Science.gov

Sample records for rpe cell migration

  1. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  2. Isolation, culture and characterization of primary mouse RPE cells.

    PubMed

    Fernandez-Godino, Rosario; Garland, Donita L; Pierce, Eric A

    2016-07-01

    Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD). PMID:27281648

  3. RPE Cell and Sheet Properties in Normal and Diseased Eyes.

    PubMed

    Rashid, Alia; Bhatia, Shagun K; Mazzitello, Karina I; Chrenek, Micah A; Zhang, Qing; Boatright, Jeffrey H; Grossniklaus, Hans E; Jiang, Yi; Nickerson, John M

    2016-01-01

    Previous studies of human retinal pigment epithelium (RPE) morphology found spatial differences in density: a high density of cells in the macula, decreasing peripherally. Because the RPE sheet is not perfectly regular, we anticipate that there will be differences between conditions and when and where damage is most likely to begin. The purpose of this study is to establish relationships among RPE morphometrics in age, cell location, and disease of normal human and AMD eyes that highlight irregularities reflecting damage. Cadaveric eyes from 11 normal and 3 age-related macular degeneration (AMD) human donors ranging from 29 to 82 years of age were used. Borders of RPE cells were identified with phalloidin. RPE segmentation and analysis were conducted with CellProfiler. Exploration of spatial point patterns was conducted using the "spatstat" package of R. In the normal human eye, with increasing age, cell size increased, and cells lost their regular hexagonal shape. Cell density was higher in the macula versus periphery. AMD resulted in greater variability in size and shape of the RPE cell. Spatial point analysis revealed an ordered distribution of cells in normal and high spatial disorder in AMD eyes. Morphometrics of the RPE cell readily discriminate among young vs. old and normal vs. diseased in the human eye. The normal RPE sheet is organized in a regular array of cells, but AMD exhibited strong spatial irregularity. These findings reflect on the robust recovery of the RPE sheet after wounding and the circumstances under which it cannot recover. PMID:26427486

  4. Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1.

    PubMed

    Peterson, Lynda J; Wittchen, Erika S; Geisen, Pete; Burridge, Keith; Hartnett, M Elizabeth

    2007-04-01

    Age-related macular degeneration (AMD) is the major cause of non-preventable blindness. Severe forms of AMD involve breaching of the retinal pigment epithelial (RPE) barrier by underlying choroidal endothelial cells (CECs), followed by migration into, and subsequent neovascularization of the neurosensory retina. However, little is known about the interactions between RPE and CECs and the signaling events leading to CEC transmigration. While soluble chemotactic factors secreted from RPE can contribute to inappropriate CEC transmigration, other unidentified stimuli may play an additional role. Using a coculture model that maintains the natural structural orientation of CECs to the basal aspect of RPE, we show that "contact" with RPE and/or RPE extracellular matrix increases CEC transmigration of the RPE barrier. From a biochemical standpoint, contact between CECs and RPE results in an increase in the activity of the GTPase Rac1 within the CECs; this increase is dependent on upstream activation of PI 3-K and Akt1. To confirm a link between these signaling molecules and increased CEC transmigration, we performed transmigration assays while inhibiting both PI 3-K and Rac1 activity, and observed that both decreased CEC transmigration. We hypothesize that contact between CECs and RPE stimulates a signaling pathway involving PI 3-K, Akt1, and Rac1 that facilitates CEC transmigration across the RPE barrier, an important step in the development of neovascular AMD. PMID:17292356

  5. Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1

    PubMed Central

    Peterson, Lynda J.; Wittchen, Erika S.; Geisen, Pete; Burridge, Keith; Hartnett, M. Elizabeth

    2008-01-01

    Age-related macular degeneration (AMD) is the major cause of non-preventable blindness. Severe forms of AMD involve breaching of the retinal pigment epithelial (RPE) barrier by underlying choroidal endothelial cells (CECs), followed by migration into, and subsequent neovascularization of the neurosensory retina. However, little is known about the interactions between RPE and CECs and the signaling events leading to CEC transmigration. While soluble chemotactic factors secreted from RPE can contribute to inappropriate CEC transmigration, other unidentified stimuli may play an additional role. Using a coculture model that maintains the natural structural orientation of CECs to the basal aspect of RPE, we show that “contact” with RPE and/or RPE extracellular matrix increases CEC transmigration of the RPE barrier. From a biochemical standpoint, contact between CECs and RPE results in an increase in the activity of the GTPase Rac1 within the CECs; this increase is dependent on upstream activation of PI 3-K and Akt1. To confirm a link between these signaling molecules and increased CEC transmigration, we performed transmigration assays while inhibiting both PI 3-K and Rac1 activity, and observed that both decreased CEC transmigration. We hypothesize that contact between CECs and RPE stimulates a signaling pathway involving PI 3-K, Akt1, and Rac1 that facilitates CEC transmigration across the RPE barrier, an important step in the development of neovascular AMD. PMID:17292356

  6. Studying melanin and lipofuscin in RPE cell culture models

    PubMed Central

    Boulton, Michael E

    2014-01-01

    The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols. PMID:25152361

  7. Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells

    SciTech Connect

    Hollborn, Margrit . E-mail: hollbm@medizin.uni-leipzig.de; Bringmann, Andreas; Faude, Frank; Wiedemann, Peter; Kohen, Leon

    2006-06-09

    We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.

  8. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  9. RPE and neuronal differentiation of allotransplantated porcine ciliary epithelium-derived cells

    PubMed Central

    Guduric-Fuchs, Jasenka; Chen, Wing; Price, Henrietta; Archer, Desmond B.

    2011-01-01

    Purpose Cell replacement has the potential to be applied as a therapeutic strategy in retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration (AMD) for which no adequate pharmacological and surgical treatments are currently available. Although controversial, the use of ciliary epithelium (CE)-derived cells is supported by evidence showing their differentiation into retinal phenotypes. This study examines the differentiation potential of porcine CE-derived cells in vitro and their survival, migration, morphological characteristics, and immunohistochemical phenotype in vivo, upon transplantation into the subretinal space of normal pigs. Methods Cells were isolated from the CE of postnatal pigs and were grown in a suspension sphere culture. Differentiation was assessed in vitro after exposure to laminin and the addition of serum. For transplantation, CE-derived spheres were dissociated, labeled with CM-DiI vital dye, and the cells were injected subretinally into one eye of eight week-old allorecipients. The eyes were examined at eight days and at two and four weeks after transplantation. Results Cells positive for neuronal and retinal pigment epithelium (RPE) markers were detected by immunohistochemistry in differentiation cultures. Reverse Transcriptase-Polymerase Chain Reaction (RT–PCR) revealed upregulation of neuronal markers after in vitro differentiation. CM-DiI dye-labeled CE-derived cells dissociated from primary spheres survived for up to four weeks after transplantation in vivo. Some of the surviving cells migrated distantly from the injection site. Large clusters of transplanted cells integrated into the RPE layer and multilayered RPE-like structures positive for RPE65 were often observed. Grafted cells were also identified in the neuroretina where 5%–10% were positive for recoverin, protein kinase C alpha (PKCα), and calbindin. Conclusions The efficient conversion to an RPE-like phenotype suggests that CE

  10. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future

    PubMed Central

    Lehmann, Guillermo L.; Benedicto, Ignacio; Philp, Nancy J.; Rodriguez-Boulan, Enrique

    2015-01-01

    The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin–Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity. PMID:25152359

  11. miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65.

    PubMed

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Kang, Tae-Wook; Lee, Jin Young; Lee, Byung-Chul; Kang, Insung; Shin, Tae-Hoon; Kim, Hyung-Sik; Yu, Kyung-Rok; Kang, Kyung-Sun

    2015-06-01

    The retinal pigment epithelium (RPE) is a highly specialized cell type located between the choroid and neural retina of the eye. RPE degeneration causes irreversible visual impairment, extending to blindness. Cell therapy has recently emerged as a potential therapeutic approach for retinal degeneration. MicroRNA-based differentiation of stem cells is a new strategy for producing tissue-specific cell types. In this study, we developed a novel microRNA-based strategy for RPE induction from human amniotic epithelial stem cells (AESCs). We identified microRNAs involved in RPE development in AESCs. Of 29 putative human RPE-relevant microRNAs, microRNA-410 (miR-410) was predicted to target multiple RPE development-relevant genes. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including OTX2, RPE65, Bestrophin and EMMPRIN. These RPE-like cells were morphologically altered toward a cobblestone-like shape and were able to phagocytize microbeads. We showed that miR-410 directly regulates predicted target genes OTX2 and RPE65. Our microRNA-based strategy demonstrated RPE differentiation in AESCs by treatment of an antisense microRNA-410 (anti-miR-410), without the use of additional factors or exogenous transduction. These findings suggest that miR-410 inhibition can be a useful tool for directed cell differentiation and an attractive method for cell therapy in human retinal degenerative diseases. PMID:25351180

  12. An easy, rapid method to isolate RPE cell protein from the mouse eye.

    PubMed

    Wei, Hong; Xun, Zixian; Granado, Herta; Wu, Angela; Handa, James T

    2016-04-01

    The retinal pigment epithelium (RPE) is essential for maintaining the health of the neural retina. RPE cell dysfunction plays a critical role in many common blinding diseases including age-related macular degeneration (AMD), diabetic retinopathy, retinal dystrophies. Mouse models of ocular disease are commonly used to study these blinding diseases. Since isolating the RPE from the choroid has been challenging, most techniques separate the RPE from the retina, but not the choroid. As a result, the protein signature actually represents a heterogeneous population of cells that may not accurately represent the RPE response. Herein, we describe a method for separating proteins from the RPE that is free from retinal and choroidal contamination. After removing the anterior segment and retina from enucleated mouse eyes, protein from the RPE was extracted separately from the choroid by incubating the posterior eyecup with a protein lysis buffer for 10 min. Western blot analysis identified RPE65, an RPE specific protein in the RPE lysates, but not in choroidal lysates. The RPE lysates were devoid of rhodopsin and collagen VI, which are abundant in the retina and choroid, respectively. This technique will be very helpful for measuring the protein signal from the RPE without retinal or choroidal contamination. PMID:26424220

  13. Blockade of MerTK Activation by AMPK Inhibits RPE Cell Phagocytosis.

    PubMed

    Qin, Suofu

    2016-01-01

    Timely removal of shed photoreceptor outer segments by retinal pigment epithelial cells (RPE) plays a key role in biological renewal of these highly peroxidizable structures and in maintenance of retina health. How environmental stress cause RPE cell dysfunction is undefined however. AMP-activated protein kinase (AMPK), a heterotrimer of a catalytic α subunit and regulatory β and γ subunits, maintains energy homeostasis by limiting energy utilization and/or promoting energy production when energy supply is compromised. Intriguingly, AMPK has been shown to be important in functions of RPE cells. In this mini-review, the role and mechanisms of AMPK in controlling RPE cell phagocytosis are discussed. PMID:26427488

  14. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    PubMed Central

    Stanzel, Boris V.; Liu, Zengping; Somboonthanakij, Sudawadee; Wongsawad, Warapat; Brinken, Ralf; Eter, Nicole; Corneo, Barbara; Holz, Frank G.; Temple, Sally; Stern, Jeffrey H.; Blenkinsop, Timothy A.

    2014-01-01

    Summary Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies. PMID:24511471

  15. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    PubMed Central

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  16. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction

    PubMed Central

    Sreekumar, Parameswaran G.; Ishikawa, Keijiro; Spee, Chris; Mehta, Hemal H.; Wan, Junxiang; Yen, Kelvin; Cohen, Pinchas; Kannan, Ram; Hinton, David R.

    2016-01-01

    Purpose To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress–induced cell death, mitochondrial bioenergetics, and senescence. Methods Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5–10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress–induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. Results A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress–induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress–induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. Conclusions Humanin protected RPE cells against oxidative stress–induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD. PMID:26990160

  17. EXPLORING RPE AS A SOURCE OF PHOTORECEPTORS: DIFFERENTIATION AND INTEGRATION OF TRANSDIFFERENTIATING CELLS GRAFTED INTO EMBRYONIC CHICK EYES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The possibility of generating photoreceptors through programming retina pigment epithelium (RPE) transdifferentiation by examining cell differentiation after transplantation into the developing chicken eye was examined. RPE cells were dissociated, cultured, and guided to transdifferentiate by infec...

  18. Cell migration.

    PubMed

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2012-10-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  19. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  20. Antiangiogenic and Neurogenic Activities of Sleeping Beauty-Mediated PEDF-Transfected RPE Cells In Vitro and In Vivo.

    PubMed

    Johnen, Sandra; Djalali-Talab, Yassin; Kazanskaya, Olga; Möller, Theresa; Harmening, Nina; Kropp, Martina; Izsvák, Zsuzsanna; Walter, Peter; Thumann, Gabriele

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a potent multifunctional protein that inhibits angiogenesis and has neurogenic and neuroprotective properties. Since the wet form of age-related macular degeneration is characterized by choroidal neovascularization (CNV), PEDF would be an ideal candidate to inhibit CNV and support retinal pigment epithelial (RPE) cells. However, its short half-life has precluded its clinical use. To deliver PEDF to the subretinal space, we transfected RPE cells with the PEDF gene using the Sleeping Beauty transposon system. Transfected cells expressed and secreted biologically active recombinant PEDF (rPEDF). In cultures of human umbilical vein endothelial cells, rPEDF reduced VEGF-induced cumulative sprouting by ≥47%, decreased migration by 77%, and increased rate of apoptosis at least 3.4 times. rPEDF induced neurite outgrowth in neuroblastoma cells and protected ganglion and photoreceptor cells in organotypic retinal cultures. In a rat model of CNV, subretinal transplantation of PEDF-transfected cells led to a reduction of the CNV area by 48% 14 days after transplantation and decreased clinical significant lesions by 55% and 40% after 7 and 14 days, respectively. We showed that transplantation of pigment epithelial cells overexpressing PEDF can restore a permissive subretinal environment for RPE and photoreceptor maintenance, while inhibiting choroidal blood vessel growth. PMID:26697494

  1. Antiangiogenic and Neurogenic Activities of Sleeping Beauty-Mediated PEDF-Transfected RPE Cells In Vitro and In Vivo

    PubMed Central

    Johnen, Sandra; Djalali-Talab, Yassin; Kazanskaya, Olga; Möller, Theresa; Harmening, Nina; Kropp, Martina; Izsvák, Zsuzsanna; Walter, Peter; Thumann, Gabriele

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a potent multifunctional protein that inhibits angiogenesis and has neurogenic and neuroprotective properties. Since the wet form of age-related macular degeneration is characterized by choroidal neovascularization (CNV), PEDF would be an ideal candidate to inhibit CNV and support retinal pigment epithelial (RPE) cells. However, its short half-life has precluded its clinical use. To deliver PEDF to the subretinal space, we transfected RPE cells with the PEDF gene using the Sleeping Beauty transposon system. Transfected cells expressed and secreted biologically active recombinant PEDF (rPEDF). In cultures of human umbilical vein endothelial cells, rPEDF reduced VEGF-induced cumulative sprouting by ≥47%, decreased migration by 77%, and increased rate of apoptosis at least 3.4 times. rPEDF induced neurite outgrowth in neuroblastoma cells and protected ganglion and photoreceptor cells in organotypic retinal cultures. In a rat model of CNV, subretinal transplantation of PEDF-transfected cells led to a reduction of the CNV area by 48% 14 days after transplantation and decreased clinical significant lesions by 55% and 40% after 7 and 14 days, respectively. We showed that transplantation of pigment epithelial cells overexpressing PEDF can restore a permissive subretinal environment for RPE and photoreceptor maintenance, while inhibiting choroidal blood vessel growth. PMID:26697494

  2. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases

    PubMed Central

    Heller, Janosch P.; Kwok, Jessica C. F.; Vecino, Elena; Martin, Keith R.; Fawcett, James W.

    2015-01-01

    Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases. PMID:26635529

  3. Analysis of Photoreceptor Rod Outer Segment Phagocytosis by RPE Cells In Situ

    PubMed Central

    Sethna, Saumil; Finnemann, Silvia C.

    2013-01-01

    Counting rhodopsin-positive phagosomes residing in the retinal pigment epithelium (RPE) in the eye at different times of day allows a quantitative assessment of engulfment and digestion phases of diurnal RPE phagocytosis, which efficiently clears shed photoreceptor outer segment fragments (POS) from the neural retina. Comparing such activities among age- and background-matched experimental wild-type and mutant mice or rats serves to identify roles for specific proteins in the phagocytic process. Here, we describe experimental procedures for mouse eye harvest, embedding, sectioning, immunofluorescence labeling of rod POS phagosomes in RPE cells in sagittal eye sections, imaging of POS phagosomes in the RPE by laser scanning confocal microscopy, and POS quantification. PMID:23150373

  4. Taurine suppresses the spread of cell death in electrically coupled RPE cells

    PubMed Central

    Udawatte, Chandani; Qian, Haohua; Mangini, Nancy J.; Kennedy, Brian G.

    2008-01-01

    Purpose To determine whether taurine exerts a protective effect on retinal pigment epithelium (RPE) cells exposed to a cytotoxic agent, cytochrome C (cyC), shown previously to induce apoptosis and produce cell death in electrically coupled neighboring cells. Methods Monolayer cultures of confluent human RPE (ARPE-19) cells, which express gap-junctional proteins, were incubated in culture medium with or without taurine. After scrape loading cyC into the cells, we assayed these cells for caspase 3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the spread of apoptosis. Results We found that cyC, too large a molecule to traverse gap junctional channels, produced apoptosis in cells injured by the scrape as well as those distant from the site of the scrape, presumably by the intercellular transmission of a toxic agent through the gap junctions that couple these cells. Incubation in taurine, or the gap-junction blocker, octanol, before application of cyC, reduced significantly the fraction of cells undergoing apoptosis. Voltage clamp recordings from electrically coupled Xenopus oocytes transfected with Cx43 showed that junctional communication was unaffected by taurine. Conclusions Our results indicate that taurine can serve to suppress cell death in RPE cells independent of any effect on gap junctions. We have considered various avenues by which taurine can exert its protective effect, but the precise mechanism involved under these experimental conditions has yet to be identified. PMID:18958305

  5. Reprogramming chick RPE progeny cells to differentiate towards retinal neurons by ash1

    PubMed Central

    Mao, Weiming; Yan, Run-Tao

    2008-01-01

    Purpose Harnessing a cell culture of retinal pigment epithelium (RPE) to give rise to retinal neurons may offer a source of developing neurons for cell-replacement studies. This study explores the possibility of reprogramming RPE progeny cells to differentiate toward retinal neurons with achaete-scute homolog 1 (ash1), a proneural gene that is expressed in progenitor cells in the developing retina and promotes amacrine cell production when overexpressed in the chick retina. Methods Replication Competent Avian Splice (RCAS) retrovirus was used to drive the ectopic expression of ash1 in cell cultures of dissociated RPE isolated from day 6 chick embryos. RCAS expressing green fluorescent protein (RCAS-GFP) was used as control. The cultures were examined for de novo generation of neuron-like cells by molecular, cellular, and physiologic criteria. Results In control cultures infected with RCAS-GFP, RPE cells appeared cobblestone-like and often darkly pigmented. In cultures infected with RCAS-ash1, however, cells remained de-pigmented and frequently formed clusters. Further examination at the morphological and molecular levels showed the development of elaborate processes characteristic of neurons and the expression of genes/markers that identify different types of retinal neurons. The most prevalently expressed neural marker was calretinin, which in the chick retina identifies amacrine, ganglion, and horizontal cells. As an assay for functional maturation, the reprogrammed cells were analyzed for the presence of functional, ionotropic glutamate receptors that lead to a rise in the cytosolic free calcium (Ca2+) concentration. Calcium imaging showed that reprogrammed cells responded to glutamate and N-methyl-D-aspartate (NMDA) by increasing their Ca2+ concentrations, which, after reaching a peak level, returned to the basal level. The response curves of reprogrammed cells resembled those of cultured retinal neurons. Conclusions These results suggest that RPE progeny cells

  6. The influence of sublethal blue light exposure on human RPE cells

    PubMed Central

    Schaller, Annette; Knels, Lilla; Funk, Richard H.W.

    2009-01-01

    Purpose To evaluate the in vitro response of retinal pigment epithelial (RPE) cells to a nonlethal dose of blue light. Methods The human RPE cell line ARPE-19 was irradiated with blue light (405 nm) at an output power of 1 mW/cm2 or 0.3 mW/cm2. The following parameters were studied: metabolic activity; apoptosis; reactive oxygen species (ROS) production; mitochondrial membrane potential (MMP); ultrastructural changes of mitochondria; production of advanced glycation endproducts (AGEs); and stress-related cellular proteins. Results Nonlethal doses of blue light irradiation significantly reduced ARPE-19 metabolic activity and MMP while increasing intracellular ROS levels and expression of stress-related proteins heme oxygenase-1 (HO-1), osteopontin, heat shock protein 27 (Hsp-27), manganese superoxide dismutase (SOD-Mn), and cathepsin D. Blue light irradiation also induced ultrastructural conformation changes in mitochondria, resulting in the appearance of giant mitochondria after 72 h. We further found enhanced formation of AGEs, particularly Nε-(carboxymethyl) lysine (CML) modifications, and a delay in the cell cycle. Conclusions ARPE-19 cells avoid cell death and recover from blue light irradiation by activating a host of defense mechanisms while simultaneously triggering cellular stress responses that may be involved in RPE disease development. Continuous light exposure can therefore detrimentally affect metabolically stressed RPE cells. This may have implications for pathogenesis of age-related macular degeneration. PMID:19784391

  7. Ranibizumab interacts with the VEGF-A/VEGFR-2 signaling pathway in human RPE cells at different levels.

    PubMed

    Ranjbar, Mahdy; Brinkmann, Max Philipp; Tura, Aysegül; Rudolf, Martin; Miura, Yoko; Grisanti, Salvatore

    2016-07-01

    Vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE) plays an important role in ocular homeostasis, but also in diseases, most notably age-related macular degeneration (AMD). To date, anti-VEGF drugs like ranibizumab have been shown to be most effective in treating these pathologic conditions. However, clinical trials suggest that the RPE could degenerate and perish through anti-VEGF treatment. Herein, we evaluated possible pathways and outcomes of the interaction between ranibizumab and human RPE cells (ARPE-19). Results indicate that ranibizumab affects the VEGF-A metabolism in RPE cells from an extra- as well as intracellular site. The drug is taken up into the cells, with the VEGF receptor 2 (VEGFR-2) being involved, and decreases VEGF-A protein levels within the cells as well as extracellularly. Oxidative stress plays a key role in various inflammatory disorders of the eye. Our results suggest that oxidative stress inhibits RPE cell proliferation. This anti-proliferative effect on RPE cells is significantly enhanced through ranibizumab, which does not inhibit RPE cell proliferation substantially in absence of relevant oxidative stress. Therefore, we emphasize that anti-VEGF treatment should be selected carefully in AMD patients with preexistent extensive RPE atrophy. PMID:27163716

  8. Inhibition of RPE cell sterile inflammatory responses and endotoxin-induced uveitis by a cell-impermeable HSP90 inhibitor.

    PubMed

    Qin, Suofu; Ni, Ming; Wang, Xiuyun; Maurier-Mahé, Florence; Shurland, Dixie-Lee; Rodrigues, Gerard A

    2011-12-01

    Dying cells release pro-inflammatory molecules, functioning as cytokines to trigger cell/tissue inflammation that is relevant to disease pathology. Heat-shock protein 90 (HSP90) is believed to act as a danger signal for tissue damage once released extracellularly. Potential roles of HSP90 were explored in retinal pigment epithelial (RPE) inflammatory responses to necrosis. Cellular extracts can trigger ARPE-19 cell inflammatory responses, producing cytokines that lead to an increase in ARPE-19 cell monolayer permeability. Addition of recombinant HSP90β mimics the induction of chemokines IL-8 and MCP-1 in cultured RPE cells, suggesting that released HSP90 can incite RPE cell sterile inflammatory responses. Consistent with this, classical HSP90 inhibitors were shown to substantially reduce necrosis-induced cytokine production and permeability increases in ARPE-19 cells. Moreover, a cell-impermeable inhibitor, 17-N,N-dimethylaminoethylamino-17-demethoxy-geldanamycin-N-oxide, also efficiently inhibited necrosis-induced cytokine production and TNF-α/IL-1β-induced increase in ARPE-19 cell permeability in vitro and endotoxin-induced development of uveitis in vivo, suggesting that HSP90 can contribute to necrosis-induced RPE inflammatory responses. Collectively, our data identify HSP90 as a pro-inflammatory molecule in RPE cell sterile inflammatory responses. PMID:22019372

  9. Microcavitation and spot size dependence for damage of artificially pigmented hTERT-RPE1 cells

    NASA Astrophysics Data System (ADS)

    Mills, Brian M.; Connor, Tracie M.; Foltz, Michael S.; Stolarski, Jacob; Hayes, Kristy L.; Denton, Michael L.; Eikum, Debbie M.; Noojin, Gary D.; Rockwell, Benjamin A.

    2004-07-01

    We performed measurements to validate damage threshold trends in minimum visible lesion (MVL) studies as a function of spot size for nanosecond laser pulses. At threshold levels, nanosecond pulses produce microcavitation bubbles that expand and collapse around individual melanosomes. This microcavitation process damages the membranes of retinal pigment epithelium (RPE) cells. A spot size study on retinal explants found cell damage fluence (energy/area) thresholds were independent of spot size when microcavitation caused the damage, contradicting past in vivo retinal spot size experiments. The explant study (ex vivo) used a top-hat beam profile, whereas the in vivo studies used Gaussian beams. The difference in spot size trends for damage in vivo versus ex vivo may be attributed to the optics of the eye but this has not been validated. In this study, we exposed artificially pigmented human RPE cells (hTERT-RPE1)-in vitro-to 7 ns pulsed irradiation from a Ti:Sa TSA-02 regenerative amplifier (1055 nm) with beam diameters of 44, 86, and 273 μm (Gaussian beam profiles). We detected the microcavitation event with strobe illumination and time-resolved imaging. We used the fluorescent indicator dye calcein-AM, with excitation by an Argon laser (488 nm), to assess cell damage. Our current results follow trends found in the in vivo studies.

  10. Inhibition of BET bromodomains alleviates inflammation in human RPE cells.

    PubMed

    Hytti, M; Tokarz, P; Määttä, E; Piippo, N; Korhonen, E; Suuronen, T; Honkakoski, P; Kaarniranta, K; Lahtela-Kakkonen, M; Kauppinen, A

    2016-06-15

    Bromodomain-containing proteins are vital for controlling the expression of many pro-inflammatory genes. Consequently, compounds capable of inhibiting specific bromodomain-facilitated protein-protein interactions would be predicted to alleviate inflammation, making them valuable agents in the treatment of diseases caused by dysregulated inflammation, such as age-related macular degeneration. Here, we assessed the ability of known inhibitors JQ-1, PFI-1, and IBET-151 to protect from the inflammation and cell death caused by etoposide exposure in the human retinal pigment epithelial cell line, ARPE-19. The potential anti-inflammatory effects of the bromodomain inhibitors were assessed by ELISA (enzyme-linked immunosorbent assay) profiling. The involvement of NF-κB and SIRT1 in inflammatory signaling was monitored by ELISA and western blotting. Furthermore, SIRT1 was knocked down using a specific siRNA or inhibited by EX-527 to elucidate its role in the inflammatory reaction. The bromodomain inhibitors effectively decreased etoposide-induced release of IL-6 and IL-8. This anti-inflammatory effect was not related to SIRT1 activity, although all bromodomain inhibitors decreased the extent of acetylation of p53 at the SIRT1 deacetylation site. Overall, since bromodomain inhibitors display anti-inflammatory properties in human retinal pigment epithelial cells, these compounds may represent a new way of alleviating the inflammation underlying the onset of age-related macular degeneration. PMID:27106081

  11. c-Met Modulates RPE Migratory Response to Laser-Induced Retinal Injury

    PubMed Central

    Lashkari, Kameran

    2012-01-01

    Retinal laser injuries are often associated with aberrant migration of the retinal pigment epithelium (RPE), which can cause expansion of the scar beyond the confines of the original laser burn. In this study, we devised a novel method of laser-induced injury to the RPE layer in mouse models and began to dissect the mechanisms associated with pathogenesis and progression of laser-induced RPE injury. We have hypothesized that the proto-oncogene receptor, c-Met, is intimately involved with migration of RPE cells, and may be an early responder to injury. Using transgenic mouse models, we show that constitutive activation of c-Met induces more robust RPE migration into the outer retina of laser-injured eyes, while abrogation of the receptor using a cre-lox method reduces these responses. We also demonstrate that retinal laser injury increases expression of both HGF and c-Met, and activation of c-Met after injury is correlated with RPE cell migration. RPE migration may be responsible for clinically significant anatomic changes observed after laser injury. Abrogation of c-Met activity may be a therapeutic target to minimize retinal damage from aberrant RPE cell migration. PMID:22808260

  12. Neurogenin1 effectively reprograms cultured chick RPE cells to differentiate towards photoreceptors

    PubMed Central

    Yan, Run-Tao; Liang, Lina; Ma, Wenxin; Li, Xiumei; Xie, Wenlian; Wang, Shu-Zhen

    2009-01-01

    Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results in blindness. Replacement with developing photoreceptor cells promises to be an effective therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells (85.0 ± 5.9%) began to differentiate towards photoreceptors. Reprogrammed cells expressed transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3, NeuroD, and RXRγ, and phototransduction pathway components, including transducin, cGMP-gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they responded to light by decreasing their cellular free calcium (Ca2+) levels and responded to 9-cis-retinal by increasing their Ca2+ levels after photobleaching, hallmarks of photoreceptor physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in future cell replacement studies. PMID:20029995

  13. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells

    PubMed Central

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.

    2012-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847

  14. Photochemical damage from chronic 458-nm laser exposures in an artificially pigmented hTERT-RPE1 cell line

    NASA Astrophysics Data System (ADS)

    Foltz, Michael S.; Whitlock, Norris A.; Estlack, Larry E.; Figueroa, Manuel A.; Thomas, Robert J.; Rockwell, Benjamin A.; Denton, Michael L.

    2006-02-01

    Artificially pigmented hTERT-RPE1 cells were exposed to a mode-locked or continuous wave (CW) laser at 458 nm for one hour in a modified culture incubator. Exposure conditions were selected to give greatest likelihood of damage due to a photochemical mechanism, with interest in possible differences between CW and mode-locked damage thresholds. After post-exposure-recovery (PER) for either 1-hour or 24-hour, cells were concurrently stained with annexin V and 6-CFDA to determine if they had undergone necrosis or apoptosis. Alternatively, cells were stained with Ethidium Homodimer (EthD-1) and Calcein AM to determine if they had undergone necrosis following 1-hour and 24-hours PER. Preliminary results indicate that laser exposure induced some apoptosis following 1-hour PER, with irradiance required for apoptosis being lower than that for necrosis with mode-locked exposure conditions. Probit analysis yielded necrosis thresholds for cell culture following 1-hour PER using data compiled from both dye sets. CW exposures resulted in a lower threshold than mode-locked exposures for necrosis following 1-hour PER. A thermal model provided the predicted temperature rise in cell culture due to laser exposure. The thermal model validates our choice of laser parameters to obtain photochemical damage. Data following 24-hours PER were inconclusive. Considerations of cell migration are included in the interpretation of data and further improvements to methods when using live cell assays are recommended.

  15. Photo-oxidation from mode-locked laser exposure to hTERT-RPE1 cells

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Eikum, Debbie M.; Noojin, Gary D.; Stolarski, David J.; Glickman, Randolph D.; Rockwell, Benjamin A.

    2004-07-01

    Human retinal pigment epithelial (RPE) cells (hTERT-RPE1) were used to detect photo-oxidation products generated from chronic NIR (810 nm) laser exposure. Exposure of a discrete area within cell monolayers provided a means of distinguishing fluorescence above background levels. Oxidative stress was detected using the fluorescent dye H2DCF-DA and its analog CM-H2DCF-DA. Fluorescence was detected in cells exposed to mode-locked (76 MHz, ~160 femtoseconds) but not CW laser exposure. Detection of photo-oxidation from the mode-locked laser was dependent upon radiant exposure, but only if irradiance was greater than a threshold value. The CM-H2DCF-DA dye proved a more sensitive indicator of oxidation than H2DCF-DA, and the radiant exposure threshold for detection was dependent upon dye concentration. No oxidation was detected from CW exposures (using the most sensitive fluorescent dye conditions) when using 3 times the irradiance, and 10 times the radiant exposure needed to detect fluorescence from mode-locked exposure.

  16. Role of superoxide dismutase in the photochemical response of cultured RPE cells to laser exposure at 413 nm

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Foltz, Michael S.; Schuster, Kurt J.; Estlack, Larry E.; Thomas, Robert J.

    2008-02-01

    Thresholds for photochemical damage were performed in RPE cell lines (artificially pigmented) taken from either human (hTERT-RPE1), wild type (wt) mouse, or transgenic mice deficient (+/-) in either superoxide dismutase 1 (SOD1) or SOD2. The four cell lines were characterized by immunohistochemical and immunoblot analyses to determine relative abundance of the SOD proteins. There was no difference in sensitivity between the human, murine wt and murine SOD1-deficient cells, whereas there was a dramatic (2 fold) increase in threshold irradiance value for the murine SOD2-deficient cells. Possible explanations for the unexpected result are provided.

  17. Systemically transferred hematopoietic stem cells home to the subretinal space and express RPE-65 in a mouse model of retinal pigment epithelium damage.

    PubMed

    Atmaca-Sonmez, Pelin; Li, Yang; Yamauchi, Yasuyuki; Schanie, Carrie L; Ildstad, Suzanne T; Kaplan, Henry J; Enzmann, Volker

    2006-11-01

    Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas. PMID:16949576

  18. Live-Cell Imaging of Phagosome Motility in Primary Mouse RPE Cells.

    PubMed

    Hazim, Roni; Jiang, Mei; Esteve-Rudd, Julian; Diemer, Tanja; Lopes, Vanda S; Williams, David S

    2016-01-01

    The retinal pigment epithelium (RPE) is a post-mitotic epithelial monolayer situated between the light-sensitive photoreceptors and the choriocapillaris. Given its vital functions for healthy vision, the RPE is a primary target for insults that result in blinding diseases, including age-related macular degeneration (AMD). One such function is the phagocytosis and digestion of shed photoreceptor outer segments. In the present study, we examined the process of trafficking of outer segment disk membranes in live cultures of primary mouse RPE, using high speed spinning disk confocal microscopy. This approach has enabled us to track phagosomes, and determine parameters of their motility, which are important for their efficient degradation. PMID:26427485

  19. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration.

    PubMed

    Lu, Bin; Malcuit, Christopher; Wang, Shaomei; Girman, Sergej; Francis, Peter; Lemieux, Linda; Lanza, Robert; Lund, Raymond

    2009-09-01

    Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Here we show long-term functional rescue using hESC-derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice-compliant hESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC-RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases. PMID:19521979

  20. Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy.

    PubMed

    Zhu, Ying; Zhao, Ke-Ke; Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-01-01

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD(+)) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD(+) administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD(+) administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD(+) administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD(+) against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD(+) administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD(+) administration might be potential value for the treatment of AMD. PMID:27240523

  1. Exogenous NAD+ decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy

    PubMed Central

    Zhu, Ying; Zhao, Ke-ke; Tong, Yao; Zhou, Ya-li; Wang, Yi-xiao; Zhao, Pei-quan; Wang, Zhao-yang

    2016-01-01

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD+) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD+ administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD+ administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD+ administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD+ against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD+ administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD+ administration might be potential value for the treatment of AMD. PMID:27240523

  2. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  3. Aquaporins and cell migration.

    PubMed

    Papadopoulos, M C; Saadoun, S; Verkman, A S

    2008-07-01

    Aquaporin (AQP) water channels are expressed primarily in cell plasma membranes. In this paper, we review recent evidence that AQPs facilitate cell migration. AQP-dependent cell migration has been found in a variety of cell types in vitro and in mice in vivo. AQP1 deletion reduces endothelial cell migration, limiting tumor angiogenesis and growth. AQP4 deletion slows the migration of reactive astrocytes, impairing glial scarring after brain stab injury. AQP1-expressing tumor cells have enhanced metastatic potential and local infiltration. Impaired cell migration has also been seen in AQP1-deficient proximal tubule epithelial cells, and AQP3-deficient corneal epithelial cells, enterocytes, and skin keratinocytes. The mechanisms by which AQPs enhance cell migration are under investigation. We propose that, as a consequence of actin polymerization/depolymerization and transmembrane ionic fluxes, the cytoplasm adjacent to the leading edge of migrating cells undergoes rapid changes in osmolality. AQPs could thus facilitate osmotic water flow across the plasma membrane in cell protrusions that form during migration. AQP-dependent cell migration has potentially broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring, and other events requiring rapid, directed cell movement. AQP inhibitors may thus have therapeutic potential in modulating these events, such as slowing tumor growth and spread, and reducing glial scarring after injury to allow neuronal regeneration. PMID:17968585

  4. Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling.

    PubMed

    Zhang, Hui; Liu, Yuan-yuan; Jiang, Qin; Li, Ke-ran; Zhao, Yu-xia; Cao, Cong; Yao, Jin

    2014-04-01

    Reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelial (RPE) cells, which is known as one major cause of age-related macular degeneration. Salvianolic acid A (Sal A) is the main effective aqueous extract of Salvia miltiorrhiza. The aim of this study was to test the potential role of Sal A against oxidative stress in cultured RPE cells and to investigate the underlying mechanistic signaling pathways. We observed that Sal A significantly inhibited hydrogen peroxide (H2O2)-induced primary and transformed RPE cell death and apoptosis. H2O2-stimulated mitogen-activated protein kinase activation, ROS production, and subsequent proapoptotic AMP-activated protein kinase activation were largely inhibited by Sal A. Further, Sal A stimulation resulted in a fast and dramatic activation of Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, followed by phosphorylation, accumulation, and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with increased expression of the antioxidant-response element-dependent gene heme oxygenase-1 (HO-1). Both Nrf2 and HO-1 were required for Sal A-mediated cytoprotective effect, as Nrf2/HO-1 inhibition abolished Sal A-induced beneficial effects against H2O2. Meanwhile, the PI3K/Akt/mTORC1 chemical inhibitors not only suppressed Sal A-induced Nrf2/HO-1 activation, but also eliminated its cytoprotective effect in RPE cells. These observations suggest that Sal A activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling. PMID:24486344

  5. Secreted proteome profiling in human RPE cell cultures derived from donors with age related macular degeneration and age matched healthy donors.

    PubMed

    An, Eunkyung; Lu, Xiaoning; Flippin, Jessica; Devaney, Joseph M; Halligan, Brian; Hoffman, Eric P; Hoffman, Eric; Strunnikova, Nataly; Csaky, Karl; Hathout, Yetrib

    2006-10-01

    Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD. PMID:17022631

  6. Analysis of the RPE sheet in the rd10 retinal degeneration model

    SciTech Connect

    Jiang, Yi

    2011-01-04

    The normal RPE sheet in the C57Bl/6J mouse is subclassified into two major tiling patterns: A regular generally hexagonal array covering most of the surface and a 'soft network' near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells. We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rdl0 compared to C57BL/6J mice. RPE sheet damage was extensive but occurred in rd10 later than expected, after most retinal degeneration. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone around the optic nerve RPE cells take on larger irregular and varied shapes to form an intact monolayer. In mid periphery, there is a higher than normal density of cells that progress into involuted layers of RPE under the retina. The periphery remains mostly normal until late stages of degeneration. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate long after the photoreceptors have degenerated. The RPE cells are bystanders to the rd10 degeneration within photo receptors, and the collateral damage to the RPE sheet resembles stimulation of migration or chemotaxis. Quantitative measures of the tiling patterns and histopathology detected here, scripted in a pipeline written in Perl and Cell Profiler (an open source Matlab plugin), are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.

  7. Expression of pigment epithelium‐derived factor and thrombospondin‐1 regulate proliferation and migration of retinal pigment epithelial cells

    PubMed Central

    Farnoodian, Mitra; Kinter, James B.; Yadranji Aghdam, Saeed; Zaitoun, Ismail; Sorenson, Christine M.; Sheibani, Nader

    2015-01-01

    Abstract Age‐related macular degeneration (AMD) is the leading cause of vision loss among elderly. Although the pathogenesis of AMD is associated with retinal pigmented epithelium (RPE) dysfunction and abnormal neovascularization the detailed mechanisms remain unresolved. RPE is a specialized monolayer of epithelial cells with important functions in ocular homeostasis. Pathological RPE damage contributes to major ocular conditions including retinal degeneration and irreversible loss of vision in AMD. RPE cells also assist in the maintenance of the ocular angiogenic balance by production of positive and negative regulatory factors including vascular endothelial growth factor (VEGF), thrombospondin‐1 (TSP1), and pigment epithelium‐derived factor (PEDF). The altered production of PEDF and TSP1, as endogenous inhibitors of angiogenesis and inflammation, by RPE cells have been linked to pathogenesis of AMD and choroidal and retinal neovascularization. However, lack of simple methods for isolation and culture of mouse RPE cells has resulted in limited knowledge regarding the cell autonomous role of TSP1 and PEDF in RPE cell function. Here, we describe a method for routine isolation and propagation of RPE cells from wild‐type, TSP1, and PEDF‐deficient mice, and have investigated their impact on RPE cell function. We showed that expression of TSP1 and PEDF significantly impacted RPE cell proliferation, migration, adhesion, oxidative state, and phagocytic activity with minimal effect on their basal rate of apoptosis. Together, our results indicated that the expression of PEDF and TSP1 by RPE cells play crucial roles not only in regulation of ocular vascular homeostasis but also have significant impact on their cellular function. PMID:25602019

  8. Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding

    PubMed Central

    Priglinger, Claudia S.; Obermann, Jara; Szober, Christoph M.; Merl-Pham, Juliane; Ohmayer, Uli; Behler, Jennifer; Gruhn, Fabian; Kreutzer, Thomas C.; Wertheimer, Christian; Geerlof, Arie; Priglinger, Siegfried G.; Hauck, Stefanie M.

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells is a crucial event in the onset of proliferative vitreoretinopathy (PVR), the most common reason for treatment failure in retinal detachment surgery. We studied alterations in the cell surface glycan expression profile upon EMT of RPE cells and focused on its relevance for the interaction with galectin-3 (Gal-3), a carbohydrate binding protein, which can inhibit attachment and spreading of human RPE cells in a dose- and carbohydrate-dependent manner, and thus bares the potential to counteract PVR-associated cellular events. Lectin blot analysis revealed that EMT of RPE cells in vitro confers a glycomic shift towards an abundance of Thomsen-Friedenreich antigen, poly-N-acetyllactosamine chains, and complex-type branched N-glycans. Using inhibitors of glycosylation we found that both, binding of Gal-3 to the RPE cell surface and Gal-3-mediated inhibition of RPE attachment and spreading, strongly depend on the interaction of Gal-3 with tri- or tetra-antennary complex type N-glycans and sialylation of glycans but not on complex-type O-glycans. Importantly, we found that β1,6 N-acetylglucosaminyltransferase V (Mgat5), the key enzyme catalyzing the synthesis of tetra- or tri-antennary complex type N-glycans, is increased upon EMT of RPE cells. Silencing of Mgat5 by siRNA and CRISPR-Cas9 genome editing resulted in reduced Gal-3 binding. We conclude from these data that binding of recombinant Gal-3 to the RPE cell surface and inhibitory effects on RPE attachment and spreading largely dependent on interaction with Mgat5 modified N-glycans, which are more abundant on dedifferentiated than on the healthy, native RPE cells. Based on these findings we hypothesize that EMT of RPE cells in vitro confers glycomic changes, which account for high affinity binding of recombinant Gal-3, particularly to the cell surface of myofibroblastic RPE. From a future perspective recombinant Gal-3 may disclose a

  9. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  10. The expression and function of vascular endothelial growth factor in retinal pigment epithelial (RPE) cells is regulated by 4-hydroxynonenal (HNE) and glutathione S-transferaseA4-4

    SciTech Connect

    Vatsyayan, Rit; Lelsani, Poorna Chandra Rao; Chaudhary, Pankaj; Kumar, Sushil; Awasthi, Sanjay; Awasthi, Yogesh C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Low concentration of HNE (0.1-1.0 {mu}M) induced secretion of VEGF in RPE cells. Black-Right-Pointing-Pointer VEGF secreted medium of RPE cells promoted proliferation of endothelial cells. Black-Right-Pointing-Pointer VEGFR2 expression was attenuated with increasing concentrations of HNE. Black-Right-Pointing-Pointer These effects of HNE could be blocked by the over expression of GSTA4-4 in cells. -- Abstract: It is well established that 4-hydroxynonenal (HNE) plays a major role in oxidative stress-induced signaling and the toxicity of oxidants. Surprisingly our recent studies also demonstrate that low levels of HNE generated during oxidative stress promote cell survival mechanisms and proliferation. Since the expression and secretion of VEGF is known to be affected by Oxidative stress, during present studies, we have examined dose dependent effect of HNE on VEGF expression and secretion in a model of retinal pigment epithelial (RPE) cells in culture. Results of these studies showed that while inclusion of 0.1 {mu}M HNE in the medium caused increased secretion of VEGF, its secretion and expression was significantly suppressed in the presence of >5 {mu}M HNE in the media. These concentration dependent hormetic effects of HNE on VEGF secretion could be blocked by the over expression of GSTA4-4 indicating that these effects were specifically attributed to HNE and regulated by GSTA4-4. VEGF secreted into the media showed angiogenic properties as indicated by increased migration and tube formation of HUVEC in matrigel when grown in media from RPE cells treated with 1 {mu}M HNE. The corresponding media from GSTA4-4 over expressing RPE cells had no effect on migration and tube formation of HUVEC in matrigel. These results are consistent with earlier studies showing that at low concentrations, HNE promotes proliferative mechanisms and suggest that HNE induces VEGF secretion from RPE cells that acts in a paracrine fashion to induce

  11. Ultraviolet (UV) and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE) Cell Apoptosis

    PubMed Central

    Yao, Jin; Bi, Hui-E; Sheng, Yi; Cheng, Li-Bo; Wendu, Ri-Le; Wang, Cheng-Hu; Cao, Guo-Fan; Jiang, Qin

    2013-01-01

    Ultraviolet (UV) radiation and reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelium (RPE) cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD). The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER) stress-AMP activated protein kinase (AMPK) signaling axis in UV and hydrogen peroxide (H2O2)-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal), ceramide production (fumonisin B1) and AMPK activation (compound C) suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis. PMID:23685869

  12. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration

    PubMed Central

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L.; Han, Xu-Guang; Song, Hui

    2015-01-01

    Purpose Gamma-aminobutyric acidA (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca2+]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca2+]i. Methods Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca2+]i in cultured human RPE were demonstrated using Fluo3-AM. Results Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca2+]i in RPE cells regardless of whether Ca2+ was added to the buffer. Muscimol-induced increases in the [Ca2+]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca2+]i. PMID:26321868

  13. Pirfenidone inhibits migration, differentiation, and proliferation of human retinal pigment epithelial cells in vitro

    PubMed Central

    Wang, Jing; Yang, Yangfan; Xu, Jiangang; Lin, Xianchai; Wu, Kaili

    2013-01-01

    Purpose To investigate the effects of pirfenidone (PFD) on the migration, differentiation, and proliferation of retinal pigment epithelial (RPE) cells and demonstrate whether the drug induces cytotoxicity. Methods Human RPE cells (line D407) were treated with various concentrations of PFD. Cell migration was measured with scratch assay. The protein levels of fibronectin (FN), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), transforming growth factor beta (TGFβS), and Smads were assessed with western blot analyses. Levels of mRNA of TGFβS, FN, and Snail1 were analyzed using reverse transcriptase–polymerase chain reaction. Cell apoptosis was detected with flow cytometry using the Annexin V/PI apoptosis kit, and the percentages of cells labeled in different apoptotic stage were compared. A Trypan Blue assay was used to assess cell viability. Results PFD inhibited RPE cell migration. Western blot analyses showed that PFD inhibited the expression of FN, α-SMA, CTGF, TGFβ1, TGFβ2, Smad2/3, and Smad4. Similarly, PFD also downregulated mRNA levels of Snail1, FN, TGFβ1, and TGFβ2. No significant differences in cell apoptosis or viability were observed between the control and PFD-treated groups. Conclusions PFD inhibited RPE cell migration, differentiation, and proliferation in vitro and caused no significant cytotoxicity. PMID:24415895

  14. γδ T Cells as a Major Source of IL-17 Production During Age-Dependent RPE Degeneration

    PubMed Central

    Zhao, Zhenyang; Xu, Pei; Jie, Zuliang; Zuo, Yiqin; Yu, Bo; Soong, Lynn; Sun, Jiaren; Chen, Yan; Cai, Jiyang

    2014-01-01

    Purpose. Chronic inflammation is a key factor contributing to the progression of age-related macular degeneration (AMD). The goals of the current study were to develop an improved mouse model with retinal pathologic features similar to those of AMD and to characterize the immunoreactive cells in the outer retina and choroid during degeneration of the retinal pigment epithelium (RPE). Methods. Mice deficient in nuclear erythroid 2-related factor 2 (Nrf2) at 12 months of age were fed a high-fat, cholesterol-rich diet for up to 16 weeks. Ocular phenotype was monitored by optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) in live animals, and was further validated by retinal histopathology. Immunofluorescence staining of either cryosections or RPE flat mounts was used to define immunoreactive cells. Flow cytometry analyses were further performed to define the subsets of intraocular T lymphocytes. Results. After 16 weeks on a high-fat (HF) diet, 58% of the eyes from Nrf2−/− mice had progression of retinal lesions. Major histocompatibility complex class II (MHC II)-positive microglia, FoxP3+ regulatory T cells (Tregs), and CD3+ IL-17-producing T cells were detected in either the retina or sub-RPE space. Flow cytometry analyses further revealed that most of the IL-17-producing cells were CD3+ CD4− TCRγδ+ cells. Conclusions. The results suggest that the T cell-mediated immune responses played important roles in controlling the progression of AMD-like phenotype in Nrf2-deficient mice. PMID:25212781

  15. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression.

    PubMed

    Farnoodian, Mitra; Halbach, Caroline; Slinger, Cassidy; Pattnaik, Bikash R; Sorenson, Christine M; Sheibani, Nader

    2016-09-01

    Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis. PMID:27440660

  16. Memory T Cell Migration

    PubMed Central

    Zhang, Qianqian; Lakkis, Fadi G.

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection. PMID:26483794

  17. Imaging of cell migration

    PubMed Central

    Dormann, Dirk; Weijer, Cornelis J

    2006-01-01

    Cell migration is an essential process during many phases of development and adult life. Cells can either migrate as individuals or move in the context of tissues. Movement is controlled by internal and external signals, which activate complex signal transduction cascades resulting in highly dynamic and localised remodelling of the cytoskeleton, cell–cell and cell–substrate interactions. To understand these processes, it will be necessary to identify the critical structural cytoskeletal components, their spatio-temporal dynamics as well as those of the signalling pathways that control them. Imaging plays an increasingly important and powerful role in the analysis of these spatio-temporal dynamics. We will highlight a variety of imaging techniques and their use in the investigation of various aspects of cell motility, and illustrate their role in the characterisation of chemotaxis in Dictyostelium and cell movement during gastrulation in chick embryos in more detail. PMID:16900100

  18. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs

    PubMed Central

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  19. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs.

    PubMed

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  20. Photic Injury to Cultured RPE Varies Among Individual Cells in Proportion to Their Endogenous Lipofuscin Content as Modulated by Their Melanosome Content

    PubMed Central

    Zareba, Mariusz; Skumatz, Christine M. B.; Sarna, Tadeusz J.; Burke, Janice M.

    2014-01-01

    Purpose. We determined whether photic stress differentially impairs organelle motility of RPE lipofuscin and melanin granules, whether lethal photic stress kills cells in proportion to lipofuscin abundance, and whether killing is modulated by melanosome content. Methods. Motility of endogenous lipofuscin and melanosome granules within the same human RPE cells in primary culture was quantified by real-time imaging during sublethal blue light irradiation. Cell death during lethal irradiation was quantified by dynamic imaging of the onset of nuclear propidium iodide fluorescence. Analyzed were individual cells containing different amounts of autofluorescent lipofuscin, or similar amounts of lipofuscin and a varying content of phagocytized porcine melanosomes, or phagocytized black latex beads (control for light absorbance). Results. Lipofuscin granules and melanosomes showed motility slowing with mild irradiation, but slowing was greater for lipofuscin. On lethal irradiation, cell death was earlier in cells with higher lipofuscin content, but delayed by the copresence of melanosomes. Delayed death did not occur with black beads, suggesting that melanosome protection was due to properties of the biological granule, not simple screening. Conclusions. Greater organelle motility slowing of the more photoreactive lipofuscin granule compared to melanosomes suggests that lipofuscin mediates mild photic injury within RPE cells. With lethal light stress endogenous lipofuscin mediates killing, but the effect is cell autonomous and modulated by coincident melanosome content. Developing methods to quantify the frequency of individual cells with combined high lipofuscin and low melanosome content may have value for predicting the photic stress susceptibility of the RPE monolayer in situ. PMID:25034597

  1. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  2. Restoration of Lysosomal pH in RPE Cells from Cultured Human and ABCA4−/− Mice: Pharmacologic Approaches and Functional Recovery

    PubMed Central

    Liu, Ji; Lu, Wennan; Reigada, David; Nguyen, Jonathan; Laties, Alan M.; Mitchell, Claire H.

    2008-01-01

    Purpose Degradation of engulfed material is primarily mediated by lysosomal enzymes that function optimally within a narrow range of acidic pH values. RPE cells are responsible for daily degradation of photoreceptor outer segments and are thus particularly susceptible to perturbations in lysosomal pH. The authors hypothesized that elevated lysosomal pH levels could slow enzyme activity and encourage accumulation of partially digested material. Consequently, treatment to lower perturbed lysosomal pH levels may enhance degradative activity. Methods A high-throughput screening assay was developed to quantify the lysosomal pH of fresh mouse and cultured ARPE-19 cells. The effect of lysosomal pH on outer segment clearance was determined. Results Lysosomal pH is elevated in RPE cells from ABCA4 knockout mice and in cultured human ARPE-19 cells exposed to N-retinylidene-N-retinylethanolamine (A2E), tamoxifen, or chloroquine. The lysosomal pH of fresh RPE cells from ABCA4−/− mice and of chemically compromised RPE cells was reacidified by elevating intracellular cAMP directly. Compromised lysosomal pH was also restored by stimulating A2A adenosine or β-adrenergic receptors, consistent with Gs-protein coupling of these receptors. Restoring lysosomal pH with these treatments enhanced photoreceptor outer segment clearance, demonstrating functional relevance consistent with an enhancement of degradative enzyme activity. Conclusions Elevation of lysosomal pH in RPE cells interferes with the degradation of outer segments and may contribute to the pathologies associated with A2E. Pharmacologic elevation of cAMP can restore an acid pH and improve degradative function. PMID:18235027

  3. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  4. Two Bioactive Molecular Weight Fractions of a Conditioned Medium Enhance RPE Cell Survival on Age-Related Macular Degeneration and Aged Bruch's Membrane

    PubMed Central

    Sugino, Ilene K.; Sun, Qian; Springer, Carola; Cheewatrakoolpong, Noounanong; Liu, Tong; Li, Hong; Zarbin, Marco A.

    2016-01-01

    Purpose To characterize molecular weight fractions of bovine corneal endothelial cell conditioned medium (CM) supporting retinal pigment epithelium (RPE) cell survival on aged and age-related macular degeneration (AMD) Bruch's membrane. Methods CM was subject to size separation using centrifugal filters. Retentate and filtrate fractions were tested for bioactivity by analyzing RPE survival on submacular Bruch's membrane of aged and AMD donor eyes and behavior on collagen I-coated tissue culture wells. Protein and peptide composition of active fractions was determined by mass spectrometry. Results Two bioactive fractions, 3-kDa filtrate and a 10-50–kDa fraction, were necessary for RPE survival on aged and AMD Bruch's membrane. The 3-kDa filtrate, but not the 10-50–kDa fraction, supported RPE growth on collagen 1‐coated tissue culture plates. Mass spectrometry of the 10-50–kDa fraction identified 175 extracellular proteins, including growth factors and extracellular matrix molecules. Transforming growth factor (TGF)β-2 was identified as unique to active CM. Peptides representing 29 unique proteins were identified in the 3-KDa filtrate. Conclusions These results indicate there is a minimum of two bioactive molecules in CM, one found in the 3-kDa filtrate and one in the 10-50–kDa fraction, and that bioactive molecules in both fractions must be present to ensure RPE survival on Bruch's membrane. Mass spectrometry analysis suggested proteins to test in future studies to identify proteins that may contribute to CM bioactivity. Translational Relevance Results of this study are the first steps in development of an adjunct to cell-based therapy to ensure cell transplant survival and functionality in AMD patients. PMID:26933521

  5. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  6. Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner.

    PubMed

    Joseph, Kusumam; Kulik, Liudmila; Coughlin, Beth; Kunchithapautham, Kannan; Bandyopadhyay, Mausumi; Thiel, Steffen; Thielens, Nicole M; Holers, V Michael; Rohrer, Bärbel

    2013-05-01

    Uncontrolled activation of the alternative complement pathway (AP) is thought to be associated with age-related macular degeneration. Previously, we have shown that in retinal pigmented epithelial (RPE) monolayers, oxidative stress reduced complement inhibition on the cell surface, resulting in sublytic complement activation and loss of transepithelial resistance (TER), but the potential ligand and pathway involved are unknown. ARPE-19 cells were grown as monolayers on transwell plates, and sublytic complement activation was induced with H2O2 and normal human serum. TER deteriorated rapidly in H2O2-exposed monolayers upon adding normal human serum. Although the effect required AP activation, AP was not sufficient, because elimination of MASP, but not C1q, prevented TER reduction. Reconstitution experiments to unravel essential components of the lectin pathway (LP) showed that both ficolin and mannan-binding lectin can activate the LP through natural IgM antibodies (IgM-C2) that recognize phospholipid cell surface modifications on oxidatively stressed RPE cells. The same epitopes were found on human primary embryonic RPE monolayers. Likewise, mouse laser-induced choroidal neovascularization, an injury that involves LP activation, could be increased in antibody-deficient rag1(-/-) mice using the phospholipid-specific IgM-C2. In summary, using a combination of depletion and reconstitution strategies, we have shown that the LP is required to initiate the complement cascade following natural antibody recognition of neoepitopes, which is then further amplified by the AP. LP activation is triggered by IgM bound to phospholipids. Taken together, we have defined novel mechanisms of complement activation in oxidatively stressed RPE, linking molecular events involved in age-related macular degeneration, including the presence of natural antibodies and neoepitopes. PMID:23493397

  7. Geometric friction directs cell migration.

    PubMed

    Le Berre, M; Liu, Yan-Jun; Hu, J; Maiuri, Paolo; Bénichou, O; Voituriez, R; Chen, Y; Piel, M

    2013-11-01

    In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms at work to direct cell migration in such environments remain unknown. Here, we show that a nonadhesive surface with asymmetric microgeometry consisting of dense arrays of tilted micropillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo. PMID:24266490

  8. Cell and tissue mechanics in cell migration

    PubMed Central

    Lange, Janina R.; Fabry, Ben

    2013-01-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  9. Cell and tissue mechanics in cell migration.

    PubMed

    Lange, Janina R; Fabry, Ben

    2013-10-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  10. Analysis of RPE morphometry in human eyes

    PubMed Central

    Bhatia, Shagun K.; Rashid, Alia; Chrenek, Micah A.; Zhang, Qing; Bruce, Beau B.; Klein, Mitchel; Boatright, Jeffrey H.; Jiang, Yi; Grossniklaus, Hans E.

    2016-01-01

    Purpose To describe the RPE morphometry of healthy human eyes regarding age and topographic location using modern computational methods with high accuracy and objectivity. We tested whether there were regional and age-related differences in RPE cell area and shape. Methods Human cadaver donor eyes of varying ages were dissected, and the RPE flatmounts were immunostained for F-actin with AF635-phalloidin, nuclei stained with propidium iodide, and imaged with confocal microscopy. Image analysis was performed using ImageJ (NIH) and CellProfiler software. Quantitative parameters, including cell density, cell area, polygonality of cells, number of neighboring cells, and measures of cell shape, were obtained from these analyses to characterize individual and groups of RPE cells. Measurements were taken from selected areas spanning the length of the temporal retina through the macula and the mid-periphery to the far periphery. Results Nineteen eyes from 14 Caucasian donors of varying ages ranging from 29 to 80 years were used. Along a horizontal nasal to temporal meridian, there were differences in several cell shape and size characteristics. Generally, the cell area and shape was relatively constant and regular except in the far periphery. In the outer third of the retina, the cell area and shape differed from the inner two-thirds statistically significantly. In the macula and the far periphery, an overall decreasing trend in RPE cell density, percent hexagonal cells, and form factor was observed with increasing age. We also found a trend toward increasing cell area and eccentricity with age in the macula and the far periphery. When individuals were divided into two age groups, <60 years and ≥60 years, there was a higher cell density, lower cell area, lower eccentricity, and higher form factor in the younger group in the macula and the far periphery (p<0.05 for all measurements). No statistically significant differences in RPE morphometry between age groups were found

  11. Cell Migration in Confined Environments

    PubMed Central

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration. PMID:24560508

  12. A Discrete Cell Migration Model

    SciTech Connect

    Nutaro, James J; Kruse, Kara L; Ward, Richard C; O'Quinn, Elizabeth; Woerner, Matthew M; Beckerman, Barbara G

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  13. Endothelial cells enhance migration of meniscus cells

    PubMed Central

    Yuan, Xiaoning; Eng, George M.; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Objective To study the interactions between vascular endothelial cells and meniscal fibrochondrocytes from the inner avascular and outer vascular regions of the meniscus, and identify angiogenic factors that enhance cell migration and integrative repair. Methods Bovine meniscal fibrochondrocytes (bMFCs) from the inner and outer regions of meniscus were cultured for seven days with and without human umbilical vein endothelial cells (HUVECs) in a micropatterned three-dimensional hydrogel system for cell migration. Angiogenic factors secreted by HUVECs were probed for their role in paracrine mechanisms governing bMFC migration, and applied to a full-thickness defect model of meniscal repair in explants from the inner and outer regions over four weeks. Results Endothelial cells enhanced migration of inner and outer bMFCs in the micropatterned system via endothelin-1 (ET-1) signaling. Supplementation of ET-1 significantly enhanced integration strength of full-thickness defects in inner and outer explants, and cell migration at the macro-scale, compared to controls without ET-1 treatment. Conclusion We report for the first time that bMFCs from both the avascular and vascular regions respond to the presence of endothelial cells with increased migration. Paracrine signaling by endothelial cells regulates the bMFCs differentially by region, but we identify ET-1 as an angiogenic factor that stimulates migration of inner and outer cells at the micro-scale, and integrative repair of inner and outer explants at the macro-scale. These findings reveal the regional interactions between vasculature and MFCs, and suggest ET-1 as a potential new treatment modality for avascular meniscal injuries, in order to prevent the development of osteoarthritis. PMID:25307081

  14. A novel RPE65 hypomorph expands the clinical phenotype of RPE65 mutations. A comprehensive clinical and biochemical functional study

    PubMed Central

    Lorenz, Birgit; Poliakov, Eugenia; Schambeck, Maria; Friedburg, Christoph; Preising, Markus N.; Redmond, T. Michael

    2009-01-01

    Purpose Later onset and progression of retinal dystrophy occur with some RPE65 missense mutations. We correlate the functional consequences of the novel P25L RPE65 mutation with its early childhood phenotype and compare it with other pathogenic missense mutations. Methods In addition to typical clinical tests, fundus autofluorescence (FAF), optical coherence tomography (OCT), and 2-color-threshold perimetry (2CTP) were measured. RPE65 mutations were screened by SSCP and direct sequencing. Isomerase activity of mutant RPE65 was assayed in 293F cells and quantified by HPLC analysis of retinoids. Results A very mild phenotype was detected in a now 7-y old boy homozygous for the P25L mutation in RPE65. Though abnormal dark adaptation was noticed early, best corrected visual acuity was 20/20 at age 5-y and 20/30 at age 7-y. Nystagmus was absent. Cone electroretinogram (ERG) was measurable, rod ERG severely reduced, and FAF very low. 2CTP detected mainly cone-mediated answers under scotopic conditions, light-adapted cone answers were about 1.5 log units below normal. High resolution spectral domain OCT revealed morphological changes. Isomerase activity in 293F cells transfected with RPE65/P25L was reduced to 7.7% of wildtype RPE65-transfected cells, while RPE65/L22P-transfected cells had 13.5%. Conclusions The mild clinical phenotype observed is consistent with the residual activity of a severely hypomorphic mutant RPE65. Reduction to < 10% of wildtype RPE65 activity by homozygous P25L correlates with almost complete rod function loss and cone amplitude reduction. We conclude that functional survival of cones is possible in patients with residual RPE65 isomerase activity. This patient should profit most from gene therapy. PMID:18599565

  15. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    SciTech Connect

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  16. Quantifying Collective Cell Migration during Cancer Progression

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Stuelten, Christina; Nordstrom, Kerstin; Parent, Carole; Losert, Wolfgang

    2014-03-01

    As tumors become more malignant, cells invade the surrounding tissue and migrate throughout the body to form secondary, metastatic tumors. This metastatic process is initiated when cells leave the primary tumor, either individually or as groups of collectively migrating cells. The mechanisms regulating how groups of cells collectively migrate are not well characterized. Here we study the migration dynamics of epithelial sheets composed of many cells using quantitative image analysis techniques. By extracting motion information from time-lapse images of cell lines of varying malignancy, we are able to measure how migration dynamics change during cancer progression. We further investigate the role that cell-cell adhesion plays in these collective dynamics by analyzing the migration of cell lines with varying levels of E-cadherin (a cell-cell adhesion protein) expression.

  17. Characterization of Collective Cell Migration Dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Yue, Haicen; Rappel, Wouter-Jan; Losert, Wolfgang

    2015-03-01

    During cancer progression, tumor cells invade the surrounding tissue and migrate throughout the body, forming clinically dangerous secondary tumors. This metastatic process begins when cells leave the primary tumor, either as individual cells or collectively migrating groups. Here we present data on the migration dynamics of epithelial sheets composed of many cells. Using quantitative image analysis techniques, we are able to extract motion information from time-lapse images of cell lines with varying malignancy. Adapting metrics originally used to study fluid flows we are able to characterize the migration dynamics of these cell lines. By describing the migration dynamics in great detail, we are able to make a clear comparison of our results to a simulation of collective cell migration. Specifically, we explore whether leader cells are required to describe our expanding sheets of cells and whether the answer depends on individual cell activity.

  18. Factors controlling cardiac neural crest cell migration

    PubMed Central

    Hutson, Mary R

    2010-01-01

    Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continues migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration and condensation of these cells. This Review elucidates what is currently known about these factors. PMID:20890117

  19. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation.

    PubMed

    Araki, Masasuke; Takano, Takako; Uemonsa, Tomoko; Nakane, Yoshifumi; Tsudzuki, Masaoki; Kaneko, Tomoko

    2002-04-15

    Homozygotes of the quail silver mutation, which have plumage color changes, also display a unique phenotype in the eye: during early embryonic development, the retinal pigment epithelium (RPE) spontaneously transdifferentiates into neural retinal tissue. Mitf is considered to be the responsible gene and to function similarly to the mouse microphthalmia mutation, and tissue interaction between RPE and surrounding mesenchymal tissue in organ culture has been shown to be essential for the initiation of the transdifferentiation process in which fibroblast growth factor (FGF) signaling is involved. The immunohistochemical results of the present study show that laminin and heparan sulfate proteoglycan, both acting as cofactors for FGF binding, are localized in the area of transdifferentiation of silver embryos much more abundantly than in wild-type embryos. More intense immunohistochemical staining with FGF-1 antibody, but not with FGF-2 antibody, is also found in the neural retina, RPE, and choroidal tissue of silver embryos than in wild-type embryos. HNK-1 immunohistochemistry revealed that clusters of HNK-1-positive cells (presumptive migrating neural crest cells) are frequently located around the developing eyes and in the posterior region of the silver embryonic eye. Finally, chick-quail chimerical eyes were made by grafting silver quail optic vesicles to chicken host embryos: in most cases, no transdifferentiation occurs in the silver RPE, but in a few cases, transdifferentiation occurs where silver quail cells predominate in the choroid tissue. These observations together with our previous in vitro study indicate that the silver mutation affects not only RPE cells but also cephalic neural crest cells, which migrate to the eye rudiment, and that these crest cells play an essential role in the transdifferentiation of RPE, possibly by modifying the FGF signaling pathway. The precise molecular mechanism involved in RPE-neural crest cell interaction is still unknown

  20. Transplantation stimulates interstitial cell migration in hydra

    SciTech Connect

    Fujisawa, T.; David, C.N.; Bosch, T.C. )

    1990-04-01

    Migration of interstitial cells and nerve cell precursors was analyzed in Hydra magnipapillata and Hydra vulgaris (formerly Hydra attenuata). Axial grafts were made between ({sup 3}H)thymidine-labeled donor and unlabeled host tissue. Migration of labeled cells into the unlabeled half was followed for 4 days. The results indicate that the rate of migration was initially high and then slowed on Days 2-4. Regrafting fresh donor tissue on Days 2-4 maintained high levels of migration. Thus, migration appears to be stimulated by the grafting procedure itself.

  1. Collective cell migration of primary zebrafish keratocytes.

    PubMed

    Rapanan, Jose L; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2014-08-01

    Fish keratocytes are an established model in single cell motility but little is known about their collective migration. Initially, sheets migrate from the scale at ~145 μm/h but over the course of 24h the rate of leading edge advance decreases to ~23 μm/h. During this period, leader cells retain their ability to migrate rapidly when released from the sheet and follower cell area increases. After the addition of RGD peptide, leader cell lamellae are lost, altering migratory forces within the sheet, resulting in rapid retraction. Leader and follower cell states interconvert within minutes with changes in cell-cell adhesions. Leader cells migrate as single cells when they detach from the leading edge and single cells appear to become leader cells if they rejoin the sheet. Follower cells rapidly establish leader cell morphology during closing of holes formed during sheet expansion and revert to follower cell morphology after hole-closure. Inhibition of Rho associated kinase releases leader cells and halts advancement of the leading edge suggesting an important role for the intercellular actomyosin cable at the leading edge. In addition, the presence of the stationary scale orients direction of sheet migration which is characterized by a more uniform advance of the leading edge than in some cell line systems. These data establish fish keratocyte explant cultures as a collective cell migration system and suggest that cell-cell interactions determine the role of keratocytes within the migrating sheet. PMID:24973510

  2. Efficient cell migration requires global chromatin condensation

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes. PMID:20530575

  3. Mesenchymal Stem Cells Migration Homing and Tracking

    PubMed Central

    Verfaillie, Catherine M.

    2013-01-01

    In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo. PMID:24194766

  4. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  5. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  6. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  7. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  8. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  9. Multiscale Cues Drive Collective Cell Migration.

    PubMed

    Nam, Ki-Hwan; Kim, Peter; Wood, David K; Kwon, Sunghoon; Provenzano, Paolo P; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  10. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  11. Epithelial phenotype and the RPE: Is the answer blowing in the Wnt?

    PubMed Central

    Burke, Janice M.

    2008-01-01

    Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of

  12. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  13. Emergence of oligarchy in collective cell migration

    NASA Astrophysics Data System (ADS)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  14. In vitro Cell Migration and Invasion Assays

    PubMed Central

    Justus, Calvin R.; Leffler, Nancy; Ruiz-Echevarria, Maria; Yang, Li V.

    2014-01-01

    Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup. PMID:24962652

  15. Entropy measures of collective cell migration

    NASA Astrophysics Data System (ADS)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  16. Functional Rescue of Retinal Degeneration-Associated Mutant RPE65 Proteins.

    PubMed

    Jin, Minghao; Li, Songhua; Hu, Jane; Jin, Heather H; Jacobson, Samuel G; Bok, Dean

    2016-01-01

    More than 100 different mutations in the RPE65 gene are associated with inherited retinal degeneration. Although some missense mutations have been shown to abolish isomerase activity of RPE65, the molecular bases leading to loss of function and retinal degeneration remain incompletely understood. Here we show that several missense mutations resulted in significant decrease in expression level of RPE65 in the human retinal pigment epithelium cells. The 26S proteasome non-ATPase regulatory subunit 13, a newly identified negative regulator of RPE65, mediated degradation of mutant RPE65s, which were misfolded and formed aggregates in the cells. Many mutations, including L22P, T101I, and L408P, were mapped on nonactive sites of RPE65. Enzyme activities of these mutant RPE65s were significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. 4-phenylbutyrate (PBA) displayed a significant synergistic effect on the low temperature-mediated rescue of the mutant RPE65s. Our results suggest that a low temperature eye mask and PBA, a FDA-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy for delaying retinal degeneration caused by RPE65 mutations. PMID:26427455

  17. Retinoid Uptake, Processing, and Secretion in Human iPS-RPE Support the Visual Cycle

    PubMed Central

    Muñiz, Alberto; Greene, Whitney A.; Plamper, Mark L.; Choi, Jae Hyek; Johnson, Anthony J.; Tsin, Andrew T.; Wang, Heuy-Ching

    2014-01-01

    Purpose. Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason, it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE. Methods. iPS-RPE was derived from human iPS cells. Immunocytochemistry, RT-PCR, and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT), RPE65, cellular retinaldehyde-binding protein (CRALBP), and pigment epithelium–derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids. Results. Cultured iPS-RPE expresses visual cycle genes LRAT, CRALBP, and RPE65. After incubation with all-trans retinol, iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly, after incubation with all-trans retinol, iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media. Conclusions. iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally, the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE. PMID:24255038

  18. A novel rabbit model for studying RPE transplantation

    PubMed Central

    Cong, Lidan; Sun, Dawei; Zhang, Zhongyu; Jiao, Wanqiu; Rizzolo, Lawrence J.; Peng, Shaomin

    2008-01-01

    Purpose The goal of this project is to develop a model of retinal pigment epithelium (RPE) transplantation that permits extensive and reliable analysis of the transplants. Methods Cultures of newborn rabbit RPE were evaluated by morphology, electrophysiology and the expression of zonula occludens-1, cytokeratin and a melanocyte marker (S-100). Cells labeled with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) were transplanted into the subretinal space of rabbits using a 30 gauge needle without making a conjunctival flap or sclerotomy. The transplants were examined by fundus photography, confocal scanning laser ophthalmoscopy (cSLO), optical coherence tomography (OCT) and angiography. At two months the retina was examined histochemically. Results A one minute incubation at 37°C with 20μM CFDA-SE did not affect morphology or the expression of marker proteins. In co-culture, the labeled cells integrated into monolayers that developed a normal transepithelial electrical resistance of 400-450 Ωcm2. Dye was not transferred from labeled to non-labeled RPE cells. Transplanted RPE was detectable for at least 2 months. Angiography demonstrated an intact blood retinal barrier. The normal morphology of the retina and lack of debris in the subretinal space, suggested the transplanted RPE was functional. Conclusions Primary cultures of newborn rabbit RPE were highly differentiated even when labeled with CFDA-SE. Labeled cells could be followed long-term in vitro and in vivo. This model can examine how culture and transplantation protocols affect the reformation of a functional RPE monolayer. The similar size of rabbit and human eyes will facilitate the translation of these protocols to the bedside. PMID:18502985

  19. Exploring RPE as a source of photoreceptors: assessing cellular differentiation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate neuroD–induced RPE transdifferentiation into photoreceptor cells in the subretinal space, RPE cells were dissociated, cultured, and guided to transdifferentiate by infecting them with retrovirus RCAS–neuroD, or RCAS–GFP as a control. The cells were then harvested and microinjected into t...

  20. ASIC proteins regulate smooth muscle cell migration.

    PubMed

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration. PMID:17936312

  1. Fenofibrate inhibits the expression of VEGFC and VEGFR-3 in retinal pigmental epithelial cells exposed to hypoxia

    PubMed Central

    ZHAO, JIANFENG; GENG, YU; HUA, HAIRONG; CUN, BIYUN; CHEN, QIANBO; XI, XIAOTING; YANG, LIUSHU; LI, YAN

    2015-01-01

    The aim of the present study was to examine the mechanisms through which fenofibrate inhibits the ability of human retinal pigment epithelial cells (RPE cells) exposed to hypoxia to stimulate the proliferation and migration of human umbilical vein endothelial cells (HUVECs). For this purpose, RPE cells and HUVECs were divided into the following groups: RPE-normoxia, RPE + fenofibrate, RPE-hypoxia, RPE hypoxia + fenofibrate; HUVECs normal culture and HUVECs + RPE-hypoxia culture supernatant. RPE cell hypoxia was induced by cobalt(II) chloride (CoCl2). A superoxide anion probe was used to measure the production of superoxide anion, which is indicative of hypoxic conditions. Cell proliferation was assessed by MTT assay, and the expression of vascular endothelial growth factor C (VEGFC) and vascular endothelial growth factor receptor-3 (VEGFR-3) in the RPE cell culture supernatant was measured by enzyme-linked immunosorbent assay (ELISA). The migration ability of the HUVECs was determined by scratch-wound assay, and the angiogenic ability of the HUVECs was examined by measuring cell lumen formation. The mRNA and protein expression levels of VEGFC and VEGFR-3 in the RPE cells were measured by RT-qPCR and western blot analysis, respectively. Our results revealed that fenofibrate inhibited the increase in the expression and release of VEGFC and VEGFR-3 into the RPE cell culture supernatant induced by exposure to hypoxia. The culture of HUVECs in medium supernatant of RPE cells epxosed to hypoxia enhanced the viability and migration ability of the HUVECs and promoted lumen formation; these effects were inhibited by fenofibrate. In conclusion, our data demonstrated that the exposure of RPE cells to hypoxia induced the expression and release of VEGFC and VEGFR-3 into the cell culture supernatant. The culture of HUVECs in conditioned medium from RPE cells exposed to hypoxia increased VEGFC and VEGFR-3 expression, and promoted the proliferation and migration of the HUVECs, as

  2. Light Filtering in an RPE Culture Model

    PubMed Central

    Zhou, Jilin; Sparrow, Janet R.

    2011-01-01

    Purpose We tested for protection of blue light-exposed A2E-containing RPE from damage through the implementation of polycarbonate filters containing varying levels of a pigment that absorbs short wavelength light. Methods Human adult RPE cells (ARPE-19) that had accumulated synthesized A2E were exposed to either a light line delivered from a tungsten halogen source (430 +/− 20 nm; 8 mW/cm2) or to the entire area of a 35 mm dish (1 mW/cm2). Blue light-absorbing polycarbonate filters (2.5 × 4 cm) containing varying levels of short-wavelength light absorbing pigment (1.0 ppm, 1.9 ppm, 3.8 ppm, 7.5 ppm, 15 ppm and 35 ppm) or no dye (PC) were placed in the light path. Cytotoxicity was measured by the MTT (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric microtiter assay (Roche Diagnostics Corporation, Indianapolis, IN) or by fluorescent staining of nonviable cells. Results When filters containing blue-light absorbing dye were placed in the light path, protection of 430 nm irradiated A2E-laden RPE was observed. The extent of protection was dependent on the concentration of the dye. By MTT assay and fluorescence labeling, statistically significant differences (p < 0.05) between irradiation in the absence of a filter and irradiation in the presence of a filter were observed. Conclusions The series of filters tested in the present work provided protection against blue light damage in a culture model. PMID:21423063

  3. Engineered Models of Confined Cell Migration.

    PubMed

    Paul, Colin D; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2016-07-11

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  4. Collective cell migration: guidance principles and hierarchies.

    PubMed

    Haeger, Anna; Wolf, Katarina; Zegers, Mirjam M; Friedl, Peter

    2015-09-01

    Collective cell migration results from the establishment and maintenance of collective polarization, mechanocoupling, and cytoskeletal kinetics. The guidance of collective cell migration depends on a reciprocal process between cell-intrinsic multicellular organization with leader-follower cell behavior and results in mechanosensory integration of extracellular guidance cues. Important guidance mechanisms include chemotaxis, haptotaxis, durotaxis, and strain-induced mechanosensing to move cell groups along interfaces and paths of least resistance. Additional guidance mechanisms steering cell groups during specialized conditions comprise electrotaxis and passive drift. To form higher-order cell and tissue structures during morphogenesis and cancer invasion, these guidance principles act in parallel and are integrated for collective adaptation to and shaping of varying tissue environments. We review mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome. PMID:26137890

  5. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  6. Basal and apical regulation of VEGF-A and placenta growth factor in the RPE/choroid and primary RPE

    PubMed Central

    Kaya, Leyla; Flach, Janina; Lassen, Jens; Treumer, Felix; Roider, Johann

    2015-01-01

    Purpose Members of the vascular endothelial growth factor (VEGF) family are strongly involved in pathological processes in the retina, such as age-related macular degeneration and diabetic retinopathy. Cells of the retinal pigment epithelium (RPE) constitutively secrete VEGF-A, and the secretion of placental growth factor (PlGF) has also been described. RPE cells are strongly polarized cells with different secretome at the apical and basal side. In this study, we evaluated the basal and apical regulation of VEGF-A and PlGF secretion in RPE/choroid explants and primary RPE cells. Methods RPE/choroid tissue explants were prepared from porcine eyes and cultivated in modified Ussing chambers, separating apical (RPE) and basal (choroid) supernatant. Primary RPE cells were also prepared from porcine eyes and cultivated on Transwell plates. Explants and cells were treated with inhibitors for VEGFR-2 (SU1498), p38 (SB203580), and the transcription factors nuclear factor-kappa B (NF-κB) and SP-1 (mithramycin), respectively. VEGF-A and PlGF content was evaluated with enzyme-linked immunosorbent assay (ELISA). In addition, western blots were performed. Results In the RPE/choroid, VEGF-A can initially be found on the apical and basal sides with significantly more pronounced secretion on the basal side. VEGF-A secretion is differentially regulated on the apical and basal sides, with the inhibition of SP-1 and NF-κB showing strong effects apically and basally after 24 h and 48 h, the inhibition of p38 displaying its effect mainly on the basal side with some effect apically after 48 h, and the inhibition of VEGFR-2 reducing the secretion of VEGF only on the apical side at 24 h and 48 h. In the RPE cell culture, similar effects were found, with inhibition of NF-κB or SP-1 displaying a strong decrease in VEGF-A on both sides, and p38 inhibition displaying only an inhibitory effect on the basal side. In contrast, an apical effect of VEGFR-2 inhibition was not found. However, the

  7. Modeling traction forces in collective cell migration

    NASA Astrophysics Data System (ADS)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  8. RPE65 from Cone-dominant Chicken Is a More Efficient Isomerohydrolase Compared with That from Rod-dominant Species*

    PubMed Central

    Moiseyev, Gennadiy; Takahashi, Yusuke; Chen, Ying; Kim, Seoyoung; Ma, Jian-xing

    2008-01-01

    Cones recover their photosensitivity faster than rods after bleaching. It has been suggested that a higher rate regeneration of 11-cis-retinal, the chromophore for visual pigments, is required for cones to continuously function under bright light conditions. RPE65 is the isomerohydrolase catalyzing a key step in regeneration of 11-cis-retinal. The present study investigated whether RPE65 in a cone-dominant species is more efficient in its enzymatic activity than that from roddominant species. In vitro isomerohydrolase activity assay showed that isomerohydrolase activity in the chicken retinal pigment epithelium (RPE) was 11.7-fold higher than in the bovine RPE, after normalization by RPE65 protein levels. Similar to that of human and bovine, the isomerohydrolase activity in chicken RPE was blocked by two specific inhibitors of lecithin retinal acyltransferase, indicating that chicken RPE65 also uses all-trans-retinyl ester as the direct substrate. To exclude the possibility that the higher isomerohydrolase activity in the chicken RPE could arise from another unknown isomerohydrolase, we expressed chicken and human RPE65 using the adenovirus system in a stable cell line expressing lecithin retinal acyltransferase. Under the same conditions, isomerohydrolase activity of recombinant chicken RPE65 was 7.7-fold higher than that of recombinant human RPE65, after normalization by RPE65 levels. This study demonstrates that RPE65 from the cone-dominant chicken RPE possesses significantly higher specific retinol isomerohydrolase activity, when compared with RPE65 from rod-dominant species, consistent with the faster regeneration rates of visual pigments in cone-dominant retinas. PMID:18216020

  9. RPE65 from cone-dominant chicken is a more efficient isomerohydrolase compared with that from rod-dominant species.

    PubMed

    Moiseyev, Gennadiy; Takahashi, Yusuke; Chen, Ying; Kim, Seoyoung; Ma, Jian-Xing

    2008-03-28

    Cones recover their photosensitivity faster than rods after bleaching. It has been suggested that a higher rate regeneration of 11-cis-retinal, the chromophore for visual pigments, is required for cones to continuously function under bright light conditions. RPE65 is the isomerohydrolase catalyzing a key step in regeneration of 11-cis-retinal. The present study investigated whether RPE65 in a cone-dominant species is more efficient in its enzymatic activity than that from roddominant species. In vitro isomerohydrolase activity assay showed that isomerohydrolase activity in the chicken retinal pigment epithelium (RPE) was 11.7-fold higher than in the bovine RPE, after normalization by RPE65 protein levels. Similar to that of human and bovine, the isomerohydrolase activity in chicken RPE was blocked by two specific inhibitors of lecithin retinal acyltransferase, indicating that chicken RPE65 also uses all-trans-retinyl ester as the direct substrate. To exclude the possibility that the higher isomerohydrolase activity in the chicken RPE could arise from another unknown isomerohydrolase, we expressed chicken and human RPE65 using the adenovirus system in a stable cell line expressing lecithin retinal acyltransferase. Under the same conditions, isomerohydrolase activity of recombinant chicken RPE65 was 7.7-fold higher than that of recombinant human RPE65, after normalization by RPE65 levels. This study demonstrates that RPE65 from the cone-dominant chicken RPE possesses significantly higher specific retinol isomerohydrolase activity, when compared with RPE65 from rod-dominant species, consistent with the faster regeneration rates of visual pigments in cone-dominant retinas. PMID:18216020

  10. T cell migration, search strategies and mechanisms.

    PubMed

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-03-01

    T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues. PMID:26852928

  11. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  12. Light Damage in Abca4 and Rpe65rd12 Mice

    PubMed Central

    Wu, Li; Ueda, Keiko; Nagasaki, Taka; Sparrow, Janet R.

    2014-01-01

    Purpose. Bisretinoids form in photoreceptor cells and accumulate in retinal pigment epithelium (RPE) as lipofuscin. To examine the role of these fluorophores as mediators of retinal light damage, we studied the propensity for light damage in mutant mice having elevated lipofuscin due to deficiency in the ATP-binding cassette (ABC) transporter Abca4 (Abca4−/− mice) and in mice devoid of lipofuscin owing to absence of Rpe65 (Rpe65rd12). Methods. Abca4−/−, Rpe65rd12, and wild-type mice were exposed to 430-nm light to produce a localized lesion in the superior hemisphere of retina. Bisretinoids of RPE lipofuscin were measured by HPLC. In histologic sections, outer nuclear layer (ONL) thickness was measured as an indicator of photoreceptor cell degeneration, and RPE nuclei were counted. Results. As shown previously, A2E levels were increased in Abca4−/− mice. These mice also sustained light damage–associated ONL thinning that was more pronounced than in age-matched wild-type mice; the ONL thinning was also greater in 5-month versus 2-month-old mice. Numbers of RPE nuclei were reduced in light-stressed mice, with the reduction being greater in the Abca4−/− than wild-type mice. In Rpe65rd12 mice bisretinoid compounds of RPE lipofuscin were not detected chromatographically and light damage–associated ONL thinning was not observed. Conclusions. Abca4−/− mice that accumulate RPE lipofuscin at increased levels were more susceptible to retinal light damage than wild-type mice. This finding, together with results showing that Rpe65rd12 mice did not accumulate lipofuscin and did not sustain retinal light damage, indicates that the bisretinoids of retinal lipofuscin are contributors to retinal light damage. PMID:24576873

  13. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion.

    PubMed

    Chen, Nan-Peng; Uddin, Borhan; Voit, Renate; Schiebel, Elmar

    2016-01-26

    Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast. PMID:26747605

  14. Physical forces during collective cell migration

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier; Wasserman, Michael R.; Angelini, Thomas E.; Millet, Emil; Weitz, David A.; Butler, James P.; Fredberg, Jeffrey J.

    2009-06-01

    Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions, and to drive these motions cells exert traction forces on their surroundings. Current understanding emphasizes that these traction forces arise mainly in `leader cells' at the front edge of the advancing cell sheet. Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails. Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

  15. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  16. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  17. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  18. Cell migration in the rat embryonic neocortex.

    PubMed

    Bayer, S A; Altman, J; Russo, R J; Dai, X F; Simmons, J A

    1991-05-15

    Three-dimensional reconstructions of the normal rat embryonic (E) neocortex on days E15, E17, E19, and E21, using Skandha (software designed by J. Prothero, University of Washington, Seattle), show that the neocortical ventricular zone shrinks rapidly in the medial direction during cortical morphogenesis. [3H]thymidine autoradiography indicates that the shrinkage of the ventricular zone occurs before neurons in lateral and ventrolateral parts of layers IV-II are generated. Consequently, most of these neurons originate 400-1000 microns medial to their settling sites in the cortical plate. Embryos killed at daily intervals up to E21 after a single injection of [3H]thymidine on either E17 or E18 revealed the presence of a prominent migratory path, the lateral cortical stream, used by neurons migrating to the lateral and ventrolateral cortical plate; neurons migrating to the dorsal cortical plate follow a direct radial path. Arrival times of neurons in the cortical plate depend on the migratory path and are proportional to the overall distance travelled. Neurons that migrate only radially arrive in the dorsal cortical plate in two days (shortest route). Neurons that migrate laterally arrive in the lateral cortical plate in 3 days (longer route) and in the ventrolateral cortical plate in 4 days (longest route). [3H]thymidine autoradiography also shows that cells generated in the neocortical ventricular zone migrate in the lateral cortical stream for 5 or more days and accumulate in a reservoir. Cells leave the reservoir to enter the piriform cortex and destinations (as yet undetermined) in the basal telencephalon. The lateral cortical stream is found wherever the neocortical primordium surrounds the basal ganglia and is absent behind the basal ganglia. A computer analysis of nuclear orientation in anterior and posterior parts of the intermediate zone in the dorsal neocortex between days E17 and E22 shows that horizontally oriented nuclei are more common anteriorly where

  19. [Research progress of tumor cell migration strategy and the migration transition mechanism].

    PubMed

    Wang, Hongbing; Tan, Qiaoyan; Yang, Ben Yanzi; Zou, Xiaobing; Yang, Li

    2011-12-01

    Tumor cells exhibit two main different migration strategies when invading in 3D environment, i. e. mesenchymal migration and amoeboid migration. This review summarizes the internal reasons and characteristics on various modes of migration adaptation to the microenvironment, and the molecular mechanisms in particular environment where they are mutually interchangeable. A study of the mechanisms that may possibly trigger mesenchymal-amoeboid transition/amoeboid-mesenchymal transition help us to understand the change and the plasticity in the migration strategies of tumor cells. These are important for the development of a cancer treatment, which would efficiently suppress tumor cell invasiveness. PMID:22295724

  20. A Dynamic Model of Chemoattractant-Induced Cell Migration

    PubMed Central

    Yang, Hao; Gou, Xue; Wang, Yong; Fahmy, Tarek M.; Leung, Anskar Y.-H.; Lu, Jian; Sun, Dong

    2015-01-01

    Cell migration refers to a directional cell movement in response to chemoattractant stimulation. In this work, we developed a cell-migration model by mimicking in vivo migration using optically manipulated chemoattractant-loaded microsources. The model facilitates a quantitative characterization of the relationship among the protrusion force, cell motility, and chemoattractant gradient for the first time (to our knowledge). We verified the correctness of the model using migrating leukemia cancer Jurkat cells. The results show that one can achieve the ideal migrating capacity by choosing the appropriate chemoattractant gradient and concentration at the leading edge of the cell. PMID:25863056

  1. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  2. Dynamic contact guidance of migrating cells

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John

    2014-03-01

    We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.

  3. The front and rear of collective cell migration.

    PubMed

    Mayor, Roberto; Etienne-Manneville, Sandrine

    2016-02-01

    Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement. PMID:26726037

  4. T Cell Migration in Rheumatoid Arthritis

    PubMed Central

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L.; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  5. T Cell Migration in Rheumatoid Arthritis.

    PubMed

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  6. HEMA inhibits migration of dental pulp stem cells

    PubMed Central

    Williams, Drake W.; Wu, Hongkun; Oh, Ju-Eun; Fakhar, Camron; Kang, Mo K.; Shin, Ki-Hyuk; Park, No-Hee; Kim, Reuben H.

    2013-01-01

    Objectives Cell migration is an important step in pulpal wound healing. Although components in the resin-based dental materials are known to have adverse effects on pulp wound healing including proliferation and mineralization, their effects on cell migration have been scarcely examined. Here, we investigated effects of 2-Hydroxyethyl methacrylate (HEMA) on migration of dental pulp stem cells (DPSC) in vitro. Methods Cell viability was assessed using MTT assay, and cell migration was evaluated using wound scratch assay and transwell migration assay at non-cytotoxic doses. Western blotting was used to examine pathways associated with migration such as focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), and glycogen synthase kinase 3 (GSK3). Results There were no drastic changes in the cell viability below 3mM HEMA. When DPSC were treated with HEMA at 0.5, 1.0, and 2.5mM, cell migration was diminished. HEMA-treated DPSC exhibited the loss of phosphorylated focal adhesion kinase (FAK) in a dose-dependent manner. The HEMA-mediated inhibition of cell migration was associated with phosphorylation of p38 but not GSK3, ERK or JNK pathways. When we inhibited the p38 signaling pathway using a p38 inhibitor, migration of DPSC was suppressed. Conclusion HEMA inhibits migration of dental pulp cells in vitro, suggesting that poor pulpal wound healing under resin-based dental materials may be due, in part, to inhibition of cell migration by HEMA. PMID:23953290

  7. Localized RPE Removal with a Novel Instrument Aided by Viscoelastics in Rabbits

    PubMed Central

    Thieltges, Fabian; Liu, Zengping; Brinken, Ralf; Braun, Norbert; Wongsawad, Warapat; Somboonthanakij, Sudawadee; Herwig, Martina; Holz, Frank G.; Stanzel, Boris V.

    2016-01-01

    Purpose We developed a surgical method for localized and atraumatic removal of the retinal pigment epithelium (RPE) with a novel instrument. Methods Bleb retinal detachments (bRD) were raised with balanced salt solution (BSS) following vitrectomy in 27 rabbits. The RPE was scraped with 3 loop variants (polypropylene [PP], 0.1 mm; PP, 0.06 mm; metal, 0.1 mm) of a custom-made instrument. Stabilization of bRDs with BSS or various concentrations (0.1%–0.5%) of hyaluronic acid (HA) was video analyzed. Perfusion-fixed samples of scraped areas and controls were studied by light and transmission electron microscopy. Results The bRDs were sufficiently stabilized by ≥0.25% HA. Using the PP 0.1 mm loop with a single forward/backward stroke, an area of ca. 2.5 × 1.5 mm was nearly devoid of RPE, yet did show occasional Bruch's membrane (BM) defects combined with choriocapillaris hemorrhages in 13% of the bRDs. A single scrape with PP 0.06 mm resulted in unsatisfactory RPE denudement, while repeated scraping maneuvers caused more BM defects and hemorrhages. The metal loop resulted in incomplete RPE removal and massive intraoperative subretinal hemorrhages. Histologically, intact photoreceptor outer segments (POS) were observed above the RPE wounds in bRDs. Controls with bRDs alone showed an intact RPE monolayer with microvilli, with few engulfed remains of POS. Conclusions Localized removal of RPE in HA stabilized bRD can be achieved by a PP 0.1 mm loop instrument. Translational Relevance Removal of degenerated RPE may aid RPE cell replacement strategies. PMID:27294010

  8. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  9. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  10. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  11. Decreased Membrane Complement Regulators in the RPE Contributes to AMD

    PubMed Central

    Ebrahimi, Katayoon B.; Fijalkowski, Natalia; Cano, Marisol; Handa, James T.

    2013-01-01

    Dysregulated complement is thought to play a central role in AMD pathogenesis, but the specific mechanisms have yet to be determined. In maculas of AMD specimens, we found that the complement regulatory protein, CD59, was increased in regions of uninvolved retinal pigmented epithelium (RPE) of early AMD, but decreased in the RPE overlying drusen and in geographic atrophy, an advanced form of AMD. While CD46 immunostaining was basolaterally distributed in the RPE of unaffected controls, it was decreased in diseased areas of early AMD samples. Since oxidized low density lipoproteins (oxLDL) collect in drusen of AMD and are a known complement trigger, we treated ARPE-19 cells with oxLDL and found that cellular CD46 and CD59 proteins were decreased by 2.9-fold and 9-fold (p<0.01), respectively. OxLDLs increased complement factor B mRNA and Bb protein, but not factor D, I, or H. OxLDLs increased C3b, but not C3a, C5 or C5b-9. C5b-9 was increased by 27% (p<0.01) when medium was supplemented with human serum, which was sufficient to induce poly (ADP-ribose) polymerase cleavage, a marker of apoptosis. The decreased levels of CD46 and CD59 were in part, explained by their release in exosomal and apoptotic membranous particles. In addition, CD59 was partially degraded through activation of IRE1α. Collectively, these results suggest that a combination of impaired complement regulators results in inadequately controlled complement by the RPE in AMD that induces RPE damage. PMID:23097248

  12. Emerging modes of collective cell migration induced by geometrical constraints

    PubMed Central

    Vedula, Sri Ram Krishna; Leong, Man Chun; Lai, Tan Lei; Hersen, Pascal; Kabla, Alexandre J.; Lim, Chwee Teck; Ladoux, Benoît

    2012-01-01

    The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell–cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell–cell junctions abolishes directed collective migration and passive cell–cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell–cell junctions can feed back to regulate the organization of migrating tissues. PMID:22814373

  13. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  14. Water permeation drives tumor cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-04-24

    Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  15. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    SUMMARY Cell migration is a critical process for diverse (patho) physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach (“Osmotic Engine Model”) and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  16. How inhibitory cues can both constrain and promote cell migration.

    PubMed

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  17. Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

    PubMed Central

    Park, Un Chul; Cho, Myung Soo; Park, Jung Hyun; Kim, Sang Jin; Ku, Seung-Yup; Choi, Young Min; Moon, Shin Yong

    2011-01-01

    Objective To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells (105 cells/5 µL) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease. PMID:22384445

  18. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  19. Systems microscopy approaches to understand cancer cell migration and metastasis

    PubMed Central

    Le Dévédec, Sylvia E.; Yan, Kuan; de Bont, Hans; Ghotra, Veerander; Truong, Hoa; Danen, Erik H.; Verbeek, Fons

    2010-01-01

    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration. PMID:20556632

  20. Novel functions of core cell cycle regulators in neuronal migration.

    PubMed

    Godin, Juliette D; Nguyen, Laurent

    2014-01-01

    The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27(Kip1) acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation. PMID:24243100

  1. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  2. Role of retinal pigment epithelial cell β-catenin signaling in experimental proliferative vitreoretinopathy.

    PubMed

    Umazume, Kazuhiko; Tsukahara, Rintaro; Liu, Lanhsin; Fernandez de Castro, Juan P; McDonald, Kevin; Kaplan, Henry J; Tamiya, Shigeo

    2014-05-01

    Proliferative vitreoretinopathy is caused by the contraction of fibrotic membranes on the epiretinal surface of the neurosensory retina, resulting in a traction retinal detachment and loss of visual acuity. Retinal pigment epithelial (RPE) cells play an important role in formation of such fibrotic, contractile membranes. We investigated the role of Wnt/β-catenin signaling, a pathway implicated in several fibrotic diseases, in RPE cells in proliferative vitreoretinopathy. In vitro culture of swine RPE sheets resulted in nuclear translocation of β-catenin in dedifferentiated RPE cells. FH535, a specific inhibitor of β-catenin signaling, reduced the outgrowth of cultured RPE sheets and prevented dedifferentiated RPE cell proliferation and migration. It also inhibited formation of contractile membranes by dedifferentiated RPE cells on collagen I matrices. Expression and function of the β-catenin signaling target connexin-43 were down-regulated by FH535, and functional blockade of connexins with carbenoxolone also prevented the in vitro formation of fibrotic, contractile membranes. Intravitreal injection of FH535 in swine also inhibited formation of dense, contractile membranes on the epiretinal surface and prevented development of traction retinal detachment. These findings demonstrate that β-catenin signaling is involved in formation of contractile membranes by dedifferentiated RPE cells and suggest that adjunctive treatment targeting this pathway could be useful in preventing proliferative vitreoretinopathy. PMID:24656918

  3. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    PubMed

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  4. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  5. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  6. 3D cancer cell migration in a confined matrix

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  7. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    PubMed Central

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago

    2013-01-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns. PMID:23735560

  8. Screening of genes involved in cell migration in Dictyostelium.

    PubMed

    Nagasaki, Akira; Uyeda, Taro Q P

    2008-03-10

    A single cell of wild-type Dictyostelium discoideum forms a visible colony on a plastic dish in several days, but due to enhanced cell migration, amiB-null mutant cells scatter over a large area and do not form noticeable colonies. Here, with an aim to identify genes involved in cell migration, we isolated suppresser mutants of amiB-null mutants that restore the ability to form colonies. From REMI (restriction enzyme-mediated integration)-mutagenized pool of double-mutants, we identified 18 responsible genes from them. These genes can be categorized into several biological processes. One cell line, Sab16 (Suppressor of amiB) was chosen for further analysis, which had a disrupted phospholipase D pldB gene. To confirm the role of pldB gene in cell migration, we knocked out the pldB gene and over-expressed gfp-pldB in wild-type cells. GFP-PLDB localized to plasma membrane and on vesicles, and in migrating cells, at the protruding regions of pseudopodia. Migration speed of vegetative pldB-null cells was reduced to 73% of that of the wild-type. These results suggest that PLDB plays an important role in migration in Dictyostelium cells, and that our screening system is useful for the identification of genes involved in cell migration. PMID:18164290

  9. At the leading edge of three-dimensional cell migration

    PubMed Central

    Petrie, Ryan J.; Yamada, Kenneth M.

    2012-01-01

    Summary Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell–matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration. PMID:23378019

  10. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    PubMed

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636434

  11. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  12. GLUT1 activity contributes to the impairment of PEDF secretion by the RPE

    PubMed Central

    Calado, Sofia M.; Alves, Liliana S.; Simão, Sónia

    2016-01-01

    Purpose In this study, we aimed to understand whether glucose transporter 1 (GLUT1) activity affects the secretion capacity of antiangiogenic factor pigment epithelium-derived factor (PEDF) by the RPE cells, thus explaining the reduction in PEDF levels observed in patients with diabetic retinopathy (DR). Methods Analysis of GLUT1 expression, localization, and function was performed in vitro in RPE cells (D407) cultured with different glucose concentrations, corresponding to non-diabetic (5 mM of glucose) and diabetic (25 mM of glucose) conditions, further subjected to normoxia or hypoxia. The expression of PEDF was also evaluated in the secretome of the cells cultured in these conditions. Analysis of GLUT1 and PEDF expression was also performed in vivo in the RPE of Ins2Akita diabetic mice and age-matched wild-type (WT) controls. Results We observed an increase in GLUT1 under hypoxia in a glucose-dependent manner, which we found to be directly associated with the translocation and stabilization of GLUT1 in the cell membrane. This stabilization led to an increase in glucose uptake by RPE cells. This increase was followed by a decrease in PEDF expression in RPE cells cultured in conditions that simulated DR. Compared with non-diabetic WT mice, the RPE of Ins2Akita mice showed increased GLUT1 overexpression with a concomitant decrease in PEDF expression. Conclusions Collectively, our data show that expression of GLUT1 is stimulated by hyperglycemia and low oxygen supply, and this overexpression was associated with increased activity of GLUT1 in the cell membrane that contributes to the impairment of the RPE secretory function of PEDF. PMID:27440994

  13. Effect of Static Magnetic Field on Cell Migration

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuichiro; Kawasumi, Masashi; Saito, Masao

    The effect of magnetic field on cell has long been investigated, but there are few quantitative investigations of the migration of cells. Cell-migration is important as one of the fundamental activities of the cell. This study proposes a method to evaluate quantitatively the cell-diffusion constant and the effect of static magnetic field on cell migration. The cell-lines are neuroblastoma (NG108-15), fibroblastoma (NIH/3T3) and osteoblastoma (MC3T3-E1). The static magnetic field of 30 mT or 120 mT is impressed by a permanent magnet in vertical or horizontal direction to the dish. It is shown that the cell-diffusion constant can represent the cell migration as the cell activity. It is found that the cell migration is enhanced by exposure to the magnetic field, depending on the kind of cell. It is conjectured that the effect of static magnetic field affects the cell migration, which is at the downstream of the information transmission.

  14. Regulation of C6 glioma cell migration by thymol

    PubMed Central

    LEE, KANG PA; KIM, JAI-EUN; PARK, WON-HWAN; HONG, HEEOK

    2016-01-01

    Tumor cell motility exhibits a crucial role in tumor development. Therefore, the present study aimed to investigate whether thymol could reduce C6 glioma cell migration. Cell viability was determined using the EZ-Cytox Cell Viability kit. The scratch wound healing and Boyden chamber assays were performed to test C6 glioma cell migration in the presence of fetal bovine serum (FBS). Additionally, the study investigated whether signaling proteins relevant to C6 glioma cell migration, i.e., extracellular signal-regulated kinases (ERK)1/2, protein kinase Cα (PKCα), matrix metallopeptidase (MMP)9 and MMP2, were affected by thymol treatment. Up to 30 µM, thymol did not alter cell viability, whereas 100 µM thymol induced the death of ~20% of the cells. Furthermore, thymol (30 µM) significantly reduced FBS-induced migration. In the FBS-stimulated C6 glioma cells, thymol (30 µM) suppressed PKCα and ERK1/2 phosphorylation. MMP9 and MMP2 production was also significantly reduced by treatment with 30 µM thymol in the C6 glioma cells. Taken together, these results indicate that thymol attenuates C6 glioma cell migration. Additionally, the study suggests that the effect of thymol on the FBS-induced migration of C6 glioma cells affects PKCα and ERK1/2 signaling, and suppresses MMP9 and MMP2 production. PMID:27073528

  15. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  16. Single cell migration dynamics mediated by geometric confinement.

    PubMed

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  17. Role of mTOR signaling in intestinal cell migration

    PubMed Central

    Rhoads, J. Marc; Niu, Xiaomei; Odle, Jack; Graves, Lee M.

    2006-01-01

    An early signaling event activated by amino acids and growth factors in many cell types is the phosphorylation of the mammalian target of rapamycin (mTOR; FRAP), which is functionally linked to ribosomal protein s6 kinase (p70s6k), a kinase that plays a critical regulatory role in the translation of mRNAs and protein synthesis. We previously showed that intestinal cell migration, the initial event in epithelial restitution, is enhanced by l-arginine (ARG). In this study, we used amino acids as prototypic activators of mTOR and ARG, IGF-1, or serum as recognized stimulators of intestinal cell migration. We found that 1) protein synthesis is required for intestinal cell migration, 2) mTOR/p70s6k pathway inhibitors (rapamycin, wortmannin, and intracellular Ca2+ chelation) inhibit cell migration, 3) ARG activates migration and mTOR/p70s6k (but not ERK-2) in migrating enterocytes, and 4) immunocytochemistry reveals abundant p70s6k staining in cytoplasm, whereas phosphop70s6k is virtually all intranuclear in resting cells but redistributes to the periphery on activation by ARG. We conclude that mTOR/p70s6k signaling is essential to intestinal cell migration, is activated by ARG, involves both nuclear and cytoplasmic events, and may play a role in intestinal repair. PMID:16710051

  18. Glass-like dynamics in collective cell migration

    NASA Astrophysics Data System (ADS)

    Angelini, Thomas; Weitz, David

    2011-03-01

    The collective movement of tissue cells is essential to fundamental biological processes in both health and disease, and occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion. Most knowledge of cell migration, however, comes from single cell studies. Single cells migrate by executing cyclic processes of extension, adhesion, and retraction, during which the cell body fluctuates dramatically and the cell changes direction erratically. These sub-cellular motions must be coupled between neighbors in confluent layers, yet the influence of this coupling on collective migration is not known. In this talk we present a study of motion in confluent epithelial cell sheets. We measure collective migration and sub-cellular motions, covering a broad range of length-scales, time-scales, and cell densities. We find that that collective cell migration exhibits many behaviors characteristic of classical supercooled particulate fluids, including growing dynamic heterogeneities in the migration velocity field, non-Arrhenius relaxation behavior, and peaks in the density of states analogous to the Boson peak. These results provide a suggestive analogy between collective cell motion and the dynamics of supercooled fluids approaching a glass transition.

  19. Fate of E-cadherin in Early RPE Cultures: Transient Accumulation of Truncated Peptides at Nonjunctional Sites

    PubMed Central

    Burke, Janice M.; Hong, Jeehee

    2006-01-01

    Purpose E-cadherin is known to accumulate variably and slowly at junctions of cultured human RPE cells. The intent of this investigation was to determine what limits E-cadherin protein accumulation in RPE cells by analyzing cultures at early postplating intervals when junctions of the dominant cadherin (N-cadherin) are first forming. Methods RPE cell lines hTERT-RPE1 and ARPE-19 and RPE cultures established from human donors were analyzed within 48 hours after plating for E-cadherin gene and protein expression (by RT-PCR and Western blotting, respectively) and for protein distribution (by immunofluorescence and immunoelectron microscopy), including codistribution with markers for organelles. Cell surface localization was analyzed by biotinylation and trypsin cleavage of extracellular cadherin domains. Results The E-cadherin gene was constitutively expressed by RPE cultures, but the protein did not accumulate substantially in early RPE cultures. Instead small amounts of newly synthesized E-cadherin were detectable only transiently, peaking within a few hours after plating, at which time the protein was in the form of peptides of variable size rather the predicted 120-kDa molecular mass. Immunoreactive E-cadherin peptides did not traffic to the cell surface and localize to junctions. Rather they codistributed with several organelles including the endoplasmic reticulum (ER; but not the Golgi), sites of protein degradation (proteasomes, lysosomes, and autophagosomes) and unusual compartments (centrosomes and apposed to subdomains of the mitochondrial network). Conclusions The results suggest that in RPE cells posttranscriptional mechanisms involving altered protein processing and rapid turnover exist to limit E-cadherin accumulation. The consequence may be to limit E-cadherin-specific inductive properties in the RPE, a cell type in which N-cadherin is the normal dominant cadherin. PMID:16877438

  20. Bioengineering paradigms for cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Gu, Zhizhan; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-10-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  1. Bioengineering Paradigms for Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Gu, Zhizhan; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  2. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  3. Live Imaging of Border Cell Migration in Drosophila.

    PubMed

    Dai, Wei; Montell, Denise J

    2016-01-01

    Border cells are a cluster of cells that migrate from the anterior tip of the Drosophila egg chamber to the border of the oocyte in stage 9. They serve as a useful model to study collective cell migration in a native tissue environment. Here we describe a protocol for preparing ex vivo egg chamber cultures from transgenic flies expressing fluorescent proteins in the border cells, and using confocal microscopy to take a multi-positional time-lapse movie. We include an image analysis method for tracking border cell cluster dynamics as well as tracking individual cell movements. PMID:27271901

  4. The thioredoxin system in breast cancer cell invasion and migration

    PubMed Central

    Bhatia, Maneet; McGrath, Kelly L.; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M.; Clarke, Frank M.; Tonissen, Kathryn F.

    2015-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  5. The thioredoxin system in breast cancer cell invasion and migration.

    PubMed

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  6. Collective dynamics of cell migration and cell rearrangements

    NASA Astrophysics Data System (ADS)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics.

  1. Laser-photophoretic migration and fractionation of human blood cells.

    PubMed

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis. PMID:23622969

  2. Cell migration in confinement: a micro-channel-based assay.

    PubMed

    Heuzé, Mélina L; Collin, Olivier; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2011-01-01

    This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells. PMID:21748692

  3. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  4. Action spectrum for photochemical retinal pigment epithelium (RPE) disruption in an in vivo monkey model

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.

    2016-03-01

    Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.

  5. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  6. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs. PMID:27287800

  7. Heterogeneous CD8+ T cell migration in the lymph node in the absence of inflammation revealed by quantitative migration analysis.

    PubMed

    Banigan, Edward J; Harris, Tajie H; Christian, David A; Hunter, Christopher A; Liu, Andrea J

    2015-02-01

    The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation. PMID:25692801

  8. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  9. Chemokine-Mediated Migration of Mesencephalic Neural Crest Cells

    PubMed Central

    Rezzoug, Francine; Seelan, Ratnam S.; Bhattacherjee, Vasker; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, “transwell” assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo “bead implantation” assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo. PMID:22015108

  10. Mathematical Modeling of Eukaryotic Cell Migration: Insights Beyond Experiments

    PubMed Central

    Danuser, Gaudenz; Allard, Jun; Mogilner, Alex

    2014-01-01

    A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data. PMID:23909278

  11. Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells.

    PubMed

    Gotlieb, A I; Subrahmanyan, L; Kalnins, V I

    1983-05-01

    We have previously shown that microtubule-organizing centers (MTOC's) become preferentially oriented towards the leading edge of migrating endothelial cells (EC's) at the margin of an experimentally induced wound made in a confluent EC monolayer. To learn more about the mechanism responsible for the reorientation of MTOC's and to determine whether a similar reorientation takes place when cell migration is inhibited, we incubated the wounded cultures with colcemid (C) and cytochalasin B (CB), which disrupt microtubules (MT's) and microfilaments (MF's), respectively. The results obtained showed that the MTOC reorientation can occur independent of cell migration since MTOC's reoriented preferentially toward the wound edge in the CB-treated cultures, even though forward migration of the EC was inhibited. In addition, the MTOC reorientation is inhibited by C, indicating that it requires an intact system of MT's and/or other intracellular structures whose distribution is dependent on that of MT's. PMID:6341378

  12. Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue

    PubMed Central

    Lai, Chooi-May; Yu, Meaghan JT; Brankov, Meliha; Barnett, Nigel L; Zhou, Xiaohuai; Redmond, T Michael; Narfstrom, Kristina; Rakoczy, P Elizabeth

    2004-01-01

    Background Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10–15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65-/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function. Methods rAAV.RPE65 was injected into the subretinal space of Rpe65-/- knockout mice and control mice. Histological and immunohistological analyses were performed to evaluate any rescue of photoreceptors and to determine longevity and pattern of transgene expression. Electron microscopy was used to examine ultrastructural changes, and electroretinography was used to measure changes in visual function following rAAV.RPE65 injection. Results rAAV-mediated RPE65 expression was detected for up to 18 months post injection. The delivery of rAAV.RPE65 to Rpe65-/- mouse retinas resulted in a transient improvement in the maximum b-wave amplitude under both scotopic and photopic conditions (76% and 59% increase above uninjected controls, respectively) but no changes were observed in a-wave amplitude. However, this increase in b-wave amplitude was not accompanied by any slow down in photoreceptor degeneration or apoptotic cell death. Delivery of rAAV.RPE65 also resulted in a decrease in retinyl ester lipid droplets and an increase in short wavelength cone opsin-positive cells, suggesting that the recovery of RPE65 expression has long-term benefits for retinal health. Conclusion This work demonstrated the potential benefits of using the Rpe65-/- mice to study the effects and mechanism of rAAV.RPE65-mediated gene delivery into

  13. Protrusive waves guide 3D cell migration along nanofibers

    PubMed Central

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander

    2015-01-01

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933

  14. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    PubMed

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  15. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration

    PubMed Central

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  16. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  17. [RPE melanosomes bind A2E fluorophore of lipofuscin granules and products of its photooxidation].

    PubMed

    Sakina, N L; Koromyslova, A D; Dontsov, A E; Ostrovskiĭ, M A

    2013-05-01

    The ability of melanosomes from human, bovine and frog retinal pigment epithelium cells (RPE) to bind A2E fluorophore of RPE lipofuscin granules and products of A2E photooxidation is investigated. RPE melanosomes are found to bind A2E molecules themselves as well as the molecules formed after A2E irradiation by visible light. In our experiments single melanosome was able to bind up to 0.08 fmol A2E. Antioxidant activity of melanosomes is compared to antioxidant activity of their complexes with A2E. It is shown by luminal chemiluminescence quenching in the presence of hydrogen peroxide that in A2E/melanosomes complex the chemiluminescence quenching is not significantly reduced. Comparison of inhibitory activity of melanosomes and their complexes with A2E on UV-induced (light conditions) and Fe(2+)-ascorbate-induced (dark conditions) peroxidation of photoreceptor outer segments (POS) demonstrated that bound A2E does not affect inhibitory ability of melanosomes in both systems. Thus, binding of A2E to RPE melanosomes in concentrations from 0.01 to 0.1 fmol A2E per melanosome does not significantly alter their antioxidant properties. It is supposed that both A2E and hydrophilic products of its photooxidation could be bound by RPE melanosomes and, thus, it lost the ability to exhibit toxic properties. PMID:24459874

  18. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells

    PubMed Central

    MacVicar, Thomas D. B.; Mannack, Lilith V. J. C.; Lees, Robert M.; Lane, Jon D.

    2015-01-01

    Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis. PMID:26110381

  19. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells.

    PubMed

    MacVicar, Thomas D B; Mannack, Lilith V J C; Lees, Robert M; Lane, Jon D

    2015-01-01

    Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis. PMID:26110381

  20. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  1. Cellular Polarization and Contractility in Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Utuje, Kazage J. Christophe; Notbohm, Jacob; Banerjee, Shiladitya; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P.; Fredberg, Jeffrey J.; Marchetti, M. Cristina

    Collective cell migration drives many biological processes such as metastasis, morphogenesis and wound healing. These coordinated motions are driven by active forces. The physical nature of these forces and the mechanisms by which they generate collective cell migration are still not fully understood. We have developed a minimum physical model of a cell monolayer as an elastic continuum whose deformation field is coupled to two internal degrees of freedom: the concentration of a chemical signal, controlling cell Contractility, and the polarization field controlling the direction of local cell motion. By combining theory with experiments, we show that these two internal variables account for the sloshing waves and the systematic deviations of the direction of cell polarization from that of local cell velocity observed in confined cell monolayers. KJCU and MCM were supported by the Simons Foundation.

  2. Junctional communication is induced in migrating capillary endothelial cells.

    PubMed

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P

    1989-12-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  3. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  4. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  5. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  6. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  7. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  8. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  9. Phase-field model for collective cell migration

    NASA Astrophysics Data System (ADS)

    Najem, Sara; Grant, Martin

    2016-05-01

    We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify a density threshold for cell-sheet formation.

  10. Nanotopography guides and directs cell migration in amoeboid and epithelial cells

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang

    Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.

  11. Analyzing In Vivo Cell Migration using Cell Transplantations and Time-lapse Imaging in Zebrafish Embryos.

    PubMed

    Giger, Florence A; Dumortier, Julien G; David, Nicolas B

    2016-01-01

    Cell migration is key to many physiological and pathological conditions, including cancer metastasis. The cellular and molecular bases of cell migration have been thoroughly analyzed in vitro. However, in vivo cell migration somehow differs from in vitro migration, and has proven more difficult to analyze, being less accessible to direct observation and manipulation. This protocol uses the migration of the prospective prechordal plate in the early zebrafish embryo as a model system to study the function of candidate genes in cell migration. Prechordal plate progenitors form a group of cells which, during gastrulation, undergoes a directed migration from the embryonic organizer to the animal pole of the embryo. The proposed protocol uses cell transplantation to create mosaic embryos. This offers the combined advantages of labeling isolated cells, which is key to good imaging, and of limiting gain/loss of function effects to the observed cells, hence ensuring cell-autonomous effects. We describe here how we assessed the function of the TORC2 component Sin1 in cell migration, but the protocol can be used to analyze the function of any candidate gene in controlling cell migration in vivo. PMID:27168357

  12. Anticancer effect of arsenite on cell migration, cell cycle and apoptosis in human pancreatic cancer cells

    PubMed Central

    HORIBE, YOHEI; ADACHI, SEIJI; YASUDA, ICHIRO; YAMAUCHI, TAKAHIRO; KAWAGUCHI, JUNJI; KOZAWA, OSAMU; SHIMIZU, MASAHITO; MORIWAKI, HISATAKA

    2016-01-01

    The standard treatment for advanced pancreatic cancer is chemotherapy, but its clinical outcome remains unsatisfactory. Therefore, the development of novel treatments for this malignancy is urgently required. In the present study, the anticancer effect of arsenite on platelet-derived growth factor (PDGF)-BB-induced migration, cell cycle and apoptosis was investigated in pancreatic cancer cells (AsPC-1 and BxPC-3), and compared with the effect on normal pancreatic epithelial (PE) cells. In the cell migration assay, arsenite clearly inhibited PDGF-BB-induced cell migration in AsPC-1 cells, but not in BxPC-3 or PE cells. Arsenite also caused cell apoptosis in AsPC-1 cells, but not in BxPC-3 or PE cells. In AsPC-1 cells, the levels of cyclin D1 and phosphorylated retinoblastoma protein decreased following treatment with arsenite, but this was not observed in BxPC-3 cells. To further examine the differences between these two cell lines, the effect of arsenite on upstream p44/p42 mitogen-activated protein kinase (MAPK) and Akt was investigated. PDGF-BB caused phosphorylation of p44/p42 MAPK and Akt in both cell lines. Pretreatment with arsenite significantly suppressed PDGF-BB-induced phosphorylation of Akt, but not of p44/p42 MAPK in AsPC-1 cells. By contrast, arsenite did not affect these molecules in BxPC-3 cells. Since the inhibition of the Akt signaling pathway markedly reduced PDGF-BB-induced migration in AsPC-1 cells, the present results strongly suggest that arsenite inhibits PDGF-BB-induced migration by suppressing the Akt signaling pathway in AsPC-1 cells. Therefore, arsenite may be a useful tool for the treatment of patients with certain types of pancreatic cancer, without causing adverse effects on normal pancreatic cells. PMID:27347121

  13. Flow and Diffusion in Channel-Guided Cell Migration

    PubMed Central

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O.

    2014-01-01

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport

  14. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  15. Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes

    PubMed Central

    Liu, Zhenzhen; Qin, Tingyu; Zhou, Jilin; Taylor, Allen; Sparrow, Janet R.

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related factors. The UPP could be impaired by oxidative stress or chemical inhibition. Impairment of the UPP in RPE increased the expression of several inflammatory cytokines, such as IL-6 and IL-8. However, the expression of monocyte chemoattractant protein-1 (MCP-1) and complement factor H (CFH) and was reduced upon impairment of the UPP. These data suggest that impairment of the UPP in RPE may be one of the causes of retinal inflammation and abnormal functions of monocyte and the complement system during the pathogenesis of age-related macular degeneration. PMID:24664704

  16. Leukotrienes induce the migration of Th17 cells.

    PubMed

    Lee, Wonyong; Su Kim, Hyeong; Lee, Gap Ryol

    2015-01-01

    Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells. PMID:25512344

  17. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  18. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells

    PubMed Central

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  19. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.

    PubMed

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  20. Multidisciplinary approaches to understanding collective cell migration in developmental biology

    PubMed Central

    Schumacher, Linus J.; Kulesa, Paul M.; McLennan, Rebecca; Baker, Ruth E.; Maini, Philip K.

    2016-01-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell–cell interactions, cell–environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  1. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  2. Complementation Test of Rpe65 Knockout and Tvrm148

    PubMed Central

    Wright, Charles B.; Chrenek, Micah A.; Foster, Stephanie L.; Duncan, Todd; Redmond, T. Michael; Pardue, Machelle T.; Boatright, Jeffrey H.; Nickerson, John M.

    2013-01-01

    Purpose. A mouse mutation, tvrm148, was previously reported as resulting in retinal degeneration. Tvrm148 and Rpe65 map between markers D3Mit147 and D3Mit19 on a genetic map, but the physical map places RPE65 outside the markers. We asked if Rpe65 or perhaps another nearby gene is mutated and if the mutant reduced 11-cis-retinal levels. We studied the impact of the tvrm148 mutation on visual function, morphology, and retinoid levels. Methods. Normal phase HPLC was used to measure retinoid levels. Rpe65+/+, tvrm148/+ (T+/−), tvrm148/tvrm148 (T−/−), RPE65KO/KO (Rpe65−/−), and Rpe65T/− mice visual function was measured by optokinetic tracking (OKT) and electroretinography (ERG). Morphology was assessed by light microscopy and transmission electron microscopy (TEM). qRT-PCR was used to measure Rpe65 mRNA levels. Immunoblotting measured the size and amount of RPE65 protein. Results. The knockout and tvrm148 alleles did not complement. No 11-cis-retinal was detected in T−/− or Rpe65−/− mice. Visual acuity in Rpe65+/+ and T+/− mouse was ∼0.382 c/d, but 0.037 c/d in T−/− mice at postnatal day 210 (P210). ERG response in T−/− mice was undetectable except at bright flash intensities. Outer nuclear layer (ONL) thickness in T−/− mice was ∼70% of Rpe65+/+ by P210. Rpe65 mRNA levels in T−/− mice were unchanged, yet 14.5% of Rpe65+/+ protein levels was detected. Protein size was unchanged. Conclusions. A complementation test revealed the RPE65 knockout and tvrm148 alleles do not complement, proving that the tvrm148 mutation is in Rpe65. Behavioral, physiological, molecular, biochemical, and histological approaches indicate that tvrm148 is a null allele of Rpe65. PMID:23778877

  3. Collisions of deformable cells lead to collective migration

    SciTech Connect

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-17

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.

  4. Collisions of deformable cells lead to collective migration.

    PubMed

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S

    2015-01-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. PMID:25779619

  5. Collisions of deformable cells lead to collective migration

    DOE PAGESBeta

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-17

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less

  6. Collisions of deformable cells lead to collective migration

    PubMed Central

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-01-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. PMID:25779619

  7. Collisions of deformable cells lead to collective migration

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Löber, Jakob; Ziebert, Falko

    2015-03-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - actomyosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. J. L. acknowledges funding from the German Science Foundation (DFG) within the GRK 1558. F. Z. acknowledges funding from the German Science Foundation (DFG) via Project ZI 1232/2-1. I. S. A. was supported by the US Department of Energy (DOE), Office of.

  8. Collisions of deformable cells lead to collective migration

    NASA Astrophysics Data System (ADS)

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.

  9. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Allen, Steven G.; Ingram, Patrick N.; Buckanovich, Ronald; Merajver, Sofia D.; Yoon, Euisik

    2015-05-01

    Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells’ migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

  10. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    PubMed

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  11. Plasma-mediated transfection of RPE

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Chalberg, T.; Vankov, A.; Huie, P.; Molnar, F. E.; Butterwick, A.; Calos, M.; Marmor, M.; Blumenkranz, M. S.

    2006-02-01

    A major obstacle in applying gene therapy to clinical practice is the lack of efficient and safe gene delivery techniques. Viral delivery has encountered a number of serious problems including immunological reactions and malignancy. Non-viral delivery methods (liposomes, sonoporation and electroporation) have either low efficiency in-vivo or produce severe collateral damage to ocular tissues. We discovered that tensile stress greatly increases the susceptibility of cellular membranes to electroporation. For synchronous application of electric field and mechanical stress, both are generated by the electric discharge itself. A pressure wave is produced by rapid vaporization of the medium. To prevent termination of electric current by the vapor cavity it is ionized thus restoring its electric conductivity. For in-vivo experiments with rabbits a plasmid DNA was injected into the subretinal space, and RPE was treated trans-sclerally with an array of microelectodes placed outside the eye. Application of 250-300V and 100-200 μs biphasic pulses via a microelectrode array resulted in efficient transfection of RPE without visible damage to the retina. Gene expression was quantified and monitored using bioluminescence (luciferase) and fluorescence (GFP) imaging. Transfection efficiency of RPE with this new technique exceeded that of standard electroporation by a factor 10,000. Safe and effective non-viral DNA delivery to the mammalian retina may help to materialize the enormous potential of the ocular gene therapy. Future experiments will focus on continued characterization of the safety and efficacy of this method and evaluation of long-term transgene expression in the presence of phiC31 integrase.

  12. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    PubMed

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  13. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  14. Quantification of cell co-migration occurrences during cell aggregation on fibroin substrates.

    PubMed

    Otaka, Akihisa; Takahashi, Kazuya; Takeda, Yuji S; Kambe, Yusuke; Kuwana, Yoshihiko; Tamada, Yasushi; Tomita, Naohide

    2014-08-01

    A quantitative analytical method was proposed for measuring cell co-migration, which was defined as two or more cells migrating together. To accurately identify and quantify this behavior, cell migration on fibroin substrates was analyzed with respect to intercellular distance. Specifically, cell size was characterized by major diameter, and then, based on these measurements and cell center data, a specific threshold distance for defining co-migration was determined after analyzing cell motion using the Voronoi diagram method. The results confirmed that co-migration occurrences of rounded cells were significantly more stable on fibroin than on ProNectin substrates under the present experimental conditions. The cell co-migration analysis method in this article was shown to be successful in evaluating the stability of cell co-migration and also suggested the presence of "critical distance" where two cells interact on fibroin substrates. With further research, the cell co-migration analysis method and "critical distance" may prove to be capable of identifying the aggregation behavior of other cells on different materials, making it a valuable tool that can be used in tissue engineering design. PMID:24341914

  15. Control of Cell Migration Through Mrna Localization and Local Translation

    PubMed Central

    Liao, Guoning; Mingle, Lisa; Van De Water, Livingston; Liu, Gang

    2014-01-01

    Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and mRNA localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been under-studied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function and many other cellular processes. There are excellent reviews on mRNA localization, transport and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration. PMID:25264217

  16. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  17. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  18. Cell migration in the developing rodent olfactory system.

    PubMed

    Huilgol, Dhananjay; Tole, Shubha

    2016-07-01

    The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain. PMID:26994098

  19. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  20. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  1. A lateral signalling pathway coordinates shape volatility during cell migration.

    PubMed

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K; Musiol, Martin; Won, Amy; Yip, Christopher M; Plotnikov, Sergey V; Wrana, Jeffrey L

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1-Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  2. Optimal chemotaxis in intermittent migration of animal cells

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Salbreux, G.

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  3. Effects of radiation on metastasis and tumor cell migration.

    PubMed

    Vilalta, Marta; Rafat, Marjan; Graves, Edward E

    2016-08-01

    It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies. PMID:27022944

  4. Optimal chemotaxis in intermittent migration of animal cells.

    PubMed

    Romanczuk, P; Salbreux, G

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration. PMID:25974540

  5. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues.

    PubMed

    Caballero, David; Comelles, Jordi; Piel, Matthieu; Voituriez, Raphaël; Riveline, Daniel

    2015-12-01

    Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration. PMID:26615123

  6. Fascin Regulates Nuclear Movement and Deformation in Migrating Cells.

    PubMed

    Jayo, Asier; Malboubi, Majid; Antoku, Susumu; Chang, Wakam; Ortiz-Zapater, Elena; Groen, Christopher; Pfisterer, Karin; Tootle, Tina; Charras, Guillaume; Gundersen, Gregg G; Parsons, Maddy

    2016-08-22

    Fascin is an F-actin-bundling protein shown to stabilize filopodia and regulate adhesion dynamics in migrating cells, and its expression is correlated with poor prognosis and increased metastatic potential in a number of cancers. Here, we identified the nuclear envelope protein nesprin-2 as a binding partner for fascin in a range of cell types in vitro and in vivo. Nesprin-2 interacts with fascin through a direct, F-actin-independent interaction, and this binding is distinct and separable from a role for fascin within filopodia at the cell periphery. Moreover, disrupting the interaction between fascin and nesprin-2 C-terminal domain leads to specific defects in F-actin coupling to the nuclear envelope, nuclear movement, and the ability of cells to deform their nucleus to invade through confined spaces. Together, our results uncover a role for fascin that operates independently of filopodia assembly to promote efficient cell migration and invasion. PMID:27554857

  7. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  8. Quantification of hydrodynamic factors influencing cell lateral migration

    NASA Astrophysics Data System (ADS)

    Nix, Stephanie; Imai, Yohsuke; Ishikawa, Takuji

    2015-11-01

    The study of the migration of blood cells perpendicular to the direction of blood flow, or lateral migration, is motivated by the differing behavior of the various types of blood cells. In vivo, red blood cells are observed to flow in the central region of the blood vessel, particularly in the microcirculation, while other types of cells in the blood, including white blood cells and platelets, are observed to flow disproportionately near the vessel wall. However, the specifics regarding the effect of hydrodynamic and biological factors are still unknown. Thus, in this study, we aim to quantify the effect of hydrodynamic factors on a cell model numerically using the boundary integral method. By using the boundary integral method, we can isolate the effect of a single hydrodynamic factor, such as a wall or given flow distribution, in an otherwise infinite flow. Then, we can use the obtained numerical results to develop a semi-analytical model describing the cell lateral migration dependent on only the flow geometry and the viscosity ratio between the cell and external fluid.

  9. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD

    PubMed Central

    Mitter, Sayak K; Song, Chunjuan; Qi, Xiaoping; Mao, Haoyu; Rao, Haripriya; Akin, Debra; Lewin, Alfred; Grant, Maria; Dunn, William; Ding, Jindong; Bowes Rickman, Catherine; Boulton, Michael

    2014-01-01

    Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD. PMID:25484094

  10. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis

    PubMed Central

    Ewald, Andrew J.; Brenot, Audrey; Duong, Myhanh; Chan, Bianca S.; Werb, Zena

    2009-01-01

    Summary Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly during morphogenesis, suggesting common mechanisms of epithelial growth. PMID:18410732

  11. Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

    PubMed Central

    Majchrzak, Kinga; Lo Re, Daniele; Gajewska, Małgorzata; Bulkowska, Małgorzata; Homa, Agata; Pawłowski, Karol; Motyl, Tomasz; Murphy, Paul V.; Król, Magdalena

    2013-01-01

    Background Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. Results Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. Conclusion Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in

  12. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  13. MicroRNA-21 suppression impedes medulloblastoma cell migration.

    PubMed

    Grunder, Eveline; D'Ambrosio, Rocco; Fiaschetti, Giulio; Abela, Lucia; Arcaro, Alexandre; Zuzak, Tycho; Ohgaki, Hiroko; Lv, Sheng-Qing; Shalaby, Tarek; Grotzer, Michael

    2011-11-01

    Medulloblastoma (MB), the most common malignant brain tumour in children, is characterised by a high risk of leptomeningeal dissemination. But little is known about the molecular mechanisms that promote cancer cell migration in MB. Aberrant expression of miR-21 is recognised to be causatively linked to metastasis in a variety of human neoplasms including brain tumours; however its function in MB is still unknown. In this study we investigated the expression level and the role of miR-21 in MB cell migration. miR-21 was found to be up-regulated, compared to normal cerebellum, in 29/29 MB primary samples and 6/6 MB-derived cell lines. Inverse correlation was observed between miR-21 expression and the metastasis suppressor PDCD4, while miR-21 repression increased the release of PDCD4 protein, suggesting negative regulation of PDCD4 by miR-21 in MB cells. Anti-miR-21 decreased protein expression of the tumour cell invasion mediators MAP4K1 and JNK, which are also known to be negatively regulated by PDCD4, and down-regulated integrin protein that is essential for MB leptomeningeal dissemination. Moreover miR-21 knockdown in MB cells increased the expression of two eminent negative modulators of cancer cell migration, E-Cadherin and TIMP2 proteins that are known to be positively regulated by PDCD4. Finally and importantly, suppression of miR-21 decreased the motility of MB cells and reduced their migration across basement membranes in vitro. Together, these compelling data propose miR-21 pathway as a novel mechanism impacting MB cell dissemination and raises the possibility that curability of selected MB may be improved by pharmaceutical strategies directed towards microRNA-21. PMID:21775132

  14. Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β

    PubMed Central

    McAndrews, Kathleen M.; McGrail, Daniel J.; Ravikumar, Nithin; Dawson, Michelle R.

    2015-01-01

    Mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment and influence tumor progression; however, how MSCs induce the invasion of cancer cells is not completely understood. Here, we used a 3D coculture model to determine how MSCs affect the migration of invasive breast cancer cells. Coculture with MSCs increases the elongation, directional migration, and traction generation of breast cancer cells. MSC-induced directional migration directly correlates with traction generation and is mediated by transforming growth factor β (TGF-β) and the migratory proteins rho-associated kinase, focal adhesion kinase, and matrix metalloproteinases. Treatment with MSC conditioned media or recombinant TGF-β1 elicits a similar migration response to coculture. Taken together, this work suggests TGF-β is secreted by MSCs, leading to force-dependent directional migration of invasive breast cancer cells. These pathways may be potential targets for blocking cancer cell invasion and subsequent metastasis. PMID:26585689

  15. Endogenous electric fields as guiding cue for cell migration.

    PubMed

    Funk, Richard H W

    2015-01-01

    This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  16. Endogenous electric fields as guiding cue for cell migration

    PubMed Central

    Funk, Richard H. W.

    2015-01-01

    This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  17. Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration

    PubMed Central

    Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei

    2013-01-01

    Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253

  18. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  19. Cell Migration: Recoiling from an Embrace.

    PubMed

    Genuth, Miriam A; Weiner, Orion D

    2015-06-29

    For proper spacing or rapid dispersion, some migratory cells are guided by repulsive collisions with their neighbors. A new study reveals that a surprising intercellular coupling of leading edge actin networks forms the basis of mutual repulsion in Drosophila hemocytes. PMID:26126284

  20. Migration of amoeba cells in an electric field

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  1. Nonantibestrophin Anti-RPE Antibodies in Paraneoplastic Exudative Polymorphous Vitelliform Maculopathy

    PubMed Central

    Dalvin, Lauren A.; Johnson, Adiv A.; Pulido, Jose S.; Dhaliwal, Ranjit; Marmorstein, Alan D.

    2015-01-01

    Purpose: A previous report demonstrated antibodies to bestrophin in paraneoplastic exudative polymorphous vitelliform maculopathy (PEPVM). Other cases demonstrated antibodies to different proteins in the retinal pigment epithelium (RPE). In this report, serum was analyzed to determine whether a patient with PEPVM and a reduced Arden ratio had developed autoantibodies to human Bestrophin-1 (Best1). Methods: Human embryonic kidney 293 cells (HEK293) were transfected with Best1 and stained with an antibody specific to Best1 (E6-6), or patient serum. Staining patterns were compared with those of untransfected cells stained with E6-6, patient serum, control serum, or secondary antibody alone. Western blots were performed using lysed RPE and stained with E6-6, patient serum, control serum, or secondary antibody alone. Results: Immunofluorescence staining of HEK-293 cells or HEK-293 cells expressing Best1 did not differ between patient and control sera or show a staining pattern consistent with recognition of Best1. Immunoblotting of human RPE lysate with patient serum did not identify Best1 (68 kDa) but did recognize a band at approximately 48 kDa that was absent in blots using control serum. Conclusions: To our knowledge, this is the first report of PEPVM with an autoantibody to an approximately 48-kDa RPE protein, but previous reports have demonstrated autoantibodies to other RPE proteins, suggesting that autoantibody formation is an important component of PEPVM. Translational Relevance: This research emphasizes the role that autoantibodies play in PEPVM. The fact that different autoantibodies appear to cause similar patterns demonstrates the heterogeneity of causes of vitelliform lesions. PMID:26046004

  2. Migration Phenotype of Brain-Cancer Cells Predicts Patient Outcomes.

    PubMed

    Smith, Chris L; Kilic, Onur; Schiapparelli, Paula; Guerrero-Cazares, Hugo; Kim, Deok-Ho; Sedora-Roman, Neda I; Gupta, Saksham; O'Donnell, Thomas; Chaichana, Kaisorn L; Rodriguez, Fausto J; Abbadi, Sara; Park, JinSeok; Quiñones-Hinojosa, Alfredo; Levchenko, Andre

    2016-06-21

    Glioblastoma multiforme is a heterogeneous and infiltrative cancer with dismal prognosis. Studying the migratory behavior of tumor-derived cell populations can be informative, but it places a high premium on the precision of in vitro methods and the relevance of in vivo conditions. In particular, the analysis of 2D cell migration may not reflect invasion into 3D extracellular matrices in vivo. Here, we describe a method that allows time-resolved studies of primary cell migration with single-cell resolution on a fibrillar surface that closely mimics in vivo 3D migration. We used this platform to screen 14 patient-derived glioblastoma samples. We observed that the migratory phenotype of a subset of cells in response to platelet-derived growth factor was highly predictive of tumor location and recurrence in the clinic. Therefore, migratory phenotypic classifiers analyzed at the single-cell level in a patient-specific way can provide high diagnostic and prognostic value for invasive cancers. PMID:27292647

  3. Microglia/Macrophages Migrate through Retinal Epithelium Barrier by a Transcellular Route in Diabetic Retinopathy

    PubMed Central

    Omri, Samy; Behar-Cohen, Francine; de Kozak, Yvonne; Sennlaub, Florian; Mafra Verissimo, Lourena; Jonet, Laurent; Savoldelli, Michèle; Omri, Boubaker; Crisanti, Patricia

    2011-01-01

    Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule–1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages. PMID:21712024

  4. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  5. Using Session RPE to Monitor Different Methods of Resistance Exercise

    PubMed Central

    D. Egan, Alison; B. Winchester, Jason; Foster, Carl; R. McGuigan, Michael

    2006-01-01

    The purpose of this study was to compare session rating of perceived exertion for different resistance training techniques in the squat exercise. These techniques included traditional resistance training, super slow, and maximal power training. Fourteen college-age women (Mean ± SD; age = 22 ± 3 years; height = 1.68 ± 0. 07 m) completed three experimental trials in a randomized crossover design. The traditional resistance training protocol consisted of 6 sets of 6 repetitions of squats using 80% of 1-RM. The super slow protocol consisted of 6 sets of 6 repetitions using 55% of 1-RM. The maximal power protocol consisted of 6 sets of 6 repetitions using 30% of 1-RM. Rating of perceived exertion (RPE) measures were obtained following each set using Borg’s CR-10 scale. In addition, a session RPE value was obtained 30 minutes following each exercise session. When comparing average RPE and session RPE, no significant difference was found. However, power training had significantly lower (p < 0.05) average and session RPE (4.50 ± 1.9 and 4.5 ± 2.1) compared to both super slow training (7.81 ± 1.75 and 7.43 ± 1.73) and traditional training (7.33 ± 1.52 and 7.13 ± 1.73). The results indicate that session RPE values are not significantly different from the more traditional methods of measuring RPE during exercise bouts. It does appear that the resistance training mode that is used results in differences in perceived exertion that does not relate directly to the loading that is used. Using session RPE provides practitioners with the same information about perceived exertion as the traditional RPE measures. Taking a single measure following a training session would appear to be much easier than using multiple measures of RPE throughout a resistance training workout. However, practitioners should also be aware that the RPE does not directly relate to the relative intensity used and appears to be dependent on the mode of resistance exercise that is used. Key Points The

  6. T-cell Migration, Search Strategies and Mechanisms

    PubMed Central

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-01-01

    T cell migration is essential for T cell responses, allowing for detection of cognate antigen at the surface of an Antigen-Presenting Cell (APC) and for interactions with other cells involved in the immune response. Although appearing random, growing evidence supports that T cell motility patterns are strategic and governed by mechanisms that are optimized for both activation-stage and environment-specific attributes. In this Opinion Article, we will discuss how to understand the combined effects of T cell- intrinsic and -extrinsic forces upon these motility patterns when viewed in highly complex tissues filled with other cells involved in parallel motility. In particular, we will examine how insights from ‘search theory’ describe T cell movement across exploitation-exploration gradients, in the context of activation versus effector function and in the context of lymph nodes versus peripheral tissues. PMID:26852928

  7. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    PubMed

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  8. The role and regulation of blebs in cell migration

    PubMed Central

    Paluch, Ewa K; Raz, Erez

    2013-01-01

    Blebs are cellular protrusions that have been shown to be instrumental for cell migration in development and disease. Bleb expansion is driven by hydrostatic pressure generated in the cytoplasm by the contractile actomyosin cortex. The mechanisms of bleb formation thus fundamentally differ from the actin polymerization-based mechanisms responsible for lamellipodia expansion. In this review, we summarize recent findings relevant for the mechanics of bleb formation and the underlying molecular pathways. We then review the processes involved in determining the type of protrusion formed by migrating cells, in particular in vivo, in the context of embryonic development. Finally, we discuss how cells utilize blebs for their forward movement in the presence or absence of strong substrate attachment. PMID:23786923

  9. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy

    PubMed Central

    Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases. PMID:27009841

  10. Chemokine-guided cell migration and motility in zebrafish development

    PubMed Central

    Bussmann, Jeroen; Raz, Erez

    2015-01-01

    Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration. PMID:25762592

  11. Migration of Drosophila intestinal stem cells across organ boundaries.

    PubMed

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-05-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  12. Macrophage Migration Inhibitory Factor Inhibits the Migration of Cartilage End Plate-Derived Stem Cells by Reacting with CD74

    PubMed Central

    Xiong, Cheng-jie; Huang, Bo; Zhou, Yue; Cun, Yan-ping; Liu, Lan-tao; Wang, Jian; Li, Chang-qing; Pan, Yong; Wang, Hai

    2012-01-01

    Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that regulates inflammatory reactions and the pathophysiology of many inflammatory diseases. Intervertebral disc (IVD) degeneration is characterized by an inflammatory reaction, but the potential role of MIF in IVD degeneration has not been determined. Recent studies have shown that MIF and its receptor, CD74, are involved in regulating the migration of human mesenchymal stem cells (MSCs); Thus, MIF might impair the ability of mesenchymal stem cells (MSCs) to home to injured tissues. Our previous studies indicated that cartilage endplate (CEP)-derived stem cells (CESCs) as a type of MSCs exist in human degenerate IVDs. Here, we investigate the role of MIF in regulating the migration of CESCs. Methods and Findings CESCs were isolated and identified. We have shown that MIF was distributed in human degenerate IVD tissues and was subject to regulation by the pro-inflammatory cytokine TNF-α. Furthermore, in vitro cell migration assays revealed that nucleus pulposus (NP) cells inhibited the migration of CESCs in a number-dependent manner, and ELISA assays revealed that the amount of MIF in conditioned medium (CM) was significantly increased as a function of increasing cell number. Additionally, recombinant human MIF (r-MIF) inhibited the migration of CESCs in a dose-dependent manner. CESCs migration was restored when an antagonist of MIF, (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), was added. Finally, a CD74 activating antibody (CD74Ab) was used to examine the effect of CD74 on CESCs motility and inhibited the migration of CESCs in a dose-dependent manner. Conclusions We have identified and characterized a novel regulatory mechanism governing cell migration during IVD degeneration. The results will benefit understanding of another possible mechanism for IVD degeneration, and might provide a new method to repair degenerate IVD by enhancing CESCs

  13. Optogenetic approaches to cell migration and beyond

    PubMed Central

    Weitzman, Matthew; Hahn, Klaus M.

    2014-01-01

    Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins. PMID:25216352

  14. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  15. The Origin And Migration Of Primordial Germ Cells In Sturgeons

    PubMed Central

    Saito, Taiju; Pšenička, Martin; Goto, Rie; Adachi, Shinji; Inoue, Kunio; Arai, Katsutoshi; Yamaha, Etsuro

    2014-01-01

    Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts. PMID:24505272

  16. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  17. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  18. Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms.

    PubMed

    Casazza, Andrea; Fazzari, Pietro; Tamagnone, Luca

    2007-01-01

    Cell migration is pivotal in embryo development and in the adult. During development a wide range of progenitor cells travel over long distances before undergoing terminal differentiation. Moreover, the morphogenesis of epithelial tissues and of the cardiovascular system involves remodelling compact cell layers and sprouting of new tubular branches. In the adult, cell migration is essential for leucocytes involved in immune response. Furthermore, invasive and metastatic cancer cells have the distinctive ability to overcome normal tissue boundaries, travel in and out of blood vessels, and settle down in heterologous tissues. Cell migration normally follows strict guidance cues, either attractive, or inhibitory and repulsive. Semaphorins are a wide family of signals guiding cell migration during development and in the adult. Recent findings have established that semaphorin receptors, the plexins, govern cell migration by regulating integrin-based cell substrate adhesion and actin cytoskeleton dynamics, via specific monomeric GTPases. Plexins furthermore recruit tyrosine kinases in receptor complexes, which allows switching between multiple signaling pathways and functional outcomes. In this article, we will review the functional role of semaphorins in cell migration and the implicated molecular mechanisms controlling cell adhesion. PMID:17607949

  19. Control of glioma cell migration and invasiveness by GDF-15

    PubMed Central

    Codó, Paula; Weller, Michael; Kaulich, Kerstin; Schraivogel, Daniel; Silginer, Manuela; Reifenberger, Guido; Meister, Gunter; Roth, Patrick

    2016-01-01

    Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy. PMID:26741507

  20. SENP1 regulates cell migration and invasion in neuroblastoma.

    PubMed

    Xiang-Ming, Yan; Zhi-Qiang, Xu; Ting, Zhang; Jian, Wang; Jian, Pan; Li-Qun, Yuan; Ming-Cui, Fu; Hong-Liang, Xia; Xu, Cao; Yun, Zhou

    2016-05-01

    Neuroblastoma (NB) is an embryonic solid tumor derived from precursor cells of the sympathetic nervous system, and accounts for 11% of childhood cancers and around 15% of cancer deaths in children. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENP) remove SUMO conjugate from proteins, and their expression is deregulated in diverse cancers. However, nothing is known about the role of SENPs in NBL. In the present study, we found that SENP1 expression was significantly high in metastatic NB tissues compared with primary NB tissues. Overexpression of SENP1 promoted NB cells migration and invasion. Inhibition of SENP1 could significantly suppress NB cell migration and invasion. Moreover, we found that SENP1 could regulate the expression of CDH1, MMP9, and MMP2. In summary, the data presented here indicate a significant role of SENP1 in the regulation of cell migration and invasion in NB and suppress SENP1 expression as promising candidates for novel treatment strategies of NB. PMID:25816890

  1. The NANIVID: a new device for cancer cell migration studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem K.; Cady, Nathaniel C.; Castracane, James; Gligorijevic, Bojana; van Rheenen, Jacobus W.; Condeelis, John S.

    2008-02-01

    Cancerous tumors are dynamic microenvironments that require unique analytical tools for their study. Better understanding of tumor microenvironments may reveal mechanisms behind tumor progression and generate new strategies for diagnostic marker development, which can be used routinely in histopathological analysis. Previous studies have shown that cell invasion and intravasation are related to metastatic potential and have linked these activities to gene expression patterns seen in migratory and invasive tumor cells in vivo. Existing analytical methods for tumor microenvironments include collection of tumor cells through a catheter needle loaded with a chemical or protein attractant (chemoattractant). This method has some limitations and restrictions, including time constraints of cell collection, long term anesthetization, and in vivo imaging inside the catheter. In this study, a novel implantable device was designed to replace the catheter-based method. The 1.5mm x 0.5mm x 0.24mm device is designed to controllably release chemoattractants for stimulation of tumor cell migration and subsequent cell capture. Devices were fabricated using standard microfabrication techniques and have been shown to mediate controlled release of bovine serum albumin (BSA) and epidermal growth factor (EGF). Optically transparent indium tin oxide (ITO) electrodes have been incorporated into the device for impedance-based measurement of cell density and have been shown to be compatible with in vivo multi-photon imaging of cell migration.

  2. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target. PMID:26432005

  3. LPP inhibits collective cell migration during lung cancer dissemination.

    PubMed

    Kuriyama, S; Yoshida, M; Yano, S; Aiba, N; Kohno, T; Minamiya, Y; Goto, A; Tanaka, M

    2016-02-25

    Lipoma preferred partner (LPP) is a LIM domain protein, which has multiple functions as an actin-binding protein and a transcriptional coactivator, and it has been suggested that LPP has some roles in cell migration or invasion, however, its role in cancer cells remains to be elucidated. Here, we showed that LPP degraded N-cadherin in lung cancer, PC14PE6 cells via regulating the expression of matrix metalloproteinase 15 (MMP-15), and loss-of-LPP increases collective cell migration (CCM) and dissemination consequently. Knockdown of LPP and its functional partner, Etv5, markedly restores the full-length N-cadherin and increases cell-cell adhesion. We investigated the common target of LPP and Etv5, and found that MMP-15 is transcribed as their direct transcriptional target. Furthermore, MMP-15 could directly digest the N-cadherin extracellular domain. LPP knockdown in PC14PE6 cells increases N-cadherin-dependent CCM in the three-dimensional collagen gel invasion assays, and promoted the dissemination of cancer cells when they were orthotopically implanted in nude mice. Immunohistochemistry of lung adenocarcinoma specimens revealed the heterogeneity of LPP intensity and complementary expression of LPP and N-cadherin in the primary tumors. These findings suggest that loss-of-LPP, Etv5 or MMP-15 can be a prognostic marker of increasing malignancy. PMID:26028032

  4. Capturing relevant extracellular matrices for investigating cell migration

    PubMed Central

    Keely, Patricia; Nain, Amrinder

    2015-01-01

    Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features PMID:26918156

  5. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  6. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration

    PubMed Central

    LI, BIN; CHEN, DAOMEI; LI, WANYI; XIAO, DAN

    2016-01-01

    While the anti-tumor actions of ginsenosides from Panax notoginseng are well-studied, the anti-proliferative activity of 20(S)-protopanaxadiol saponins (PDS) in Sanchi ginseng on human ovarian cancer has not been reported, nor has its effect on migration of SKOV3 cells been investigated. In the present study, a wound-healing assay indicated that PDS inhibited the migration of SKOV3 cells, and a Matrigel™ tube formation assay demonstrated the presence of inhibitory tube-structures following treatment with PDS. To date, there are no previous reports on the regulation of osteopontin (OPN), a glycophosphoprotein cytokine frequently expressed in ovarian carcinoma effusions by PDS. A reduction in the expression of OPN following PDS-treatment was observed using immunohistochemical and western blot experiments. These results suggest that PDS may be useful in the search for a potential ovarian cancer treatment. PMID:26998063

  7. Directional collective cell migration emerges as a property of cell interactions.

    PubMed

    Woods, Mae L; Carmona-Fontaine, Carlos; Barnes, Chris P; Couzin, Iain D; Mayor, Roberto; Page, Karen M

    2014-01-01

    Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants. PMID:25181349

  8. TIMP3 regulates osteosarcoma cell migration, invasion, and chemotherapeutic resistances.

    PubMed

    Han, Xiu-Guo; Li, Yan; Mo, Hui-Min; Li, Kang; Lin, Du; Zhao, Chang-Qing; Zhao, Jie; Tang, Ting-Ting

    2016-07-01

    Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs) to limit degradation of the extracellular matrix. Low levels of TIMP3 have been demonstrated in cancer tissues at advanced clinical stages, with positive distant metastasis and chemotherapeutic resistance. We examined the role of TIMP3 in osteosarcoma (OS) cell invasiveness and chemoresistance. TIMP3 was overexpressed or knocked down in the human OS cell lines Saos2 and MG63. Cell migration and invasion capacities were then evaluated using Transwell assays, and resistance to cisplatin was assessed by CCK-8 assay and flow cytometry. Real-time PCR and western blotting were used to investigate activation of signaling pathways downstream of TIMP3. Overexpression of TIMP3 inhibited the migration and invasion of Saos2 and MG63 cells, while knockdown of TIMP3 had the opposite effect. Cell survival after exposure to cisplatin was inhibited by TIMP3 overexpression in both Saos2 and MG63 cells. Consistently, downregulation of TIMP3 gene expression significantly decreased the sensitivity of OS cells to cisplatin treatment. MMP1, MMP2, Bcl-2, and Akt1 were all downregulated following TIMP3 overexpression, while Bax and cleaved caspase-3 were upregulated. TIMP3 knockdown had opposite effects on the regulation of these genes. Taken together, our findings suggest TIMP3 as a new target for inhibition of OS progression and chemotherapeutic resistance. PMID:26749283

  9. Novel interactions between erythroblast macrophage protein and cell migration.

    PubMed

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. PMID:27519940

  10. Modeling tumor cell migration: From microscopic to macroscopic models

    NASA Astrophysics Data System (ADS)

    Deroulers, Christophe; Aubert, Marine; Badoual, Mathilde; Grammaticos, Basil

    2009-03-01

    It has been shown experimentally that contact interactions may influence the migration of cancer cells. Previous works have modelized this thanks to stochastic, discrete models (cellular automata) at the cell level. However, for the study of the growth of real-size tumors with several million cells, it is best to use a macroscopic model having the form of a partial differential equation (PDE) for the density of cells. The difficulty is to predict the effect, at the macroscopic scale, of contact interactions that take place at the microscopic scale. To address this, we use a multiscale approach: starting from a very simple, yet experimentally validated, microscopic model of migration with contact interactions, we derive a macroscopic model. We show that a diffusion equation arises, as is often postulated in the field of glioma modeling, but it is nonlinear because of the interactions. We give the explicit dependence of diffusivity on the cell density and on a parameter governing cell-cell interactions. We discuss in detail the conditions of validity of the approximations used in the derivation, and we compare analytic results from our PDE to numerical simulations and to some in vitro experiments. We notice that the family of microscopic models we started from includes as special cases some kinetically constrained models that were introduced for the study of the physics of glasses, supercooled liquids, and jamming systems.

  11. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  12. Directional cell migration, but not proliferation, drives hair placode morphogenesis.

    PubMed

    Ahtiainen, Laura; Lefebvre, Sylvie; Lindfors, Päivi H; Renvoisé, Elodie; Shirokova, Vera; Vartiainen, Maria K; Thesleff, Irma; Mikkola, Marja L

    2014-03-10

    Epithelial reorganization involves coordinated changes in cell shapes and movements. This restructuring occurs during formation of placodes, ectodermal thickenings that initiate the morphogenesis of epithelial organs including hair, mammary gland, and tooth. Signaling pathways in ectodermal placode formation are well known, but the cellular mechanisms have remained ill defined. We established imaging methodology for live visualization of embryonic skin explants during the first wave of hair placode formation. We found that the vast majority of placodal cells were nonproliferative throughout morphogenesis. We show that cell compaction and centripetal migration are the main cellular mechanisms associated with hair placode morphogenesis and that inhibition of actin remodeling suppresses placode formation. Stimulation of both ectodysplasin/NF-κB and Wnt/β-catenin signaling increased cell motility and the number of cells committed to placodal fate. Thus, cell fate choices and morphogenetic events are controlled by the same molecular pathways, providing the framework for coordination of these two processes. PMID:24636260

  13. Insights into the Cell Shape Dynamics of Migrating Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Driscoll, Meghan; Homan, Tess; McCann, Colin; Parent, Carole; Fourkas, John; Losert, Wolfgang

    2010-03-01

    Dynamic cell shape is a highly visible manifestation of the interaction between the internal biochemical state of a cell and its external environment. We analyzed the dynamic cell shape of migrating cells using the model system Dictyostelium discoideum. Applying a snake algorithm to experimental movies, we extracted cell boundaries in each frame and followed local boundary motion over long time intervals. Using a local motion measure that corresponds to protrusive/retractive activity, we found that protrusions are intermittent and zig-zag, whereas retractions are more sustained and straight. Correlations of this local motion measure reveal that protrusions appear more localized than retractions. Using a local shape measure, curvature, we also found that small peaks in boundary curvature tend to originate at the front of cells and propagate backwards. We will review the possible cytoskeletal origin of these mechanical waves.

  14. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  15. Activation of the UPR Protects against Cigarette Smoke-induced RPE Apoptosis through Up-Regulation of Nrf2*

    PubMed Central

    Huang, Chuangxin; Wang, Joshua J.; Ma, Jacey H.; Jin, Chenjin; Yu, Qiang; Zhang, Sarah X.

    2015-01-01

    Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage. PMID:25568320

  16. Targeting Rho-GTPases in immune cell migration and inflammation

    PubMed Central

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-01-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24571448

  17. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma.

    PubMed

    Jiang, Jiarui; Liu, Guoqing; Miao, Xiongying; Hua, Songwen; Zhong, Dewu

    2011-05-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in the HCCLM3 cell line was blocked by siRNA. Cell migration was measured by wound healing and transwell migration assays in vitro. Elmo1 overexpression was significantly correlated with cell invasion and the poor prognosis of HCC. Elmo1-siRNA-treated HCCLM3 cells demonstrated a reduction in cell migration. The present study demonstrated for the first time that the suppression of Elmo1 expression inhibits cell invasion in HCC. PMID:22977532

  18. Guidance of myogenic cell migration by oriented deposits of fibronectin.

    PubMed

    Turner, D C; Lawton, J; Dollenmeier, P; Ehrismann, R; Chiquet, M

    1983-02-01

    Fibronectin mediates myoblast-substratum attachment; one region of the molecule binds directly to the cell surface, while others bind to collagen, glycosaminoglycans, and other fibronectin molecules. There is evidence to suggest that fibronectin-containing extracellular matrices guide cell migration in vivo. We describe a method for producing regular deposits of fibronectin in vitro that can serve as a model system for studying cell-substrate interactions, cell orientation, and contact guidance. The novel culture substrate is prepared by allowing an aqueous solution of fibronectin and urea to dry in a culture dish and then washing away the urea crystals. Myogenic cells in vitro adhere to, align with, and migrate along, parallel streaks of fibronectin. This leads to the formation of myotubes that are long and thin, with little branching. Myogenic clones are highly elongated in the direction of the deposits, in contrast with the roughly circular clones seen in conventional cultures. Fibroblasts and limb bud mesenchymal cells align with fibronectin deposits, assuming a bipolar shape. PMID:6825944

  19. Fibronectin Fiber Extension Decreases Cell Spreading and Migration.

    PubMed

    Hubbard, Brant; Buczek-Thomas, Jo Ann; Nugent, Matthew A; Smith, Michael L

    2016-08-01

    The extracellular matrix (ECM) is present in a range of molecular conformations and intermolecular arrangements. Fibronectin (Fn) molecules that constitute fibers within the ECM can exist in a variety of conformations that result from both mechanical stress and chemical factors such as allosteric binding partners. The long-standing hypothesis that conformational changes regulate the binding of cells to Fn fibers has only been tested for mutated molecules of Fn and has yet to be fully evaluated with Fn fibers. Using time-lapse microscopy we examined how mechanical extension of single fibers of Fn affects the adhesion and migration of endothelial cells. Using this single fiber adhesion technique, we show that high levels of mechanical strain applied to Fn fibers decreases the rates of both cell spreading and cell migration. These data indicate a fundamental cellular response to mechanical strain in the ECM that might have important implications for understanding how cells are recruited during tissue development and repair. J. Cell. Physiol. 231: 1728-1736, 2016. © 2015 Wiley Periodicals, Inc. PMID:26621030

  20. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  1. [The PAI-1 swing: microenvironment and cancer cell migration].

    PubMed

    Malo, Michel; Charrière-Bertrand, Cécile; Chettaoui, Chafika; Fabre-Guillevin, Elizabeth; Maquerlot, François; Lackmy, Alexandra; Vallée, Benoît; Delaplace, Franck; Barlovatz-Meimon, Georgia

    2006-12-01

    Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level. PMID:17126795

  2. Migration of connexin in the membranes of living cells

    NASA Astrophysics Data System (ADS)

    Bledsoe, Matthew; Rana, Daharsh; May, Karl; Kreft, Jennifer

    2008-11-01

    Movement of connexins within cell lipid bilayers remains somewhat mysterious. In studying their movement, researchers hoped to shed more light on the mechanisms by which they are influenced. We examined this problem by observing the behavior of the connexins directly. Cancerous human liver cells were cultured and their membrane connexins labeled with green fluorescent protein through transvection. The connexins were then filmed by high speed camera and carefully analyzed. The study served to fine-tune the model used in simulations of connexin migration, enabling further study of connexins and their transmembrane environment.

  3. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions.

    PubMed

    Kurniawan, Nicholas A; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2016-05-24

    Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior. PMID:26747513

  4. S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA

    PubMed Central

    Koirala, Adarsha; Makkia, Rasha S.; Conley, Shannon M.; Cooper, Mark J.; Naash, Muna I.

    2013-01-01

    Mutations in genes in the retinal pigment epithelium (RPE) cause or contribute to debilitating ocular diseases, including Leber's congenital amaurosis (LCA). Genetic therapies, particularly adeno-associated viruses (AAVs), are a popular choice for monogenic diseases; however, the limited payload capacity of AAVs combined with the large number of retinal disease genes exceeding that capacity make the development of alternative delivery methods critical. Here, we test the ability of compacted DNA nanoparticles (NPs) containing a plasmid with a scaffold matrix attachment region (S/MAR) and vitelliform macular dystrophy 2 (VMD2) promoter to target the RPE, drive long-term, tissue-specific gene expression and mediate proof-of-principle rescue in the rpe65−/− model of LCA. We show that the S/MAR-containing plasmid exhibited reporter gene expression levels several fold higher than plasmid or NPs without S/MARs. Importantly, this expression was highly persistent, lasting up to 2 years (last timepoint studied). We therefore selected this plasmid for testing in the rpe65−/− mouse model and observe that NP or plasmid VMD2-hRPE65-S/MAR led to structural and functional improvements in the LCA disease phenotype. These results indicate that the non-viral delivery of hRPE65 vectors can result in persistent, therapeutically efficacious gene expression in the RPE. PMID:23335596

  5. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium.

    PubMed

    Banik, Brittany L; Riley, Thomas R; Platt, Christina J; Brown, Justin L

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  6. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  7. Curcumin suppresses migration and invasion of human endometrial carcinoma cells

    PubMed Central

    CHEN, QIAN; GAO, QING; CHEN, KUNLUN; WANG, YIDONG; CHEN, LIJUAN; LI, XU

    2015-01-01

    Curcumin, a widely used Chinese herbal medicine, has historically been used in anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism of curcumin in endometrial carcinoma (EC) are still poorly understood. The purpose of this study was to detect the anti-metastatic effects of curcumin and the associated mechanism(s) in EC. Based on assays carried out in EC cell lines, it was observed that curcumin inhibited EC cell migration and invasion in vitro. Furthermore, following treatment with curcumin for 24 h, there was a decrease in the expression levels of matrix metalloproteinase (MMP)-2 and -9 as well as proteinase activity in EC cells. Moreover, curcumin treatment significantly decreased the levels of the phosphorylated form of extracellular signal-regulated kinase (ERK) 1/2. MEK1 overexpression partially blocked the anti-metastatic effects of curcumin. Combined treatment with ERK inhibitor U0126 and curcumin resulted in a synergistic reduction in MMP-2/-9 expression; the invasive capabilities of HEC-1B cells were also inhibited. In conclusion, curcumin inhibits tumor cell migration and invasion by reducing the expression and activity of MMP-2/9 via the suppression of the ERK signaling pathway, suggesting that curcumin is a potential therapeutic agent for EC. PMID:26622667

  8. RalB mobilizes the exocyst to drive cell migration.

    PubMed

    Rossé, Carine; Hatzoglou, Anastassia; Parrini, Maria-Carla; White, Michael A; Chavrier, Philippe; Camonis, Jacques

    2006-01-01

    The Ras family GTPases RalA and RalB have been defined as central components of the regulatory machinery supporting tumor initiation and progression. Although it is known that Ral proteins mediate oncogenic Ras signaling and physically and functionally interact with vesicle trafficking machinery, their mechanistic contribution to oncogenic transformation is unknown. Here, we have directly evaluated the relative contribution of Ral proteins and Ral effector pathways to cell motility and directional migration. Through loss-of-function analysis, we find that RalA is not limiting for cell migration in normal mammalian epithelial cells. In contrast, RalB and the Sec6/8 complex or exocyst, an immediate downstream Ral effector complex, are required for vectorial cell motility. RalB expression is required for promoting both exocyst assembly and localization to the leading edge of moving cells. We propose that RalB regulation of exocyst function is required for the coordinated delivery of secretory vesicles to the sites of dynamic plasma membrane expansion that specify directional movement. PMID:16382162

  9. The effects of laser immunotherapy on cancer cell migration

    NASA Astrophysics Data System (ADS)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; Layton, Elivia; Lam, Anh; Chen, Wei R.; Vaughan, Melville B.

    2016-03-01

    Laser immunotherapy (LIT) uses laser irradiation and immunological stimulation to target all types of metastases and creates a long-term tumor resistance. Glycated chitosan (GC) is the immunological stimulant used in LIT. Interestingly, GC can act as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. One essential aspect of understanding this immune response is knowing how laser irradiation affects cancer cells' ability to metastasize. In this experiment, a cell migration assay was performed. A 2mm circular elastomer plugs were placed at the bottom of multi-well dishes. Pre-cancerous keratinocytes, different tumor cells, and fibroblasts were then plated separately in treated wells. Once the cells reached 100% confluence, they were irradiated by either a 980nm or 805nm wavelength laser. The goal was to determine the effects of laser irradiation and immunological stimulation on cancer cell migration in vitro, paying the way to understand the mechanism of LIT in treating metastatic tumors in cancer patients.

  10. Using neurogenin to Reprogram Chick RPE to Produce Photoreceptor-like Neurons

    PubMed Central

    Li, Xiumei; Ma, Wenxin; Zhuo, Yehong; Yan, Run-Tao

    2010-01-01

    Purpose. One potential therapy for vision loss from photoreceptor degeneration is cell replacement, but this approach presents a need for photoreceptor cells. This study explores whether the retinal pigment epithelium (RPE) could be a convenient source of developing photoreceptors. Methods. The RPE of chick embryos was subjected to reprogramming by proneural genes neurogenin (ngn)1 and ngn3. The genes were introduced into the RPE through retrovirus RCAS-mediated transduction, with the virus microinjected into the eye or added to retinal pigment epithelial explant culture. The retinal pigment epithelia were then analyzed for photoreceptor traits. Results. In chick embryos infected with retrovirus RCAS-expressing ngn3 (RCAS-ngn3), the photoreceptor gene visinin (the equivalent of mammalian recoverin) was expressed in cells of the retinal pigment epithelial layer. When isolated and cultured as explants, retinal pigment epithelial tissues from embryos infected with RCAS-ngn3 or RCAS-ngn1 gave rise to layers of visinin-positive cells. These reprogrammed cells expressed genes of phototransduction and synapses, such as red opsin, the α-subunit of cone transducin, SNAP-25, and PSD-95. Reprogramming occurred with retinal pigment epithelial explants derived from virally infected embryos and with retinal pigment epithelial explants derived from normal embryos, with the recombinant viruses added at the onset of the explant culture. In addition, reprogramming took place in retinal pigment epithelial explants from both young and old embryos, from embryonic day (E)6 to E18, when the visual system becomes functional in the chick. Conclusions. The results support the prospect of exploring the RPE as a convenient source of developing photoreceptors for in situ cell replacement. PMID:19628733

  11. Effects of eugenol on polymorphonuclear cell migration and chemiluminescence.

    PubMed

    Fotos, P G; Woolverton, C J; Van Dyke, K; Powell, R L

    1987-03-01

    In this study, the effects of eugenol on human polymorphonuclear (PMN) cell migration and chemiluminescence were examined in vitro. Utilizing zymosan-activated serum or crude Bacteroides sonicate fractions as chemotractants, we found that eugenol inhibits PMN migration at 6.6 X 10(-2) to 6.6 X 10(-5) mol/L (P less than 0.05). Also, similar effects were observed in PMNs pre-incubated in eugenol. Regardless of concentration, eugenol was not found to induce chemotaxis of PMNs. An examination of PMN membrane activation through chemiluminescence gave results consistent with the chemotaxis data, demonstrating a decrease in light emission at concentrations as low as 6.6 X 10(-6) mol/L (P less than 0.05). In view of these data, the potential effect of eugenol on in vivo (sulcular or periapical) PMN function deserves further study. PMID:3475310

  12. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  13. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  14. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces

    NASA Astrophysics Data System (ADS)

    Jeon, Hojeong; Koo, Sangmo; Reese, Willie Mae; Loskill, Peter; Grigoropoulos, Costas P.; Healy, Kevin E.

    2015-09-01

    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells’ focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces.

  15. Modeling cell migration on filamentous tracks in 3D

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2014-03-01

    Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.

  16. An automated cell-counting algorithm for fluorescently-stained cells in migration assays

    PubMed Central

    2011-01-01

    A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells), images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P < 0.0001 for a total of 47 images), with no difference in the measurements between methods under all conditions. We conclude that our automated method is accurate, more efficient, and void of variability and potential observer bias normally associated with manual counting. PMID:22011343

  17. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration.

    PubMed

    Theveneau, Eric; Mayor, Roberto

    2012-01-01

    Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration. PMID:23801492

  18. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  19. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    PubMed Central

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382

  20. The migrations of Drosophila muscle founders and primordial germ cells are interdependent.

    PubMed

    Stepanik, Vincent; Dunipace, Leslie; Bae, Young-Kyung; Macabenta, Frank; Sun, Jingjing; Trisnadi, Nathanie; Stathopoulos, Angelike

    2016-09-01

    Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development. PMID:27578182

  1. Time-lapse microscopy and image processing for stem cell research: modeling cell migration

    NASA Astrophysics Data System (ADS)

    Gustavsson, Tomas; Althoff, Karin; Degerman, Johan; Olsson, Torsten; Thoreson, Ann-Catrin; Thorlin, Thorleif; Eriksson, Peter

    2003-05-01

    This paper presents hardware and software procedures for automated cell tracking and migration modeling. A time-lapse microscopy system equipped with a computer controllable motorized stage was developed. The performance of this stage was improved by incorporating software algorithms for stage motion displacement compensation and auto focus. The microscope is suitable for in-vitro stem cell studies and allows for multiple cell culture image sequence acquisition. This enables comparative studies concerning rate of cell splits, average cell motion velocity, cell motion as a function of cell sample density and many more. Several cell segmentation procedures are described as well as a cell tracking algorithm. Statistical methods for describing cell migration patterns are presented. In particular, the Hidden Markov Model (HMM) was investigated. Results indicate that if the cell motion can be described as a non-stationary stochastic process, then the HMM can adequately model aspects of its dynamic behavior.

  2. Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells.

    PubMed

    Rivera, Io-Guané; Ordoñez, Marta; Presa, Natalia; Gangoiti, Patricia; Gomez-Larrauri, Ana; Trueba, Miguel; Fox, Todd; Kester, Mark; Gomez-Muñoz, Antonio

    2016-02-15

    Pancreatic cancer is an aggressive and devastating disease characterized by invasiveness, rapid progression and profound resistance to treatment. Despite years of intense investigation, the prognosis of this type of cancer is poor and there is no efficacious treatment to overcome the disease. Using human PANC-1 and MIA PaCa-2 cells, we demonstrate that the bioactive sphingolipid ceramide 1-phosphate (C1P) increases pancreatic cancer cell migration and invasion. Treatment of these cells with selective inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt1, or mammalian target of rapamycin 1 (mTOR1), or with specific siRNAs to silence the genes encoding these kinases, resulted in potent inhibition of C1P-induced cell migration and invasion. Likewise, the extracellularly regulated kinases 1 and 2 (ERK1-2), and the small GTPase RhoA, which regulates cytoskeleton reorganization, were also found to be implicated in C1P-stimulated ROCK1-dependent cancer cell migration and invasion. In addition, pre-treatment of the cancer cells with pertussis toxin abrogated C1P-induced cell migration, suggesting the intervention of a Gi protein-coupled receptor in this process. Pancreatic cancer cells engineered to overexpress ceramide kinase (CerK), the enzyme responsible for C1P biosynthesis in mammalian cells, showed enhanced spontaneous cell migration that was potently blocked by treatment with the selective CerK inhibitor NVP-231, or by treatment with specific CerK siRNA. Moreover, overexpression of CerK with concomitant elevations in C1P enhanced migration of pancreatic cancer cells. Collectively, these data demonstrate that C1P is a key regulator of pancreatic cancer cell motility, and suggest that targeting CerK expression/activity and C1P may be relevant factors for controlling pancreatic cancer cell dissemination. PMID:26707801

  3. Immuno-Histochemical Analysis of Rod and Cone Reaction to RPE65 Deficiency in the Inferior and Superior Canine Retina

    PubMed Central

    Klein, Daniela; Mendes-Madeira, Alexandra; Schlegel, Patrice; Rolling, Fabienne; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2014-01-01

    Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model. PMID:24466015

  4. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  5. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    PubMed Central

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  6. Collective Epithelial and Mesenchymal Cell Migration During Gastrulation

    PubMed Central

    Chuai, Manli; Hughes, David; Weijer, Cornelis J

    2012-01-01

    Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation. PMID:23204916

  7. Migration of Langerhans cells and gammadelta dendritic cells from UV-B-irradiated sheep skin.

    PubMed

    Dandie, G W; Clydesdale, G J; Radcliff, F J; Muller, H K

    2001-02-01

    Depletion of dendritic cells from UV-B-irradiated sheep skin was investigated by monitoring migration of these cells towards regional lymph nodes. By creating and cannulating pseudoafferent lymphatic vessels draining a defined region of skin, migrating cells were collected and enumerated throughout the response to UV-B irradiation. In the present study, the effects of exposing sheep flank skin to UV-B radiation clearly demonstrated a dose-dependent increase in the migration of Langerhans cells (LC) from the UV-B-exposed area to the draining lymph node. The range of UV-B doses assessed in this study included 2.7 kJ/m2, a suberythemal dose; 8 kJ/m2, 1 minimal erythemal dose (MED); 20.1 kJ/m2; 40.2 kJ/m2; and 80.4 kJ/m2, 10 MED. The LC were the cells most sensitive to UV-B treatment, with exposure to 8 kJ/m2 or greater reproducibly causing a significant increase in migration. Migration of gammadelta+ dendritic cells (gammadelta+ DC) from irradiated skin was also triggered by exposure to UV-B radiation, but dose dependency was not evident within the range of UV-B doses examined. This, in conjunction with the lack of any consistent correlation between either the timing or magnitude of migration peaks of these two cell types, suggests that different mechanisms govern the egress of LC and gammadelta+ DC from the skin. It is concluded that the depression of normal immune function in the skin after exposure to erythemal doses of UV-B radiation is associated with changes in the migration patterns of epidermal dendritic cells to local lymph nodes. PMID:11168622

  8. Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells

    PubMed Central

    Shiozaki, Atsushi; Shimizu, Hiroki; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Kubota, Takeshi; Fujiwara, Hitoshi; Okamoto, Kazuma; Iitaka, Daisuke; Nakashima, Shingo; Nako, Yoshito; Liu, Mingyao; Otsuji, Eigo

    2014-01-01

    AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-α)-induced gene expression in human gastric adenocarcinoma cells. METHODS: Knockdown experiments were conducted with claudin 1 small interfering RNA (siRNA), and the effects on the cell cycle, apoptosis, migration and invasion were analyzed in human gastric adenocarcinoma MKN28 cells. The gene expression profiles of cells were analyzed by microarray and bioinformatics. RESULTS: The knockdown of claudin 1 significantly inhibited cell proliferation, migration and invasion, and increased apoptosis. Microarray analysis identified 245 genes whose expression levels were altered by the knockdown of claudin 1. Pathway analysis showed that the top-ranked molecular and cellular function was the cellular movement related pathway, which involved MMP7, TNF-SF10, TGFBR1, and CCL2. Furthermore, TNF- and nuclear frctor-κB were the top-ranked upstream regulators related to claudin 1. TNF-α treatment increased claudin 1 expression and cell migration in MKN28 cells. Microarray analysis indicated that the depletion of claudin 1 inhibited 80% of the TNF-α-induced mRNA expression changes. Further, TNF-α did not enhance cell migration in the claudin 1 siRNA transfected cells. CONCLUSION: These results suggest that claudin 1 is an important messenger that regulates TNF-α-induced gene expression and migration in gastric cancer cells. A deeper understanding of these cellular processes may be helpful in establishing new therapeutic strategies for gastric cancer. PMID:25548484

  9. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    PubMed Central

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  10. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies.

    PubMed

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  11. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  12. Quantitative Fundus Autofluorescence in Best Vitelliform Macular Dystrophy: RPE Lipofuscin is not Increased in Non-Lesion Areas of Retina.

    PubMed

    Sparrow, Janet R; Duncker, Tobias; Woods, Russell; Delori, François C

    2016-01-01

    Since the lipofuscin of retinal pigment epithelial (RPE) cells has been implicated in the pathogenesis of Best vitelliform macular dystrophy, we quantified fundus autofluorescence (quantitative fundus autofluorescence, qAF) as an indirect measure of RPE lipofuscin levels. Mean non-lesion qAF was found to be within normal limits for age. By spectral domain optical coherence tomography (SD-OCT) vitelliform lesions presented as fluid-filled subretinal detachments containing reflective material. We discuss photoreceptor outer segment debris as the source of the intense fluorescence of these lesions and loss of anion channel functioning as an explanation for the bullous photoreceptor-RPE detachment. Unexplained is the propensity of the disease for central retina. PMID:26427423

  13. Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA).

    PubMed

    Roshan Moniri, Mani; Young, Ada; Reinheimer, Kelsey; Rayat, Jarrett; Dai, Long-Jun; Warnock, Garth L

    2015-03-01

    Cell viability and cell migration capacities are critical parameters for cell culture-related studies. It is essential to monitor the dynamic changes of cell properties under various co-culture conditions to our better understanding of their behaviours and characteristics. The real time cell analyzer (RTCA, xCELLigence, Roche) is an impedance-based technology that can be used for label-free and real-time monitoring of cell properties, such as cell adherence, proliferation, migration and cytotoxicity. The practicality of this system has been proven in our recent cancer studies. In the present method, we intend to use co-cultures of pancreatic cancer cells (HP62) and mesenchymal stem cells to describe in detail, the procedures and benefits of RTCA. PMID:24443077

  14. Complement Fragment C3a Controls Mutual Cell Attraction during Collective Cell Migration

    PubMed Central

    Carmona-Fontaine, Carlos; Theveneau, Eric; Tzekou, Apostolia; Tada, Masazumi; Woods, Mae; Page, Karen M.; Parsons, Maddy; Lambris, John D.; Mayor, Roberto

    2011-01-01

    Summary Collective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents. PMID:22118769

  15. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration

    PubMed Central

    Salomon, Carlos; Yee, Sarah; Scholz-Romero, Katherin; Kobayashi, Miharu; Vaswani, Kanchan; Kvaskoff, David; Illanes, Sebastian E.; Mitchell, Murray D.; Rice, Gregory E.

    2014-01-01

    Background: Vascular smooth muscle cells (VSMCs) migration is a critical process during human uterine spiral artery (SpA) remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT) interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration. Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37°C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected, and exosomes (exo-JEG-3 and exo- HTR-8/SVneo) isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™). Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software). Results: HTR-8/SVneo cells were significantly more (~30%) invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 × 108 ± 2.5 × 108 particles/106 cells) compared to JEG-3 (2.86 × 108 ± 0.78 × 108 particles/106 cells). VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (−exosomes) (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, vs. control 25.09 ± 0.58 h, p < 0.05). Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes. Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content, and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls. PMID:25157233

  16. Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old rd12 Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis

    PubMed Central

    Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing

    2011-01-01

    Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527

  17. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    PubMed Central

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  18. Selective Impairment of a Subset of Ran-GTP-binding Domains of Ran-binding Protein 2 (Ranbp2) Suffices to Recapitulate the Degeneration of the Retinal Pigment Epithelium (RPE) Triggered by Ranbp2 Ablation*

    PubMed Central

    Patil, Hemangi; Saha, Arjun; Senda, Eugene; Cho, Kyoung-in; Haque, MdEmdadul; Yu, Minzhong; Qiu, Sunny; Yoon, Dosuk; Hao, Ying; Peachey, Neal S.; Ferreira, Paulo A.

    2014-01-01

    Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2−/−, with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2−/− background. Among the transgenic lines produced, only TgRBD2/3*-HA::RPE-cre::Ranbp2−/−-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2−/−. By contrast, TgRBD2/3*-HA expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2−/− and TgRBD2/3*-HA::RPE-cre::Ranbp2−/− share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases

  19. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient.

    PubMed

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  20. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient

    PubMed Central

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A.

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  1. Extracellular matrix-mediated chemotaxis can impede cell migration

    PubMed Central

    Perumpanani, A. J.; Simmons, D. L.; Gearing, A. J. H.; Miller, K. M.; Ward, G.; Norbury, J.; Schneemann, M.; Sherratt, J. A.

    1998-01-01

    Cells use a combination of changes in adhesion, proteolysis and motility (directed and random) during the process of migration. Proteolysis of the extracellular matrix (ECM) results in thecreation of haptotactic gradients which cells use to move in a directed fashion. The proteolytic creation of these gradients also results in the production of digested fragments of ECM. In this study we show that in the human fibrosarcoma cell line HT1080, matrix metalloproteinase-2(MMP-2)-digested fragments of fibronectin exert a chemotactic pull stronger than that of undigested fibronectin. During invasion, this gradient of ECM fragments is established in the wake of an invading cell, running counter to the direction of invasion. The resultant chemotactic pull is anti-invasive, contrary to the traditional view of the role of chemotaxis in invasion. Uncontrolled ECM degradation by high concentrations of MMP can thus result in steep gradients of ECM fragments, which run against the direction of invasion. Consequently, the invasive potential of a cell depends on MMP production in a biphasic mannerimplying that MMP inhibitors will upregulate invasion in high-MMPexpressing cells. Hence the therapeutic use of protease inhibitors against tumours expressing high levels of MMP could produce an augmentation of invasion.

  2. Zebrafish keratocyte explants to study collective cell migration and reepithelialization in cutaneous wound healing.

    PubMed

    Rapanan, Jose L; Pascual, Agnes S; Uppalapati, Chandana K; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2015-01-01

    Due to their unique motile properties, fish keratocytes dissociated from explant cultures have long been used to study the mechanisms of single cell migration. However, when explants are established, these cells also move collectively, maintaining many of the features which make individual keratocytes an attractive model to study migration: rapid rates of motility, extensive actin-rich lamellae with a perpendicular actin cable, and relatively constant speed and direction of migration. In early explants, the rapid interconversion of cells migrating individually with those migrating collectively allows the study of the role of cell-cell adhesions in determining the mode of migration, and emphasizes the molecular links between the two modes of migration. Cells in later explants lose their ability to migrate rapidly and collectively as an epithelial to mesenchymal transition occurs and genes associated with wound healing and inflammation are differentially expressed. Thus, keratocyte explants can serve as an in vitro model for the reepithelialization that occurs during cutaneous wound healing and can represent a unique system to study mechanisms of collective cell migration in the context of a defined program of gene expression changes. A variety of mutant and transgenic zebrafish lines are available, which allows explants to be established from fish with different genetic backgrounds. This allows the role of different proteins within these processes to be uniquely addressed. The protocols outlined here describe an easy and effective method for establishing these explant cultures for use in a variety of assays related to collective cell migration. PMID:25742068

  3. Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes

    PubMed Central

    2014-01-01

    Background Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. Results Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration. PMID:24987309

  4. Border cell migration: a model system for live imaging and genetic analysis of collective cell movement.

    PubMed

    Prasad, Mohit; Wang, Xiaobo; He, Li; Montell, Denise J

    2011-01-01

    Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late stage egg chambers was long feasible, stage 9 egg chambers survived only briefly outside the female body. We identified culture conditions that support stage 9 egg chamber development and sustain complete migration of border cells ex vivo. This protocol enables one to compare the dynamics of egg chamber development in wild type and mutant egg chambers using time-lapse microscopy and taking advantage of a multiposition microscope with a motorized imaging stage. In addition, this protocol has been successfully used in combination with fluorescence resonance energy transfer biosensors, photo-activatable proteins, and pharmacological agents and can be used with widefield or confocal microscopes in either an upright or inverted configuration. PMID:21748683

  5. Cell crawling mediates collective cell migration to close undamaged epithelial gaps.

    PubMed

    Anon, Ester; Serra-Picamal, Xavier; Hersen, Pascal; Gauthier, Nils C; Sheetz, Michael P; Trepat, Xavier; Ladoux, Benoît

    2012-07-01

    Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 μm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion. PMID:22711834

  6. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3.

    PubMed

    Yao, Xiaoli; Liu, Hua; Zhang, Xinghua; Zhang, Liang; Li, Xiang; Wang, Changhua; Sun, Shengrong

    2015-01-01

    High levels of cell surface glucose regulated protein 78 (sGRP78) have been implicated in cancer growth, survival, metastasis, and chemotherapy resistance. However, the underlying mechanism remains largely unknown. Here we report that the level of sGRP78 expression in human breast tumors gradually increases during cancer progression. Overexpression of GRP78 significantly enhanced its membrane distribution in human MCF-7 breast cancer cells, but had no effect on endoplasmic reticulum (ER) stress. High levels of sGRP78 facilitated cell proliferation and migration, as well as suppressed cell apoptosis. Neutralization of sGRP78 by a specific antibody against GRP78 alleviated sGRP78-induced cell growth and migration. Importantly, high phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) were found in human breast tumors that express sGRP78 and MCF-7 cells infected with adenovirus encoding human GRP78. Pretreatment with a GRP78 antibody suppressed STAT3 phosphorylation. Furthermore, genetic and pharmacological inhibition of STAT3 reversed the impacts of GRP78 on cell proliferation, apoptosis, and migration. These findings indicate that STAT3 mediates sGRP78-promoted breast cancer cell growth and migration. PMID:25973748

  7. Temsirolimus inhibits proliferation and migration in retinal pigment epithelial and endothelial cells via mTOR inhibition and decreases VEGF and PDGF expression.

    PubMed

    Liegl, Raffael; Koenig, Susanna; Siedlecki, Jakob; Haritoglou, Christos; Kampik, Anselm; Kernt, Marcus

    2014-01-01

    Due to their high prevalence, retinal vascular diseases including age related macular degeneration (AMD), retinal vein occlusions (RVO), diabetic retinopathy (DR) and diabetic macular edema have been major therapeutic targets over the last years. The pathogenesis of these diseases is complex and yet not fully understood. However, increased proliferation, migration and angiogenesis are characteristic cellular features in almost every retinal vascular disease. The introduction of vascular endothelial growth factor (VEGF) binding intravitreal treatment strategies has led to great advances in the therapy of these diseases. While the predominant part of affected patients benefits from the specific binding of VEGF by administering an anti-VEGF antibody into the vitreous cavity, a small number of non-responders exist and alternative or additional therapeutic strategies should therefore be evaluated. The mammalian target of rapamycin (mTOR) is a central signaling pathway that eventually triggers up-regulation of cellular proliferation, migration and survival and has been identified to play a key role in angiogenesis. In the present study we were able to show that both retinal pigment epithelial (RPE) cells as wells as human umbilical vein endothelial cells (HUVEC) are inhibited in proliferating and migrating after treatment with temsirolimus in non-toxic concentrations. Previous studies suggest that the production of VEGF, platelet derived growth factor (PDGF) and other important cytokines is not only triggered by hypoxia but also by mTOR itself. Our results indicate that temsirolimus decreases VEGF and PDGF expression on RNA and protein levels significantly. We therefore believe that the mTOR inhibitor temsirolimus might be a promising drug in the future and it seems worthwhile to evaluate complementary therapeutic effects with anti-VEGF drugs for patients not profiting from mono anti-VEGF therapy alone. PMID:24586308

  8. Novel protein Callipygian defines the back of migrating cells

    PubMed Central

    Swaney, Kristen F.; Borleis, Jane; Iglesias, Pablo A.; Devreotes, Peter N.

    2015-01-01

    Asymmetric protein localization is essential for cell polarity and migration. We report a novel protein, Callipygian (CynA), which localizes to the lagging edge before other proteins and becomes more tightly restricted as cells polarize; additionally, it accumulates in the cleavage furrow during cytokinesis. CynA protein that is tightly localized, or “clustered,” to the cell rear is immobile, but when polarity is disrupted, it disperses throughout the membrane and responds to uniform chemoattractant stimulation by transiently localizing to the cytosol. These behaviors require a pleckstrin homology-domain membrane tether and a WD40 clustering domain, which can also direct other membrane proteins to the back. Fragments of CynA lacking the pleckstrin homology domain, which are normally found in the cytosol, localize to the lagging edge membrane when coexpressed with full-length protein, showing that CynA clustering is mediated by oligomerization. Cells lacking CynA have aberrant lateral protrusions, altered leading-edge morphology, and decreased directional persistence, whereas those overexpressing the protein display exaggerated features of polarity. Consistently, actin polymerization is inhibited at sites of CynA accumulation, thereby restricting protrusions to the opposite edge. We suggest that the mutual antagonism between CynA and regions of responsiveness creates a positive feedback loop that restricts CynA to the rear and contributes to the establishment of the cell axis. PMID:26130809

  9. Novel protein Callipygian defines the back of migrating cells.

    PubMed

    Swaney, Kristen F; Borleis, Jane; Iglesias, Pablo A; Devreotes, Peter N

    2015-07-21

    Asymmetric protein localization is essential for cell polarity and migration. We report a novel protein, Callipygian (CynA), which localizes to the lagging edge before other proteins and becomes more tightly restricted as cells polarize; additionally, it accumulates in the cleavage furrow during cytokinesis. CynA protein that is tightly localized, or "clustered," to the cell rear is immobile, but when polarity is disrupted, it disperses throughout the membrane and responds to uniform chemoattractant stimulation by transiently localizing to the cytosol. These behaviors require a pleckstrin homology-domain membrane tether and a WD40 clustering domain, which can also direct other membrane proteins to the back. Fragments of CynA lacking the pleckstrin homology domain, which are normally found in the cytosol, localize to the lagging edge membrane when coexpressed with full-length protein, showing that CynA clustering is mediated by oligomerization. Cells lacking CynA have aberrant lateral protrusions, altered leading-edge morphology, and decreased directional persistence, whereas those overexpressing the protein display exaggerated features of polarity. Consistently, actin polymerization is inhibited at sites of CynA accumulation, thereby restricting protrusions to the opposite edge. We suggest that the mutual antagonism between CynA and regions of responsiveness creates a positive feedback loop that restricts CynA to the rear and contributes to the establishment of the cell axis. PMID:26130809

  10. The sweet spot: how GAGs help chemokines guide migrating cells.

    PubMed

    Monneau, Yoan; Arenzana-Seisdedos, Fernando; Lortat-Jacob, Hugues

    2016-06-01

    Glycosaminoglycans are polysaccharides that occur both at the cell surface and within extracellular matrices. Through their ability to bind to a large array of proteins, almost 500 of which have been identified to date, including most chemokines, these molecules regulate key biologic processes at the cell-tissue interface. To do so, glycosaminoglycans can provide scaffolds to ensure that proteins mediating specific functions will be presented at the correct site and time and can also directly contribute to biologic activities or signaling processes. The binding of chemokines to glycosaminoglycans, which, at the biochemical level, has been mostly studied using heparin, has traditionally been thought of as a mechanism for maintaining haptotactic gradients within tissues along which cells can migrate directionally. Many aspects of chemokine-glycosaminoglycan interactions, however, also suggest that the formation of these complexes could serve additional purposes that go well beyond a simple immobilization process. In addition, progress in glycobiology has revealed that glycosaminoglycan structures, in term of length, sulfation, and epimerization pattern, are specific for cell, tissue, and developmental stage. Glycosaminoglycan regulation and glycosaminoglycan diversity, which cannot be replicated using heparin, thus suggests that these molecules may fine-tune the immune response by selectively recruiting specific chemokines to cell surfaces. In this context, the aim of the present text is to review the chemokine-glycosaminoglycan complexes described to date and provide a critical analysis of the tools, molecules, and strategies that can be used to structurally and functionally investigate the formation of these complexes. PMID:26701132

  11. Bayesian parameter estimation for stochastic models of biological cell migration

    NASA Astrophysics Data System (ADS)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  12. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity. PMID:25894589

  13. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  14. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  15. RGMb controls aggregation and migration of Neogenin-positive cells in vitro and in vivo.

    PubMed

    Conrad, Sabine; Stimpfle, Fabian; Montazeri, Sonia; Oldekamp, Judit; Seid, Karin; Alvarez-Bolado, Gonzalo; Skutella, Thomas

    2010-02-01

    The proliferation, migration and differentiation of dentate gyrus stem and precursor cells have aroused keen interest. Neogenin and RGMb are expressed in non-overlapping compartments of the developing dentate gyrus. While Neogenin is expressed in migrating and proliferating dentate precursors, RGMb is localized in structures bordering the developing dentate, such as cornus ammonis cells and Cajal-Retzius cells in the marginal zone including the hippocampal fissure. Co-immunoprecipitation and binding assays indicate a strong physical interaction. In vitro and in vivo migration of dentate neuroepithelial cells is abolished by RGMb, and cell adhesion is reduced when cells expressing Neogenin comes into contact with cells expressing RGMb. Ectopic expression of RGMb in organotypic slice cultures and after in utero electroporation in the hippocampus modifies precursor cell migration. Our results imply that Neogenin-RGMb interaction might be involved in neuronal migration in the dentate gyrus. PMID:19944164

  16. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model.

    PubMed

    Omri, Samy; Behar-Cohen, Francine; de Kozak, Yvonne; Sennlaub, Florian; Verissimo, Lourena Mafra; Jonet, Laurent; Savoldelli, Michèle; Omri, Boubaker; Crisanti, Patricia

    2011-08-01

    Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages. PMID:21712024

  17. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    PubMed Central

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S. K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact. PMID:25165597

  18. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  19. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells.

    PubMed

    Makowska, Katarzyna A; Hughes, Ruth E; White, Kathryn J; Wells, Claire M; Peckham, Michelle

    2015-12-15

    We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype. PMID:26670045

  20. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    PubMed

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  1. Evidence for excitation of fluorescence in RPE melanin by multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Rockwell, Benjamin A.; Noojin, Gary D.; Stolarski, David J.; Denton, Michael L.

    2002-06-01

    Previously, we reported that ultrashort, near infrared (NIR) laser pulses caused more DNA breakage in cultured retinal pigment epithelial (RPE) cells than did CW, NIR laser radiation delivering a similar radiant exposure. We hypothesized that this difference was due to multiphoton absorption in an intracellular chromophore such as the RPE melanin. We investigated two-photon excitation of fluorescence in a suspension of isolated bovine RPE melanosomes exposed to a 1-KHz train of approximately 50- fsec laser pulses at 810 nm from a Ti:Sapphire laser, and compared this to the fluorescence excited by CW exposures at 406 nm from a Krypton ion laser. Fluorescence was measured with a PC-based spectrometer. The CW sources excited fluorescence with a peak at 525 nm. The fluorescence intensity depended on the irradiance of the sample, as well as the melanosome concentration. Peak fluorescence was obtained with a suspension of ~2 x 107 melanin granules/ml. The 810-nm, ultrashort pulses also excited fluorescence, but with a broader, lower-amplitude peak. The weaker fluorescence signal excited by the 810-nm ultrashort pulse laser for a given melanosome concentration, compared to 406-nm CW excitation, is possibly due to the smaller two- photon absorption cross-section. These results indicate the involvement of multiphoton absorption in DNA damage.

  2. Insulin-producing cells from embryonic stem cells rescues hyperglycemia via intra-spleen migration

    PubMed Central

    Ren, Meng; Shang, Changzhen; Zhong, Xiaomei; Guo, Ruomi; Lao, Guojuan; Wang, Xiaoyi; Cheng, Hua; Min, Jun; Yan, Li; Shen, Jun

    2014-01-01

    Implantation of embryonic stem cells (ESC)-derived insulin-producing cells has been extensively investigated for treatment of diabetes in animal models. However, the in vivo behavior and migration of transplanted cells in diabetic models remains unclear. Here we investigated the location and migration of insulin-producing cells labeled with superparamagnetic iron oxide (SPIO) using a dynamic MRI tracking method. SPIO labeled cells showed hypointense signal under the kidney subcapsules of diabetic mice on MRI, and faded gradually over the visiting time. However, new hypointense signal appeared in the spleen 1 week after transplantation, and became obvious with the time prolongation. Further histological examination proved the immigrated cells were insulin and C-peptide positive cells which were evenly distributed throughout the spleen. These intra-spleen insulin-producing cells maintained their protective effects against hyperglycemia in vivo, and these effects were reversed upon spleen removal. Transplantation of insulin-producing cells through spleen acquired an earlier blood glucose control as compared with that through kidney subcapsules. In summary, our data demonstrate that insulin-producing cells transplanted through kidney subcapsules were not located in situ but migrated into spleen, and rescues hyperglycemia in diabetic models. MRI may provide a novel tracking method for preclinical cell transplantation therapy of diabetes continuously and non-invasively. PMID:25533571

  3. Insulin-producing cells from embryonic stem cells rescues hyperglycemia via intra-spleen migration.

    PubMed

    Ren, Meng; Shang, Changzhen; Zhong, Xiaomei; Guo, Ruomi; Lao, Guojuan; Wang, Xiaoyi; Cheng, Hua; Min, Jun; Yan, Li; Shen, Jun

    2014-01-01

    Implantation of embryonic stem cells (ESC)-derived insulin-producing cells has been extensively investigated for treatment of diabetes in animal models. However, the in vivo behavior and migration of transplanted cells in diabetic models remains unclear. Here we investigated the location and migration of insulin-producing cells labeled with superparamagnetic iron oxide (SPIO) using a dynamic MRI tracking method. SPIO labeled cells showed hypointense signal under the kidney subcapsules of diabetic mice on MRI, and faded gradually over the visiting time. However, new hypointense signal appeared in the spleen 1 week after transplantation, and became obvious with the time prolongation. Further histological examination proved the immigrated cells were insulin and C-peptide positive cells which were evenly distributed throughout the spleen. These intra-spleen insulin-producing cells maintained their protective effects against hyperglycemia in vivo, and these effects were reversed upon spleen removal. Transplantation of insulin-producing cells through spleen acquired an earlier blood glucose control as compared with that through kidney subcapsules. In summary, our data demonstrate that insulin-producing cells transplanted through kidney subcapsules were not located in situ but migrated into spleen, and rescues hyperglycemia in diabetic models. MRI may provide a novel tracking method for preclinical cell transplantation therapy of diabetes continuously and non-invasively. PMID:25533571

  4. From Cell Differentiation to Cell Collectives: Bacillus subtilis Uses Division of Labor to Migrate

    PubMed Central

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The organization of cells, emerging from cell–cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called “van Gogh bundles”) of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity. PMID:25894589

  5. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration.

    PubMed

    Burrows, Carla; Abd Latip, Normala; Lam, Sarah-Jane; Carpenter, Lee; Sawicka, Kirsty; Tzolovsky, George; Gabra, Hani; Bushell, Martin; Glover, David M; Willis, Anne E; Blagden, Sarah P

    2010-09-01

    The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration. PMID:20430826

  6. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.

    PubMed

    Raab, M; Gentili, M; de Belly, H; Thiam, H R; Vargas, P; Jimenez, A J; Lautenschlaeger, F; Voituriez, Raphaël; Lennon-Duménil, A M; Manel, N; Piel, M

    2016-04-15

    In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)-dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses. PMID:27013426

  7. ERP44 inhibits human lung cancer cell migration mainly via IP3R2

    PubMed Central

    Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-01-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway. PMID:27347718

  8. Soft Micro-Channels for Cell Culturing and Migration Studies

    NASA Astrophysics Data System (ADS)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  9. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  10. Membrane-Binding and Enzymatic Properties of RPE65

    PubMed Central

    Kiser, Philip D.; Palczewski, Krzysztof

    2010-01-01

    Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties. PMID:20304090

  11. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia

    PubMed Central

    Zhang, Yan; Wildsoet, Christine F.

    2016-01-01

    Myopia is the most common type of refractive errors and one of the world’s leading causes of blindness. Visual manipulations in animal models have provided convincing evidence for the role of environmental factors in myopia development. These models along with in vitro studies have provided important insights into underlying mechanisms. The key locations of the retinal pigment epithelium (RPE) and choroid make them plausible conduits for relaying growth regulatory signals originating in the retina to the sclera, which ultimately determines eye size and shape. Identifying the key signal molecules and their targets may lead to the development of new myopia control treatments. This section summarizes findings implicating the RPE and choroid in myopia development. For RPE and/or choroid, changes in morphology, activity of ion channels/transporters, as well as in gene and protein expression, have been linked to altered eye growth. Both tissues thus represent potential targets for novel therapies for myopia. PMID:26310157

  12. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    PubMed

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis. PMID:26883442

  13. Continual Cell Deformation Induced via Attachment to Oriented Fibers Enhances Fibroblast Cell Migration

    PubMed Central

    Qin, Sisi; Ricotta, Vincent; Simon, Marcia; Clark, Richard A. F.; Rafailovich, Miriam H.

    2015-01-01

    Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v = 52μm/h, that decreases to the single cell value, v = 28μm/h within 24 hours and remained constant for at least four days. Fibroblasts emerging on fibrillar surfaces emerged with the single cell velocity, which remained constant for the first 24 hours and then increased reaching a plateau with more than twice the initial velocity within the next three days. The focal adhesions were distributed uniformly in cells on flat surfaces, while on the fibrillar surface they were clustered along the cell periphery. Furthermore, the number of focal adhesions for the cells on the flat surfaces remained constant, while it decreased on the fibrillar surface during the next three days. The deformation of the cell nuclei was found to be 50% larger on the fiber surfaces for the first 24 hours. While the mean deformation remained constant on the flat surface, it increased for the next three days by 24% in cells on fibers. On the fourth day, large actin/myosin fibers formed in cells on fibrillar surfaces only and coincided with a change from the standard migration mechanism involving extension of lamellipodia, and retraction of the rear, to one involving strong contractions oriented along the fibers and centered about the nucleus. PMID:25774792

  14. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells.

    PubMed

    Chan, Eddie; Saito, Akira; Honda, Tadashi; Di Guglielmo, Gianni M

    2016-04-01

    Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells. PMID:26775215

  15. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  16. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  17. Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice

    PubMed Central

    Sukseree, Supawadee; Chen, Ying-Ting; Laggner, Maria; Gruber, Florian; Petit, Valérie; Nagelreiter, Ionela-Mariana; Mlitz, Veronika; Rossiter, Heidemarie; Pollreisz, Andreas; Schmidt-Erfurth, Ursula; Larue, Lionel; Tschachler, Erwin

    2016-01-01

    Targeted gene knockout mouse models have helped to identify roles of autophagy in many tissues. Here, we investigated the retinal pigment epithelium (RPE) of Atg7f/f Tyr-Cre mice (on a C57BL/6 background), in which Cre recombinase is expressed under the control of the tyrosinase promoter to delete the autophagy gene Atg7. In line with pigment cell-directed blockade of autophagy, the RPE and the melanocytes of the choroid showed strong accumulation of the autophagy adaptor and substrate, sequestosome 1 (Sqstm1)/p62, relative to the levels in control mice. Immunofluorescence and Western blot analysis demonstrated that the RPE, but not the choroid melanocytes, of Atg7f/f Tyr-Cre mice also had strongly increased levels of retinoid isomerohydrolase RPE65, a pivotal enzyme for the maintenance of visual perception. In contrast to Sqstm1, genes involved in retinal regeneration, i.e. Lrat, Rdh5, Rgr, and Rpe65, were expressed at higher mRNA levels. Sequencing of the Rpe65 gene showed that Atg7f/f and Atg7f/f Tyr-Cre mice carry a point mutation (L450M) that is characteristic for the C57BL/6 mouse strain and reportedly causes enhanced degradation of the RPE65 protein by an as-yet unknown mechanism. These results suggest that the increased abundance of RPE65 M450 in the RPE of Atg7f/f Tyr-Cre mice is, at least partly, mediated by upregulation of Rpe65 transcription; however, our data are also compatible with the hypothesis that the RPE65 M450 protein is degraded by Atg7-dependent autophagy in Atg7f/f mice. Further studies in mice of different genetic backgrounds are necessary to determine the relative contributions of these mechanisms. PMID:27537685

  18. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC. PMID:27083564

  19. Inhibition of corneal epithelial cell migration by cadmium and mercury

    SciTech Connect

    Ubels, J.L.; Osgood, T.B. Medical Coll. of Wisconsin, Milwaukee )

    1991-02-01

    In a previous comparative study of corneal healing in fish, the authors observed that corneal epithelial healing occurs very rapidly in vivo in the marine teleost Myoxocephalus octodecimspinosus (longhorn sculpin) with a 6-mm diameter wound on the mammalian cornea. This rapid healing which permits prompt restoration of the epithelial barrier is apparently an adaptation to the large ionic and osmotic gradients between the environment and the intraocular fluids of the fish. These observations suggested that epithelial healing in the sculpin cornea might be useful model in aquatic biomedical toxicology if an in vitro method for measurement of healing rates could be developed. In this report the authors demonstrate that sculpin eyes maintained in short-term organ culture have a rapid corneal epithelial healing response and that this model can be used to demonstrate the toxic effects of heavy metals on epithelial cell migration.

  20. Microbial desalination cell with capacitive adsorption for ion migration control.

    PubMed

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration. PMID:22784594

  1. A simple non-perturbing cell migration assay insensitive to proliferation effects.

    PubMed

    Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R

    2016-01-01

    Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324

  2. A simple non-perturbing cell migration assay insensitive to proliferation effects

    PubMed Central

    Glenn, Honor L.; Messner, Jacob; Meldrum, Deirdre R.

    2016-01-01

    Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324

  3. Multi-function microsystem for cells migration analysis and evaluation of photodynamic therapy procedure in coculture

    PubMed Central

    Jastrzebska (Jedrych), Elzbieta; Grabowska-Jadach, Ilona; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2012-01-01

    Cell migration is an important physiological process, which is involved in cancer metastasis. Therefore, the investigation of cell migration may lead to the development of novel therapeutic approaches. In this study, we have successfully developed a microsystem for culture of two cell types (non-malignant and carcinoma) and for analysis of cell migration dependence on distance between them. Finally, we studied quantitatively the influence of photodynamic therapy (PDT) procedures on the viability of pairs of non-malignant (MRC5 or Balb/3T3) and carcinoma (A549) cells coculture. The proposed geometry of the microsystem allowed for separate introduction of two cell lines and analysis of cells migration dependence on distance between the cells. We found that a length of connecting microchannel has an influence on cell migration and viability of non-malignant cells after PDT procedure. Summarizing, the developed microsystem can constitute a new tool for carrying out experiments, which offers a few functions: cell migration analysis, carcinoma and non-malignant cells coculture, and evaluation of PDT procedure in the various steps of cell migration. PMID:24339849

  4. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    PubMed Central

    Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin

    2016-01-01

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 μg cm−2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  5. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin

    2015-07-01

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 µg cm-2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  6. P-cadherin-mediated Rho GTPase regulation during collective cell migration

    PubMed Central

    Plutoni, Cédric; Bazellières, Elsa; Gauthier-Rouvière, Cécile

    2016-01-01

    ABSTRACT This commentary addresses the role of P-cadherin in collective cell migration (CCM), a cooperative and coordinated migration mode, used by cells during normal and pathological migration processes. We discuss how cadherin-mediated cell-cell junctions (CCJs) play a critical role in CCM through their ability to regulate Rho GTPase-dependent pathways and how this leads to the generation and orientation of mechanical forces. We will also highlight the key function of P-cadherin (a poor prognostic marker in several tumors) in promoting collective cell movement in epithelial and mesenchymal cells. PMID:27152729

  7. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  8. ASB2α regulates migration of immature dendritic cells.

    PubMed

    Lamsoul, Isabelle; Métais, Arnaud; Gouot, Emmanuelle; Heuzé, Mélina L; Lennon-Duménil, Ana-Maria; Moog-Lutz, Christel; Lutz, Pierre G

    2013-07-25

    The actin-binding protein filamins (FLNs) are major organizers of the actin cytoskeleton. They control the elasticity and stiffness of the actin network and provide connections with the extracellular microenvironment by anchoring transmembrane receptors to the actin filaments. Although numerous studies have revealed the importance of FLN levels, relatively little is known about the regulation of its stability in physiological relevant settings. Here, we show that the ASB2α cullin 5-ring E3 ubiquitin ligase is highly expressed in immature dendritic cells (DCs) and is down-regulated after DC maturation. We further demonstrate that FLNs are substrates of ASB2α in immature DCs and therefore are not stably expressed in these cells, whereas they exhibit high levels of expression in mature DCs. Using ASB2 conditional knockout mice, we show that ASB2α is a critical regulator of cell spreading and podosome rosette formation in immature DCs. Furthermore, we show that ASB2(-/-) immature DCs exhibit reduced matrix-degrading function leading to defective migration. Altogether, our results point to ASB2α and FLNs as newcomers in DC biology. PMID:23632887

  9. Roles of E3 ubiquitin ligases in cell adhesion and migration.

    PubMed

    Huang, Cai

    2010-01-01

    Recent studies have demonstrated that a number of E3 ubiquitin ligases, including Cbl, Smurf1, Smurf2, HDM2, BCA2, SCF(beta-TRCP) and XRNF185, play important roles in cell adhesion and migration. Cbl negatively regulates cell adhesion via alpha integrin and Rap1 and inhibits actin polymerization by ubiquitinating mDab1 and WAVE2. Smurf1 regulates cell migration through ubiquitination of RhoA, talin head domain and hPEM2, while Smurf2 ubiquitinates Smurf1, TGFbeta type I receptor and RaplB to modulate cell migration and adhesion. HDM2 negatively regulates cell migration by targeting NFAT (a transcription factor) for ubiquitination and degradation, while SCF(beta-TRCP) ubiquitinates Snail (a transcriptional repressor of E-cadherin) to inhibit cell migration. TRIM32 promotes cell migration through ubiquitination of Abl interactor 2 (Abi2), a tumor suppressor. RNF5 and XRNF185 modulate cell migration by ubiquitinating paxillin. Thus, these E3 ubiquitin ligases regulate cell adhesion and (or) migration through ubiquitination of their specific substrates. PMID:20009572

  10. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. PMID:26195589

  11. Established and Novel Methods of Interrogating Two-Dimensional Cell Migration

    PubMed Central

    Ashby, William J.; Zijlstra, Andries

    2014-01-01

    The regulation of cell motility is central to living systems. Consequently, cell migration assays are some of the most frequently used in vitro assays. This article provides a comprehensive, detailed review of in vitro cell migration assays both currently in use and possible with existing technology. Emphasis is given to two-dimensional migration assays using densely organized cells such as the scratch assay. Assays are compared and categorized in an outline format according to their primary biological readout and physical parameters. The individual benefits of the various methods and quantification strategies are also discussed. This review provides an in-depth, structured overview of in vitro cell migration assays as a means of enabling the reader to make informed decisions among the growing number of options available for their specific cell migration application. PMID:23038152

  12. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  13. Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration

    PubMed Central

    Iwaya, Suguru; Sano, Masaki

    2008-01-01

    Background In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. Methodology We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion) and starved one (elongated cell shape and fast motion). We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin) and cell movement by statistical dynamic analyses. Conclusions/Significance We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K) and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli. PMID:19011688

  14. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  15. X-ray microprobe analysis of the retina and RPE in sheep with ovine ceroid-lipofuscinosis

    SciTech Connect

    Samuelson, D.A.; Armstrong, D.; Jolly, R. )

    1990-11-01

    Ovine ceroid-lipofuscinosis (OCL) is one animal model for the human condition, and because autofluorescent lipopigments are prominent in the brain and eye, it may also prove useful as a model for aging. For example, a progressive decline in electrical recording from brain and retina are observed in both aging and OCL. Samples of retinal and retinal pigment epithelial (RPE) tissues were obtained from a young control. 2 animals with OCL and a normal aged sheep. Specimens were cryo-fractured and examined by scanning electron microscopy/x-ray microanalysis. Measurements made of 6 individual cells in the ganglion layer of OCL specimens, the remainder of the retina, and RPE showed age-related changes in zinc, iron, and copper which were associated with lipopigment accumulation in the RPE. There was marked decrease in phosphate, sulfur, and manganese levels, as photoreceptor cells and their outer segments are lost in the disease process. This is the first report of metal analysis in the retina and RPE in a disease entity, and as a function of normal aging.

  16. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  17. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial‑mesenchymal transition in retinal pigment epithelium cells.

    PubMed

    Chen, Zhen; Mei, Yan; Lei, Huo; Tian, Run; Ni, Ninghua; Han, Fang; Gan, Shengwei; Sun, Shanquan

    2016-07-01

    The proliferation of retinal pigment epithelium (RPE) cells following epithelial‑mesenchymal transition (EMT) is critical in proliferative vitreoretinopathy (PVR), which results in retinal detachment and the loss of vision. The current study was conducted to examine the importance of transforming growth factor β‑1 (TGF‑β1)‑activated kinase 1 (TAK1) inhibitor (LYTAK1) in regulating EMT and the proliferation of RPE cells. RPE cells were pre-treated with increasing concentrations of LYTAK1 prior to treatment with TGF‑β1 for 24 h. The effect of LYTAK1 on RPE cell proliferation was examined using a Cell Counting kit‑8 assay. The expression levels of TAK1, smooth muscle actin, fibronectin, p-Smad2, p-Smad3, nuclear factor (NF)-κB p65 and IκB kinase α were detected by western blotting. LYTAK1 suppressed the proliferation and migration of RPE cells. Additionally, LYTAK1 significantly prevented TGF‑β1‑induced EMT by decreasing the levels of fibronectin and α‑smooth muscle actin. It was demonstrated that the effects of LYTAK1 were via the Smad signaling pathway. The present study also determined, that the underlying mechanism of the effects of LYTAK1 on EMT in RPE cells involves downregulation of the NF‑κB signaling pathway. In conclusion, TAK1 transcription factor was shown to be important in TGF‑β1‑induced EMT in human RPE cells. Thus, the results of this study aid in elucidating the pathogenesis of human PVR. In addition, this study suggests that specific inhibition by LYTAK1 may provide a novel approach for the treatment and prevention of PVR. PMID:27175834

  18. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells

    PubMed Central

    CHEN, ZHEN; MEI, YAN; LEI, HUO; TIAN, RUN; NI, NINGHUA; HAN, FANG; GAN, SHENGWEI; SUN, SHANQUAN

    2016-01-01

    The proliferation of retinal pigment epithelium (RPE) cells following epithelial-mesenchymal transition (EMT) is critical in proliferative vitreoretinopathy (PVR), which results in retinal detachment and the loss of vision. The current study was conducted to examine the importance of transforming growth factor β-1 (TGF-β1)-activated kinase 1 (TAK1) inhibitor (LYTAK1) in regulating EMT and the proliferation of RPE cells. RPE cells were pre-treated with increasing concentrations of LYTAK1 prior to treatment with TGF-β1 for 24 h. The effect of LYTAK1 on RPE cell proliferation was examined using a Cell Counting kit-8 assay. The expression levels of TAK1, smooth muscle actin, fibronectin, p-Smad2, p-Smad3, nuclear factor (NF)-κB p65 and IκB kinase α were detected by western blotting. LYTAK1 suppressed the proliferation and migration of RPE cells. Additionally, LYTAK1 significantly prevented TGF-β1-induced EMT by decreasing the levels of fibronectin and α-smooth muscle actin. It was demonstrated that the effects of LYTAK1 were via the Smad signaling pathway. The present study also determined, that the underlying mechanism of the effects of LYTAK1 on EMT in RPE cells involves downregulation of the NF-κB signaling pathway. In conclusion, TAK1 transcription factor was shown to be important in TGF-β1-induced EMT in human RPE cells. Thus, the results of this study aid in elucidating the pathogenesis of human PVR. In addition, this study suggests that specific inhibition by LYTAK1 may provide a novel approach for the treatment and prevention of PVR. PMID:27175834

  19. Activation of Rac1 by RhoG regulates cell migration.

    PubMed

    Katoh, Hironori; Hiramoto, Kiyo; Negishi, Manabu

    2006-01-01

    Cell migration is essential for normal development and many pathological processes. Rho-family small GTPases play important roles in this event. In particular, Rac regulates lamellipodia formation at the leading edge during migration. The small GTPase RhoG activates Rac through its effector ELMO and the ELMO-binding protein Dock180, which functions as a Rac-specific guanine nucleotide exchange factor. Here we investigated the role of RhoG in cell migration. RNA interference-mediated knockdown of RhoG in HeLa cells reduced cell migration in Transwell and scratch-wound migration assays. In RhoG-knockdown cells, activation of Rac1 and formation of lamellipodia at the leading edge in response to wounding were attenuated. By contrast, expression of active RhoG promoted cell migration through ELMO and Dock180. However, the interaction of Dock180 with Crk was dispensable for the activation of Rac1 and promotion of cell migration by RhoG. Taken together, these results suggest that RhoG contributes to the regulation of Rac activity in migrating cells. PMID:16339170

  20. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.

    PubMed

    Kim, Jin Man; Lee, Minji; Kim, Nury; Heo, Won Do

    2016-05-24

    Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca(2+) sparklets mediated by L-type voltage-dependent Ca(2+) channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca(2+) influx acts as an essential transducer in establishing a global front-to-rear increasing Ca(2+) gradient. This asymmetrical Ca(2+) gradient is crucial for maintaining front-rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca(2+) sparklets and front-rear coordination during directed cell migration. PMID:27190091

  1. Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration.

    PubMed

    Menon, Nishanth V; Chuah, Yon Jin; Phey, Samantha; Zhang, Ying; Wu, Yingnan; Chan, Vincent; Kang, Yuejun

    2015-08-12

    As an alternative to complex and costly in vivo models, microfluidic in vitro models are being widely used to study various physiological phenomena. It is of particular interest to study cell migration in a controlled microenvironment because of its vital role in a large number of physiological processes, such as wound healing, disease progression, and tissue regeneration. Cell migration has been shown to be affected by variations in the biochemical and physical properties of the extracellular matrix (ECM). To study the combinatorial impact of the ECM physical properties on cell migration, we have developed a microfluidic assay to induce migration of human bone marrow derived mesenchymal stem cells (hBMSCs) on polydimethylsiloxane (PDMS) substrates with varying combinatorial properties (hydrophobicity, stiffness, and roughness). The results show that although the initial cell adhesion and viability appear similar on all PDMS samples, the cell spreading and migration are enhanced on PDMS samples exhibiting intermediate levels of hydrophobicity, stiffness, and roughness. This study suggests that there is a particular range of substrate properties for optimal cell spreading and migration. The influence of substrate properties on hBMSC migration can help understand the physical cues that affect cell migration, which may facilitate the development of optimized engineered scaffolds with desired properties for tissue regeneration applications. PMID:26186177

  2. Transfection microarrays for high-throughput phenotypic screening of genes involved in cell migration.

    PubMed

    Onuki-Nagasaki, Reiko; Nagasaki, Akira; Hakamada, Kazumi; Uyeda, Taro Q P; Fujita, Satoshi; Miyake, Masato; Miyake, Jun

    2010-01-01

    Cell migration is important in several biological phenomena, such as cancer metastasis. Therefore, the identification of genes involved in cell migration might facilitate the discovery of antimetastatic drugs. However, screening of genes by the current methods can be complicated by factors related to cell stimulation, for example, abolition of contact inhibition and the release inflammatory cytokines from wounded cells during examinations of wound healing in vitro. To overcome these problems and identify genes involved in cell migration, in this chapter we describe the use of transfection microarrays for high-throughput phenotypic screening. PMID:20387151

  3. A Novel Role for Lh3 Dependent ECM Modifications during Neural Crest Cell Migration in Zebrafish

    PubMed Central

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A.; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode. PMID:23349938

  4. Myosin-II-Mediated Directional Migration of Dictyostelium Cells in Response to Cyclic Stretching of Substratum

    PubMed Central

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-01-01

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  5. Ganglioside, disialosyl globopentaosylceramide (DSGb5), enhances the migration of renal cell carcinoma cells.

    PubMed

    Kawasaki, Yoshihide; Ito, Akihiro; Kakoi, Narihiko; Shimada, Shuichi; Itoh, Jun; Mitsuzuka, Koji; Arai, Yoichi

    2015-01-01

    About one third of renal cell carcinoma (RCC) patients exhibit metastasis upon initial presentation. However, the molecular basis for RCC metastasis is not fully understood. A ganglioside, disialosyl globopentaosylceramide (DSGb5), was originally isolated from RCC tissue extracts, and its expression is correlated with RCC metastatic potential. DSGb5 is synthesized by GalNAc α2,6-sialyltransferase VI (ST6GalNAcVI) and is expressed on the surface of RCC cells. Importantly, DSGb5 binds to sialic acid-binding Ig-like lectin-7 (Siglec-7) expressed on natural killer (NK) cells, thereby inhibiting NK-cell cytotoxicity. However, the role of DSGb5 in RCC progression remains obscure. To address this issue, we used ACHN cells derived from malignant pleural effusion of a patient with metastatic RCC. Using the limiting dilution method, we isolated three independent clones with different DSGb5 expression levels. Comparison of these clones indicated that the cloned cells with high DSGb5 expression levels exhibited greater migration potential, compared to the clone with low DSGb5 expression levels. In contrast, DSGb5 expression levels exerted no significant effect on cell proliferation. We then established the ACHN-derived cell lines that stably expressed siRNA against ST6GalNAcVI mRNA or control siRNA. Importantly, the ST6GalNAcVI-knockdown cells expressed low levels of DSGb5. We thus demonstrated the significantly decreased migration potential of the ST6GalNAcVI-knockdown cells with low DSGb5 expression levels, compared to the control siRNA-transfected cells expressing high DSGb5 levels, but no significant difference in the cell proliferation. Thus, DSGb5 expression may ensure the migration of RCC cells. We propose that DSGb5 expressed on RCC cells may determine their metastatic capability. PMID:25864532

  6. A Modeling Approach to Study the Effect of Cell Polarization on Keratinocyte Migration

    PubMed Central

    Fuhr, Matthias Jörg; Meyer, Michael; Fehr, Eric; Ponzio, Gilles

    2015-01-01

    The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2 – an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents. PMID:25671585

  7. Rectified directional sensing in long-range cell migration

    PubMed Central

    Nakajima, Akihiko; Ishihara, Shuji; Imoto, Daisuke; Sawai, Satoshi

    2014-01-01

    How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This ‘rectification’ of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition. PMID:25373620

  8. Baicalin inhibits PDGF-induced proliferation and migration of airway smooth muscle cells

    PubMed Central

    Yang, Guang; Li, Jian-Qiang; Bo, Jian-Ping; Wang, Bei; Tian, Xin-Rui; Liu, Tan-Zhen; Liu, Zhuo-La

    2015-01-01

    Airway smooth muscle (ASM) cell proliferation and migration play important roles in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell proliferation and migration. Baicalin is one of flavonoid extracts from Scutellaria baicalensis, which has an anti-asthma effect. However, little is known about its role in PDGF-induced proliferation and migration in rat ASM (RASM) cells. In this study, we aimed to investigate the effects of baicalin on PDGF-induced RASM cell proliferation and migration. We also identified the signaling pathway by which baicalin influences RASM cell proliferation and migration. In the current study, we demonstrated that baicalin suppressed PDGF-induced RASM cell proliferation, arrested PDGF-induced cell-cycle progression. It also suppressed PDGF-induced RASM cell migration. Furthermore, baicalin suppressed PDGF-induced expression of phosphorylated p38, ERK1/2 and JNK in RASM cells. In summary, our study is the first to show that baicalin pretreatment can significantly inhibit PDGF-induced RASM cell proliferation and migration by suppressing the MAPK signaling pathway, and baicalin may be a useful chemotherapeutic agent for asthma. PMID:26884970

  9. Mesenchymal Stem Cells promote mammary cancer cell migration in vitro via the CXCR2 receptor

    PubMed Central

    Halpern, Jennifer L.; Kilbarger, Amy; Lynch, Conor C.

    2011-01-01

    Bone metastasis is a common event during breast cancer progression. Recently, mesenchymal stem cells (MSCs) have been implicated in the metastasis of primary mammary cancer. Given that bone is the native environment for MSCs, we hypothesized MSCs facilitate the homing of circulating mammary cancer cells to the bone. To test this hypothesis, we examined in vitro whether bone derived MSCs from FVB mice could influence the migration of syngeneic murine mammary cancer cell lines derived from the polyoma virus middle-T (PyMT) model of mammary gland tumorigenesis. Our data show that conditioned media derived from MSCs significantly enhanced the migration of PyMT mammary cancer cell lines. Analysis of conditioned media using a cytokine array revealed the presence of numerous cytokines in the MSC conditioned media, most notably, the murine orthologs of CXCL1 and CXCL5 that are cognate ligands of the CXCR2 receptor. Further investigation identified that; 1) CXCL1, CXCL5 and CXCR2 mRNA and protein were expressed by the MSCs and PyMT cell lines and; 2) neutralizing antibodies to CXCL1, CXCL5 and CXCR2 or a CXCR2 small molecule inhibitor (SB265610) significantly abrogated the migratory effect of the MSC conditioned media on the PyMT cells. Therefore, in vitro evidence demonstrates that bone derived MSCs play a role in the migration of mammary cancer cells, a conclusion that has potential implications for breast to bone metastasis in vivo. PMID:21601983

  10. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces

    PubMed Central

    Jeon, Hojeong; Koo, Sangmo; Reese, Willie Mae; Loskill, Peter; Grigoropoulos, Costas P.; Healy, Kevin E.

    2015-01-01

    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively1–6, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography7 to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells’ focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells toward higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces. PMID:26213899

  11. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    PubMed

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration. PMID:27555588

  12. The regulatory role of cell mechanics for migration of differentiating myeloid cells.

    PubMed

    Lautenschläger, Franziska; Paschke, Stephan; Schinkinger, Stefan; Bruel, Arlette; Beil, Michael; Guck, Jochen

    2009-09-15

    Migration of cells is important for tissue maintenance, immune response, and often altered in disease. While biochemical aspects, including cell adhesion, have been studied in detail, much less is known about the role of the mechanical properties of cells. Previous measurement methods rely on contact with artificial surfaces, which can convolute the results. Here, we used a non-contact, microfluidic optical stretcher to study cell mechanics, isolated from other parameters, in the context of tissue infiltration by acute promyelocytic leukemia (APL) cells, which occurs during differentiation therapy with retinoic acid. Compliance measurements of APL cells reveal a significant softening during differentiation, with the mechanical properties of differentiated cells resembling those of normal neutrophils. To interfere with the migratory ability acquired with the softening, differentiated APL cells were exposed to paclitaxel, which stabilizes microtubules. This treatment does not alter compliance but reduces cell relaxation after cessation of mechanical stress six-fold, congruent with a significant reduction of motility. Our observations imply that the dynamical remodeling of cell shape required for tissue infiltration can be frustrated by stiffening the microtubular system. This link between the cytoskeleton, cell mechanics, and motility suggests treatment options for pathologies relying on migration of cells, notably cancer metastasis. PMID:19717452

  13. Rho Mediates the Shear-Enhancement of Endothelial Cell Migration and Traction Force Generation

    PubMed Central

    Shiu, Yan-Ting; Li, Song; Marganski, William A.; Usami, Shunichi; Schwartz, Martin A.; Wang, Yu-Li; Dembo, Micah; Chien, Shu

    2004-01-01

    The migration of vascular endothelial cells in vivo occurs in a fluid dynamic environment due to blood flow, but the role of hemodynamic forces in cell migration is not yet completely understood. Here we investigated the effect of shear stress, the frictional drag of blood flowing over the cell surface, on the migration speed of individual endothelial cells on fibronectin-coated surfaces, as well as the biochemical and biophysical bases underlying this shear effect. Under static conditions, cell migration speed had a bell-shaped relationship with fibronectin concentration. Shear stress significantly increased the migration speed at all fibronectin concentrations tested and shifted the bell-shaped curve upwards. Shear stress also induced the activation of Rho GTPase and increased the traction force exerted by endothelial cells on the underlying substrate, both at the leading edge and the rear, suggesting that shear stress enhances both the frontal forward-pulling force and tail retraction. The inhibition of a Rho-associated kinase, p160ROCK, decreased the traction force and migration speed under both static and shear conditions and eliminated the shear-enhancement of migration speed. Our results indicate that shear stress enhances the migration speed of endothelial cells by modulating the biophysical force of tractions through the biochemical pathway of Rho-p160ROCK. PMID:15041692

  14. The Consequences of Hypomorphic RPE65 for Rod and Cone Photoreceptors.

    PubMed

    Samardzija, Marijana; Barben, Maya; Geiger, Philipp; Grimm, Christian

    2016-01-01

    RPE65 is essential for both rod- and cone-mediated vision. So far, more than 120 disease-associated mutations have been identified in the human RPE65 gene. Differential clinical manifestations suggested that some patients suffer from null mutations while others retain residual RPE65 activity and some useful vision. To understand the mechanism of retinal degeneration or dysfunction caused by such hypomorphic RPE65 alleles, we generated an Rpe65 (R91W) knock-in mouse (R91W) that expresses a mutant RPE65 protein with reduced function. Data obtained suggested that the R91W mouse is highly suitable to study the impact of RPE65 insufficiency on rod pathophysiology. To study the impact on cones, we combined the R91W with the Nrl (-/-) mouse that develops an all-cone retina. Here we summarize the consequences of hypomorphic RPE65 function (reduced 11-cis-retinal synthesis) for rod and cone pathophysiology. PMID:26427430

  15. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    SciTech Connect

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  16. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion

    PubMed Central

    Proux-Gillardeaux, Véronique; Gavard, Julie; Irinopoulou, Theano; Mège, René-Marc; Galli, Thierry

    2005-01-01

    A role for endocytosis and exocytosis in cell migration has been proposed but not yet demonstrated. Here, we show that cellubrevin (Cb), an early endosomal v-SNARE, mediates trafficking in the lamellipod of migrating epithelial cells and partially colocalizes with markers of focal contacts. Expression of tetanus neurotoxin, which selectively cleaves Cb, significantly reduced the speed of migrating epithelial cells. Furthermore, expression of tetanus neurotoxin enhanced the adhesion of epithelial cells to collagen, laminin, fibronectin, and E-cadherin; altered spreading on collagen; and impaired the recycling of β1 integrins. These results suggest that Cb-dependent membrane trafficking participates in cell motility through the regulation of cell adhesion. PMID:15851685

  17. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  18. Ex vivo imaging of postnatal cerebellar granule cell migration using confocal macroscopy.

    PubMed

    Bénard, Magalie; Lebon, Alexis; Komuro, Hitoshi; Vaudry, David; Galas, Ludovic

    2015-01-01

    During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration. PMID:25992599

  19. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo

    PubMed Central

    Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto

    2013-01-01

    Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431

  20. Directional Migration of MDA-MB-231 Cells Under Oxygen Concentration Gradients.

    PubMed

    Yahara, D; Yoshida, T; Enokida, Y; Takahashi, E

    2016-01-01

    To elucidate the initial mechanism of hematogenous metastasis of cancer cells, we hypothesized that cancer cells migrate toward regions with higher oxygen concentration such as intratumor micro vessels along the oxygen concentration gradient. To produce gradients of oxygen concentration in vitro, we devised the gap cover glass (GCG). After placing a GCG onto cultured MDA-MB-231 cells (a metastatic breast cancer cell line), the migration of individual cells under the GCG was tracked up to 12 h at 3 % oxygen in the micro incubator. We quantified the migration of individual cells using forward migration index (FMI). The cell migration perpendicular to the oxygen gradients was random in the direction whereas FMIs of the cell located at 300, 500, 700, and 1500 μm from the oxygen inlet were positive (p < 0.05) indicating a unidirectional migration toward the oxygen inlet. Present results are consistent with our hypothesis that MDA-MB-231 cells migrate toward regions with higher oxygen concentration. PMID:27526134

  1. Ex Vivo Imaging of Postnatal Cerebellar Granule Cell Migration Using Confocal Macroscopy

    PubMed Central

    Bénard, Magalie; Lebon, Alexis; Komuro, Hitoshi; Vaudry, David; Galas, Ludovic

    2015-01-01

    During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration. PMID:25992599

  2. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  3. High resolution multimode light microscopy of cell migration: long-term imaging and analysis.

    PubMed

    Wöllert, Torsten; Langford, George M

    2009-01-01

    Cell migration is a multi-step process that involves sequential changes in the cytoskeleton, cell-substrate adhesion and components of the extracellular matrix. In multicellular organisms, directional cell migration is important for normal development, wound healing and immune responses and contributes to disease states such as tumor formation and metastasis. Many cells such as fibroblasts migrate as individuals while others, such as keratinocytes, move as groups or sheets of cells.In this chapter, we use human oral keratinocytes (OKF6/TERT-2) to illustrate the complex patterns of cell migration and its regulation. In culture, sheets of keratinocytes migrate and respond to human pathogens such as Candida albicans. The dynamic changes of the cytoskeleton, cell-cell and cell-substrate interactions that change during an infection for example require observation over long periods of time in order to identify the spatio-temporal coordinated regulation of the cytoskeleton and its associated components as well as the signaling pathways that control them.Microscopic techniques for long-term live cell observation and analysis of cell migration require high-resolution imaging systems that maintain perfect focus and optimal growth conditions (temperature, CO(2)) for cells. We describe two multimode digital imaging systems (VEC-DIC and BioStation IM), both with wide-field epifluorescence and transmitted light objectives for long-term time-lapse imaging and motion analysis. PMID:19768422

  4. Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica.

    PubMed

    Kishi, Kanae; Onuma, Takeshi A; Nishida, Hiroki

    2014-11-15

    The appendicularian, Oikopleura dioica, is a planktonic chordate. Its simple and transparent body, invariant cell lineages and short life cycle of 5 days make it a promising model organism for studies of chordate development. Here we describe the cell migration that occurs during development of the O. dioica larva. Using time-lapse imaging facilitated by florescent labeling of cells, three cell populations exhibiting long-distance migration were identified and characterized. These included (i) a multinucleated oral gland precursor that migrates anteriorly within the trunk region and eventually separates into the left and right sides, (ii) endodermal strand cells that are collectively retracted from the tail into the trunk in a tractor movement, and (iii) two subchordal cell precursors that individually migrate out from the trunk to the tip of the tail. The migration of subchordal cell precursors starts when all of the endodermal strand cells enter the trunk, and follows the same path but in a direction opposite to that of the latter. Labeling of these cells with a photoconvertible fluorescent protein, Kaede, demonstrated that the endodermal strand cells and subchordal cell precursors have distinct origins and eventual fates. Surgical removal of the trunk from the tail demonstrated that the endodermal strand cells do not require the trunk for migration, and that the subchordal cell precursors would be attracted by the distal part of the tail. This well-defined, invariant and traceable long-distance cell migration provides a unique experimental system for exploring the mechanisms of versatile cell migration in this simple organism with a chordate body plan. PMID:25224225

  5. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    SciTech Connect

    Garay, Tamás; Juhász, Éva; Molnár, Eszter; Eisenbauer, Maria; Czirók, András; Dekan, Barbara; László, Viktória; Hoda, Mir Alireza; Döme, Balázs; Tímár, József; Klepetko, Walter; Berger, Walter; Hegedűs, Balázs

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.

  6. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    PubMed

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization. PMID:27020659

  7. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    PubMed

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling. PMID:26779779

  8. The SDF-1/CXCR4 chemokine axis in uveal melanoma cell proliferation and migration.

    PubMed

    Bi, Jianjun; Li, Peng; Li, Chuanyin; He, Jie; Wang, Ying; Zhang, He; Fan, Xianqun; Jia, Renbing; Ge, Shengfang

    2016-03-01

    The stromal-cell-derived factor 1 (SDF-1)/chemokine receptor 4 (CXCR4) chemokine axis plays a key role in tumor migration. Here, we analyzed the axis in uveal melanoma (UM) proliferation and migration and investigated the effect of a chemical inhibitor of CXCR4, AMD3100, on UM. We found that CXCR4 was expressed in all five UM cell lines tested as well as the retinal pigment epithelium cell line ARPE-19 cells, while CXCR7 was only detected in OM290 and VUP cell lines. SDF-1 promotes the proliferation and migration of OCM-1 and OCM431 cell lines, while AMD3100 weakens this function. Taken together, our results show that the SDF-1/CXCR4 chemokine axis plays a key role in UM cell proliferation and migration and that AMD3100 can alleviate this function, which may offer a hint for UM treatment. PMID:26490988

  9. RLIM interacts with Smurf2 and promotes TGF-{beta} induced U2OS cell migration

    SciTech Connect

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-10-14

    Highlights: {yields} RLIM directly binds to Smurf2. {yields} RLIM enhances TGF-{beta} responsiveness in U2OS cells. {yields} RLIM promotes TGF-{beta} driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-{beta} (transforming growth factor-{beta}), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-{beta} responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-{beta}-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-{beta} signaling pathway and cell migration.

  10. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices

    PubMed Central

    Gjorevski, Nikolce; S. Piotrowski, Alexandra; Varner, Victor D.; Nelson, Celeste M.

    2015-01-01

    Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration. PMID:26165921

  11. WNK1 kinase balances T cell adhesion versus migration in vivo.

    PubMed

    Köchl, Robert; Thelen, Flavian; Vanes, Lesley; Brazão, Tiago F; Fountain, Kathryn; Xie, Jian; Huang, Chou-Long; Lyck, Ruth; Stein, Jens V; Tybulewicz, Victor L J

    2016-09-01

    Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration. PMID:27400149

  12. Real-time tracking, retrieval and gene expression analysis of migrating human T cells.

    PubMed

    Mehling, Matthias; Frank, Tino; Albayrak, Cem; Tay, Savaş

    2015-03-01

    Dynamical analysis of single-cells allows assessment of the extent and role of cell-to-cell variability, however traditional dish-and-pipette techniques have hindered single-cell analysis in quantitative biology. We developed an automated microfluidic cell culture system that generates stable diffusion-based chemokine gradients, where cells can be placed in predetermined positions, monitored via single-cell time-lapse microscopy, and subsequently be retrieved based on their migration speed and directionality for further off-chip gene expression analysis, constituting a powerful platform for multiparameter quantitative studies of single-cell chemotaxis. Using this system we studied CXCL12-directed migration of individual human primary T cells. Spatiotemporally deterministic retrieval of T cell subsets in relation to their migration speed, and subsequent analysis with microfluidic droplet digital-PCR showed that the expression level of CXCR4 – the receptor of CXCL12 – underlies enhanced human T cell chemotaxis. PMID:25512266

  13. An indirect electric field-induced control in directional migration of rat mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Park, Hyoun-Hyang; Jo, Sungkwon; Hoon Seo, Cheong; Jeong, Je Hoon; Yoo, Yeong-Eun; Lee, Dae Hoon

    2014-12-01

    We present the efficacy of an indirect E-field on the directional migration of rat mesenchymal stem cell (MSC). To avoid current flow through culture media and cell, E-fields were generated without exposing electrodes directly to the cell media. MSC migration was observed during wound closure in presence of indirect E-field. MSC migration depended on the E-field strength and occurs predominantly in the anodal direction. Indirect E-field therapy proved as tentative tool for controlled cell movement and healing.

  14. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration

    PubMed Central

    Nielsen, N; Lindemann, O; Schwab, A

    2014-01-01

    Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca2+ signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24724725

  15. Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries

    PubMed Central

    Kim, Min-Cheol; Neal, Devin M.; Kamm, Roger D.; Asada, H. Harry

    2013-01-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin concentrations and (2) cell spreading on 2-D micropatterned geometries. These works suggest (1) cell migration speed takes a maximum at a particular ligand density (∼1140 molecules/µm2) and (2) that strong traction forces at the corners of the patterns may exist due to combined effects exerted by actin stress fibers (SFs). The integrative model of this paper successfully reproduced these experimental results and indicates the mechanism of cell migration and spreading. In this paper, the mechanical structure of the cell is modeled as having two elastic membranes: an outer cell membrane and an inner nuclear membrane. The two elastic membranes are connected by SFs, which are extended from focal adhesions on the cortical surface to the nuclear membrane. In addition, the model also includes ventral SFs bridging two focal adhesions on the cell surface. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bond to ligands on the ECM surface, activate SFs, and form focal adhesions. The relationship between the cell migration speed and fibronectin concentration agrees with existing experimental data for Chinese hamster ovary (CHO) cell migrations on fibronectin coated surfaces. In addition, the integrated model is validated by showing persistent high stress concentrations at sharp geometrically patterned edges. This model will be used as a predictive model to assist in design and data processing of upcoming microfluidic cell migration assays. PMID:23468612

  16. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration

    PubMed Central

    Piater, Birgit; Doerner, Achim; Guenther, Ralf; Kolmar, Harald; Hock, Bjoern

    2015-01-01

    The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2’-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding. PMID:26658271

  17. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  18. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    PubMed Central

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-01-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis. PMID:25660754

  19. A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells.

    PubMed

    Luo, Judong; Li, Zengpeng; Zhu, Hong; Wang, Chenying; Zheng, Weibin; He, Yan; Song, Jianyuan; Wang, Wenjie; Zhou, Xifa; Lu, Xujing; Zhang, Shuyu; Chen, Jianming

    2016-01-01

    Ca(2+)-binding protein of 45 kDa (Cab45), a CREC family member, is reported to be associated with Ca(2+)-dependent secretory pathways and involved in multiple diseases including cancers. Cab45-G, a Cab45 isoform protein, plays an important role in protein sorting and secretion at Golgi complex. However, its role in cancer cell migration remains elusive. In this study, we demonstrate that Cab45-G exhibited an increased expression in cell lines with higher metastatic potential and promoted cell migration in multiple types of cancer cells. Overexpression of Cab45-G resulted in an altered expression of the molecular mediators of epithelial-mesenchymal transition (EMT), which is a critical step in the tumor metastasis. Quantitative real-time PCR showed that overexpression of Cab45-G increased the expression of matrix metalloproteinase-2 and -7 (MMP-2 and MMP-7). Conversely, knock-down of Cab45-G reduced the expression of the above MMPs. Moreover, forced expression of Cab45-G upregulated the level of phosphorylated ERK and modulated the secretion of extracellular proteins fibronectin and fibulin. Furthermore, in human cervical and esophageal cancer tissues, the expression of Cab45-G was found to be significantly correlated with that of MMP-2, further supporting the importance of Cab45-G on regulating cancer metastasis. Taken together, these results suggest that Cab45-G could regulate cancer cell migration through various molecular mechanisms, which may serve as a therapeutic target for the treatment of cancers. PMID:27194945

  20. A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells

    PubMed Central

    Luo, Judong; Li, Zengpeng; Zhu, Hong; Wang, Chenying; Zheng, Weibin; He, Yan; Song, Jianyuan; Wang, Wenjie; Zhou, Xifa; Lu, Xujing; Zhang, Shuyu; Chen, Jianming

    2016-01-01

    Ca2+-binding protein of 45 kDa (Cab45), a CREC family member, is reported to be associated with Ca2+-dependent secretory pathways and involved in multiple diseases including cancers. Cab45-G, a Cab45 isoform protein, plays an important role in protein sorting and secretion at Golgi complex. However, its role in cancer cell migration remains elusive. In this study, we demonstrate that Cab45-G exhibited an increased expression in cell lines with higher metastatic potential and promoted cell migration in multiple types of cancer cells. Overexpression of Cab45-G resulted in an altered expression of the molecular mediators of epithelial-mesenchymal transition (EMT), which is a critical step in the tumor metastasis. Quantitative real-time PCR showed that overexpression of Cab45-G increased the expression of matrix metalloproteinase-2 and -7 (MMP-2 and MMP-7). Conversely, knock-down of Cab45-G reduced the expression of the above MMPs. Moreover, forced expression of Cab45-G upregulated the level of phosphorylated ERK and modulated the secretion of extracellular proteins fibronectin and fibulin. Furthermore, in human cervical and esophageal cancer tissues, the expression of Cab45-G was found to be significantly correlated with that of MMP-2, further supporting the importance of Cab45-G on regulating cancer metastasis. Taken together, these results suggest that Cab45-G could regulate cancer cell migration through various molecular mechanisms, which may serve as a therapeutic target for the treatment of cancers. PMID:27194945

  1. A Role for PP1/NIPP1 in Steering Migration of Human Cancer Cells

    PubMed Central

    Martin-Granados, Cristina; Prescott, Alan R.; Van Dessel, Nele; Van Eynde, Aleyde; Arocena, Miguel; Klaska, Izabela P.; Görnemann, Janina; Beullens, Monique; Bollen, Mathieu; Forrester, John V.; McCaig, Colin D.

    2012-01-01

    Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate cathodally, others anodally and some polarise with their long axis perpendicular to the electric ve