducing the surface plasmonic losses, flexible white OLEDs exhibit a power efficiency of 106 lm W(-1) at 1000 cd m(-2) with angular color stability, which is significantly higher than all other reports of flexible white OLEDs. These results represent an exciting step toward the realization of ITO-free, high-efficiency OLEDs for use in a wide variety of high-performance flexible applications. PMID:25470615

  2. The role of chloride ions in rapid synthesis of ultra-long silver nanowires for flexible electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Tian, Yanhong; Ding, Su; Wang, Chunqing

    2016-07-01

    Ultra-long silver nanowires (AgNWs) could be an ideal material to replace the commercial used indium tin oxide in highly conductive and transparent electrodes field. In this report, AgNWs with mean length of 102 μm and even 268 μm have been synthesized through a rapid and one-step polyol method within only 40 min. The effective synthesis was contributed to the relatively high concentration of Cl‑ which facilitated the generation of silver five-twined seeds by heterogeneous nucleation during the nucleation process. By varying the ratio of Cl‑, AgNWs with various diameters ranging from 60 to 141 nm could be obtained. Moreover, AgNWs based electrodes were prepared on paper and polyethylene terephthalate (PET) substrates and the sheet resistance of the PET based transparent electrode were measured to be 14 Ω sq‑1 at optical transmittance of 87%. The mechanical properties of the ultra-long AgNWs based electrodes were also characterized.

  3. Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes

    PubMed Central

    Fukuda, Kenjiro; Hikichi, Kenta; Sekine, Tomohito; Takeda, Yasunori; Minamiki, Tsukuru; Kumaki, Daisuke; Tokito, Shizuo

    2013-01-01

    Mechanical flexibility and compatibility of printing processes are key advantage that organic electronic devices have over conventional inorganic devices. However, one of the major remaining issues for organic devices is insufficient mechanical durability of printed electrodes. Here we have investigated the mechanical durability of both p-type and n-type organic thin-film transistors (TFTs) with ink-jet printed silver electrodes from silver nanoparticle inks. The modified silver nanoparticle inks enabled the strong adhesion to the underlying polymer layer, and the fabricated organic TFTs exhibited excellent reproducibility in the bending cycle tests. The strong channel length dependence on the strain sensitivity was observed in both p-type and n-type organic TFTs. The organic TFTs with a short-channel exhibited higher sensitivity to the bending strain. These results suggest that the flexible organic TFTs with printed silver electrodes have excellent mechanical durability and are useful for bending and strain sensors. PMID:23788235

  4. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    PubMed

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. PMID:24184536

  5. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  6. Silver-Copper Nanoalloy Catalyst Layer for Bifunctional Air Electrodes in Alkaline Media.

    PubMed

    Wu, Xiaoqiang; Chen, Fuyi; Jin, Yachao; Zhang, Nan; Johnston, Roy L

    2015-08-19

    A carbon-free and binder-free catalyst layer composed of a Ag-Cu nanoalloy on Ni foam was used as the air cathode in a zinc-air battery for the first time. The Ag-Cu catalyst was prepared using pulsed laser deposition. The structures of the catalysts were found to consist of crystalline Ag-Cu nanoalloy particles with an average size of 2.58 nm embedded in amorphous Cu films. As observed in the X-ray photoelectron spectra, the Ag 3d core levels shifted to higher binding energies, whereas the Cu 2p core levels shifted to lower binding energies, indicating alloying of the silver and copper. Rotating disk electrode measurements indicated that the oxygen reduction reaction (ORR) proceeded through a four-electron pathway on the Ag50Cu50 and Ag90Cu10 nanoalloy catalysts in alkaline solution. Moreover, the catalytic activity of Ag50Cu50 in the ORR is more efficient than that of Ag90Cu10. By performing charge and discharge cycling measurements, the Ag50Cu50 catalyst layer was confirmed to have a maximum power density of approximately 86.3 mW cm(-2) and an acceptable cell voltage at 0.863 V for current densities up to 100 mA cm(-2) in primary zinc-air batteries. In addition, a round-trip efficiency of approximately 50% at a current density of 20 mA cm(-2) was also obtained in the test. PMID:26200807

  7. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  8. Silver

    Integrated Risk Information System (IRIS)

    Silver ; CASRN 7440 - 22 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  9. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  10. Decolorization of C. I. Reactive Orange 4 and Textile Effluents by Electrochemical Oxidation Technique using Silver-Carbon Composite Electrode.

    PubMed

    Nordin, Norazzizi; Fathrita Mohd Amir, Siti; Rahimi Yusop, Muhammad; Rozali Othman, Mohamed

    2015-01-01

    In this study, the electrochemical oxidation of C. I. Reactive Orange 4 (RO4) on a silver-carbon composite (AgC-PVC) electrode was studied using the cyclic voltammetry, potential liner V, and electrolysis methods. The AgC-PVC electrode was used as the working electrode in the electrochemical measurement of RO4 in the presence of NaCl as a supporting electrolyte. The UV-Vis spectra of RO4 after the electrochemical oxidation showed the complete decolorization of the solution. The electrolysis products were characterized using FTIR and GC-MS. The results showed that in the presence of OCl- as an active oxidant, RO4 molecules are broken down into several lower-molecular-weight molecules by the electrochemical technique. The electrode used was also able to reduce the COD, BOD(5) and surfactant contents in the textile effluents using a pilot scale reactor. This proved that the prepared AgC-PVC electrode was beneficial for removing both the color and other pollutants from textile effluents. PMID:26454599

  11. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  12. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes.

    PubMed

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  13. Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes.

    PubMed

    Miao, Jinlei; Liu, Haihui; Li, Wei; Zhang, Xingxiang

    2016-05-31

    For the scalable fabrication of transparent electrodes and optoelectronic devices, excellent adhesion between the conductive films and the substrates is essential. In this work, a novel mussel-inspired polydopamine-functionalized graphene/silver nanowire hybrid nanomaterial for transparent electrodes was fabricated in a facile manner. Graphene oxide (GO) was functionalized and reduced by polydopamine while remaining stable in water without precipitation. It is shown that the polydopamine-functionalized GO (PFGO) film adhered to the substrate much more easily and more uniformly than the GO film. The PFGO film had a sheet resistance of ∼3.46 × 10(8) Ω/sq and a transparency of 78.2%, with excellent thermal and chemical stability; these characteristics are appropriate for antistatic coatings. Further reduced PFGO (RPFGO) as a conductive adhesion promoter and protective layer for the Ag nanowire (AgNW) significantly enhanced the adhesion force between AgNW networks and the substrate. The RPFGO-AgNW electrode was found to have a sheet resistance of 63 Ω/sq and a transparency of 70.5%. Moreover, the long-term stability of the RPFGO-AgNW electrode was greatly enhanced via the effective protection of the AgNW by RPFGO. These solution-processed antistatic coatings and electrodes have tremendous potential in the applications of optoelectronic devices as a result of their low production cost and facile processing. PMID:27142815

  14. Synthesis and characterization of conductive silver ink for electrode printing on cellulose film

    NASA Astrophysics Data System (ADS)

    Khondoker, Mohammad Abu Hasan; Mun, Seong Cheol; Kim, Jaehwan

    2013-08-01

    Silver nanoparticles with size less than 50 nm were synthesized from silver nitrate, polyvinylpyrrolidone (PVP) and ethylene glycol, where these chemicals acted as metal precursor, stabilizer and reducing agent, respectively. Then a conductive silver ink was prepared with a suitable solvent by adding a viscosifier, hydroxyethyl-cellulose (HEC), and a surfactant, diethylene glycol (DEG). The combined effect of both viscosifier and surfactant on the physical property of the silver ink was analyzed by measuring the contact angle of the silver ink on a cellulose film. Moreover, the influences of PVP molecular weight and reaction temperature on the size of the silver nanoparticles were analyzed. Then the silver ink was coated on the cellulose film by spin coating and the effects of different solvents, sintering temperatures and solid contents on its electrical resistivity were examined. It was found that, with 50 % co-solvent of deionized water and DEG and solid content of around 50 %, the silver ink exhibited the lowest resistivity. This ink can be used for inkjet printing of conductive patterns on cellulose films.

  15. A Raman spectroscopic and electrochemical study of the photoinduced crystallization of triethylenediamine triiodide upon a silver electrode

    NASA Astrophysics Data System (ADS)

    Ozek, Toru; Irish, Donald E.

    1991-02-01

    When a silver electrode, electrochemically coated with AgI, is immersed in an electrolyte containing NaI and the diprotonated form of 1,4-diazabicyclo 2.2.2 octane (abbreviated DABCO-H22+), and is bathed in 514.5 nm radiation from an argon ion laser through the objective of the microscope attachment of the DILOR Omars-89 Raman spectrophotometer, crystals form from the focal point. These are attributed to DABCO-h22+ 213-. Both spectroscopic and electrochemical experiments are described and interrelated. A mechanism for this photoinduced electrochemical crystal growth is presented.

  16. Voltammetric analysis of ordnance materials. Part 2: A portable digital voltammeter for use with a silver wire working electrode

    NASA Astrophysics Data System (ADS)

    Fine, D. A.; Reeve, D. A.; Dickus, R. A.

    1984-12-01

    An inexpensive, portable, digital voltammeter has been designed and built at NWC. The instrument is intended for use with a silver wire working electrode. The voltammeter was built in response to a need on the part of Navy facilities for the monitoring of effluent water from the carbon column cleanup process used to remove propyleneglycoldinitrate from Otto fuel waste water. The instrument may also be used for the monitoring of contaminants such as nitroglycerin, dinitrotoluene, trinitrotoluene and nitroguanidine. This report describes in detail the construction, circuitry, software and operational features of the instrument.

  17. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    NASA Astrophysics Data System (ADS)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20–40 Ω/□ to 7–15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  18. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide.

    PubMed

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Ngoc Phan, Vu; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-19

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%. PMID:27378668

  19. Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: Effect of natural organic matter on the toxicity and speciation of silver.

    PubMed

    Mousavi, Maral P S; Gunsolus, Ian L; Pérez De Jesús, Carlos E; Lancaster, Mitchell; Hussein, Kadir; Haynes, Christy L; Bühlmann, Philippe

    2015-12-15

    The widespread application of silver in consumer products and the resulting contamination of natural environments with silver raise questions about the toxicity of Ag(+) in the ecosystem. Natural organic matter, NOM, which is abundant in water supplies, soil, and sediments, can form stable complexes with Ag(+), altering its bioavailability and toxicity. Herein, the extent and kinetics of Ag(+) binding to NOM, matrix effects on Ag(+) binding to NOM, and the effect of NOM on Ag(+) toxicity to Shewanella oneidensis MR-1 (assessed by the BacLight viability assay) were quantitatively studied with fluorous-phase Ag(+) ion-selective electrodes (ISEs). Our findings show fast kinetics of Ag(+) and NOM binding, weak Ag(+) binding for Suwannee River humic acid, fulvic acid, and aquatic NOM, and stronger Ag(+) binding for Pony Lake fulvic acid and Pahokee Peat humic acid. We quantified the effects of matrix components and pH on Ag(+) binding to NOM, showing that the extent of binding greatly depends on the environmental conditions. The effect of NOM on the toxicity of Ag(+) does not correlate with the extent of Ag(+) binding to NOM, and other forms of silver, such as Ag(+) reduced by NOM, are critical for understanding the effect of NOM on Ag(+) toxicity. This work also shows that fluorous-phase Ag(+) ISEs are effective tools for studying Ag(+) binding to NOM because they can be used in a time-resolved manner to monitor the activity of Ag(+) in situ with high selectivity and without the need for extensive sample preparation. PMID:26284896

  20. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  1. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kalambate, Pramod K.; Dar, Riyaz A.; Karna, Shashi P.; Srivastava, Ashwini K.

    2015-02-01

    In the current study, we present a new hybrid material of double layer capacitive material graphene (GNS), pseudo capacitive polypyrrole (PPY) and highly conducting silver nanoparticles (AgNPs). Graphene/Silver nanoparticles/polypyrrole (GNS/AgNPs/PPY) composite has been synthesized by in situ oxidative polymerization of pyrrole in the presence of GNS and AgNPs. The different mass concentrations of AgNPs were utilized to improve the capacitive performance of supercapacitor. Characterization of the electrode material has been carried out by X-ray diffraction, Raman spectroscopy, Thermal methods, Scanning electron microscopy (SEM) and Transmission electron microscopy. SEM images showed that PPY nanoparticles uniformly coated on graphene sheets along with AgNPs. Electrochemical characterization of the electrode surface has been carried out by means of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Remarkably, GNS/AgNPs/PPY exhibits specific capacitance of 450 F g-1 at current density of 0.9 mA g-1, which is far better than GNS/PPY (288 F g-1), AgNPs/PPY (216 F g-1) and PPY (153 F g-1). Furthermore, GNS/AgNPs/PPY shows high charge-discharge reversibility and retaining over 92.0% of its initial value after 1000 cycles. The cyclic stability of the composite is improved due to the synergistic effect of GNS, AgNPs and PPY.

  2. From surface roughening to QCD string theory

    SciTech Connect

    Keisuke Jimmy Juge et al.

    2001-05-23

    Surface critical phenomena and the related onset of Goldstone modes represent fundamental properties of the confining flux in Quantum Chromodynamics. New ideas on surface roughening and their implications for lattice studies of quark confinement and string formation are presented. Problems with a simple string description of the large Wilson surface are discussed.

  3. Non-enzymatic amperometric detection of hydrogen peroxide in human blood serum samples using a modified silver nanowire electrode.

    PubMed

    Thirumalraj, Balamurugan; Zhao, Duo-Han; Chen, Shen-Ming; Palanisamy, Selvakumar

    2016-05-15

    In this paper, we report a highly sensitive amperometric H2O2 sensor based on silver nanowires (AgNWs) modified screen printed carbon electrode. The AgNWs were synthesized using polyol method. The synthesized AgNWs were characterized by scanning electron microscopy, UV-vis spectroscopy and X-ray diffraction techniques. The average diameter and length of the synthesized AgNWs were found as 86±5 and 385nm, respectively. Under optimum conditions, the AgNWs modified electrode shows a stable amperometric response for H2O2 and was linear over the concentrations ranging from 0.3 to 704.8μM. The non-enzymatic sensor showed a high sensitivity of 662.6μAmM(-1)cm(-2) with a detection limit of 29nM. The response time of the sensor was found as 2s. Furthermore, the AgNWs modified electrode exhibited a good recovery of H2O2 (94.3%) in the human blood serum samples. PMID:26939075

  4. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D.

    2016-05-01

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGOX) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGOX (1-3 monolayers-thick) and AgNWs exhibit sheet resistances of ˜100-1000 kΩ/□ and 100-900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGOX/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGOX networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGOX/AgNWs' networks, rGOX flakes are found to form conductive "bridges" between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGOX/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  5. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan

    NASA Astrophysics Data System (ADS)

    Ding, Qian; Pan, Yi-wen; Huang, Yuan-feng; Chen, Chen-Tung Arthur; Ye, Ying

    2015-12-01

    Eutrophication-induced ocean acidification is causing a dramatic ecologic change in the coastal ocean. A more acidic ocean would lead to more volatile H2S in the coastal ocean, especially in the area where shallow hydrothermal vents exist. Therefore, the early detection of H2S and its associates is needed. In this study, the preparation method for and the detection limit of an Ag/Ag2S electrode were optimized by coating the electrode with micro-scale to nano-scale silver particles. The size of the silver particles was dependent on the electroplating power used to produce them: (1) direct current power made micrometer scale silver particles, and (2) direct current carrier power made nano-scale silver particles. As a result, the detection limits of [S2-] of the Ag/Ag2S electrode made using direct current and direct carrier current were improved to 1×10-5 mol L-1 and 1×10-7 mol L-1, respectively. Such improvements were mostly due to the fact that nano silver particles have larger surface area and higher surface energy. The Ag/Ag2S electrode made by direct carrier current method was then mounted to a multi-parameter sensor (including a pH and an Eh electrode) used to search of new hydrothermal vents near the Kueishan Tao in May, 2011. A new hydrothermal vent was discovered based on pH, Eh and H2S anomalies at three depths. A clear [S2-] signal anomaly was observed from the top sensor indicating the dispersive pattern of the hot fluid near this shallow vent site. This could also provide additional information on the dispersion pattern of anthropogenic pollutants in the coastal ocean.

  6. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires.

    PubMed

    Shen, Liuxue; Du, Lianhuan; Tan, Shaozao; Zang, Zhigang; Zhao, Chuanxi; Mai, Wenjie

    2016-05-01

    We successfully fabricate flexible electrochromic supercapacitor (SC) electrodes employing novel flexible transparent conducting substrates. The as-synthesized flexible electrochromic SC electrodes exhibit great electrochemical performances (13.6 mF cm(-2), 138.2 F g(-1)) and high coloration efficiency (80.2 cm(2) C(-1)), which demonstrate their potential applications in flexible smart windows combining energy storage and electrochromism. PMID:27087032

  7. Ultrasmooth silver thin film electrodes with high polar liquid wettability for OLED microcavity application.

    PubMed

    Cioarec, Cristina; Melpignano, Patrizia; Gherardi, Nicolas; Clergereaux, Richard; Villeneuve, Christina

    2011-04-01

    For a lab-on-chip application, we fabricate a blue bottom emitting strong microcavity organic light emitting diode (OLED), using very smooth and optically thin (25 nm) silver film as anode on a glass substrate. To improve the hole injection in the OLED device, PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)) has been used, so the silver anode must present not only a very smooth surface but also a strong adherence on the glass and a high wettability to allow a good PEDOT-PSS spin coating deposition. To obtain these physical properties, different 5 nm thick nucleation layers (germanium, chromium, and hydrogenated amorphous carbon) have been used to grow the silver thin films by e-beam deposition. The Ge/Ag bilayer presents all the desired properties: this bilayer, investigated by ellipsometry, optical profilometry, contact angle measurements, and XPS analysis, highlights an ultrasmooth surface correlated with the film growth mode and a high wettability related to its surface chemical composition. PMID:21391637

  8. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer–metal composite (IPMC) actuators

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing

    2016-08-01

    In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.

  9. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction.

    PubMed

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung

    2015-01-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm(-1) (at 0 % strain) and 322.8 S cm(-1) (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles. PMID:26383845

  10. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-05-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  11. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells.

    PubMed

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-12-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode. PMID:27142877

  12. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    PubMed

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. PMID:27612735

  13. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method.

    PubMed

    Choi, Dong Yun; Kang, Hyun Wook; Sung, Hyung Jin; Kim, Sang Soo

    2013-02-01

    For the realization of high-efficiency flexible optoelectronic devices, transparent electrodes should be fabricated through a low-temperature process and have the crucial feature of low surface roughness. In this paper, we demonstrated a two-step spray-coating method for producing large-scale, smooth and flexible silver nanowire (AgNW)-poly3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) composite electrodes. Without the high-temperature annealing process, the conductivity of the composite film was improved via the lamination of highly conductive PEDOT:PSS modified by dimethyl sulfoxide (DMSO). Under the room temperature process condition, we fabricated the AgNW-PEDOT:PSS composite film showing an 84.3% mean optical transmittance with a 10.76 Ω sq(-1) sheet resistance. The figure of merit Φ(TC) was higher than that obtained from the indium tin oxide (ITO) films. The sheet resistance of the composite film slightly increased less than 5.3% during 200 cycles of tensile and compression folding, displaying good electromechanical flexibility for use in flexible optoelectronic applications. PMID:23241687

  14. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, Jihun; Yang, Junghee; Lee, Hyoyoung

    2015-09-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.

  15. Optimization of method for zinc analysis in several bee products on renewable mercury film silver based electrode.

    PubMed

    Opoka, Włodzimierz; Szlósarczyk, Marek; Maślanka, Anna; Piech, Robert; Baś, Bogusław; Włodarczyk, Edyta; Krzek, Jan

    2013-01-01

    Zinc is an interesting target for detection as it is one of the elements necessary for the proper functioning of the human body, its excess and deficiency can cause several symptoms. Several techniques including electrochemistry have been developed but require laboratory equipment, preparative steps and mercury or complex working electrodes. We here described the development of a robust, simple and commercially available electrochemical system. Differential pulse (DP) voltammetry was used for this purpose with the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) and 0.05 M KNO3 solution as a supporting electrolyte. The effect of various factors such as: preconcentration potential and time, pulse amplitude and width, step potential and supporting electrolyte composition are optimized. The limits of detection (LOD) and quantification (LOQ) were 1.62 ng/mL and 4.85 ng/mL, respectively. The repeatability of the method at a concentration level of the analyte as low as 3 ng/mL, expressed as RSD is 3.5% (n = 6). Recovery was determined using certified reference material: Virginia Tobacco Leaves (CTA-VTL-2). The recovery of zinc ranged from 96.6 to 106.5%. The proposed method was successfully applied for determination of zinc in bee products (honey, propolis and diet supplements) after digestion procedure. PMID:24383319

  16. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    PubMed Central

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung

    2015-01-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles. PMID:26383845

  17. Spatial Competition: Roughening of an Experimental Interface

    PubMed Central

    Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518

  18. Spatial Competition: Roughening of an Experimental Interface.

    PubMed

    Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology. PMID:27465518

  19. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  20. Patterning Method for Silver Nanoparticle Electrodes in Fully Solution-Processed Organic Thin-Film Transistors Using Selectively Treated Hydrophilic and Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Fukuda, Kenjiro; Takeda, Yasunori; Kobayashi, Yu; Shimizu, Masahiro; Sekine, Tomohito; Kumaki, Daisuke; Kurihara, Masato; Sakamoto, Masatomi; Tokito, Shizuo

    2013-05-01

    Fully solution-processed organic thin-film transistor (OTFT) devices have been fabricated with simple patterning process at a relatively low process temperature of 100 °C. In the patterning process, a hydrophobic amorphous fluoropolymer material, which was used as the gate dielectric layer and the underlying base layer, was treated with an oxygen plasma to selectively change its surface wetting properties from hydrophobic to hydrophilic. Silver source and drain electrodes were successfully formed in the treated areas with highly uniform line widths and without residues between the electrodes. Nonuniformities in the thickness of the silver electrodes originating from the “coffee-ring” effect were suppressed by optimizing the blend of solvents used with the silver nanoparticles, such that the printed electrodes are appropriate for bottom-gate OTFT devices. A fully solution-processed OTFT device using a polymer semiconductor material (PB16TTT) exhibited good electrical performance with no hysteresis in its transfer characteristics and with good linearity in its output characteristics. A relatively high carrier mobility of 0.14 cm2 V-1 s-1 and an on/off ratio of 1×105 were obtained with the fabricated TFT device.

  1. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  2. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes.

    PubMed

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  3. Hybrid Silver Mesh Electrode for ITO-Free Flexible Polymer Solar Cells with Good Mechanical Stability.

    PubMed

    Kim, Wanjung; Kim, Soyeon; Kang, Iljoong; Jung, Myung Sun; Kim, Sung June; Kim, Jung Kyu; Cho, Sung Min; Kim, Jung-Hyun; Park, Jong Hyeok

    2016-05-10

    Herein, we report a tailored Ag mesh electrode coated with poly(3,4-ethylenedioxythiophene) (PEDOT) polymer on a flexible polyethylene terephthalate (PET) substrate. The introduction of this highly conductive polymer solves the existing problems of Ag mesh-type transparent conductive electrodes, such as high pitch, roughness, current inhomogeneity, and adhesion problems between the Ag mesh grid and PEDOT polymer or PET substrate, to result in excellent electron spreading from the discrete Ag mesh onto the entire surface without sacrificing sheet conductivity and optical transparency. Based on this hybrid anode, we demonstrate highly efficient flexible polymer solar cells (PSCs) with a high fill factor of 67.11 %, which results in a power conversion efficiency (PCE) of 6.9 % based on a poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'] dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71 -butyric acid methyl ester bulk heterojunction device. Furthermore, the PSC device with the Ag mesh electrode also exhibits a good mechanical bending stability, as indicated by a 70 % retention of the initial PCE after 500 bending cycles compared with the PSC device with a PET/indium tin oxide electrode, which retained 0 % of the initial PCE after 300 bending cycles. PMID:27038288

  4. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process. PMID:26465213

  5. Redox Equilibria of Cytochrome C3 Immobilised on Self-Assembled Monolayers Coated Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Di Paolo, R. E.; Rivas, L.; Murgida, D.; Hildebrandt, P.

    2005-01-01

    Cytochromes c3 are soluble electron transfer proteins in the periplasm of sulphate-reducing bacteria. They act as electron-proton couplers between hydrogenase and the electron transfer chain of sulphate respiration. In this work, cytochrome c3 (Cyt-c3) obtained from both Desulfovibrio vulgaris and Desulfovibrio gigas, is electrostatically adsorbed on Ag electrodes coated with self-assembled monolayers of 11-mercaptoundecanoic acid. The redox equilibria of the adsorbed tetraheme protein are studied by surface enhanced resonance Raman spectroscopy (SERRS). The quantitative analysis of the SERR spectra, which were measured as a function of the electrode potential, allows determining the redox potentials for the individual hemes of Cyt-c3. The values obtained of the redox potentials are compared with the data provided by NMR experiments and by molecular dynamics simulation studies of the electrostatically bound protein on a coated electrode. It is found that immobilisation causes substantial shifts of the redox potential, which would have an impact on the intramolecular electron flow.

  6. Ag electrode modified with polyhexamethylene biguanide stabilized silver nanoparticles: a new type of SERS substrates for detection of enzymatically generated thiocholine

    NASA Astrophysics Data System (ADS)

    Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.

    2015-11-01

    The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.

  7. Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer.

    PubMed

    Li, Junpeng; Liang, Jiajie; Li, Lu; Ren, Fengbo; Hu, Wei; Li, Juan; Qi, Shuhua; Pei, Qibing

    2014-12-23

    A healable transparent capacitive touch screen sensor has been fabricated based on a healable silver nanowire-polymer composite electrode. The composite electrode features a layer of silver nanowire percolation network embedded into the surface layer of a polymer substrate comprising an ultrathin soldering polymer layer to confine the nanowires to the surface of a healable Diels-Alder cycloaddition copolymer and to attain low contact resistance between the nanowires. The composite electrode has a figure-of-merit sheet resistance of 18 Ω/sq with 80% transmittance at 550 nm. A surface crack cut on the conductive surface with 18 Ω is healed by heating at 100 °C, and the sheet resistance recovers to 21 Ω in 6 min. A healable touch screen sensor with an array of 8×8 capacitive sensing points is prepared by stacking two composite films patterned with 8 rows and 8 columns of coupling electrodes at 90° angle. After deliberate damage, the coupling electrodes recover touch sensing function upon heating at 80 °C for 30 s. A capacitive touch screen based on Arduino is demonstrated capable of performing quick recovery from malfunction caused by a razor blade cutting. After four cycles of cutting and healing, the sensor array remains functional. PMID:25486240

  8. Zinc phthalocyanine and silver/gold nanoparticles incorporated MCM-41 type materials as electrode modifiers.

    PubMed

    Pal, Manas; Ganesan, Vellaichamy

    2009-11-17

    Mercaptopropyl functionalized ordered mesoporous silica spheres were prepared (MPS). Ag or Au nanoparticles (NPs) were anchored onto the MPS materials (Ag-MPS or Au-MPS). Further, zinc phthalocyanine (ZnPc) was adsorbed into the channels and surface (MPS-ZnPc, Ag-MPS-ZnPc, Au-MPS-ZnPc). Diffuse reflectance studies revealed the successful incorporation of Ag or Au NPs inside the silica spheres with and without ZnPc. TEM images showed the uniform distribution of Ag or Au NPs in the silica spheres of different size ranging from 4 to 22 nm or 6 to 31 nm, respectively. XRD pattern showed average crystallite particle size of 18 or 28 nm for Ag or Au NPs respectively which were reduced to 14 or 16 nm on introduction of ZnPc which oxidizes the metal NPs partially. Chemically modified electrodes were prepared by coating the colloidal solutions of the silica materials on the glassy carbon (GC) electrodes. Electrocatalytic reductions of O(2) and CO(2) at the modified electrodes were studied. The presence of Ag or Au NPs was found to increase the electrocatalytic efficiency of ZnPc toward O(2) reduction by 290% or 70% based on the current density measured at -0.35 V and toward CO(2) reduction by 150% or 120% based on the current density measured at -0.60 V respectively. Catalytic rate constants were increased 2-fold for O(2) reduction and 8-fold for CO(2) reduction due to Ag or Au NPs, respectively, which act as nanoelectrode ensembles. The synergic effect of ZnPc and metal NPs on the electrocatalytic reduction of O(2) is presented. PMID:19824690

  9. High-Curie-Temperature Pb(Zr,Ti)O3 Ceramic Actuator Cofired with Pure Silver Internal Electrodes

    NASA Astrophysics Data System (ADS)

    Ochiai, Hiroshi; Hayano, Syuji; Shoji, Kazuo; Kimura, Osamu; Maiwa, Hiroshi

    2008-07-01

    High-Curie temperature (Tc > 350 °C) lead zirconium titanate (PZT) ceramics cofired with low-cost pure silver (Ag) have been investigated for the manufacture of actuators for high-temperature applications. One percent of a low-firing additive, LiBiO2, was added to the conventionally calcined Pb (Zr0.52Ti0.48)O3 (PZT 52/48) powder and ground to 0.2 µm in average particle size, using yttrium toughened zirconia (YTZ) balls. PZT 52/48 ceramics fired at 850 °C showed a density = 7.9 g/cm3, an electromechanical coupling factor planar mode kp = 0.60, a piezoelectric constant d33 = 500 pm/V and a high Tc = 370 °C. PZT green sheets of 60 µm thickness with Ag metal paste were laminated and cofired at 850 °C. PZT ceramics cofired with Ag exhibited displacement corresponding to d33 = 363 pm/V; no Ag dispersion into PZT ceramics was detected. These results imply that the high-Tc cofired PZT ceramics with pure Ag internal electrodes are feasible for actuators in high-temperature applications.

  10. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    PubMed

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells. PMID:26308388

  11. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lee, Donghwa; Lee, Hyungjin; Ahn, Yumi; Jeong, Youngjun; Lee, Dae-Young; Lee, Youngu

    2013-08-01

    A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions.A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions. Electronic supplementary information (ESI) available: Detailed electrical connection, mechanical flexibility, and chemical stability tests of the AgNW and AgNW-graphene hybrid TCEs are included. See DOI: 10.1039/c3nr02320f

  12. Void formation and roughening in slow fracture.

    PubMed

    Afek, Itai; Bouchbinder, Eran; Katzav, Eytan; Mathiesen, Joachim; Procaccia, Itamar

    2005-06-01

    Slow crack propagation in ductile, and in certain brittle materials, appears to take place via the nucleation of voids ahead of the crack tip due to plastic yields, followed by the coalescence of these voids. Postmortem analysis of the resulting fracture surfaces of ductile and brittle materials on the microm-mm and the nm scales, respectively, reveals self-affine cracks with anomalous scaling exponent zeta approximately = 0.8 in 3 dimensions and zeta approximately = 0.65 in 2 dimensions. In this paper we present an analytic theory based on the method of iterated conformal maps aimed at modelling the void formation and the fracture growth, culminating in estimates of the roughening exponents in 2 dimensions. In the simplest realization of the model we allow one void ahead of the crack, and address the robustness of the roughening exponent. Next we develop the theory further, to include two voids ahead of the crack. This development necessitates generalizing the method of iterated conformal maps to include doubly connected regions (maps from the annulus rather than the unit circle). While mathematically and numerically feasible, we find that the employment of the stress field as computed from elasticity theory becomes questionable when more than one void is explicitly inserted into the material. Thus further progress in this line of research calls for improved treatment of the plastic dynamics. PMID:16089840

  13. Multiscale surface roughening of commercial purity titanium during uniaxial tension

    SciTech Connect

    Panin, Alexey; Kazachenok, Marina Kozelskaya, Anna Sinyakova, Elena; Lider, Andrey Sklyarova, Elena

    2015-10-27

    The mechanisms of the surface roughening of the titanium specimens during uniaxial tension were demonstrated. By means of optical profilometry and electron backscattered diffraction it was shown that the formation of surface roughening is a multilevel process. The correlation between the density of slip in some grains, and grain rotation, and their displacement towards the free surface was investigated.

  14. Polymer-facilitated low temperature fusing of spray-coated silver nanowire networks as transparent top and bottom electrodes in small molecule organic photovoltaics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Selzer, Franz; Weiß, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-10-01

    Networks of silver nanowires (AgNWs) are promising candidates for transparent conducting electrodes in organic photovoltaics (OPV), as they achieve similar performance as the commonly used indium tin oxide (ITO) at lower cost and increased flexibility. The initial sheet resistance (Rs) of AgNW electrodes typically needs to be reduced by a post-annealing step (90 min@200 °C), being detrimental for processing on polymeric substrates. We present novel low temperature-based methods to integrate AgNWs in organic small molecule-based photovoltaics, either as transparent and highly conductive bottom-electrode or, for the first time, as spray-coated AgNW top-electrode. The bottom-electrodes are prepared by organic matrix assisted low-temperature fusing. Here, selected polymers are coated below the AgNWs to increase the interaction between NWs and substrate. In comparison to networks without these polymeric sublayers, the Rs is reduced by two orders of magnitude. AgNW top-electrodes are realized by dispersing modified high-quality AgNWs in inert solvents, which do not damage small molecule layers. Accordingly, our AgNW dispersion can be spray-coated onto all kind of OPV devices. Both bottom- and top-electrodes show a Rs of <11 Ω/ at >87 % transparency directly after spray-coating at very low substrate temperatures of <80 °C. We also demonstrate the implementation of our AgNW electrodes in organic solar cells. The corresponding devices show almost identical performance compared to organic solar cells exploiting ITO as bottom or thermally evaporated thin-metal as top-electrode.

  15. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes.

    PubMed

    Kim, Seong Heon; Choi, Woon Ih; Kim, Kwang Hee; Yang, Dae Jin; Heo, Sung; Yun, Dong-Jin

    2016-01-01

    The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases. PMID:27620453

  16. Organic-Stabilizer-Free Polyol Synthesis of Silver Nanowires for Electrode Applications.

    PubMed

    Sim, Hwansu; Bok, Shingyu; Kim, Bongsung; Kim, Minha; Lim, Guh-Hwan; Cho, Sung Min; Lim, Byungkwon

    2016-09-19

    The polyol reduction of a Ag precursor in the presence of an organic stabilizer, such as poly(vinylpyrrolidone), is a widely used method for the production of Ag nanowires (NWs). However, organic capping molecules introduce insulating layers around each NW. Herein we demonstrate that Ag NWs can be produced in high yield without any organic stabilizers simply by introducing trace amounts of NaCl and Fe(NO3 )3 during low-temperature polyol synthesis. The heterogeneous nucleation and growth of Ag NWs on initially formed AgCl particles, combined with oxidative etching of unwanted Ag nanoparticles, resulted in the selective formation of long NWs with an average length of about 40 μm in the absence of a capping or stabilizing effect provided by surface-adsorbing molecules. These organic-stabilizer-free Ag NWs were directly used for the fabrication of high-performance transparent or stretchable electrodes without a complicated process for the removal of capping molecules from the NW surface. PMID:27571578

  17. Force constants and bond polarizabilities of thiocyanate ion adsorbed on the silver electrode as interpreted from the surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Wu, Guozhen

    1989-01-01

    The surface enhanced Raman spectra of the thiocyanate ion is studied in two ways. First, normal mode analysis is employed to determine the force constants of the adsorbed thiocyanate ion. The result shows that the force constant for the CN bond becomes larger while that for the SC bond smaller in the adsorbed state. The adatom model with an effective silver mass of 0.1 mAg ( mAg being the mass of the silver atom) is adequate for the analysis. This implies that the silver adatom is bound to the bulk electrode surface. The adsorption is also shown to be physical. Second, the SER intensifies are analyzed to obtain the molecular polarizability derivatives. The result shows that the polarizability derivative of the CN stretching motion is most responsive to the applied voltage. The polarizability derivative of the SC stretching motion is much smaller than that of the CN bond as compared in the solution. This conclusion is attributed to the adsorption center at the sulfur atom. In general, molecular polarizability derivatives are functions of the frequencies of the exciting lasers and the applied voltages on the electrode.

  18. Electrochemical Investigation of Coenzyme Q10 on Silver Electrode in Ethanol Aqueous Solution and Its Determination Using Differential Pulse Voltammetry.

    PubMed

    Li, Dan; Deng, Wei; Xu, Hu; Sun, Yinxing; Wang, Yuhong; Chen, Shouhui; Ding, Xianting

    2016-08-01

    The electrochemistry reduction of coenzyme Q10 (CoQ10) on silver electrodes has been investigated in mixed solvent containing 95 vol. % ethanol and 5 vol. % water. A combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) is employed to explore the mechanism of redox processes of CoQ10 in the presence and absence of oxygen, respectively. It has been proved that the redox reaction of CoQ10 is highly dependent on the oxygen in the solution compared with that of CoQ0, which may be attributed to the isoprenoid side chain effect of CoQ10 Moreover, the effects of experimental variables such as electrolyte component, pH, temperature, and sonication time on the amperometric and potentiometric responses of CoQ10 are presented. The differential pulse voltammetry method has been developed for the quantification of the CoQ10 in the complex samples. Under the optimum conditions, the method is linear over the concentration range of 1.00 × 10(-7) to 1.00 × 10(-3) mol/L (8.63 × 10(-2) to 8.63 × 10(2) mg/kg). The limit of detection (3σ/k) is 3.33 × 10(-8) mol/L (2.88 × 10(-2) mg/kg). The recoveries of the spiked samples are between 91% and 108%. The presented method can be applied to the analysis of CoQ10 in real samples without any pretreatment. PMID:27094091

  19. Extraction of Silver by Glucose.

    PubMed

    Baksi, Ananya; Gandi, Mounika; Chaudhari, Swathi; Bag, Soumabha; Gupta, Soujit Sen; Pradeep, Thalappil

    2016-06-27

    Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) . PMID:27119514

  20. Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination.

    PubMed

    He, Zhiqiao; Sun, Junjun; Wei, Jie; Wang, Qiong; Huang, Chengxiang; Chen, Jianmeng; Song, Shuang

    2013-04-15

    To enhance the activity of chemi-deposited palladium/nickel foam (Pd/Ni) electrodes used for an electrochemical dechlorination process, silver or copper was deposited electrochemically onto the nickel foam substrate (to give Ag/Ni or Cu/Ni) before the chemical deposition of palladium. The physicochemical properties of the resulting materials (Pd/Ni, Pd/Ag/Ni and Pd/Cu/Ni) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their electrochemical catalytic activities were evaluated by monitoring the electrochemical dechlorination of 2-chlorobiphenyl (2-CB) in strongly alkaline methanol/water solution. The results show that the Pd/Ag/Ni and Pd/Cu/Ni electrodes had consistently higher electrocatalytic activities and current efficiencies (CEs) compared with the untreated Pd/Ni electrode. The Pd/Ag/Ni electrode exhibited the highest activity. The dechlorination was also studied as a function of Pd loading, the Ag or Cu interlayer loadings, and the current density. The Pd loading and the interlayer loadings both had positive effects on the dechlorination reaction. Increasing the current density increased the reaction rate but reduced the CE. The improvement of the electrocatalytic activities of the Pd/Ni electrode by applying the interlayer of Ag or Cu resulted from the enlargement of the effective surface area of the electrode and the adjustment of the metal-H bond energy to the appropriate value, as well as the effective adsorption of 2-CB on Ag. Moreover, the high catalytic activity of the Pd/Ag/Ni electrode was maintained after six successive cyclic experiments, whereas Pd/Cu/Ni electrodes deactivate severely under the same conditions. PMID:23454456

  1. Determination of ultra-trace amounts of silver in water by differential pulse anodic stripping voltammetry using a new modified carbon paste electrode.

    PubMed

    El-Mai, Hafida; Espada-Bellido, Estrella; Stitou, Mostafa; García-Vargas, Manuel; Galindo-Riaño, Maria Dolores

    2016-05-01

    A highly sensitive and selective new procedure for the determination of silver in aqueous media was developed using a modified carbon paste electrode (MCPE) by differential pulse anodic stripping voltammetry (DPASV). The modified electrode was based on the incorporation of 2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) in the carbon paste electrode. Silver ions were preconcentrated on the modified electrode at open-circuit by complexation with the ligand and reduced to zero valent at a potential of 0V, and followed by the reoxidation of adsorbed ions onto the electrode by scanning the potential in a positive direction. The oxidation peak of Ag(I) was observed at 0.2V (versus Ag/AgCl). The analysis of Ag(I) was carried out in a cell containing the sample solution (20mL) buffered by 0.1molL(-1) K2HPO4/NaOH at pH 5.5 in aqueous solution and nitric acid (pH 1) in real water samples. The optimum conditions for the analysis of silver include a reduction potential of 0V and a pulse amplitude of 100mV, among others. The optimum carbon paste composition was found to be 14.1% (w/w) 2-HBBH, 56.2% (w/w) graphite powder and 29.7% (w/w) paraffin oil. Differential pulse anodic stripping voltammetric response was used as the analytical signal. Under the selected conditions, the voltammetric signal was proportional to the Ag(I) concentration in the range of 0.001-100μgL(-1) with favorable limits of detection and quantification of 1.1ngL(-1) and 3.7ngL(-1) after 3min of accumulation time, respectively. By increasing the accumulation time to 10min, detection and quantification limits can be further improved up to 0.1ngL(-1) and 0.34ngL(-1), respectively. In addition, the results showed a highly reproducible procedure showing a relative standard deviation of 1.5% for 12 replicate measurements. Many coexisting metal ions were investigated and very few interferences were found on the determination of Ag(I). The proposed method was validated using certified reference estuarine waters

  2. Roughening of Polyimide Surface for Inkjet Printing by Plasma Etching Using the Polyimide Masked with Polystyrene Nanosphere Array.

    PubMed

    Mun, Mu Kyeom; Park, Jin Woo; Ahn, Jin Ho; Kim, Ki Kang; Yeom, Geun Young

    2015-10-01

    Two key conditions are required for the application of fine-line inkjet printing onto a flexible substrate such as polyimide (PI): linewidth control during the inkjetting process, and a strong adhesion of the polyimide surface to the ink after the ink solidifies. In this study, the properties of a polyimide surface that was roughened through etching in a He/SF6 plasma, using a polystyrene nanosphere array as the etch mask, were investigated. The near-atmospheric-pressure plasma system of the He/SF6 plasma that was used exhibits two notable properties in this context: similar to an atmospheric-pressure plasma system, it can easily handle inline substrate processing; and, similar to a vacuum system, it can control the process gas environment. Through the use of plasma etching, the polyimide surface masked the 120-nm-diameter polystyrene nanospheres, thereby forming a roughened nanoscale polyimide surface. This surface exhibited not only a greater hydrophobicity--with a contact angle of about 150° for water and about 30° for silver ink, indicating better silver linewidth control during the silver inkjetting process--but also a stronger adhesion to the silver ink sprayed onto it when compared with the flat polyimide surface. PMID:26726483

  3. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes.

    PubMed

    Zhang, Lin; Wang, Zhiyong; Mehio, Nada; Jin, Xianbo; Dai, Sheng

    2016-03-01

    The electrochemical reduction of CO2 can not only convert it back into fuels, but is also an efficient manner to store forms of renewable energy. Catalysis with silver is a possible technology for CO2 reduction. We report that in the case of monolithic porous silver, the film thickness and primary particle size of the silver particles, which can be controlled by electrochemical growth/reduction of AgCl film on silver substrate, have a strong influence on the electrocatalytic activity towards CO2 reduction. A 6 μm thick silver film with particle sizes of 30-50 nm delivers a CO formation current of 10.5 mA cm(-2) and a mass activity of 4.38 A gAg (-1) at an overpotential of 0.39 V, comparable to levels achieved with state-of-the-art gold catalysts. PMID:26822587

  4. VOLTAMMETRIC MEMBRANE CHLORINE DIOXIDE ELECTRODE

    EPA Science Inventory

    A voltammetric membrane electrode system has been modified and applied to the in situ measurement of chlorine dioxide. The electrode system consisted of a gold cathode, a silver/silver chloride reference electrode, and a gold counter electrode. Different membrane materials were t...

  5. Bioinspired assembly of surface-roughened nanoplatelets.

    PubMed

    Lin, Tzung-Hua; Huang, Wei-Han; Jun, In-Kook; Jiang, Peng

    2010-04-15

    Here we report a novel electrophoretic deposition technology for assembling surface-roughened inorganic nanoplatelets into ordered multilayers that mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells. A thin layer of sol-gel silica is coated on smooth gibbsite nanoplatelets in order to increase the surface roughness to mimic the asperity of aragonite platelets found in nacres. To avoid the severe cracking caused by the shrinkage of sol-gel silica during drying, polyelectrolyte polyethyleneimine is used to reverse the surface charge of silica-coated-gibbsite nanoplatelets and increase the adherence and strength of the electrodeposited films. Polymer nanocomposites can then be made by infiltrating the interstitials of the aligned nanoplatelet multilayers with photocurable monomer followed by photopolymerization. The resulting self-standing films are highly transparent and exhibit nearly three times higher tensile strength and one-order-of-magnitude higher toughness than those of pure polymer. The measured tensile strength agrees with that predicted by a simple shear lag model. PMID:20102769

  6. Surface roughened zirconia: towards hydrothermal stability.

    PubMed

    Camposilvan, Erik; Flamant, Quentin; Anglada, Marc

    2015-07-01

    Surface roughness is needed in several yttria-stabilized zirconia components used in restorative dentistry for osseointegration or adhesion purposes. This can be achieved by different treatments, which may also modify the microstructure of the surface. Among them, sandblasting and chemical etching are widely used, but their effect on hydrothermal aging of zirconia is not fully understood. In the present work, the zirconia long-term stability of rough surfaces prepared by these techniques is analyzed and a method is proposed for preventing hydrothermal aging while maintaining the original surface appearance and mechanical properties. The method involves pressure infiltration of a Cerium salt solution on the roughened surfaces followed by a thermal treatment. The solution, trapped by surface defects and small pores, is decomposed during thermal treatment into Cerium oxide, which is diffused at high temperature, obtaining Ce co-doping in the near-surface region. In addition, the microstructural changes induced in the near-surface by sandblasting or chemical etching are removed by the thermal treatment together with surface defects. No color modification was observed and the final roughness parameters were in the range of existing implants of proved good osseointegration. The aging resistance of Ce co-doped materials was strongly enhanced, showing the absence of aging after artificial degradation, increasing in this way the surface mechanical integrity. The proposed treatment is easily applicable to the current manufacturing procedures of zirconia dental posts, abutments, crowns and dentures, representing a solution to hydrothermal aging in these and other biomedical applications. PMID:25867636

  7. Kinetic Roughening and Bifurcations in Reaction - Systems

    NASA Astrophysics Data System (ADS)

    Provatas, Nikolas

    1995-01-01

    We study the dynamics of two reaction-diffusion phenomena driven by chemical activation and thermal dissipation and evolving, respectively, on a randomly distributed or continuous medium. The first system describes the process of slow combustion of a randomly distributed reactant. It is studied by a phase-field model built up from first principles and describes the evolution of thermal and reactant concentration fields. Our combustion model incorporates thermal diffusion, activation and dissipation. We examine it in a manner which makes a connection between the propagation of combustion fronts, their kinetic roughening and the percolation transition. In so doing, we examine slow combustion in the context phase transitions. The second system describes propagation of reaction fronts arising in transformations obeying the Arrhenius law of chemical reactions. It too is modelled by a set of phase-field equations describing the dynamics of both thermal and concentration fields. A typical example of this transformation is the crystallization of an amorphous material. In addition to the features of our combustion model, this model also incorporated a realistic treatment of mass diffusion. Front propagation of our model is shown to undergo period doubling bifurcations as one varies the background temperature at which the system is maintained. The signature of these bifurcations is the same as those of the logistics map. We study how the bifurcation structure changes as a function mass diffusion, focusing on changes of the background temperature for which period doubling first emerges. This temperature is the most easily obtained experimentally.

  8. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application.

    PubMed

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-11-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R(2) = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility. PMID:26469539

  9. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Xiaoping; Liu, Guiting; Wang, Zhenzhen; Wang, Feng; Guo, Xiaoyu; Wen, Ying; Yang, Haifeng

    2015-11-01

    A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R2 = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.

  10. Sensitivities of Key Parameters in the Preparation of Silver/Silver Chloride Electrodes Used in Harned Cell Measurements of pH

    PubMed Central

    Brewer, Paul J.; Stoica, Daniela; Brown, Richard J. C.

    2011-01-01

    A questionnaire was completed by fourteen world leading national metrology institutes to study the influence of several variables in the preparation of Ag/AgCl electrodes on the accuracy of Harned cell measurements of pH. The performance of each institute in the last decade has been assessed based on their results in eight key comparisons, organized by the Bureau International des Poids et Measures Consultative Committee for Amount of Substance, involving the measurement of pH of phosphate, phthalate, carbonate, borate and tetroxalate buffer solutions. The performance of each laboratory has been correlated to the results of the questionnaire to determine the critical parameters in the preparation of Ag/AgCl electrodes and their sensitivities with respect to the accuracy of pH measurement. This study reveals that the parameters most closely correlated to performance in comparisons are area of electrode wire exposed to the electrolyte, diameter and porosity of the Ag sphere prior to anodisation, amount of Ag converted to AgCl during anodisation, stability times employed for electrodes to reach equilibrium in solution prior to measurement, electrode rejection criteria employed and purity of reagents. PMID:22164063

  11. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics.

    PubMed

    Selzer, Franz; Weiss, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-02-14

    We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □(-1) at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode. PMID:25584968

  12. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures.

    PubMed

    Li, Meng; Kong, Qingkun; Bian, Zhaoquan; Ma, Chao; Ge, Shenguang; Zhang, Yan; Yu, Jinghua; Yan, Mei

    2015-03-15

    A signal-off electrochemiluminescence (ECL) DNA sensor based on gold nanodendrites (Au NDs) modified indium tin oxide (ITO) electrode for the detection of lead ion (Pb(2+)) was developed. Well-defined Au NDs were prepared on ITO electrode using low-potential synthesis, assisted by ethylenediamine. Based on Pb(2+)-specific deoxyribozyme, the silver/zinc oxide (Ag/ZnO) with coupled structure, prepared by one-pot method, was close to the surface of the electrode to catalyze the reduction of part of H2O2, the coreactant for cathodic ECL emission, leading to a decrease of ECL intensity. In addition, taking advantage of the larger surface area to capture a large amount of capture probe as well as excellent conductivity of Au NDs, the sensor could detect Pb(2+) quantitatively in a wider range, and performed excellent selectivity. Furthermore, such simple and sensitive DNA sensor was successfully applied for the detection of Pb(2+) in lake water and human serum samples, respectively. PMID:25461155

  13. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder.

    PubMed

    Večerková, Renata; Hernychová, Lenka; Dobeš, Petr; Vrba, Jiří; Josypčuk, Bohdan; Bartošík, Martin; Vacek, Jan

    2014-06-01

    Recently, it was shown that electrochemical methods can be used for analysis of poorly water-soluble proteins and for study of their structural changes and intermolecular (protein-ligand) interactions. In this study, we focused on complex electrochemical investigation of recombinant protein FTT1103, a disulfide oxidoreductase with structural similarity to well described DsbA proteins. This thioredoxin-like periplasmic lipoprotein plays an important role in virulence of bacteria Francisella tularensis. For electrochemical analyses, adsorptive transfer (ex situ) square-wave voltammetry with pyrolytic graphite electrode, and alternating-current voltammetry and constant-current chronopotentiometric stripping analysis with mercury electrodes, including silver solid amalgam electrode (AgSAE) were used. AgSAE was used in poorly water-soluble protein analysis for the first time. In addition to basic redox, electrocatalytic and adsorption/desorption characterization of FTT1103, electrochemical methods were also used for sensitive determination of the protein at nanomolar level and study of its interaction with surface of AgSA microparticles. Proposed electrochemical protocol and AgSA surface-inhibition approach presented here could be used in future for biochemical studies focused on proteins associated with membranes as well as on those with disulfide oxidoreductase activity. PMID:24856508

  14. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  15. Capillary flow of solder on chemically roughened PWB surfaces

    SciTech Connect

    Hosking, F.M.; Stevenson, J.O.; Yost, F.G.

    1996-02-01

    The Center for Solder Science and Technology at Sandia National Laboratories has developed a solderability test for evaluating fundamental solder flow over PWB (printed wiring boards) surface finishes. The work supports a cooperative research and development agreement between Sandia, the National Center for Manufacturing Sciences (NCMS), and several industrial partners. An important facet of the effort involved the ``engineering`` of copper surfaces through mechanical and chemical roughening. The roughened topography enhances solder flow, especially over very fine features. In this paper, we describe how etching with different chemical solutions can affect solder flow on a specially designed ball grid array test vehicle (BGATV). The effects of circuit geometry, solution concentration, and etching time are discussed. Surface roughness and solder flow data are presented to support the roughening premise. Noticeable improvements in solder wettability were observed on uniformly etched surfaces having relatively steep peak-to-valley slopes.

  16. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection.

    PubMed

    Nantaphol, Siriwan; Chailapakul, Orawon; Siangproh, Weena

    2015-09-01

    A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL(-1) to 270.69 mg dL(-1)), low detection limit (0.25 mg dL(-1)), and high sensitivity (49.61 μA mM(-1) cm(-2)). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6-100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time. PMID:26388372

  17. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy.

    PubMed

    Sun, Guoqiang; Zhang, Lina; Zhang, Yan; Yang, Hongmei; Ma, Chao; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang

    2015-09-15

    Herein, an origami multiplexed enzyme-free electrochemical (EC) immunodevice is developed for the first time. Typically, ZnO nanorods (ZNRs) modified reduced graphene oxide (rGO)-paper electrode is used as a sensor platform, in which rGO improves the electronic transmission rate and ZNRs provide abundant sites for capture probes binding. Furthermore, by combining the large surface area of rGO and high catalytic activity of bovine serum protein (BSA)-stabilized silver nanoparticles (Ag@BSA) toward H2O2 reduction, rGO/Ag@BSA composites can be used as an excellent signal labels. The current signal is generated from the reduction of H2O2 and further amplified by a subsequent signal labels-promoted deposition of silver. Under optimal conditions, the proposed immunoassays exhibit excellent precision, high sensitivity and a wide linear range of 0.002-120 mIU mL(-1) for human chorionic gonadotropin, 0.001-110 ng mL(-1) for prostate-specific antigen, and 0.001-100 ng mL(-1) for carcinoembryonic antigen. The results for real sample analysis demonstrate that the newly constructed immunosensor arrays provide a simple and cost-effective method for clinical applications. PMID:25884731

  18. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

    PubMed

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su; Jo, Jeongdai; Larsen-Olsen, Thue T; Søndergaard, Roar R; Hösel, Markus; Angmo, Dechan; Jørgensen, Mikkel; Krebs, Frederik C

    2012-09-28

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they

  19. Silver-iron batteries

    NASA Astrophysics Data System (ADS)

    Lindstroem, O.

    1980-04-01

    Production methods for iron electrodes were studied. It was found that a sintering temperature of 700 C gave the best strength and capacity. Production methods and additions for silver electrodes were also studied. The capacity of the produced iron and silver electrodes were 1100 mAh/cu cm. Different separators were investigated. Cellophane I and II from Du Pont was found to be the best. In tests open cells achieved 60 percent of the calculated capacity. In order to minimize the increase of the pressure in closed cells different additions to the electrodes were studied.

  20. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  1. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    PubMed

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies. PMID:24060352

  2. The investigation of electrolytic surface roughening for PCB copper foil

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  3. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria

    PubMed Central

    Cheng, I-Fang; Lin, Chi-Chang; Lin, Dong-Yi; Chang, Hsien-Chang

    2010-01-01

    We present an analysis of the results of in situ surface-enhanced Raman scattering (SERS) of bacteria using a microfluidic chip capable of continuously sorting and concentrating bacteria via three-dimensional dielectrophoresis (DEP). Microchannels were made by sandwiching DEP microelectrodes between two glass slides. Avoiding the use of a metal nanoparticle suspension, a roughened metal surface is integrated into the DEP-based microfluidic chip for on-chip SERS detection of bacteria. On the upper surface of the slide, a roughened metal shelter was settled in front of the DEP concentrator to enhance Raman scattering. Similarly, an electrode-patterned bottom layer fabricated on a thin cover-slip was used to reduce fluorescence noise from the glass substrate. Gram positive (Staphylococcus aureus) and Gram negative (Pseudomonas aeruginosa) bacteria were effectively distinguished in the SERS spectral data. Staphylococcus aureus (concentration of 106 CFU∕ml) was continuously separated and concentrated via DEP out of a sample of blood cells. At a flow rate of 1 μl∕min, the bacteria were highly concentrated at the roughened surface and ready for on-chip SERS analysis within 3 min. The SERS data were successfully amplified by one order of magnitude and analyzed within a few minutes, resulting in the detection of signature peaks of the respective bacteria. PMID:20806000

  4. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications.

    PubMed

    Singh, Manjeet; Rana, Tanka R; Kim, SeongYeon; Kim, Kihwan; Yun, Jae Ho; Kim, JunHo

    2016-05-25

    Silver nanowire (AgNW) film has been demonstrated as excellent and low cost transparent electrode in organic solar cells as an alternative to replace scarce and expensive indium tin oxide (ITO). However, the low contact area and weak adhesion with low-lying surface as well as junction resistance between nanowires have limited the applications of AgNW film to thin film solar cells. To resolve this problem, we fabricated AgNW film as transparent conductive electrode (TCE) by binding with a thin layer of sputtered ZnO (40 nm) which not only increased contact area with low-lying surface in thin film solar cell but also improved conductivity by connecting AgNWs at the junction. The TCE thus fabricated exhibited transparency and sheet resistance of 92% and 20Ω/□, respectively. Conductive atomic force microscopy (C-AFM) study revealed the enhancement of current collection vertically and laterally through AgNWs after coating with ZnO thin film. The CuInGaSe2 solar cell with TCE of our AgNW(ZnO) demonstrated the maximum power conversion efficiency of 13.5% with improved parameters in comparison to solar cell fabricated with conventional ITO as TCE. PMID:27149372

  5. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  6. Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer.

    PubMed

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-01-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11. PMID:27140436

  7. Critical Role of Diels–Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    PubMed Central

    Heo, Gaeun; Pyo, Kyoung-hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-01-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11. PMID:27140436

  8. Critical Role of Diels–Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    NASA Astrophysics Data System (ADS)

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-05-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.

  9. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Selzer, Franz; Weiß, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-01-01

    We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □-1 at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode.We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □-1 at 87

  10. Smoothing of ultrathin silver films by transition metal seeding

    NASA Astrophysics Data System (ADS)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  11. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes

    NASA Astrophysics Data System (ADS)

    Yoo, Ji Hoon; Han, Dae Sang; Park, Su Bin; Chae, Jangwoo; Kim, Ji Man; Kwak, Jeonghun

    2014-11-01

    Highly conductive, solution-processed silver thin-films were obtained at a low sintering temperature of 100 °C in a short sintering time of 10 min by introducing oximes as a potential reductant for silver complex. The thermal properties and reducibility of three kinds of oximes, acetone oxime, 2-butanone oxime, and one dimethylglyoxime, were investigated as a reducing agent, and we found that the thermal decomposition product of oximes (ketones) accelerated the conversion of silver complex into highly conductive silver at low sintering temperature in a short time. Using the acetone oxime, the silver thin-film exhibited the lowest surface resistance (0.91 Ω sq-1) compared to those sing other oximes. The silver thin-film also showed a high reflectance of 97.8%, which is comparable to evaporated silver films. We also demonstrated inkjet printed silver patterns with the oxime-added silver complex inks.

  12. Plasma jet electrode has longer operating life

    NASA Technical Reports Server (NTRS)

    Gracey, C. M.

    1967-01-01

    Water-cooled, silver-infiltrated tungsten electrode has twice the operating lifetime of the pure tungsten electrode used in plasma jet generators. This electrode reduces the erosion rate, ensures excellent heat transfer, and reduces thermal stresses.

  13. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  14. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  15. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  16. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes

    SciTech Connect

    Chen, Ruiyi; Das, Suprem R; Jeong, Changwook; Khan, Mohammad Ryyan; Janes, David B; Alam, Muhammad A

    2013-04-25

    Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices, and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. Several alternative material systems have been investigated. The development of high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.

  17. Treasure of the Past VI: Standard Potential of the Silver-Silver-Chloride Electrode from 0° to 95° C and the Thermodynamic Properties of Dilute Hydrochloric Acid Solutions

    PubMed Central

    Bates, Roger G.; Bower, Vincent E.

    2001-01-01

    From electromotive-force measurements of the cell without liquid junction: Pt;H2,HCl(m),AgCl;Agthrough the range 0° to 95° C, calculations have been made of (1) the standard potential of the silver–silver-chloride electrode, (2) the activity coefficient of hydrochloric acid in aqueous solutions from m (molality) =0 to m=0.1 and from 0° to 90° C, (3) the relative partial molal heat content of hydrochloric acid, and (4) the relative partial molal heat capacity of hydrochloric acid. The extrapolations were made by the method of least squares with the aid of punch-card techniques. Data from at least 24 cells were analyzed at each temperature, and 81 cells were studied at 25° C. The value of the standard potential was found to be 0.22234 absolute volt at 25° C, and the standard deviation was 0.02 millivolt at 0° C, 0.01 millivolt at 25° C, and 0.09 millivolt at 95° C. The results from 0° to 60° C are compared with earlier determinations of the standard potential and other quantities derived from the electromotive force.

  18. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    NASA Astrophysics Data System (ADS)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  19. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    PubMed

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed. PMID:26056864

  20. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode.

    PubMed

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Li, Jie; Cui, Min; Xu, Wei; Huang, Jiadong

    2013-06-15

    A novel imprinted electrochemical sensor for neomycin recognition was developed based on chitosan-silver nanoparticles (CS-SNP)/graphene-multiwalled carbon nanotubes (GR-MWCNTs) composites decorated gold electrode. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using neomycin as the template, and pyrrole as the monomer. The mechanism of the fabrication process and a number of factors affecting the activity of the imprinted sensor have been discussed and optimized. The characterization of imprinted sensor has been carried out by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry (CV) and amperometry. Under the optimized conditions, the linear range of the sensor was from 9×10(-9)mol/L to 7×10(-6)mol/L, with the limit of detection (LOD) of 7.63×10(-9)mol/L (S/N=3). The film exhibited high binding affinity and selectivity towards the template neomycin, as well as good reproducibility and stability. Furthermore, the proposed sensor was applied to determine the neomycin in milk and honey samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application. PMID:23395725

  1. Flexible ambipolar organic field-effect transistors with reverse-offset-printed silver electrodes for a complementary inverter

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Kim, Minseok; Yeom, Seung-Won; Ha, Hyeon Jun; Song, Hyenggun; Jhon, Young Min; Kim, Yun-Hi; Ju, Byeong-Kwon

    2016-06-01

    We report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly(methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm2 V‑1 s‑1 for the p-channel and 0.027 cm2 V‑1 s‑1 for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area.

  2. Flexible ambipolar organic field-effect transistors with reverse-offset-printed silver electrodes for a complementary inverter.

    PubMed

    Park, Junsu; Kim, Minseok; Yeom, Seung-Won; Ha, Hyeon Jun; Song, Hyenggun; Min Jhon, Young; Kim, Yun-Hi; Ju, Byeong-Kwon

    2016-06-01

    We report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly(methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm(2) V(-1) s(-1) for the p-channel and 0.027 cm(2) V(-1) s(-1) for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area. PMID:27114463

  3. Silver nanoflower-reduced graphene oxide composite based micro-disk electrode for insulin detection in serum.

    PubMed

    Yagati, Ajay Kumar; Choi, Yonghyun; Park, Jinsoo; Choi, Jeong-Woo; Jun, Hee-Sook; Cho, Sungbo

    2016-06-15

    Sensitive and selective determination of protein biomarkers remains a significant challenge due to the existence of various biomarkers in human body at a low concentration level. Therefore, new technologies were incessantly steered to detect tiny biomarkers at a low concentration level, yet, it is difficult to develop reliable, stable and sensitive detection methods for disease diagnostics. Therefore, the present study demonstrates a methodology to detect insulin in serum at low levels based on Ag nanoflower (AgNF) decorated reduced graphene oxide (rGO) modified micro-disk electrode arrays (MDEAs). The morphology of AgNF-rGO composite was characterized by scanning electron microscopy, the structure was analyzed using X-ray diffraction patterns and Raman spectra. The hybrid interface exhibited enhanced electrical conductivity when compared with its individual elements and had improved capturing ability for antibody-antigen binding towards insulin detection. In order to measure quantitatively the insulin concentration in PBS and human serum, the change in impedance (ΔZ) from electrochemical impedance spectroscopy was analyzed for various concentrations of insulin in [Fe(CN)6](3-/4-) redox couple. The electrode with adsorbed antibodies showed an increase in ΔZ for the addition of antigen concentrations over a working range of 1-1000 ng mL(-1). The detection limits were 50 and 70 pg mL(-1) in PBS and human serum, respectively. PMID:26852199

  4. Surface enhanced Raman spectroscopy of the silver/KCl, triethylenediamine (DABCO), water system

    NASA Astrophysics Data System (ADS)

    Irish, D. E.; Guzonas, D.; Atkinson, G. F.

    1985-07-01

    1,4-Diazabicyclo[2.2.2]octane, (N(CH 2CH 2) 3N), usually abbreviated DABCO or DBO, is a symmetric top molecule of point group D 3h. SERS experiments have been carried out in an optical electrochemical cell using a silver electrode roughened by a single oxidation-reduction cycle (ORC). The observed SERS spectra contained four strong bands at 624, 798, 990 and 1351 cm -1, all A' 1 totally symmetric modes. The same bands were also observed in SERS spectra of DABCO adsorbed on colloidal gold. In the electrochemical experiments, the maximum of SERS-intensity versus electrode potential plots was observed to shift to less negative potentials as the wavelength of the exciting line was shifted to the red. The radically-altered, relative intensities of the observed bands, as well as observed changes in relative intensity as a function of electrode potential, have been interpreted as a selective enhancement of those normal modes which have as a major component of vibrational motion the C-C stretch. These observations are correlated with current theories concerning the SERS mechanism, especially those involving charge transfer (CT).

  5. Amperometric Detection of Aqueous Silver Ions by Inhibition of Glucose Oxidase Immobilized on Nitrogen-Doped Carbon Nanotube Electrodes.

    PubMed

    Rust, Ian M; Goran, Jacob M; Stevenson, Keith J

    2015-07-21

    An amperometric glucose biosensor based on immobilization of glucose oxidase on nitrogen-doped carbon nanotubes (N-CNTs) was successfully developed for the determination of silver ions. Upon exposure to glucose, a steady-state enzymatic turnover rate was detected through amperometric oxidation of the H2O2 byproduct, directly related to the concentration of glucose in solution. Inhibition of the steady-state enzymatic glucose oxidase reaction by heavy metals ions such as Ag(+), produced a quantitative decrease in the steady-state rate, subsequently creating an ultrasensitive metal ion biosensor through enzymatic inhibition. The Ag(+) biosensor displayed a sensitivity of 2.00 × 10(8) ± 0.06 M(-1), a limit of detection (σ = 3) of 0.19 ± 0.04 ppb, a linear range of 20-200 nM, and sample recovery at 101 ± 2%, all acquired at a low-operating potential of 0.05 V (vs Hg/Hg2SO4). Interestingly, the biosensor does not display a loss in sensitivity with continued use due to the % inhibition based detection scheme: loss of enzyme (from continued use) does not influence the % inhibition, only the overall current associated with the activity loss. The heavy metals Cu(2+) and Co(2+) were also detected using the enzyme biosensor but found to be much less inhibitory, with sensitivities of 1.45 × 10(6) ± 0.05 M(-1) and 2.69 × 10(3) ± 0.07 M(-1), respectively. The mode of GOx inhibition was examined for both Ag(+) and Cu(2+) using Dixon and Cornish-Bowden plots, where a strong correlation was observed between the inhibition constants and the biosensor sensitivity. PMID:26079664

  6. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  7. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  8. Local diffusion induced roughening in cobalt phthalocyanine thin film growth.

    PubMed

    Gedda, Murali; Subbarao, Nimmakayala V V; Goswami, Dipak K

    2014-07-29

    We have studied the kinetic roughening in the growth of cobalt phthalocyanine (CoPc) thin films grown on SiO2/Si(001) surfaces as a function of the deposition time and the growth temperature using atomic force microscopy (AFM). We have observed that the growth exhibits the formation of irregular islands, which grow laterally as well as vertically with coverage of CoPc molecules, resulting rough film formation. Our analysis further disclosed that such formation is due to an instability in the growth induced by local diffusion of the molecules following an anomalous scaling behavior. The instability relates the (ln(t))(1/2), with t as deposition time, dependence of the local surface slope as described in nonequilibrium film growth. The roughening has been characterized by calculating different scaling exponents α, β, and 1/z determined from the height fluctuations obtained from AFM images. We obtained an average roughness exponent α = 0.78 ± 0.04. The interface width (W) increases following a power law as W ∼ t(β), with growth exponent β = 0.37 ± 0.05 and lateral correlation length (ξ) grows as ξ ∼ t(1/z) with dynamic exponent 1/z = 0.23 ± 0.06. The exponents revealed that the growth belongs to a different class of universality. PMID:24992503

  9. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  10. Stress induced roughening of superclimbing dislocation in solid 4He

    NASA Astrophysics Data System (ADS)

    Aleinikava, Darya; Kuklov, Anatoly

    2011-03-01

    We investigate numerically superclimb of dislocation in solid 4 He biased by externally imposed chemical potential μ . The effective action takes into account quantum phase slips in the core superfluid as well as the core displacement in Peierls potential within the Granato-Lücke string model. The bias produces stress on the core and this can result in dislocation roughening. Such roughening is characterized by hysteretic behavior at temperatures (T) below some threshold Thyst . At T >Thyst strongresonantpeaksdevelopinthedislocationdifferentialresponse . Thesepeaksexhibitperiodicbehaviorvs μ, with the period determined by Peierls potential and dislocation length. We explain these effects by thermally assisted tunneling of jog-antijog pairs across the barrier created by Peierls potential and the bias. Since superclimbing is controlled by core superflow, speed of sound along the superfluid core exhibits dip-like features at the peak positions. We propose that this effect is seen in the mass transport experiment. We acknowledge support by NSF, grants PHY1005527 and PHY0653135,and by CUNY, grant 63071-00 41.

  11. Sputter roughening instability on the Ge(001) surface: Energy and flux dependence

    SciTech Connect

    Chason, E.; Mayer, T.M.; Kellerman, B.K.

    1995-12-31

    We have measured surface roughening kinetics during low energy Xe ion sputtering of Ge (001) surfaces. Results are interpreted in terms of an instability theory developed by Bradley and Harper. Although the calculated magnitude of the roughening rate does not agree with the measured value, the variation of the rate with ion flux and energy is on agreement with the theory.

  12. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    , increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.

  13. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  14. Silver Sulfadiazine

    MedlinePlus

    Silver sulfadiazine, a sulfa drug, is used to prevent and treat infections of second- and third-degree ... Silver sulfadiazine comes in a cream. Silver sulfadiazine usually is applied once or twice a day. Follow ...

  15. Biomechanical and Histological Evaluation of Roughened Surface Titanium Screws Fabricated by Electron Beam Melting

    PubMed Central

    Yang, Jun; Cai, Hong; Lv, Jia; Zhang, Ke; Leng, Huijie; Wang, Zhiguo; Liu, Zhongjun

    2014-01-01

    Background Various fabrication methods are used to improve the stability and osseointegration of screws within the host bone. The aim of this study was to investigate whether roughened surface titanium screws fabricated by electron beam melting can provide better stability and osseointegration as compared with smooth titanium screws in sheep cervical vertebrae. Methods Roughened surface titanium screws, fabricated by electron beam melting, and conventional smooth surface titanium screws were implanted into sheep for 6 or 12 weeks (groups A and B, respectively). Bone ingrowth and implant stability were assessed with three-dimensional imaging and reconstruction, as well as histological and biomechanical tests. Results No screws in either group showed signs of loosening. Fibrous tissue formation could be seen around the screws at 6 weeks, which was replaced with bone at 12 weeks. Bone volume/total volume, bone surface area/bone volume, and the trabecular number were significantly higher for a define region of interest surrounding the roughened screws than that surrounding the smooth screws at 12 weeks. Indeed, for roughened screws, trabecular number was significantly higher at 12 weeks than at 6 weeks. On mechanical testing, the maximum pullout strength was significantly higher at 12 weeks than at 6 weeks, as expected; however, no significant differences were found between smooth and roughened screws at either time point. The maximum torque to extract the roughened screws was higher than that required for the smooth screws. Conclusions Electron beam melting is a simple and effective method for producing a roughened surface on titanium screws. After 12 weeks, roughened titanium screws demonstrated a high degree of osseointegration and increased torsional resistance to extraction over smooth titanium screws. PMID:24788866

  16. Acoustic transmission across a roughened fluid-fluid interface.

    PubMed

    Lim, R; Paustian, I C; Lopes, J L

    2001-04-01

    A set of tank experiments was performed to investigate acoustic transmission across a roughened fluid-fluid interface with the intention to test heuristic Bragg scattering predictions used to explain observations of anomalous transmission in field experiments. In the tank experiments, two immiscible fluids (vegetable oil floating on glycerin) formed the layers. Small polystyrene beads were floated at the interface to simulate roughness. An array of hydrophones placed in the bottom layer (glycerin) was used to measure the acoustic levels transmitted across the interface. This array was also employed as a beamformer to determine the apparent angle and sound speed of the scattered signals. Data were acquired at subcritical grazing angles in the frequency range of 100-200 kHz for three different bead diameters and for various configurations in which the locations of the beads floating on the interface were varied. Results of these measurements demonstrated that a significant amount of acoustic energy can be scattered into the bottom layer by beads floating at the interface. The scattered levels increased with increasing bead diameter. However, discrepancies occurred between observed propagation properties and the Bragg predictions. By comparing the processed tank data to a computer simulation of the same it was determined that these discrepancies are a consequence of near-field reception of the scattering by the bead array and ignoring the directionality of the scattering by the beads. Consequences to observations made in field experiments are discussed. PMID:11325108

  17. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  18. Rugged pressed disk electrode has low contact potential

    NASA Technical Reports Server (NTRS)

    Day, J. L.; Mosier, B.

    1965-01-01

    Pressed-disk electrode with low contact potential monitors physiological processes. It consists of silver and silver chloride combined with bentonitic clay. The clay affords a surface that permits use over extended periods without contact deterioration.

  19. Glass frits coated with silver nanoparticles for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  20. Solid-solid phase transformation: Roughening of stylolites

    NASA Astrophysics Data System (ADS)

    Angheluta, L.; Jettestuen, E.; Mathiesen, J.; Renard, F.; Jamtveit, B.

    2007-12-01

    Sedimentary rocks under uniaxial compression often react by changing the texture during compaction or cementation, which is accompanied by the formation of stylolites spanning the grain contacts or the rocks along surfaces normal to the applied stress. Many field observations corroborate a common feature of stylolites, namely that they are rough interfaces that contain insoluble minerals. Stylolites are outstanding examples of interfacial patterns developed in out-of-equilibrium systems. We study the roughening of stylolites within a model of a moving interface boundary between two stressed solids. The set up of our model consists of two dissimilar elastic bodies that are separated by a sharp interface and subjected to uniform compression in the direction perpendicular to the interface profile. Based on the balance laws of force and energy, we derive the jump conditions for a moving interface driven by a phase transformation process, i.e. the solid phase with higher energy (more porous) is removed and replaced by the same amount of less porous solid phase. An initially flat interface perturbed with small irregularities develops grooves or finger like structures, which align with the principal direction of compaction. The system is dissipative and approaches asymptotically the equilibrium configuration between the two phases. Our numerical investigations reveal several issues: 1) a morphological instability of the solid-solid interface does develop; 2) the instability is driven by the porosity jump across the interface; 3) the energy concentration at the tip of the fingers may influence the development of cracks perpendicular to the stylolites planes, as observed in nature.

  1. Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors.

    PubMed

    Wang, Zongrui; Dong, Huanli; Zou, Ye; Zhao, Qiang; Tan, Jiahui; Liu, Jie; Lu, Xiuqiang; Xiao, Jinchong; Zhang, Qichun; Hu, Wenping

    2016-03-01

    Poor charge injection and transport at the electrode/semiconductor contacts has been so far a severe performance hurdle for bottom-contact bottom-gate (BCBG) organic field-effect transistors (OFETs). Here, we have developed a simple, economic, and effective method to improve the carrier injection efficiency and obtained high-performance devices with low cost and widely used source/drain (S/D) electrodes (Ag/Cu). Through the simple electrode etching process, the work function of the electrodes is more aligned with the semiconductors, which reduces the energy barrier and facilitates the charge injection. Besides, the formation of the thinned electrode edge with desirable micro/nanostructures not only leads to the enlarged contact side area beneficial for the carrier injection but also is in favor of the molecular self-organization for continuous crystal growth at the contact/active channel interface, which is better for the charge injection and transport. These effects give rise to the great reduction of contact resistance and the amazing improvement of the low-cost bottom-contact configuration OFETs performance. PMID:26967358

  2. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  3. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  4. Roughening and removal of surface contamination from beryllium using negative transferred-arc cleaning

    SciTech Connect

    Castro, R.G.; Hollis, K.J.; Elliott, K.E.

    1997-12-01

    Negative transferred-arc (TA) cleaning has been used extensively in the aerospace industry to clean and prepare surfaces prior to plasma spraying of thermal barrier coatings. This non-line of sight process can improve the bond strength of plasma sprayed coatings to the substrate material by cleaning and macroscopically roughening the surface. A variation of this cleaning methodology is also used in gas tungsten arc (GTA) welding to cathodically clean the surfaces of aluminum and magnesium prior to welding. Investigations are currently being performed to quantify the degree in which the negative transferred-arc process can clean and roughen metal surfaces. Preliminary information will be reported on the influence of processing conditions on roughening and the removal of carbon and other contaminates from the surface of beryllium. Optical, spectral and electrical methods to quantify cleaning of the surface will also be discussed. Applications for this technology include chemical-free precision cleaning of beryllium components.

  5. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    NASA Astrophysics Data System (ADS)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  6. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum.

    PubMed

    Lata, Kusum; Dhull, Vikas; Hooda, Vikas

    2016-01-01

    The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs) and carboxylated multiwall carbon nanotubes (cMWCNTs) were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM) for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM-5.83 mM) with minimum detection limit being 0.5 mg/dL (0.01 mM). The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components. PMID:26885393

  7. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum

    PubMed Central

    Lata, Kusum; Dhull, Vikas

    2016-01-01

    The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs) and carboxylated multiwall carbon nanotubes (cMWCNTs) were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM) for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM–5.83 mM) with minimum detection limit being 0.5 mg/dL (0.01 mM). The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components. PMID:26885393

  8. Large silver-cadmium technology program

    NASA Technical Reports Server (NTRS)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  9. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  10. Roughening and reflection performance of molybdenum coatings exposed to a high-flux deuterium plasma

    NASA Astrophysics Data System (ADS)

    Eren, B.; Marot, L.; Ryzhkov, I. V.; Lindig, S.; Houben, A.; Wisse, M.; Skoryk, O. O.; Oberkofler, M.; Voitsenya, V. S.; Linsmeier, Ch.; Meyer, E.

    2013-11-01

    Optical diagnostic systems of ITER are foreseen to include metallic, plasma-facing, electromagnetic radiation reflecting components called first mirrors (FMs). Molybdenum coatings are important candidates for these components. Depending on the local plasma parameters of the reactor, the mirrors may be under net erosion or deposition conditions. In this work, we exposed molybdenum coatings to a high-flux deuterium plasma in order to test their roughening limits under erosion conditions. The high energy of deuterium ions (500 eV on average) results in more vigorous roughening of the surface compared with lower energy ions (200 eV). Longer exposure (3 × 1020 ions cm-2) of the 200 eV ions results in only a slightly increased roughness compared with shorter exposure (6.8 × 1019 ions cm-2). Both phenomena match to the theory regarding roughening dynamics of physical sputtering. A comparison of results in this work with previous studies gives support to the hypothesis that roughening is flux and temperature dependent. Partial delamination of the coatings is observed upon exposure at room temperature, but not at an elevated temperature (200 °C). In summary, Mo coatings will remain functional in the ITER environment under the expected conditions. However, changes in the expected conditions such as 500 eV mean energy of impinging charge exchange neutrals or <100 °C surface temperature of the mirrors can lead to gradual or sudden failure of the coatings.

  11. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.

    1971-01-01

    A research program to develop and evaluate electrodes for a nongassing negative limited nickel-cadmium cell is described. The concept of the negative limited cell and its implications on electrode structure are discussed. The key element is the development of a cadmium electrode with high hydrogen overvoltage. For this, Teflon-bonded Cd electrodes and silver-sinter based Gc electrodes were manufactured and in preliminary experiments their physical and electrochemical characteristics were evaluated. Hydrogen evolution on cadmium was found to occur approximately 100 mV more cathodic than on silver. Both electrode structures exhibit a fairly sharp potential rise at the end of the charging cycle and the advent of gas evolution occurs at potentials between -1.2 and -1.3 V versus a Hg/HgO reference electrode. These results are compared with conventional Ni-sinter based Cd electrodes.

  12. Roughening transition in nanoporous hydrogenated amorphous germanium: Roughness correlation to film stress

    NASA Astrophysics Data System (ADS)

    Carroll, M. S.; Verley, J. C.; Sheng, J. J.; Banks, J.

    2007-03-01

    Hydrogenated amorphous germanium (a-Ge:H) is a material of interest for optoelectronic applications such as solar cells and radiation detectors because of the material's potential to extend the wavelength sensitivity of hydrogenated amorphous silicon (a-Si:H). An increase in porosity is observed in amorphous germanium compared to a-Si :H, and this increase in porosity has been correlated with a degradation of the electrical performance. Improved understanding of the mechanisms of porous formation in a-Ge :H films is therefore desirable in order to better control it. In this paper we describe a correlation between film stress and surface roughness, which evolves with increasing thickness of a-Ge :H. A roughening transition from planar two-dimensional growth to three-dimensional growth at a critical thickness less than 800Å results in a network of needlelike nanotrench cavities which stretch from the transition thickness to the surface in films up to 4000Å thick. Surface roughness measurements by atomic force microscope and transmission electron microscopy indicate that the transition is abrupt and that the roughness increases linearly after the transition thickness. The roughening transition thickness is, furthermore, found to correlate with the maxima of the integrated compressive stress. The compressive stress is reduced after this transition thickness due to the incorporation of nanovoids into the film that introduce tensile stress as the islands coalesce together. The roughening transition behavior is similar to that found in a general class of Volmer-Weber mode thin film deposition (e.g., Cu, Ag, and nonhydrogenated amorphous silicon), which offers additional insight into the underlying mechanisms of the stress and roughening in these a-Ge :H films. The suppression of the roughening transition by changing the kinetics of the deposition rates (e.g., slowing the deposition rate with a weak sputtering bias) is also observed and discussed.

  13. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-01

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl2 plasmas, as a function of rf bias power or ion incident energy Ei, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on Ei: one is the roughening mode at low Ei < 200-300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing Ei, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher Ei, where the rms surface roughness decreases substantially with Ei down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on Ei were also observed in the etch rate versus √{Ei } curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing Ei were found to correspond to changes in the predominant ion flux from feed gas ions Clx+ to ionized etch products SiClx+ caused by the increased etch rates at increased Ei, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  14. Determination of Silver(I) by Differential Pulse Voltammetry Using a Glassy Carbon Electrode Modified with Synthesized N-(2-Aminoethyl)-4,4′-Bipyridine

    PubMed Central

    Radulescu, Maria-Cristina; Chira, Ana; Radulescu, Medeea; Bucur, Bogdan; Bucur, Madalina Petruta; Radu, Gabriel Lucian

    2010-01-01

    A new modified glassy carbon electrode (GCE) based on a synthesized N-(2-aminoethyl)-4,4′-bipyridine (ABP) was developed for the determination of Ag(I) by differential pulse voltammetry (DPV). ABP was covalently immobilized on GC electrodes surface using 4-nitrobenzendiazonium (4-NBD) and glutaraldehyde (GA). The Ag(I) ions were preconcentrated by chemical interaction with bipyridine under a negative potential (−0.6 V); then the reduced ions were oxidized by differential pulse voltammetry and a peak was observed at 0.34 V. The calibration curve was linear in the concentration range from 0.05 μM to 1 μM Ag(I) with a detection limit of 0.025 μM and RSD = 3.6%, for 0.4 μM Ag(I). The presence of several common ions in more than 125-fold excess had no effect on the determination of Ag(I). The developed sensor was applied to the determination of Ag(I) in water samples using a standard addition method. PMID:22163530

  15. A view of aqueous electrochemical carbon dioxide reduction to formate at indium electrodes, and the reversible electrodeposition of silver in ionic liquids through the lens of fundamental surface science

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.

    Two systems were studied using in situ measurement techniques, demonstrating the importance of creative experimental design. The electroreduction of CO2 at heterogeneous indium electrodes in aqueous solution was analyzed by cyclic voltammetry. Bulk electrolyses showed that increased indium oxide presence prior to electrolysis improved the Faradaic efficiency of CO 2 reduction to formate in 0.5 M K2SO2 aqueous solutions at a pH of 4.4. In order to more accurately assign speciation at the electrode surface ex situ O2 and H2O dosing of metallic indium under UHV was studied with XPS, HREELS and TPD. Ambient pressure XPS showed that the ratio of oxide to hydroxide at the indium interface is strongly dependent on the partial pressure of water; decreasing as P(H2O) increases. Using this information, a qualitative picture of the indium interface could be generated. In situ ATR-FTIR with an indium thin film as the working electrode showed that bulk oxide quickly reduces with applied potential, but an interfacial oxide is still present at high reductive overpotential. Additionally, an adsorbed carbonate at the thin film interface was observed upon introducing CO 2 to the cell. The implication of a surface bound carbonate as the CO 2 reduction intermediate draws on a mechanism that has not previously been discussed in the electrochemical reduction of CO2. The previous study of this mechanism from Ficscher-Tropsch literature helps to predict the further reduced products found at more electropositive metals, such as copper or magnesium, the latter of which is described here. Additionaly described here is a series of ILs that were employed as electrolyte for reversible silver deposition. BMIM N(TfO)2 was found to be the most promising of those studied, intrinsically giving a more uniform deposit that was bright and reversible. Deposit formation was studied using SEM and EDX as a function of deposition potential and deposition time. In situ reflectometry was employed to get a

  16. Improved conductive paste secures biomedical electrodes

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Nontoxic paste consisting of a dispersion of graphite or silver granules in a mixture of polyvinylpyrolidone and diluted glycerol secures biomedical electrodes to human skin. Silver paste has a high electrical conductivity and forms a bond between metal and moist or dry skin.

  17. Vibrational Sum Frequency Study of the Influence of Water-Ionic Liquid Mixtures in the CO2 Electroreduction on Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Garcia Rey, Natalia; Dlott, Dana

    2015-06-01

    Understand the molecular dynamics on buried electrodes under electrochemical transformations is of significant interest. There is a big gap of knowledge in the CO2 electroreduction mechanism due to the limitations to access and probe the liquid-metal interfaces [1,2]. Vibrational Sum Frequency Spectroscopy (VSFS) is a non-invasive and surface sensitive technique, with molecular level detection that can be used to probe electrochemical reactions occurring on the electrolyte-electrode interface [2]. We observed the CO2 electroreduction to CO in ionic liquids (ILs) on poly Ag using VSFS synchronized with cyclic voltammetry. In order to follow the CO2 reaction in situ on the ionic liquid-Ag interface; the CO, CO2 and imidazolium vibrational modes (resonant SFS) were monitored as a function of potential. We identified at which potential the CO was produced and how the EMIM-BF4 played an important role in the electron transfer to the CO2, lowering the CO2- energy barrier. A new approach to reveal the double layer dynamics to the electrostatic environment is presented by the study of the nonresonant sum frequency intensity as a function of the applied potential. By this method, we studied the influence of water-ionic liquid mixtures in the CO2 electroreduction on Ag electrode. We observed a shift to lower potentials in the CO2 electroreduction in water-ILs electrolyte. Previous studies in gas diffusion fuel cells have shown the CO2 electroreduction in a water-imidazolium-based ILs on Ag nanoparticles at lower overpotential [3]. Our VSFS study helps to understand the fundamental electrochemical mechanism, showing how the ILs structural transition influences the CO2 electroreduction. [1] Polyansky, D. E.; Electroreduction of Carbon Dioxide, 2014, Encyclopedia of Applied Electrochemistry, Springer New York, pag 431-437. [2] Bain, C. D.; J. Chem. Soc., Faraday Trans., 1995, 91, 1281. [3] Rosen, B. A. et al; Science, 2011, 334 (6056), 643. Rosen, B. A. et al.; J. electrochem

  18. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  19. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  20. Low-temperature sintering and compatibility with silver electrode of Ba{sub 4}MgTi{sub 11}O{sub 27} microwave dielectric ceramic

    SciTech Connect

    Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Li, Changda; Guo, Ruli; Wang, Hong

    2010-10-15

    Ba{sub 4}MgTi{sub 11}O{sub 27} microwave dielectric ceramic was investigated using X-ray diffraction, scanning electron microscopy and dielectric measurement. The pure Ba{sub 4}MgTi{sub 11}O{sub 27} ceramic shows a high sintering temperature ({approx}1275 {sup o}C) and good microwave dielectric properties as Q x f of 19,630 GHz, {epsilon}{sub r} of 36.1, {tau}{sub f} of 14.6 ppm/{sup o}C. It was found that the addition of BaCu(B{sub 2}O{sub 5}) (BCB) can effectively lower the sintering temperature from 1275 to 925 {sup o}C, and does not induce much degradation of the microwave dielectric properties. The BCB-doped Ba{sub 4}MgTi{sub 11}O{sub 27} ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.

  1. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.

    PubMed

    Kim, Jang-Han; Nam, Ki-Hyun; Hwang, Inchan; Cho, Won-Ju; Park, Byoungchoo; Chung, Hong-Bay

    2014-12-01

    Resistive switching random-access memory (ReRAM) devices based on chalcogenide solid electrolytes have recently become a promising candidate for future low-power nanoscale nonvolatile memory application. The resistive switching mechanism of ReRAM is based on the formation and rupture of conductive filament (CF) in the chalcogenide solid electrolyte layers. However, the random diffusion of metal ions makes it hard to control the CF formation, which is one of the major obstacles to improving device performance of ReRAM devices. We demonstrate the spin-coated metal nanocrystals (NCs) enhance the bipolar resistive switching (BRS) memory characteristics. Compared to the Ag/Ge0.5Se0.5/Pt structure, excellent resistive switching memory characteristics were obtained from the Ag/Ge0.5Se0.5/Ag NCs/Pt structure. Ag NCs improve the uniformity of resistance values and reduce the reset voltage and current. A stable DC endurance (> 100 cycles) and a high data retention (> 10(4) sec) were achieved by spin coating the Ag NCs on the Pt bottom electrode for ReRAMs. PMID:25971090

  2. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    SciTech Connect

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-15

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values {alpha}{sub loc}=1.0 and {beta}{sub loc}=0.39, and global exponent values {alpha}=1.7 and {beta}=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering.

  3. Optical characteristics of a wind-roughened water surface: a two-dimensional theory.

    PubMed

    Yoshimori, K; Itoh, K; Ichioka, Y

    1995-09-20

    We present a two-dimensional theory of thermal emission and light scattering from an anisotropic wind-roughened water surface that is described by the Gaussian-Joint North Sea Wave Project model. The theory is developed through the use of the first-order geometrical-optics approxmation modified with shadowing effects, and it is valid when the average slopes of the surface are smaller than unity. The theory allows us to evaluate the effective emissivity and the effective bistatic reflectivity of a full-gravity-capillary wave surface at large viewing angles, for any direction relative to the average propagation direction of the surface wave. We also present an application of the theory to the recently proposed method for obtaining thermal imagery of a wind-roughened water surface from low altitudes, which is called statistically corrected ocean thermography. Corrected thermal images of the ocean surface, obtained by our field experiment, are shown. PMID:21060466

  4. Atomic diffusion on vicinal surfaces: step roughening impact on step permeability

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Michailov, M.

    2014-12-01

    The problem of mass transport in material science for systems with reduced dimensionality holds special academic and technological attention since the fine diffusion control of adatoms could initiate exotic nanoscale patterning at epitaxial interfaces. The present study brings out important details of the atomic diffusion mechanisms on vicinal surfaces, accounting for the subtle competition between an external field imposed on the migrating adatoms and the roughening of the steps bordering the atomic terraces. The computational model reveals a temperature gap for breakdown of step permeability in the vicinity of the step roughening transition and sheds light on recently observed experimental results for atomic step dynamics on Si surfaces. The present study also demonstrates the extended capability of atomistic models in computer simulations to unravel simultaneous effects, to distinguish between them, and finally to assess their specific contribution to experimentally observed complex physical phenomena.

  5. Hypersonic heat-transfer and transition correlations for a roughened shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Stalmach, D. D.; Idar, E. S., III; Conley, D. B.; Goodrich, W. D.

    1976-01-01

    The effect of roughness on the heat transfer distributions and the transition criteria for the windward pitch plane of the shuttle orbiter at an angle of attack of 30 deg was studied using data obtained in hypersonic wind tunnels. The heat transfer distributions and the transition locations for the roughened models were compared with the corresponding data for smooth models. The data were correlated using theoretical solutions for a nonsimilar, laminar boundary layer subject to two different flow field models for the orbiter.

  6. Spin-dependent effects in the roughened string model for heavy quarkonia

    SciTech Connect

    Kaur, R. ); Bambah, B.A. )

    1993-06-01

    Using the recently proposed roughened string potential for heavy quarkonium, we calculate the spin splitting in the [ital J]/[psi] and [Upsilon] systems. We show how the departure from linearity of this potential affects the hyperfine splitting in the [ital P] levels of these systems, in a way consistent with experimental data. This lends support to the recent observations that the confining part of the interquark potential is weaker than linear.

  7. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  8. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou

    2015-07-01

    This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.

  9. Effect of abrasive surface roughening on the secondary yield of various metals

    NASA Astrophysics Data System (ADS)

    Graves, Timothy

    2007-11-01

    The secondary electron yield of metallic conductors plays a critical role in the development of multipactor discharges. These discharges require a secondary yield greater than unity at the appropriate energy level for sustained breakdown. By reducing the secondary yield below unity in the necessary energy range, multipactor and multipactor-induced glow discharges can be eliminated. Surface roughening has been shown to successfully lower the secondary yield to below unity (ref. 1). In addition, abrasive bead blasting has been shown to effectively reduce the secondary yield of copper surfaces while preserving voltage breakdown characteristics (ref. 2). This study investigates the effect of abrasive surface roughening on the secondary yield of materials such as copper, aluminum, and stainless steel. In addition to measuring the change in the secondary yield as a function of abrasive particle size, the multipactor resistance and voltage breakdown characteristics are investigated. In addition, the effect of vacuum conditioning via multipactor and rf plasma cleaning on the roughened surfaces will be discussed. Ref. 1. H. Bruining. Physics and Applications of Secondary Electron Emission. McGraw-Hill, NY, 1954. Ref. 2. T. P. Graves, Ph.D. Thesis, MIT. 2007

  10. Roughening in electronic growth of Ag on Si(111)-(7×7) surfaces.

    PubMed

    Pal, Arindam; Mahato, J C; Dev, B N; Goswami, D K

    2013-10-01

    Roughening in the electronic growth of Ag films on Si(111)-(7×7) surfaces for a film thickness ranging from 1 to 30 monolayers is reported. Ag films exhibit the growth of flat-top plateaus of preferential heights due quantum electronic effect. We have observed roughening of the film growth due to instability with linear diffusion characterized by the ln(θ)(1/2) dependence of the local surface slope, where θ is the Ag coverage. The roughening of the surface morphology has been characterized by scaling exponents α, β and 1/z, which are determined using scanning tunneling microscopy. Increased value of α = 0.67 ± 0.04 at the early stage of the electronic growth with two atomic layer height flat-top isolated Ag mounds to 0.77 ± 0.06 at the later stage of the growth when isolated mounds coalesce and form percolated structures maintaining preferential heights of an even number of atomic layers in the Ag mounds indicates the instability in the electronic growth. As a result, interface width W increases as a power law of coverage (θ), W ∼ θ(β), with growth exponent β = 0.33 ± 0.03, and lateral correlation length ξ grows as ξ ∼ θ(1/z) with 1/z = 0.27 ± 0.05. PMID:24015893

  11. Hierarchically roughened microplatelets enhance the strength and ductility of nacre-inspired composites.

    PubMed

    Niebel, Tobias P; Carnelli, Davide; Binelli, Marco R; Libanori, Rafael; Studart, André R

    2016-07-01

    Rough interfaces featuring nanoscale asperities are known to play a major role in the mechanics of nacre. Transferring this concept to artificial bioinspired composites requires a detailed understanding about the effect of the surface topography of reinforcing elements on the mechanical performance of such materials. To gain further insights into the effect of asperity size, hierarchy and coverage on the mechanics of nacre-inspired composites, we decorate alumina microplatelets with silica nanoparticles of selected sizes and use the resulting roughened platelets as reinforcing elements (15vol%) in a commercial epoxy matrix. For a single layer of silica nanoparticles on the platelet surface, increased ultimate strain and toughness are obtained with a large roughening particle size of 250nm. On the contrary, strength and stiffness are enhanced by decreasing the size of asperities using 22nm silica particles. By combining particles of two different sizes (100nm and 22nm) in a hierarchical fashion, we are able to improve stiffness and strength of platelet-reinforced polymers while maintaining high ultimate strain and toughness. Our results indicate that carefully designed hierarchically roughened interfaces lead to a more homogeneous stress distribution within the polymer matrix between the stiff reinforcing elements. By enabling the deformation of a larger fraction of the polymer matrix, this design concept improves the mechanical response of bioinspired composites and can possibly also be exploited to enhance the performance of conventional fiber-reinforced polymers. PMID:26926989

  12. HRLEED study of the roughening transitions in Cu(110), Ni(110) and Ag(110) surfaces

    SciTech Connect

    Wang, K.; Montano, P.A. |

    1996-12-01

    The authors present the results of High Resolution Low Energy Electron Diffraction (HRLEED) measurements of the thermal roughening transition on Cu(110), Ag(110) and Ni(110) surfaces. They performed careful spot profile intensity measurements as a function of temperature. They observed a proliferation of steps along the (110) and (001) directions. In addition a strong deviation from a Debye model was observed in the scattered intensity of the Bragg reflections. This deviation from the harmonic approximation occurs well below the roughening transition temperature. The behavior of the three metal surfaces is qualitatively similar except for the transition temperatures. Ni shows the highest transition temperature (1,300 K), Cu is intermediate (1,000 K) and Ag has the lowest temperature (730 K). Analyzing the behavior of the (00) reflection intensity, and the evolution of the line shape as a function of the temperature, they found clear evidence of a roughening transition at the (110) surface. A lineshape analysis of the (00) reflection shows the transition from a Lorentzian lineshape to a power law. They also proved, based on the experimental data and a recent theoretical model, that there is a tremendous increase in step density and a decrease in the average terrace size as the temperature increases. They used STM to corroborate the HRLEED results at room temperature. They found excellent agreement.

  13. Directional grain growth from anisotropic kinetic roughening of grain boundaries in sheared colloidal crystals

    PubMed Central

    Gokhale, Shreyas; Nagamanasa, K. Hima; Santhosh, V.; Sood, A. K.; Ganapathy, Rajesh

    2012-01-01

    The fabrication of functional materials via grain growth engineering implicitly relies on altering the mobilities of grain boundaries (GBs) by applying external fields. Although computer simulations have alluded to kinetic roughening as a potential mechanism for modifying GB mobilities, its implications for grain growth have remained largely unexplored owing to difficulties in bridging the widely separated length and time scales. Here, by imaging GB particle dynamics as well as grain network evolution under shear, we present direct evidence for kinetic roughening of GBs and unravel its connection to grain growth in driven colloidal polycrystals. The capillary fluctuation method allows us to quantitatively extract shear-dependent effective mobilities. Remarkably, our experiments reveal that for sufficiently large strains, GBs with normals parallel to shear undergo preferential kinetic roughening, resulting in anisotropic enhancement of effective mobilities and hence directional grain growth. Single-particle level analysis shows that the mobility anisotropy emerges from strain-induced directional enhancement of activated particle hops normal to the GB plane. We expect our results to influence materials fabrication strategies for atomic and block copolymeric polycrystals as well. PMID:23169661

  14. Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel

    NASA Astrophysics Data System (ADS)

    Xun, Qian-Qiu; Wang, Bing-Chen

    2016-07-01

    In this paper, we investigate the effect of the Coriolis force on the flow field in a rib-roughened channel subjected to either clockwise or counter-clockwise system rotation using hybrid RANS/LES based on wall modelling. A simplified dynamic forcing scheme incorporating backscatter is proposed for the hybrid simulation approach. The flow is characterized by a Reynolds number of Re = 1.5 × 104 and a rotation number Ro ranging from -0.6 to 0.6. The mean flow speed and turbulence level near the roughened wall are enhanced under counter-clockwise rotation and suppressed under clockwise rotation. The Coriolis force significantly influences the stability of the wall shear layer and the free shear layers generated by the ribs. Consequently, it is interesting to observe that the classification of the roughness type relies not only on the pitch ratio, but also on the rotation number in the context of rotating rib-roughened flows. In order to validate the present hybrid approach, the first- and second-order statistical moments of the velocity field obtained from the simulations are thoroughly compared with the available laboratory measurement data.

  15. Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2013-03-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein conformational functionality is often dominated by long-range hydrophobic or hydrophilic interactions which both drive protein compaction and mediate protein-protein interactions. Superfamily transmembrane G-protein-coupled receptors (GPCRs) are the largest family of proteins in the human genome; their amino acid sequences form the largest database for protein-membrane interactions. While there are now structural data on the heptad transmembrane structures of representatives of several heptad families, here we show how fresh insights into global and some local chemical trends in GPCR properties can be obtained accurately from sequences alone, especially by algebraically separating the extracellular and cytoplasmic loops from transmembrane segments. The global mediation of long-range water-protein interactions occurs in conjunction with modulation of these interactions by roughened interfaces. Hydropathic roughening profiles are defined here solely in terms of amino acid sequences, and knowledge of protein coordinates is not required. Roughening profiles both for GPCR and some simpler protein families display accurate and transparent connections to protein functionality, and identify natural length scales for protein functionality.

  16. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    PubMed Central

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-01-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals. PMID:25801646

  17. Ion sputter textured graphite electrode plates

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)

    1983-01-01

    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.

  18. Frequency response measurements in battery electrodes

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1992-01-01

    Electrical impedance spectroscopy was used to investigate the behavior of porous zinc, silver, cadmium, and nickel electrodes. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two AgZn cells, one apparently good and the other bad. The impedance data was fit to equivalent circuit models.

  19. Silver Doped Titanium Dioxide Humidity Sensor

    NASA Astrophysics Data System (ADS)

    Hooshiar Zare, Ali; Mohammadi, Somayye

    2011-02-01

    The effect of silver doping on the sensitivity, dynamic range and the response time of a titanium dioxide-based resistive humidity sensor is studied. Sample pallets were prepared by sintering the dry pressed samples at 900°C in air. Silver was added to the ceramic raw material in the form of AgNO3 which was decomposed during the sintering process. Large area silver electrodes were deposited on the sintered disks by paste printing. The resistance and the response time of the various pallets containing different additive levels were measured at relative humidity range of 4-100%. Silver doping, substantially increased the sensitivity to the ambient humidity. Moreover, it resulted in faster responses; the response time of the silver added pallets were about four times shorter than the pure ones.

  20. Recovering Silver from Photographic Process Wastes

    NASA Astrophysics Data System (ADS)

    Sathaiyan, N.; Adaikkalam, P.; Abdul Kader, J. A. M.; Visvanathan, S.

    1990-10-01

    Spent color bleach-fix solution (CBFS), a product of photographic processing operations, is a potential source of silver. Of the extraction reactors used in recovering this silver, the rotating cylindrical electrode (RCE) has an advantage in that it provides improved mass transfer with an extended effective surface area. In addition, the application of a potentiostatic technique allows the silver deposition reaction to take place preferentially, without the formation of silver sulfide. The process consists of prior physical treatment, subsequent chemical reduction of the ferric-EDTA (ethylene diamine tetra-acetic acid) complex present in the CBFS with sodium dithionite (monitored by measuring the redox potential of Fe3+/Fe2+ couple), followed by electrodeposition of silver in a divided cell using a cation exchange membrane. The combined procedure results in increased current efficiency and reduced electrolysis time.

  1. Electron transfer in silver telluride melt

    SciTech Connect

    Glazov, V.M.; Burkhanov, A.S.

    1987-06-01

    Electron transfer in silver telluride melt was studied experimentally at different temperatures. The method used to study electron transfer and thermodiffusion is based on Onsager's theory and consists of measuring the electrodiffusion potential which varies as a function of time in the system formed by the liquid semiconductor and the neutral metallic electrodes. The effective charges and the average coefficients of diffusion of silver ions were calculated and the ionic component of the total electrical conductivity of Ag/sub 2/Te melt was evaluated. It was observed that the indicated characteristics vary systematically in the series of silver chalcogenides with anionic substitution. The negative temperature coefficient of electrical conductivity in silver sulfide and silver selenide melts was explained.

  2. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    NASA Astrophysics Data System (ADS)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  3. Biomedical engineering tasks. [electrode development for electrocardiography and electroencephalography

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.

  4. Anomalous scaling behavior and surface roughening in molecular thin-film deposition

    SciTech Connect

    Yim, S.; Jones, T. S.

    2006-04-15

    The thin film growth dynamics of a molecular semiconductor, free-base phthalocyanine (H{sub 2}Pc), deposited by organic molecular beam deposition, has been studied by atomic force microscopy (AFM) and height difference correlation function (HDCF) analysis. The measured dynamic scaling components ({alpha}{sub loc}=0.61{+-}0.12, {beta}=1.02{+-}0.08, and 1/z=0.72{+-}0.13) are consistent with rapid surface roughening and anomalous scaling behavior. A detailed analysis of AFM images and simple growth models suggest that this behavior arises from the pronounced upward growth of crystalline H{sub 2}Pc mounds during the initial stages of thin film growth.

  5. A surface plasmon model for laser ablation of Ag sup + ions from a roughened Ag surface

    SciTech Connect

    Ritchie, R.H. Tennessee Univ., Knoxville, TN . Dept. of Physics); Manson, J.R. . Dept. of Physics); Echenique, P.M. . Faculdad de Quimica)

    1991-01-01

    Experimental work by Shea and Compton suggests that Ag{sup +} ions emitted from a roughened Ag surface irradiated by a nanosecond or picosecond laser beam may absorb the full energy of the Ag surface plasmon. We have modeled this process under the assumption that it proceeds through an inverse bremsstrahlung-type absorption of the SP quantum by Ag{sup +} ion which also undergoes a small-impact parameter collision with another ion or atom in the vicinity of the surface. We give a quantitative estimate of the absorption probability and find reasonable agreement with the Shea-Compton results. 8 refs., 2 figs.

  6. Silver cyanide

    Integrated Risk Information System (IRIS)

    Silver cyanide ; CASRN 506 - 64 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  7. Morphological switching in synchrotron-radiation-excited Ge homoepitaxy: Transition from kinetic roughening to smoothing

    SciTech Connect

    Akazawa, Housei

    2005-05-15

    The surface morphology of Ge films during GeH{sub 4}-source molecular beam epitaxy on a Ge(100) substrate is dramatically changed through irradiation with synchrotron radiation (h{nu}>100 eV). At temperatures below 300 deg. C, a two-dimensionally flat film continues to grow with the surface tightly passivated by a GeH{sub x} hydride layer. At temperatures above 350 deg. C, dangling bonds are partially terminated with hydrogen atoms while Ge adatoms are highly mobile, resulting in a nonuniform nucleation that creates the islands. Small islands merge into a few-hundred-nanometer-tall islands surrounded by the (113)-face sidewalls. This kinetic roughening continues until the nucleation on the (001) plane ceases due to the buildup of the GeH{sub x} layer. Once the surface free energy is minimized by the hydrogen termination, flattening of the islands proceeds to reduce the chemical potential of the system. The valleys between the islands are preferentially filled, and the film is eventually converted into a smooth epilayer with no memory of the initial roughening.

  8. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  9. Stochastic dynamics and phase-field roughening in optomechanical oscillator arrays

    NASA Astrophysics Data System (ADS)

    Lauter, Roland; Mitra, Aditi; Marquardt, Florian

    We consider arrays of coupled optomechanical systems, each of which consists of a laser-driven optical mode interacting with a mechanical (vibrational) mode. For sufficiently strong laser driving, the mechanical modes can settle into stable finite-amplitude oscillations on a limit cycle. We study the collective classical nonlinear dynamics of the phases of these oscillators, which is effectively described by an extension of the well-known Kuramoto model. In this extended model, we study the effect of noise on the dynamics in the case of homogeneous-phase initial conditions. We analytically establish a connection to the physics of surface growth as described by the Kardar-Parisi-Zhang model. Simulations of one-dimensional arrays of our model indeed show roughening of the phase field and universal scaling of the phase-field width. In contrast to the continuum Kardar-Parisi-Zhang model, our model is a genuine lattice model. We discuss interesting effects due to this difference, including crossover timescales and the role of instabilities of the roughening process.

  10. Preliminary flight prototype silver ion monitoring system, addendum

    NASA Technical Reports Server (NTRS)

    Wilson, R. I.

    1975-01-01

    A number of electrode fabrication techniques are investigated, to achieve an electrode meeting shuttle mission requirements for functional life and stability as well as accuracy and precision of measurement. The instability of a silver bromide column when employed in a closed loop calibration scheme is discussed.