Science.gov

Sample records for rrna gene based

  1. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  2. Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes.

    PubMed

    Soni, Dharmendra Kumar; Dubey, Suresh Kumar

    2014-12-01

    The discrimination between Listeria monocytogenes and Listeria species has been detected. The 16S rRNA and hlyA were PCR amplified with set of oligonucleotide primers with flank 1,500 and 456 bp fragments, respectively. Based on the differences in 16S rRNA and hlyA genes, a total 80 isolates from different environmental, food and clinical samples confirmed it to be L. monocytogenes. The 16S rRNA sequence similarity suggested that the isolates were similar to the previously reported ones from different habitats by others. The phylogenetic interrelationships of the genus Listeria were investigated by sequencing of 16S rRNA and hlyA gene. The 16S rRNA sequence indicated that genus Listeria is comprised of following closely related but distinct lines of descent, one is the L. monocytogenes species group (including L. innocua, L. ivanovii, L. seeligeri and L. welshimeri) and other, the species L. grayi, L. rocourtiae and L. fleischmannii. The phylogenetic tree based on hlyA gene sequence clearly differentiates between the L. monocytogenes, L. ivanovii and L. seeligeri. In the present study, we identified 80 isolates of L. monocytogenes originating from different clinical, food and environmental samples based on 16S rRNA and hlyA gene sequence similarity. PMID:25205124

  3. Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol

    PubMed Central

    Foroni, Elena; Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Sanchez, Borja; Martín, Rebeca; Gueimonde, Miguel; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2013-01-01

    Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota. PMID:23869230

  4. Molecular phylogeny of pneumocystis based on 5.8S rRNA gene and the internal transcribed spacers of rRNA gene sequences.

    PubMed

    Li, ZiHui; Feng, XianMin; Lu, SiQi; Zhang, Fan; Wang, FengYun; Huang, Song

    2008-05-01

    To clarify the phylogenetic relationships and species status of Pneumocystis, the 5.8S rRNA gene and the internal transcribed spacers (ITS, 1 and 2) of Pneumocystis rRNA derived from rat, gerbil and human were amplified, cloned and sequenced. The genetic distance matrix of six Pneumocystis species compared with other fungi like Taphrina and Saccharomyces indicated that the Pneumocystis genus contained multiple species including Pneumocystis from gerbil. The phylogenetic tree also showed that Pneumocystis from human and monkey formed one group and four rodent Pneumocystis formed another group. Among the four members, Pneumocystis wakefieldiae was most closely related to Pneumocystis murina and Pneumocystis carinii, and was least related to gerbil Pneumocystis. PMID:18785590

  5. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences. PMID:25523504

  6. The phylogeny of intestinal porcine spirochetes (Serpulina species) based on sequence analysis of the 16S rRNA gene.

    PubMed Central

    Pettersson, B; Fellström, C; Andersson, A; Uhlén, M; Gunnarsson, A; Johansson, K E

    1996-01-01

    Four type or reference strains and twenty-two field strains of intestinal spirochetes isolated from Swedish pig herds were subjected to phylogenetic analysis based on 16S rRNA sequences. Almost complete (>95%) 16S rRNA sequences were obtained by solid-phase DNA sequencing of in vitro-amplified rRNA genes. The genotypic patterns were compared with a previously proposed biochemical classification scheme, comprising beta-hemolysis, indole production, hippurate hydrolysis, and alpha-galactosidase, alpha-glucosidase, and beta-glucosidase activities. Comparison of the small-subunit rRNA sequences showed that the strains of the genus Serpulina were closely related. Phylogenetic trees were constructed, and three clusters were observed. This was also confirmed by signature nucleotide analysis of the serpulinas. The indole-producing strains, including the strains of S. hyodysenteriae and some weakly beta-hemolytic Serpulina strains, formed one cluster. A second cluster comprised weakly beta-hemolytic strains that showed beta-galactosidase activity but lacked indole production and hippurate-hydrolyzing capacity. The second cluster contained two subclusters with similar phenotypic profiles. A third cluster involved strains that possessed a hippurate-hydrolyzing capacity which was distinct from that of the former two clusters, because of 17 unique nucleotide positions of the 16S rRNA gene. Interestingly, the strains of this third cluster were found likely to have a 16S rRNA structure in the V2 region of the molecule different from that of the serpulinas belonging to the other clusters. As a consequence of these findings, we propose that the intestinal spirochetes of this phenotype (i.e., P43/6/78-like strains) should be regarded as a separate Serpulina species. Furthermore, this cluster was found to be by far the most homogeneous one. In conclusion, the biochemical classification of porcine intestinal spirochetes was comparable to that by phylogenetic analysis based on 16S rRNA

  7. Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene.

    PubMed

    Xu, Jia; Zhao, Wei; Zhu, Mengru; Wen, Yuanju; Xie, Tao; He, Xiaoqian; Zhang, Yongfeng; Cao, Suizhong; Niu, Lili; Zhang, Hongping; Zhong, Tao

    2016-01-01

    The aim of this study is to set up a protocol for identification of the adulteration in mutton based on mitochondrial 16S rRNA gene. The multiplex polymerase chain reaction (multi-PCR) assay was carried out to trace the impure DNA in mutton. A universal primer pair yielded an approximate 610 bp fragment in mutton, pork, duck, chicken, horse and cat meats. The amplicons of multi-PCR assay represented the species-specific products, which could be discriminated by the size ranging from 106 bp to 532 bp. Subsequently, the authentication of each fragment was also confirmed by sequencing. Random analyses of adulterants with various meats yielded the identical results to their components, showing the suitability of the multi-PCR assay for tracing of adulterant meats with high-accuracy and precision. This assay was sensitive to detect the species-specific DNA in different proportional mixtures of mutton and duck/pork (9.1%-90.9%). In conclusion, this multi-PCR assay successfully discriminated the double-, triple-, quadruple-, and quintuple-mixtures containing variant counterparts. This method will be particularly useful in the detection of mutton adulteration in processed foods further. PMID:24739005

  8. [Strategy of selecting 16S rRNA hypervariable regions for metagenome-phylogenetic marker genes based analysis].

    PubMed

    Zhang, Jun-yi; Zhu, Bing-chuan; Xu, Chao; Ding, Xiao; Li, Jun-feng; Zhang, Xue-gong; Lu, Zu-hong

    2015-11-01

    The advent of next generation sequencing technology enables parallel analysis of the whole microbial community from multiple samples. Particularly, sequencing 16S rRNA hypervariable tags has become the most efficient and cost-effective method for assessing microbial diversity. Due to its short read length of the 2nd-generation sequencing methods that cannot cover the full 16S rRNA genomic region, specific hypervariable regions or V-regions must be selected to act as the proxy. Over the past decade, selection of V-regions has not been consistent in assessing microbial diversity. Here we evaluated the current strategies of selecting 16S rRNA hypervariable regions for surveying microbial diversity. The environmental condition was considered as one of the important factors for selection of 16S rRNA hypervariable regions. We suggested that a pilot study to test different V-regions is required in bacterial diversity studies based on 16S rRNA genes. PMID:26915214

  9. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  10. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  11. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene.

    PubMed

    Ledje, C; Arnason, U

    1996-12-01

    The complete 12S rRNA gene of 32 carnivore species, including four feliforms and 28 caniforms, was sequenced. The sequences were aligned on the basis of their secondary structures and used in phylogenetic analyses that addressed several evolutionary relationships within the Caniformia. The analyses showed an unresolved polytomy of the basic caniform clades; pinnipeds, mustelids, procyonids, skunks, Ailurus (lesser panda), ursids, and canids. The polytomy indicates a major diversification of caniforms during a relatively short period of time. The lesser panda was distinct from other caniforms, suggesting its inclusion in a monotypic family, Ailuridae. The giant panda and the bears were joined on the same branch. The skunks are traditionally included in the family Mustelidae. The present analysis, however, showed a less close molecular relationship between the skunks and the remaining Mustelidae (sensu stricto) than between Mustelidae (sensu stricto) and Procyonidae, making Mustelidae (sensu lato) paraphyletic. The results suggest that the skunks should be included in a separate family, Mephitidae. Within the Pinnipedia, the grouping of walrus, sea lions, and fur seals was strongly supported. Analyses of a combined set of 12S rRNA and cytochrome b data were generally consistent with the findings based on each gene. PMID:8995061

  12. Molecular Evolution of Mycoplasma capricolum subsp. capripneumoniae Strains, Based on Polymorphisms in the 16S rRNA Genes

    PubMed Central

    Pettersson, Bertil; Bölske, Göran; Thiaucourt, François; Uhlén, Mathias; Johansson, Karl-Erik

    1998-01-01

    Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP. PMID:9573185

  13. Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities.

    PubMed

    Huys, Geert; Vanhoutte, Tom; Joossens, Marie; Mahious, Amal S; De Brandt, Evie; Vermeire, Severine; Swings, Jean

    2008-06-01

    The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed. PMID:18301945

  14. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  15. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses. PMID:17685227

  16. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  17. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  18. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids. PMID:23847285

  19. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.

    PubMed Central

    Escalante, A A; Ayala, F J

    1995-01-01

    We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa. PMID:7597031

  20. Nested PCR and RFLP analysis based on the 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...

  1. First microbiota assessments of children's paddling pool waters evaluated using 16S rRNA gene-based metagenome analysis.

    PubMed

    Sawabe, Toko; Suda, Wataru; Ohshima, Kenshiro; Hattori, Masahira; Sawabe, Tomoo

    2016-01-01

    Insufficient chloric sterilization of children's paddling pool waters increases the risk of diarrheal illness. Therefore, we investigated the microbiota changes after children use pools. First, we applied 16S rRNA gene-based metagenome analysis to understand the dynamics of microbiota in pool water, especially with respect to the bio-contamination by potential pathogens. Proteobacteria were major taxa detected in every pool water sample after children spent time in the pool. In more detail, Gammaproteobacteria comprised the dominant class, which was followed by Betaproteobacteria. Five phyla, Bacteroidetes, Firmicutes, Actinobacteria and Deinococcus-Thermus phyla were minor groups. The pool water microbiota are likely to be a consortium of intestinal and skin microbiota from humans. Interestingly, the ratio of Gammaproteobacteria and Betaproteobacteria differed according to the age of the children who used the pool, which means the pool water was additionally contaminated by soil microbiota as a result of the children's behavior. Furthermore, potential pathogens, such as Campylobacter spp., Comamonas testosteroni and Burkholderia pseudomallei, were also found. Considering the standard plate counts, the abundances of these human pathogens are unlikely to be a sufficiently infectious dose. We suggest the importance of sanitary measures in paddling pool waters to reduce bio-contamination from both humans and the environment. PMID:26671497

  2. Variable rRNA gene copies in extreme halobacteria

    SciTech Connect

    Sanz, J.L.; Marin, I.; Ramirez, L.; Amils, R. ); Abad, J.P.; Smith, C.L. )

    1988-08-25

    Using PFG electrophoresis techniques, the authors have examined the organization of rRNA gene in halobacterium species. The results show that the organization of rRNA genes among closely related halobacteria is quite heterogeneous. This contrasts with the high degree of conservation of rRNA sequence. The possible mechanism of such rRNA gene amplification and its evolutionary implications are discussed.

  3. Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene.

    PubMed

    Nishiyama, T; Kato, M

    1999-08-01

    The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result. PMID:10474899

  4. Population genetic structure of Cheyletus malaccensis (Acari: Cheyletidae) in China based on mitochondrial COI and 12S rRNA genes.

    PubMed

    Yang, Xiaoqiang; Ye, Qingtian; Xin, Tianrong; Zou, Zhiwen; Xia, Bin

    2016-06-01

    Cheyletus malaccensis is a predatory mite widely distributed in grain storages. It has been regarded as an important biological control agent for pest mites. In this study, we investigated the population genetic structure of C. malaccensis distributed in China based on the partial regions of mitochondrial COI and 12S rRNA genes. We collected 256 individuals of C. malaccensis from stored grain in 34 sites of China. We detected 50 COI gene haplotypes and nine 12S rRNA gene haplotypes. There were three clades in the haplotype network and Bayesian and maximum parsimony phylogenetic trees based on COI sequences, and two based on 12S rRNA sequences. The clustering of haplotypes was not correlated with their geographical distributions. The analysis of molecular variance, AMOVA, indicated that the genetic differentiation between populations was relatively weak. The major genetic differentiation was found within populations. We suggest that the genetic structure of C. malaccensis observed in this study may be the result of long-term climate fluctuations and recent human disturbances. PMID:26947027

  5. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils.

    PubMed

    Samant, Suvidha; Amann, Rudolf I; Hahn, Dittmar

    2014-05-01

    The 23S rRNA gene was evaluated as target for the development of Sybr Green-based quantitative PCR (qPCR) for the analysis of nitrogen-fixing members of the genus Frankia or subgroups of these in soil. A qPCR with a primer combination targeting all nitrogen-fixing frankiae (clusters 1, 2 and 3) resulted in numbers similar to those obtained with a previously developed qPCR using nifH gene sequences, both with respect to introduced and indigenous Frankia populations. Primer combinations more specifically targeting three subgroups of the Alnus host infection group (cluster 1) or members of the Elaeagnus host infection group (cluster 3) were specific for introduced strains of the target group, with numbers corresponding to those obtained by quantification of nitrogen-fixing frankiae with both the 23S rRNA and nifH genes as target. Method verification on indigenous Frankia populations in soils, i.e. in depth profiles from four sites at an Alnus glutinosa stand, revealed declining numbers in the depth profiles, with similar abundance of all nitrogen-fixing frankiae independent of 23S rRNA or nifH gene targets, and corresponding numbers of one group of frankiae of the Alnus host infection only, with no detections of frankiae representing the Elaeagnus, Casuarina, or a second subgroup of the Alnus host infection groups. PMID:24315016

  6. Rapid diagnosis of leptospirosis in patients with different clinical manifestations by 16S rRNA gene based nested PCR

    PubMed Central

    Natarajaseenivasan, K.; Raja, V.; Narayanan, R.

    2011-01-01

    Leptospirosis, a zoonosis of global importance and it is underreported in India and more than 50,000 severe cases are reported each year. Here we present the evaluation of 16S rRNA based nested PCR assay for the rapid identification of human leptospires using serum and urine samples. The study includes 261 suspected cases for leptospirosis with different clinical manifestations. 16S rRNA based nested PCR assay was compared and evaluated against the conventional serological methods such as MAT and ELISA. The technique enabled amplification of a 289 bp product with notable percentage of positivity in all sample groups including 94.8 in pediatric cases, 93 in pregnant women, 94.2 in renal failure, 87.8 in jaundice and 94.6 in common febrile cases. The sensitivity and specificity was 94.4% and 100%, respectively. The technique proved to be prompt and effective for the diagnosis of leptospiral infection at the acute phase of the disease. PCR based approach detects leptospiral DNA from the clinical samples both at the acute and leptospiruria phase on comparison with its counter parts where detection is made possible only after 7 days or 7–30 days post-infection. In this regard PCR based diagnosis of leptospirosis should be made available for clinicians for the early diagnosis and prompt treatment of the disease. PMID:23961174

  7. Comparison of bacterial communities in the Solimões and Negro River tributaries of the Amazon River based on small subunit rRNA gene sequences.

    PubMed

    Peixoto, J C C; Leomil, L; Souza, J V; Peixoto, F B S; Astolfi-Filho, S

    2011-01-01

    The microbiota of the Amazon River basin has been little studied. We compared the structure of bacterial communities of the Solimões and Negro Rivers, the main Amazon River tributaries, based on analysis of 16S rRNA gene sequences. Water was sampled with a 3-L Van Dorn collection bottle; samples were collected at nine different points/depths totaling 27 L of water from each river. Total DNA was extracted from biomass retained by a 0.22-μm filter after sequential filtration of the water through 0.8- and 0.22-μm filters. The 16S rRNA gene was amplified by PCR, cloned and sequenced, and the sequences were analyzed with the PHYLIP and DOTUR programs to obtain the operational taxonomic units (OTUs) and to calculate the diversity and richness indices using the SPADE program. Taxonomic affiliation was determined using the naive Bayesian rRNA Classifier of the RDP II (Ribosomal Database Project). We recovered 158 sequences from the Solimões River grouped into 103 OTUs, and 197 sequences from the Negro River library grouped into 90 OTUs by the DOTUR program. The Solimões River was found to have a greater diversity of bacterial genera, and greater estimated richness of 446 OTUs, compared with 242 OTUs from the Negro River, as calculated by ACE estimator. The Negro River has less bacterial diversity, but more 16S rRNA gene sequences belonging to the bacterial genus Polynucleobacter were detected; 56 sequences from this genus were found (about 30% of the total sequences). We suggest that a more in-depth investigation be made to elucidate the role played by these bacteria in the river environment. These differences in bacterial diversity between Solimões and Negro Rivers could be explained by differences in organic matter content and pH of the rivers. PMID:22183948

  8. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax

    PubMed Central

    Pakalapati, Deepak; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Subudhi, Amit K; Boopathi, Arunachalam P; Saxena, Vishal; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2013-01-01

    The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85.39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99.08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans. PMID:23816509

  9. Tetrathiobacter kashmirensis Strain CA-1 16S rRNA gene complete sequence.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1326 base pair 16S rRNA gene sequence methods to confirm the identification of a bacterium as Tetrathiobacter kashmirensis. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification of the bacterium. The isolate...

  10. Source bioaerosol concentration and rRNA gene-based identification of microorganisms aerosolized at a flood irrigation wastewater reuse site.

    PubMed

    Paez-Rubio, Tania; Viau, Emily; Romero-Hernandez, Socorro; Peccia, Jordan

    2005-02-01

    Reuse of partially treated domestic wastewater for agricultural irrigation is a growing practice in arid regions throughout the world. A field sampling campaign to determine bioaerosol concentration, culturability, and identity at various wind speeds was conducted at a flooded wastewater irrigation site in Mexicali, Baja California, Mexico. Direct fluorescent microscopy measurements for total microorganisms, culture-based assays for heterotrophs and gram-negative enteric bacteria, and small-subunit rRNA gene-based cloning were used for microbial characterizations of aerosols and effluent wastewater samples. Bioaerosol results were divided into two wind speed regimens: (i) below 1.9 m/s, average speed 0.5 m/s, and (ii) above 1.9 m/s, average speed 4.5 m/s. Average air-borne concentration of total microorganisms, culturable heterotrophs, and gram-negative enteric bacteria were, respectively, 1.1, 4.2, and 6.2 orders of magnitude greater during the high-wind-speed regimen. Small-subunit rRNA gene clone libraries processed from samples from air and the irrigation effluent wastewater during a high-wind sampling event indicate that the majority of air clone sequences were more than 98% similar to clone sequences retrieved from the effluent wastewater sample. Overall results indicate that wind is a potential aerosolization mechanism of viable wastewater microorganisms at flood irrigation sites. PMID:15691934

  11. Source Bioaerosol Concentration and rRNA Gene-Based Identification of Microorganisms Aerosolized at a Flood Irrigation Wastewater Reuse Site

    PubMed Central

    Paez-Rubio, Tania; Viau, Emily; Romero-Hernandez, Socorro; Peccia, Jordan

    2005-01-01

    Reuse of partially treated domestic wastewater for agricultural irrigation is a growing practice in arid regions throughout the world. A field sampling campaign to determine bioaerosol concentration, culturability, and identity at various wind speeds was conducted at a flooded wastewater irrigation site in Mexicali, Baja California, Mexico. Direct fluorescent microscopy measurements for total microorganisms, culture-based assays for heterotrophs and gram-negative enteric bacteria, and small-subunit rRNA gene-based cloning were used for microbial characterizations of aerosols and effluent wastewater samples. Bioaerosol results were divided into two wind speed regimens: (i) below 1.9 m/s, average speed 0.5 m/s, and (ii) above 1.9 m/s, average speed 4.5 m/s. Average air-borne concentration of total microorganisms, culturable heterotrophs, and gram-negative enteric bacteria were, respectively, 1.1, 4.2, and 6.2 orders of magnitude greater during the high-wind-speed regimen. Small-subunit rRNA gene clone libraries processed from samples from air and the irrigation effluent wastewater during a high-wind sampling event indicate that the majority of air clone sequences were more than 98% similar to clone sequences retrieved from the effluent wastewater sample. Overall results indicate that wind is a potential aerosolization mechanism of viable wastewater microorganisms at flood irrigation sites. PMID:15691934

  12. Morphology, ontogenetic features and SSU rRNA gene-based phylogeny of a soil ciliate, Bistichella cystiformans spec. nov. (Protista, Ciliophora, Stichotrichia).

    PubMed

    Fan, Yangbo; Hu, Xiaozhong; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S

    2014-12-01

    The morphology, ontogeny and SSU rRNA gene-based phylogeny of Bistichella cystiformans spec. nov., isolated from the slightly saline soil of a mangrove wetland in Zhanjiang, southern China, were investigated. The novel species was characterized by having five to eight buccal cirri arranged in a row, three to five transverse cirri, four macronuclear nodules aligned, and 17-32 and 20-34 cirri in frontoventral rows V and VI, respectively, both extending to the transverse cirri. The main ontogenetic features of the novel species were as follows: (1) the parental adoral zone of the membranelles is completely inherited by the proter; (2) the frontoventral and transverse cirri are formed in a six-anlagen mode; (3) basically, the frontal-ventral-transverse cirral anlagen II-V generate one transverse cirrus each at their posterior ends, while anlage VI provides no transverse cirrus; (4) both marginal rows and dorsal kineties develop intrakinetally, no dorsal kinety fragment is formed; and (5) the macronuclear nodules fuse into a single mass at the middle stage. Phylogenetic analyses based on the SSU rRNA gene showed that the novel species groups with the clade containing Bistichella variabilis, Parabistichella variabilis, Uroleptoides magnigranulosus and two species of the genus Orthoamphisiella. Given present knowledge, it was considered to be still too early to come to a final conclusion regarding the familial classification of the genus Bistichella; further investigations of key taxa with additional molecular markers are required. PMID:25242538

  13. 23S rRNA gene-based enterococci community signatures in Lake Pontchartrain, Louisiana, USA, following urban runoff inputs after Hurricane Katrina.

    PubMed

    Bae, Hee-Sung; Hou, Aixin

    2013-02-01

    Little is known about the impacts of fecal polluted urban runoff inputs on the structure of enterococci communities in estuarine waters. This study employed a 23S rRNA gene-based polymerase chain reaction (PCR) assay with newly designed genus-specific primers, Ent127F-Ent907R, to determine the possible impacts of Hurricane Katrina floodwaters via the 17th Street Canal discharge on the community structure of enterococci in Lake Pontchartrain. A total of 94 phylotypes were identified through the restriction fragment length polymorphism (RFLP) screening of 494 clones while only 8 phylotypes occurred among 88 cultivated isolates. Sequence analyses of representative phylotypes and their temporal and spatial distribution in the lake and the canal indicated the Katrina floodwater input introduced a large portion of Enterococcus flavescens, Enterococcus casseliflavus, and Enterococcus dispar into the lake; typical fecal groups Enterococcus faecium, Enterococcus durans, Enterococcus hirae, and Enterococcus mundtii were detected primarily in the floodwater-impacted waters. This study provides a global picture of enterococci in estuarine waters impacted by Hurricane Katrina-derived urban runoff. It also demonstrates the culture-independent PCR approach using 23S rRNA gene as a molecular marker could be a good alternative in ecological studies of enterococci in natural environments to overcome the limitation of conventional cultivation methods. PMID:23269456

  14. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  15. Development of a universal microarray based on the ligation detection reaction and 16S rrna gene polymorphism to target diversity of cyanobacteria.

    PubMed

    Castiglioni, Bianca; Rizzi, Ermanno; Frosini, Andrea; Sivonen, Kaarina; Rajaniemi, Pirjo; Rantala, Anne; Mugnai, Maria Angela; Ventura, Stefano; Wilmotte, Annick; Boutte, Christophe; Grubisic, Stana; Balthasart, Pierre; Consolandi, Clarissa; Bordoni, Roberta; Mezzelani, Alessandra; Battaglia, Cristina; De Bellis, Gianluca

    2004-12-01

    The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring. PMID:15574913

  16. Phylogenetic positions of four hypotrichous ciliates (Protista, Ciliophora) based on SSU rRNA gene, with notes on their morphological characters.

    PubMed

    Yang, Caiting; Liu, An; Xu, Yusen; Xu, Yuan; Fan, Xinpeng; Al-Farraj, Saleh A; Ni, Bing; Gu, Fukang

    2015-01-01

     The morphology and infraciliature of the four hypotrichous ciliates; Rigidohymena inquieta (Stokes, 1887) Berger, 2011, Pattersoniella vitiphila Foissner, 1987, Notohymena australis Foissner & O' Donoghue, 1990, and Cyrtohymena (Cyrtohymenides) australis (Foissner, 1995) Foissner, 2004, collected from east China, were investigated by using live observation and protargol impregnation method. An improved diagnosis for R. inquieta was supplied based on descriptions of present and previous populations. New morphology and morphogenesis information based on Chinese populations of another three hypotrichids were also supplemented. The Small-subunit rRNA (SSU rRNA) gene sequences of the four species were characterized and their phylogenetic positions were revealed by means of Bayesian inference and Maximum-likelihood analysis. The analyses shows that R. inquieta clusters with other members of the subfamily Stylonychinae, which confirms the monophyly of the subfamily and verified R. inquieta as a separated species from R. candens though it differs from others mainly by body size. C. (C.) australis occupying the basal position of the clade which contains cyrtohymenids and some other groups, declines the idea of separating Cyrtohymena into two subgenus. Notohymena australis and China population of Pattersoniella vitiphila respectively clustering with their congeners correspond well with the systematics revealed by morphological similarities. PMID:26623736

  17. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica) for PCR-RFLP Based Species Identification

    PubMed Central

    Siddappa, Chandra Mohan; Saini, Mohini; Das, Asit; Sharma, Anil K.; Gupta, Praveen K.

    2013-01-01

    Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica) belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA) revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species. PMID:24455258

  18. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  19. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification☆

    PubMed Central

    Loh, Chye Ying; Tan, Yin Yin; Rohani, Rahim; Weber, Jean-Frédéric F.; Bhore, Subhash Janardhan

    2013-01-01

    Bacterial endophytes do have several potential applications in pharmacy, medicine and agricultural biotech industry. The main objective of this study was to understand types of bacterial endophytes associated with dicotyledonous (dicot) and monocotyledonous (monocot) plant species. Isolation of the endophytic bacteria was performed using surface-sterilized various tissue samples, and identification of the endophytic bacterial isolates (EBIs) was completed using 16S rRNA encoding gene sequence similarity based method. In total, 996 EBIs were isolated and identified from 1055 samples of 31 monocot and 65 dicot plant species from Peninsular Malaysia. The 996 EBIs represented 71 different types of bacterial species. Twelve (12) out of 71 species are reported as endophytes for the first time. We conclude that diverse types of bacterial endophytes are associated with dicot and monocot plants, and could be useful in pharmacy, medicine and agricultural biotechnology for various potential applications. PMID:24396249

  20. Update on Pneumocystis carinii f. sp. hominis Typing Based on Nucleotide Sequence Variations in Internal Transcribed Spacer Regions of rRNA Genes

    PubMed Central

    Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.

    1998-01-01

    Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304

  1. Characterization of methanogenic and prokaryotic assemblages based on mcrA and 16S rRNA gene diversity in sediments of the Kazan mud volcano (Mediterranean Sea).

    PubMed

    Kormas, K A; Meziti, A; Dählmann, A; DE Lange, G J; Lykousis, V

    2008-12-01

    The diversity of the methyl-coenzyme reductase A (mcrA) and 16S rRNA genes was investigated in gas hydrate containing sediment from the Kazan mud volcano, eastern Mediterranean Sea. mcrA was detected only at 15 and 20 cm below seafloor (cmbsf) from a 40-cm long push core, while based on chemical profiles of methane, sulfate, and sulfide, possible anaerobic oxidation of methane (AOM) depth was inferred at 12-15 cmbsf. The phylogenetic relationships of the obtained mcrA, archaeal and bacterial 16S rRNA genes, showed that all the found sequences were found in both depths and at similar relative abundances. mcrA diversity was low. All sequences were related to the Methanosarcinales, with the most dominant (77.2%) sequences falling in group mcrA-e. The 16S rRNA-based archaeal diversity also revealed low diversity and clear dominance (72.8% of all archaeal phylotypes) of the Methanosarcinales and, in particular, ANME-2c. Bacteria showed higher diversity but 83.2% of the retrieved phylotypes from both sediment layers belonged to the delta-Proteobacteria. These phylotypes fell in the SEEP-SRB1 putative AOM group. In addition, the rest of the less abundant phylotypes were related to yet-uncultivated representatives of the Actinobacteria, Spirochaetales, and candidate divisions OP11 and WS3 from gas hydrate-bearing habitats. These phylotype patterns indicate that AOM is occurring in the 15 and 20 cmbsf sediment layers. PMID:19076636

  2. Differentiation of Phylogenetically Related Slowly Growing Mycobacteria Based on 16S-23S rRNA Gene Internal Transcribed Spacer Sequences

    PubMed Central

    Roth, Andreas; Fischer, Marga; Hamid, Mohamed E.; Michalke, Sabine; Ludwig, Wolfgang; Mauch, Harald

    1998-01-01

    Interspecific polymorphisms of the 16S rRNA gene (rDNA) are widely used for species identification of mycobacteria. 16S rDNA sequences, however, do not vary greatly within a species, and they are either indistinguishable in some species, for example, in Mycobacterium kansasii and M. gastri, or highly similar, for example, in M. malmoense and M. szulgai. We determined 16S-23S rDNA internal transcribed spacer (ITS) sequences of 60 strains in the genus Mycobacterium representing 13 species (M. avium, M. conspicuum, M. gastri, M. genavense, M. kansasii, M. malmoense, M. marinum, M. shimoidei, M. simiae, M. szulgai, M. triplex, M. ulcerans, and M. xenopi). An alignment of these sequences together with additional sequences available in the EMBL database (for M. intracellulare, M. phlei, M. smegmatis, and M. tuberculosis) was established according to primary- and secondary-structure similarities. Comparative sequence analysis applying different treeing methods grouped the strains into species-specific clusters with low sequence divergence between strains belonging to the same species (0 to 2%). The ITS-based tree topology only partially correlated to that based on 16S rDNA, but the main branching orders were preserved, notably, the division of fast-growing from slowly growing mycobacteria, separate branching for M. simiae, M. genavense, and M. triplex, and distinct branches for M. xenopi and M. shimoidei. Comparisons of M. gastri with M. kansasii and M. malmoense with M. szulgai revealed ITS sequence similarities of 93 and 88%, respectively. M. marinum and M. ulcerans possessed identical ITS sequences. Our results show that ITS sequencing represents a supplement to 16S rRNA gene sequences for the differentiation of closely related species. Slowly growing mycobacteria show a high sequence variation in the ITS; this variation has the potential to be used for the development of probes as a rapid approach to mycobacterial identification. PMID:9431937

  3. Genus- and Species-Specific PCR-Based Detection of Dairy Propionibacteria in Environmental Samples by Using Primers Targeted to the Genes Encoding 16S rRNA

    PubMed Central

    Rossi, Franca; Torriani, Sandra; Dellaglio, Franco

    1999-01-01

    PCR assays with primers targeted to the genes encoding 16S rRNA were developed for detection of dairy propionibacteria. Propionibacterium thoenii specific oligonucleotide PT3 was selected after partial resequencing. Tests allowed the detection of less than 10 cells per reaction from milk and cheese and 102 cells per reaction from forage and soil. PMID:10473444

  4. Pulmonate phylogeny based on 28S rRNA gene sequences: a framework for discussing habitat transitions and character transformation.

    PubMed

    Holznagel, W E; Colgan, D J; Lydeard, C

    2010-12-01

    Pulmonate snails occupy a wide range of marine, estuarine, freshwater and terrestrial environments. Non-terrestrial forms are supposed to be basal in pulmonate evolution but the group's phylogeny is not well resolved either morphologically or on the basis of available DNA sequence data. The lack of a robust phylogeny makes it difficult to understand character polarization and habitat transformation in pulmonates. We have investigated pulmonate relationships using 27 new sequences of 28S rRNA from pulmonates and outgroups, augmented with data from GenBank. The complete alignments comprised about 3.8kb. Maximum parsimony, maximum likelihood and Bayesian analyses of alignments generated under different assumptions are reported. Complete alignments appear to have a degree of substitution saturation so where there is conflict between hypothesised relationships more weight is given to analyses where regions of random similarity are excluded and which are not affected by this complication. Monophyly of the five main pulmonate groups was robustly supported in almost all analyses. The marine group Amphiboloidea and the freshwater Glacidorbidae are the most basal. The remaining pulmonates (Siphonariidae, Hygrophila and Eupulmonata) form a moderately-supported monophyletic group in all analyses bar one probably affected by saturation of substitutions. Siphonariidae, a predominantly marine and intertidal family, and Eupulmonata (mainly terrestrial with marine, estuarine and freshwater species) form a strongly supported clade that is the sister group to Hygrophila (freshwater). Multiple colonizations of freshwater and terrestrial habitats by pulmonate snails are suggested. No analyses strongly support the possibility of habitat reversions. The colonizations of freshwater by Hygrophila and of land by Stylommatophora were apparently phylogenetically independent although it cannot yet be excluded that there were transient terrestrial phases in the history of the former group or

  5. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis

    PubMed Central

    Chandrasekhara, Chinmayi; Mohannath, Gireesha; Blevins, Todd; Pontvianne, Frederic; Pikaard, Craig S.

    2016-01-01

    In eukaryotes, scores of excess ribosomal RNA (rRNA) genes are silenced by repressive chromatin modifications. Given the near sequence identity of rRNA genes within a species, it is unclear how specific rRNA genes are reproducibly chosen for silencing. Using Arabidopsis thaliana ecotype (strain) Col-0, a systematic search identified sequence polymorphisms that differ between active and developmentally silenced rRNA gene subtypes. Recombinant inbred mapping populations derived from three different ecotype crosses were then used to map the chromosomal locations of silenced and active RNA gene subtypes. Importantly, silenced and active rRNA gene subtypes are not intermingled. All silenced rRNA gene subtypes mapped to the nucleolus organizer region (NOR) on chromosome 2 (NOR2). All active rRNA gene subtypes mapped to NOR4. Using an engineered A. thaliana line in which a portion of Col-0 chromosome 4 was replaced by sequences of another ecotype, we show that a major rRNA gene subtype silenced at NOR2 is active when introgressed into the genome at NOR4. Collectively, these results reveal that selective rRNA gene silencing is not regulated gene by gene based on mechanisms dependent on subtle gene sequence variation. Instead, we propose that a subchromosomal silencing mechanism operates on a multimegabase scale to inactivate NOR2. PMID:26744421

  6. Complete sequence and gene organization of the Nosema spodopterae rRNA gene.

    PubMed

    Tsai, Shu-Jen; Huang, Wei-Fone; Wang, Chung-Hsiung

    2005-01-01

    By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species. PMID:15702980

  7. 'Candidatus Phytoplasmas pruni', a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X-disease is one of the most serious diseases known in peach (Prunus persica). Based on RFLP analysis of 16S rRNA gene sequences, peach X-disease phytoplasma strains from eastern and western United States and eastern Canada were classified in 16S rDNA RFLP group 16SrIII, subgroup A. Phylogenetic a...

  8. 16S rRNA Gene Sequence-Based Identification of Bacteria in Automatically Incubated Blood Culture Materials from Tropical Sub-Saharan Africa

    PubMed Central

    Schwarz, Norbert Georg; Hahn, Andreas; Boahen, Kennedy; Sarpong, Nimako; Adu-Sarkodie, Yaw; Halbgewachs, Eva; Marks, Florian; von Kalckreuth, Vera; Poppert, Sven; Loderstaedt, Ulrike; May, Jürgen; Hagen, Ralf Matthias

    2015-01-01

    Background The quality of microbiological diagnostic procedures depends on pre-analytic conditions. We compared the results of 16S rRNA gene PCR and sequencing from automatically incubated blood culture materials from tropical Ghana with the results of cultural growth after automated incubation. Methods Real-time 16S rRNA gene PCR and subsequent sequencing were applied to 1500 retained blood culture samples of Ghanaian patients admitted to a hospital with an unknown febrile illness after enrichment by automated culture. Results Out of all 1500 samples, 191 were culture-positive and 98 isolates were considered etiologically relevant. Out of the 191 culture-positive samples, 16S rRNA gene PCR and sequencing led to concordant results in 65 cases at species level and an additional 62 cases at genus level. PCR was positive in further 360 out of 1309 culture-negative samples, sequencing results of which suggested etiologically relevant pathogen detections in 62 instances, detections of uncertain relevance in 50 instances, and DNA contamination due to sample preparation in 248 instances. In two instances, PCR failed to detect contaminants from the skin flora that were culturally detectable. Pre-analytical errors caused many Enterobacteriaceae to be missed by culture. Conclusions Potentially correctable pre-analytical conditions and not the fastidious nature of the bacteria caused most of the discrepancies. Although 16S rRNA gene PCR and sequencing in addition to culture led to an increase in detections of presumably etiologically relevant blood culture pathogens, the application of this procedure to samples from the tropics was hampered by a high contamination rate. Careful interpretation of diagnostic results is required. PMID:26270631

  9. Phylogeny and evolutionary genetics of Frankia strains based on 16S rRNA and nifD-K gene sequences.

    PubMed

    Mishra, Arun Kumar; Singh, Pawan Kumar; Singh, Prashant; Singh, Anumeha; Singh, Satya Shila; Srivastava, Amrita; Srivastava, Alok Kumar; Sarma, Hridip Kumar

    2015-08-01

    16S rRNA and nifD-nifK sequences were used to study the molecular phylogeny and evolutionary genetics of Frankia strains isolated from Hippöphae salicifolia D. Don growing at different altitudes (ecologically classified as riverside and hillside isolates) of the Eastern Himalayan region of North Sikkim, India. Genetic information for the small subunit rRNA (16S rRNA) revealed that the riverside Frankia isolates markedly differed from the hillside isolates suggesting that the riverside isolates are genetically compact. Further, for enhanced resolutions, the partial sequence of nifD (3' end), nifK (5' end) and nifD-K IGS region have been investigated. The sequences obtained, failed to separate riverside isolates and hillside isolates, thus suggesting a possible role of genetic transfer events either from hillside to riverside or vice versa. The evolutionary genetic analyses using evogenomic extrapolations of gene sequence data obtained from 16S rRNA and nifD-K provided differing equations with the pace of evolution being more appropriately, intermediate. Values of recombination frequency (R), nucleotide diversity per site (Pi), and DNA divergence estimates supported the existence of an intermixed zone where spatial isolations occurred in sync with the temporal estimates. J. Basic Microbiol. 2015, 54, 1-9. PMID:25871924

  10. An interlaboratory comparison of 16S rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts

    PubMed Central

    Orcutt, Beth; Bailey, Brad; Staudigel, Hubert; Tebo, Bradley M; Edwards, Katrina J

    2009-01-01

    We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples. PMID:19508561

  11. Molecular phylogeny of the genus Dicronocephalus (Coleoptera, Scarabaeidae, Cetoniinae) based on mtCOI and 16S rRNA genes

    PubMed Central

    Lee, Ga-Eun; Han, Taeman; Jeong, Jongchel; Kim, Seong-Hyun; Park, In Gyun; Park, Haechul

    2015-01-01

    Abstract The seven species belonging to the genus Dicronocephalus are a very interesting group with a unique appearance and distinct sexual dimorphism. Only one species among them, Dicronocephalus adamsi, has been known in the Korean fauna. This species is recognized as having a wide distribution from Tibet to Korean Peninsula and is currently represented by two subspecies that have separated geographical ranges. The phylogenetic relationships of Dicronocephalus adamsi were still unclear. The phylogeny of Dicronocephalus is reconstructed with a phylogenetic study of five species including four subspecies based on a molecular approach using mitochondrial COI and 16S rRNA genes. Our results are compared with the results obtained by previous authors based on morphological characters. They show that the tested taxa are divided into two major clades. Clade A consists of two species (Dicronocephalus adamsi + Dicranocephalus yui) and Clade B includes the others (Dicronocephalus dabryi + Dicranocephalus uenoi + Dicranocephalus wallichii). This result generally supports Kurosawa’s proposal except that Dicronocephalus dabryi and Dicranocephalus uenoi are newly recognized as members of a monophyletic group. We propose that Dicronocephalus adamsi drumonti is a junior subjective synonym of Dicronocephalus adamsi adamsi. These results show that three members of the Dicranocephalus wallichii group should be treated as species rather than subspecies. However, further research including analyses of different genetic markers is needed to reconfirm our results. PMID:25987879

  12. Black Box Chimera Check (B2C2): a Windows-Based Software for Batch Depletion of Chimeras from Bacterial 16S rRNA Gene Datasets.

    PubMed

    Gontcharova, Viktoria; Youn, Eunseog; Wolcott, Randall D; Hollister, Emily B; Gentry, Terry J; Dowd, Scot E

    2010-01-01

    The existing chimera detection programs are not specifically designed for "next generation" sequence data. Technologies like Roche 454 FLX and Titanium have been adapted over the past years especially with the introduction of bacterial tag-encoded FLX/Titanium amplicon pyrosequencing methodologies to produce over one million 250-600 bp 16S rRNA gene reads that need to be depleted of chimeras prior to downstream analysis. Meeting the needs of basic scientists who are venturing into high-throughput microbial diversity studies such as those based upon pyrosequencing and specifically providing a solution for Windows users, the B2C2 software is designed to be able to accept files containing large multi-FASTA formatted sequences and screen for possible chimeras in a high throughput fashion. The graphical user interface (GUI) is also able to batch process multiple files. When compared to popular chimera screening software the B2C2 performed as well or better while dramatically decreasing the amount of time required generating and screening results. Even average computer users are able to interact with the Windows .Net GUI-based application and define the stringency to which the analysis should be done. B2C2 may be downloaded from http://www.researchandtesting.com/B2C2. PMID:21339894

  13. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep.

    PubMed

    Heijs, Sander K; Haese, Ralf R; van der Wielen, Paul W J J; Forney, Larry J; van Elsas, Jan Dirk

    2007-04-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22-34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0-6 cm). Communities in the middle layer (6-22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study. PMID:17431711

  14. Relationships between parasitoid wasps (Hymenoptera: Braconidae: Opiinae), fruit flies (Diptera: Tephritidae) and their host plants based on 16S rRNA, 12S rRNA, and ND1 gene sequences

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. J.; Md-Zain, B. M.; Yaakop, S.

    2013-11-01

    Opiinae is among the l0 largest subfamilies under the family Braconidae. Opiines species have great potential as natural enemies against fruit fly pests. Before using them as a biological control agent, construction of the phylogenetic trees could facilitate in the molecular identification of individual species and their relationships among members of the Opiines, as well as between Opiines and their host plants. Larval specimens of tephritids were collected from four crop species at five localities throughout the Peninsular Malaysia. A total of 44 specimens of opiines had successfully emerged from the hosts, fruit fly larvae. The DNA sequences of 12S and 16S rRNA were obtained for the braconids while the mitochondrial ND1 sequences were obtained for the tephritids species through polymerase chain reaction. Maximum Parsimony and Bayesian trees were constructed by using PAUP 4.0b10 and MrBayes 3.1.2 to identify the relationships among the taxa. This study illustrates the phylogenetic relationships among parasitoid opiines collected and reared from parasitized fruit flies. The phylogenetic trees constructed based on the mitochondrial 12S and 16S rRNA sequences exhibited similar topology and sequence divergence. The opiines were divided into several clades and subclades according to the genus and species. Each clade also was supported by the similar host plants with high support values. However, their pests were not specific, except for Bactrocera cucurbitae. This study has reconfirmed the associations between Opiinae, tephritids, and host plants based on molecular data.

  15. Phylogenetic analyses of Chlamydia psittaci strains from birds based on 16S rRNA gene sequence.

    PubMed Central

    Takahashi, T; Masuda, M; Tsuruno, T; Mori, Y; Takashima, I; Hiramune, T; Kikuchi, N

    1997-01-01

    The nucleotide sequences of 16S ribosomal DNA (rDNA) were determined for 39 strains of Chlamydia psittaci (34 from birds and 5 from mammals) and for 4 Chlamydia pecorum strains. The sequences were compared phylogenetically with the gene sequences of nine Chlamydia strains (covering four species of the genus) retrieved from nucleotide databases. In the neighbor-joining tree, C. psittaci strains were more closely related to each other than to the other Chlamydia species, although a feline pneumonitis strain was distinct (983 to 98.6% similarity to other strains) and appeared to form the deepest subline within the species of C. psittaci (bootstrap value, 99%). The other strains of C. psittaci exhibiting similarity values of more than 99% were branched into several subgroups. Two pigeon strains and one turkey strain formed a distinct clade recovered in 97% of the bootstrapped trees. The other pigeon strains seemed to be distinct from the strains from psittacine birds, with 88% of bootstrap value. In the cluster of psittacine strains, three parakeet strains and an ovine abortion strain exhibited a specific association (level of sequence similarity, 99.9% or more; bootstrap value, 95%). These suggest that at least four groups of strains exist within the species C. psittaci. The 16S rDNA sequence is a valuable phylogenetic marker for the taxonomy of chlamydiae, and its analysis is a reliable tool for identification of the organisms. PMID:9350757

  16. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.

    PubMed

    Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela

    2014-08-01

    Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics. PMID:25229098

  17. Bacterial Community Composition of South China Sea Sediments through Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Background Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Methodology/Principal Findings Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. Conclusions This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m. PMID:24205246

  18. Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene.

    PubMed

    Chen, Shi-Yi; Liu, Yi-Ping; Yao, Yong-Gang

    2010-11-01

    In this study, we determined species-specific variations by analyzing the mitochondrial 12S rRNA gene sequence variation (∼440 bp) in 17 newly obtained sequences and 90 published cattle, yak, buffalo, goat, and pig sequences, which represent 62 breeds and 17 geographic regions. Based on the defined species-specific variations, two endonucleases, Alu I and Bfa I, were selected for species authentication using raw meat/tissue samples and the PCR-RFLP method. Goat and pig were identified using the Alu I enzyme, while cattle, yak, and buffalo were identified by digestion with Bfa I. Our approach had relatively high detection sensitivity of cattle DNA in mixed cattle and yak products, with the lowest detectable threshold equaling 20% of cattle DNA in a mixed cattle/yak sample. This method was successfully used to type commercial beef jerky products, which were produced by different companies utilizing various processing technologies. Our results show that several yak jerky products might be implicated in commercial fraud by using cattle meat instead of yak meat. PMID:21115170

  19. A heritability-based comparison of methods used to cluster 16S rRNA gene sequences into operational taxonomic units

    PubMed Central

    Bell, Jordana T.; Spector, Tim D.; Steves, Claire J.

    2016-01-01

    A variety of methods are available to collapse 16S rRNA gene sequencing reads to the operational taxonomic units (OTUs) used in microbiome analyses. A number of studies have aimed to compare the quality of the resulting OTUs. However, in the absence of a standard method to define and enumerate the different taxa within a microbial community, existing comparisons have been unable to compare the ability of clustering methods to generate units that accurately represent functional taxonomic segregation. We have previously demonstrated heritability of the microbiome and we propose this as a measure of each methods’ ability to generate OTUs representing biologically relevant units. Our approach assumes that OTUs that best represent the functional units interacting with the hosts’ properties will produce the highest heritability estimates. Using 1,750 unselected individuals from the TwinsUK cohort, we compared 11 approaches to OTU clustering in heritability analyses. We find that de novo clustering methods produce more heritable OTUs than reference based approaches, with VSEARCH and SUMACLUST performing well. We also show that differences resulting from each clustering method are minimal once reads are collapsed by taxonomic assignment, although sample diversity estimates are clearly influenced by OTU clustering approach. These results should help the selection of sequence clustering methods in future microbiome studies, particularly for studies of human host-microbiome interactions.

  20. Rapid qualitative characterization of bacterial community in eutrophicated wastewater stabilization plant by T-RFLP method based on 16S rRNA genes.

    PubMed

    Belila, Abdelaziz; Snoussi, Mejdi; Hassan, Abdennaceur

    2012-01-01

    Waste stabilization ponds are a simple, low-cost extensive process for treating wastewater, and well adapted to low socio-economic conditions in developing countries where the microbial populations in these systems are not well characterized. The phylogenetic bacterial community structure within a Tunisian wastewater stabilization plant treating domestic wastewater was assessed by Terminal Restriction Fragment Length Polymorphism method targeting 16S rRNA genes and by the APLAUS+ software of the Microbial Community Analysis (MiCA) web based tool. The dimeric enzymatic digestion with HaeIII and HinfI restriction enzymes revealed high bacterial diversity within the plant where 11 bacterial phyla were identified. The total bacterial community structure includes bacteria catalysing nitrogen and phosphorus removal and bacteria involved in the sulfur cycle. The bacterial community was characterized by the dominance of Proteobacteria which was the most populous phylum (60%) followed by the Actinobacteria (20%), the Firmicutes (10.3%), the Bacteroidetes (2.3%), the Nitrospira (2.2%). Minor bacterial phyla groups occupied smaller fractions such as Chloroflexi, Deferribacteres and Verrumicrobia. T-RFLP analysis revealed also that The Proteobacteria phylum was characterized by the dominance of bacteria of The Gammaproteobacteria class. PMID:22806789

  1. Effects of DNA extraction and universal primers on 16S rRNA gene-based DGGE analysis of a bacterial community from fish farming water

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Hu, Chaoqun; Zhang, Lüping; Ren, Chunhua; Shen, Qi

    2007-07-01

    Among many reports investigating microbial diversity from environmental samples with denaturing gradient gel electrophoresis (DGGE), limited attention has been given to the effects of universal primers and DNA extraction on the outcome of DGGE analysis. In this study, these effects were tested with 16S rRNA gene-based DGGE on a bacterial community from farming water samples. The results indicate that the number of discernable bands in the DGGE fingerprint differed with the primer pairs used; the bands produced by 63f/518r, 341f/926r and 933f/1387r primer pairs were obviously fewer than those by 968f/1401r. Also, we found that each DNA extraction method resulted in different community profiles, reflected by the number and intensity of bands in the DGGE fingerprint. Furthermore, the main bands (theoretically representing dominant bacteria) differed with the extraction methods applied. It is therefore believed that the effects of universal primers and DNA extraction should be given more attention and carefully chosen before performing an investigation into a new environment with DGGE.

  2. Rapid Identification of Bacteria from Positive Blood Cultures by Fluorescence-Based PCR–Single-Strand Conformation Polymorphism Analysis of the 16S rRNA Gene

    PubMed Central

    Turenne, Christine Y.; Witwicki, Evelyn; Hoban, Daryl J.; Karlowsky, James A.; Kabani, Amin M.

    2000-01-01

    Bacteremia continues to result in significant morbidity and mortality, particularly in patients who are immunocompromised. Currently, patients with suspected bacteremia are empirically administered broad-spectrum antibiotics, as definitive diagnosis relies upon the use of blood cultures, which impose significant delays in and limitations to pathogen identification. To address the limitations of growth-based identification, the sequence variability of the 16S rRNA gene of bacteria was targeted for rapid identification of bacterial pathogens isolated directly from blood cultures using a fluorescence-based PCR–single-strand conformation polymorphism (SSCP) protocol. Species-specific SSCP patterns were determined for 25 of the most common bacterial species isolated from blood cultures; these isolates subsequently served as a reference collection for bacterial identification for new cases of bacteremia. A total of 272 blood-culture-positive patient specimens containing bacteria were tested. A previously determined SSCP pattern was observed for 251 (92%) specimens, with 21 (8%) specimens demonstrating SSCP patterns distinct from those in the reference collection. Time to identification from blood culture positivity ranged from 1 to 8 days with biochemical testing, whereas identification by fluorescence-based capillary electrophoresis was obtained as early as 7 h at a calculated cost of $10 (U.S. currency) per specimen when tested in batches of 10. Limitations encountered included the inability to consistently detect mixed cultures as well as some species demonstrating identical SSCP patterns. This method can be applied directly to blood cultures or whole-blood specimens, where early pathogen identification would result in a timely diagnosis with possible implications for patient management costs and the mortality and morbidity of infections. PMID:10655337

  3. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  4. Rhizobium sp. strain BN4 (a selenium oxyanion-reducing bacterium) 16S rRNA gene complete sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1482 base pair 16S rRNA gene sequence methods in conjunction with other biochemical and morphological studies to confirm the identification of a bacterium (refer to as the BN4 strain) as a Rhizobium sp. The 16S rRNA gene sequence places it with the Rhizobium clade that includes R. d...

  5. Monitoring Bacterial Communities in Raw Milk and Cheese by Culture-Dependent and -Independent 16S rRNA Gene-Based Analyses▿

    PubMed Central

    Delbès, Céline; Ali-Mandjee, Leila; Montel, Marie-Christine

    2007-01-01

    The diversity and dynamics of bacterial populations in Saint-Nectaire, a raw-milk, semihard cheese, were investigated using a dual culture-dependent and direct molecular approach combining single-strand conformation polymorphism (SSCP) fingerprinting and sequencing of 16S rRNA genes. The dominant clones, among 125 16S rRNA genes isolated from milk, belonged to members of the Firmicutes (58% of the total clones) affiliated mainly with the orders Clostridiales and the Lactobacillales, followed by the phyla Proteobacteria (21.6%), Actinobacteria (16.8%), and Bacteroidetes (4%). Sequencing the 16S rRNA genes of 126 milk isolates collected from four culture media revealed the presence of 36 different species showing a wider diversity in the Gammaproteobacteria phylum and Staphylococcus genus than that found among clones. In cheese, a total of 21 species were obtained from 170 isolates, with dominant species belonging to the Lactobacillales and subdominant species affiliated with the Actinobacteria, Bacteroidetes (Chryseobacterium sp.), or Gammaproteobacteria (Stenotrophomonas sp.). Fingerprinting DNA isolated from milk by SSCP analysis yielded complex patterns, whereas analyzing DNA isolated from cheese resulted in patterns composed of a single peak which corresponded to that of lactic acid bacteria. SSCP fingerprinting of mixtures of all colonies harvested from plate count agar supplemented with crystal violet and vancomycin showed good potential for monitoring the subdominant Proteobacteria and Bacteroidetes (Flavobacteria) organisms in milk and cheese. Likewise, analyzing culturable subcommunities from cheese-ripening bacterial medium permitted assessment of the diversity of halotolerant Actinobacteria and Staphylococcus organisms. Direct and culture-dependent approaches produced complementary information, thus generating a more accurate view of milk and cheese microbial ecology. PMID:17259356

  6. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    PubMed

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples. PMID:25343859

  7. Phylogeny of a novel "Helicobacter heilmannii" organism from a Japanese patient with chronic gastritis based on DNA sequence analysis of 16S rRNA and urease genes.

    PubMed

    Matsumoto, Takehisa; Kawakubo, Masatomo; Shiohara, Mayumi; Kumagai, Toshiko; Hidaka, Eiko; Yamauchi, Kazuyoshi; Oana, Kozue; Matsuzawa, Kenji; Ota, Hiroyoshi; Kawakami, Yoshiyuki

    2009-04-01

    "Helicobacter heilmannii" is an uncultivable spiral-shaped bacterium inhabiting the human gastric mucosa. It is larger and more tightly-coiled than H. pylori. We encountered a patient with chronic gastritis infected a "H. heilmannii"-like organism (HHLO), designated as SH6. Gastric mucosa derived from the patient was orally ingested by specific pathogen free mice. Colonization of the mice by SH6 was confirmed by electron microscopy of gastric tissue specimens. In an attempt to characterize SH6, 16S rRNA and urease genes were sequenced. The 16S rRNA gene sequence was most similar (99.4%; 1,437/1,445 bp) to HHLO C4E from a cheetah. However, the urease gene sequence displayed low similarity (81.7%; 1,240/1,516 bp) with HHLO C4E. Taxonomic analysis disclosed that SH6 represents a novel strain and should constitute a novel taxon in the phylogenetic trees, being discriminated from any other taxon, with the ability of infecting human gastric mucosa. PMID:19412605

  8. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  9. Rapid Origin Determination of the Northern Mauxia Shrimp (Acetes chinensis) Based on Allele Specific Polymerase Chain Reaction of Partial Mitochondrial 16S rRNA Gene

    PubMed Central

    Kang, Jung-Ha; Noh, Eun-Soo; Park, Jung-Youn; An, Chel-Min; Choi, Jung-Hwa; Kim, Jin-Koo

    2015-01-01

    Acetes chinensis is an economically important shrimp that belongs to the Sergestidae family; following fermentation, A. chinensis′ economic value, however, is low in China, and much of the catch in China is exported to Korea at a low price, thus leading to potential false labeling. For this reason, we developed a simple method to identify A. chinensis′ origin using allele-specific polymerase chain reaction (PCR). Ten single nucleotide polymorphisms (SNPs) were identified from partial (i.e., 570 bp) DNA sequence analysis of the mitochondrial 16s rRNA gene in 96 Korean and 96 Chinese individual shrimp. Among 10 SNP sites, four sites were observed in populations from both countries, and two sites located in the middle with SNP sites at their 3′-ends were used to design allele-specific primers. Among the eight internal primers, the C220F primer specific to the Chinese A. chinensis population amplified a DNA fragment of 364 bp only from that population. We were able to identify the A. chinensis population origin with 100% accuracy using multiplex PCR performed with two external primers and C220F primers. These results show that the 16S rRNA gene that is generally used for the identification of species can be used for the identification of the origin within species of A. chinensis, which is an important finding for the fair trade of the species between Korea and China. PMID:25656197

  10. Rapid Origin Determination of the Northern Mauxia Shrimp (Acetes chinensis) Based on Allele Specific Polymerase Chain Reaction of Partial Mitochondrial 16S rRNA Gene.

    PubMed

    Kang, Jung-Ha; Noh, Eun-Soo; Park, Jung-Youn; An, Chel-Min; Choi, Jung-Hwa; Kim, Jin-Koo

    2015-04-01

    Acetes chinensis is an economically important shrimp that belongs to the Sergestidae family; following fermentation, A. chinensis' economic value, however, is low in China, and much of the catch in China is exported to Korea at a low price, thus leading to potential false labeling. For this reason, we developed a simple method to identify A. chinensis' origin using allele-specific polymerase chain reaction (PCR). Ten single nucleotide polymorphisms (SNPs) were identified from partial (i.e., 570 bp) DNA sequence analysis of the mitochondrial 16s rRNA gene in 96 Korean and 96 Chinese individual shrimp. Among 10 SNP sites, four sites were observed in populations from both countries, and two sites located in the middle with SNP sites at their 3'-ends were used to design allele-specific primers. Among the eight internal primers, the C220F primer specific to the Chinese A. chinensis population amplified a DNA fragment of 364 bp only from that population. We were able to identify the A. chinensis population origin with 100% accuracy using multiplex PCR performed with two external primers and C220F primers. These results show that the 16S rRNA gene that is generally used for the identification of species can be used for the identification of the origin within species of A. chinensis, which is an important finding for the fair trade of the species between Korea and China. PMID:25656197

  11. Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes.

    PubMed

    Huang, Jianzhong; Aki, Tsunehiro; Yokochi, Toshihiro; Nakahara, Toro; Honda, Daiske; Kawamoto, Seiji; Shigeta, Seiko; Ono, Kazuhisa; Suzuki, Osamu

    2003-01-01

    Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids. PMID:14730428

  12. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  13. Bacterial community structure in the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) as revealed by pyrosequencing-based analysis of 16S rRNA genes.

    PubMed

    Etyemez, Miray; Balcázar, José Luis

    2015-06-01

    In this study, we determined the diversity and composition of bacterial communities within the intestinal ecosystem of farmed rainbow trout (Oncorhynchus mykiss). Healthy rainbow trout, weighing between 520 and 750 g, were fed a commercial diet. Subsequently, genomic DNA was isolated from the intestinal mucus (n = 16 fish samples) and combined into groups of four fish samples each for pyrosequencing analysis of bacterial 16S rRNA genes. The results revealed that the most abundant operational taxonomic units (OTUs) were affiliated to the genera Acinetobacter, Cetobacterium, Pseudomonas, and Psychrobacter, and to a lesser extent, the genera Aeromonas, Clostridium, Deefgea, Flavobacterium, Neptuniibacter, and Mycoplasma. These findings could be used as a baseline for further studies about the role of bacterial communities in normal and altered host physiological states. PMID:25843896

  14. Identification of Raoultella terrigena as a Rare Causative Agent of Subungual Abscess Based on 16S rRNA and Housekeeping Gene Sequencing

    PubMed Central

    Wang, Yu; Jiang, Xiawei; Xu, Zemin; Ying, Chaoqun; Yu, Wei; Xiao, Yonghong

    2016-01-01

    A 63-year-old-man was admitted to our hospital with severe subungual abscess. Bacteria were isolated from pus samples, and an inconsistent identification was shown by VITEK 2 system and MALDI-TOF mass spectrometry as Raoultella planticola and Raoultella terrigena, respectively. Molecular identification by 16S rRNA sequencing suggested that the isolate is R. terrigena, and this was further demonstrated by sequencing three housekeeping genes (rpoB, gyrA, and parC) with phylogenetic analysis. To our knowledge, this is the first report of subungual abscess caused by R. terrigena, a rare case of human infection due to soil bacterium. Our study highlights the technique importance on this pathogen identification. PMID:27379169

  15. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  16. Detection of Renibacterium salmoninarum in tissue samples by sequence capture and fluorescent PCR based on the 16S rRNA gene.

    PubMed

    Königsson, Malin Heldtander; Ballagi, Andras; Jansson, Eva; Johansson, Karl-Erik

    2005-02-25

    The 16S rRNA genes from eight isolates of Renibacterium salmoninarum with different origins and dates of isolation were sequenced to evaluate the possibility to construct a diagnostic PCR system with target sites within this gene. The sequences were found to be identical but for one single position in one of the isolates, and two regions with an adequate number of nucleotide differences as compared to closely related species were identified. Species-specific fluorescent PCR primers complementary to these regions were constructed as well as oligonucleotides for DNA preparation by sequence capture. A mimic molecule was constructed to be used as an internal control. The PCR was specific and allowed the detection of DNA equivalent to 1-10 R. salmoninarum genomes per reaction. The DNA preparation with sequence capture and analysis by PCR with a mimic was found to be a reliable method for analysis of kidneys from fish with BKD. The amount of PCR inhibiting substances present in the tissue was reduced, and the relevant DNA was concentrated in the capture step. Furthermore, the use of the mimic molecule in the system assured that false negative results could be identified. PMID:15708821

  17. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes.

    PubMed

    Taketani, Rodrigo Gouvêa; Tsai, Siu Mui

    2010-05-01

    Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use. PMID:20204349

  18. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries

    PubMed Central

    Jagathrakshakan, Sri Nisha; Sethumadhava, Raghavendra Jayesh; Mehta, Dhaval Tushar; Ramanathan, Arvind

    2015-01-01

    Objective: To identify the prevalence of acidogenic and nonacidogenic bacteria in patients with polycaries lesions, and to ascertain caries specific bacterial prevalence in relation to noncaries controls. Materials and Methods: Total genomic DNA extracted from saliva of three adults and four children from the same family were subjected to 16S rRNA gene sequencing analysis on a next generation sequencer, the PGS-Ion Torrent. Those bacterial genera with read counts > 1000 were considered as significant in each of the subject and used to associate the occurrence with caries. Results and Conclusion: Sequencing analysis indicated a higher prevalence of Streptococcus, Rothia, Granulicatella, Gemella, Actinomyces, Selenomonas, Haemophilus and Veillonella in the caries group relative to controls. While higher prevalence of Streptococcus, Rothia and Granulicatella were observed in all caries samples, the prevalence of others was observable in 29–57% of samples. Interestingly, Rothia and Selenomonas, which are known to occur within anaerobic environments of dentinal caries and subgingival plaque biofilms, were seen in the saliva of these caries patients. Taken together, the study has identified for the first time a unique co-prevalence pattern of bacteria in caries patients that may be explored as distinct caries specific bacterial signature to predict cariogenesis in high-risk primary and mixed dentition age groups. PMID:25713496

  19. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics.

    PubMed

    Dewhirst, Floyd E; Shen, Zeli; Scimeca, Michael S; Stokes, Lauren N; Boumenna, Tahani; Chen, Tsute; Paster, Bruce J; Fox, James G

    2005-09-01

    Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum. PMID:16109952

  20. Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II-Birkenau concentration and extermination camp.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2015-02-01

    The aim of this work was to analyze the bacterial communities in four samples of historical materials (plaster, brick, and wood) derived from buildings located in the former Auschwitz II-Birkenau concentration and extermination camp in Brzezinka, Poland. For this purpose a molecular strategy based on the construction of 16S rRNA clone libraries was used. In total, 138 partial 16S rRNA gene sequences (∼600bp) were obtained and compared. The clones belonged to phyla Proteobacteria (classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes. The plaster samples predominantly contained clones closely related to Actinobacteria and Alphaproteobacteria, brick samples contained Gammaproteobacteria, while wood samples had Actinobacteria clones. Interestingly, the historic plaster and brick samples contained the following bacteria with known and described biodeterioration potential: chemoorganotrophic Streptomyces sp. and Pseudonocardia sp., halotolerant or halophilic Rubrobacter sp., Salinisphaera sp. and Halomonas sp. Principal component analysis (PCA) showed that amongst the bacterial species detected and identified none occurred on all the tested historical materials. The 16S rRNA clone library construction method was successfully used for the detection and diversity determination of bacterial communities inhabiting brick barracks located in the former Auschwitz II-Birkenau concentration and extermination camp in Brzezinka. PMID:25458608

  1. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women

    PubMed Central

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-01-01

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host–microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1–V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy. PMID:26846451

  2. Noma Affected Children from Niger Have Distinct Oral Microbial Communities Based on High-Throughput Sequencing of 16S rRNA Gene Fragments

    PubMed Central

    Whiteson, Katrine L.; Lazarevic, Vladimir; Tangomo-Bento, Manuela; Girard, Myriam; Maughan, Heather; Pittet, Didier; Francois, Patrice; Schrenzel, Jacques

    2014-01-01

    We aim to understand the microbial ecology of noma (cancrum oris), a devastating ancient illness which causes severe facial disfigurement in>140,000 malnourished children every year. The cause of noma is still elusive. A chaotic mix of microbial infection, oral hygiene and weakened immune system likely contribute to the development of oral lesions. These lesions are a plausible entry point for unidentified microorganisms that trigger gangrenous facial infections. To catalog bacteria present in noma lesions and identify candidate noma-triggering organisms, we performed a cross-sectional sequencing study of 16S rRNA gene amplicons from sixty samples of gingival fluid from twelve healthy children, twelve children suffering from noma (lesion and healthy sites), and twelve children suffering from Acute Necrotizing Gingivitis (ANG) (lesion and healthy sites). Relative to healthy individuals, samples taken from lesions in diseased mouths were enriched with Spirochaetes and depleted for Proteobacteria. Samples taken from healthy sites of diseased mouths had proportions of Spirochaetes and Proteobacteria that were similar to healthy control individuals. Samples from noma mouths did not have a higher abundance of Fusobacterium, casting doubt on its role as a causative agent of noma. Microbial communities sampled from noma and ANG lesions were dominated by the same Prevotella intermedia OTU, which was much less abundant in healthy sites sampled from the same mouths. Multivariate analysis confirmed that bacterial communities in healthy and lesion sites were significantly different. Several OTUs in the Orders Erysipelotrichales, Clostridiales, Bacteroidales, and Spirochaetales were identified as indicators of noma, suggesting that one or more microbes within these Orders is associated with the development of noma lesions. Future studies should include longitudinal sampling of viral and microbial components of this community, before and early in noma lesion development. PMID

  3. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women.

    PubMed

    Yoo, Jae Young; Rho, Mina; You, Young-Ah; Kwon, Eun Jin; Kim, Min-Hye; Kym, Sungmin; Jee, Young-Koo; Kim, Yoon-Keun; Kim, Young Ju

    2016-01-01

    Recent evidence has indicated that bacteria-derived extracellular vesicles (EVs) are important for host-microbe communication. The aims of the present study were to evaluate whether bacteria-derived EVs are excreted via the urinary tract and to compare the composition of bacteria-derived EVs in the urine of pregnant and non-pregnant women. Seventy-three non-pregnant and seventy-four pregnant women were enrolled from Dankook University and Ewha Womans University hospitals. DNA was extracted from urine EVs after EV isolation using the differential centrifugation method. 16S ribosomal RNA (16S rRNA) gene sequencing was performed using high-throughput 454 pyrosequencing after amplification of the V1-V3 region of the 16S rDNA. The composition of 13 taxa differed significantly between the pregnant and non-pregnant women. At the genus level, Bacillus spp. EVs were more significantly enriched in the urine of the pregnant women than in that of the non-pregnant women (45.61% vs 0.12%, respectively). However, Pseudomonas spp. EVs were more dominant in non-pregnant women than in pregnant women (13.2% vs 4.09%, respectively). Regarding the compositional difference between pregnant women with normal and preterm delivery, EVs derived from Ureaplasma spp. and the family Veillonellaceae (including Megasphaera spp.) were more abundant in the urine of preterm-delivered women than in that of women with normal deliveries. Taken together, these data showed that Bacillus spp. EVs predominate in the urine of pregnant women, whereas Pseudomonas spp. EVs predominate in the urine of non-pregnant women; this suggests that Bacillus spp. EVs might have an important role in the maintenance of pregnancy. PMID:26846451

  4. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia.

    PubMed

    Dong, ShiNan; Shen, ZhongYuan; Xu, Li; Zhu, Feng

    2010-01-01

    The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia. PMID:19768503

  5. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-01-01

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels. PMID:19048493

  6. A renaissance for the pioneering 16S rRNA gene

    SciTech Connect

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  7. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences.

    PubMed

    Ghebremedhin, B; Layer, F; König, W; König, B

    2008-03-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (approximately 931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (approximately 97%), rpoB (approximately 86%), hsp60 (approximately 82%), and sodA (approximately 78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification. PMID:18174295

  8. Genetic Classification and Distinguishing of Staphylococcus Species Based on Different Partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf Gene Sequences▿

    PubMed Central

    Ghebremedhin, B.; Layer, F.; König, W.; König, B.

    2008-01-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (∼931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (∼97%), rpoB (∼86%), hsp60 (∼82%), and sodA (∼78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification. PMID:18174295

  9. Usefulness of the ID32 staph system and a method based on rRNA gene restriction site polymorphism analysis for species and subspecies identification of staphylococcal clinical isolates.

    PubMed Central

    Chesneau, O; Aubert, S; Morvan, A; Guesdon, J L; el Solh, N

    1992-01-01

    The usefulness of the ID32 Staph System and a method based on rRNA gene restriction site polymorphism was evaluated by the study of 42 staphylococcal clinical isolates phenotypically difficult to identify. The ID32 Staph micromethod and the genomic method are adapted for recognition of 27 and 31 staphylococcal taxa, respectively. The genomic method is based on a Dice analysis of the hybridization patterns obtained by cutting the cellular DNA either with EcoRI or with HindIII and by probing with pBA2, containing the Bacillus subtilis gene encoding 16S rRNA, labeled either with [alpha-32P]dCTP or with acetylaminofluorene. This study showed that the nonradioactive labeling provided a better resolution of the hybridizing bands than radioactive labeling. Of the 42 isolates selected, only 22 could be assigned to a staphylococcal species by the ID32 Staph System, whereas 35 could be identified by the genomic method. This latter method also enabled the screening of three unclassified isolates having hybridization patterns more closely related to each other than to any of the 31 staphylococcal taxa investigated. These three isolates could belong to a staphylococcal taxon not yet described. Images PMID:1357001

  10. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  11. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states

    PubMed Central

    Pontvianne, Frederic; Blevins, Todd; Chandrasekhara, Chinmayi; Mozgová, Iva; Hassel, Christiane; Pontes, Olga M.F.; Tucker, Sarah; Mokroš, Petr; Muchová, Veronika; Fajkus, Jiří; Pikaard, Craig S.

    2013-01-01

    Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic–nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state. PMID:23873938

  12. A temporal assessment of cattle fecal pollution in the watersheds using 16S rRNA gene-based and metagenome-based assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial source tracking methods need to be accurate, sensitive and exhibit spatiotemporal stability to provide useful field application data. The objective of this study was to investigate the effect of spatial and temporal variability on the frequency of detecting 16S rDNA-based Bacterioidales an...

  13. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Liu, Zhong; Zhao, Rui; Giles, Keith E.

    2016-01-01

    It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells. PMID:27299313

  14. Application of 12S rRNA gene for the identification of animal-derived drugs.

    PubMed

    Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe

    2011-01-01

    PURPOSE. Animal-derived drugs are the major source of biological products and traditional medicine, but they are often difficult to identify, causing confusion in the clinical application. Among these medicinal animals, a number of animal species are endangered, leading to the destruction of biodiversity. The identification of animal-derived drugs and their alternatives would be a first step toward biodiversity conservation and safe medication. Until now, no effective method for identifying animal-derived drugs has been demonstrated; DNA-based species identification presents a brand-new technique. METHODS. We designed primers to amplify a 523-bp fragment of 12S rRNA and generated sequences for 13 individuals within six medicinal animal species. We examined the efficiency of species recognition based on this sequence, and we also tested the taxonomic affiliations against the GenBank database. RESULTS. All the tested drugs were identified successfully, and a visible gap was found between the inter-specific and intra-specific variation. We further demonstrated the importance of data exploration in DNA-based species identification practice by examining the sequence characteristics of relative genera in GenBank. This region of the 12S rRNA gene had a 100% success rate of species recognition within the six medicinal animal species. CONCLUSIONS. We propose that the 12S rRNA locus might be universal for identifying animal-derived drugs and their adulterants. The development of 12S rRNA for indentifying animal-derived drugs that share a common gene target would contribute significantly to the clinical application of animal-derived drugs and the conservation of medicinal animal species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:21906480

  15. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  16. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  17. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Durovic, P; Kutay, U; Schleper, C; Dennis, P P

    1994-01-01

    A commonly used laboratory Sulfolobus strain has been unambiguously identified as Sulfolobus acidocaldarius DSM639. The 5S rRNA gene from this strain was cloned and sequenced. It differs at 17 of 124 positions from the identical 5S rRNA sequences from Sulfolobus solfataricus and a strain apparently misidentified as S. acidocaldarius. Analysis of the transcripts from the 5S rRNA gene failed to identify any precursor extending a significant distance beyond the 5' or 3' boundary of the 5S rRNA-coding sequence. This result suggests that the primary transcript of the 5S rRNA gene corresponds in length (within 1 or 2 nucleotides) to the mature 5S rRNA sequence found in 50S ribosomal subunits. Images PMID:8288546

  18. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6

    SciTech Connect

    Allison E. Ray; Stephanie A. Connon; Peter P. Sheridan; Jeremy Gilbreath; Malcolm S. Shields; Deborah T. Newby; Yoshiko Fujita; Timothy S. Magnuson

    2010-06-01

    The determination of variation in 16S rRNA gene sequences is perhaps the most common method for assessing microbial community diversity. However, the occurrence of multiple copies of 16S rRNA genes within some organisms can bias estimates of microbial diversity. During phylogenetic characterization of a metal-transforming, fermentative bacterium (strain UFO1) isolated from the Field Research Center (FRC) in Oak Ridge, TN, we detected an apparent 16S rRNA pseudogene. The putative 16S rRNA pseudogene was first detected in clone libraries constructed with 16S rRNA genes amplified from UFO1 genomic DNA. Sequencing revealed two distinct 16S rRNA genes, with one differing from the other by a 100 bp insert near the 5’ end. Ribosomal RNA was extracted from strain UFO1 and analyzed by RT-qPCR with insert and non-insert specific primers; however, only the non-insert 16S rRNA sequence was expressed. Reverse-transcribed rRNA from strain UFO1 was also used to construct a cDNA library. Of 190 clones screened by PCR, none contained the 16S rRNA gene with the 100 bp insert. Examination of GenBank 16S rRNA gene sequences revealed that the same insert sequence was present in other clones, including those from an environmental library constructed from FRC enrichments. These findings demonstrate the existence of widely disparate copies of the 16S rRNA gene in the same species and a putative 16S rRNA pseudogene, which may confound 16S rRNA-based methods for assessments of microbial diversity in environmental samples.

  19. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

    PubMed Central

    Nelson, Michael C.; Morrison, Hilary G.; Benjamino, Jacquelynn; Grim, Sharon L.; Graf, Joerg

    2014-01-01

    The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity. PMID:24722003

  20. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  1. Further consideration of the phylogeny of some "traditional" heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene.

    PubMed

    Miao, Miao; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S; Al-Khedhairy, Abdulaziz A; Al-Arifi, Saud

    2009-01-01

    The systematic relationships and taxonomic positions of the traditional heterotrich genera Condylostentor, Climacostomum, Fabrea, Folliculina, Peritromus, and Condylostoma, as well as the licnophorid genus Licnophora, were re-examined using new data from sequences of the gene coding for small subunit ribosomal RNA. Trees constructed using distance-matrix, Bayesian inference, and maximum-parsimony methods all showed the following relationships: (1) the "traditional" heterotrichs consist of several paraphyletic groups, including the current classes Heterotrichea, Armophorea and part of the Spirotrichea; (2) the class Heterotrichea was confirmed as a monophyletic assemblage based on our analyses of 31 taxa, and the genus Peritromus was demonstrated to be a peripheral group; (3) the genus Licnophora occupied an isolated branch on one side of the deepest divergence in the subphylum Intramacronucleata and was closely affiliated with spirotrichs, armophoreans, and clevelandellids; (4) Condylostentor, a recently defined genus with several truly unique morphological features, is more closely related to Condylostoma than to Stentor; (5) Folliculina, Eufolliculina, and Maristentor always clustered together with high bootstrap support; and (6) Climacostomum occupied a paraphyletic position distant from Fabrea, showing a close relationship with Condylostomatidae and Chattonidiidae despite of modest support. PMID:19527351

  2. Transcript-based Cloning of RRP46, a Regulator of rRNA Processing and R-Gene-Independent Cell Death in Barley–Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the degree of interaction between PCD and R-gene mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp. hordei (Bgh) chal...

  3. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    NASA Astrophysics Data System (ADS)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  4. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  5. Compilation of 5S rRNA and 5S rRNA gene sequences

    PubMed Central

    Specht, Thomas; Wolters, Jörn; Erdmann, Volker A.

    1990-01-01

    The BERLIN RNA DATABANK as of Dezember 31, 1989, contains a total of 667 sequences of 5S rRNAs or their genes, which is an increase of 114 new sequence entries over the last compilation (1). It covers sequences from 44 archaebacteria, 267 eubacteria, 20 plastids, 6 mitochondria, 319 eukaryotes and 11 eukaryotic pseudogenes. The hardcopy shows only the list (Table 1) of those organisms whose sequences have been determined. The BERLIN RNA DATABANK uses the format of the EMBL Nucleotide Sequence Data Library complemented by a Sequence Alignment (SA) field including secondary structure information. PMID:1692116

  6. Diversity of 5S rRNA genes within individual prokaryotic genomes

    PubMed Central

    Pei, Anna; Li, Hongru; Oberdorf, William E; Alekseyenko, Alexander V.; Parsons, Tamasha; Yang, Liying; Gerz, Erika A.; Lee, Peng; Xiang, Charlie; Nossa, Carlos W.; Pei, Zhiheng

    2012-01-01

    We examined intragenomic variation of paralogous 5S rRNA genes to evaluate the concept of ribosomal constraints. In a dataset containing 1168 genomes from 779 unique species, 96 species exhibited >3% diversity. Twenty seven species with >10% diversity contained a total of 421 mismatches between all pairs of the most dissimilar copies of 5S rRNA genes. The large majority (401 of 421) the diversified positions were conserved at the secondary structure level. The high diversity was associated with partial rRNA operon, split operon, or spacer length-related divergence. In total, these findings indicated that there were tight ribosomal constraints on paralogous 5S rRNA genes in a genome despite of the high degree of diversity at the primary structure level. There is supplementary material. PMID:22765222

  7. Pyrosequencing-based profiling of archaeal and bacterial 16S rRNA genes identifies a novel archaeon associated with black band disease in corals.

    PubMed

    Sato, Yui; Willis, Bette L; Bourne, David G

    2013-11-01

    Black band disease (BBD) is a microbial consortium that creates anoxic, sulfide-rich microenvironments and kills underlying coral tissues as it rapidly migrates across colonies. Although bacterial communities associated with BBD have been studied extensively, the presence and roles of archaea are unexplored. Using amplicon-pyrosequencing of 16S ribosomal RNA genes, we investigated the community structure of both archaea and bacteria within microbial lesions of BBD and the less-virulent precursor stage, 'cyanobacterial patches' (CP), affecting the coral Montipora hispida. We detected characteristic shifts in microbial communities during the development of BBD from CP, reflecting microenvironmental changes within lesions. Archaeal profiles in CP suggested a diverse assemblage affiliated with the Thaumarchaeota and Euryarchaeota, similar to communities described for oxic marine environments. In contrast, a novel ribotype, distantly affiliated to the Euryarchaeota, dominated up to 94% of archaeal sequences retrieved from BBD. The physiological characteristics of this dominant archaeal ribotype are unknown because of the novelty of its 16S ribosomal RNA gene sequences; however, their prominent associations with BBD lesions suggest the ability to thrive in the organic- and sulfide-rich anoxic microenvironment characteristic of BBD lesions. Discovery of this novel archaeal ribotype provides new insights into the microbial ecology and aetiology of BBD. PMID:24112537

  8. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  9. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence

    PubMed Central

    Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  10. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications.

    PubMed

    Herzog, M; Maroteaux, L

    1986-11-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  11. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications

    PubMed Central

    Herzog, Michel; Maroteaux, Luc

    1986-01-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  12. Case of localized recombination in 23S rRNA genes from divergent bradyrhizobium lineages associated with neotropical legumes.

    PubMed

    Parker, M A

    2001-05-01

    Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii. PMID:11319084

  13. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species.

    PubMed

    Park, Y K; Park, K C; Park, C H; Kim, N S

    2000-02-29

    Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens. PMID:10774742

  14. IDENTIFYING MICROORGANISMS INVOLVED IN SPECIFIC IN SITU FUNCTIONS: EXPERIMENTAL DESIGN CONSIDERATIONS FOR RRNA GENE-BASED POPULATION STUDIES AND SEQUENCE-SELECTIVE PCR ASSAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter examines experimental design considerations for a population-based approach for identifying microorganisms involved in specific in situ functions. Here, the term function is used in its broadest sense, and may refer to any number of defined biochemical, physiological or ecological pheno...

  15. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  16. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  17. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    PubMed

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms. PMID:26423783

  18. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/. PMID:24425826

  19. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses. PMID:18430591

  20. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  1. Identification of Scopulariopsis species by partial 28S rRNA gene sequence analysis.

    PubMed

    Jagielski, Tomasz; Kosim, Kinga; Skóra, Magdalena; Macura, Anna Barbara; Bielecki, Jacek

    2013-01-01

    The genus Scopulariopsis contains over 30 species of mitosporic moulds, which although usually saprophytic may also act as opportunistic pathogens in humans. They have mainly been associated with onychomycosis, and only sporadically reported as a cause of deep tissue infections or systemic disease. Identification of Scopulariopsis species still largely relies on phenotype-based methods. There is a need for a molecular diagnostic approach, that would allow to reliably discriminate between different Scopulariopsis species. The aim of this study was to apply sequence analysis of partial 28S rRNA gene for species identification of Scopulariopsis clinical isolates. Although the method employed did reveal some genetic polymorphism among Scopulariopsis isolates tested, it was not enough for species delineation. For this to be achieved, other genetic loci, within and beyond the rDNA operon, need to be investigated. PMID:24459837

  2. The Identification of Discriminating Patterns from 16S rRNA Gene to Generate Signature for Bacillus Genus.

    PubMed

    More, Ravi P; Purohit, Hemant J

    2016-08-01

    The 16S ribosomal RNA (16S rRNA) gene has been widely used for the taxonomic classification of bacteria. A molecular signature is a set of nucleotide patterns, which constitute a regular expression that is specific to each particular taxon. Our main goal was to identify discriminating nucleotide patterns in 16S rRNA gene and then to generate signatures for taxonomic classification. To demonstrate our approach, we used the phylum Firmicutes as a model using representative taxa Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus), according to their dominance at each hierarchical taxonomic level. We applied combined composite vector and multiple sequence alignment approaches to generate gene-specific signatures. Further, we mapped all the patterns into the different hypervariable regions of 16S rRNA gene and confirmed the most appropriate distinguishing region as V3-V4 for targeted taxa. We also examined the evolution in discriminating patterns of signatures across taxonomic levels. We assessed the comparative classification accuracy of signatures with other methods (i.e., RDP Classifier, KNN, and SINA). Results revealed that the signatures for taxa Bacilli, Bacillales, Bacillaceae, and Bacillus could correctly classify isolate sequences with sensitivity of 0.99, 0.97, 0.94, and 0.89, respectively, and specificity close to 0.99. We developed signature-based software DNA Barcode Identification (DNA BarID) for taxonomic classification that is available at website http://www.neeri.res.in/DNA_BarID.htm . This pattern-based study provides a deeper understanding of taxon-specific discriminating patterns in 16S rRNA gene with respect to taxonomic classification. PMID:27104769

  3. Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium

    PubMed Central

    Khamis, Atieh; Raoult, Didier; La Scola, Bernard

    2005-01-01

    Higher proportions (91%) of 168 corynebacterial isolates were positively identified by partial rpoB gene determination than by that based on 16S rRNA gene sequences. This method is thus a simple, molecular-analysis-based method for identification of corynebacteria, but it should be used in conjunction with other tests for definitive identification. PMID:15815024

  4. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana

    PubMed Central

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; DeBures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J.; Tourmente, Sylvette; Pikaard, Craig S.; Sáez-Vásquez, Julio

    2010-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre–rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  5. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    PubMed

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; Debures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J; Tourmente, Sylvette; Pikaard, Craig S; Sáez-Vásquez, Julio

    2010-11-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  6. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  7. Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean

    PubMed Central

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J.; Vaulot, Daniel

    2011-01-01

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image. PMID:21552558

  8. Pseudomonas sp. strain CA5 (a selenite-reducing bacterium) 16S rRNA gene complete sequence. National Institute of Health, National Center for Biotechnology Information, GenBank sequence. Accession FJ422810.1.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1321 base pair 16S rRNA gene sequence methods to confirm the phylogenetic position of a soil isolate as a bacterium belonging to the genus Pesudomonas sp. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification...

  9. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats

    PubMed Central

    Nübel, Ulrich; Garcia-Pichel, Ferran; Kühl, Michael; Muyzer, Gerard

    1999-01-01

    We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied. PMID:9925563

  10. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  11. Accurate transcription of homologous 5S rRNA and tRNA genes and splicing of tRNA in vitro by soluble extracts of Neurospora.

    PubMed Central

    Tyler, B M; Giles, N H

    1984-01-01

    We have developed soluble extracts from Neurospora crassa capable of accurately and efficiently transcribing homologous 5S rRNA and tRNA genes. The extracts also appear to quantitatively end-process and splice the primary tRNA transcripts. Although the extracts could not transcribe a heterologous (yeast) 5S rRNA gene, they did transcribe a yeast tRNALeu gene and slowly process the transcripts. In addition, we have developed a novel strategy for rapidly sequencing uniformly labelled RNAs using base-specific ribonucleases. We have used this procedure to verify the identity of the in vitro transcripts and processing products. Images PMID:6235482

  12. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  13. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  14. Loop-mediated isothermal amplification assay for 16S rRNA methylase genes in Gram-negative bacteria.

    PubMed

    Nagasawa, Mitsuaki; Kaku, Mitsuo; Kamachi, Kazunari; Shibayama, Keigo; Arakawa, Yoshichika; Yamaguchi, Keizo; Ishii, Yoshikazu

    2014-10-01

    Using the loop-mediated isothermal amplification (LAMP) method, we developed a rapid assay for detection of 16S rRNA methylase genes (rmtA, rmtB, and armA), and investigated 16S rRNA methylase-producing strains among clinical isolates. Primer Explorer V3 software was used to design the LAMP primers. LAMP primers were prepared for each gene, including two outer primers (F3 and B3), two inner primers (FIP and BIP), and two loop primers (LF and LB). Detection was performed with the Loopamp DNA amplification kit. For all three genes (rmtA, rmtB, and armA), 10(2) copies/tube could be detected with a reaction time of 60 min. When nine bacterial species (65 strains saved in National Institute of Infectious Diseases) were tested, which had been confirmed to possess rmtA, rmtB, or armA by PCR and DNA sequencing, the genes were detected correctly in these bacteria with no false negative or false positive results. Among 8447 clinical isolates isolated at 36 medical institutions, the LAMP method was conducted for 191 strains that were resistant to aminoglycosides based on the results of antimicrobial susceptibility tests. Eight strains were found to produce 16S rRNA methylase (0.09%), with rmtB being identified in three strains (0.06%) of 4929 isolates of Enterobacteriaceae, rmtA in three strains (0.10%) of 3284 isolates of Pseudomonas aeruginosa, and armA in two strains (0.85%) of 234 isolates of Acinetobacter spp. At present, the incidence of strains possessing 16S rRNA methylase genes is very low in Japan. However, when Gram-negative bacteria showing high resistance to aminoglycosides are isolated by clinical laboratories, it seems very important to investigate the status of 16S rRNA methylase gene-harboring bacilli and monitor their trends among Japanese clinical settings. PMID:25179393

  15. 16S–23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads

    PubMed Central

    Tokajian, Sima; Issa, Nahla; Salloum, Tamara; Ibrahim, Joe; Farah, Maya

    2016-01-01

    Sphingomonads comprise a physiologically versatile group many of which appear to be adapted to oligotrophic environments, but several also had features in their genomes indicative of host associations. In this study, the extent variability of the 16S–23S rDNA intergenic spacer (ITS) sequences of 14 ATCC reference sphingomonad strains and 23 isolates recovered from drinking water was investigated through PCR amplification and sequencing. Sequencing analysis of the 16S–23S rRNA gene ITS region revealed that the ITS sizes for all studied isolates varied between 415 and 849 bp, while their G+C content was 42.2–57.9 mol%. Five distinct ITS types were identified: ITSnone (without tRNA genes), ITSAla(TGC), ITSAla(TGC)+Ile(GAT), ITSIle(GAT)+Ala(TGC), and ITS Ile(GAT)+Pseudo. All of the identified tRNAAla(TGC) molecules consisted of 73 bases, and all of the tRNAIle(GAT) molecules consisted of 74 bases. We also detected striking variability in the size of the ITS region among the various examined isolates. Highest variability was detected within the ITS-2. The importance of this study is that this is the first comparison of the 16S–23S rDNA ITS sequence similarities and tRNA genes from sphingomonads. Collectively the data obtained in this study revealed the heterogeneity and extent of variability within the ITS region compared to the 16S rRNA gene within closely related isolates. Sequence and length polymorphisms within the ITS region along with the ITS types (tRNA-containing or lacking and the type of tRNA) and ITS-2 size and sequence similarities allowed us to overcome the limitation we previously encountered in resolving closely related isolates based on the 16S rRNA gene sequence. PMID:26904019

  16. Oligodeoxynucleotide probes for Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequences.

    PubMed Central

    Wesley, I V; Wesley, R D; Cardella, M; Dewhirst, F E; Paster, B J

    1991-01-01

    Deoxyoligonucleotide probes were constructed for the identification of Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequence data. Probes were targeted to hypervariable regions of 16S rRNA. Specificity of oligonucleotide probes was tested in a colony blot assay with type strains of 15 Campylobacter and Arcobacter species as well as in a slot blot format using genomic DNA extracted from field strains of C. fetus and C. hyointestinalis. Two oligonucleotides were constructed for C. fetus that hybridized with equal specificity with each of 57 biochemically confirmed isolates of C. fetus but not with any other Campylobacter species. The C. hyointestinalis probe reacted with 47 of 48 biochemically confirmed field isolates of C. hyointestinalis. In Southern blot hybridization of BglII digests of genomic DNA, the respective probes reacted within three restriction fragments of either C. hyointestinalis (7.2, 8.2, and 10.1 kb) or C. fetus (7.0, 7.7, and 9.0 kb). This suggests multiple copies of genes encoding 16S rRNA. Images PMID:1723076

  17. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    PubMed

    Kwasniewska, Jolanta; Jaskowiak, Joanna

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  18. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment

    PubMed Central

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  19. Characterization of the genus Bifidobacterium by automated ribotyping and 16S rRNA gene sequences.

    PubMed

    Sakata, Shinji; Ryu, Chun Sun; Kitahara, Maki; Sakamoto, Mitsuo; Hayashi, Hidenori; Fukuyama, Masafumi; Benno, Yoshimi

    2006-01-01

    In order to characterize the genus Bifidobacterium, ribopatterns and approximately 500 bp (Escherichia coli positions 27 to 520) of 16S rRNA gene sequences of 28 type strains and 64 reference strains of the genus Bifidobacterium were determined. Ribopatterns obtained from Bifidobacterium strains were divided into nine clusters (clusters I-IX) with a similarity of 60%. Cluster V, containing 17 species, was further subdivided into 22 subclusters with a similarity of 90%. In the genus Bifidobacterium, four groups were shown according to Miyake et al.: (i) the Bifidobacterium longum infantis-longum-suis type group, (ii) the B. catenulatum-pseudocatenulatum group, (iii) the B. gallinarum-saeculare-pullorum group, and (iv) the B. coryneforme-indicum group, which showed higher than 97% similarity of the 16S rRNA gene sequences in each group. Using ribotyping analysis, unique ribopatterns were obtained from these species, and they could be separated by cluster analysis. Ribopatterns of six B. adolescentis strains were separated into different clusters, and also showed diversity in 16S rRNA gene sequences. B. adolescentis consisted of heterogeneous strains. The nine strains of B. pseudolongum subsp. pseudolongum were divided into five subclusters. Each type strain of B. pseudolongum subsp. pseudolongum and B. pseudolongum subsp. globosum and two intermediate groups, which were suggested by Yaeshima et al., consisted of individual clusters. B. animalis subsp. animalis and B. animalis subsp. lactis could not be separated by ribotyping using Eco RI. We conclude that ribotyping is able to provide another characteristic of Bifidobacterium strains in addition to 16S rRNA gene sequence phylogenetic analysis, and this information suggests that ribotyping analysis is a useful tool for the characterization of Bifidobacterium species in combination with other techniques for taxonomic characterization. PMID:16428867

  20. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    SciTech Connect

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  1. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences.

    PubMed

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-07-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences. PMID:26943621

  2. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences

    PubMed Central

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-01-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences. PMID:26943621

  3. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads

    PubMed Central

    2008-01-01

    Background Fornicata is a relatively recently established group of protists that includes the diplokaryotic diplomonads (which have two similar nuclei per cell), and the monokaryotic enteromonads, retortamonads and Carpediemonas, with the more typical one nucleus per cell. The monophyly of the group was confirmed by molecular phylogenetic studies, but neither the internal phylogeny nor its position on the eukaryotic tree has been clearly resolved. Results Here we have introduced data for three genes (SSU rRNA, α-tubulin and HSP90) with a wide taxonomic sampling of Fornicata, including ten isolates of enteromonads, representing the genera Trimitus and Enteromonas, and a new undescribed enteromonad genus. The diplomonad sequences formed two main clades in individual gene and combined gene analyses, with Giardia (and Octomitus) on one side of the basal divergence and Spironucleus, Hexamita and Trepomonas on the other. Contrary to earlier evolutionary scenarios, none of the studied enteromonads appeared basal to diplokaryotic diplomonads. Instead, the enteromonad isolates were all robustly situated within the second of the two diplomonad clades. Furthermore, our analyses suggested that enteromonads do not constitute a monophyletic group, and enteromonad monophyly was statistically rejected in 'approximately unbiased' tests of the combined gene data. Conclusion We suggest that all higher taxa intended to unite multiple enteromonad genera be abandoned, that Trimitus and Enteromonas be considered as part of Hexamitinae, and that the term 'enteromonads' be used in a strictly utilitarian sense. Our result suggests either that the diplokaryotic condition characteristic of diplomonads arose several times independently, or that the monokaryotic cell of enteromonads originated several times independently by secondary reduction from the diplokaryotic state. Both scenarios are evolutionarily complex. More comparative data on the similarity of the genomes of the two nuclei of

  4. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene.

    PubMed

    Nedbal, M A; Allard, M W; Honeycutt, R L

    1994-09-01

    Nucleotide sequence variation among 22 representatives of 14 families of hystricognathid rodents was examined using an 814-bp region of the mitochondrial 12S ribosomal RNA (rRNA) gene composing domains I-III. The purpose of this study was twofold. First, the phylogenetic relationships among Old World phiomorph (primarily African) and New World caviomorph (primarily South American) families were investigated, with a special emphasis on testing hypotheses pertaining to the origin of New World families and the identification of major monophyletic groups. Second, divergence times derived from molecular data were compared to those suggested by the fossil record. The resultant 12S rRNA gene phylogeny, analyzed separately and in combination with other morphological and molecular data, supported a monophyletic Caviomorpha. This finding is counter to the idea of a multiple origin for the South American families. The most strongly supported relationships within the Caviomorpha were a monophyletic Octodontoidea (containing five families) and the placement of New World porcupines (family Erethizontidae) as the most divergent family. Although comparisons to other data were more equivocal, the most parsimonious 12S rRNA trees also supported a monophyletic Phiomorpha that could be subdivided into two major groups, a clade containing the Thryonomyoidea (Thryonomyidae and Petromuridae) plus Bathyergidae and the more divergent Hystricidae (Old World porcupines). No significant differences in rates of 12S rRNA gene divergence were observed for hystricognathids in comparison to other rodent groups. Although time since divergence estimates were influenced by the fossil dates chosen to calibrate absolute rates, the overall divergence times derived from both transversions only and Kimura corrected distances and calibrations using two independent dates revealed a divergence time between Old and New World groups dating in the Eocene. PMID:7820285

  5. Characterization of Xanthomonas campestris Pathovars by rRNA Gene Restriction Patterns

    PubMed Central

    Berthier, Yvette; Verdier, Valérie; Guesdon, Jean-Luc; Chevrier, Danièle; Denis, Jean-Baptiste; Decoux, Guy; Lemattre, Monique

    1993-01-01

    Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity. Images PMID:16348894

  6. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization.

    PubMed

    Anahtar, Melis N; Bowman, Brittany A; Kwon, Douglas S

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  7. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization

    PubMed Central

    Anahtar, Melis N.; Bowman, Brittany A.; Kwon, Douglas S.

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  8. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    SciTech Connect

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  9. Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences.

    PubMed

    Lu, Jingrang; Domingo, Jorge Santo

    2008-10-01

    The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities. PMID:18974945

  10. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system

    PubMed Central

    Jenior, Matthew L.; Koumpouras, Charles C.; Westcott, Sarah L.; Highlander, Sarah K.

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting. PMID:27069806

  11. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

    PubMed

    Schloss, Patrick D; Jenior, Matthew L; Koumpouras, Charles C; Westcott, Sarah L; Highlander, Sarah K

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting. PMID:27069806

  12. Phylogenetic analysis of complete rRNA gene sequence of Nosema philosamiae isolated from the lepidopteran Philosamia cynthia ricini.

    PubMed

    Zhu, Feng; Shen, Zhongyuan; Xu, Xiaofang; Tao, Hengping; Dong, Shinan; Tang, Xudong; Xu, Li

    2010-01-01

    ABSTRACT. The microsporidian Nosema philosamiae is a pathogen that infects the eri-silkworm Philosamia cynthia ricini. The complete sequence of rRNA gene (4,314 bp) was obtained by polymerase chain reaction amplification with specific primers and sequencing. The sequence analysis showed that the organization of the rRNA of N. philosamiae was similar to the pattern of Nosema bombycis. Phylogenetic analysis of rRNA gene sequences revealed that N. philosamiae had a close relationship with other Nosema species, confirming that N. philosamiae is correctly assigned to the genus Nosema. PMID:20384905

  13. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  14. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    EPA Science Inventory

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  15. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  16. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. PMID:25604341

  17. Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences.

    PubMed

    Yan, Ping; Pang, Qi-Hua; Jiao, Xu-Wen; Zhao, Xuan; Shen, Yan-Jing; Zhao, Shu-Jin

    2008-10-01

    FALLOPIA MULTIFLORA (Thunb.) Harald . has been widely and discriminatingly used in China for the study and treatment of anemia, swirl, deobstruent, pyrosis, insomnia, amnesia, atheroma and also for regulating immune functions. However, there is still confusion about the herbal drug's botanical origins and the phylogenetic relationship between the cultivars and the wild relatives. In order to develop an efficient method for identification, a molecular analysis was performed based on 18 S rRNA gene and partial MATK gene sequences. The 18 S rRNA gene sequences of F. MULTIFLORA were 1809 bp in length and were highly conserved, indicating that the cultivars and the wild F. MULTIFLORA have the same botanical origin. Based on our 18 S rRNA gene sequences analysis, F. MULTIFLORA could be easily distinguished at the DNA level from adulterants and some herbs with similar components. The MATK gene partial sequences were found to span 1271 bp. The phylogenetic relation of F. MULTIFLORA based on the MATK gene showed that all samples in this paper were divided into four clades. The sequences of the partial MATK gene had many permutations, which were related to the geographical distributions of the samples. MATK gene sequences provided valuable information for the identification of F. MULTIFLORA. New taxonomic information could be obtained to authenticate the botanical origin of the F. MULTIFLORA, the species and the medicines made of it. PMID:18759218

  18. Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR.

    PubMed

    Wang, Dan; Yamahara, Kevan M; Cao, Yiping; Boehm, Alexandria B

    2016-04-01

    We evaluated the ability of chip-based digital PCR (dPCR) to quantify enterococci, the fecal indicator recommended by the United States Environmental Protection Agency (USEPA) for water-quality monitoring. dPCR uses Poisson statistics to estimate the number of DNA fragments in a sample with a specific sequence. Underestimation may occur when a gene is redundantly encoded in the genome and multiple copies of that gene are on one DNA fragment. When genomic DNA (gDNA) was extracted using two commercial DNA extraction kits, we confirmed that dPCR could discern individual copies of the redundant 23s rRNA gene in the enterococcal genome. dPCR quantification was accurate when compared to the nominal concentration inferred from fluorometer measurements (linear regression slope = 0.98, intercept = 0.03, R(2) = 0.99, and p value <0.0001). dPCR quantification was also consistent with quantitative PCR (qPCR) measurements as well as cell counts for BioBall reference standard and 24 environmental water samples. qPCR and dPCR quantification of enterococci in the 24 environmental samples were significantly correlated (linear regression slope =1.08, R(2) of 0.96, and p value <0.0001); the group mean of the qPCR measurements was 0.19 log units higher than that of the dPCR measurements. At environmentally relevant concentrations, dPCR quantification was more precise (i.e., had narrower 95% confidence intervals than qPCR quantification). We observed that humic acid caused a similar level of inhibition in both dPCR and qPCR, but calcium inhibited dPCR to a lesser degree than qPCR. Inhibition of dPCR was partially relieved when the number of thermal cycles was increased. Based on these results, we conclude that dPCR is a viable option for enumerating enterococci in ambient water. PMID:26903207

  19. Greengenes, a Chimera-checked 16S rRNA gene database and workbenchcompatible with ARB

    SciTech Connect

    DeSantis, Todd Z.; Hugenholtz, Philip; Larsen, Neils; Rojas,Mark; Brodie, Eoin L.; Keller, Keith; Huber, Thomas; Dalevi, Daniel; Hu,Ping; Andersen, Gary L.

    2006-04-10

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that in congruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3 percent of environmental sequences and 0.2 percent of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  20. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera)

    PubMed Central

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-01-01

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research. PMID:26307984

  1. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    PubMed

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-01-01

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research. PMID:26307984

  2. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    PubMed

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia. PMID:26687075

  3. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing.

    PubMed

    Thiel, Vera; Wood, Jason M; Olsen, Millie T; Tank, Marcus; Klatt, Christian G; Ward, David M; Bryant, Donald A

    2016-01-01

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus

  4. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

    PubMed Central

    Thiel, Vera; Wood, Jason M.; Olsen, Millie T.; Tank, Marcus; Klatt, Christian G.; Ward, David M.; Bryant, Donald A.

    2016-01-01

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus

  5. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

    DOE PAGESBeta

    Thiel, Vera; Wood, Jason M.; Olsen, Millie T.; Tank, Marcus; Klatt, Christian G.; Ward, David M.; Bryant, Donald A.

    2016-06-17

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, stronglymore » dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H-2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Therrnodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arrninicenantes (OP8) represented ≥ 1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. In conclusion, this study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community

  6. Analysis of a 5S rRNA gene cloned from Euplotes eurstomus

    SciTech Connect

    Roberson, A.E.; Wolffe, A.; Olins, D.E.

    1987-05-01

    The macronucleus of the hypotrichous ciliated protozoan Euplotes eurystomus lends itself to the study of eukaryotic gene and chromatin structure because native macronuclear DNA exists as linear, gene-sized fragments between 400 and 20,000 bp in length. The macronuclear chromatin, while arranged in a typical nucleosomal structure, is freely soluble in low ionic strength buffers without treatment by nucleases. Thus, specific genes may be enriched as native, intact chromatin molecules. The 5S rRNA gene from Euplotes has been cloned to facilitate investigation of 5S gene-chromatin following characterization of the gene at the DNA level. It has been demonstrated that the gene, while in circular or linear form, can be transcribed in vitro by a Xenopus oocyte nuclear extract. The transcript generated in vitro is 120 nucleotides in length and is synthesized by RNA polymerase III. Anti-Xenopus TFIIIA antibodies recognize a Euplotes macronuclear chromatin-associated protein which is approx. 80 KD in size. It has been established that the sequence of the telomere flanking the 5S gene in Euplotes eurystomus is the same telomeric sequence published for Euplotes aediculatus.

  7. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species. PMID:25313278

  8. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  9. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences.

    PubMed Central

    Shah, J S; Pieciak, W; Liu, J; Buharin, A; Lane, D J

    1996-01-01

    We have amplified by PCR Pneumocystis carinii cytoplasmic small-subunit rRNA (variously referred to as 16S-like or 18S-like rRNA) genes from DNA extracted from bronchoalveolar lavage and induced sputum specimens from patients positive for P. carinii and from infected ferret lung tissue. The amplification products were cloned into pUC18, and individual clones were sequenced. Comparison of the determined sequences with each other and with published rat and partial human P.carinii small-subunit rRNA gene sequences reveals that, although all P. carinii small-subunit rRNAs are closely related (approximately 96% identity), small-subunit rRNA genes isolated from different host species (human, rat, and ferret) exhibit distinctive patterns of sequence variation. Two types of sequences were isolated from the infected ferret lung tissue, one as a predominant species and the other as a minor species. There was 96% identity between the two types. In situ hybridization of the infected ferret lung tissue with oligonucleotide probes specific for each type revealed that there were two distinct strains of P. carinii present in the ferret lung tissue. Unlike the ferret P. carinii isolates, the small-subunit rRNA gene sequences from different human P. carinii isolates have greater than 99% identity and are distinct from all rat and ferret sequences so far inspected or reported in the literature. Southern blot hybridization analysis of PCR amplification products from several additional bronchoalveolar lavage or induced sputum specimens from P. carinii-infected patients, using a 32P-labeled oligonucleotide probe specific for human P. carinii, also suggests that all of the human P. carinii isolates are identical. These findings indicate that human P. carinii isolates may represent a distinct species of P. carinii distinguishable from rat and ferret P. carinii on the basis of characterization of small-subunit rRNA gene sequences. PMID:8770515

  10. rRNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains associated with Brazilian purpuric fever.

    PubMed Central

    Irino, K; Grimont, F; Casin, I; Grimont, P A

    1988-01-01

    The rRNA gene restriction patterns of 92 isolates of Haemophilus influenzae biogroup aegyptius, associated with conjunctivitis or Brazilian purpuric fever in the State of São Paulo, Brazil, were studied with 16 + 23S rRNA from Escherichia coli as a probe. All strains were classified into 15 patterns. Isolates from Brazilian purpuric fever cases were seen only in patterns 3 (most frequently) and 4 (rarely), whereas isolates from conjunctivitis were found in all 15 patterns. The study demonstrated that rRNA from E. coli can serve as a probe for molecular epidemiology. Images PMID:2459153

  11. PCR primers to amplify 16S rRNA genes from cyanobacteria.

    PubMed Central

    Nübel, U; Garcia-Pichel, F; Muyzer, G

    1997-01-01

    We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in unialgal but nonaxenic cultures and from cyanobionts in lichens could be directly sequenced. In the context of growing sequence databases, this procedure allows rapid and phylogenetically meaningful identification without pure cultures or molecular cloning. We demonstrate the use of this specific PCR in combination with denaturing gradient gel electrophoresis to probe the diversity of oxygenic phototrophic microorganisms in cultures, lichens, and complex microbial communities. PMID:9251225

  12. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  13. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    PubMed

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  14. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    PubMed

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families. PMID:25315165

  15. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  16. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGESBeta

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  17. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    SciTech Connect

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.

  18. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.

    PubMed

    Kageyama, Yasushi; Takaki, Yoshihiro; Shimamura, Shigeru; Nishi, Shinro; Nogi, Yuichi; Uchimura, Kohsuke; Kobayashi, Tohru; Hitomi, Jun; Ozaki, Katsuya; Kawai, Shuji; Ito, Susumu; Horikoshi, Koki

    2007-07-01

    Alkaliphilic Bacillus sp. strain KSM-K16, which produces high-alkaline M-protease, was characterized phenotypically, biochemically and genetically. This strain was identified as Bacillus clausii based on the results of taxonomic studies, including sequencing of the 16S rRNA gene and DNA-DNA hybridization. Seven rRNA operons in the genome were identified by pulsed-field gel electrophoresis. Sequencing of cloned 16S rRNA genes revealed two distinct types of variable region V1. Moreover, some cloned 16S rRNA genes in some of the reference strains of B. clausii had a V1 region of yet another type. The B. clausii strains could clearly be divided into at least two subgroups based on the frequencies of the types of cloned V1 sequence. Bacillus sp. strain KSM-K16 was found to be in a different phylogenetic position from other high-alkaline protease-producing strains of B. clausii. PMID:17429572

  19. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  20. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is the causative agent of columnaris disease which severely impacts channel catfish production in the USA and may be emerging as an important pathogen in the rainbow trout industry. The 16S rRNA gene is a housekeeping gene commonly used for bacterial taxonomy and genotyping...

  1. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  2. The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation▿ †

    PubMed Central

    Lauro, Federico M.; Chastain, Roger A.; Blankenship, Lesley E.; Yayanos, A. Aristides; Bartlett, Douglas H.

    2007-01-01

    In the ocean's most extreme depths, pressures of 70 to 110 megapascals prevent the growth of all but the most hyperpiezophilic (pressure-loving) organisms. The physiological adaptations required for growth under these conditions are considered to be substantial. Efforts to determine specific adaptations permitting growth at extreme pressures have thus far focused on relatively few γ-proteobacteria, in part due to the technical difficulties of obtaining piezophilic bacteria in pure culture. Here, we present the molecular phylogenies of several new piezophiles of widely differing geographic origins. Included are results from an analysis of the first deep-trench bacterial isolates recovered from the southern hemisphere (9.9-km depth) and of the first gram-positive piezophilic strains. These new data allowed both phylogenetic and structural 16S rRNA comparisons among deep-ocean trench piezophiles and closely related strains not adapted to high pressure. Our results suggest that (i) the Circumpolar Deep Water acts as repository for hyperpiezophiles and drives their dissemination to deep trenches in the Pacific Ocean and (ii) the occurrence of elongated helices in the 16S rRNA genes increases with the extent of adaptation to growth at elevated pressure. These helix changes are believed to improve ribosome function under deep-sea conditions. PMID:17158629

  3. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.

    PubMed Central

    Degnan, B M; Yan, J; Hawkins, C J; Lavin, M F

    1990-01-01

    Ascidians, primitive chordates that have retained features of the likely progenitors to all vertebrates, are a useful model to study the evolutionary relationship of chordates to other animals. We have selected the well characterized ribosomal RNA (rRNA) genes to investigate this relationship, and we describe here the cloning and characterization of an entire ribosomal DNA (rDNA) tandem repeat unit from a lower chordate, the ascidian Herdmania momus. rDNA copy number and considerable sequence differences were observed between two H. momus populations. Comparison of rDNA primary sequence and rRNA secondary structures from H. momus with those from other well characterized organisms, demonstrated that the ascidians are more closely related to other chordates than invertebrates. The rDNA tandem repeat makes up a larger percentage (7%) of the genome of this animal than in other higher eukaryotes. The total length of the spacer and transcribed region in H. momus rDNA is small compared to most higher eukaryotes, being less than 8 kb, and the intergenic spacer region consists of smaller internal repeats. Comparative analysis of rDNA sequences has allowed the construction of secondary structures for the 18S, 5.8S and 26S rRNAs. Images PMID:2263465

  4. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    PubMed

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  5. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    PubMed

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively. PMID:26423781

  6. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  7. Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics

    PubMed Central

    Poretsky, Rachel; Rodriguez-R, Luis M.; Luo, Chengwei; Tsementzi, Despina; Konstantinidis, Konstantinos T.

    2014-01-01

    This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ∼40,000 rRNA gene sequences from each sample and representing ∼300 observed OTUs. Replicates obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the estimated number of OTUs at each timepoint was concordant, but 1.5 times and ∼10 times as many phyla and genera, respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ. PMID:24714158

  8. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation

    PubMed Central

    Schäferkordt, Jan; Wagner, Rolf

    2001-01-01

    The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis. PMID:11504877

  9. Contrasting evolutionary patterns of 28S and ITS rRNA genes reveal high intragenomic variation in Cephalenchus (Nematoda): Implications for species delimitation.

    PubMed

    Pereira, Tiago José; Baldwin, James Gordon

    2016-05-01

    Concerted evolution is often assumed to be the evolutionary force driving multi-family genes, including those from ribosomal DNA (rDNA) repeat, to complete homogenization within a species, although cases of non-concerted evolution have been also documented. In this study, sequence variation of 28S and ITS ribosomal RNA (rRNA) genes in the genus Cephalenchus is assessed at three different levels, intragenomic, intraspecific, and interspecific. The findings suggest that not all Cephalenchus species undergo concerted evolution. High levels of intraspecific polymorphism, mostly due to intragenomic variation, are found in Cephalenchus sp1 (BRA-01). Secondary structure analyses of both rRNA genes and across different species show a similar substitution pattern, including mostly compensatory (CBC) and semi-compensatory (SBC) base changes, thus suggesting the functionality of these rRNA copies despite the variation found in some species. This view is also supported by low sequence variation in the 5.8S gene in relation to the flanking ITS-1 and ITS-2 as well as by the existence of conserved motifs in the former gene. It is suggested that potential cross-fertilization in some Cephalenchus species, based on inspection of female reproductive system, might contribute to both intragenomic and intraspecific polymorphism of their rRNA genes. These results reinforce the potential implications of intragenomic and intraspecific genetic diversity on species delimitation, especially in biodiversity studies based solely on metagenetic approaches. Knowledge of sequence variation will be crucial for accurate species diversity estimation using molecular methods. PMID:26926945

  10. Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae.

    PubMed

    He, Yanxia; Guo, Xianguang; Xiang, Shifei; Li, Jiao; Li, Xiaoqin; Xiang, Hui; He, Jinlei; Chen, Dali; Chen, Jianping

    2016-07-01

    The present work aimed to evaluate 16S rRNA, khe and rpoB gene sequencing for the identification of Klebsiella pneumoniae in comparison with phenotypic methods. Fifteen clinical isolates were examined, which were initially identified as K. pneumoniae subsp. pneumoniae using the automated VITEK 32 system in two hospitals in Enshi City, China. Their identity was further supported by conventional phenotypic methods on the basis of morphological and biochemical characteristics. Using Bayesian phylogenetic analyses and haplotypes network reconstruction, 13 isolates were identified as K. pneumoniae, whereas the other two isolates (K19, K24) were classified as Shigella sp. and Enterobacter sp., respectively. Of the three genes, 16S rRNA and khe gene could discriminate the clinical isolates at the genus level, whereas rpoB could discriminate Klebsiella at the species and even subspecies level. Overall, the gene tree based on rpoB is more compatible with the currently accepted classification of Klebsiella than those based on 16S rRNA and khe genes, showing that rpoB can be a powerful tool for identification of K. pneumoniae isolates. Above all, our study challenges the utility of khe as a species-specific marker for identification of K. pneumoniae. PMID:27147066

  11. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria.

    PubMed

    He, Zhanfei; Wang, Jiaqi; Hu, Jiajie; Zhang, Hao; Cai, Chaoyang; Shen, Jiaxian; Xu, Xinhua; Zheng, Ping; Hu, Baolan

    2016-06-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems. PMID:27020287

  12. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  13. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  14. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  15. Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    PubMed Central

    Al Sheikh, Yazeed A.; Marie, Mohammed Ali M.; John, James; Krishnappa, Lakshmana Gowda; Dabwab, Khaled Homoud M.

    2014-01-01

    Background Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae. PMID:25005152

  16. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior.

    PubMed

    Murphy, Nicholas P; Framenau, Volker W; Donnellan, Stephen C; Harvey, Mark S; Park, Yung-Chul; Austin, Andrew D

    2006-03-01

    Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis. PMID:16503280

  17. Sequence variation within the rRNA gene loci of 12 Drosophila species

    PubMed Central

    Stage, Deborah E.; Eickbush, Thomas H.

    2007-01-01

    Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8–8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10–20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species. PMID:17989256

  18. Extremely Acidophilic Protists from Acid Mine Drainage Host Rickettsiales-Lineage Endosymbionts That Have Intervening Sequences in Their 16S rRNA Genes

    PubMed Central

    Baker, Brett J.; Hugenholtz, Philip; Dawson, Scott C.; Banfield, Jillian F.

    2003-01-01

    During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat. PMID:12957940

  19. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products. PMID:26898909

  20. Sequence Variation in the Small-Subunit rRNA Gene of Plasmodium malariae and Prevalence of Isolates with the Variant Sequence in Sichuan, China

    PubMed Central

    Liu, Qing; Zhu, Shenghua; Mizuno, Sahoko; Kimura, Masatsugu; Liu, Peina; Isomura, Shin; Wang, Xingzhen; Kawamoto, Fumihiko

    1998-01-01

    By two PCR-based diagnostic methods, Plasmodium malariae infections have been rediscovered at two foci in the Sichuan province of China, a region where no cases of P. malariae have been officially reported for the last 2 decades. In addition, a variant form of P. malariae which has a deletion of 19 bp and seven substitutions of base pairs in the target sequence of the small-subunit (SSU) rRNA gene was detected with high frequency. Alignment analysis of Plasmodium sp. SSU rRNA gene sequences revealed that the 5′ region of the variant sequence is identical to that of P. vivax or P. knowlesi and its 3′ region is identical to that of P. malariae. The same sequence variations were also found in P. malariae isolates collected along the Thai-Myanmar border, suggesting a wide distribution of this variant form from southern China to Southeast Asia. PMID:9774600

  1. Species identification of oral viridans streptococci by restriction fragment polymorphism analysis of rRNA genes.

    PubMed Central

    Rudney, J D; Larson, C J

    1993-01-01

    Oral streptococci formerly classified as Streptococcus sanguis have been divided into six genetic groups. Methods to identify those species by genotype are needed. This study compared restriction fragment polymorphisms of rRNA genes (ribotypes) for seven S. gordonii, three S. sanguis, four S. oralis, three S. mitis, one S. crista, and seven S. parasanguis strains classified in previous DNA hybridization studies, as well as one clinical isolate. DNA was digested with HindIII, PvuII, HindIII and PvuII combined, EcoRI, BamHI, AatII, AlwNI, and DraII. DNA fragments were hybridized with a digoxigenin-labeled cDNA probe obtained by reverse transcription of Escherichia coli 16S and 23S rRNA. S. oralis, S. mitis, and S. parasanguis all showed an isolated 2,290-bp band in AatII ribotypes that was absent from S. gordonii, S. sanguis, and S. crista. The last three groups showed species-specific bands with AatII and also with PvuII. S. oralis could be distinguished from S. mitis and S. parasanguis in AlwNI and DraII ribotypes. S. mitis and S. parasanguis could not be distinguished, since they shared multiple bands in PvuII, AlwNI, and EcoRI patterns. The clinical isolate in the panel was very similar to S. sanguis by all enzymes used. Our findings suggest that ribotyping may be useful for genotypic identification of oral viridans streptococci. Initial digests of clinical isolates might be made with AatII, followed by PvuII or AlwNI. Isolates then could be identified by comparing ribotype patterns with those of reference strains. This approach could facilitate clinical studies of these newly defined species. Images PMID:7691875

  2. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    -group relationship between Salpida and Pyrosomatida within Thaliacea. Conclusion An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution. PMID:19656395

  3. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    PubMed Central

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-01-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg−1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites. PMID:26184609

  4. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  5. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites.

    PubMed

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-01-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg(-1) were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 10(3) to 2.28 × 10(6) and 4.17 × 10(2) to 1.99 × 10(5), respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites. PMID:26184609

  6. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report.

    PubMed

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  7. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    PubMed Central

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  8. Phylogenetic Analysis of Bacteroidales 16S rRNA Genes Unveils Sequences Specific to Diverse Swine Fecal Sources

    EPA Science Inventory

    Two of the currently available methods to assess swine fecal pollution (Bac1 and PF163) target Bacteroidales 16S rRNA genes. However, these assays have been shown to exhibit poor host-specificity and low detection limits in environmental waters, in part due to the limited number...

  9. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variability in 16S rRNA gene sequences has been demonstrated among isolates of Flavobacterium columnare and a restriction fragment length polymorphism (RFLP) assay is available for genetic typing this important fish pathogen. Interpretation of restriction patterns can be difficult due to th...

  10. Ureaplasma urealyticum continuous ambulatory peritoneal dialysis-associated peritonitis diagnosed by 16S rRNA gene PCR.

    PubMed

    Yager, Jessica E; Ford, Emily S; Boas, Zachary P; Haseley, Leah A; Cookson, Brad T; Sengupta, Dhruba J; Fang, Ferric C; Gottlieb, Geoffrey S

    2010-11-01

    In some patients with peritonitis complicating continuous ambulatory peritoneal dialysis (CAPD), a causative organism is never identified. We report a case of Ureaplasma urealyticum CAPD-associated peritonitis diagnosed by 16S rRNA gene PCR. Ureaplasma may be an underrecognized cause of peritonitis because it cannot be recovered using routine culture methods. PMID:20739488

  11. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys

    SciTech Connect

    Walters , William; Hyde, Embriette R.; Berg-Lyons, Donna; Ackermann, Gail; Humphrey, Greg; Parada , Alma; Gilbert, Jack A.; Jansson, Janet K.; Caporaso, Greg; Fuhrman, Jed A.; Apprill, Amy; Knight, Rob

    2015-12-22

    Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of datasets amplified with varied primers requires attention. Here we examine the performance of modified 16S rRNA gene and ITS primers for archaea/bacteria and fungi, respectively, with non-aquatic samples. We moved primer barcodes to the 5’-end, allowing for a range of different 3’ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4-5 of the 16S rRNA gene. We additionally demonstrate that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies.

  12. A Neurospora crassa ribosomal protein gene, homologous to yeast CRY1, contains sequences potentially coordinating its transcription with rRNA genes.

    PubMed Central

    Tyler, B M; Harrison, K

    1990-01-01

    We have isolated and sequenced a Neurospora crassa ribosomal protein gene (designated crp-2) strongly homologous to the rp59 gene (CRY1) of yeast and the S14 ribosomal protein gene of mammals. The inferred sequence of the crp-2 protein is more homologous (83%) to the mammalian S14 sequence than to the yeast rp59 sequence (69%). The gene has three intervening sequences (IVSs) two of which are offset 7 bp from the position of IVSs in the mammalian genes. None correspond to the position of the IVS in the yeast gene. Crp-2 was mapped by RFLP analysis to the right arm of linkage group III. The 5' region of the gene contains three copies of a sequence, the Ribo box, previously shown to be required for transcription of both 5S and 40S rRNA genes. We speculate that the Ribo box may coordinate ribosomal protein and rRNA gene transcription. Images PMID:1977135

  13. Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage.

    PubMed Central

    Brow, M A; Oldenburg, M C; Lyamichev, V; Heisler, L M; Lyamicheva, N; Hall, J G; Eagan, N J; Olive, D M; Smith, L M; Fors, L; Dahlberg, J E

    1996-01-01

    We describe here a new approach for analyzing nucleic acid sequences using a structure-specific endonuclease, Cleavase I. We have applied this technique to the detection and localization of mutations associated with isoniazid resistance in Mycobacterium tuberculosis and for differentiating bacterial genera, species and strains. The technique described here is based on the observation that single strands of DNAs can assume defined conformations, which can be detected and cleaved by structure-specific endonucleases such as Cleavase I. The patterns of fragments produced are characteristic of the sequences responsible for the structure, so that each DNA has its own structural fingerprint. Amplicons, containing either a single 5'-fluorescein or 5'-tetramethyl rhodamine label were generated from a 620-bp segment of the katG gene of isoniazid-resistant and -sensitive M. tuberculosis, the 5' 350 bp of the 16S rRNA genes of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, Shigella dysenteriae, Campylobacter jejuni, staphylococcus, hominis, Staphylococcus warneri, and Staphylococcus aureus and an approximately 550-bp DNA segment comprising the intergenic region between the 16S and 23S rRNA genes of Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, and Shigella dysenteriae serotypes 1, 2, and 8. Changes in the structural fingerprints of DNA fragments derived from the katG genes of isoniazid-resistant M. tuberculosis isolates were clearly identified and could be mapped to the site of the actual mutation relative to the labeled end. Bland patterns which clearly differentiated bacteria to the level of genus and, in some cases, species were generated from the 16S genes. Cleavase I analysis of the intergenic regions of Salmonella and Shigella species differentiated genus, species, and serotypes. Structural fingerprinting by digestion with Cleavase I is a rapid, simple, and sensitive

  14. Targeting single-nucleotide polymorphisms in the 16S rRNA gene to detect and differentiate Legionella pneumophila and non-Legionella pneumophila species.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-08-01

    A PCR-based method targeting single-nucleotide polymorphisms (SNPs) in the 16S rRNA gene was developed for differential identification of Legionella pneumophila and non-Legionella pneumophila. Based on the bioinformatics analysis for 176 Legionella 16S rRNA gene fragments of 56 different Legionella species, a set of SNPs, A(628)C(629) was found to be highly specific to L. pneumophila strains. A multiplex assay was designed that was able to distinguish sites with limited sequence heterogeneity between L. pneumophila and non-L. pneumophila in the targeted 16S rRNA gene. The assay amplified a 261-bp amplicon for Legionella spp. and a set of 203- and 97-bp amplicons only specific to L. pneumophila species. Among 49 ATCC strains and 284 Legionella isolates from environmental water and clinical samples, 100 % of L. pneumophila and non-L. pneumophila strains were correctly identified and differentiated by this assay. The assay presents a more rapid, sensitive and alternative method to the currently available PCR-sequencing detection and differentiation method. PMID:27112927

  15. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa.

    PubMed

    Cawthorn, Donna-Mareè; Steinman, Harris Andrew; Witthuhn, R Corli

    2012-01-01

    The development of DNA-based methods for the identification of fish species is important for fisheries research and control, as well as for the detection of unintentional or fraudulent species substitutions in the marketplace. The aim of this study was to generate a comprehensive reference database of DNA sequences from the mitochondrial 16S and 12S ribosomal RNA (rRNA) genes for 53 commercial fish species in South Africa and to evaluate the applicability of these genetic markers for the identification of fish at the species level. The DNA extracted from all target species was readily amplified using universal primers targeting both rRNA gene regions. Sequences from the 16S and 12S rRNA genes were submitted to GenBank for the first time for 34% and 53% of the fish species, respectively. Cumulative analysis of the 16S rRNA gene sequences revealed mean conspecific, congeneric and confamilial Kimura two parameter (K2P) distances of 0.03%, 0.70% and 5.10% and the corresponding values at the 12S level were 0.03%, 1.00% and 5.57%. K2P neighbour-joining trees based on both sequence datasets generally clustered species in accordance with their taxonomic classifications. The nucleotide variation in both the 16S and 12S sequences was suitable for identifying the large majority of the examined fish specimens to at least the level of genus, but was found to be less useful for the explicit differentiation of certain congeneric fish species. It is recommended that one or more faster-evolving DNA regions be analysed to confirm the identities of closely-related fish species in South Africa. PMID:21963445

  16. Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats

    PubMed Central

    Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-01-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected. PMID:23263964

  17. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  18. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  19. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  20. Ribosomal RNA genes of Trypanosoma brucei. Cloning of a rRNA gene containing a mobile element.

    PubMed Central

    Hasan, G; Turner, M J; Cordingley, J S

    1982-01-01

    An ordered restriction map of the ribosomal RNA genes of Trypanosoma brucei brucei is presented. Bgl II fragments of T.b.brucei genomic DNA were cloned into pAT 153, and the clones containing rDNA identified. Restriction maps were established and the sense strands identified. One clone was shown by heteroduplex mapping to contain a 1.1 kb inserted sequence which was demonstrated to be widely distributed throughout the genomes of members of the subgenus Trypanozoon. However, in two other subgenera of Trypanosoma, Nannomonas and Schizotrypanum, the sequence is far less abundant. Analysis of the genomic DNA from two serodemes of T.b.brucei showed that the sequence was present in the rRNA of only one of them, implying that the sequence is a mobile element and that its appearance in rDNA is a comparitively recent occurrence. Images PMID:6294613

  1. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  2. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    PubMed Central

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  3. Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis.

    PubMed Central

    Haltiner, M M; Smale, S T; Tjian, R

    1986-01-01

    A cell-free RNA polymerase I transcription system was used to evaluate the transcription efficiency of 21 linker scanning mutations that span the human rRNA gene promoter. Our analysis revealed the presence of two major control elements, designated the core and upstream elements, that affect the level of transcription initiation. The core element extends from -45 to +18 relative to the RNA start site, and transcription is severely affected (up to 100-fold) by linker scanning mutations in this region. Linker scanning and deletion mutations in the upstream element, located between nucleotides -156 and -107, cause a three- to fivefold reduction in transcription. Under certain reaction conditions, such as the presence of a high ratio of protein to template or supplementation of the reaction with partially purified protein fractions, sequences upstream of the core element can have an even greater effect (20- to 50-fold) on RNA polymerase I transcription. Primer extension analysis showed that RNA synthesized from all of these mutant templates is initiated at the correct in vivo start site. To examine the functional relationship between the core and the upstream region, mutant promoters were constructed that alter the orientation, distance, or multiplicity of these control elements relative to each other. The upstream control element appears to function in only one orientation, and its position relative to the core is constrained within a fairly narrow region. Moreover, multiple core elements in close proximity to each other have an inhibitory effect on transcription. Images PMID:3785147

  4. Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes.

    PubMed

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  5. Evaluation of 16S rRNA Gene PCR Sensitivity and Specificity for Diagnosis of Prosthetic Joint Infection: a Prospective Multicenter Cross-Sectional Study

    PubMed Central

    Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-01-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥1 positive sample for strict pathogens and ≥2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis. PMID:25056331

  6. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study.

    PubMed

    Bémer, Pascale; Plouzeau, Chloé; Tande, Didier; Léger, Julie; Giraudeau, Bruno; Valentin, Anne Sophie; Jolivet-Gougeon, Anne; Vincent, Pascal; Corvec, Stéphane; Gibaud, Sophie; Juvin, Marie Emmanuelle; Héry-Arnaud, Genevieve; Lemarié, Carole; Kempf, Marie; Bret, Laurent; Quentin, Roland; Coffre, Carine; de Pinieux, Gonzague; Bernard, Louis; Burucoa, Christophe

    2014-10-01

    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis. PMID:25056331

  7. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene.

    PubMed

    Kobayashi, S; Suzuki, J; Takeuchi, T

    2009-06-01

    We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil) using a modified Balamuth's egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli); moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla). We determined the small subunit rRNA (SSU-rRNA) gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli. PMID:19585892

  8. In vivo translation of a region within the rrnB 16S rRNA gene of Escherichia coli.

    PubMed Central

    Berg, K L; Squires, C L; Squires, C

    1987-01-01

    In this study we show that a segment of the Escherichia coli rrnB 16S gene can be translated in vivo. Other laboratories have previously reported that there are internal transcription and translation signals and open reading frames within the E. coli rrnB rRNA operon. Their studies revealed a translation start signal followed by a 252-base-pair open reading frame (ORF16) within the 16S gene and detected a promoter (p16) in the same general region by using in vitro RNA polymerase binding and transcription initiation assays. By using plasmid gene fusions of ORF16 to lacZ we showed that an ORF16'-'beta-galactosidase fusion protein was made in vivo. Transcripts encoding the fusion protein were expressed either from the rrnB p1p2 control region or from a hybrid trp-lac promoter (tacP), but the amount of expression was considerably less than for a lacZ control plasmid. We used fusions to the cat gene to show that p16 is one-half as active as lacP. Deletions were used to show that p16 is located within ORF16 and thus cannot promote a transcript encoding the ORF16 peptide. A comparison of sequences from different organisms shows that ORF16 and p16 lie in a highly conserved region of the procaryotic 16S RNA structure. The first 20 amino acids of ORF16 are conserved in most eubacterial and plant organellar sequences, and promoter activity has been detected in this region of the Caulobacter crescentus sequence by other workers. Images PMID:2435709

  9. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis

    PubMed Central

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-01-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  10. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis.

    PubMed

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-10-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  11. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  12. Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China.

    PubMed

    Xia, Jing; Sun, Jian; Cheng, Ke; Li, Liang; Fang, Liang-Xing; Zou, Meng-Ting; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-05-30

    A total of 963 non-duplicate Escherichia coli strains isolated from food-producing animals between 2002 and 2012 were screened for the presence of the 16S rRNA methyltransferase genes. Among the positive isolates, resistance determinants to extended spectrum β-lactamases, plasmid-mediated quinolone resistance genes as well as floR and fosA/A3/C2 were detected using PCR analysis. These isolates were further subjected to antimicrobial susceptibility testing, molecular typing, PCR-based plasmid replicon typing and plasmid analysis. Of the 963 E. coli isolates, 173 (18.0%), 3 (0.3%) and 2 (0.2%) were rmtB-, armA- and rmtE-positive strains, respectively. All the 16S rRNA methyltransferase gene-positive isolates were multidrug resistant and over 90% of them carried one or more type of resistance gene. IncF (especially IncFII) and non-typeable plasmids played the main role in the dissemination of rmtB, followed by the IncN plasmids. Plasmids that harbored rmtB ranged in size from 20kb to 340kb EcoRI-RFLP testing of the 109 rmtB-positive plasmids from different years and different origins suggested that horizontal (among diverse animals) and vertical transfer of IncF, non-typeable and IncN-type plasmids were responsible for the spread of rmtB gene. In summary, our findings highlight that rmtB was the most prevalent 16S rRNA methyltransferase gene, which present persistent spread in food-producing animals in China and a diverse group of plasmids was responsible for rmtB dissemination. PMID:27139028

  13. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies. PMID:16083008

  14. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool. PMID:22943150

  15. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds. PMID:26189016

  16. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring.

    PubMed

    Vierheilig, J; Savio, D; Ley, R E; Mach, R L; Farnleitner, A H; Reischer, G H

    2015-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  17. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  18. Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in TATERILLUS X (Rodentia, Gerbillinae).

    PubMed

    Dobigny, G; Ozouf-Costaz, C; Bonillo, C; Volobouev, V

    2003-01-01

    A survey of 28S and 5S rRNA gene clusters, and telomeric repeats was performed using single and double FISH in the Taterillus genus (Rodentia, Muridae, Gerbillinae). Taterillus was previously demonstrated to have undergone a very recent and extensive chromosomal evolution. Our FISH results demonstrate that rRNA genes can vary in location and number irrespective of the phylogenetic relationships. Telomeric repeats were detected in pericentromeric and interstitial regions of several chromosomes, thus providing nonambiguous evolutionary footprints of Robertsonian and tandem translocation events. These footprints are discussed in reference to the molecular process of these karyotypical changes. Also, examples of colocation of rDNA clusters and telomeric repeats lend support to their possible involvement in nucleolus formation. Finally, the presence of rRNA genes, and the extensive amplification of telomeric repeats at specific loci within a double X-autosome translocated element which were not observed on the homologous Y1 and Y2, served as basis for an epigenomic hypothesis on X-autosome translocation viability in mammals. PMID:15004471

  19. Comparative analysis of the genes encoding 23S-5S rRNA intergenic spacer regions of Lactobacillus casei-related strains.

    PubMed

    Chen, H; Lim, C K; Lee, Y K; Chan, Y N

    2000-03-01

    In this study, investigations into the 23S-5S rRNA intergenic spacer regions (ISRs) of the Lactobacillus casei group were performed. A 1.6 kb fragment, from Lactobacillus paracasei strain ATCC 27092, containing part of the 5S rRNA gene (60 bp), the 5S-23S spacer region (198 bp) and part of the 23S rRNA gene (1295 bp) was cloned and sequenced (GenBank no. AF098107). This fragment was used as a probe to determine the rRNA restriction fragment length polymorphism (RFLP) patterns of nine strains belonging to the Lactobacillus casei group, along with four other non-Lactobacillus casei lactobacilli species. A pair of PCR primers, 23-Fl and 5-Ru, was designed and used for PCR amplification of the 23S-5S rRNA ISRs of these strains. The ISR length and sequence polymorphisms provided additional information for the taxonomic study of the Lactobacillus casei group. The spacer-length polymorphism of Lactobacillus rhamnosus was distinct from those of the other strains and this observation is consistent with the classification of Lactobacillus rhamnosus proposed by Mori et al. For all Lactobacillus casei and Lactobacillus paracasei strains, two major bands (approx. 250 and 170 bp in size) were obtained except in the case of Lactobacillus paracasei subsp. tolerans strain NCIMB 9709T, which yielded only one amplified product (250 bp). The sequencing data of the PCR products of seven well-characterized Lactobacillus casei and Lactobacillus paracasei strains revealed the presence of a 76/80 bp insertion/deletion with some random, single-base substitutions between the longer and shorter spacers for each respective strain. A few base variations were also detected within different strains in this group although the overall sequence similarity was very high (95.9-99.5%). The rRNA RFLP and the spacer sequence of Lactobacillus casei type strain ATCC 393T exhibited unique identities in this cluster. On the other hand, Lactobacillus casei strain ATCC 334 showed a high level of similarity

  20. Structural Analysis of Base Substitutions in Thermus thermophilus 16S rRNA Conferring Streptomycin Resistance

    PubMed Central

    Demirci, Hasan; Murphy, Frank V.; Murphy, Eileen L.; Connetti, Jacqueline L.; Dahlberg, Albert E.; Jogl, Gerwald

    2014-01-01

    Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation. PMID:24820088

  1. Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy

    NASA Astrophysics Data System (ADS)

    Yanagihara, Katsuhiko; Niki, Hironori; Baba, Tomoya

    2011-09-01

    Here, we describe a technique that allows the genetic linage analysis of 16S rRNA genes in bacteria observed under a microscope. The technique includes the isolation of microbial cells using a laser microdissection microscope, lysis of the cells, and amplification of the 16S rRNA genes in the isolated cells without interference by bacterial DNA contamination from the experimental environment or reagents. Using this technique, we successfully determined 15 16S rRNA gene sequences in cells isolated from an Antarctic iceberg. These sequences showed 94%-100% identity to their closest strains, which included bacteria that occur in aqueous, marine, and soil environments.

  2. Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis

    NASA Astrophysics Data System (ADS)

    Segawa, Takahiro; Ushida, Kazunari; Narita, Hideki; Kanda, Hiroshi; Kohshima, Shiro

    2010-08-01

    Antarctic ice cores could preserve ancient airborne microorganisms. We examined bacteria in two Antarctic ice core samples, an interglacial age sample from Mizuho Base and a glacial age sample from the Yamato Mountains, by 16S rRNA gene sequencing analysis. Bacterial density, the number of bacterial OTUs and Simpson’s diversity index was larger in the Mizuho sample than in the Yamato sample. The 16S rDNA clone library from the Mizuho sample was dominated by the phylum Firmicutes, while the large part of that from the Yamato sample was composed of the Gamma proteobacteria group. Major sources of these identified bacteria estimated from their database records also differed between the samples: in the Mizuho sample bacterial species recorded from animals were higher than that of the Yamato sample, while in the Yamato sample bacteria from aquatic and snow-ice environments were higher than that of the Mizuho sample. The results suggest that these bacteria were past airborne bacteria that would vary in density, diversity and species composition depending on global environmental change. Our results imply that bacteria in Antarctic ice cores could be used as new environmental markers for past environmental studies.

  3. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. PMID:24245591

  4. [Antimicrobial susceptibilities of clinical Nocardia isolates identified by 16S rRNA gene sequence analysis].

    PubMed

    Uner, Mahmut Celalettin; Hasçelik, Gülşen; Müştak, Hamit Kaan

    2016-01-01

    Nocardia species are ubiquitous in the environment and responsible for various human infections such as pulmonary, cutaneous, central nervous system and disseminated nocardiosis. Since the clinical pictures and antimicrobial susceptibilities of Nocardia species exhibit variability, susceptibility testing is recommended for every Nocardia isolates. The aims of this study was to determine the antimicrobial susceptibilities of Nocardia clinical isolates and to compare the results of broth microdilution and disc diffusion susceptibility tests. A total of 45 clinical Nocardia isolates (isolated from 17 respiratory tract, 8 brain abscess, 7 pus, 3 skin, 3 conjunctiva, 2 blood, 2 tissue, 2 pleural fluid and 1 cerebrospinal fluid samples) were identified by using conventional methods and 16S rRNA gene sequence analysis. Susceptibility testing was performed for amikacin, ciprofloxacin, ceftriaxone, linezolid and trimethoprim-sulfamethoxazole (TMP-SMX) by broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) criteria recommended in 2011 approved standard (M24-A2) and disk diffusion method used as an alternative comparative susceptibility testing method. Among the 45 Nocardia strains, N.cyriacigeorgica (n: 26, 57.8%) was the most common species, followed by N.farcinica (n: 12, 26.7%), N.otitiscaviarum (n: 4, 8.9%), N.asteroides (n: 1, 2.2%), N.neocaledoniensis (n: 1, 2.2%) and N.abscessus (n: 1, 2.2%). Amikacin and linezolid were the only two antimicrobials to which all isolates were susceptible for both broth microdilution and disk diffusion tests. In broth microdilution test, resistance rates to TMP-SMX, ceftriaxone and ciprofloxacin were found as 15.6%, 37.8% and 84.4% respectively, whereas in the disk diffusion test, the highest resistance rate was observed against ciprofloxacin (n: 33, 73.3%), followed by TMP-SMX (n: 22, 48.9%) and ceftriaxone (n: 15, 33.3%). In both of these tests, N.cyriacigeorgica was the species with the

  5. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.

    PubMed

    Rooney, Alejandro P

    2004-09-01

    In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model. PMID:15175411

  6. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis. PMID:27407295

  7. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation.

    PubMed

    Montassier, Emmanuel; Batard, Eric; Massart, Sébastien; Gastinne, Thomas; Carton, Thomas; Caillon, Jocelyne; Le Fresne, Sophie; Caroff, Nathalie; Hardouin, Jean Benoit; Moreau, Philippe; Potel, Gilles; Le Vacon, Françoise; de La Cochetière, Marie France

    2014-04-01

    Gastrointestinal disturbances are a side-effect frequently associated with haematological malignancies due to the intensive cytotoxic treatment given in connection with bone marrow transplantation (BMT). However, intestinal microbiota changes during chemotherapy remain poorly described, probably due to the use of culture-based and low-resolution molecular methods in previous studies. The objective of our study was to apply a next generation DNA sequencing technology to analyse chemotherapy-induced changes in faecal microbiota. We included eight patients with non-Hodgkin's lymphoma undergoing one course of BMT conditioning chemotherapy. We collected a prechemotherapy faecal sample, the day before chemotherapy was initiated, and a postchemotherapy sample, collected 1 week after the initiation of chemotherapy. Total DNA was extracted from faecal samples, denaturing high-performance liquid chromatography based on amplification of the V6 to V8 region of the 16S ribosomal RNA (rRNA) gene, and 454-pyrosequencing of the 16 S rRNA gene, using PCR primers targeting the V5 and V6 hypervariable 16S rRNA gene regions were performed. Raw sequence data were screened, trimmed, and filtered using the QIIME pipeline. We observed a steep reduction in alpha diversity and significant differences in the composition of the intestinal microbiota in response to chemotherapy. Chemotherapy was associated with a drastic drop in Faecalibacterium and accompanied by an increase of Escherichia. The chemotherapy-induced shift in the intestinal microbiota could induce severe side effects in immunocompromised cancer patients. Our study is a first step in identifying patients at risk for gastrointestinal disturbances and to promote strategies to prevent this drastic shift in intestinal microbiota. PMID:24402367

  8. Reconstruction of phylogenetic relationships in dermatomycete genus Trichophyton Malmsten 1848 based on ribosomal internal transcribed spacer region, partial 28S rRNA and beta-tubulin genes sequences.

    PubMed

    Pchelin, Ivan M; Zlatogursky, Vasily V; Rudneva, Mariya V; Chilina, Galina A; Rezaei-Matehkolaei, Ali; Lavnikevich, Dmitry M; Vasilyeva, Natalya V; Taraskina, Anastasia E

    2016-09-01

    Trichophyton spp. are important causative agents of superficial mycoses. The phylogeny of the genus and accurate strain identification, based on the ribosomal ITS region sequencing, are still under development. The present work is aimed at (i) inferring the genus phylogeny from partial ITS, LSU and BT2 sequences (ii) description of ribosomal ITS region polymorphism in 15 strains of Trichophyton interdigitale. We performed DNA sequence-based species identification and phylogenetic analysis on 48 strains belonging to the genus Trichophyton. Phylogenetic relationships were inferred by maximum likelihood and Bayesian methods on concatenated ITS, LSU and BT2 sequences. Ribosomal ITS region polymorphisms were assessed directly on the alignment. By phylogenetic reconstruction, we reveal major anthropophilic and zoophilic species clusters in the genus Trichophyton. We describe several sequences of the ITS region of T. interdigitale, which do not fit in the traditional polymorphism scheme and propose emendations in this scheme for discrimination between ITS sequence types in T. interdigitale. The new polymorphism scheme will allow inclusion of a wider spectrum of isolates while retaining its explanatory power. This scheme was also found to be partially congruent with NTS typing technique. PMID:27071492

  9. Comparison of Genotypic and Phylogenetic Relationships of Environmental Enterococcus Isolates by BOX-PCR Typing and 16S rRNA Gene Sequencing ▿

    PubMed Central

    Nayak, Bina S.; Badgley, Brian; Harwood, Valerie J.

    2011-01-01

    Environmental Enterococcus spp. were compared by BOX-PCR genotyping and 16S rRNA gene sequencing to clarify the predictive relationship of BOX-PCR fingerprints to species designation. BOX-PCR and 16S rRNA gene relationships agreed for 77% of strains. BOX-PCR provided superior intraspecies discrimination but incorrectly identified some strains to the species level and divided some species into multiple groups. PMID:21622792

  10. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    PubMed

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin. PMID:20487023