Sample records for rrna gene mutations

  1. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    PubMed

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  2. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations

    PubMed Central

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-01-01

    AIM To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori (H. pylori) and determine their association with therapeutic failure. METHODS PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar’s test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. RESULTS 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori (κ = 0.71). CONCLUSION The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori. PMID:29662291

  3. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  4. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    PubMed

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  5. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    PubMed

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.

  6. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: evidence for a novel site of streptomycin resistance in the small subunit rRNA.

    PubMed

    Gauthier, A; Turmel, M; Lemieux, C

    1988-10-01

    A major obstacle to our understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.

  7. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  8. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy

    PubMed Central

    Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng

    2014-01-01

    Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055

  9. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    He, Xiangyu; Zhu, Xiaoyu; Wang, Xuexiang; Wang, Wei; Dai, Yu; Yan, Qingfeng

    2013-01-01

    The phenotypic manifestations of mitochondrial DNA (mtDNA) mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R) or P(R) 454) mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R))), the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S)), mto2(P(S)) and MTO2(P(R))). The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R)) strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  10. Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps

    PubMed Central

    Smircich, Pablo; Duhagon, María Ana; Garat, Beatriz

    2015-01-01

    In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes. PMID:26718450

  11. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.

  12. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium.

    PubMed

    Lee, Sae-Mi; Huh, Hee Jae; Song, Dong Joon; Shim, Hyang Jin; Park, Kyung Sun; Kang, Cheol-In; Ki, Chang-Seok; Lee, Nam Yong

    2017-12-01

    To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. Enterococcal isolates exhibiting linezolid MICs ≥4 mg l -1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.

  13. Novel variants of the 5S rRNA genes in Eruca sativa.

    PubMed

    Singh, K; Bhatia, S; Lakshmikumaran, M

    1994-02-01

    The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  15. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    PubMed

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  16. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination

  17. [Analysis of mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes in patients with nonsyndromic sensorineural hearing loss from various regions of Russia].

    PubMed

    Dzhemileva, L U; Posukh, O L; Tazetdinov, A M; Barashkov, N A; Zhuravskiĭ, S G; Ponidelko, S N; Markova, T G; Tadinova, V N; Fedorova, S A; Maksimova, N R; Khusnutdinova, E K

    2009-07-01

    Mitochondrial DNA (mtDNA) mutations play an important role in etiology of hereditary hearing loss. In various regions of the world, patients suffer from nonsyndromic sensorineural hearing loss initiated by aminoglycoside antibiotics. Mutations that had been shown as pathogenetically important for hearing function disturbance were identified in mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes while pathogenic role of several DNA sequences requires additional studies. This work presents the results of studying the spectrum of mutations and polymorphic variations in mtDNA genes 12S rRNA and tRNA(Ser(UGN)) in 410 patients with nonsyndromal sensoneural hearing impairment/loss from the Volga Ural region, St Petersburg, Yakutia, and Altai and in 520 individuals with normal hearing, which represent several ethnic groups (Russians, Tatars, Bashkirs, Yakuts, Altaians) residing in the Russian Federation. Pathogenetically significant mutation A1555G (12S rRNA) was found in two families (from Yakutia and St Peresburg) with hearing loss, probably caused by treatment with aminoglucosides, and in the population sample of Yakuts with a frequency of 0.83%. Further research is needed to confirm the role in hearing impairment of mutations 961insC, 961insC(n), 961delTinsC(n), T961G, T1095C (12S rRNA) and G7444A, A7445C (tRNA(Ser(UGN revealed in the patients. In addition, in the patients and the population groups, polymorphic mt DNA variants were detected, which are characteristic also of other Eurasian populations both in spectrum and frequency.

  18. Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication.

    PubMed

    Sasaki, Yohei; Fushimi, Hirotoshi; Cao, Hui; Cai, Shao-Qing; Komatsu, Katsuko

    2002-12-01

    The botanical origins of Chinese and Japanese Curcuma drugs were determined to be Curcuma longa, C. phaeocaulis, the Japanese population of C. zedoaria, C. kwangsiensis, C. wenyujin, and C. aromatica based on a comparison of their 18S rRNA gene and trnK gene sequences with those of six Curcuma species reported previously. Moreover, to develop a more convenient identification method, amplification-refractory mutation system (ARMS) analysis of both gene regions was performed on plants. The ARMS method for the 18S rRNA gene was established using two types of forward primers designed based on the nucleotide difference at position 234. When DNAs of four Curcuma species were used as templates, PCR amplification with either of the two primers only generated a fragment of 912 base pairs (bp). However, when DNAs of the purple-cloud type of C. kwangsiensis and C. wenyujin were used, PCR amplifications with both primers unexpectedly generated the fragment, suggesting that these two were heterozygotes. The ARMS method for the trnK gene was also established using a mixture of four types of specific reverse primers designed on the basis of base substitutions and indels among six species, and common reverse and forward primers. C. phaeocaulis or the Chinese population of C. zedoaria, the Japanese population of C. zedoaria or the purple-cloud type of C. kwangsiensis, the pubescent type of C. kwangsiensis or C. wenyujin, and C. aromatica were found to show specific fragments of 730, 185, 527 or 528, and 641 or 642 bp, respectively. All species including C. longa also showed a common fragment of 897-904 bp. Using both ARMS methods, together with information on producing areas, the identification of Curcuma plants was achieved. Moreover, the ARMS method for the trnK gene was also useful for authentication of Curcuma drugs.

  19. A novel RT-PCR for the detection of Helicobacter pylori and identification of clarithromycin resistance mediated by mutations in the 23S rRNA gene.

    PubMed

    Redondo, Javier Jareño; Keller, Peter M; Zbinden, Reinhard; Wagner, Karoline

    2018-01-01

    In this study we evaluated the commercially available LightMix® RT-PCR assay for Helicobacter pylori detection and identification of clarithromycin (CLR) resistance in culture and clinical specimens (gastric biopsies and stool). The H. pylori LightMix® RT-PCR detects a 97bp long fragment of the 23S rRNA gene and allows the identification of 3 distinct point mutations conferring CLR resistance via melting curve analysis. The performance of the H. pylori LightMix® RT-PCR was evaluated using a set of 60 H. pylori strains showing phenotypical CLR susceptibility or CLR resistance (Minimum inhibitory concentrations from 0.016 to 256mg/L). We found high concordance (95%) between phenotypical CLR resistance screening by E-Test® and the Lightmix® RT-PCR. Discrepant results were verified by sequencing of the 23S rRNA gene that always confirmed the results obtained by Lightmix® RT-PCR. Furthermore, H. pylori was detected in clinical biopsy and stool specimens by Lightmix® RT-PCR that identified the correct H. pylori genotype. The LightMix® RT-PCR is an accurate, sensitive and easy to use test for H. pylori and CLR resistance detection and can therefore be readily implemented in any diagnostic laboratory. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli.

    PubMed

    Triman, K; Becker, E; Dammel, C; Katz, J; Mori, H; Douthwaite, S; Yapijakis, C; Yoast, S; Noller, H F

    1989-10-20

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.

  1. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?

    PubMed

    Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T

    2018-03-15

    The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA

  2. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    PubMed

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  3. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes

    PubMed Central

    Németh, Attila; Guibert, Sylvain; Tiwari, Vijay Kumar; Ohlsson, Rolf; Längst, Gernot

    2008-01-01

    Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes. PMID:18354495

  4. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  5. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  6. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.

    PubMed

    Yokoyama, Keiko; Doi, Yohei; Yamane, Kunikazu; Kurokawa, Hiroshi; Shibata, Naohiro; Shibayama, Keigo; Yagi, Tetsuya; Kato, Haru; Arakawa, Yoshichika

    2003-12-06

    Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.

  7. Detection of Verrucomicrobia in a Pasture Soil by PCR-Mediated Amplification of 16S rRNA Genes

    PubMed Central

    O’Farrell, Katrina A.; Janssen, Peter H.

    1999-01-01

    Oligonucleotide primers were designed and used to amplify, by PCR, partial 16S rRNA genes of members of the bacterial division Verrucomicrobia in DNA extracted from a pasture soil. By applying most-probable-number theory to the assay, verrucomicrobia appeared to contribute some 0.2% of the soil DNA. Amplified ribosomal DNA restriction analysis of 53 cloned PCR-amplified partial 16S rRNA gene fragments and comparative sequence analysis of 21 nonchimeric partial 16S rRNA genes showed that these primers amplified only 16S rRNA genes of members of the Verrucomicrobia in DNA extracted from the soil. PMID:10473454

  8. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  9. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  10. The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes.

    PubMed Central

    Robinett, C C; O'Connor, A; Dunaway, M

    1997-01-01

    We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359

  11. The role of the mitochondrial ribosome in human disease: searching for mutations in 12S mitochondrial rRNA with high disruptive potential

    PubMed Central

    Smith, Paul M.; Elson, Joanna L.; Greaves, Laura C.; Wortmann, Saskia B.; Rodenburg, Richard J.T.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2014-01-01

    Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool. PMID:24092330

  12. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  14. Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    PubMed Central

    Al Sheikh, Yazeed A.; Marie, Mohammed Ali M.; John, James; Krishnappa, Lakshmana Gowda; Dabwab, Khaled Homoud M.

    2014-01-01

    Background Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae. PMID:25005152

  15. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    PubMed

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  16. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  17. Frameshift mutations of TAF1C gene, a core component for transcription by RNA polymerase I, and its regional heterogeneity in gastric and colorectal cancers.

    PubMed

    Oh, Hye Rim; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung

    2015-02-01

    Initiation of transcription for ribosomal RNA (rRNA) by RNA polymerase I requires TATA-binding protein (TBP) and TBP-associated factors (TAF1A, TAF1B and TAF1C). p53 tumour suppressor inhibits rRNA transcription by blocking TAF1C-UBF interaction, but alterations of TAF1C itself in tumorigenesis remain unknown. The aim of this study was to explore whether TAF1C gene was mutated in gastric (GC) and colorectal cancers (CRC).In a public database, we found that TAF1C gene had a mononucleotide repeat (C8) in the coding sequences that might be a mutation target in the cancers with microsatellite instability (MSI). We analysed 79 GC and 124 CRC by single-strand conformation polymorphism and DNA sequencing analyses. In this study, we found TAF1C frameshift mutations (8.8% of GC and 10.1% of CRC with MSI-H), which were not found in stable MSI/low MSI (MSS/MSI-L) (0/90). In addition, we analysed intratumoural heterogeneity (ITH) of TAF1C frameshift mutations in 16 CRC and found that three CRC (18.8%) harboured regional ITH of the TAF1C frameshift mutations. Our results indicate that TAF1C gene harboured not only somatic frameshift mutations but also the mutational ITH, which together might play a role in tumourigenesis of GC and CRC. Our data also suggest that multi-regional mutation analysis is needed for a better evaluation of the mutation status in CRC.

  18. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    PubMed

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. Copyright © 2011. Published by Elsevier Ltd.

  19. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    PubMed Central

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  20. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  1. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  2. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  3. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils.

    PubMed

    Duan, Y P; Castro, H F; Hewlett, T E; White, J H; Ogram, A V

    2003-01-01

    Various bacterial species in the genus Pasteuria have great potential as biocontrol agents against plant-parasitic nematodes, although study of this important genus is hampered by the current inability to cultivate Pasteuria species outside their host. To aid in the study of this genus, an extensive 16S rRNA gene sequence phylogeny was constructed and this information was used to develop cultivation-independent methods for detection of Pasteuria in soils and nematodes. Thirty new clones of Pasteuria 16S rRNA genes were obtained directly from nematodes and soil samples. These were sequenced and used to construct an extensive phylogeny of this genus. These sequences were divided into two deeply branching clades within the low-G + C, Gram-positive division; some sequences appear to represent novel species within the genus Pasteuria. In addition, a surprising degree of 16S rRNA gene sequence diversity was observed within what had previously been designated a single strain of Pasteuria penetrans (P-20). PCR primers specific to Pasteuria 16S rRNA for detection of Pasteuria in soils were also designed and evaluated. Detection limits for soil DNA were 100-10,000 Pasteuria endospores (g soil)(-1).

  4. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed. PMID:9096413

  5. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  6. The Role of 16S rRNA Gene Sequencing in Identification of Microorganisms Misidentified by Conventional Methods

    PubMed Central

    Petti, C. A.; Polage, C. R.; Schreckenberger, P.

    2005-01-01

    Traditional methods for microbial identification require the recognition of differences in morphology, growth, enzymatic activity, and metabolism to define genera and species. Full and partial 16S rRNA gene sequencing methods have emerged as useful tools for identifying phenotypically aberrant microorganisms. We report on three bacterial blood isolates from three different College of American Pathologists-certified laboratories that were referred to ARUP Laboratories for definitive identification. Because phenotypic identification suggested unusual organisms not typically associated with the submitted clinical diagnosis, consultation with the Medical Director was sought and further testing was performed including partial 16S rRNA gene sequencing. All three patients had endocarditis, and conventional methods identified isolates from patients A, B, and C as a Facklamia sp., Eubacterium tenue, and a Bifidobacterium sp. 16S rRNA gene sequencing identified the isolates as Enterococcus faecalis, Cardiobacterium valvarum, and Streptococcus mutans, respectively. We conclude that the initial identifications of these three isolates were erroneous, may have misled clinicians, and potentially impacted patient care. 16S rRNA gene sequencing is a more objective identification tool, unaffected by phenotypic variation or technologist bias, and has the potential to reduce laboratory errors. PMID:16333109

  7. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    PubMed

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2017-03-17

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking.

    PubMed Central

    Stancheva, I; Lucchini, R; Koller, T; Sogo, J M

    1997-01-01

    By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity. PMID:9108154

  9. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer.

    PubMed

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-04-01

    Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. To identify recurrent somatic mutations with prognostic significance in patients with CRC. Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket.

    PubMed

    Long, Katherine S; Poehlsgaard, Jacob; Hansen, Lykke H; Hobbie, Sven N; Böttger, Erik C; Vester, Birte

    2009-03-01

    Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.

  11. Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes

    PubMed Central

    Watkins-Chow, Dawn E.; Cooke, Joanna; Pidsley, Ruth; Edwards, Andrew; Slotkin, Rebecca; Leeds, Karen E.; Mullen, Raymond; Baxter, Laura L.; Campbell, Thomas G.; Salzer, Marion C.; Biondini, Laura; Gibney, Gretchen; Phan Dinh Tuy, Françoise; Chelly, Jamel; Morris, H. Douglas; Riegler, Johannes; Lythgoe, Mark F.; Arkell, Ruth M.; Loreni, Fabrizio; Flint, Jonathan

    2013-01-01

    The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7Mtu and Rps7Zma) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes. PMID:23382688

  12. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice.

    PubMed

    Jenkins, Claire; Ling, Clare L; Ciesielczuk, Holly L; Lockwood, Julianne; Hopkins, Susan; McHugh, Timothy D; Gillespie, Stephen H; Kibbler, Christopher C

    2012-04-01

    Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.

  13. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. © 2015 IUMS.

  14. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome

    PubMed Central

    Garone, Caterina; D’Souza, Aaron R; Dallabona, Cristina; Lodi, Tiziana; Rebelo-Guiomar, Pedro; Rorbach, Joanna; Donati, Maria Alice; Procopio, Elena; Montomoli, Martino; Guerrini, Renzo; Zeviani, Massimo; Calvo, Sarah E; Mootha, Vamsi K; DiMauro, Salvatore; Ferrero, Ileana; Minczuk, Michal

    2017-01-01

    Abstract Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2’-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2’-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation. PMID:28973171

  15. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome.

    PubMed

    Garone, Caterina; D'Souza, Aaron R; Dallabona, Cristina; Lodi, Tiziana; Rebelo-Guiomar, Pedro; Rorbach, Joanna; Donati, Maria Alice; Procopio, Elena; Montomoli, Martino; Guerrini, Renzo; Zeviani, Massimo; Calvo, Sarah E; Mootha, Vamsi K; DiMauro, Salvatore; Ferrero, Ileana; Minczuk, Michal

    2017-11-01

    Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation. © The Author 2017. Published by Oxford University Press.

  16. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiping; Zhou Xiangtian; Yang Li

    2007-06-15

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, themore » coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.« less

  17. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  18. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing

    PubMed Central

    Tourlousse, Dieter M.; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro

    2017-01-01

    Abstract High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. PMID:27980100

  19. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. GENETIC MUTATIONS AFFECTING THE FIRST LINE ERADICATION THERAPY OF Helicobacter pylori-INFECTED EGYPTIAN PATIENTS.

    PubMed

    Ramzy, Iman; Elgarem, Hassan; Hamza, Iman; Ghaith, Doaa; Elbaz, Tamer; Elhosary, Waleed; Mostafa, Gehan; Elzahry, Mohammad A Mohey Eldin

    2016-12-08

    Several genetic mutations affect the first-line triple therapy for Helicobacter pylori. We aimed to study the most common genetic mutations affecting the metronidazole and clarithromycin therapy for H. pylori-infected Egyptian patients. In our study, we included 100 successive dyspeptic patients scheduled for diagnosis through upper gastroscopy at Cairo's University Hospital, Egypt. Gastric biopsies were tested for the presence of H. pylori by detection of the 16S rRNA gene. Positive biopsies were further studied for the presence of the rdxA gene deletion by Polymerase Chain Reaction (PCR), while clarithromycin resistance was investigated by the presence of nucleotide substitutions within H. pylori 23S rRNA V domain using MboII and BsaI to carry out a Restricted Fragment Length Polymorphism (RFLP) assay. Among 70 H. pylori positive biopsies, the rdxA gene deletion was detected in 44/70 (62.9%) samples, while predominance of the A2142G mutations within the H. pylori 23S rRNA V domain was evidenced in 39/70 (55.7%) of the positive H. pylori cases. No statistically significant difference was found between the presence of gene mutations and different factors such as patients 'age, gender, geographic distribution, symptoms and endoscopic findings. Infection with mutated H. pylori strains is considerably high, a finding that imposes care in the use of the triple therapy to treat H. pylori in Egypt, since the guidelines recommend to abandon the standard triple therapy when the primary clarithromycin resistance rate is over 20%1.

  1. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  2. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing.

    PubMed

    Tourlousse, Dieter M; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro; Sekiguchi, Yuji

    2017-02-28

    High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Prevalence of 16S rRNA methylase genes in Klebsiella pneumoniae isolates from a Chinese teaching hospital: coexistence of rmtB and armA genes in the same isolate.

    PubMed

    Yu, Fangyou; Wang, Liangxing; Pan, Jingye; Yao, Dan; Chen, Chan; Zhu, Tao; Lou, Qiang; Hu, Jian; Wu, Yang; Zhang, Xueqing; Chen, Zengqiang; Qu, Di

    2009-05-01

    16S rRNA methylase-mediated high-level resistance to aminoglycosides has been reported recently in clinical isolates of Gram-negative bacilli from several countries. Twenty-one (6.2%, 21/337) of 337 isolates of Klebsiella pneumoniae from a teaching hospital in Wenzhou, China, were positive for 16S rRNA methylase genes (3 for armA, 13 for rmtB, 5 for both armA and rmtB) and highly resistant to gentamicin, amikacin, and tobramycin (MICs, > or =256 microg/mL). Nineteen of 21 isolates harboring 16S rRNA methyalse genes were extended-spectrum beta-lactamase (ESBL) producers. The plasmids harboring 16S rRNA methylase genes from 14 of 21 donors were transferred into the recipients, Escherichia coli J53. The armA and the rmtB usually coexisted with ESBL genes in the same isolate in clinical isolates and cotransferred with ESBL genes on a self-transmissible conjugative plasmid to the recipients. Among 5 isolates harboring both armA and rmtB, the armA genes were located on the chromosomes, and the rmtB genes were located on the plasmids, as determined by Southern hybridization. The result of pulsed-field gel electrophoresis showed that horizontal gene transfer and clonal spread were responsible for the dissemination of the rmtB and the armA genes. 16S rRNA methylase-producing isolates of Klebsiella pneumoniae were commonly identified in the Chinese teaching hospital with coexistence of rmtB and armA genes in the same isolate.

  4. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    PubMed

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  5. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.

    PubMed Central

    Dron, M; Rahire, M; Rochaix, J D

    1982-01-01

    The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related. Images PMID:6296784

  6. [Study of gene mutation in 62 hemophilia A children].

    PubMed

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  7. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  8. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae.

    PubMed

    Krieger, Jeannette; Hett, Anne Kathrin; Fuerst, Paul A; Birstein, Vadim J; Ludwig, Arne

    2006-01-01

    Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.

  9. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  10. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    PubMed

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  11. Theileria sp. Infections Associated with Bovine Fatalities in the United States Confirmed by Small-Subunit rRNA Gene Analyses of Blood and Tick Samples

    PubMed Central

    Chae, Joon-seok; Levy, Michael; Hunt, John; Schlater, Jack; Snider, Glen; Waghela, Suryakant D.; Holman, Patricia J.; Wagner, G. Gale

    1999-01-01

    Theileria sp.-specific small subunit (SSU) rRNA gene amplification confirmed the presence of the organism in cattle and in Amblyomma americanum and Dermacentor variabilis ticks collected from a cattle herd in Missouri. Blood from the index animal had type A and type D Theileria SSU rRNA genes. The type D gene was also found in blood from two cohort cattle and tick tissues. The type A SSU rRNA gene was previously reported from bovine Theileria isolates from Texas and North Carolina; the type D gene was reported from a Texas cow with theileriosis. PMID:10449501

  12. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580 bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517–596 bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  14. Hereditary cancer genes are highly susceptible to splicing mutations

    PubMed Central

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  15. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    PubMed

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  16. Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands.

    PubMed

    Vincent, John B; Kolozsvari, Debbie; Roberts, Wendy S; Bolton, Patrick F; Gurling, Hugh M D; Scherer, Stephen W

    2004-08-15

    Autism, a childhood neuropsychiatric disorder with a strong genetic component, is currently the focus of considerable attention within the field of human genetics as well many other medical-related disciplines. A recent study has implicated two X-chromosomal neuroligin genes, NLGN3 and NLGN4, as having an etiological role in autism, having identified a frameshift mutation in one gene and a substitution mutation in the other, segregating in multiplex autism spectrum families (Jamain et al. [2003: Nat Genet 34:27-29]). The function of neuroligin as a trigger for synapse formation would suggest that such mutations would likely result in some form of pathological manifestation. Our own study, screening a larger sample of 196 autism probands, failed to identify any mutations that would affect the coding regions of these genes. Our findings suggest that mutations in these two genes are infrequent in autism. Copyright 2004 Wiley-Liss, Inc.

  17. A comparative study of COI and 16 S rRNA genes for DNA barcoding of cultivable carps in India.

    PubMed

    Mohanty, Mausumee; Jayasankar, Pallipuram; Sahoo, Lakshman; Das, Paramananda

    2015-02-01

    The 5' region of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) is the standard marker for DNA barcoding. However, 16 S rRNA has also been advocated for DNA barcoding in many animal species. Herein, we directly compare the usefulness of COI and 16 S rRNA in discriminating six cultivable carp species: Labeo rohita, Catla catla, Cirrhinus mrigala, Labeo fimbriatus, Labeo bata and Cirrhinus reba from India. Analysis of partial sequences of these two gene fragments from 171 individuals indicated close genetic relationship between Catla catla and Labeo rohita. The results of the present study indicated COI to be more useful than 16 S rRNA for DNA barcoding of Indian carps.

  18. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  19. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene.

    PubMed

    da Mota, F F; Gomes, E A; Paiva, E; Rosado, A S; Seldin, L

    2004-01-01

    To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.

  20. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  1. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  2. rRNA gene restriction patterns as an epidemiological marker in nosocomial outbreaks of Staphylococcus aureus infections.

    PubMed

    Meugnier, H; Fernandez, M P; Bes, M; Brun, Y; Bornstein, N; Freney, J; Fleurette, J

    1993-01-01

    rRNA gene restriction patterns (ribotyping) were compared with phage typing, serotyping, enterotoxins and exfoliatin production in the analysis of 26 Staphylococcus aureus strains isolated from two different nosocomial outbreaks. Total DNA was cleaved by EcoRI restriction endonuclease. After agarose gel electrophoresis and Southern transfer, the hybridization of the membranes was done with radiolabelled 16S rRNA gene from Bacillus subtilis inserted into a plasmid vector. Six to 13 fragments were visualized. A core of common fragments was discerned for all strains tested. A full correlation between ribotyping and conventional markers was observed in only one of the outbreaks studied. In both outbreaks, ribotyping proved helpful in characterizing otherwise untypable strains.

  3. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    PubMed

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  4. Nucleosome Translational Position, Not Histone Acetylation, Determines TFIIIA Binding to Nucleosomal Xenopus laevis 5S rRNA Genes

    PubMed Central

    Howe, LeAnn; Ausió, Juan

    1998-01-01

    We sought to study the binding constraints placed on the nine-zinc-finger protein transcription factor IIIA (TFIIIA) by a histone octamer. To this end, five overlapping fragments of the Xenopus laevis oocyte and somatic 5S rRNA genes were reconstituted into nucleosomes, and it was subsequently shown that nucleosome translational positioning is a major determinant of the binding of TFIIIA to the 5S rRNA genes. Furthermore, it was found that histone acetylation cannot override the TFIIIA binding constraints imposed by unfavorable translational positions. PMID:9488430

  5. Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer

    PubMed Central

    Yurgelun, Matthew B.; Kulke, Matthew H.; Fuchs, Charles S.; Allen, Brian A.; Uno, Hajime; Hornick, Jason L.; Ukaegbu, Chinedu I.; Brais, Lauren K.; McNamara, Philip G.; Mayer, Robert J.; Schrag, Deborah; Meyerhardt, Jeffrey A.; Ng, Kimmie; Kidd, John; Singh, Nanda; Hartman, Anne-Renee; Wenstrup, Richard J.

    2017-01-01

    Purpose Hereditary factors play an important role in colorectal cancer (CRC) risk, yet the prevalence of germline cancer susceptibility gene mutations in patients with CRC unselected for high-risk features (eg, early age at diagnosis, personal/family history of cancer or polyps, tumor microsatellite instability [MSI], mismatch repair [MMR] deficiency) is unknown. Patients and Methods We recruited 1,058 participants who received CRC care in a clinic-based setting without preselection for age at diagnosis, personal/family history, or MSI/MMR results. All participants underwent germline testing for mutations in 25 genes associated with inherited cancer risk. Each gene was categorized as high penetrance or moderate penetrance on the basis of published estimates of the lifetime cancer risks conferred by pathogenic germline mutations in that gene. Results One hundred five (9.9%; 95% CI, 8.2% to 11.9%) of 1,058 participants carried one or more pathogenic mutations, including 33 (3.1%) with Lynch syndrome (LS). Twenty-eight (96.6%) of 29 available LS CRCs demonstrated abnormal MSI/MMR results. Seventy-four (7.0%) of 1,058 participants carried non-LS gene mutations, including 23 (2.2%) with mutations in high-penetrance genes (five APC, three biallelic MUTYH, 11 BRCA1/2, two PALB2, one CDKN2A, and one TP53), 15 of whom lacked clinical histories suggestive of their underlying mutation. Thirty-eight (3.6%) participants had moderate-penetrance CRC risk gene mutations (19 monoallelic MUTYH, 17 APC*I1307K, two CHEK2). Neither proband age at CRC diagnosis, family history of CRC, nor personal history of other cancers significantly predicted the presence of pathogenic mutations in non-LS genes. Conclusion Germline cancer susceptibility gene mutations are carried by 9.9% of patients with CRC. MSI/MMR testing reliably identifies LS probands, although 7.0% of patients with CRC carry non-LS mutations, including 1.0% with BRCA1/2 mutations. PMID:28135145

  6. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    PubMed Central

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  7. Detection of a mixed infection in a culture-negative brain abscess by broad-spectrum bacterial 16S rRNA gene PCR.

    PubMed

    Keller, Peter M; Rampini, Silvana K; Bloemberg, Guido V

    2010-06-01

    We describe the identification of two bacterial pathogens from a culture-negative brain abscess by the use of broad-spectrum 16S rRNA gene PCR. Simultaneous detection of Fusobacterium nucleatum and Porphyromonas endodontalis was possible due to a 24-bp length difference of their partially amplified 16S rRNA genes, which allowed separation by high-resolution polyacrylamide gel electrophoresis.

  8. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  9. Novel recurrently mutated genes in African American colon cancers.

    PubMed

    Guda, Kishore; Veigl, Martina L; Varadan, Vinay; Nosrati, Arman; Ravi, Lakshmeswari; Lutterbaugh, James; Beard, Lydia; Willson, James K V; Sedwick, W David; Wang, Zhenghe John; Molyneaux, Neil; Miron, Alexander; Adams, Mark D; Elston, Robert C; Markowitz, Sanford D; Willis, Joseph E

    2015-01-27

    We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors.

  10. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    PubMed

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  11. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  12. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite

  13. Tandem repeats of the 5' non-transcribed spacer of Tetrahymena rDNA function as high copy number autonomous replicons in the macronucleus but do not prevent rRNA gene dosage regulation.

    PubMed Central

    Pan, W J; Blackburn, E H

    1995-01-01

    The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number. Images PMID:7784211

  14. Mutation profile of BBS genes in Iranian patients with Bardet-Biedl syndrome: genetic characterization and report of nine novel mutations in five BBS genes.

    PubMed

    Fattahi, Zohreh; Rostami, Parvin; Najmabadi, Amin; Mohseni, Marzieh; Kahrizi, Kimia; Akbari, Mohammad Reza; Kariminejad, Ariana; Najmabadi, Hossein

    2014-07-01

    Bardet-Biedl syndrome (BBS) is a rare ciliopathy disorder that is clinically and genetically heterogeneous with 18 known genes. This study was performed to characterize responsible genes and mutation spectrum in a cohort of 14 Iranian families with BBS. Sanger sequencing of the most commonly mutated genes (BBS1, BBS2 and BBS10) accounting for ∼50% of BBS patients determined mutations only in BBS2, including three novel mutations. Next, three of the remaining patients were subjected to whole exome sequencing with 96% at 20 × depth of coverage that revealed novel BBS4 mutation. Observation of no mutation in the other patients represents the possible presence of novel genes. Screening of the remaining patients for six other genes (BBS3, BBS4, BBS6, BBS7, BBS9 and BBS12) revealed five novel mutations. This result represents another indication for the genetic heterogeneity of BBS and extends the mutational spectrum of the disease by introducing nine novel mutations in five BBS genes. In conclusion, although BBS1 and BBS10 are among the most commonly mutated genes in other populations like Caucasian, these two seem not to have an important role in Iranian patients. This suggests that a different strategy in molecular genetics diagnostic approaches in Middle Eastern countries such as Iran should be considered.

  15. Glucokinase gene mutations (MODY 2) in Asian Indians.

    PubMed

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is <1:1,517. This is the first study of MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  16. HFE gene mutations and Wilson's disease in Sardinia.

    PubMed

    Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi

    2010-03-01

    Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (P<0.02) and transferrin saturation index (P<0.03). After treatment period, iron indices were significantly decreased only in HFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.

  17. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  18. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys

    PubMed Central

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira, and Thalassolituus, as well as the Alphaproteobacterial genus Thalassospira. Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys. PMID:28567035

  19. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    PubMed

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira , and Thalassolituus , as well as the Alphaproteobacterial genus Thalassospira . Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  20. Linezolid-resistant Staphylococcus haemolyticus and Staphylococcus hominis: single and double mutations at the domain V of 23S rRNA among isolates from a Rio de Janeiro hospital.

    PubMed

    Chamon, Raiane Cardoso; Iorio, Natalia Lopes Pontes; Cavalcante, Fernanda Sampaio; Teodoro, Cristiane R S; de Oliveira, Ana Paula Chaves; Maia, Fernanda; dos Santos, Kátia Regina Netto

    2014-12-01

    In this work, the molecular and phenotypic antimicrobial resistance and clonal diversity of 10 linezolid-resistant Staphylococcus spp. isolates were investigated. The 7 Staphylococcus haemolyticus isolates presented Staphylococcal cassete chromosome mec (SCCmec) V and belonged to the same pulsed-field gel electrophoresis pulsotype. Their MICs for oxacillin, vancomycin, and linezolid were ≥ 256 μg/mL, 1-4 μg/mL, and 8-16 μg/mL, respectively. The 3 S. hominis presented MIC values 32 to >256 μg/mL, 2-4 μg/mL, and 12-24 μg/mL, and all carried the nontypeable SCCmec (ccr1 + mecA class) and belonged to 2 different genotypes. The cfr gene was not found, but the mutation G2603T was detected in S. haemolyticus and C2190T and G2603T in Staphylococcus hominis in 23S rRNA. This study demonstrates the spread of a linezolid-resistant S. haemolyticus genotype and, for the first time, describes the mutation C2190T among S. hominis isolates with a double mutation in Brazil. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [FANCA gene mutation analysis in Fanconi anemia patients].

    PubMed

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  2. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor.

    PubMed

    Dong, Chongmei; Vincent, Kate; Sharp, Peter

    2009-12-04

    TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here

  3. Modeling Autism by SHANK Gene Mutations in Mice

    PubMed Central

    Jiang, Yong-hui; Ehlers, Michael D.

    2013-01-01

    Summary Shank family proteins (Shank1, Shank2, and Shank3) are synaptic scaffolding proteins that organize an extensive protein complex at the postsynaptic density (PSD) of excitatory glutamatergic synapses. Recent human genetic studies indicate that SHANK family genes (SHANK1, SHANK2, and SHANK3) are causative genes for idiopathic autism spectrum disorders (ASD). Neurobiological studies of Shank mutations in mice support a general hypothesis of synaptic dysfunction in the pathophysiology of ASD. However, the molecular diversity of SHANK family gene products, as well as the heterogeneity in human and mouse phenotypes, pose challenges to modeling human SHANK mutations. Here, we review the molecular genetics of SHANK mutations in human ASD and discuss recent findings where such mutations have been modeled in mice. Conserved features of synaptic dysfunction and corresponding behaviors in Shank mouse mutants may help dissect the pathophysiology of ASD, but also highlight divergent phenotypes that arise from different mutations in the same gene. PMID:23583105

  4. Identification of an Alternative rRNA Post-transcriptional Maturation of 26S rRNA in the Kingdom Fungi.

    PubMed

    Navarro-Ródenas, Alfonso; Carra, Andrea; Morte, Asunción

    2018-01-01

    Despite of the integrity of their RNA, some desert truffles present a non-canonical profile of rRNA where 3.3 kb is absent, 1.8 kb is clear and a band of 1.6 kb is observed. A similar rRNA profile was identified in organisms belonging to different life kingdoms, with the exception of the Kingdom Fungi, as a result of a split LSU rRNA called hidden gap . rRNA profiles of desert truffles were analyzed to verify the presence of the non-canonical profile. The RNA of desert truffles and yeast were blotted and hybridized with probes complementary to LSU extremes. RACE of LSU rRNA was carried out to determine the LSU rRNA breakage point. LSU rRNA of desert truffles presents a post-transcriptional cleavage of five nucleotides that generates a hidden gap located in domain D7. LSU splits into two molecules of 1.6 and 1.8 kb. Similar to other organisms, a UAAU tract, downstream of the breakage point, was identified. Phylogenetic comparison suggests that during fungi evolution mutations were introduced in the hypervariable D7 domain, resulting in a sequence that is specifically post-transcriptionally cleaved in some desert truffles.

  5. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    PubMed

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  6. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition.

    PubMed

    Valinsky, Lea; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2002-12-01

    Thorough assessments of fungal diversity are currently hindered by technological limitations. Here we describe a new method for identifying fungi, oligonucleotide fingerprinting of rRNA genes (OFRG). ORFG sorts arrayed rRNA gene (ribosomal DNA [rDNA]) clones into taxonomic clusters through a series of hybridization experiments, each using a single oligonucleotide probe. A simulated annealing algorithm was used to design an OFRG probe set for fungal rDNA. Analysis of 1,536 fungal rDNA clones derived from soil generated 455 clusters. A pairwise sequence analysis showed that clones with average sequence identities of 99.2% were grouped into the same cluster. To examine the accuracy of the taxonomic identities produced by this OFRG experiment, we determined the nucleotide sequences for 117 clones distributed throughout the tree. For all but two of these clones, the taxonomic identities generated by this OFRG experiment were consistent with those generated by a nucleotide sequence analysis. Eighty-eight percent of the clones were affiliated with Ascomycota, while 12% belonged to BASIDIOMYCOTA: A large fraction of the clones were affiliated with the genera Fusarium (404 clones) and Raciborskiomyces (176 clones). Smaller assemblages of clones had high sequence identities to the Alternaria, Ascobolus, Chaetomium, Cryptococcus, and Rhizoctonia clades.

  7. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    PubMed

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  8. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  9. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    PubMed

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J; Vaulot, Daniel

    2011-04-28

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  10. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  11. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  12. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  13. Adjusting for background mutation frequency biases improves the identification of cancer driver genes.

    PubMed

    Evans, Perry; Avey, Stefan; Kong, Yong; Krauthammer, Michael

    2013-09-01

    A common goal of tumor sequencing projects is finding genes whose mutations are selected for during tumor development. This is accomplished by choosing genes that have more non-synonymous mutations than expected from an estimated background mutation frequency. While this background frequency is unknown, it can be estimated using both the observed synonymous mutation frequency and the non-synonymous to synonymous mutation ratio. The synonymous mutation frequency can be determined across all genes or in a gene-specific manner. This choice introduces an interesting trade-off. A gene-specific frequency adjusts for an underlying mutation bias, but is difficult to estimate given missing synonymous mutation counts. Using a genome-wide synonymous frequency is more robust, but is less suited for adjusting biases. Studying four evaluation criteria for identifying genes with high non-synonymous mutation burden (reflecting preferential selection of expressed genes, genes with mutations in conserved bases, genes with many protein interactions, and genes that show loss of heterozygosity), we find that the gene-specific synonymous frequency is superior in the gene expression and protein interaction tests. In conclusion, the use of the gene-specific synonymous mutation frequency is well suited for assessing a gene's non-synonymous mutation burden.

  14. Spectrum of Mutations in Hypertrophic Cardiomyopathy Genes Among Tunisian Patients.

    PubMed

    Jaafar, Nawel; Gómez, Juan; Kammoun, Ikram; Zairi, Ihsen; Amara, Wael Ben; Kachboura, Salem; Kraiem, Sondes; Hammami, Mohamed; Iglesias, Sara; Alonso, Belén; Coto, Eliecer

    2016-11-01

    Hypertrophic cardiomyopathy (HCM) is a common cardiac genetic disorder associated with heart failure and sudden death. Mutations in the cardiac sarcomere genes are found in approximately half of HCM patients and are more common among cases with a family history of the disease. Data about the mutational spectrum of the sarcomeric genes in HCM patients from Northern Africa are limited. The population of Tunisia is particularly interesting due to its Berber genetic background. As founder mutations have been reported in other disorders. We performed semiconductor chip (Ion Torrent PGM) next generation sequencing of the nine main sarcomeric genes (MYH7, MYBPC3, TNNT2, TNNI3, ACTC1, TNNC1, MYL2, MYL3, TPM1) as well as the recently identified as an HCM gene, FLNC, in 45 Tunisian HCM patients. We found sarcomere gene polymorphisms in 12 patients (27%), with MYBPC3 and MYH7 representing 83% (10/12) of the mutations. One patient was homozygous for a new MYL3 mutation and two were double MYBPC3 + MYH7 mutation carriers. Screening of the FLNC gene identified three new mutations, which points to FLNC mutations as an important cause of HCM among Tunisians. The mutational background of HCM in Tunisia is heterogeneous. Unlike other Mendelian disorders, there were no highly prevalent mutations that could explain most of the cases. Our study also suggested that FLNC mutations may play a role on the risk for HCM among Tunisians.

  15. Gene mutations in children with chronic pancreatitis.

    PubMed

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  16. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    PubMed

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  17. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids.

  18. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    PubMed

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  19. [Maple syrup urine disease and gene mutations in twin neonates].

    PubMed

    Li, Tao; Wang, Yu; Li, Cui; Xu, Wei-Wei; Niu, Feng-Hai; Zhang, Di

    2016-12-01

    To investigate the clinical features of one pair of twin neonates with maple syrup urine disease (MSUD) in the Chinese Han population and pathogenic mutations in related genes, and to provide guidance for the early diagnosis and treatment of MSUD. The clinical and imaging data of the twin neonates were collected. The peripheral blood samples were collected from the twin neonates and their parents to detect the genes related to MSUD (BCKDHA, BCKDHB, DBT, and DLD). The loci with gene mutations were identified, and a bioinformatic analysis was performed. Two mutations were detected in the BCKDHB gene, missense mutation c.304G>A (p.Gly102Arg) and nonsense mutation c.331C>T (p.Arg111*), and both of them were heterozygotes. The mutation c.304G>A (p.Gly102Arg) had not been reported in the world. Their father carried the missense mutation c.304G>A (p.Gly102Arg), and their mother carried the nonsense mutation c.331C>T (p.Arg111*). The c.331C>T (p.Arg111*) heterozygous mutation in BCKDHB gene is the pathogenic mutation in these twin neonates and provides a genetic and molecular basis for the clinical features of children with MSUD.

  20. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: comparison of prevalences and partial 16S rRNA gene variants in urban, pasture, and natural habitats.

    PubMed

    Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-03-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected.

  1. Three Cases of Anaerobiospirillum succiniciproducens Bacteremia Confirmed by 16S rRNA Gene Sequencing

    PubMed Central

    Tee, Wee; Korman, Tony M.; Waters, Mary Jo; Macphee, Andrew; Jenney, Adam; Joyce, Linda; Dyall-Smith, Michael L.

    1998-01-01

    We describe three cases of Anaerobiospirillum succiniciproducens bacteremia from Australia. We believe one of these cases represents the first report of A. succiniciproducens bacteremia in a human immunodeficiency virus (HIV)-infected individual. The other two patients had an underlying disorder (one patient had bleeding esophageal varices complicating alcohol liver disease and one patient had non-Hodgkin’s lymphoma). A motile, gram-negative, spiral anaerobe was isolated by culturing blood from all patients. Electron microscopy showed a curved bacterium with bipolar tufts of flagella resembling Anaerobiospirillum spp. Sequencing of the 16S rRNA genes of the isolates revealed no close relatives (organisms likely to be in the same genus) in the sequence databases, nor were any sequence data available for A. succiniciproducens. This report presents for the first time the 16S rRNA gene sequence of the type strain of A. succiniciproducens, strain ATCC 29305. Two of the three clinical isolates have sequences identical to that of the type strain, while the sequence of the other strain differs from that of the type strain at 4 nucleotides. PMID:9574678

  2. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  3. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-06-23

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.

  4. Detection of a Mixed Infection in a Culture-Negative Brain Abscess by Broad-Spectrum Bacterial 16S rRNA Gene PCR ▿ †

    PubMed Central

    Keller, Peter M.; Rampini, Silvana K.; Bloemberg, Guido V.

    2010-01-01

    We describe the identification of two bacterial pathogens from a culture-negative brain abscess by the use of broad-spectrum 16S rRNA gene PCR. Simultaneous detection of Fusobacterium nucleatum and Porphyromonas endodontalis was possible due to a 24-bp length difference of their partially amplified 16S rRNA genes, which allowed separation by high-resolution polyacrylamide gel electrophoresis. PMID:20392909

  5. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  6. Mutations of the Norrie gene in Korean ROP infants.

    PubMed

    Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup

    2002-12-01

    The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.

  7. Mutations That Affect the Efficiency of Translation of mRNA for the cII Gene of Coliphage Lambda

    PubMed Central

    Dul, Ed; Mahoney, Michael E.; Wulff, Daniel L.

    1987-01-01

    Starting with the λ pRE- strain λctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, λdya2 ctr1 cy3008 and λ dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations of cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'.—The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII- mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A → G mutation four bases before the initial AUG codon, and cII3059 , a GUU → GAU (Val2 → Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested. However neither the ctr1 mutation nor the dya2 mutation has much effect on translation efficiency in an otherwise cII+ background, indicating that other factors must limit the rate of translation of cII mRNA under these conditions. PMID:2953647

  8. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  9. Analysis of gene mutations in Chinese patients with maple syrup urine disease.

    PubMed

    Yang, Nan; Han, Lianshu; Gu, Xuefan; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gong, Zhuwen; Zhang, Yafen

    2012-08-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1α, E1β and E2 subunits of the branched-chain α-keto acid dehydrogenase complex, respectively. The aim of this study was to screen DNA samples from 16 Chinese MSUD patients and assess a potential correlation between genotype and phenotype. BCKDHA, BCKDHB and DBT genes were analyzed by polymerase chain reaction (PCR) and direct sequencing. Segments bearing novel mutations were identified by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Within the variant alleles, 28 mutations (28/32, 87.5%), were detected in 15 patients, while one patient displayed no mutations. Mutations were comprised of 20 different: 6 BCKDHA gene mutations in 4 cases, 10 BCKDHB gene mutations in 8 cases and 4 DBT gene mutations in 3 cases. From these, 14 were novel, which included 3 mutations in the BCKDHA gene, 7 in the BCKDHB gene and 4 in the DBT gene. Only two patients with mutations in the BCKDHB and DBT genes were thiamine-responsive and presented a better clinical outcome. We identified 20 different mutations within the BCKDHA, BCKDHB and DBT genes among 16 Chinese MSUD patients, including 14 novel mutations. The majority were non-responsive to thiamine, associating with a worse clinical outcome. Our data provide the basis for further genotype-phenotype correlation studies in these patients, which will be beneficial for early diagnosis and in directing the approach to clinical intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    PubMed

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  11. Ancient genes establish stress-induced mutation as a hallmark of cancer

    PubMed Central

    Orr, Adam J.; Miočević, Milica; Lineweaver, Charles H.; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  12. Screening for mutations in two exons of FANCG gene in Pakistani population.

    PubMed

    Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida

    2017-06-01

    Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.

  13. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  14. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript.

    PubMed Central

    Veldman, G M; Klootwijk, J; van Heerikhuizen, H; Planta, R J

    1981-01-01

    We have determined the nucleotide sequence of part of a cloned yeast ribosomal RNA operon extending from the 5.8S RNA gene downstream into the 5' -terminal region of the 26S RNA gene. We mapped the pertinent processing sites, viz. the 5' end of 26S rRNA and the 3'ends of 5.8S rRNA and its immediate precursor, 7S RNA. At the 3' end of 7S RNA we find the sequence UCGUUU which is very similar to the type I consensus sequence UCAUUA/U present at the 3' ends of 17S, 5.8S and 26S rRNA as well as 18S precursor rRNA in yeast. At the 5' end of the 26S RNA gene we find a sequence of thirteen nucleotides which is homologous to the type II sequence present at the 5' termini of both the 17S and the 5.8S RNA gene. These findings further support the suggestion put forward earlier (G.M. Veldman et al. (1980) Nucl. Acids Res. 8, 2907-2920) that both consensus sequences are involved in the recognition of precursor rRNA by the processing nuclease(s). We discuss a model for the processing of yeast rRNA in which a processing enzyme sequentially recognizes several combinations of a type I and a type II consensus sequence. We also describe the existence of a significant base complementarity between sequences in the 5' -terminal region of 26S rRNA and the 3' -terminal region of 5.8S rRNA. We suggest that base pairing between these sequences contributes to the binding between 5.8S and 26S rRNA. Images PMID:7312619

  15. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    PubMed

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  16. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    PubMed

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  17. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normalmore » controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.« less

  18. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

    PubMed Central

    Liu, Shi-Yuan; Chen, Wei; Chughtai, Ehtesham Annait; Qiao, Zhe; Jiang, Jian-Tao; Li, Shao-Min; Zhang, Wei; Zhang, Jin

    2017-01-01

    AIM To evaluate PIK3CA gene mutational status in Northwest Chinese esophageal squamous cell carcinoma (ESCC) patients, and examine the associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome. METHODS A total of 210 patients with ESCC who underwent curative resection were enrolled in this study. Pyrosequencing was applied to investigate mutations in exons 9 and 20 of PIK3CA gene in 210 Northwest Chinese ESCCs. The associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome were examined. RESULTS PIK3CA gene mutations in exon 9 were detected in 48 cases (22.9%) of a non-biased database of 210 curatively resected Northwest Chinese ESCCs. PIK3CA gene mutations were not associated with sex, tobacco use, alcohol use, tumor location, stage, or local recurrence. When compared with wild-type PIK3CA gene cases, patients with PIK3CA gene mutations in exons 9 experienced significantly better disease-free survival and overall survival rates. CONCLUSION The results of this study suggest that PIK3CA gene mutations could act as a prognostic biomarker in Northwest Chinese ESCC patients. PMID:28465643

  19. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  20. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  1. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  2. Mutations in the Norrie disease gene.

    PubMed

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cancer genes mutation profiling in calcifying epithelial odontogenic tumour.

    PubMed

    de Sousa, Sílvia Ferreira; Diniz, Marina Gonçalves; França, Josiane Alves; Fontes Pereira, Thaís Dos Santos; Moreira, Rennan Garcias; Santos, Jean Nunes Dos; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri

    2018-03-01

    To identify calcifying epithelial odontogenic tumour (CEOT) mutations in oncogenes and tumour suppressor genes. A panel of 50 genes commonly mutated in cancer was sequenced in CEOT by next-generation sequencing. Sanger sequencing was used to cover the region of the frameshift deletion identified in one sample. Missense single nucleotide variants (SNVs) with minor allele frequency (MAF) <1% were detected in PTEN , MET and JAK3 . A frameshift deletion in CDKN2A occurred in association with a missense mutation in the same gene region, suggesting a second hit in the inactivation of this gene. APC, KDR, KIT, PIK3CA and TP53 missense SNVs were identified; however, these are common SNVs, showing MAF >1%. CEOT harbours mutations in the tumour suppressor PTEN and CDKN2A and in the oncogenes JAK3 and MET . As these mutations occurred in only one case each, they are probably not driver mutations for these tumours. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  6. [Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].

    PubMed

    Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei

    2004-09-01

    Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.

  7. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.

    PubMed

    Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio

    2002-10-15

    Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.

  8. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    PubMed

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  9. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  10. [Identification of Hydrocarbon-Oxidizing Dietzia Bacteria from Petroleum Reservoirs Based on Phenotypic Properties and Analysis of the 16S rRNA and gyrB Genes].

    PubMed

    Nazina, T N; Shumkova, E S; Sokolova, D Sh; Babich, T L; Zhurina, M V; Xue, Yan-Fen; Osipov, G A; Poltaraus, A B; Tourova, T P

    2015-01-01

    The taxonomic position of hydrocarbon-oxidizing bacterial strains 263 and 32d isolated from formation water of the Daqing petroleum reservoir (PRC) was determined by polyphasic taxonomy techniques, including analysis of the 16S rRNA and the gyrB genes. The major chemotaxonomic characteristics of both strains, including the IV type cell wall, composition of cell wall fatty acids, mycolic acids, and menaquinones, agreed with those typical of Dietzia strains. The DNA G+C content of strains 263 and 32d were 67.8 and 67.6 mol%, respectively. Phylogenetic analysis of the 16S rRNA gene of strain 32d revealed 99.7% similarity to the gene of D. maris, making it possible to identify strain 32d as belonging to this species. The 16S rRNA gene sequence of strain 263 exhibited 99.7 and 99.9% similarity to those of D. natronolimnaea and D. cercidiphylli YIM65002(T), respectively. Analysis of the gyrB genes of the subterranean isolates and of a number of Dietzia type strains confirmed classiffication of strain 32d as a D. maris strain and of strain 263, as a D. natronolimnaea strain. A conclusion was made concerning higher resolving power of phylogenetic analysis of the gyrB gene compared to the 16S rRNA gene analysis in the case of determination of the species position of Dietzia isolates.

  11. Identification of a novel 16S rRNA gene variant of Actinomyces funkei from six patients with purulent infections.

    PubMed

    Hinić, V; Straub, C; Schultheiss, E; Kaempfer, P; Frei, R; Goldenberger, D

    2013-07-01

    Little is known about the clinical significance and laboratory diagnosis of Actinomyces funkei. In this report we describe six clinical cases where A. funkei was isolated from purulent, polymicrobial infections. Conventional identification procedures were compared with molecular methods including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique. Analysis of the full 16S rRNA gene sequence of the six investigated strains revealed differences from the A. funkei type strain. DNA-DNA hybridization showed that the clinical strains represent a novel 16S rRNA gene variant within the species of A. funkei. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  12. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols.

    PubMed

    Lamiquiz-Moneo, Itziar; Baila-Rueda, Lucía; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Marco-Benedí, Victoria; Martín-Navarro, Antonio; Ros, Emilio; Cofán, Montserrat; Rodríguez-Rey, José Carlos; Pocovi, Miguel; Cenarro, Ana; Civeira, Fernando

    Approximately 20% to 40% of clinically defined familial hypercholesterolemia (FH) cases do not show a causative mutation in candidate genes (mutation-negative FH), and some of them may have a polygenic origin. The aim of this work was to study the prevalence of ABCG5/G8 genetic variants in mutation-negative FH, as defects in these genes relate to intestinal hyperabsorption of cholesterol and thus ABCG5/G8 variants could explain in part the mechanism of hypercholesterolemia. We sequenced the ABCG5/G8 genes in 214 mutation-negative FH and 97 controls. Surrogate markers of cholesterol absorption (5α-cholestanol, β-sitosterol, campesterol, stigmasterol, and sitostanol) were quantified by high-performance liquid chromatography-tandem mass spectrometry in both studied groups. We found 8 mutation-negative FH patients (3.73%) with a pathogenic mutation in ABCG5/G8 genes. We observed significantly higher concentration of surrogate markers of cholesterol absorption in mutation-negative FH than in controls. In addition, we found significantly higher concentrations of cholesterol absorption markers in mutation-negative FH with ABCG5/G8 defects than in mutation-negative, ABCG5/G8-negative FH. A gene score reflecting the number of common single nucleotide variants associated with hypercholesterolemia was significantly higher in cases than in controls (P = .032). Subjects with a gene score above the mean had significantly higher 5α-cholestanol and stigmasterol than those with a lower gene score. Mutation-negative FH subjects accumulate an excess of rare and common gene variations in ABCG5/G8 genes. This variation is associated with increased intestinal absorption of cholesterol, as determined by surrogate makers, suggesting that these loci contribute to hypercholesterolemia by enhancing intestinal cholesterol absorption. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  13. [Investigation into the relationship between mitochondrial 12 S rRNA gene, tRNA gene and cytochrome oxidase Ⅱ gene variations and the risk of noise-induced hearing loss].

    PubMed

    Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F

    2017-01-06

    Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis

  14. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  15. Comprehensive Characterization of Cancer Driver Genes and Mutations.

    PubMed

    Bailey, Matthew H; Tokheim, Collin; Porta-Pardo, Eduard; Sengupta, Sohini; Bertrand, Denis; Weerasinghe, Amila; Colaprico, Antonio; Wendl, Michael C; Kim, Jaegil; Reardon, Brendan; Ng, Patrick Kwok-Shing; Jeong, Kang Jin; Cao, Song; Wang, Zixing; Gao, Jianjiong; Gao, Qingsong; Wang, Fang; Liu, Eric Minwei; Mularoni, Loris; Rubio-Perez, Carlota; Nagarajan, Niranjan; Cortés-Ciriano, Isidro; Zhou, Daniel Cui; Liang, Wen-Wei; Hess, Julian M; Yellapantula, Venkata D; Tamborero, David; Gonzalez-Perez, Abel; Suphavilai, Chayaporn; Ko, Jia Yu; Khurana, Ekta; Park, Peter J; Van Allen, Eliezer M; Liang, Han; Lawrence, Michael S; Godzik, Adam; Lopez-Bigas, Nuria; Stuart, Josh; Wheeler, David; Getz, Gad; Chen, Ken; Lazar, Alexander J; Mills, Gordon B; Karchin, Rachel; Ding, Li

    2018-04-05

    Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors. Published by Elsevier Inc.

  16. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  17. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys

    PubMed Central

    Werner, Jeffrey J; Koren, Omry; Hugenholtz, Philip; DeSantis, Todd Z; Walters, William A; Caporaso, J Gregory; Angenent, Largus T; Knight, Rob; Ley, Ruth E

    2012-01-01

    Taxonomic classification of the thousands–millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. PMID:21716311

  18. Molecular analysis of the rRNA genes of Babesia spp and Ehrlichia canis detected in dogs from RibeirÃo Preto, Brazil

    PubMed Central

    Oliveira, L.P.; Cardozo, G.P.; Santos, E.V.; Mansur, M.A.B.; Donini, I.A.N.; Zissou, V.G.; Roberto, P.G.; Marins, M.

    2009-01-01

    The partial DNA sequences of the 18S rRNA gene of Babesia canis and the 16S rRNA gene of Ehrlichia canis detected in dogs from Ribeirão Preto, Brazil, were compared to sequences from other strains deposited in GenBank. The E. canis strain circulating in Ribeirão Preto is identical to other strains previously detected in the region, whereas the subspecies Babesia canis vogeli is the main Babesia strain circulating in dogs from Ribeirão Preto. PMID:24031351

  19. AID-initiated purposeful mutations in immunoglobulin genes.

    PubMed

    Goodman, Myron F; Scharff, Matthew D; Romesberg, Floyd E

    2007-01-01

    Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function.

  20. Prevalence of 16S rRNA Methylase Gene rmtB Among Escherichia coli Isolated from Bovine Mastitis in Ningxia, China.

    PubMed

    Yu, Ting; He, Tao; Yao, Hong; Zhang, Jin-Bao; Li, Xiao-Na; Zhang, Rong-Ming; Wang, Gui-Qin

    2015-09-01

    The aim of this study is to understand the prevalence and molecular characterization of 16S rRNA methylase gene, rmtB, among Escherichia coli strains isolated from bovine mastitis in China. A total of 245 E. coli isolates were collected from bovine mastitis in China between 2013 and 2014 and were screened for 16S rRNA methylase genes (armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA) by polymerase chain reaction. About 5.3% (13/245) of the isolates carried the rmtB gene; the isolates were highly resistant to amikacin. Thirteen rmtB-positive strains were analyzed for the presence of extended-spectrum β-lactamase genes (bla(TEM), bla(CTX-M), bla(OXA), and bla(SHV)). All the isolates harbored both bla(TEM-1) and bla(CTX-M-15) genes and two of the isolates were also positive for bla(OXA-1). Pulsed-field gel electrophoresis (PFGE) analysis indicated that the nine rmtB-positive strains belonging to ST10 from one farm showed the similar PFGE pattern, indicating a clonal expansion in this farm. S1-PFGE and Southern blotting showed that 12 isolates harbored the rmtB gene in plasmids of two different sizes (≈45 kb [n=10] and ≈48 kb [n=2]), while only 1 strain harbored the rmtB gene in the chromosome. These plasmids were transferable by conjugation studies, and two isolates from two respective farms carried the same size of plasmid, suggesting that the horizontal transmission of plasmids also contributed to the spread of rmtB gene. This is the first report of prevalence of the 16S rRNA methylase gene rmtB among E. coli isolated from bovine mastitis in China, and rmtB-carrying E. coli may pose a threat to the treatment of bovine mastitis.

  1. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    PubMed

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  2. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  3. Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase.

    PubMed

    Ang, J Sidney; Duffy, Supipi; Segovia, Romulo; Stirling, Peter C; Hieter, Philip

    2016-11-01

    Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis. Copyright © 2016 by the Genetics Society of America.

  4. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    PubMed

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  5. A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor.

    PubMed

    Wachi, M; Kaga, N; Umitsuki, G; Clark, D P; Nagai, K

    2001-12-21

    Escherichia coli RNase G, encoded by the rng gene, is involved in both the processing of 16S rRNA precursor and the degradation of adhE mRNA. Consequently, defects in RNase G result in elevation of AdhE levels. Furthermore, the adhR430 mutant strain, DC430, is reported to overproduce the AdhE protein in a manner dependent on the adhC81 mutation. We found that overproduction of AdhE by DC430 was reversed to wild-type levels by introduction of a plasmid carrying the wild-type allele of rng. Mapping by P1-phage-mediated transduction also indicated that a mutation involved in AdhE overproduction was located around the rng region in DC430. DNA sequencing of the rng region revealed that DC430 indeed had a mutation in the rng gene: a G1022 to A transition that caused substitution of Gly341 with Ser and which was named rng430. This lies in the highly conserved region of the RNase E/RNase G family, called high similarity region 2 (HSR2). However, very interestingly, rng430 mutant strains did not accumulate the 16.3S precursor of 16S rRNA unlike rng::cat mutants. We also found that the Rng1 mutant protein, which is truncated in its C-terminal domain encompassing HSR2, exhibited a residual processing activity against the 16S rRNA precursor, when overproduced. These results indicate that the HSR2 of RNase G plays an important role in substrate recognition and/or ribonucleolytic action.

  6. Mutation profiling of 16 candidate genes in de novo acute myeloid leukemia patients.

    PubMed

    Zhang, Yang; Wang, Fang; Chen, Xue; Liu, Wenjing; Fang, Jiancheng; Wang, Mingyu; Teng, Wen; Cao, Panxiang; Liu, Hongxing

    2018-05-26

    This retrospective analysis aimed to investigate the mutation profile of 16 common mutated genes in de novo acute myeloid leukemia (AML) patients. A total of 259 patients who were diagnosed of de novo AML were enrolled in this study. Mutation profiling of 16 candidate genes were performed in bone marrow samples by using Sanger sequencing.We identified at least 1 mutation in 199 of the 259 samples (76.8%), and 2 or more mutations in 31.7% of samples. FLT3-ITD was the most common mutated gene (16.2%, 42/259), followed by CEBPA (15.1%, 39/259), NRAS (14.7%, 38/259), and NPM1 (13.5%, 35/259). Concurrence was observed in 97.1% of the NPM1 mutated cases and in 29.6% of the double mutated CEBPA cases. Distinct patterns of co-occurrence were observed for different hotspot mutations within the IDH2 gene: R140 mutations were associated with NPM1 and/or FLT3-ITD mutations, whereas R172 mutations co-occurred with DNMT3A mutations only. Concurrence was also observed in 86.6% of epigenetic regulation genes, most of which co-occurred with NPM1 mutations. The results showed certain rules in the mutation profiling and concurrence of AML patients, which was related to the function classification of genes. Defining the mutation spectrum and mutation pattern of AML will contribute to the comprehensive assessment of patients and identification of new therapeutic targets.

  7. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    PubMed Central

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  8. Low load for disruptive mutations in autism genes and their biased transmission

    PubMed Central

    Iossifov, Ivan; Levy, Dan; Allen, Jeremy; Ye, Kenny; Ronemus, Michael; Lee, Yoon-ha; Yamrom, Boris; Wigler, Michael

    2015-01-01

    We previously computed that genes with de novo (DN) likely gene-disruptive (LGD) mutations in children with autism spectrum disorders (ASD) have high vulnerability: disruptive mutations in many of these genes, the vulnerable autism genes, will have a high likelihood of resulting in ASD. Because individuals with ASD have lower fecundity, such mutations in autism genes would be under strong negative selection pressure. An immediate prediction is that these genes will have a lower LGD load than typical genes in the human gene pool. We confirm this hypothesis in an explicit test by measuring the load of disruptive mutations in whole-exome sequence databases from two cohorts. We use information about mutational load to show that lower and higher intelligence quotients (IQ) affected individuals can be distinguished by the mutational load in their respective gene targets, as well as to help prioritize gene targets by their likelihood of being autism genes. Moreover, we demonstrate that transmission of rare disruptions in genes with a lower LGD load occurs more often to affected offspring; we show transmission originates most often from the mother, and transmission of such variants is seen more often in offspring with lower IQ. A surprising proportion of transmission of these rare events comes from genes expressed in the embryonic brain that show sharply reduced expression shortly after birth. PMID:26401017

  9. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    PubMed

    Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M

    2009-10-19

    Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  10. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer.

    PubMed

    Pritchard, Colin C; Mateo, Joaquin; Walsh, Michael F; De Sarkar, Navonil; Abida, Wassim; Beltran, Himisha; Garofalo, Andrea; Gulati, Roman; Carreira, Suzanne; Eeles, Rosalind; Elemento, Olivier; Rubin, Mark A; Robinson, Dan; Lonigro, Robert; Hussain, Maha; Chinnaiyan, Arul; Vinson, Jake; Filipenko, Julie; Garraway, Levi; Taplin, Mary-Ellen; AlDubayan, Saud; Han, G Celine; Beightol, Mallory; Morrissey, Colm; Nghiem, Belinda; Cheng, Heather H; Montgomery, Bruce; Walsh, Tom; Casadei, Silvia; Berger, Michael; Zhang, Liying; Zehir, Ahmet; Vijai, Joseph; Scher, Howard I; Sawyers, Charles; Schultz, Nikolaus; Kantoff, Philip W; Solit, David; Robson, Mark; Van Allen, Eliezer M; Offit, Kenneth; de Bono, Johann; Nelson, Peter S

    2016-08-04

    Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by

  11. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    PubMed

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Novel mutations in the USH1C gene in Usher syndrome patients.

    PubMed

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  14. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  15. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    PubMed

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  16. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  17. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.

    PubMed

    Przytycki, Pawel F; Singh, Mona

    2017-08-25

    A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .

  18. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax

    PubMed Central

    Pakalapati, Deepak; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Subudhi, Amit K; Boopathi, Arunachalam P; Saxena, Vishal; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2013-01-01

    The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85.39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99.08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans. PMID:23816509

  19. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows.

    PubMed

    Osman, Muhammad-Afiq; Neoh, Hui-Min; Ab Mutalib, Nurul-Syakima; Chin, Siok-Fong; Jamal, Rahman

    2018-01-01

    The human gut holds the densest microbiome ecosystem essential in maintaining a healthy host physiology, whereby disruption of this ecosystem has been linked to the development of colorectal cancer (CRC). The advent of next-generation sequencing technologies such as the 16S rRNA gene sequencing has enabled characterization of the CRC gut microbiome architecture in an affordable and culture-free approach. Nevertheless, the lack of standardization in handling and storage of biospecimens, nucleic acid extraction, 16S rRNA gene primer selection, length, and depth of sequencing and bioinformatics analyses have contributed to discrepancies found in various published studies of this field. Accurate characterization of the CRC microbiome found in different stages of CRC has the potential to be developed into a screening tool in the clinical setting. This mini review aims to concisely compile all available CRC microbiome studies performed till end of 2016 and to suggest standardized protocols that are crucial in developing a gut microbiome screening panel for CRC.

  20. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    PubMed Central

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family. PMID:28848724

  1. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    PubMed

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  2. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  3. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  4. The androgen receptor gene mutations database.

    PubMed Central

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca) PMID:9016528

  5. Mutated-leptin gene transfer induces increases in body weight by electroporation and hydrodynamics-based gene delivery in mice.

    PubMed

    Xiang, Lan; Murai, Atsushi; Muramatsu, Tatsuo

    2005-12-01

    To investigate whether in vivo gene transfer causes leptin-antagonistic effects on food intake, animal body weight and fat tissue weight, the R128Q mutated-leptin gene, an R to Q substitution at position 128 of mouse leptin, was transferred into mouse liver and leg muscle by electroporation and hydrodynamics-based gene delivery. Mutated-leptin gene transfer by electroporation caused significant increases in body weight at 5 days and after (5.4% increase relative to control; p<0.05). Hydrodynamics-based gene delivery of the mutated-leptin gene also caused an increase in body weight (3.0% increase relative to control; p<0.05). Mutated-leptin gene transfer by electroporation significantly increased the tissue weight of epididymal white fat and neuropeptide Y mRNA expression in the hypothalamus compared with those of the control group 3 weeks after gene transfer (p<0.05). These results suggest that mutated-leptin gene transfer successfully produced leptin-antagonistic effects by modulating the central regulator of energy homeostasis. Also, the extent of leptin-antagonistic effects by electroporation was much higher than hydrodynamics-based gene delivery, with at least single gene transfer.

  6. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  7. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    PubMed

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  8. DNA mutation motifs in the genes associated with inherited diseases.

    PubMed

    Růžička, Michal; Kulhánek, Petr; Radová, Lenka; Čechová, Andrea; Špačková, Naďa; Fajkusová, Lenka; Réblová, Kamila

    2017-01-01

    Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  9. Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments.

    PubMed

    Almeida, Alexandre; Mitchell, Alex L; Tarkowska, Aleksandra; Finn, Robert D

    2018-05-01

    Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the accepted norm for inferring the composition of complex microbial ecosystems. Quantitative Insights Into Microbial Ecology (QIIME) and mothur have been the most widely used taxonomic analysis tools for this purpose, with MAPseq and QIIME 2 being two recently released alternatives. However, no independent and direct comparison between these four main tools has been performed. Here, we compared the default classifiers of MAPseq, mothur, QIIME, and QIIME 2 using synthetic simulated datasets comprised of some of the most abundant genera found in the human gut, ocean, and soil environments. We evaluate their accuracy when paired with both different reference databases and variable sub-regions of the 16S rRNA gene. We show that QIIME 2 provided the best recall and F-scores at genus and family levels, together with the lowest distance estimates between the observed and simulated samples. However, MAPseq showed the highest precision, with miscall rates consistently <2%. Notably, QIIME 2 was the most computationally expensive tool, with CPU time and memory usage almost 2 and 30 times higher than MAPseq, respectively. Using the SILVA database generally yielded a higher recall than using Greengenes, while assignment results of different 16S rRNA variable sub-regions varied up to 40% between samples analysed with the same pipeline. Our results support the use of either QIIME 2 or MAPseq for optimal 16S rRNA gene profiling, and we suggest that the choice between the two should be based on the level of recall, precision, and/or computational performance required.

  10. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  11. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  12. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  13. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It is...

  14. High frequency of the 23S rRNA A2058G mutation of Treponema pallidum in Shanghai is associated with a current strategy for the treatment of syphilis.

    PubMed

    Lu, Haikong; Li, Kang; Gong, Weimin; Yan, Limeng; Gu, Xin; Chai, Ze; Guan, Zhifang; Zhou, Pingyu

    2015-02-01

    The preferred drugs for the treatment of syphilis, benzathine and procaine penicillin, have not been available in Shanghai for many years, and currently, the incidence of syphilis is increasing. Alternative antibiotics for patients with syphilis during the benzathine and procaine penicillin shortage include macrolides. The failure of macrolide treatment in syphilis patients has been reported in Shanghai, but the reason for this treatment failure remains unclear. We used polymerase chain reaction technology to detect a 23S rRNA A2058G mutation in Treponema pallidum in 109 specimens from syphilis patients. The use of azithromycin/erythromycin in the syphilis patients and the physicians' prescription habits were also assessed based on two questionnaires regarding the use of macrolides. A total of 104 specimens (95.4%) were positive for the A2058G mutation in both copies of the 23S rRNA gene, indicating macrolide resistance. A questionnaire provided to 122 dermatologists showed that during the penicillin shortage, they prescribed erythromycin and azithromycin for 8.24±13.95% and 3.21±6.37% of their patients, respectively, and in the case of penicillin allergy, erythromycin and azithromycin were prescribed 15.24±22.89% and 7.23±16.60% of the time, respectively. A second questionnaire provided to the syphilis patients showed that 150 (33.7%), 106 (23.8%) and 34 (7.6%) individuals had used azithromycin, erythromycin or both, respectively, although the majority did not use the drugs for syphilis treatment. Our findings suggest that macrolide resistance in Treponema pallidum is widespread in Shanghai. More than half of the syphilis patients had a history of macrolide use for other treatment purposes, which may have led to the high prevalence of macrolide resistance. Physicians in China are advised to not use azithromycin for early syphilis.

  15. Phylogenetic Analysis of Bacteroidales 16S rRNA Genes Unveils Sequences Specific to Diverse Swine Fecal Sources

    EPA Science Inventory

    Two of the currently available methods to assess swine fecal pollution (Bac1 and PF163) target Bacteroidales 16S rRNA genes. However, these assays have been shown to exhibit poor host-specificity and low detection limits in environmental waters, in part due to the limited number...

  16. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations

    PubMed Central

    Miftahussurur, Muhammad; Syam, Ari Fahrial; Nusi, Iswan Abbas; Makmun, Dadang; Waskito, Langgeng Agung; Zein, Lukman Hakim; Akil, Fardah; Uwan, Willy Brodus; Simanjuntak, David; Wibawa, I Dewa Nyoman; Waleleng, Jimmy Bradley; Saudale, Alexander Michael Joseph; Yusuf, Fauzi; Mustika, Syifa; Adi, Pangestu; Maimunah, Ummi; Maulahela, Hasan; Rezkitha, Yudith Annisa Ayu; Subsomwong, Phawinee; Nasronudin; Rahardjo, Dadik; Suzuki, Rumiko; Akada, Junko; Yamaoka, Yoshio

    2016-01-01

    Information regarding Helicobacter pylori antibiotic resistance in Indonesia was previously inadequate. We assessed antibiotic susceptibility for H. pylori in Indonesia, and determined the association between virulence genes or genetic mutations and antibiotic resistance. We recruited 849 dyspeptic patients who underwent endoscopy in 11 cities in Indonesia. E-test was used to determine the minimum inhibitory concentration of five antibiotics. PCR-based sequencing assessed mutations in 23S rRNA, rdxA, gyrA, gyrB, and virulence genes. Next generation sequencing was used to obtain full-length sequences of 23S rRNA, infB, and rpl22. We cultured 77 strains and identified 9.1% with clarithromycin resistance. Low prevalence was also found for amoxicillin and tetracycline resistance (5.2% and 2.6%, respectively). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were demonstrated. Strains isolated from Sumatera Island had significantly higher metronidazole resistance than those from other locations. Metronidazole resistant strains had highly distributed rdxA amino acid substitutions and the 23S rRNA A2143G mutation was associated with clarithromycin resistance (42.9%). However, one strain with the highest MIC value had a novel mutation in rpl22 without an A2143G mutation. Mutation at Asn-87 and/or Asp-91 of gyrA was associated with levofloxacin-resistance and was related to gyrB mutations. In conclusions, although this is a pilot study for a larger survey, our current data show that Indonesian strains had the high prevalence of metronidazole and levofloxacin resistance with low prevalence of clarithromycin, amoxicillin, and tetracycline resistance. Nevertheless, clarithromycin- or metronidazole-based triple therapy should be administered with caution in some regions of Indonesia. PMID:27906990

  17. Surveillance of Helicobacter pylori Antibiotic Susceptibility in Indonesia: Different Resistance Types among Regions and with Novel Genetic Mutations.

    PubMed

    Miftahussurur, Muhammad; Syam, Ari Fahrial; Nusi, Iswan Abbas; Makmun, Dadang; Waskito, Langgeng Agung; Zein, Lukman Hakim; Akil, Fardah; Uwan, Willy Brodus; Simanjuntak, David; Wibawa, I Dewa Nyoman; Waleleng, Jimmy Bradley; Saudale, Alexander Michael Joseph; Yusuf, Fauzi; Mustika, Syifa; Adi, Pangestu; Maimunah, Ummi; Maulahela, Hasan; Rezkitha, Yudith Annisa Ayu; Subsomwong, Phawinee; Nasronudin; Rahardjo, Dadik; Suzuki, Rumiko; Akada, Junko; Yamaoka, Yoshio

    2016-01-01

    Information regarding Helicobacter pylori antibiotic resistance in Indonesia was previously inadequate. We assessed antibiotic susceptibility for H. pylori in Indonesia, and determined the association between virulence genes or genetic mutations and antibiotic resistance. We recruited 849 dyspeptic patients who underwent endoscopy in 11 cities in Indonesia. E-test was used to determine the minimum inhibitory concentration of five antibiotics. PCR-based sequencing assessed mutations in 23S rRNA, rdxA, gyrA, gyrB, and virulence genes. Next generation sequencing was used to obtain full-length sequences of 23S rRNA, infB, and rpl22. We cultured 77 strains and identified 9.1% with clarithromycin resistance. Low prevalence was also found for amoxicillin and tetracycline resistance (5.2% and 2.6%, respectively). In contrast, high resistance rates to metronidazole (46.7%) and levofloxacin (31.2%) were demonstrated. Strains isolated from Sumatera Island had significantly higher metronidazole resistance than those from other locations. Metronidazole resistant strains had highly distributed rdxA amino acid substitutions and the 23S rRNA A2143G mutation was associated with clarithromycin resistance (42.9%). However, one strain with the highest MIC value had a novel mutation in rpl22 without an A2143G mutation. Mutation at Asn-87 and/or Asp-91 of gyrA was associated with levofloxacin-resistance and was related to gyrB mutations. In conclusions, although this is a pilot study for a larger survey, our current data show that Indonesian strains had the high prevalence of metronidazole and levofloxacin resistance with low prevalence of clarithromycin, amoxicillin, and tetracycline resistance. Nevertheless, clarithromycin- or metronidazole-based triple therapy should be administered with caution in some regions of Indonesia.

  18. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations.

    PubMed

    Shin, Sang-Yong; Lee, Seung-Tae; Kim, Hee-Jin; Cho, Eun Hae; Kim, Jong-Won; Park, Silvia; Jung, Chul Won; Kim, Sun-Hee

    2016-08-23

    We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.

  19. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the ... University of Washington Researchers found that people with schizophrenia have a high number of spontaneous mutations in ...

  20. Remarkable difference of somatic mutation patterns between oncogenes and tumor suppressor genes.

    PubMed

    Liu, Haoxuan; Xing, Yuhang; Yang, Sihai; Tian, Dacheng

    2011-12-01

    Cancers arise owing to mutations that confer selective growth advantages on the cells in a subset of tumor suppressor and/or oncogenes. To understand oncogenesis and diagnose cancers, it is crucial to discriminate these two groups of genes by using the difference in their mutation patterns. Here, we investigated>120,000 mutation samples in 66 well-known tumor suppressor genes and oncogenes of the COSMIC database, and found a set of significant differences in mutation patterns (e.g., non-3n-indel, non-sense SNP and mutation hotspot) between them. By screening the best measurement, we developed indices to readily distinguish one from another and predict clearly the unknown oncogenesis genes as tumor suppressors (e.g., ASXL1, HNF1A and KDM6A) or oncogenes (e.g., FOXL2, MYD88 and TSHR). Based on our results, a third gene group can be classified, which has a mutational pattern between tumor suppressors and oncogenes. The concept of the third gene group could help to understand gene function in different cancers or individual patients and to know the exact function of genes in oncogenesis. In conclusion, our study provides further insights into cancer-related genes and identifies several potential therapeutic targets.

  1. Law-medicine interfacing: patenting of human genes and mutations.

    PubMed

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  2. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  3. VarWalker: Personalized Mutation Network Analysis of Putative Cancer Genes from Next-Generation Sequencing Data

    PubMed Central

    Jia, Peilin; Zhao, Zhongming

    2014-01-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data. PMID:24516372

  4. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    PubMed

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  5. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V.

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by amore » sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.« less

  6. [Application of gene capture technology on mutation screening of RB1 gene in retinoblastoma patients].

    PubMed

    Meng, Q Y; Huang, L Z; Wang, B; Li, X X; Liang, J H

    2017-06-11

    Objectives: To analyze RB1 gene mutation in retinoblastoma (RB) patients using gene capture technology. Methods: Experimental research. The clinical data of 17 RB patients were collected at Department of Ophthalmology, Peking University People's Hospital from June 2010 to Jun 2014. Peripheral blood samples of seventeen RB patients and their parents were collected and genomic DNA were extracted. DNA library from RB patients was mixed with designed gene capture probe of RB1 exons and its flanking sequences. The data were analyzed using bioinformatics software. To avoid the false positive, the abnormal sites were verified using the Sanger sequencing method. Results: Totally, there were 17 RB patients, including 12 males and 5 females, from 0.5 to 23 years old, average ages were (3.2±5.2) years old. Both eyes were involved in 6 patients. The other 11 cases were only one eye was attacked. Four RB patients were found to have germline mutations, among whom 2 had bilateral tumors and 2 had unilateral tumors. 2 novel missense mutations were identified, including 15(th) exon c.1408A>T (p. Ile470Phe) and c.1960G>C (p. Val654Leu) at 19(th) exon. No RB1 mutation was identified in any of their parents. We also identified 2 mutations reported previously. One is c.1030C>T termination mutation at 10(th) exon in a bilateral RB patients and his father, who was diagnosed with unilateral RB. The other is c.371-372delTA frame shift mutation at 3(rd) exon. No mutation was found in their parents. Conclusions: Two novel germline RB1 mutations were found using gene capture technology, which enriched RB1 mutations library. (Chin J Ophthalmol, 2017, 53: 455-459) .

  7. Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis.

    PubMed

    Ockenga, J; Stuhrmann, M; Ballmann, M; Teich, N; Keim, V; Dörk, T; Manns, M P

    2000-08-01

    We investigated whether mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and cationic trypsinogen gene are associated with recurrent acute, or chronic idiopathic pancreatitis. Twenty patients with idiopathic pancreatitis (11 women, nine men; mean age, 30 yr) were studied for the presence of a CFTR mutation by screening the genomic DNA for more than 30 mutations and variants in the CFTR gene. Selected mutations of the cationic trypsinogen gene were screened by Afl III restriction digestion or by a mutation-specific polymerase chain reaction (PCR). In each patient exons 1, 2, and 3 of the cationic trypsinogen gene were sequenced. Patients with a CFTR mutation underwent evaluation of further functional electrophysiological test (intestinal current measurement). No mutation of the cationic trypsinogen gene was detected. A CFTR mutation was detected in 6/20 (30.0%) patients. Three patients (15.0%) had a cystic fibrosis (CF) mutation on one chromosome (deltaF508, I336K, Y1092X), which is known to cause phenotypical severe cystic fibrosis. One patient was heterozygous for the 5T allele. In addition, two possibly predisposing CFTR variants (R75Q, 1716G-->A) were detected on four patients, one of these being a compound heterozygous for the missense mutation I336K and R75Q. No other family member (maternal I336K; paternal R75Q; sister I1336K) developed pancreatitis. An intestinal current measurement in rectum samples of patients with a CFTR mutation revealed no CF-typical constellations. CFTR mutations are associated with recurrent acute, or chronic idiopathic pancreatitis, whereas mutations of the cationic trypsinogen mutation do not appear to be a frequent pathogenetic factor.

  8. [Mutations of EGFR gene and EML4-ALK fusion gene in superficial lymph node of non-small cell lung cancer].

    PubMed

    Wei, Lili; Li, Xingzhou; Yu, Zhonghe

    2015-07-14

    To explore the mutation status of epidermal growth factor receptor (EGFR) fusion gene and microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene in superficial lymph nodes of non-small cell lung cancer (NSCLC). The technique of fluorescent quantitative polymerase chain reaction (FQ-PCR) was employed for detecting the mutation rate of EGFR gene and EML4-ALK fusion gene for 40 cases of superficial lymph node tissue of NSCLC inpatients at General Military Hospital of Beijing PLA Command from February 2013 to November 2014. And then the correlations were analyzed between EMIA-ALK fusion gene and EGFR gene with clinical features and the clinical efficacies of targeted therapy. The mutation rate of EGFR gene was 35% (14/40) and 50% (10/20) in non-smokers and 46.7% (14/30) in adenocarcinoma patients. The mutation distribution was as follows: exon 18 (n = 1), exon 19 (n =8) and exon 21 (n =5). The mutation rate of EML4-ALK fusion gene was 2. 5% (1/40). EGFR gene mutation was predominantly present in non-smokers (P < 0. 05) and adenocarcinoma (P <0. 01) while no significant difference existed between gender, age or stage (P >0. 05). Those on a targeted therapy had a disease control rate of 93. 3%. Both EGFR gene and EMI4-ALK fusion gene may be detected in superficial lymph nodes of NSCLC patients. The mutation rate of EGFR gene is high in adenocarcinoma and non-smokers while EML4-ALK fusion gene has a low mutation rate.

  9. Identification by 16S rRNA gene sequencing of an Actinomyces hongkongensis isolate recovered from a patient with pelvic actinomycosis.

    PubMed

    Flynn, A N; Lyndon, C A; Church, D L

    2013-08-01

    A case of Actinomyces hongkongensis pelvic actinomycosis in an adult woman is described. Conventional phenotypic tests failed to identify the Gram-positive bacillus isolated from a fluid aspirate of a pelvic abscess. The bacterium was identified by 16S rRNA gene sequencing and analysis using the SmartGene Integrated Database Network System software.

  10. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  11. Deep learning of mutation-gene-drug relations from the literature.

    PubMed

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  12. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  13. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  14. Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction.

    PubMed

    Mallatt, Jon; Craig, Catherine Waggoner; Yoder, Matthew J

    2010-04-01

    This study (1) uses nearly complete rRNA-gene sequences from across Metazoa (197 taxa) to reconstruct animal phylogeny; (2) presents a highly annotated, manual alignment of these sequences with special reference to rRNA features including paired sites (http://purl.oclc.org/NET/rRNA/Metazoan_alignment) and (3) tests, after eliminating as few disruptive, rogue sequences as possible, if a likelihood framework can recover the main metazoan clades. We found that systematic elimination of approximately 6% of the sequences, including the divergent or unstably placed sequences of cephalopods, arrowworm, symphylan and pauropod myriapods, and of myzostomid and nemertodermatid worms, led to a tree that supported Ecdysozoa, Lophotrochozoa, Protostomia, and Bilateria. Deuterostomia, however, was never recovered, because the rRNA of urochordates goes (nonsignificantly) near the base of the Bilateria. Counterintuitively, when we modeled the evolution of the paired sites, phylogenetic resolution was not increased over traditional tree-building models that assume all sites in rRNA evolve independently. The rRNA genes of non-bilaterians contain a higher % AT than do those of most bilaterians. The rRNA genes of Acoela and Myzostomida were found to be secondarily shortened, AT-enriched, and highly modified, throwing some doubt on the location of these worms at the base of Bilateria in the rRNA tree--especially myzostomids, which other evidence suggests are annelids instead. Other findings are marsupial-with-placental mammals, arrowworms in Ecdysozoa (well supported here but contradicted by morphology), and Placozoa as sister to Cnidaria. Finally, despite the difficulties, the rRNA-gene trees are in strong concordance with trees derived from multiple protein-coding genes in supporting the new animal phylogeny. (c) 2009 Elsevier Inc. All rights reserved.

  15. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation

    PubMed Central

    Li, Tao; Zhang, Zhao-jing; Ma, Xin; Lv, Xue; Xiao, Hai; Guo, Qian-nan; Liu, Hong-yan; Wang, Hong-dan; Wu, Dong; Lou, Gui-yu; Wang, Xin; Zhang, Chao-yang; Liao, Shi-xiu

    2017-01-01

    Abstract Background: Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. Methods: First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. Results: MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. Conclusion: The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic. PMID:29390271

  16. Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains.

    PubMed

    Sulyok, Kinga M; Kreizinger, Zsuzsa; Wehmann, Enikő; Lysnyansky, Inna; Bányai, Krisztián; Marton, Szilvia; Jerzsele, Ákos; Rónai, Zsuzsanna; Turcsányi, Ibolya; Makrai, László; Jánosi, Szilárd; Nagy, Sára Ágnes; Gyuranecz, Miklós

    2017-02-01

    The molecular mechanisms of resistance to fluoroquinolones, tetracyclines, an aminocyclitol, macrolides, a lincosamide, a phenicol, and pleuromutilins were investigated in Mycoplasma bovis For the identification of mutations responsible for the high MICs of certain antibiotics, whole-genome sequencing of 35 M. bovis field isolates and 36 laboratory-derived antibiotic-resistant mutants was performed. In vitro resistant mutants were selected by serial passages of M. bovis in broth medium containing subinhibitory concentrations of the antibiotics. Mutations associated with high fluoroquinolones MICs were found at positions 244 to 260 and at positions 232 to 250 (according to Escherichia coli numbering) of the quinolone resistance-determining regions of the gyrA and parC genes, respectively. Alterations related to elevated tetracycline MICs were described at positions 962 to 967, 1058, 1195, 1196, and 1199 of genes encoding the 16S rRNA and forming the primary tetracycline binding site. Single transversion at position 1192 of the rrs1 gene resulted in a spectinomycin MIC of 256 μg/ml. Mutations responsible for high macrolide, lincomycin, florfenicol, and pleuromutilin antibiotic MICs were identified in genes encoding 23S rRNA. Understanding antibiotic resistance mechanisms is an important tool for future developments of genetic-based diagnostic assays for the rapid detection of resistant M. bovis strains. Copyright © 2017 American Society for Microbiology.

  17. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    PubMed

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  18. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science

    PubMed Central

    Ames, Nancy J.; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R.

    2017-01-01

    Background As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and health care practitioners to analyze these microbial communities and their role in health and disease.16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. Objectives The objectives of this review are to: (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Discussion Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists—individuals uniquely positioned to utilize these techniques in future studies in clinical settings. PMID:28252578

  19. Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA gene.

    PubMed Central

    Li, S; Cullen, D; Hjort, M; Spear, R; Andrews, J H

    1996-01-01

    Aureobasidium pullulans, a cosmopolitan yeast-like fungus, colonizes leaf surfaces and has potential as a biocontrol agent of pathogens. To assess the feasibility of rRNA as a target for A. pullulans-specific oligonucleotide probes, we compared the nucleotide sequences of the small-subunit rRNA (18S) genes of 12 geographically diverse A. pullulans strains. Extreme sequence conservation was observed. The consensus A. pullulans sequence was compared with other fungal sequences to identify potential probes. A 21-mer probe which hybridized to the 12 A. pullulans strains but not to 98 other fungi, including 82 isolates from the phylloplane, was identified. A 17-mer highly specific for Cladosporium herbarum was also identified. These probes have potential in monitoring and quantifying fungi in leaf surface and other microbial communities. PMID:8633850

  20. rpoB gene mutations among Mycobacterium tuberculosis isolates from extrapulmonary sites.

    PubMed

    Khosravi, Azar Dokht; Meghdadi, Hossein; Ghadiri, Ata A; Alami, Ameneh; Sina, Amir Hossein; Mirsaeidi, Mehdi

    2018-03-01

    The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  1. Identification by 16S rRNA Gene Sequencing of an Actinomyces hongkongensis Isolate Recovered from a Patient with Pelvic Actinomycosis

    PubMed Central

    Flynn, A. N.; Lyndon, C. A.

    2013-01-01

    A case of Actinomyces hongkongensis pelvic actinomycosis in an adult woman is described. Conventional phenotypic tests failed to identify the Gram-positive bacillus isolated from a fluid aspirate of a pelvic abscess. The bacterium was identified by 16S rRNA gene sequencing and analysis using the SmartGene Integrated Database Network System software. PMID:23698532

  2. Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium

    PubMed Central

    Khamis, Atieh; Raoult, Didier; La Scola, Bernard

    2005-01-01

    Higher proportions (91%) of 168 corynebacterial isolates were positively identified by partial rpoB gene determination than by that based on 16S rRNA gene sequences. This method is thus a simple, molecular-analysis-based method for identification of corynebacteria, but it should be used in conjunction with other tests for definitive identification. PMID:15815024

  3. Distribution of Gene Mutations Associated with Familial Normosmic Idiopathic Hypogonadotropic Hypogonadism

    PubMed Central

    Gürbüz, Fatih; Kotan, L. Damla; Mengen, Eda; Şıklar, Zeynep; Berberoğlu, Merih; Dökmetaş, Sebila; Kılıçlı, Mehmet Fatih; Güven, Ayla; Kirel, Birgül; Saka, Nurçin; Poyrazoğlu, Şükran; Cesur, Yaşar; Doğan, Murat; Özen, Samim; Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Kekil, M. Burcu; Temiz, Fatih; Önenli Mungan, Neslihan; Yüksel, Bilgin; Topaloğlu, Ali Kemal

    2012-01-01

    Objective: Normosmic idiopathic hypogonadotropic hypogonadism (nIHH) is characterized by failure of initiation or maintenance of puberty due to insufficient gonadotropin release, which is not associated with anosmia/hyposmia. The objective of this study was to determine the distribution of causative mutations in a hereditary form of nIHH. Methods: In this prospective collaborative study, 22 families with more than one affected individual (i.e. multiplex families) with nIHH were recruited and screened for genes known or suspected to be strong candidates for nIHH. Results: Mutations were identified in five genes (GNRHR, TACR3, TAC3, KISS1R, and KISS1) in 77% of families with autosomal recessively inherited nIHH. GNRHR and TACR3 mutations were the most common two causative mutations occurring with about equal frequency. Conclusions: Mutations in these five genes account for about three quarters of the causative mutations in nIHH families with more than one affected individual. This frequency is significantly greater than the previously reported rates in all inclusive (familial plus sporadic) cohorts. GNRHR and TACR3 should be the first two genes to be screened for diagnostic purposes. Identification of causative mutations in the remaining families will shed light on the regulation of puberty. Conflict of interest:None declared. PMID:22766261

  4. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    PubMed

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  5. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  6. Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.

    PubMed

    Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi

    2017-01-01

    Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gihring, Thomas; Green, Stefan; Schadt, Christopher Warren

    2011-01-01

    Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g.more » Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.« less

  8. A novel splicing mutation in GALT gene causing Galactosemia in Ecuadorian family.

    PubMed

    De Lucca, M; Barba, C; Casique, L

    2017-07-01

    Classic Galactosemia (OMIM 230400) is an autosomal recessive disorder of galactose metabolism caused by mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. This disease caused by the inability to metabolize galactose is potentially life-threatening but its pathophysiology has not been clearly defined. GALT gene presents high allelic heterogeneity and around 336 variations have been identified. Here, we report the case of a patient with Classic Galactosemia who was detected during a neonatal screening in Ecuador. Molecular study revealed a mutation in GALT gene intron 1, c.82+3A>G in homozygous condition, this mutation has not been previously reported. This gene variation was not found in any of the 119 healthy Ecuadorian individuals used as control. Furthermore, the mutation was the only alteration detected in the propositus's GALT after sequencing all exons and introns of this gene. In silico modeling predicted that the mutation was pathogenic. Copyright © 2017. Published by Elsevier B.V.

  9. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    PubMed

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  10. [Value of pre-gestational deafness-related mutation screening for the prevention and intervention of congenital deafness].

    PubMed

    Sun, Xuejing; Xing, Xinli; He, Qingqing; Zhou, Lin; Zhang, Jing; Zhao, Qing; Hou, Huili; Xi, Zuoming

    2017-10-10

    To assess the value of pre-gestational deafness-related mutation screening for the prevention and intervention of congenital deafness. In this study, 2168 couples with normal hearing were screened for common mutations associated with congenital deafness using real-time fluorescence quantitative PCR. The mutations have included GJB2 c.235delC and c.299_300delAT, SLC26A4 c.2168A>G and c.IVS7-2A>G, and mtDNA 12SrRNA c.1494C>T and c.1555A>G. For couples who have both carried heterozygous mutations of the same gene, genetic counseling and prenatal diagnosis were provided. Among of the 4 336 individuals, 178 (4.06%) were found to carry a mutation. Mutation rate for c.235delC and c.299_300delAT of GJB2 gene, c.IVS7-2 A>G and c.2168 A>G of SLC26A4 gene, c.1555 A>G and c.1494 C>T of DNA 12S rRNA gene were 0.91%, 0.20%, 0.68%, 0.11%, 0.1% and 0.01%, respectively. For six couples who have both carried mutations of the same gene, all fetuses showed a normal karyotype, while DNA sequencing indicated that two fetuses have carried homozygous c.235delC mutation of the GJB2 gene, one carried a heterozygous c.235delC mutation of the GJB2 gene, one carried heterozygous mutation of GJB2 gene (c.299_300delAT), and two have carried a heterozygous mutation of c.IVS7-2A>G of the SLC26A4 gene. Pre-gestational screening for deafness gene mutation can facilitate avoidance the birth of affected children and has a great clinical value for the prevention and intervention of birth defect.

  11. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    PubMed

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  12. Analysis of the 16S–23S rRNA Gene Internal Transcribed Spacer Region in Klebsiella Species▿

    PubMed Central

    Wang, Min; Cao, Boyang; Yu, Qunfang; Liu, Lei; Gao, Qili; Wang, Lei; Feng, Lu

    2008-01-01

    The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of Klebsiella spp., including Klebsiella pneumoniae subsp. pneumoniae, Klebsiella pneumoniae subsp. ozaenae, Klebsiella pneumoniae subsp. rhinoscleromatis, Klebsiella oxytoca, Klebsiella planticola, Klebsiella terrigena, and Klebsiella ornithinolytica, were characterized, and the feasibility of using ITS sequences to discriminate Klebsiella species and subspecies was explored. A total of 336 ITS sequences from 21 representative strains and 11 clinical isolates of Klebsiella were sequenced and analyzed. Three distinct ITS types—ITSnone (without tRNA genes), ITSglu [with a tRNAGlu (UUC) gene], and ITSile+ala [with tRNAIle (GAU) and tRNAAla (UGC) genes]—were detected in all species except for K. pneumoniae subsp. rhinoscleromatis, which has only ITSglu and ITSile+ala. The presence of ITSnone in Enterobacteriaceae had never been reported before. Both the length and the sequence of each ITS type are highly conserved within the species, with identity levels from 0.961 to 1.000 for ITSnone, from 0.967 to 1.000 for ITSglu, and from 0.968 to 1.000 for ITSile+ala. Interspecies sequence identities range from 0.775 to 0.989 for ITSnone, from 0.798 to 0.997 for ITSglu, and from 0.712 to 0.985 for ITSile+ala. Regions with significant interspecies variations but low intraspecies polymorphisms were identified; these may be targeted in the design of probes for the identification of Klebsiella to the species level. Phylogenetic analysis based on ITS regions reveals the relationships among Klebsiella species similarly to that based on 16S rRNA genes. PMID:18753345

  13. Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.

    PubMed

    Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen

    2013-01-23

    Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.

  14. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  15. Towards linked open gene mutations data

    PubMed Central

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  16. Towards linked open gene mutations data.

    PubMed

    Zappa, Achille; Splendiani, Andrea; Romano, Paolo

    2012-03-28

    With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on

  17. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  18. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    PubMed Central

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985

  19. Quantitative Detection of the nosZ Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils

    PubMed Central

    Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L.

    2006-01-01

    Nitrous oxide (N2O) is an important greenhouse gas in the troposphere controlling ozone concentration in the stratosphere through nitric oxide production. In order to quantify bacteria capable of N2O reduction, we developed a SYBR green quantitative real-time PCR assay targeting the nosZ gene encoding the catalytic subunit of the nitrous oxide reductase. Two independent sets of nosZ primers flanking the nosZ fragment previously used in diversity studies were designed and tested (K. Kloos, A. Mergel, C. Rösch, and H. Bothe, Aust. J. Plant Physiol. 28:991-998, 2001). The utility of these real-time PCR assays was demonstrated by quantifying the nosZ gene present in six different soils. Detection limits were between 101 and 102 target molecules per reaction for all assays. Sequence analysis of 128 cloned quantitative PCR products confirmed the specificity of the designed primers. The abundance of nosZ genes ranged from 105 to 107 target copies g−1 of dry soil, whereas genes for 16S rRNA were found at 108 to 109 target copies g−1 of dry soil. The abundance of narG and nirK genes was within the upper and lower limits of the 16S rRNA and nosZ gene copy numbers. The two sets of nosZ primers gave similar gene copy numbers for all tested soils. The maximum abundance of nosZ and nirK relative to 16S rRNA was 5 to 6%, confirming the low proportion of denitrifiers to total bacteria in soils. PMID:16885263

  20. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com; Felhi, Rahma; Tabebi, Mouna

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes ofmore » complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.« less

  1. Iranian hereditary hemochromatosis patients: baseline characteristics, laboratory data and gene mutations.

    PubMed

    Zamani, Farhad; Bagheri, Zohreh; Bayat, Maryam; Fereshtehnejad, Seyed-Mohammad; Basi, Ali; Najmabadi, Hossein; Ajdarkosh, Hossein

    2012-10-01

    Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder in white people, characterized by highly abnormal uptake of iron from the gastrointestinal tracts. Recently, mutation studies have focused to detect the genes responsible for HH. In this cross-sectional study, 12 HH patients were recruited, who were referred to Firoozgar Hospital, Tehran, Iran. In addition to the clinical assessments, a complete laboratory evaluation, imaging modalities, histopathologic assessment, atomic absorption spectrophotometry and gene mutation study were performed. The genetic study for HFE gene mutation was examined for all of the patients since 2006, while non-HFE mutation was conducted since December 2010 (only for 1 of them). Twelve patients were evaluated consisting of 11 men and 1 woman, with the mean age of 39.58±12.68 yr. The average of atomic iron loads was 13.25±4.83-fold higher than normal standards. Four patients had heterozygotic mutation of H63D (33.3%). There was no significant difference in either the iron load of liver (P=0.927) and heart (P=0.164) or serum concentration of ferritin (P=0.907) and TIBC (P=0.937) between the HFE-mutant and without HFE mutation HH cases. In contrast to other studies, C282Y mutation was not detected in any of our Iranian HH patients. Heterozygotic mutations of H63D (HFE) and TFR2 (non-HFE) genes were found to be more common in these patients. Similar to previous reports, these mutations were not found to be significantly associated with severity of presentation in HH patients.

  2. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus.

    PubMed

    Moore, S G; Ericsson, A C; Poock, S E; Melendez, P; Lucy, M C

    2017-06-01

    We tested the hypothesis that the uterus of virgin heifers and pregnant cows possessed a resident microbiome by 16S rRNA gene sequencing of the virgin and pregnant bovine uterus. The endometrium of 10 virgin heifers in estrus and the amniotic fluid, placentome, intercotyledonary placenta, cervical lumen, and external cervix surface (control) of 5 pregnant cows were sampled using aseptic techniques. The DNA was extracted, the V4 hypervariable region of the 16S rRNA gene was amplified, and amplicons were sequenced using Illumina MiSeq technology (Illumina Inc., San Diego, CA). Operational taxonomic units (OTU) were generated from the sequences using Qiime v1.8 software, and taxonomy was assigned using the Greengenes database. The effect of tissue on the microbial composition within the pregnant uterus was tested using univariate (mixed model) and multivariate (permutational multivariate ANOVA) procedures. Amplicons of 16S rRNA gene were generated in all samples, supporting the contention that the uterus of virgin heifers and pregnant cows contained a microbiome. On average, 53, 199, 380, 382, 525, and 13,589 reads annotated as 16, 35, 43, 63, 48, and 176 OTU in the placentome, virgin endometrium, amniotic fluid, cervical lumen, intercotyledonary placenta, and external surface of the cervix, respectively, were generated. The 3 most abundant phyla in the uterus of the virgin heifers and pregnant cows were Firmicutes, Bacteroidetes, and Proteobacteria, and they accounted for approximately 40, 35, and 10% of the sequences, respectively. Phyla abundance was similar between the tissues of the pregnant uterus. Principal component analysis, one-way PERMANOVA analysis of the Bray-Curtis similarity index, and mixed model analysis of the Shannon diversity index and Chao1 index demonstrated that the microbiome of the control tissue (external surface of the cervix) was significantly different from that of the amniotic fluid, intercotyledonary placenta, and placentome tissues

  3. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  4. De novo mutations in histone modifying genes in congenital heart disease

    PubMed Central

    Zaidi, Samir; Choi, Murim; Wakimoto, Hiroko; Ma, Lijiang; Jiang, Jianming; Overton, John D.; Romano-Adesman, Angela; Bjornson, Robert D.; Breitbart, Roger E.; Brown, Kerry K.; Carriero, Nicholas J.; Cheung, Yee Him; Deanfield, John; DePalma, Steve; Fakhro, Khalid A.; Glessner, Joseph; Hakonarson, Hakon; Italia, Michael; Kaltman, Jonathan R.; Kaski, Juan; Kim, Richard; Kline, Jennie K.; Lee, Teresa; Leipzig, Jeremy; Lopez, Alexander; Mane, Shrikant M.; Mitchell, Laura E.; Newburger, Jane W.; Parfenov, Michael; Pe'er, Itsik; Porter, George; Roberts, Amy; Sachidanandam, Ravi; Sanders, Stephan J.; Seiden, Howard S.; State, Mathew W.; Subramanian, Sailakshmi; Tikhonova, Irina R.; Wang, Wei; Warburton, Dorothy; White, Peter S.; Williams, Ismee A.; Zhao, Hongyu; Seidman, Jonathan G.; Brueckner, Martina; Chung, Wendy K.; Gelb, Bruce D.; Goldmuntz, Elizabeth; Seidman, Christine E.; Lifton, Richard P.

    2013-01-01

    Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. By analysis of exome sequencing of parent-offspring trios, we compared the incidence of de novo mutations in 362 severe CHD cases and 264 controls. CHD cases showed a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging mutations. Similar odds ratios were seen across major classes of severe CHD. We found a marked excess of de novo mutations in genes involved in production, removal or reading of H3K4 methylation (H3K4me), or ubiquitination of H2BK120, which is required for H3K4 methylation2–4. There were also two de novo mutations in SMAD2; SMAD2 signaling in the embryonic left-right organizer induces demethylation of H3K27me5. H3K4me and H3K27me mark `poised' promoters and enhancers that regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundred genes that collectively contribute to ~10% of severe CHD. PMID:23665959

  5. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  6. [From gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene].

    PubMed

    van Woerden, C S; Groothof, J W; Wanders, R J A; Waterham, H R; Wijburg, F R

    2006-07-29

    Primary hyperoxaluria type I (PH1) is a congenital defect in glyoxylate metabolism caused by a deficiency in the liver-specific peroxisomal enzyme known as alanine glyoxylate aminotransferase (AGT). The deficiency is due to mutations in the AGXT gene, located on chromosome 2q37.3, and results in the conversion of glyoxylate to oxalate. The crystallisation of oxalate with calcium results in symptoms varying from a solitary kidney stone to end-stage renal disease with systemic oxalosis. The diagnosis is based on increased oxalate and glycolate excretion in the urine, reduced AGT activity in liver tissue, and confirmed mutations in the AGXT gene. Over 50 disease-causing mutations have been identified in PH1, which are associated with a wide range of effects on the AGT enzyme. Homozygous Gly170Arg or Phei52Ile mutations are associated with a reduction in urinary oxalate excretion upon pyridoxine administration and long-term preservation of renal function when treatment is initiated in a timely manner. Homozygous 33insC and Gly82Arg mutations result in a much poorer prognosis. Mutational analysis of the AGXT gene in PH1 patients can be a useful tool for establishing the diagnosis and choosing an appropriate therapeutic strategy.

  7. Panel of 23S rRNA Gene-Based Real-Time PCR Assays for Improved Universal and Group-Specific Detection of Phytoplasmas▿ †

    PubMed Central

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Dickinson, Matthew

    2009-01-01

    Primers and probes based on the 23S rRNA gene have been utilized to design a range of real-time PCR assays for routine phytoplasma diagnostics. These assays have been authenticated as phytoplasma specific and shown to be at least as sensitive as nested PCR. A universal assay to detect all phytoplasmas has been developed, along with a multiplex assay to discriminate 16SrI group phytoplasmas from members of all of the other 16Sr groups. Assays for the 16SrII, 16SrIV, and 16SrXII groups have also been developed to confirm that the 23S rRNA gene can be used to design group-specific assays. PMID:19270148

  8. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis.

    PubMed

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-12-31

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification.

  9. Mutation spectrum and differential gene expression in cystic and solid vestibular schwannoma.

    PubMed

    Zhang, Zhihua; Wang, Zhaoyan; Sun, Lianhua; Li, Xiaohua; Huang, Qi; Yang, Tao; Wu, Hao

    2014-03-01

    We sought to characterize the mutation spectrum of NF2 and the differential gene expression in cystic and solid vestibular schwannomas. We collected tumor tissue and blood samples of 31 cystic vestibular schwannomas and 114 solid vestibular schwannomas. Mutation screening of NF2 was performed in both tumor and blood DNA samples of all patients. cDNA microarray was used to analyze the differential gene expression between 11 cystic vestibular schwannomas and 6 solid vestibular schwannomas. Expression levels of top candidate genes were verified by quantitative reverse transcription PCR. NF2 mutations were identified in 34.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. No significant difference was found between the mutation detection rates of cystic vestibular schwannoma (35.5%) and solid vestibular schwannoma (34.2%). cDNA microarray analysis detected a total of 46 differentially expressed genes between the cystic vestibular schwannoma and solid vestibular schwannoma samples. The significantly decreased expression of four top candidate genes, C1orf130, CNTF, COL4A3, and COL4A4, was verified by quantitative reverse transcription PCR. NF2 mutations are not directly involved in the cystic formation of vestibular schwannoma. In addition, the differential gene expression of cystic vestibular schwannoma reported in our study may provide useful insights into the molecular mechanism underlying this process.

  10. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  11. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease

    PubMed Central

    Elson, Joanna L.; Smith, Paul M.; Greaves, Laura C.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2015-01-01

    Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health. PMID:26349026

  12. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  13. The Androgen Receptor Gene Mutations Database.

    PubMed Central

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843

  14. Mutation analysis of Leber congenital amaurosis‑associated genes in patients with retinitis pigmentosa.

    PubMed

    Shen, Tao; Guan, Liping; Li, Shiqiang; Zhang, Jianguo; Xiao, Xueshan; Jiang, Hui; Yang, Jianhua; Guo, Xiangming; Wang, Jun; Zhang, Qingjiong

    2015-03-01

    The genetic defects underlying approximately half of all retinitis pigmentosa (RP) cases are unknown. A number of genes responsible for Leber congenital amaurosis (LCA) may also cause RP when they are mutated. Our previous study revealed that variants in the most frequently mutated nine exons accounted for approximately half of the mutations detected in a cohort of patients with LCA. The aim of the present study was to detect mutations in LCA-associated genes in patients with RP using two different strategies. Sanger sequencing was used to screen mutations in the nine exons in 293 patients with RP and exome sequencing was used to detect variants in 12 LCA-associated genes in 157 of the 293 patients with RP and then to validate the variants by Sanger sequencing. Potential pathogenic mutations were identified in four patients with early onset RP, including homozygous CRB1 mutations in two patients, compound heterozygous CRB1 mutations in one patient and compound heterozygous CEP290 mutations in one patient. The present study indicated that mutations in CEP290 may also be associated with RP but not with LCA. With the exception of CEP290, the remaining 11 genes known to be associated with LCA but not with RP are unlikely to be a common cause of RP.

  15. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103

    PubMed Central

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875

  16. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    PubMed

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  17. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients.

    PubMed

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-02-21

    To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients.

  18. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    PubMed

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  19. Novel Mutations in pncA Gene of Pyrazinamide Resistant Clinical Isolates of Mycobacterium tuberculosis.

    PubMed

    Kahbazi, Manijeh; Sarmadian, Hossein; Ahmadi, Azam; Didgar, Farshideh; Sadrnia, Maryam; Poolad, Toktam; Arjomandzadegan, Mohammad

    2018-04-16

    In clinical isolates of Mycobacterium tuberculosis (MTB), resistance to pyrazinamide occurs by mutations in any positions of the pncA gene (NC_000962.3) especially in nucleotides 359 and 374. In this study we examined the pncA gene sequence in clinical isolates of MTB. Genomic DNA of 33 clinical isolates of MTB was extracted by the Chelex100 method. The polymerase chain reactions (PCR) were performed using specific primers for amplification of 744 bp amplicon comprising the coding sequences (CDS) of the pncA gene. PCR products were sequenced by an automated sequencing Bioscience system. Additionally, semi Nested-allele specific (sNASP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were carried out for verification of probable mutations in nucleotides 359 and 374. Sequencing results showed that from 33 MTB clinical isolates, nine pyrazinamide-resistant isolates have mutations. Furthermore, no mutation was detected in 24 susceptible strains in the entire 561 bp of the pncA gene. Moreover, new mutations of G→A at position 3 of the pncA gene were identified in some of the resistant isolates. Results showed that the sNASP method could detect mutations in nucleotide 359 and 374 of the pncA gene, but the PCR-RFLP method by the SacII enzyme could not detect these mutations. In conclusion, the identification of new mutations in the pncA gene confirmed the probable occurrence of mutations in any nucleotides of the pncA gene sequence in resistant isolates of MTB.

  20. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  1. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodes, M.J.; Merlin, G.; DeVos, T.

    1995-12-01

    This report investigates the duplication of two LD1 genes into the rRNA locus and the resultant transcription by RNA polymerase I, which has a faster transcription rate than that of RNA polymerase II. This was conducted using a 2.2-Mb chromosome in Leishmania donovani. 55 refs., 6 figs.

  2. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  3. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    PubMed Central

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  4. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    PubMed

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  5. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.

    PubMed

    Cheng, Feixiong; Zhao, Junfei; Zhao, Zhongming

    2016-07-01

    Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila.

    PubMed

    Descours, Ghislaine; Ginevra, Christophe; Jacotin, Nathalie; Forey, Françoise; Chastang, Joëlle; Kay, Elisabeth; Etienne, Jerome; Lina, Gérard; Doublet, Patricia; Jarraud, Sophie

    2017-03-01

    Monitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings. Copyright © 2017 American Society for Microbiology.

  7. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila

    PubMed Central

    Ginevra, Christophe; Jacotin, Nathalie; Forey, Françoise; Chastang, Joëlle; Kay, Elisabeth; Etienne, Jerome; Lina, Gérard; Doublet, Patricia; Jarraud, Sophie

    2017-01-01

    ABSTRACT Monitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila. Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings. PMID:28069647

  8. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.

    PubMed

    Forero, Diego A; Prada, Carlos F; Perry, George

    2016-01-01

    In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.

  9. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders

    PubMed Central

    Forero, Diego A.; Prada, Carlos F.; Perry, George

    2016-01-01

    Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183

  10. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes.

    PubMed

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-05-26

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    PubMed

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  12. Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Fulton, Piers; Chakrapani, Anupam; Chadefaux, Bernadette; Ben-Omran, Tawfeg; Banerjee, Indraneel; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2009-01-01

    Background Activating mutations in the GLUD1 gene (which encodes for the intra-mitochondrial enzyme glutamate dehydrogenase, GDH) cause the hyperinsulinism–hyperammonaemia (HI/HA) syndrome. Patients present with HA and leucine-sensitive hypoglycaemia. GDH is regulated by another intra-mitochondrial enzyme sirtuin 4 (SIRT4). Sirt4 knockout mice demonstrate activation of GDH with increased amino acid-stimulated insulin secretion. Objectives To study the genotype–phenotype correlations in patients with GLUD1 mutations. To report the phenotype and functional analysis of a novel mutation (P436L) in the GLUD1 gene associated with the absence of HA. Patients and methods Twenty patients with HI from 16 families had mutational analysis of the GLUD1 gene in view of HA (n=19) or leucine sensitivity (n=1). Patients negative for a GLUD1 mutation had sequence analysis of the SIRT4 gene. Functional analysis of the novel P436L GLUD1 mutation was performed. Results Heterozygous missense mutations were detected in 15 patients with HI/HA, 2 of which are novel (N410D and D451V). In addition, a patient with a normal serum ammonia concentration (21 μmol/l) was heterozygous for a novel missense mutation P436L. Functional analysis of this mutation confirms that it is associated with a loss of GTP inhibition. Seizure disorder was common (43%) in our cohort of patients with a GLUD1 mutation. No mutations in the SIRT4 gene were identified. Conclusion Patients with HI due to mutations in the GLUD1 gene may have normal serum ammonia concentrations. Hence, GLUD1 mutational analysis may be indicated in patients with leucine sensitivity; even in the absence of HA. A high frequency of epilepsy (43%) was observed in our patients with GLUD1 mutations. PMID:19690084

  13. Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets

    PubMed Central

    Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.

    2008-01-01

    X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346

  14. Methylation of 23S rRNA Nucleotide G748 by RlmAII Methyltransferase Renders Streptococcus pneumoniae Telithromycin Susceptible

    PubMed Central

    Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-01-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmAII, which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmAII to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmAII renders S. pneumoniae TEL susceptible. PMID:23716046

  15. Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible.

    PubMed

    Takaya, Akiko; Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-08-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmA(II), which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmA(II) to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmA(II) renders S. pneumoniae TEL susceptible.

  16. G20210A prothrombin gene mutation identified in patients with venous leg ulcers.

    PubMed

    Jebeleanu, G; Procopciuc, L

    2001-01-01

    The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.

  17. A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis

    PubMed Central

    2014-01-01

    Background Alterations or mutations in the lipoprotein lipase (LPL) gene contribute to severe hypertriglyceridemia (HTG). This study reported on two patients in a Chinese family with LPL gene mutations and severe HTG and acute pancreatitis. Methods Two patients with other five family members were included in this study for DNA-sequences of hyperlipidemia-related genes (such as LPL, APOC2, APOA5, LMF1, and GPIHBP1) and 43 healthy individuals and 70 HTG subjects were included for the screening of LPL gene mutations. Results Both patients were found to have a compound heterozygote for a novel LPL gene mutation (L279V) and a known mutation (A98T). Furthermore, one HTG subject out of 70 was found to carry this novel LPL L279V mutation. Conclusions The data from this study showed that compound heterozygote mutations of A98T and L279V inactivate lipoprotein lipase enzymatic activity and contribute to severe HTG and acute pancreatitis in two Chinese patients. Further study will investigate how these LPL gene mutations genetically inactivate the LPL enzyme. PMID:24646025

  18. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes.

    PubMed

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2017-01-01

    Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5' end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and

  19. Combined Analyses of the ITS Loci and the Corresponding 16S rRNA Genes Reveal High Micro- and Macrodiversity of SAR11 Populations in the Red Sea

    PubMed Central

    Ngugi, David Kamanda; Stingl, Ulrich

    2012-01-01

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24°C throughout the year, and a remarkable uniform temperature (∼22°C) and salinity (∼41 psu) from the mixed layer (∼200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea’s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium. PMID:23185592

  20. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  1. FunGene: the functional gene pipeline and repository.

    PubMed

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  2. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis

    PubMed Central

    Liiv, Aivar; Karitkina, Diana; Maiväli, Ülo; Remme, Jaanus

    2005-01-01

    Background The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors. Results We scanned the loop of helix 69 by mutagenesis and analyzed the mutant ribosomes using a plasmid-borne IPTG-inducible expression system. We assayed the effects of 23S rRNA mutations on cell growth, contribution of mutant ribosomes to cellular polysome pools and the ability of mutant ribosomes to function in cell-free translation. Mutations A1912G, and A1919G have very strong growth phenotypes, are inactive during in vitro protein synthesis, and under-represented in the polysomes. Mutation Ψ1917C has a very strong growth phenotype and leads to a general depletion of the cellular polysome pool. Mutation A1916G, having a modest growth phenotype, is apparently defective in the assembly of the 70S ribosome. Conclusion Mutations A1912G, A1919G, and Ψ1917C of 23S rRNA strongly inhibit translation. Mutation A1916G causes a defect in the 50S subunit or 70S formation. Mutations Ψ1911C, A1913G, C1914A, Ψ1915C, and A1918G lack clear phenotypes. PMID:16053518

  3. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  4. Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deprez, R.H.L.; Groen, N.A.; Zwarthoff, E.C.

    1994-06-01

    The gene for the hereditary disorder neurofibromatosis type 2 (NF2), which predisposes for benign CNS tumors such as vestibular schwannomas and meningiomas, has been assigned to chromosome 22 and recently has been isolated. Mutations in the NF2 gene were found in both sporadic meningiomas and vestibular schwannomas. However, so far only 6 of the 16 exons of the gene have been analyzed. In order to extend the analysis of an involvement of the NF2 gene in the sporadic counterparts of these NF2-related tumors, the authors have used reverse transcriptase-PCR amplification followed by SSCP and DNA sequence analysis to screen formore » mutations in the coding region of the NF2 gene. Analysis of the NF2 gene transcript in 53 unrelated patients with meningiomas and vestibular schwannomas revealed mutations in 32% of the sporadic meningiomas (n = 44), in 50% of the sporadic vestibular schwannomas (n = 4), in 100% of the tumors found in NF2 patients (n = 2), and in one of three tumors from multiple-meningioma patients. Of the 18 tumors in which a mutation in the NF2 gene transcript was observed and the copy number of chromosome 22 could be established, 14 also showed loss of (parts of) chromosome 22. This suggests that in sporadic meningiomas and NF2-associated tumors the NF2 gene functions as a recessive tumor-suppressor gene. The mutations detected resulted mostly in frameshifts, predicting truncations starting within the N-terminal half of the putative protein. 23 refs., 2 figs. 3 tabs.« less

  5. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.

    PubMed

    Van den Eynden, Jimmy; Fierro, Ana Carolina; Verbeke, Lieven P C; Marchal, Kathleen

    2015-04-23

    With the advances in high throughput technologies, increasing amounts of cancer somatic mutation data are being generated and made available. Only a small number of (driver) mutations occur in driver genes and are responsible for carcinogenesis, while the majority of (passenger) mutations do not influence tumour biology. In this study, SomInaClust is introduced, a method that accurately identifies driver genes based on their mutation pattern across tumour samples and then classifies them into oncogenes or tumour suppressor genes respectively. SomInaClust starts from the observation that oncogenes mainly contain mutations that, due to positive selection, cluster at similar positions in a gene across patient samples, whereas tumour suppressor genes contain a high number of protein-truncating mutations throughout the entire gene length. The method was shown to prioritize driver genes in 9 different solid cancers. Furthermore it was found to be complementary to existing similar-purpose methods with the additional advantages that it has a higher sensitivity, also for rare mutations (occurring in less than 1% of all samples), and it accurately classifies candidate driver genes in putative oncogenes and tumour suppressor genes. Pathway enrichment analysis showed that the identified genes belong to known cancer signalling pathways, and that the distinction between oncogenes and tumour suppressor genes is biologically relevant. SomInaClust was shown to detect candidate driver genes based on somatic mutation patterns of inactivation and clustering and to distinguish oncogenes from tumour suppressor genes. The method could be used for the identification of new cancer genes or to filter mutation data for further data-integration purposes.

  6. Gene therapy for the eye focus on mutation-independent approaches.

    PubMed

    Dalkara, Deniz; Duebel, Jens; Sahel, José-Alain

    2015-02-01

    This review will discuss retinal gene therapy strategies with a focus on mutation-independent approaches to treat a large number of patients without knowledge of the mutant gene. These approaches rely on the secretion of neurotrophic factors to slow down retinal degeneration and the use of optogenetics to restore vision in late-stage disease. Success in clinical application of adeno-associated virus (AAV)-mediated gene therapy for Leber's congenital amaurosis established the feasibility of retinal gene therapy. More clinical trials are currently on their way for recessive diseases with known mutations. However, the genetic and mechanistic diversity of the retinal diseases presents an enormous obstacle for the development of gene therapies tailored to each patient-specific mutation. To extend gene therapy's promise to a large number of patients, evidence suggests retina-specific trophic factors, such as rod-derived cone viability factor, can be used to slow down loss of cone cells responsible for our high acuity vision. In parallel, it has been shown that microbial opsins are able to restore light sensitivity when expressed in blind retinas. Recent findings imply that using the viral technology that has been demonstrated as well tolerated in patients, there are opportunities to develop widely applicable gene therapeutic interventions in clinical ophthalmology.

  7. Pseudomonas sp. strain CA5 (a selenite-reducing bacterium) 16S rRNA gene complete sequence. National Institute of Health, National Center for Biotechnology Information, GenBank sequence. Accession FJ422810.1.

    USDA-ARS?s Scientific Manuscript database

    This study used 1321 base pair 16S rRNA gene sequence methods to confirm the phylogenetic position of a soil isolate as a bacterium belonging to the genus Pesudomonas sp. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification...

  8. Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.

    PubMed

    Maus, Irena; Kim, Yong Sung; Wibberg, Daniel; Stolze, Yvonne; Off, Sandra; Antonczyk, Sebastian; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-02-28

    Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

  9. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    PubMed

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  10. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103.

    PubMed

    Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M; Prescott, John F

    2007-01-01

    Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.

  11. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    EPA Science Inventory

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  12. Mutations in the S gene region of hepatitis B virus genotype D in Turkish patients.

    PubMed

    Ozaslan, Mehmet; Ozaslan, Ersan; Barsgan, Arzu; Koruk, Mehmet

    2007-12-01

    The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the 'a'-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M -> T) and 127 (T -> P) were found on the first loop of 'a'-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.

  13. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    PubMed

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  14. A mutation of the p63 gene in non‐syndromic cleft lip

    PubMed Central

    Leoyklang, P; Siriwan, P; Shotelersuk, V

    2006-01-01

    Mutations in the p63 gene (TP63) underlie several monogenic malformation syndromes manifesting cleft lip with or without cleft palate (CL/P). We investigated whether p63 mutations also result in non‐syndromic CL/P. Specifically, we performed mutation analysis of the 16 exons of the p63 gene for 100 Thai patients with non‐syndromic CL/P. In total, 21 variant sites were identified. All were single nucleotide changes, with six in coding regions, including three novel non‐synonymous changes: S90L, R313G, and D564H. The R313G was concluded to be pathogenic on the basis of its amino acid change, evolutionary conservation, its occurrence in a functionally important domain, its predicted damaging function, its de novo occurrence, and its absence in 500 control individuals. Our data strongly suggest, for the first time, a causative role of a heterozygous mutation in the p63 gene in non‐syndromic CL/P, highlighting the wide phenotypic spectrum of p63 gene mutations. PMID:16740912

  15. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  16. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  17. Screening for mutations in exon 4 of the LDL receptor gene: identification of a new deletion mutation.

    PubMed Central

    Theart, L; Kotze, M J; Langenhoven, E; Loubser, O; Peeters, A V; Lintott, C J; Scott, R S

    1995-01-01

    DNA from 14 unrelated New Zealand familial hypercholesterolaemia (FH) heterozygotes, originating from the United Kingdom, was screened for mutations in exon 4 of the low density lipoprotein receptor (LDLR) gene. One patient was heterozygous for mutation D206E, which was initially identified in South Africa. The chromosomal background of this mutant allele was compatible with that described previously in Afrikaner and English patients, suggesting that this mutation originated in the United Kingdom. The 2 bp deletion in codon 206 and mutations D154N and D200G, previously reported in English FH patients, were not detected in this sample. In one of the patients, however, a new deletion of 7 bp was identified after nucleotide 581 (or 582) in exon 4 of the LDLR gene. Images PMID:7616546

  18. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    PubMed Central

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification. PMID:21347215

  19. [Gene mutation and clinical phenotype analysis of patients with Noonan syndrome and hypertrophic cardiomyopathy].

    PubMed

    Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y

    2017-10-02

    Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.

  20. Expression stability of two housekeeping genes (18S rRNA and G3PDH) during in vitro maturation of follicular oocytes in buffalo (Bubalus bubalis).

    PubMed

    Aswal, Ajay Pal Singh; Raghav, Sarvesh; De, Sachinandan; Thakur, Manish; Goswami, Surender Lal; Datta, Tirtha Kumar

    2008-01-15

    The present study was undertaken to evaluate the expression stability of two housekeeping genes (HKGs), 18S rRNA and G3PDH during in vitro maturation (IVM) of oocytes in buffalo, which qualifies their use as internal controls for valid qRT-PCR estimation of other oocyte transcripts. A semi quantitative RT-PCR system was used with optimised qRT-PCR parameters at exponential PCR cycle for evaluation of temporal expression pattern of these genes over 24 h of IVM. 18S rRNA was found more stable in its expression pattern than G3PDH.

  1. Application of DNA probes for rRNA and vanA genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci.

    PubMed Central

    Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B

    1993-01-01

    DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216

  2. MEFV gene mutations and clinical course in pediatric patients with Henoch-Schönlein purpura.

    PubMed

    Can, Emrah; Kılınç Yaprak, Zubeyde; Hamilçıkan, Şahin; Erol, Meltem; Bostan Gayret Y Özgül Yiğit, Özlem

    2018-06-01

    To determine the frequency of the MEFV gene mutations in pediatric patients diagnosed with HSP and to assess the effect of the MEFV gene mutations on their prognosis. Material and Methods. Ccross-sectional study; pediatric patients between 2-11 years diagnosed with HSP were included. These cases were investigated for 6 MEFV gene mutations (M694V, M680I, A744S, R202Q, K695R, E148Q). Eighty cases were included in the study of which 55% were male (n= 44). The mean age was 6.44 ± 2.52 years. Disease recurrence occurred in 9 patients, invagination in 5 patients and convulsion in 1 patient during follow-up. Approximately half of the patients received steroids. The MEFV gene mutations was not detected in 44 (55%) of the patients. There was a heterozygous mutation in 19 (22%). E148Q was found in 8 patients, M694V in 5 patients, A744S in 4 patients, and the R202Q heterozygous mutation in 2 patients. The M608I homozygous mutation was detected in 1 patient and the M694V homozygous mutation in 1 patient. The compound heterozygous MEFV gene mutations was found in 15 patients. The presence of the MEFV gene mutations was not correlated with the frequency of renal and gastrointestinal involvement and prognosis, the development of complications and the use of steroids. The presence of the MEFV gene mutations does not correlate with the clinical course and complication in Turkish pediatric patients with HSP. Sociedad Argentina de Pediatría.

  3. [Mutation analysis of beta myosin heavy chain gene in hypertrophic cardiomyopathy families].

    PubMed

    Fan, Xin-ping; Yang, Zhong-wei; Feng, Xiu-li; Yang, Fu-hui; Xiao, Bai; Liang, Yan

    2011-08-01

    To detect the gene mutations of beta-myosin heavy chain gene (MYH7) in Chinese pedigrees with hypertrophic cardiomyopathy (HCM), and to analyze the correlation between the genotype and phenotype. Exons 3, 5, 7-9, 11-16 and 18-23 of the MYH7 gene were amplified with PCR in three Chinese pedigrees with HCM. The products were sequenced. Sequence alignment between the detected and the standard sequences was performed. A missense mutation of Thr441Met in exon 14 was identified in a pedigree, which was not detected in the controls. Several synonymous mutations of MYH7 gene were detected in the three pedigrees. The mutation of Thr441Met, located in the actin binding domain of the globular head, was first identified in Chinese. It probably caused HCM. HCM is a heterogeneous disease. Many factors are involved in the process of its occurrence and development.

  4. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    PubMed

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  5. Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.

    PubMed

    Scimone, Concetta; Bramanti, Placido; Alafaci, Concetta; Granata, Francesca; Piva, Francesco; Rinaldi, Carmela; Donato, Luigi; Greco, Federica; Sidoti, Antonina; D'Angelo, Rosalia

    2017-02-01

    Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.

  6. [Correlation of clinicopathologic features and driver gene mutation in non-small cell lung cancer].

    PubMed

    Chen, L F; Chen, X Y; Yu, X B

    2016-04-08

    To study the relationship between mutations of well-known driver genes and clinicopathologic characteristics of non-small cell lung cancers (NSCLC). Scorpions amplification refractory mutation system (scorpions ARMS) fluorescence quantitative PCR was performed to investigate 205 driver gene mutation status in NSCLC in correlation with clinicopathological characteristics of the patients. Driver gene mutations were detected in 146 of 205 (71.2%) patients with NSCLC, including 81.7%(138/169) adenocarcinomas, in which mutations of nine genes were found: EGFR (63.3%, 107/169), KRAS (5.9%, 10/169), PIK3CA (4.1%, 7/169), ALK (4.1%, 7/169), ROS1 (3.0%, 5/169), RET (3.6%, 6/169), HER2 (1.8%, 3/169), NRAS (0.6%, 1/169) and BRAF (0.6%, 1/169). The frequencies of driver gene mutations were higher in adenocarcinomas, female patients and non-smokers (P<0.01, P=0.003, P<0.01, respectively). Driver gene mutation status showed no correlation with either the age or the clinical stage (P=0.281, P=0.490, respectively). However, EGFR mutations tended to occur in adenocarcinoma, female, non-smokers, and patients of ≥62 years of age (P<0.01, P<0.01, P=0.002, P=0.012, respectively). The frequency of EGFR mutation was positively correlated with the tumor histology of lepidic, acinar, papillary and micropapillary predominant growth patterns. There was no relationship between EGFR mutation and the clinical stage (P=0.237). The frequency of KRAS mutation was higher in solid predominant and invasive mucinous adenocarcinomas (P=0.015); that of PIK3CA mutation was higher in patients of ≥62 years of age, invasive mucinous adenocarcinoma and fetal adenocarcinoma (P=0.015, P=0.006, respectively). ALK, ROS1 or RET mutation positive NSCLC tended to occur in nonsmokers and have solid predominant tumors and invasive mucinous adenocarcinoma (P=0.012, P=0.017 respectively). The frequency of EML4-ALK mutation was higher in the early stage patients with solid predominant tumors and invasive mucinous

  7. Extensive Variation in the Mutation Rate Between and Within Human Genes Associated with Mendelian Disease.

    PubMed

    Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam

    2016-05-01

    We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. © 2016 WILEY PERIODICALS, INC.

  8. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome.

    PubMed

    Gao, Ying; Bai, Jin-li; Liu, Xiao-yan; Qu, Yu-jin; Cao, Yan-yan; Wang, Jian-cai; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-11-01

    Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2-6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1-6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene.

  9. [Cystic fibrosis gene mutations in the West of France: clinical application].

    PubMed

    Verlingue, C; Travert, G; Le Roux, M G; Laroche, D; Audrézet, M P; Mercier, B; Moisan, J P; Férec, C

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the cystic fibrosis phenotype when both alleles are mutated, was cloned and sequenced in 1989. Since then, more than 400 mutations have been reported in the gene, although most of these are rare. We have systematically analysed the entire coding sequence of the CFTR gene in a cohort of patients originating from the West of France (Caen, Brest and Nantes). More than 450 CF children, 914 chromosomes in all, have been exhaustively studied in the three centers. We have been able to characterize more than 90% of the mutations, respectively 93.5%, 99% and 95.8%. Despite the large diversity in the CFTR mutations occurring in CF patients from this area, these results can help to improve genetic counselling, prenatal diagnosis as well as our understanding of the molecular basis of the pathophysiology of cystic fibrosis.

  10. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  11. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis of GPR101 and AIP genes mutations in acromegaly: a multicentric study.

    PubMed

    Ferraù, Francesco; Romeo, P D; Puglisi, S; Ragonese, M; Torre, M L; Scaroni, C; Occhi, G; De Menis, E; Arnaldi, G; Trimarchi, F; Cannavò, S

    2016-12-01

    This multicentric study aimed to investigate the prevalence of the G protein-coupled receptor 101 (GPR101) p.E308D variant and aryl hydrocarbon receptor interacting protein (AIP) gene mutations in a representative cohort of Italian patients with acromegaly. 215 patients with GH-secreting pituitary adenomas, referred to 4 Italian referral centres for pituitary diseases, have been included. Three cases of gigantism were present. Five cases were classified as FIPA. All the patients have been screened for germline AIP gene mutations and GPR101 gene p.E308D variant. Heterozygous AIP gene variants have been found in 7 patients (3.2 %). Five patients carried an AIP mutation (2.3 %; 4 females): 3 patients harboured the p.R3O4Q mutation, one had the p.R304* mutation and the last one the IVS3+1G>A mutation. The prevalence of AIP mutations was 3.3 % and 2.8 % when considering only the patients diagnosed when they were <30 or <40-year old, respectively. Furthermore, 2.0 % of the patients with a pituitary macroadenoma and 4.2 % of patients resistant to somatostatin analogues treatment were found to harbour an AIP gene mutation. None of the patients was found to carry the GPR101 p.E308D variant. The prevalence of AIP gene mutations among our sporadic and familial acromegaly cases was similar to that one reported in previous studies, but lower when considering only the cases diagnosed before 40 years of age. The GPR101 p.E308D change is unlikely to have a role in somatotroph adenomas tumorigenesis, since none of our sporadic or familial patients tested positive for this variant.

  13. Mutations on the α2-Globin Gene That May Trigger α(+)-Thalassemia.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    In the present study, a total of 11 individuals with hypochromic microcytic anemia who did not reveal the most common α-thalassemia (α-thal) deletions or mutations, were subjected to more investigations by DNA sequencing of the α-globin genes. Seven novel nondeletional α-thal mutations localized on the α2-globin gene in the heterozygous state were identified. These mutations either corrupted regulatory splice sites and consequently affected RNA processing or created unstable hemoglobin (Hb) variants. The mutations described here produced globin gene variants that lead to amino acid changes in critical regions of the globin chain. The clinical presentation of most patients was a persistent mild microcytic anemia similar to an α(+)-thal. In the last decade, numerous α-globin mutations have been observed leading to an α-thal phenotype and these studies have been considered to be important as discussed here.

  14. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  15. Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene

    PubMed Central

    Olivé, Montse; Armstrong, Judith; Miralles, Francesc; Pou, Adolf; Fardeau, Michel; Gonzalez, Laura; Martínez, Francesca; Fischer, Dirk; Matos, Juan Antonio Martínez; Shatunov, Alexey; Goldfarb, Lev; Ferrer, Isidre

    2016-01-01

    Desminopathy represents a subgroup of myofibrillar myopathies caused by mutations in the desmin gene. Three novel disease-associated mutations in the desmin gene were identified in unrelated Spanish families affected by cardioskeletal myopathy. A selective pattern of muscle involvement, which differed from that observed in myofibrillar myopathy resulting from mutations in the myotilin gene, was observed in each of the three families with novel mutations and each of three desminopathy patients with known desmin mutations. Prominent joint retractions at the ankles and characteristic nasal speech were observed early in the course of illness. These findings suggest that muscle imaging in combination with routine clinical and pathological examination may be helpful in distinguishing desminopathy from other forms of myofibrillar myopathy and ordering appropriate molecular investigations. PMID:17418574

  16. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations.

    PubMed

    Branson, Ruth; Potoczna, Natascha; Kral, John G; Lentes, Klaus-Ulrich; Hoehe, Margret R; Horber, Fritz F

    2003-03-20

    Obesity, a multifactorial disease caused by the interaction of genetic factors with the environment, is largely polygenic. A few mutations in these genes, such as in the leptin receptor (LEPR) gene and melanocortin 4 receptor (MC4R) gene, have been identified as causes of monogenic obesity. We sequenced the complete MC4R coding region, the region of the proopiomelanocortin gene (POMC) encoding the alpha melanocyte-stimulating hormone, and the leptin-binding domain of LEPR in 469 severely obese white subjects (370 women and 99 men; mean [+/-SE] age, 41.0+/-0.5 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 44.1+/-2.0). Fifteen women and 10 men without a history of dieting or a family history of obesity served as normal-weight controls (age, 47.7+/-2.0 years; body-mass index, 21.6+/-0.4). Detailed phenotypic data, including information on body fat, resting energy expenditure, diet-induced thermogenesis, serum concentrations of leptin, and eating behavior, were collected. Twenty-four obese subjects (5.1 percent) and one control subject (4 percent) had MC4R mutations, including five novel variants. Twenty of the 24 obese subjects with an MC4R mutation were matched for age, sex, and body-mass index with 120 of the 445 obese subjects without an MC4R mutation. All mutation carriers reported binge eating, as compared with 14.2 percent of obese subjects without mutations (P<0.001) and 0 percent of the normal-weight subjects without mutations. The prevalence of binge eating was similar among carriers of mutations in the leptin-binding domain of LEPR and noncarriers. No mutations were found in the region of POMC encoding alpha melanocyte-stimulating hormone. Binge eating is a major phenotypic characteristic of subjects with a mutation in MC4R, a candidate gene for the control of eating behavior. Copyright 2003 Massachusetts Medical Society

  17. Recognition of Potentially Novel Human Disease-Associated Pathogens by Implementation of Systematic 16S rRNA Gene Sequencing in the Diagnostic Laboratory▿ †

    PubMed Central

    Keller, Peter M.; Rampini, Silvana K.; Büchler, Andrea C.; Eich, Gerhard; Wanner, Roger M.; Speck, Roberto F.; Böttger, Erik C.; Bloemberg, Guido V.

    2010-01-01

    Clinical isolates that are difficult to identify by conventional means form a valuable source of novel human pathogens. We report on a 5-year study based on systematic 16S rRNA gene sequence analysis. We found 60 previously unknown 16S rRNA sequences corresponding to potentially novel bacterial taxa. For 30 of 60 isolates, clinical relevance was evaluated; 18 of the 30 isolates analyzed were considered to be associated with human disease. PMID:20631113

  18. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene.

    PubMed

    Wu, Wei-Chi; Drenser, Kimberly; Trese, Michael; Capone, Antonio; Dailey, Wendy

    2007-02-01

    To correlate the ophthalmic findings of patients with pediatric vitreoretinopathies with mutations occurring in the Norrie disease gene (NDP). One hundred nine subjects with diverse pediatric vitreoretinopathies and 54 control subjects were enrolled in the study. Diagnoses were based on retinal findings at each patient's first examination. Samples of DNA from each patient underwent polymerase chain reaction amplification and direct sequencing of the NDP gene. Eleven male patients expressing mutations in the NDP gene were identified in the test group, whereas the controls demonstrated wild-type NDP. All patients diagnosed as having Norrie disease had mutations in the NDP gene. Four of the patients with Norrie disease had mutations involving a cysteine residue in the cysteine-knot motif. Four patients diagnosed as having familial exudative vitreoretinopathy were found to have noncysteine mutations. One patient with retinopathy of prematurity had a 14-base deletion in the 5' untranslated region (exon 1), and 1 patient with bilateral persistent fetal vasculature syndrome expressed a noncysteine mutation in the second exon. Mutations disrupting the cysteine-knot motif corresponded to severe retinal dysgenesis, whereas patients with noncysteine mutations had varying degrees of avascular peripheral retina, extraretinal vasculature, and subretinal exudate. Patients exhibiting severe retinal dysgenesis should be suspected of carrying a mutation that disrupts the cysteine-knot motif in the NDP gene.

  19. Identification a nonsense mutation of APC gene in Chinese patients with familial adenomatous polyposis.

    PubMed

    Li, Haishan; Zhang, Lingling; Jiang, Quan; Shi, Zhenwang; Tong, Hanxing

    2017-04-01

    Familial adenomatous polyposis (FAP; Mendelian of Inherintance in Man ID, 175100) is a rare autosomal dominant disorder characterized by the development of numerous adenomatous polyps throughout the colon and rectum associated with an increased risk of colorectal cancer. FAP is at time accompanied with certain extraintestinal manifestations such as congenital hypertrophy of the retinal pigment epithelium, dental disorders and desmoid tumors. It is caused by mutations in the adenomatous polyposis coli ( APC ) gene. The present study reported on a Chinese family with FAP. Polymerase chain reaction and direct sequencing of the full coding sequence of the APC gene were performed to identify the mutation in this family. A nonsense mutation of the APC gene was identified in this pedigree. It is a heterozygous G>T substitution at position 2,971 in exon 15 of the APC gene, which formed a premature stop codon at amino acid residue 991 (p.Glu991*). The resulting truncated protein lacked 1,853 amino acids. The present study expanded the database on APC gene mutations in FAP and enriched the spectrum of known germline mutations of the APC gene. Prophylactic proctocolectomy may be considered as a possible treatment for carriers of the mutation.

  20. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types

    PubMed Central

    Chen, Yun-Ching; Margolin, Gennady

    2017-01-01

    Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844

  1. Mutations in the ADAR1 gene in Chinese families with dyschromatosis symmetrica hereditaria.

    PubMed

    Zhang, G L; Shi, H J; Shao, M H; Li, M; Mu, H J; Gu, Y; Du, X F; Xie, P

    2013-01-04

    We investigated 2 Chinese families with dyschromatosis symmetrica hereditaria (DSH) and search for mutations in the adenosine deaminase acting on RNA1 (ADAR1) gene in these 2 pedigrees. We performed a mutation analysis of the ADAR1 gene in 2 Chinese families with DSH and reviewed all articles published regarding ADAR1 mutations reported since 2003 by using PubMed. By direct sequencing, a 2-nucleotide AG deletion, 2099-2100delAG, was found in family 1, and a C→T mutation was identified at nucleotide 1420 that changed codon 474 from arginine to a translational termination codon in family 2. Two different pathogenic mutations were identified, c.2099-2100delAG and c.1420C>T, the former being a novel mutation, and the latter previously reported in 3 other families with DSH. To date, a total of 110 mutations in the ADAR1 gene have been reported, and 10 of them were recurrent; the mutations R474X, R1083C, R1096X, and R1155W might be the DSH-related hotspots.

  2. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    PubMed

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  3. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment

    PubMed Central

    Loy, Alexander; Lehner, Angelika; Lee, Natuschka; Adamczyk, Justyna; Meier, Harald; Ernst, Jens; Schleifer, Karl-Heinz; Wagner, Michael

    2002-01-01

    For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB). PMID:12324358

  4. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    PubMed

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  5. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    PubMed

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  6. Mutator gene and hereditary non-polyposis colorectal cancer

    DOEpatents

    de la Chapelle, Albert [Helsingfors, FI; Vogelstein, Bert [Baltimore, MD; Kinzler, Kenneth W [Baltimore, MD

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  7. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia

    PubMed Central

    LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING

    2016-01-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049

  8. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.

  9. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    PubMed Central

    Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc

    2006-01-01

    Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960

  10. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  11. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    PubMed

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  12. [Analysis on mutation of S gene and P gene of hepatitis B virus in two counties of Sichuan Province].

    PubMed

    Tong, Wen-Bin; He, Ji-Lan; Sun, Li

    2009-02-01

    To analyze HBV S gene/P gene mutation in 2 counties (districts) of Sichuan province. HBV DNA were extracted from sera positive both for HBsAg and HBeAg. After PCR and nucleotide sequencing, nucleotide/amino acid mutation in S and P gene were compared and analyzed. Of 47 serum samples from patients with chronic HBV infection, amino acid mutation in 'a' determinant occurred in 12 samples (25.53%,12/47), correlating with T126A, I126T/S, P127T, T131N, M133L, M133T and T140I; high proportion of mutation clustered in first loop of 'a' determinant (92.86%,13/14), rtV207I mutation in C domain of reverse transcription occured in one sample. Naturally occurring mutation in 'a' determinant clustered predominantly in the first loop and usually associated with altered antigenicity, posing a potential threat to successfully vaccinated individuals; Lamivudine-resistant mutant might occur in patient even without nucleotide analogue treatment.

  13. Analysis of HFE and non-HFE gene mutations in Brazilian patients with hemochromatosis.

    PubMed

    Bittencourt, Paulo Lisboa; Marin, Maria Lúcia Carnevale; Couto, Cláudia Alves; Cançado, Eduardo Luiz Rachid; Carrilho, Flair José; Goldberg, Anna Carla

    2009-01-01

    Approximately one-half of Brazilian patients with hereditary hemochromatosis (HH) are neither homozygous for the C282Y mutation nor compound heterozygous for the H63D and C282Y mutations that are associated with HH in Caucasians. Other mutations have been described in the HFE gene as well as in genes involved in iron metabolism, such as transferrin receptor 2 (TfR2) and ferroportin 1 (SCL40A1). To evaluate the role of HFE, TfR2 and SCL40A1 mutations in Brazilian subjects with HH. Nineteen male subjects (median age 42 [range: 20-72] years) with HH were evaluated using the Haemochromatosis StripAssay A. This assay is capable of detecting twelve HFE mutations, which are V53M, V59M, H63D, H63H, S65C, Q127H, P160delC, E168Q, E168X, W169X, C282Y and Q283, four TfR2 mutations, which are E60X, M172K, Y250X, AVAQ594-597del, and two SCL40A1 mutations, which are N144H and V162del. In our cohort, nine (47%) patients were homozygous for the C282Y mutation, two (11%) were heterozygous for the H63D mutation, and one each (5%) was either heterozygous for C282Y or compound heterozygous for C282Y and H63D. No other mutations in the HFE, TfR2 or SCL40A1 genes were observed in the studied patients. One-third of Brazilian subjects with the classical phenotype of HH do not carry HFE or other mutations that are currently associated with the disease in Caucasians. This observation suggests a role for other yet unknown mutations in the aforementioned genes or in other genes involved in iron homeostasis in the pathogenesis of HH in Brazil.

  14. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  15. Mutations in the deubiquitinase gene USP8 cause Cushing's disease.

    PubMed

    Reincke, Martin; Sbiera, Silviu; Hayakawa, Akira; Theodoropoulou, Marily; Osswald, Andrea; Beuschlein, Felix; Meitinger, Thomas; Mizuno-Yamasaki, Emi; Kawaguchi, Kohei; Saeki, Yasushi; Tanaka, Keiji; Wieland, Thomas; Graf, Elisabeth; Saeger, Wolfgang; Ronchi, Cristina L; Allolio, Bruno; Buchfelder, Michael; Strom, Tim M; Fassnacht, Martin; Komada, Masayuki

    2015-01-01

    Cushing's disease is caused by corticotroph adenomas of the pituitary. To explore the molecular mechanisms of endocrine autonomy in these tumors, we performed exome sequencing of 10 corticotroph adenomas. We found somatic mutations in the USP8 deubiquitinase gene in 4 of 10 adenomas. The mutations clustered in the 14-3-3 protein binding motif and enhanced the proteolytic cleavage and catalytic activity of USP8. Cleavage of USP8 led to increased deubiqutination of the EGF receptor, impairing its downregulation and sustaining EGF signaling. USP8 mutants enhanced promoter activity of the gene encoding proopiomelanocortin. In summary, our data show that dominant mutations in USP8 cause Cushing's disease via activation of EGF receptor signaling.

  16. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    PubMed Central

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887

  17. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.

    PubMed

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  18. HFE Gene Mutations and Iron Status in 100 Healthy Polish Children.

    PubMed

    Kaczorowska-Hac, Barbara; Luszczyk, Marcin; Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Adamkiewicz-Drozynska, Elzbieta; Mysliwiec, Malgorzata; Milosz, Ewa; Kaczor, Jan J

    2017-07-01

    Iron participates in oxygen transport, energetic, metabolic, and immunologic processes. There are 2 main causes of iron overload: hereditary hemochromatosis which is a primary cause, is a metabolic disorder caused by mutations of genes that control iron metabolism and secondary hemochromatosis caused by multitransfusions, chronic hemolysis, and intake of iron rich food. The most common type of hereditary hemochromatosis is caused by HFE gene mutation. In this study, we analyzed iron metabolism in 100 healthy Polish children in relation to their HFE gene status. The wild-type HFE gene was predominant being observed in 60 children (60%). Twenty-five children (25%), presented with heterozygotic H63D mutation, and 15 children (15%), presented with other mutations (heterozygotic C282Y and S65C mutation, compound heterozygotes C282Y/S65C, C282Y/H63D, H63D homozygote). The mean concentration of iron, the level of ferritin, and transferrin saturation were statistically higher in the group of HFE variants compared with the wild-type group. H63D carriers presented with higher mean concentration of iron, ferritin levels, and transferrin saturation compared with the wild-type group. Male HFE carriers presented with higher iron concentration, transferrin saturation, and ferritin levels than females. This preliminary investigation demonstrates allelic impact on potential disease progression from childhood.

  19. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene.

    PubMed

    Park, Youn Jong; Baik, Haing Woon; Cheong, Hae Il; Kang, Ju Hyung

    2014-07-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 ( AQP2 ) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108 Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108 Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided.

  20. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene

    PubMed Central

    PARK, YOUN JONG; BAIK, HAING WOON; CHEONG, HAE IL; KANG, JU HYUNG

    2014-01-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 (AQP2) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided. PMID:24944815

  1. rRNA Genes Are Not Fully Activated in Mouse Somatic Cell Nuclear Transfer Embryos*

    PubMed Central

    Zheng, Zhong; Jia, Jia-Lin; Bou, Gerelchimeg; Hu, Li-Li; Wang, Zhen-Dong; Shen, Xing-Hui; Shan, Zhi-Yan; Shen, Jing-Ling; Liu, Zhong-Hua; Lei, Lei

    2012-01-01

    The well known and most important function of nucleoli is ribosome biogenesis. However, the nucleolus showed delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Previous studies indicated that nearly half rRNA genes (rDNA) in somatic cells were inactive and not transcribed. We compared the rDNA methylation level, active nucleolar organizer region (NORs) numbers, nucleolar proteins (upstream binding factor (UBF), nucleophosmin (B23)) distribution, and nucleolar-related gene expression in three different donor cells and NT embryos. The results showed embryonic stem cells (ESCs) had the most active NORs and lowest rDNA methylation level (7.66 and 6.76%), whereas mouse embryonic fibroblasts (MEFs) were the opposite (4.70 and 22.57%). After the donor cells were injected into enucleated MII oocytes, cumulus cells and MEFs nuclei lost B23 and UBF signals in 20 min, whereas in ESC-NT embryos, B23 and UBF signals could still be detected at 60 min post-NT. The embryos derived from ESCs, cumulus cells, and MEFs showed the same trend in active NORs numbers (7.19 versus 6.68 versus 5.77, p < 0.05) and rDNA methylation levels (6.36 versus 9.67% versus 15.52%) at the 4-cell stage as that in donor cells. However, the MEF-NT embryos displayed low rRNA synthesis/processing potential at morula stage and had an obvious decrease in blastocyst developmental rate. The results presented clear evidences that the rDNA reprogramming efficiency in NT embryos was determined by the rDNA activity in donor cells from which they derived. PMID:22467869

  2. New splicing-site mutations in the SURF1 gene in Leigh syndrome patients.

    PubMed

    Pequignot, M O; Desguerre, I; Dey, R; Tartari, M; Zeviani, M; Agostino, A; Benelli, C; Fouque, F; Prip-Buus, C; Marchant, D; Abitbol, M; Marsac, C

    2001-05-04

    The gene SURF1 encodes a factor involved in the biogenesis of cytochrome c oxidase, the last complex in the respiratory chain. Mutations of the SURF1 gene result in Leigh syndrome and severe cytochrome c oxidase deficiency. Analysis of seven unrelated patients with cytochrome c oxidase deficiency and typical Leigh syndrome revealed different SURF1 mutations in four of them. Only these four cases had associated demyelinating neuropathy. Three mutations were novel splicing-site mutations that lead to the excision of exon 6. Two different novel heterozygous mutations were found at the same guanine residue at the donor splice site of intron 6; one was a deletion, whereas the other was a transition [588+1G>A]. The third novel splicing-site mutation was a homozygous [516-2_516-1delAG] in intron 5. One patient only had a homozygous polymorphism in the middle of the intron 8 [835+25C>T]. Western blot analysis showed that Surf1 protein was absent in all four patients harboring mutations. Our studies confirm that the SURF1 gene is an important nuclear gene involved in the cytochrome c oxidase deficiency. We also show that Surf1 protein is not implicated in the assembly of other respiratory chain complexes or the pyruvate dehydrogenase complex.

  3. Novel mutation in the TMEM127 gene associated with phaeochromocytoma.

    PubMed

    Elston, M S; Meyer-Rochow, G Y; Prosser, D; Love, D R; Conaglen, J V

    2013-04-01

    Phaeochromocytomas and paragangliomas are rare neuroendocrine tumours that arise from the adrenal glands or paraganglia (paragangliomas) within the abdomen, thorax and neck. Although it was originally suggested that approximately 10% of these tumours were inherited, it is now recognised that up to approximately 30% of these tumours are associated with a germline mutation in one of the phaeochromocytoma/paraganglioma susceptibility genes. Of the 12 currently known genes predisposing to these tumours, the TMEM127 gene is one of the more recently identified and appears to be present in approximately 2% of apparently sporadic phaeochromocytomas. We report a 33-year-old man who presented with an apparently sporadic adrenal phaeochromocytoma and was identified as carrying a novel TMEM127 germline mutation, p.Gln139X. Patients harbouring a germline TMEM127 mutation most commonly present with an apparently sporadic solitary adrenal phaeochromocytoma. Testing patients who present with a phaeochromocytoma or paraganglioma for an underlying germline mutation needs to be considered in all patients due to implications for family members, but a strategy based on clinical and immunohistochemical findings would be prudent to limit costs. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  4. ADAMTS13 Gene Mutations in Children with Hemolytic Uremic Syndrome

    PubMed Central

    Choi, Hyoung Soo; Cheong, Hae Il; Kim, Nam Keun

    2011-01-01

    We investigated ADAMTS13 activity as well as the ADAMTS13 gene mutation in children with hemolytic uremic syndrome (HUS). Eighteen patients, including 6 diarrhea-negative (D-HUS) and 12 diarrhea-associated HUS (D+HUS) patients, were evaluated. The extent of von Willebrand factor (VWF) degradation was assayed by multimer analysis, and all exons of the ADAMTS13 gene were PCR-amplified using Taq DNA polymerase. The median and range for plasma activity of ADAMTS13 in 6 D-HUS and 12 D+HUS patients were 71.8% (22.8-94.1%) and 84.9% (37.9-119.9%), respectively, which were not statistically significantly different from the control group (86.4%, 34.2-112.3%) (p>0.05). Five ADAMTS13 gene mutations, including 2 novel mutations [1584+2T>A, 3941C>T (S1314L)] and 3 polymorphisms (Q448E, P475S, S903L), were found in 2 D-HUS and one D+HUS patients, which were not associated with deficiency of ADAMTS13 activity. Whether these mutations without reduced ADAMTS13 activity are innocent bystanders or predisposing factors in HUS remains unanswered. PMID:21488199

  5. Frequency of pathogenic germline mutations in cancer susceptibility genes in breast cancer patients.

    PubMed

    Kaur, Raman Preet; Shafi, Gowhar; Benipal, Raja Paramjeet Singh; Munshi, Anjana

    2018-04-26

    In this study, we evaluated the incidence of pathogenic germline mutations in 30 breast cancer susceptibility genes in breast cancer patients. Our aim was to understand the involvement of the inherited mutations in these genes in a breast cancer cohort. Two hundred ninety-six female breast cancer patients including 4.5% of familial breast cancer cases were included in the study. 200 ng of genomic DNA was used to evaluate the pathogenic mutations, detected using Global Screening Array (GSA) microchip (Illumina Inc.) according to the manufacturer's instructions. The pathogenic frameshift and nonsense mutations were observed in BRCA2 (10.9%), MLH1 (58.6%), MTHFR (50%), MSH2 (14.2%), and CYTB (52%) genes. Familial breast cancer patients (4.5%) had variations in BRCA2, MLH1, MSH2, and CYTB genes. 28% of patients with metastasis, recurrence, and death harbored mono/biallelic alterations in MSH2, MLH1, and BRCA2 genes. The results of this study can guide to develop a panel to test the breast cancer patients for pathogenic mutations, from Malwa region of Punjab. The screening of MSH2, MLH1, and BRCA2 should be carried in individuals with or without family history of breast cancer as these genes have been reported to increase the cancer risk by tenfold.

  6. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing - Clinical characteristics of mutation carriers.

    PubMed

    Szopa, Magdalena; Ludwig-Galezowska, Agnieszka H; Radkowski, Piotr; Skupien, Jan; Machlowska, Julita; Klupa, Tomasz; Wolkow, Pawel; Borowiec, Maciej; Mlynarski, Wojciech; Malecki, Maciej T

    2016-02-01

    Until now only a few families with early onset autosomal diabetes due to the NEUROD1 gene mutations have been identified. Moreover, only some of them meet strict MODY (maturity-onset diabetes of the young) criteria. Next-generation sequencing (NGS) provides an opportunity to detect more pathogenic mutations in this gene. Here, we evaluated the segregation of the Arg103Pro mutation in the NEUROD1 gene in a pedigree in which it was detected, and described the clinical characteristics of the mutation carriers. We included 156 diabetic probands of MODY families, among them 52 patients earlier tested for GCK-MODY and/or HNF1A-MODY by Sanger sequencing with negative results. Genetic testing was performed by targeted NGS sequencing using a panel of 28 monogenic diabetes genes. As detected by NGS, one patient had the missense Arg103Pro (CGC/CCC) mutation in the gene NEUROD1 changing the amino-acid structure of the DNA binding domain of this transcription factor. We confirmed this sequence difference by Sanger sequencing. This family had previously been tested with negative results for HNF1A gene mutations. 17 additional members of this family were invited for further testing. We confirmed the presence of the mutation in 11 subjects. Seven adult mutation carriers (all but one) from three generations had been already diagnosed with diabetes. There were 3 individuals with the Arg103Pro mutation diagnosed before the age of 30 years in the family. The range of age of the four unaffected mutation carriers (3 minors and 1 adult) was 3-48 years. Interestingly, one mutation carrier had a history of transient neonatal hypoglycemia, of which the clinical course resembled episodes typical for HNF4A-MODY. We report a family with autosomal dominant diabetes related to a new NEUROD1 mutation, one of very few meeting MODY criteria. The use of the NGS method will facilitate identification of more families with rare forms of MODY. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Mutations in the hereditary haemochromatosis gene HFE in professional endurance athletes

    PubMed Central

    Chicharro, J; Hoyos, J; Gomez-Gallego, F; Villa, J; Bandres, F; Celaya, P; Jimenez, F; Alonso, J; Cordova, A; Lucia, A

    2004-01-01

    Background: Hereditary haemochromatosis, a disease that affects iron metabolism, progresses with a greater or lesser tendency to induce iron overload, possibly leading to severe organ dysfunction. Most elite endurance athletes take iron supplements during their active sporting life, which could aggravate this condition. Objective: To determine the prevalence and discuss potential clinical implications of mutations of HFE (the gene responsible for hereditary haemochromatosis) in endurance athletes. Methods: Basal concentrations of iron, ferritin, and transferrin and transferrin saturation were determined in the period before competition in 65 highly trained athletes. Possible mutations in the HFE gene were evaluated in each subject by extracting genomic DNA from peripheral blood. The restriction enzymes SnaBI and BclI were used to detect the mutations 845G→A (C282Y) and 187C→G (H63D). Results: Our findings indicate a high prevalence of HFE gene mutations in this population (49.2%) compared with sedentary controls (33.5%). No association was detected in the athletes between mutations and blood iron markers. Conclusions: The findings support the need to assess regularly iron stores in elite endurance athletes. PMID:15273174

  8. [Application of MALDI-TOF-MS in gene testing for non-syndromic hearing loss].

    PubMed

    Zeng, Yun; Jiang, Dan; Feng, Da-fei; Jin, Dong-dong; Wu, Xiao-hui; Ding, Yan-li; Zou, Jing

    2013-12-01

    To investigate the feasibility of Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) , according to the genetic test of non-syndromic hearing loss (NSHL), and check using the direct sequencing. Peripheral blood was collected from 454 NSHL patients. DNA samples were extracted and 20 loci of the four common disease-causing genes were analysed by MALDI-TOF-MS, including GJB2 (35delG, 167delT, 176_191del16, 235delC, 299_300delAT ), GJB3 (538C→T, 547G→A), SLC26A4 (281C→T, 589G→A, IVS7-2A→G, 1174A→T, 1226G→A, 1229C→T, IVS15+5G→A, 1975G→C, 2027T→A, 2162C→T, 2168A→G), and mitochondrial 12S rRNA (1494C→T, 1555A→G). Direct sequencing was also used to analyse the aforementioned 20 loci in order to validate the accuracy of MALDI-TOF-MS. Among the 454 patients, 166 cases (36.56%) of disease-causing mutations were detected, which included 69 cases (21.15%) of GJB2 gene mutation, four cases (0.88%) of GJB3 gene mutation, 64 cases (14.10%) of SLC26A4 gene mutation, and three cases (0.66%) of mitochondrial 12S rRNA gene mutation. Moreover, the results obtained from direct sequencing and MALDI-TOF-MS were consistent, and the results showed that the two methods were consistent. The MALDI-TOF-MS detection method was designed based on the hearing loss-related mutation hotspots seen in the Chinese population, and it has a high detection rate for NSHL related mutations. In comparison to the conventional detection methods, MALDI-TOF-MS has the following advantages: more detection sites, greater coverage, accurate, high throughput and low cost. Therefore, this method is capable of satisfying the needs of clinical detection for hearing impairment and it is suitable for large-scale implementation.

  9. Mutation spectrum in BBS genes guided by homozygosity mapping in an Indian cohort.

    PubMed

    Sathya Priya, C; Sen, P; Umashankar, V; Gupta, N; Kabra, M; Kumaramanickavel, G; Stoetzel, C; Dollfus, H; Sripriya, S

    2015-02-01

    Bardet-Biedl syndrome (BBS), a ciliopathy disorder with pleiotropic effect manifests primarily as retinal degeneration along with renal insufficiency, polydactyly and obesity. In this study, we have performed homozygosity mapping using NspI 250K affymetrix gene chip followed by mutation screening of the candidate genes located in the homozygous blocks. These regions are prioritized based on the block length and candidature of the genes in BBS and other ciliopathies. Gene alterations in known BBS (22) and other ciliopathy genes such as ALMS1 (2) were seen in 24 of 30 families (80%). Mutations in BBS3 gene, inclusive of a novel recurrent mutation (p.I91T) accounted for 18% of the identified variations. Disease associated polymorphisms p.S70N (BBS2), rs1545 and rs1547 (BBS6) were also observed. This is the first study in Indian BBS patients and homozygosity mapping has proved to be an effective tool in prioritizing the candidate genes in consanguineous pedigrees. The study reveals a different mutation profile in the ciliopathy genes in Indian population and implication of novel loci/genes in 20% of the study group. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.

  11. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  12. An association study between CHEK2 gene mutations and susceptibility to breast cancer.

    PubMed

    Jalilvand, Manizheh; Oloomi, Mana; Najafipour, Reza; Alizadeh, Safar Ali; Saki, Najmaldin; Rad, Fatemeh Samiee; Shekari, Mohammad

    2017-01-01

    CHEK2 gene is known as a tumor suppressor gene in breast cancer (BC), which plays a role in DNA repair. The germ line mutations in CEHK2 have been associated with different types of cancer. The present study was aimed at studying the association between CHEK2 mutations and BC. Peripheral blood was collected from patients into a test tube containing EDTA, and DNA was extracted from blood samples. Then, we analyzed mutations including 1100delc, IVS2+1>A, del5395bp, and I157T within CHEK2 gene in patients with BC and 100 normal healthy controls according to PCR-RFLP, allelic specific PCR, and multiplex-PCR. Although IVS2+1G>A mutation within CHEK2 gene was found in two BC patients, other defined mutants were not detected. For the first time, we identified CHEK2 IVS2+1G>A mutation, one out of four different CHEK2 alterations in two Iranian BC patients (2%). Also, our results showed that CHEK2 1100elC, del5395bp, and I157T mutations are not associated with genetic susceptibility for BC among Iranian population.

  13. Spectrum of CFTR gene mutations in Ecuadorian cystic fibrosis patients: the second report of the p.H609R mutation.

    PubMed

    Ortiz, Sofía C; Aguirre, Santiago J; Flores, Sofía; Maldonado, Claudio; Mejía, Juan; Salinas, Lilian

    2017-11-01

    High heterogeneity in the CFTR gene mutations disturbs the molecular diagnosis of cystic fibrosis (CF). In order to improve the diagnosis of CF in our country, the present study aims to define a panel of common CFTR gene mutations by sequencing 27 exons of the gene in Ecuadorian Cystic Fibrosis patients. Forty-eight Ecuadorian individuals with suspected/confirmed CF diagnosis were included. Twenty-seven exons of CFTR gene were sequenced to find sequence variations. Prevalence of pathogenic variations were determined and compared with other countries' data. We found 70 sequence variations. Eight of these are CF-causing mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. Also this study is the second report of p.H609R in Ecuadorian population. Mutation prevalence differences between Ecuadorian population and other Latin America countries were found. The panel of mutations suggested as an initial screening for the Ecuadorian population with cystic fibrosis should contain the mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. © 2017 NETLAB Laboratorios Especializados. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  14. Sarcomere protein gene mutations and inherited heart disease: a beta-cardiac myosin heavy chain mutation causing endocardial fibroelastosis and heart failure.

    PubMed

    Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G

    2006-01-01

    Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.

  15. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  16. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    PubMed Central

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  17. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer

    PubMed Central

    Pearlman, Rachel; Frankel, Wendy L.; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J.; Goldberg, Richard M.; Paskett, Electra; Shields, Peter G.; Freudenheim, Jo L.; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J.; Lindeman, Carolyn; Kuebler, J. Philip; Reynolds, Kelly; Brell, Joanna M.; Shaper, Amy A.; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S.; Zacks, Rosemary; Pritchard, Colin C.; Shirts, Brian H.; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-01-01

    IMPORTANCE Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. OBJECTIVE To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. DESIGN, SETTING, AND PARTICIPANTS Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. MAIN OUTCOMES AND MEASURES Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. RESULTS In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10

  18. INS-gene mutations: From genetics and beta cell biology to clinical disease

    PubMed Central

    Liu, Ming; Sun, Jinhong; Cui, Jinqiu; Chen, Wei; Guo, Huan; Barbetti, Fabrizio; Arvan, Peter

    2015-01-01

    A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved. PMID:25542748

  19. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-09-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene.

  20. Mutation screening of melatonin-related genes in patients with autism spectrum disorders

    PubMed Central

    2010-01-01

    Background One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are

  1. Mutation screening of melatonin-related genes in patients with autism spectrum disorders.

    PubMed

    Jonsson, Lina; Ljunggren, Elin; Bremer, Anna; Pedersen, Christin; Landén, Mikael; Thuresson, Kent; Giacobini, Maibritt; Melke, Jonas

    2010-04-08

    One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential

  2. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    PubMed

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  3. Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture.

    PubMed

    Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon; Simon, Holly M

    2012-04-01

    We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the "root" clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized.

  4. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  5. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  6. Identification of novel mutations of the WFS1 gene in Brazilian patients with Wolfram syndrome.

    PubMed

    Gasparin, Maria Regina R; Crispim, Felipe; Paula, Sílvia L; Freire, Maria Beatriz S; Dalbosco, Ivaldir S; Manna, Thais Della; Salles, João Eduardo N; Gasparin, Fábio; Guedes, Aléxis; Marcantonio, João M; Gambini, Márcio; Salim, Camila P; Moisés, Regina S

    2009-02-01

    Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder with an autosomal recessive pattern of inheritance. The gene for WS, WFS1, was identified on chromosome 4p16 and most WS patients carry mutations in this gene. However, some studies have provided evidence for genetic heterogeneity and the genotype-phenotype relationships are not clear. Our aim was to ascertain the spectrum of WFS1 mutations in Brazilian patients with WS and to examine the phenotype-genotype relationships in these patients. Clinical characterization and analyses of the WFS1 gene were performed in 27 Brazilian patients with WS from 19 families. We identified 15 different mutations in the WFS1 gene in 26 patients, among which nine are novel. All mutations occurred in exon 8, except for one missense mutation which was located in exon 5. Although we did not find any clear phenotype-genotype relationship in patients with mutations in exon 8, the homozygous missense mutation in exon 5 was associated with a mild phenotype: onset of diabetes mellitus and optic atrophy during adulthood with good metabolic control being achieved with low doses of sulfonylurea. Our data show that WFS1 is the major gene involved in WS in Brazilian patients and most mutations are concentrated in exon 8. Also, our study increases the spectrum of WFS1 mutations. Although no clear phenotype-genotype relationship was found for mutations in exon 8, a mild phenotype was associated with a homozygous missense mutation in exon 5.

  7. Novel mutation at the initiation codon in the Norrie disease gene in two Japanese families.

    PubMed

    Isashiki, Y; Ohba, N; Yanagita, T; Hokita, N; Doi, N; Nakagawa, M; Ozawa, M; Kuroda, N

    1995-01-01

    We have identified a new mutation of Norrie disease (ND) gene in two Japanese males from unrelated families; they showed typical ocular features of ND but no mental retardation or hearing impairment. A mutation was found in both patients at the initiation codon of exon 2 of the ND gene (ATG to GTG), with otherwise normal nucleotide sequences. Their mothers had the normal and mutant types of the gene, which was expected for heterozygotes of the disease. The mutation of the initiation codon would cause the failure of ND gene expression or a defect in translation thereby truncating the amino terminus of ND protein. In view of the rarity and marked heterogeneity of mutations in the ND gene, the present apparently unrelated Japanese families who have lived in the same area for over two centuries presumably share the origin of the mutation.

  8. Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis.

    PubMed

    Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu

    2012-02-01

    The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutation was identified in the patients of this four-generation pedigree; however, this mutation was absent in normal or non-carrier subjects. In conclusion, this 573delG mutation is reported in the Chinese population for the first time. This mutation widens the mutational spectrum of RS1 in Asians. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

  9. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis

    PubMed Central

    Xin, Baozhong; Yan, Junpeng; Wu, Ying; Hu, Bo; Liu, Liping; Wang, Yilong; Ahn, Jinwoo; Skowronski, Jacek; Zhang, Zaiqiang; Wang, Yongjun; Wang, Heng

    2015-01-01

    Background. To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. Methods. Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. Results. Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. Conclusions. Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke. PMID:26504826

  10. BSE Case Associated with Prion Protein Gene Mutation

    PubMed Central

    Richt, Jürgen A.; Hall, S. Mark

    2008-01-01

    Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD) in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp). Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K) in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000) in cattle. PMID:18787697

  11. Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.

    PubMed

    Aykut, Ayça; Karaca, Emin; Onay, Hüseyin; Gökşen, Damla; Çetinkalp, Şevki; Eren, Erdal; Ersoy, Betül; Çakır, Esra Papatya; Büyükinan, Muammer; Kara, Cengiz; Anık, Ahmet; Kırel, Birgül; Özen, Samim; Atik, Tahir; Darcan, Şükran; Özkınay, Ferda

    2018-01-30

    Maturity onset diabetes is a genetic form of diabetes mellitus characterized by an early age at onset and several etiologic genes for this form of diabetes have been identified in many patients. Maturity onset diabetes type 2 [MODY2 (#125851)] caused by mutations in the glucokinase gene (GCK). Although its prevalence is not clear, it is estimated that 1%-2% of patients with diabetes have the monogenic form. The aim of this study was to evaluate the molecular spectrum of GCK gene mutations in 177 Turkish MODY type 2 patients. Mutations in the GCK gene were identified in 79 out of 177. All mutant alleles were identified, including 45 different GCK mutations, 20 of which were novel. Copyright © 2017. Published by Elsevier B.V.

  12. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    PubMed

    Sarker, Suprovath Kumar; Islam, Md Tarikul; Eckhoff, Grace; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A K M; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  13. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    PubMed

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  14. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  15. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    PubMed

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  16. Two new mutations in the MTATP6 gene associated with Leigh syndrome.

    PubMed

    Moslemi, A-R; Darin, N; Tulinius, M; Oldfors, A; Holme, E

    2005-10-01

    In this study we have analyzed the mtDNA encoded ATPase 6 and 8 genes ( MTATP6 and MTATP8) in two children with Leigh syndrome (LS) and reduced Mg (2+) ATPase activity in muscle mitochondria. In patient 1, with a mild and reversible phenotype, mutational analysis revealed a heteroplasmic T --> C mutation at nt position 9185 (T9185C) in the MTATP6. The mutation resulted in substitution of a highly conserved leucine to proline at codon 220. The proportion of the mutation was > 97 % in the patient's blood and muscle and 85 % in blood of his asymptomatic mother. Patient 2, with severe clinical phenotype and death at 2 years of age, exhibited a novel heteroplasmic T9191C missense mutation in the MTATP6, which converted a highly conserved leucine to a proline at position 222 of the polypeptide. The proportion of the mutation was 90 % in fibroblasts and 94 % muscle tissue. This mutation was absent in the patient's parents and sister suggesting that the mutation was de novo. Our findings expand the spectrum of mutations causing LS and emphasize the role of MTATP6 gene mutations in pathogenesis of LS.

  17. Novel Mutations in HESX1 and PROP1 Genes in Combined Pituitary Hormone Deficiency.

    PubMed

    Avbelj Stefanija, Magdalena; Kotnik, Primož; Bratanič, Nina; Žerjav Tanšek, Mojca; Bertok, Sara; Bratina, Nataša; Battelino, Tadej; Trebušak Podkrajšek, Katarina

    2015-01-01

    The HESX1 gene is essential in forebrain development and pituitary organogenesis, and its mutations are the most commonly identified genetic cause of septo-optic dysplasia (SOD). The PROP1 gene is involved in anterior pituitary cell lineage specification and is commonly implicated in non-syndromic combined pituitary hormone deficiency (CPHD). We aimed to assess the involvement of HESX1 and PROP1 mutations in a cohort of patients with SOD and CPHD. Six patients with sporadic SOD and 16 patients with CPHD from 14 pedigrees were screened for mutations in HESX1 and PROP1 genes by exon sequencing. Half of the CPHD patients had variable associated clinical characteristics, such as hearing loss, orofacial cleft, kidney disorder or developmental delay. Novel variants were evaluated in silico and verified in SNP databases. A novel heterozygous p.Glu102Gly mutation in the HESX1 gene and a novel homozygous p.Arg121Thr mutation in the PROP1 gene were detected in 2 pedigrees with CPHD. A small previously reported deletion in PROP1 c.301_302delAG was detected in a separate patient with CPHD, in heterozygous state. No mutations were identified in patients with SOD. Our results expand the spectrum of mutations implicated in CPHD. The frequency of 15% of the PROP1 mutations in CPHD was low, likely due to the clinical heterogeneity of the cohort. © 2015 S. Karger AG, Basel.

  18. Summary of mutations underlying autosomal recessive congenital ichthyoses (ARCI) in Arabs with four novel mutations in ARCI-related genes from the United Arab Emirates.

    PubMed

    Bastaki, Fatma; Mohamed, Madiha; Nair, Pratibha; Saif, Fatima; Mustafa, Ethar M; Bizzari, Sami; Al-Ali, Mahmoud T; Hamzeh, Abdul Rezzak

    2017-05-01

    Clinical and molecular heterogeneity is a prominent characteristic of congenital ichthyoses, with the involvement of numerous causative loci. Mutations in these loci feature in autosomal recessive congenital ichthyoses (ARCIs) quite variably, with certain genes/mutations being more frequently uncovered in particular populations. In this study, we used whole exome sequencing as well as direct Sanger sequencing to uncover four novel mutations in ARCI-related genes, which were found in families from the United Arab Emirates. In silico tools such as CADD and SIFT Indel were used to predict the functional consequences of these mutations. The here-presented mutations occurred in three genes (ALOX12B, TGM1, ABCA12), and these are a mixture of missense and indel variants with damaging functional consequences on their encoded proteins. This study presents an overview of the mutations that were found in ARCI-related genes in Arabs and discusses molecular and clinical details pertaining to the above-mentioned Emirati cases and their novel mutations with special emphasis on the resulting protein changes. © 2017 The International Society of Dermatology.

  19. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    PubMed

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  20. Birt-Hogg-Dube Syndrome with a Novel Mutation in the FLCN Gene.

    PubMed

    Kayhan, Gulsum; Yılmaz Demirci, Nilgun; Turktas, Haluk; Ergun, Mehmet Ali

    2017-10-01

    Birt-Hogg-Dube syndrome (BHDS) is an autosomal dominant disease characterized by hair follicle hamartomas, kidney tumors, and spontaneous pneumothorax; its cause is a heterozygous mutation in the FLCN gene. Colorectal polyps and carcinoma have also been reported in BHDS. FLCN mutations can be detected in patients with isolated primary spontaneous pneumothorax (PSP), so PSP may present as part of BHDS. The aim of this report is to enhance awareness that patients presenting with spontaneous PSP should be evaluated for FLCN mutations. A 44-year-old woman with PSP and her parents were analyzed for FLCN mutations. One of the patient's paternal aunts had a PSP and two of her paternal aunts had colon cancer diagnosed at early ages. A novel in-frame deletion in the FLCN gene, c.932_933delCT (P311Rfs*78), was detected in the proband and in her unaffected father. We recommend that molecular analysis of the FLCN gene be performed in patients with PSP and their families, and that mutation carriers be examined for kidney and colon tumors.

  1. LATS2 tumour specific mutations and down-regulation of the gene in non-small cell carcinoma.

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Glavac, Damjan

    2009-06-01

    LATS2 is a new member of the LATS tumour suppressor family. The human LATS2 gene is located at chromosome 13q11-12, a hot spot (67%) for loss of heterozygosity (LOH) in non-small cell lung cancer (NSCLC). We screened 129 non-small cell lung cancer samples and 13 lung cancer cell lines, initially for mutations in the LATS2 gene and subsequently for mutations in P53 and K-RAS genes. Either polymorphisms or mutations were identified in over 50 percent of analysed tumours. A novel missense mutation, S1073R, and a large deletion of 8 amino acids in the PAPA-repeat region were detected in 9 and 2 NSCLC tumours, respectively. Those mutations were not identified in the 13 lung cancer cell lines. Mutations were tumour specific and were absent from adjacent normal tissue and healthy controls. Down-regulation of the LATS2 gene was observed in most NSCLC tumours but was not related to any mutation or polymorphism. Tumours with a LATS2 mutation often also harbour a P53 but not K-RAS gene mutation and were mostly in an advanced stage of development, with regional lymph node involvement.

  2. [Gene Mutation Spectrum of β-Thalassemia in Dai Ethinic Population of Two Border Region in Chinese Yunnan Province].

    PubMed

    Zhang, Jie; He, Jing; Zeng, Xiao-Hong; Su, Jie; Chen, Hong; Xu, Yong-Mei; Pu, Jian; Zhu, Bao-Sheng

    2016-02-01

    To investigate the gene mutation spectrum of β-thalassemia in Dai ethnic population of 2 border region in Chinese Yunnan Province. The patients with β-thalassemia in Dai ethnic population of Dehong and Xishuangbanna autonamic prefecture were screened by using blood routine detection and capillary electrophoresis. The β-globin gene mutation in patients with β-thalassemia were detected by using PCR reverse dot-blot hybridization (PCR-RDB), the constitutive rate of gene mutation in patients with β-thalassemia of Dai ethnic population in two border regions was analyzed and compared. A total of 186 patients with gene mutation of β-thalassemia were confirmed. Among them, 10 gene mutation were found, and the 5 main gene mutations were CD26 (62.56%), CD41-42 (18.97%), CD17 (14.36%), CD71-72 (2.05%) and IVS-II-654 (1.54%). Among Dai ethinic population in Dehong region, 4 gene mutations were found including CD26 (80.31%), CD17 (11.02%), CD41-42 (6.30%) and CD71-72 (2.36%). Among Dai ethinic population in Xishuangbanna region, 6 gene mutations were found, out of them the more common gene mutations were CD41-42 (42.64%), CD26 (29.41%) and CD17 (20.59%). The gene mutations of β-thalassemia in Dai ethinic population of Yunnan province has been confirmed to be more genetic heterogenicity, the spectrums of β-thalassemia mutations in Dai ethinic population of different regions were significant different.

  3. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  4. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    PubMed

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  5. Identification of culturable stream water bacteria from urban, agricultural, and forested watersheds using 16S rRNA gene sequencing

    Treesearch

    Kenneth T. Belt; Christina Hohn; Aiah Gbakima; James A. Higgins

    2007-01-01

    Bacteria present in water samples taken on a weekly basis, from June 2004 through June 2005, from three streams, were cultured on Coliscan® Easygel® agar plates. Colonies representative of a variety of colors and morphologies were subjected to amplification and sequencing of a 1000-1100 nt portion of the 16S rRNA gene. A total of 528 colonies were...

  6. Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond.

    PubMed

    Rosenquist, Richard; Rosenwald, Andreas; Du, Ming-Qing; Gaidano, Gianluca; Groenen, Patricia; Wotherspoon, Andrew; Ghia, Paolo; Gaulard, Philippe; Campo, Elias; Stamatopoulos, Kostas

    2016-09-01

    Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making. Copyright© Ferrata Storti Foundation.

  7. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression.

    PubMed

    González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S

    2017-11-01

    Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    PubMed

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  9. Hearing-loss-associated gene detection in neonatal intensive care unit.

    PubMed

    Yang, S M; Liu, Ying; Liu, C; Yin, A H; Wu, Y F; Zheng, X E; Yang, H M; Yang, J

    2018-02-01

    To investigate the frequency and mutation spectrum of hearing loss-associated gene mutation in Neonatal Intensive Care Unit (NICU). Neonates (n=2305) admitted to NICU were enrolled in this study. Nine prominent hearing loss-associated genes, GJB2 (35 del G, 176 del 16,235 del C, 299 del AT), GJB3 (538 C > T), SLC26A4 (IVS7-2A > G, 2168 A > G) and mtDNA 12S rRNA(1555 A > G, 1494 C > T), were detected. There were 73 cases hearing-loss-associated gene mutation among 2305 cases, the mutation frequency was 3.1%, with 40 cases GJB2 (235del C) mutation (54.8%), 6 cases GJB2 (299 del AT) mutation (8.2%), 21 cases SLC26A4 (IVS 7-2 A > G) mutation (28.7%), 4 cases SLC26A4 (2168 A > G) mutation (5.5%), 2 cases of GJB2 (235del C) combined SLC26A4 (IVS 7-2 A > G, 2168 A > G) mutation (2.8%). Among 73 gene mutation cases, preterm neonates presented in 18 cases, accounting for 24.7% (18/73); hyperbilirubinemia in 13 cases, accounting for 17.8% (13/73); Torch Syndrome in 15 cases, with 12 cases CMV, 2 cases rubella, 1 case toxoplasm, respectively, totally accounting for 20.54% (15/73); neonatal pneumonia in 12 cases, accounting for 16.4% (12/73); birth asphyxia in 5 cases, accounting for 6.9% (5/73); sepsis in 5 cases, accounting for 6.9% (5/73); others in 5 cases, accounting for 6.8% (5/73) . The frequency of hearing loss-associated gene mutation was higher in NICU.There were hearing loss-associated gene mutations in the NICU, suggesting this mutation may complicate with perinatal high-risk factors.

  10. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas.

    PubMed

    Yao, Li; Schiavi, Francesca; Cascon, Alberto; Qin, Yuejuan; Inglada-Pérez, Lucia; King, Elizabeth E; Toledo, Rodrigo A; Ercolino, Tonino; Rapizzi, Elena; Ricketts, Christopher J; Mori, Luigi; Giacchè, Mara; Mendola, Antonella; Taschin, Elisa; Boaretto, Francesca; Loli, Paola; Iacobone, Maurizio; Rossi, Gian-Paolo; Biondi, Bernadette; Lima-Junior, José Viana; Kater, Claudio E; Bex, Marie; Vikkula, Miikka; Grossman, Ashley B; Gruber, Stephen B; Barontini, Marta; Persu, Alexandre; Castellano, Maurizio; Toledo, Sergio P A; Maher, Eamonn R; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Dahia, Patricia L M

    2010-12-15

    Pheochromocytomas and paragangliomas are genetically heterogeneous neural crest-derived neoplasms. We recently identified germline mutations of the novel transmembrane-encoding gene FP/TMEM127 in familial and sporadic pheochromocytomas consistent with a tumor suppressor effect. To examine the prevalence and spectrum of FP/TMEM127 mutations in pheochromocytomas and paragangliomas and to test the effect of mutations in vitro. We sequenced the FP/TMEM127 gene in 990 individuals with pheochromocytomas and/or paragangliomas, including 898 previously unreported cases without mutations in other susceptibility genes from 8 independent worldwide referral centers between January 2009 and June 2010. A multiplex polymerase chain reaction-based method was developed to screen for large gene deletions in 545 of these samples. Confocal microscopy of 5 transfected mutant proteins was used to determine their subcellular localization. The frequency and type of FP/TMEM127 mutation or deletion was assessed and correlated with clinical variables; the subcellular localization of 5 overexpressed mutants was compared with wild-type FP/TMEM127 protein. We identified 19 potentially pathogenic FP/TMEM127 germline mutations in 20 independent families, but no large deletions were detected. All mutation carriers had adrenal tumors, including 7 bilateral (P = 2.7 × 10(-4)) and/or with familial disease (5 of 20 samples; P = .005). The median age at disease onset in the FP/TMEM127 mutation group was similar to that of patients without a mutation (41.5 vs 45 years, respectively; P = .54). The most common presentation was that of a single benign adrenal tumor in patients older than 40 years. Malignancy was seen in 1 mutation carrier (5%). Expression of 5 novel FP/TMEM127 mutations in cell lines revealed diffuse localization of the mutant proteins in contrast with the discrete multiorganelle distribution of wild-type TMEM127. Germline mutations of FP/TMEM127 were associated with pheochromocytoma but

  11. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries.

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2010-04-01

    An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.

  12. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    PubMed Central

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2. Conclusions: KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  13. INS-gene mutations: from genetics and beta cell biology to clinical disease.

    PubMed

    Liu, Ming; Sun, Jinhong; Cui, Jinqiu; Chen, Wei; Guo, Huan; Barbetti, Fabrizio; Arvan, Peter

    2015-04-01

    A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150more » patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.« less

  15. [The study of gene mutations in unknown refractory viral infection and primary hemophagocytic lymphohistiocytosis].

    PubMed

    Tong, Chun-Rong; Liu, Hong-Xing; Xie, Jian-Jun; Wang, Fang; Cai, Peng; Wang, Hui; Zhu, Juan; Teng, Wen; Zhang, Xian; Yang, Jun-Fang; Zhang, Ya-Li; Fei, Xin-Hong; Zhao, Jie; Yin, Yu-Ming; Wu, Tong; Wang, Jing-Bo; Sun, Yuan; Liu, Rong; Shi, Xiao-Dong; Lu, Dao-Pei

    2011-04-01

    To study the type and corresponding clinical characteristics of primary hemophagocytic lymphohistiocytosis (HLH) associated immune gene mutations in the refractory virus infection or HLH of unknown causes. From December 2009 to July 2010, the patients with refractory virus infection or HLH of unknown causes were screened for the primary HLH associated immune genes mutations by DNA sequence analysis, including PRF1, UNC13D, STX11, STXBP2, SH2D1A and XIAP. The clinical characteristics and outcomes were followed up. Totally 25 patients with refractory virus infection or HLH of unknown causes were investigated for the 6 genes and 13 cases were found carrying gene mutations, composing of 6 of PRF1 mutation, 3 of UNC13D, and each one of STX11, XIAP, SH2D1A and STXBP2, respectively. Among the 13 cases with gene mutations, 5 suffered from Epstein-Barr virus associated HLH (EBV-HLH), 1 human herpes virus 7 associated HLH (HHV7-HLH), 1 HLH without causes, 4 chronic activated EB virus infection (CAEBV) with 1 progressing to Hodgkin's lymphoma carrying abnormal chromosome of t(15;17) (q22;q25) and hyperdiploid, 2 EBV associated lymphoma. Among the other 12 patients without gene mutation, 4 suffered from EBV-HLH with 1 progressing to peripheral T lymphoma, 8 suffered from CAEBV. Primary HLH associated immune gene mutations are critical causes of refractory virus infection of unknown causes, most patients manifest as HLH, some cases appear in CAEBV and EBV associated lymphoma. DNA sequence analysis is helpful to early diagnosis and correct decision-making for treatment.

  16. [Analysis of EML4-ALK gene fusion mutation in patients 
with non-small cell lung cancer].

    PubMed

    Wang, Xuzhou; Chen, Weisheng; Yu, Yinghao

    2015-02-01

    Non-small cell lung cancer (NSCLC) is the main type of lung cancer, and the related locus mutation detection research has become a hot direction of molecular targeted therapy, studying on gene mutation status of echinodem microtubule associated protein like 4-Anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR), detecting the sensitivity of EML4-ALK gene fusion and gene mutation of EGFR. EML4-ALK gene fusion in 85 cases of paraffin embedded tumor tissue and adjacent lung tissue was detected with the application of immunohistochemistry (IHC), Scorpions amplification refractory mutation system (Scorpions ARMS) fluorescence quantitative PCR and fluorescence in situ hybridization (FISH) technology, and EGFR gene in 18, 19, 20 and 21 exon mutation status was detected with the application of ARMS method. In 115 cases of NSCLC, IHC showed 32 cases with ALK (D5F3) expression, the expression rate was 27.8%; ARMS showed 27 cases with EML4-ALK fusion gene mutation, the mutation detection rate was 23.5%; 53 cases were detected with EGFR mutation, the mutation rate was 46%. While FISH showed 23 cases with EML4-ALK fusion gene mutation, the detection rate was 20%, slightly lower than the ARMS detection results, suggesting that ARMS more sensitive. The application of IHC, ARMS fluorescence quantitative PCR and FISH technology can make a rapid and accurate evaluation of EML4-ALK gene fusion.

  17. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their

  18. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration.

    PubMed

    Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing

    2014-01-01

    Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.

  19. [Hot spot mutation screening of RYR1 gene in diagnosis of congenital myopathies].

    PubMed

    Chang, Xing-zhi; Jin, Yi-wen; Wang, Jing-min; Yuan, Yun; Xiong, Hui; Wang, Shuang; Qin, Jiong

    2014-10-18

    To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease. Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients. All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed "myogenic" features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients' (Patient 3) asymptomatic father. Congenital myopathies in

  20. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed Central

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-01-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene. Images PMID:2569482

  1. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.

    PubMed

    Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A

    2005-01-05

    Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.

  2. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  3. Analysis of 16S rRNA gene lactic acid bacteria (LAB) isolate from Markisa fruit (Passiflora sp.) as a producer of protease enzyme and probiotics

    NASA Astrophysics Data System (ADS)

    Hidayat, Habibi

    2017-03-01

    16S rRNA gene analysis of bacteria lactic acid (LAB) isolate from Markisa Kuning Fruit (Passiflora edulis var. flavicarpa) as a producer of protease enzyme and probiotics has been done. The aim of the study is to determine the protease enzyme activity and 16S rRNA gene amplification using PCR. The calculation procedure was done to M4 isolate bacteria lactic acid (LAB) Isolate which has been resistant to acids with pH 2.0 in the manner of screening protease enzyme activity test result 6.5 to clear zone is 13 mm againts colony diametre is 2 mm. The results of study enzyme activity used spectrophotometer UV-Vis obtainable the regression equation Y=0.02983+0.001312X, with levels of protein M4 isolate is 0.6594 mg/mL and enzyme activity of obtainable is 0.8626 unit/ml while the spesific enzyme activity produced is 1.308 unit/mg. Then, 16S rRNA gene amplificatiom and DNA sequencing has been done. The results of study showed that the bacteria species contained from M4 bacteria lactic acid (LAB) isolate is Weisella cibiria strain II-I-59. Weisella cibiria strain II-I-59 is one of bacteria could be utilized in the digestive tract.

  4. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  5. Study of hepatitis B virus gene mutations with enzymatic colorimetry-based DNA microarray.

    PubMed

    Mao, Hailei; Wang, Huimin; Zhang, Donglei; Mao, Hongju; Zhao, Jianlong; Shi, Jian; Cui, Zhichu

    2006-01-01

    To establish a modified microarray method for detecting HBV gene mutations in the clinic. Site-specific oligonucleotide probes were immobilized to microarray slides and hybridized to biotin-labeled HBV gene fragments amplified from two-step PCR. Hybridized targets were transferred to nitrocellulose membranes, followed by intensity measurement using BCIP/NBT colorimetry. HBV genes from 99 Hepatitis B patients and 40 healthy blood donors were analyzed. Mutation frequencies of HBV pre-core/core and basic core promoter (BCP) regions were found to be significantly higher in the patient group (42%, 40% versus 2.5%, 5%, P < 0.01). Compared with a traditional fluorescence method, the colorimetry method exhibited the same level of sensitivity and reproducibility. An enzymatic colorimetry-based DNA microarray assay was successfully established to monitor HBV mutations. Pre-core/core and BCP mutations of HBV genes could be major causes of HBV infection in HBeAg-negative patients and could also be relevant to chronicity and aggravation of hepatitis B.

  6. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia.

    PubMed

    Li, Chenglong; Zhu, Biao; Chen, Jiao; Huang, Xiaobing

    2016-07-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation‑positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the microarray data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML.

  7. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species.

  8. X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.

    PubMed

    Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L

    2017-01-01

    We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.

  9. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients

    PubMed Central

    2014-01-01

    Background Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. Methods We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Results Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients’ clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Conclusions Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology

  10. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    PubMed

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  11. Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma.

    PubMed

    Huang, Xiaobo; Li, Miaoling; Guo, Xiangming; Li, Shiqiang; Xiao, Xueshan; Jia, Xiaoyun; Liu, Xing; Zhang, Qingjiong

    2014-05-13

    To evaluate mutations in the MYOC, WDR36, OPTN, OPA1, NTF4, CYP1B1, and LTBP2 genes in a cohort of Chinese patients with primary glaucoma. Genomic DNA was prepared from 683 unrelated patients, including 50 with primary congenital glaucoma, 104 with juvenile open-angle glaucoma (JOAG), 186 with primary open-angle glaucoma (POAG), and 343 with primary angle-closure glaucoma (PACG). Mutations in the seven genes in 257 patients (36 with JOAG, 89 with POAG, and 132 with PACG) were initially analyzed by exome sequencing and then confirmed by Sanger sequencing. In addition, Sanger sequencing was used to detect MYOC mutations in the remaining 426 patients. Exome sequencing identified 19 mutations (6 in MYOC, 9 in WDR36, 3 in OPA1, and 1 in OPTN) in 20 of 257 patients, including 4 patients with JOAG, 8 patients with POAG, and 8 patients with PACG. No mutation was detected in the other three genes. In addition, Sanger sequencing detected additional MYOC mutations in 5 of the remaining 426 patients, including 3 patients with JOAG and 2 patients with POAG. Twenty-two mutations in MYOC, WDR36, OPA1, and OPTN were detected in 25 of the 683 patients with primary glaucoma, including nine MYOC mutations in 11 patients, nine WDR36 mutations in 11 patients, three OPA1 mutations in 3 patients, and one OPTN mutation in a patient who also carried a MYOC mutation. Eight mutations in MYOC, WDR36, and OPA1 in 8 of the 343 PACG patients are of uncertain significance and need to be analyzed further. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Detection of epidermal growth factor receptor gene T790M mutation in cytology samples using the cobas® EGFR mutation test.

    PubMed

    Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi

    2017-09-01

    Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Iron overload and HFE gene mutations in Czech patients with chronic liver diseases.

    PubMed

    Dostalikova-Cimburova, Marketa; Kratka, Karolina; Stransky, Jaroslav; Putova, Ivana; Cieslarova, Blanka; Horak, Jiri

    2012-01-01

    The aim of the study was to identify the prevalence of HFE gene mutations in Czech patients with chronic liver diseases and the influence of the mutations on iron status. The presence of HFE gene mutations (C282Y, H63D, and S65C) analyzed by the PCR-RFLP method, presence of cirrhosis, and serum iron indices were compared among 454 patients with different chronic liver diseases (51 with chronic hepatitis B, 122 with chronic hepatitis C, 218 with alcoholic liver disease, and 63 patients with hemochromatosis). Chronic liver diseases patients other than hemochromatics did not have an increased frequency of HFE gene mutations compared to controls. Although 33.3% of patients with hepatitis B, 43% of patients with hepatitis C, and 73.2% of patients with alcoholic liver disease had elevated transferrin saturation or serum ferritin levels, the presence of HFE gene mutations was not significantly associated with iron overload in these patients. Additionally, patients with cirrhosis did not have frequencies of HFE mutations different from those without cirrhosis. This study emphasizes the importance, not only of C282Y, but also of the H63D homozygous genetic constellation in Czech hemochromatosis patients. Our findings show that increased iron indices are common in chronic liver diseases but {\\it HFE} mutations do not play an important role in the pathogenesis of chronic hepatitis B, chronic hepatitis C, and alcoholic liver disease.

  14. Genes with mutation significance were highly associated with the clinical pattern of patients with breast cancer.

    PubMed

    Ding, Wan-Jun; Zeng, Tao; Wang, Li-Jun; Lei, Hong-Bo; Ge, Wei; Wang, Zhi

    2017-11-17

    In the United States, breast cancer is the second leading cause of cancer death in women. Over the past 20 years, breast cancer incidence and mortality rates increased rapidly in developing regions. We aimed to identify the gene mutation patterns that associated with the clinical patterns, including survival status, histo-pathological classes and so forth, of breast cancer. We retrieved 1098 cases of the clinical information, and level-3 legacy data of mRNA expression level, protein expression data and mutation files from GDC data portal. The genes with mutation significance were obtained. We studied the impacts of mutation types on the expression levels of mRNA and protein. Different statistics methods were used to calculate the correlation between the mutation types and the expression data or histo-clinical measures. There were 24 genes with mutation significance identified. The most mutated genes were selected to study the role of specific mutations played on the patients with breast cancer. One interesting finding was the missense mutations on TP53 were related with high expression levels of mRNA and protein. The missense mutations on TP53 were highly related with the morphology, race, ER status, PR status and HER2 Status, while the truncated mutations were only related with the morphology, ER status and PR status. The missense mutation on PIK3CA was highly associated with the morphology, race, ER status and PR status. The mutants with different mutants and the wild type of the most mutated genes had different impacts on the histo-clinical measures that might help personalized therapy.

  15. VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation.

    PubMed

    Hirano, Makito; Nakamura, Yusaku; Saigoh, Kazumasa; Sakamoto, Hikaru; Ueno, Shuichi; Isono, Chiharu; Mitsui, Yoshiyuki; Kusunoki, Susumu

    2015-03-01

    Accumulating evidence has proven that mutations in the VCP gene encoding valosin-containing protein (VCP) cause inclusion body myopathy with Paget disease of the bone and frontotemporal dementia. This gene was later found to be causative for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, occurring typically in elderly persons. We thus sequenced the VCP gene in 75 Japanese patients with sporadic ALS negative for mutations in other genes causative for ALS and found a novel mutation, p.Arg487His, in 1 patient. The newly identified mutant as well as known mutants rendered neuronal cells susceptible to oxidative stress. The presence of the mutation in the Japanese population extends the geographic region for involvement of the VCP gene in sporadic ALS to East Asia. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton.

    PubMed

    Wear, Emma K; Wilbanks, Elizabeth G; Nelson, Craig E; Carlson, Craig A

    2018-03-09

    Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re-evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time-series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma.

    PubMed

    García-Sanz, Pablo; Triviño, Juan Carlos; Mota, Alba; Pérez López, María; Colás, Eva; Rojo-Sebastián, Alejandro; García, Ángel; Gatius, Sonia; Ruiz, María; Prat, Jaime; López-López, Rafael; Abal, Miguel; Gil-Moreno, Antonio; Reventós, Jaume; Matias-Guiu, Xavier; Moreno-Bueno, Gema

    2017-04-01

    In developed countries, endometrial carcinoma is the most common cancer that affects the female genital tract. Endometrial carcinoma is divided into two main histological types, type I or endometrioid and type II or non-endometrioid, each of which have characteristic, although not exclusive, molecular alterations and mutational profiles. Nevertheless, information about the implication and relevance of some of these genes in this disease is lacking. We sought here to identify new recurrently mutated genes in endometrioid cancers that play a role in tumourigenesis and that influence the clinical outcome. We focused on low-grade, non-ultramutated tumours as these tumours have a worse prognosis than the ultramutated POLE-positive endometrioid endometrial carcinomas (EECs). We performed exome-sequencing of 11 EECs with matched normal tissue and subsequently validated 15 candidate genes in 76 samples. For the first time, we show that mutations in chromatin remodelling-related genes (KMT2D, KMT2C, SETD1B and BCOR) and in DNA-repair-related genes (BRCA1, BRCA2, RAD50 and CHD4) are frequent in this subtype of endometrial cancer. The alterations to these genes occurred with frequencies ranging from 35.5% for KMT2D to 10.5% for BRCA1 and BCOR, with some showing a tendency toward co-occurrence (RAD50-KMT2D and RAD50-SETD1B). All these genes harboured specific mutational hotspots. In addition, the mutational status of KMT2C, KMT2D and SETD1B helps to predict the degree of myometrial invasion, a critical prognostic feature. These results highlight the possible implication of these genes in this disease, creating opportunities for new therapeutic approaches. © 2016 UICC.

  18. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates

    PubMed Central

    Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.

    2015-01-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902

  19. [Copy number variation of trinucleotide repeat in dynamic mutation sites of autosomal dominant cerebellar ataxias related genes].

    PubMed

    Chen, Pu; Ma, Mingyi; Shang, Huifang; Su, Dan; Zhang, Sizhong; Yang, Yuan

    2009-12-01

    To standardize the experimental procedure of the gene test for autosomal dominant cerebellar ataxias (ADCA), and provide the basis for quantitative criteria of the dynamic mutation of spinocerebellar ataxia (SCA) genes in Chinese population. Genotyping of the dynamic mutation loci of the SCA1, SCA2, SCA3, SCA6 and SCA7 genes was performed, using florescence PCR-capillary electrophoresis followed by DNA sequencing, to investigate the variation range of copy number of CAG tandem repeat of the genes in 263 probands of ADCA pedigrees and 261 non-related normal controls. Based on the sequencing result, the bias of the CAG copy number estimation using capillary electrophoresis with different DNA controls was compared to analyze the technical detailes of the electrophresis method in testing the dynamic mutation sites. PCR products containing dynamic mutation loci of the SCA genes showed significantly higher mobility than that of molecular weigh marker with relatively balanced GC content. This was particularly obvious in the SCA2, SCA 6 and SCA7 genes whereas the deviation of copy number could be corrected to +/-1 when known CAG copy number fragments were used as controls. The mobility of PCR products was primarily related to the copy number of CAG repeat when the fragments contained normal CAG repeat. In the 263 ADCA pedigrees, 6 (2.28%) carried SCA1 gene mutation, 8 (3.04%) had SCA2 mutation and 81 (30.80%) harbored SCA3 mutation. The gene mutation of SCA6 and SCA7 was not found. The normal variation range of the CAG repeat was 17-36 copies in SCA1 gene, 13-30 copies in SCA2, 14-39 copies in SCA3, 6-16 copies in SCA6 and 6-13 copies in SCA7. The heterozygosity was 76.1%, 17.7%, 74.4%, 72.1% and 41.3%, respectively. The mutation range of the CAG repeat was 49-56 copies in SCA1 gene, 36-41 copies in SCA2, 59-81 copies in SCA3. Neither homozygous mutation of an SCA gene nor double heterozygous mutation of the SCA genes was observed in the study. The copy number of the CAG

  20. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    PubMed Central

    Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo

    2001-01-01

    Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193

  1. Identification of constrained cancer driver genes based on mutation timing.

    PubMed

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver-passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression.

  2. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    PubMed Central

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  3. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  4. Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation.

    PubMed

    Puppin, Cinzia; Durante, Cosimo; Sponziello, Marialuisa; Verrienti, Antonella; Pecce, Valeria; Lavarone, Elisa; Baldan, Federica; Campese, Antonio Francesco; Boichard, Amelie; Lacroix, Ludovic; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2014-11-01

    Abnormal expression of non-coding micro RNA (miRNA) has been described in medullary thyroid carcinoma (MTC). Expression of genes encoding factors involved in miRNA biogenesis results often deregulated in human cancer and correlates with aggressive clinical behavior. In this study, expression of four genes involved in miRNA biogenesis (DICER, DROSHA, DCGR8, and XPO5) was investigated in 54 specimens of MTC. Among them, 33 and 13 harbored RET and RAS mutations, respectively. DICER, DGCR8, and XPO5 mRNA levels were significantly overexpressed in MTC harboring RET mutations, in particular, in the presence of RET634 mutation. When MTCs with RET and RAS mutations were compared, only DGCR8 displayed a significant difference, while MTCs with RAS mutations did not show significant differences with respect to non-mutated tumors. We then attempted to correlate expression of miRNA biogenesis genes with tumor aggressiveness. According to the TNM status, MTCs were divided in two groups and compared (N0 M0 vs. N1 and/or M1): for all four genes no significant difference was detected. Cell line experiments, in which expression of a RET mutation is silenced by siRNA, suggest the existence of a causal relationship between RET mutation and overexpression of DICER, DGCR8, and XPO5 genes. These findings demonstrate that RET- but not RAS-driven tumorigenic alterations include abnormalities in the expression of some important genes involved in miRNA biogenesis that could represent new potential markers for targeted therapies in the treatment of RET-mutated MTCs aimed to restore the normal miRNA expression profile.

  5. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    PubMed

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  6. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.

    PubMed

    Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B

    2006-09-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.

  7. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    PubMed

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  8. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  9. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-08

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).

  10. The role of mutations in the SCN5A gene in cardiomyopathies.

    PubMed

    Zaklyazminskaya, Elena; Dzemeshkevich, Sergei

    2016-07-01

    The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene.

    PubMed

    Win, Aung Ko; Reece, Jeanette C; Buchanan, Daniel D; Clendenning, Mark; Young, Joanne P; Cleary, Sean P; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G; MacInnis, Robert J; Tucker, Katherine M; Winship, Ingrid M; Macrae, Finlay A; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W; Newcomb, Polly A; Thibodeau, Stephen N; Lindor, Noralane M; Hopper, John L; Gallinger, Steven; Jenkins, Mark A

    2015-12-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95% confidence interval (CI) 9.19-50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95% CI 0.63-5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.

  12. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations.

  13. [Analysis of MAT1A gene mutations in a child affected with simple hypermethioninemia].

    PubMed

    Sun, Yun; Ma, Dingyuan; Wang, Yanyun; Yang, Bin; Jiang, Tao

    2017-02-10

    To detect potential mutations of MAT1A gene in a child suspected with simple hypermethioninemia by MS/MS neonatal screening. Clinical data of the child was collected. Genomic DNA was extracted by a standard method and subjected to targeted sequencing using an Ion Ampliseq TM Inherited Disease Panel. Detected mutations were verified by Sanger sequencing. The child showed no clinical features except evaluated methionine. A novel compound mutation of the MAT1A gene, i.e., c.345delA and c.529C>T, was identified in the child. His father and mother were found to be heterozygous for the c.345delA mutation and c.529C>T mutation, respectively. The compound mutation c.345delA and c.529C>T of the MAT1A gene probably underlie the disease in the child. The semi-conductor sequencing has provided an important means for the diagnosis of hereditary diseases.

  14. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial

  15. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  16. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  17. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating.

  18. A spectrum of novel NPHS1 and NPHS2 gene mutations in pediatric nephrotic syndrome patients from Pakistan.

    PubMed

    Abid, Aiysha; Khaliq, Shagufta; Shahid, Saba; Lanewala, Ali; Mubarak, Mohammad; Hashmi, Seema; Kazi, Javed; Masood, Tahir; Hafeez, Farkhanda; Naqvi, Syed Ali Anwar; Rizvi, Syed Adeebul Hasan; Mehdi, Syed Qasim

    2012-07-10

    Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients. Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families. A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS. Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma.

    PubMed

    Oda, Katsutoshi; Stokoe, David; Taketani, Yuji; McCormick, Frank

    2005-12-01

    The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.

  1. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    PubMed

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  2. Mutations within the HBc gene of the hepatitis B virus: a study on Iranian patients.

    PubMed

    Zare-Bidaki, Mohammad; Ayoobi, Fatemeh; Hassanshahi, Gholamhossein; Arababadi, Mohammad Kazemi; Mirzaei, Tayebeh; Darehdori, Ahmad Shebanizade; Kennedy, Derek

    2014-01-01

    Hepatitis B virus (HBV) is a serious risk factor for several severe liver diseases such as cirrhosis and hepatocellular carcinoma. HBV, like other viruses, uses several mechanisms to escape from specific immune responses including the use of mutations in the genome which lead to epitope variations. There are several immune responses, including T helper cells, cytotoxic T lymphocytes, and B cells, against the core antigen of HBV (HBcAg) that can lead to HBV eradication. Therefore, mutations within the HBc gene can lead to escape from immune responses by HBV and, hence, understanding the prevalence of HBc mutations among a specific population can be helpful for future treatment and vaccination. This review addresses the recent information regarding the prevalence of mutations within the HBc gene among Iranian HBV infected patients. The data presented here was collected gene sequences reported from Iran to the NCBI nucleotide Gen Bank. Results showed that the prevalence of HBc gene mutations is frequent in Iranian HBV infected patients. Based on our searches it seems that escape from immune responses is a plausible reason for the high prevalence of HBc gene mutations among Iranian HBV infected patients.

  3. Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus.

    PubMed

    Duzenli, Duygu; Saglar, Emel; Deniz, Ferhat; Azal, Omer; Erdem, Beril; Mergen, Hatice

    2012-12-01

    The aim of this study was to identify mutations in three different genes, the arginine-vasopressin-neurophysin II (AVP-NPII) gene, the arginine-vasopressin receptor 2 (AVPR2) gene, and the vasopressin-sensitive water channel aquaporin-2 (AQP2) gene in Turkish patients affected by central diabetes insipidus or nephrogenic diabetes insipidus. This study included 15 patients from unrelated families. Prospective clinical data were collected for all patients including the patients underwent a water deprivation-desmopressin test. The coding regions of the AVPR2, AQP2, and AVP-NPII genes were amplified by polymerase chain reaction and submitted to direct sequence analysis. Of the 15 patients with diabetes insipidus referred to Gulhane Military Medical Academy, Department of Endocrinology and Metabolism, eight patients have AVPR2 mutations, five patients have AQP2 mutations and two patients have AVP-NPII mutations. Of the patients, which have AVPR2 mutations, one is compound heterozygous for AVPR2 gene. Seven of these mutations are novel. Comparison of the clinical outcomes of these mutations may facilitate in understanding the functions of AVP-NPII, AQP2, and AVPR2 genes in future studies.

  4. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

    PubMed Central

    Sarker, Suprovath Kumar; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh. PMID:27880809

  5. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA

    PubMed Central

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W. Brad

    2009-01-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element. PMID:19211543

  6. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    PubMed

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  7. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes

    PubMed Central

    Oegema, Renske; Cushion, Thomas D.; Phelps, Ian G.; Chung, Seo-Kyung; Dempsey, Jennifer C.; Collins, Sarah; Mullins, Jonathan G.L.; Dudding, Tracy; Gill, Harinder; Green, Andrew J.; Dobyns, William B.; Ishak, Gisele E.; Rees, Mark I.; Doherty, Dan

    2015-01-01

    Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1–13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues. PMID:26130693

  8. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    PubMed

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  9. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.

    PubMed

    Zaw, Myo T; Emran, Nor A; Lin, Zaw

    2018-04-26

    Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  11. Prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous mutations in GCDH gene.

    PubMed

    Peng, Hsiu-Huei; Shaw, Sheng-Wen; Huang, Kuan-Gen

    2018-02-01

    Glutaric aciduria type 1 is a rare disease, with the estimated prevalence about 1 in 100,000 newborns. GCDH gene mutation can lead to glutaric acid and 3- OH glutaric acid accumulation, with clinical manifestation of neuronal damage, brain atrophy, microencephalic macrocephaly, decreased coordination of swallowing, poor muscle coordination, spasticity, and severe dystonic movement disorder. A 22-year-old female, Gravida 4 Para 2, is pregnancy at 13 weeks of gestational age. Her first child is normal, however, the second child was diagnosed as glutaric aciduria type I after birth. She came to our hospital for prenatal genetic counselling of her fetus at 13 weeks of gestational age. We performed GCDH gene mutation analysis of maternal blood showed IVS 3 + 1 G > A heterozygous mutation, GCDH gene mutation analysis of paternal blood showed c. 1240 G > A heterozygous mutation, and the second child has compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. Later, we performed amniocentesis at 16 weeks of gestational age for chromosome study and GCDH gene mutation analysis for the fetus. The fetal chromosome study showed normal karyotype, however, GCDH gene mutation analysis showed compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. The couple decided to termination of pregnancy thereafter. Glutaric acidemia type 1 is an autosomal recessive disorder because of pathogenic mutations in the GCDH gene. Early diagnosis and therapy of glutaric acidemia type 1 can reduce the risk of neuronal damage and acute dystonia. We report a case of prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous GCDH gene mutation at IVS 3 + 1 G > A and c. 1240 G > A mutations, which provide better genetic counselling for the couples. Copyright © 2018. Published by Elsevier B.V.

  12. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    PubMed

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  13. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  14. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  15. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    PubMed

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  16. KIT gene mutations and patterns of protein expression in mucosal and acral melanoma.

    PubMed

    Abu-Abed, Suzan; Pennell, Nancy; Petrella, Teresa; Wright, Frances; Seth, Arun; Hanna, Wedad

    2012-01-01

    Recently characterized KIT (CD117) gene mutations have revealed new pathways involved in melanoma pathogenesis. In particular, certain subtypes harbor mutations similar to those observed in gastrointestinal stromal tumors, which are sensitive to treatment with tyrosine kinase inhibitors. The purpose of this study was to characterize KIT gene mutations and patterns of protein expression in mucosal and acral melanoma. Formalin-fixed, paraffin-embedded tissues were retrieved from our archives. Histologic assessment included routine hematoxylin-eosin stains and immunohistochemical staining for KIT. Genomic DNA was used for polymerase chain reaction-based amplification of exons 11 and 13. We identified 59 acral and mucosal melanoma cases, of which 78% showed variable levels of KIT expression. Sequencing of exons 11 and 13 was completed on all cases, and 4 (6.8%) mutant cases were isolated. We successfully optimized conditions for the detection of KIT mutations and showed that 8.6% of mucosal and 4.2% of acral melanoma cases at our institution harbor KIT mutations; all mutant cases showed strong, diffuse KIT protein expression. Our case series represents the first Canadian study to characterize KIT gene mutations and patterns of protein expression in acral and mucosal melanoma.

  17. New mutations and an updated database for the patched-1 (PTCH1) gene.

    PubMed

    Reinders, Marie G; van Hout, Antonius F; Cosgun, Betûl; Paulussen, Aimée D; Leter, Edward M; Steijlen, Peter M; Mosterd, Klara; van Geel, Michel; Gille, Johan J

    2018-05-01

    Basal cell nevus syndrome (BCNS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCCs), maxillary keratocysts, and cerebral calcifications. BCNS most commonly is caused by a germline mutation in the patched-1 (PTCH1) gene. PTCH1 mutations are also described in patients with holoprosencephaly. We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). We included 117 new PTCH1 variations, in addition to 331 previously published unique PTCH1 mutations. These new mutations were found in 141 patients who had a positive PTCH1 mutation analysis in either the VU University Medical Centre (VUMC) or Maastricht University Medical Centre (MUMC) between 1995 and 2015. The database contains 331 previously published unique PTCH1 mutations and 117 new PTCH1 variations. We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). The database provides an open collection for both clinicians and researchers and is accessible online at http://www.lovd.nl/PTCH1. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  18. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  19. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    PubMed

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  20. Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia

    PubMed Central

    Shipitsyna, Elena; Rumyantseva, Tatiana; Golparian, Daniel; Khayrullina, Guzel; Lagos, Amaya C.; Edelstein, Inna; Joers, Kai; Jensen, Jörgen S.; Savicheva, Alevtina; Rudneva, Natalia; Sukhanova, Larisa; Kozlov, Roman; Guschin, Alexander

    2017-01-01

    Background and objective Resistance in the sexually transmitted bacterium Mycoplasma genitalium to all recommended therapeutic antimicrobials have rapidly emerged. However, to date, internationally reported resistance surveillance data for M. genitalium strains circulating in Eastern Europe are entirely lacking. The aim of this study was to estimate the prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium in four cities in Russia and one in Estonia, 2013–2016. Materials and methods Consecutive urogenital samples found positive for M. genitalium during diagnostic testing were retrospectively analyzed for resistance-associated mutations in the 23S rRNA and parC genes using pyrosequencing and conventional Sanger sequencing, respectively. Results In total, 867 M. genitalium positive samples from 2013–2016 were analyzed. Macrolide resistance-associated mutations were detected in 4.6% of the samples from Russia (0.7–6.8% in different cities) and in 10% of the samples from Estonia. The mutations A2059G and A2058G were highly predominating in both Russia and Estonia, accounting together for 90.9% of the cases positive for nucleotide substitutions in the 23S rRNA gene. The rates of possible fluoroquinolone resistance-associated mutations were 6.2% in Russia (2.5–7.6% in different cities) and 5% in Estonia. The mutations S83I and S83N were the most frequent ones in Russia (24.4% each), whereas D87N highly predominated in Estonia (83.3% of all fluoroquinolone resistance-associated mutations). Approximately 1% of the samples in both countries harbored both macrolide and possible fluoroquinolone resistance-associated mutations, with A2058G and S83I being the most frequent combination (37.5%). Conclusions The prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium was 4.6% and 6.2%, respectively, in Russia, and 10% and 5%, respectively, in Estonia. Despite the relatively low rates of macrolide

  1. Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia.

    PubMed

    Shipitsyna, Elena; Rumyantseva, Tatiana; Golparian, Daniel; Khayrullina, Guzel; Lagos, Amaya C; Edelstein, Inna; Joers, Kai; Jensen, Jörgen S; Savicheva, Alevtina; Rudneva, Natalia; Sukhanova, Larisa; Kozlov, Roman; Guschin, Alexander; Unemo, Magnus

    2017-01-01

    Resistance in the sexually transmitted bacterium Mycoplasma genitalium to all recommended therapeutic antimicrobials have rapidly emerged. However, to date, internationally reported resistance surveillance data for M. genitalium strains circulating in Eastern Europe are entirely lacking. The aim of this study was to estimate the prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium in four cities in Russia and one in Estonia, 2013-2016. Consecutive urogenital samples found positive for M. genitalium during diagnostic testing were retrospectively analyzed for resistance-associated mutations in the 23S rRNA and parC genes using pyrosequencing and conventional Sanger sequencing, respectively. In total, 867 M. genitalium positive samples from 2013-2016 were analyzed. Macrolide resistance-associated mutations were detected in 4.6% of the samples from Russia (0.7-6.8% in different cities) and in 10% of the samples from Estonia. The mutations A2059G and A2058G were highly predominating in both Russia and Estonia, accounting together for 90.9% of the cases positive for nucleotide substitutions in the 23S rRNA gene. The rates of possible fluoroquinolone resistance-associated mutations were 6.2% in Russia (2.5-7.6% in different cities) and 5% in Estonia. The mutations S83I and S83N were the most frequent ones in Russia (24.4% each), whereas D87N highly predominated in Estonia (83.3% of all fluoroquinolone resistance-associated mutations). Approximately 1% of the samples in both countries harbored both macrolide and possible fluoroquinolone resistance-associated mutations, with A2058G and S83I being the most frequent combination (37.5%). The prevalence of macrolide and fluoroquinolone resistance-associated mutations in M. genitalium was 4.6% and 6.2%, respectively, in Russia, and 10% and 5%, respectively, in Estonia. Despite the relatively low rates of macrolide and fluoroquinolone resistance in these countries, antimicrobial resistance

  2. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  3. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    PubMed

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  4. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    PubMed Central

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95 % CI 0.63–5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  5. Distal renal tubular acidosis. Clinical manifestations in patients with different underlying gene mutations.

    PubMed

    Alonso-Varela, Marta; Gil-Peña, Helena; Coto, Eliecer; Gómez, Juan; Rodríguez, Julián; Rodríguez-Rubio, Enrique; Santos, Fernando

    2018-05-03

    To evaluate whether there are differences in the phenotype of primary distal renal tubular acidosis (dRTA) patients according to the causal defective gene. Twenty-seven non-oriental patients with genetically confirmed dRTA were grouped according to the identified underlying mutations in either ATP6V1B1 (n = 10), ATP6V0A4 (n = 12), or SLC4A1 (n = 5) gene. Demographic features, growth impairment, biochemical variables and presence of deafness, nephrocalcinosis, and urolithiasis at diagnosis were compared among the three groups. Patients with SLC4A1 mutations presented later than those with ATP6V1B1 or ATP6V0A4 defects (120 vs. 7 and 3 months, respectively). Hearing loss at diagnosis was present in the majority of patients with ATP6V1B1 mutations, in two patients with ATP6V0A4 mutations, and in none of cases harboring SLC4A1 mutations. Serum potassium concentration (X ± SD) was higher in SLC4A1 group (3.66 ± 0.44 mEq/L) than in ATP6V0A4 group (2.96 ± 0.63 mEq/L) (p = 0.046). There were no differences in the other clinical or biochemical variables analyzed in the three groups. This study indicates that non-oriental patients with dRTA caused by mutations in the SLC4A1 gene present later and have normokalemia or milder hypokalemia. Hypoacusia at diagnosis is characteristically associated with ATP6V1B1 gene mutations although it may also be present in infants with ATP6V0A4 defects. Other phenotypical manifestations do not allow predicting the involved gene.

  6. Mutation analysis of the carbohydrate sulfotransferase gene in Vietnamese with macular corneal dystrophy.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Kanai, Atsushi

    2003-08-01

    Mutations in a new carbohydrate sulfotransferase gene (CHST6) encoding corneal N-acetylglucosamine-6-sulfotransferase (C-GlcNac-6-ST) have been identified as the cause of macular corneal dystrophy (MCD) in various ethnicities. This study was conducted to examine the CHST6 gene in Vietnamese with MCD. Nineteen unrelated families, including 35 patients and 38 unaffected relatives were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals served as control subjects. Genomic DNA was extracted from leukocytes. Analysis of the CHST6 gene was performed with polymerase chain reaction and direct sequencing. Corneal buttons were studied histopathologically. A slit lamp examination revealed clinical features of MCD with gray-white opacities and stromal haze between. On histopathology, corneal sections showed positive staining with colloidal iron. Sequencing of the CHST6 gene revealed six homozygous and three compound heterozygous mutations. The homozygous mutations, including L59P, V66L, R211Q, W232X, Y268C, and 1067-1068ins(GGCCGTG) were detected, respectively, in two, one, eight, one, one, and two families. Compound heterozygous mutations R211Q/Q82X, S51L/Y268C, and Y268C/1067-1068ins(GGCCGTG) were identified, each in one family. A single heterozygous change at codon 76 (GTG-->ATG) was detected in family L, resulting in a valine-to-methionine substitution (V76M). None of these mutations was detected in the control group. Mutations identified in the CHST6 gene cosegregated with the disease phenotype in all but one family studied and thus caused MCD. Among these, the R211Q detected in 9 of 19 families may be the most common mutation in Vietnamese. These data also indicate that significant allelic heterogeneity exists for MCD.

  7. Leigh syndrome associated with a novel mutation in the COX15 gene.

    PubMed

    Miryounesi, Mohammad; Fardaei, Majid; Tabei, Seyed Mohammadbagher; Ghafouri-Fard, Soudeh

    2016-06-01

    Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with a diverse range of symptoms, such as psychomotor delay or regression, weakness, hypotonia, truncal ataxia, intention tremor as well as lactic acidosis in the blood, cerebrospinal fluid or urine. Both nuclear gene defects and mutations of the mitochondrial genome have been detected in these patients. Here we report a 7-year-old girl with hypotonia, tremor, developmental delay and psychomotor regression. However, serum lactate level as well as brain magnetic resonance imaging were normal. Mutational analysis has revealed a novel mutation in exon 4 of COX15 gene (c.415C>G) which results in p.Leu139Val. Previous studies have demonstrated that COX15 mutations are associated with typical LS as well as fatal infantile hypertrophic cardiomyopathy. Consequently, clinical manifestations of COX15 mutations may be significantly different in patients. Such information is of practical importance in genetic counseling.

  8. [Detection of gene mutation in glucose-6-phosphate dehydrogenase deficiency by RT-PCR sequencing].

    PubMed

    Lyu, Rong-Yu; Chen, Xiao-Wen; Zhang, Min; Chen, Yun-Sheng; Yu, Jie; Wen, Fei-Qiu

    2016-07-01

    Since glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary hemolytic erythrocyte enzyme deficiency, most cases have single nucleotide mutations in the coding region, and current test methods for gene mutation have some missed detections, this study aimed to investigate the feasibility of RT-PCR sequencing in the detection of gene mutation in G6PD deficiency. According to the G6PD/6GPD ratio, 195 children with anemia of unknown cause or who underwent physical examination between August 2013 and July 2014 were classified into G6PD-deficiency group with 130 children (G6PD/6GPD ratio <1.00) and control group with 65 children (G6PD/6GPD ratio≥1.00). The primer design and PCR amplification conditions were optimized, and RT-PCR sequencing was used to analyze the complete coding sequence and verify the genomic DNA sequence in the two groups. In the G6PD-deficiency group, the detection rate of gene mutation was 100% and 13 missense mutations were detected, including one new mutation. In the control group, no missense mutation was detected in 28 boys; 13 heterozygous missense mutations, 1 homozygous same-sense mutation (C1191T) which had not been reported in China and abroad, and 14 single nucleotide polymorphisms of C1311T were detected in 37 girls. The control group showed a high rate of missed detection of G6PD deficiency (carriers) in the specimens from girls (35%, 13/37). RT-PCR sequencing has a high detection rate of G6PD gene mutation and a certain value in clinical diagnosis of G6PD deficiency.

  9. Mutation in gelsolin gene in Finnish hereditary amyloidosis

    PubMed Central

    1990-01-01

    Familial amyloidosis, Finnish type (FAF), is an autosomal dominant form of familial amyloid polyneuropathy. The novel amyloid fibril protein found in these patients is a degradation fragment of gelsolin, an actin- binding protein. We found a mutation (adenine for guanine) at nucleotide 654 of the gelsolin gene in genomic DNA isolated from five FAF patients. This site is polymorphic since the normal allele was also present in all the patients tested. This mutation was not found in two unaffected family members and 11 normal controls. The A for G transition causes an amino acid substitution (asparagine for aspartic acid) that was found at position 15 of the amyloid protein. The mutation and consequent amino acid substitution may lead to the development of FAF. PMID:2175344

  10. New rRNA Gene-Based Phylogenies of the Alphaproteobacteria Provide Perspective on Major Groups, Mitochondrial Ancestry and Phylogenetic Instability

    PubMed Central

    Ferla, Matteo P.; Thrash, J. Cameron; Giovannoni, Stephen J.; Patrick, Wayne M.

    2013-01-01

    Bacteria in the class Alphaproteobacteria have a wide variety of lifestyles and physiologies. They include pathogens of humans and livestock, agriculturally valuable strains, and several highly abundant marine groups. The ancestor of mitochondria also originated in this clade. Despite significant effort to investigate the phylogeny of the Alphaproteobacteria with a variety of methods, there remains considerable disparity in the placement of several groups. Recent emphasis on phylogenies derived from multiple protein-coding genes remains contentious due to disagreement over appropriate gene selection and the potential influences of systematic error. We revisited previous investigations in this area using concatenated alignments of the small and large subunit (SSU and LSU) rRNA genes, as we show here that these loci have much lower GC bias than whole genomes. This approach has allowed us to update the canonical 16S rRNA gene tree of the Alphaproteobacteria with additional important taxa that were not previously included, and with added resolution provided by concatenating the SSU and LSU genes. We investigated the topological stability of the Alphaproteobacteria by varying alignment methods, rate models, taxon selection and RY-recoding to circumvent GC content bias. We also introduce RYMK-recoding and show that it avoids some of the information loss in RY-recoding. We demonstrate that the topology of the Alphaproteobacteria is sensitive to inclusion of several groups of taxa, but it is less affected by the choice of alignment and rate methods. The majority of topologies and comparative results from Approximately Unbiased tests provide support for positioning the Rickettsiales and the mitochondrial branch within a clade. This composite clade is a sister group to the abundant marine SAR11 clade (Pelagibacterales). Furthermore, we add support for taxonomic assignment of several recently sequenced taxa. Accordingly, we propose three subclasses within the

  11. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  12. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy

    PubMed Central

    Møller, Daniel Vega; Andersen, Paal Skytt; Hedley, Paula; Ersbøll, Mads Kristian; Bundgaard, Henning; Moolman-Smook, Johanna; Christiansen, Michael; Køber, Lars

    2009-01-01

    We investigated a Danish cohort of 31 unrelated patients with idiopathic dilated cardiomyopathy (IDC), to assess the role that mutations in sarcomere protein genes play in IDC. Patients were genetically screened by capillary electrophoresis single strand conformation polymorphism and subsequently by bidirectional DNA sequencing of conformers in the coding regions of MYH7, MYBPC3, TPM1, ACTC, MYL2, MYL3, TNNT2, CSRP3 and TNNI3. Eight probands carried disease-associated genetic variants (26%). In MYH7, three novel mutations were found; in MYBPC3, one novel variant and two known mutations were found; and in TNNT2, a known mutation was found. One proband was double heterozygous. We find evidence of phenotypic plasticity: three mutations described earlier as HCM causing were found in four cases of IDC, with no history of a hypertrophic phase. Furthermore, one pedigree presented with several cases of classic DCM as well as one case with left ventricular non-compaction. Disease-causing sarcomere gene mutations were found in about one-quarter of IDC patients, and seem to play an important role in the causation of the disease. The genetics is as complex as seen in HCM. Thus, our data suggest that a genetic work-up should include screening of the most prominent sarcomere genes even in the absence of a family history of the disease. PMID:19293840

  13. Recurrent mutation in the crystallin alpha A gene associated with inherited paediatric cataract.

    PubMed

    Javadiyan, Shari; Craig, Jamie E; Souzeau, Emmanuelle; Sharma, Shiwani; Lower, Karen M; Pater, John; Casey, Theresa; Hodson, Trevor; Burdon, Kathryn P

    2016-02-11

    Cataract is a major cause of childhood blindness worldwide. The purpose of this study was to determine the genetic cause of paediatric cataract in a South Australian family with a bilateral lamellar paediatric cataract displaying variable phenotypes. Fifty-one genes implicated in congenital cataract in human or mouse were sequenced in an affected individual from an Australian (Caucasian) family using a custom Ampliseq library on the Ion Torrent Personal Genome Machine. Reads were mapped against the human genome (hg19) and variants called with the Torrent Suite software. Variants were annotated to dbSNP 137 using Ion Reporter (IR 1.6.2) and were prioritised for validation if they were novel or rare and were predicted to be protein changing. We identified a previously reported oligomerization disrupting mutation, c.62G > A (p.R21Q), in the Crystallin alpha A (CRYAA) gene segregating in this three generation family. No other novel or rare coding mutations were detected in the known cataract genes sequenced. Microsatellite markers were used to compare the haplotypes between the family reported here and a previously published family with the same segregating mutation. Haplotype analysis indicated a potential common ancestry between the two South Australian families with this mutation. The work strengthens the genotype-phenotype correlations between this functional mutation in the crystallin alpha A (CRYAA) gene and paediatric cataract. The p.R21Q mutation is the most likely cause of paediatric cataract in this family. The recurrence of this mutation in paediatric cataract families is likely due to a familial relationship.

  14. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  15. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  16. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    PubMed

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  17. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    PubMed Central

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  18. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    PubMed

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  19. [Mutation analysis of the PAH gene in children with phenylketonuria from the Qinghai area of China].

    PubMed

    He, Jiang; Wang, Hui-Zhen; Xu, Fa-Liang; Yang, Xi; Wang, Rui; Zou, Hong-Yun; Yu, Wu-Zhong

    2015-11-01

    To study the mutation characteristics of the phenylalanine hydroxylase (PAH) gene in children with phenylketonuria (PKU) from the Qinghai area of China, in order to provide basic information for genetic counseling and prenatal diagnosis. Mutations of the PAH gene were detected in the promoter and exons 1-13 and their flanking intronic sequences of PAH gene by PCR and DNA sequencing in 49 children with PKU and their parents from the Qinghai area of China. A total of 30 different mutations were detected in 80 out of 98 mutant alleles (82%), including 19 missense (63%), 5 nonsense (17%), 3 splice-site (10%) and 3 deletions (10%). Most mutations were detected in exons 3, 6, 7, 11 and intron 4 of PAH gene. The most frequent mutations were p.R243Q (19%), IVS4-1G>A (9%), p.Y356X (7%) and p.EX6-96A>G(5%). Two novel mutations p.N93fsX5 (c.279-282delCATC) and p.G171E (c.512G>A) were found. p.H64fsX9(c.190delC) was documented for the second time in Chinese PAH gene. The mutation spectrum of the gene PAH in the Qinghai population was similar to that in other populations in North China while significantly different from that in the populations from some provinces in southern China, Japan and Europe. The mutations of PAH gene in the Qinghai area of China demonstrate a unique diversity, complexity and specificity.

  20. Software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod, G; Béroud, C; Soussi, T; Junien, C; Boileau, C

    1996-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created. PMID:8594563

  1. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene.

    PubMed Central

    van Lieburg, A. F.; Verdijk, M. A.; Knoers, V. V.; van Essen, A. J.; Proesmans, W.; Mallmann, R.; Monnens, L. A.; van Oost, B. A.; van Os, C. H.; Deen, P. M.

    1994-01-01

    Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. PMID:7524315

  2. Frequency of familial Mediterranean fever (MEFV) gene mutations in patients with biopsy-proven primary glomerulonephritis.

    PubMed

    Huzmeli, Can; Candan, Ferhan; Bagci, Gokhan; Alaygut, Demet; Yilmaz, Ali; Gedikli, Asim; Bagci, Binnur; Timucin, Meryem; Sezgin, Ilhan; Kayatas, Mansur

    2017-11-01

    Primary glomerulopathies are those disorders that affect glomerular structure, function, or both in the absence of a multisystem disorder. We aimed to evaluate the frequency of MEFV gene mutation to show possible coexistence of FMF in patients diagnosed with biopsy-proven primary glomerulonephritis (GN). A total of 64 patients with biopsy-proven primary GN were included in the study. MEFV gene mutations examined retrospectively. The mean age of patients was 39.6 ± 13.4 (range 18-69), 35 of patients were female and 29 of patients were male. Of the 64 patients, 17 were mesangial proliferative glomerulonephritis (MsPGN), 15 were IgA nephropathy (IgAN), 12 were membranous glomerulonephritis (MGN), 11 were focal segmental glomerulosclerosis (FSGS), three were membranous proliferative glomerulonephritis (MPGN), three were immune complex glomerulonephritis (ICGN), two were minimal change disease (MCD), and one was IgM nephropathy (IgMN). MEFV gene mutation was detected in 35.9% (23) of these patients. The most frequently detected mutations were E148Q and M694V. Twelve cases (18.75% of GN patients) with MEFV gene mutation were diagnosed as FMF phenotype I. The frequency of MEFV gene mutation was detected at a high rate of 35.9%. Further studies with larger populations are needed to clarify the importance of these mutations on clinical progression of glomerulonephritis.

  3. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity.

    PubMed

    Bullich, Gemma; Trujillano, Daniel; Santín, Sheila; Ossowski, Stephan; Mendizábal, Santiago; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet

    2015-09-01

    Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.

  4. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ying; Li, Lanying; Lepercq, J.

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B diseasemore » gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.« less

  5. Comparison of reduced metagenome and 16S rRNA gene sequencing for determination of genetic diversity and mother-child overlap of the gut associated microbiota.

    PubMed

    Ravi, Anuradha; Avershina, Ekaterina; Angell, Inga Leena; Ludvigsen, Jane; Manohar, Prasanth; Padmanaban, Sumathi; Nachimuthu, Ramesh; Snipen, Lars; Rudi, Knut

    2018-06-01

    Use of the 16S rRNA gene in microbiota studies is limited by the lack of taxonomic and functional resolution. High resolution analyses are particularly important for understanding transmission and persistence of bacteria. The aim of our work was therefore to compare a novel reduced metagenome sequencing (RMS) approach with 16S rRNA gene sequencing to determine both the metagenome genetic diversity and the mother-to-child sharing of the microbiota in a cohort of 17 mother-child pairs. We found that although both approaches gave comparable results with respect to sample separation and taxonomy, RMS gave higher resolution and the potential for genomic-/functional assignment. Using RMS we estimated that the metagenome size increased from about 60 Mbp for 4-day-old children to about 225 Mbp for mothers. The 4-day-old children shared 7% of the metagenome sequences with the mothers, while the metagenome sequence sharing was >30% among the mothers. We found 15 genomes shared across >50% of the mothers, of which 10 belonged to Clostridia. Only Bacteroides showed a direct mother-child association, with B. vulgatus being abundant in both 4-day-old children and mothers. For the functional assignments, we identified a significant association between antibiotic usage during labor, and quantity of Fosfomycin resistance genes. In conclusion, our results show a higher functional and taxonomic resolution for RMS compared to 16S rRNA gene sequencing, where RMS enabled a detailed description of mother to child gut microbiota transmission - supporting a late recruitment of most gut bacteria and an effect of antibiotic treatment during labor on infant antibiotic resistance gene patterns. Copyright © 2018. Published by Elsevier B.V.

  6. Erythrocytosis associated with a novel missense mutation in the HIF2A gene

    PubMed Central

    van Wijk, Richard; Sutherland, Scott; Van Wesel, Annet C.W.; Huizinga, Eric G.; Percy, Melanie J.; Bierings, Marc; Lee, Frank S.

    2010-01-01

    The ERYTHROPOIETIN (EPO) gene is regulated by the transcription factor Hypoxia Inducible Factor-α (HIF-α). In this pathway, Prolyl Hydroxylase Domain protein 2 (PHD2) hydroxylates two prolyl residues in HIF-α, which in turn promotes HIF-α degradation by the von Hippel Lindau (VHL) protein. Evidence that HIF-2α is the important isoform for EPO regulation in humans comes from the recent observation that mutations in the HIF2A gene are associated with cases of erythrocytosis. We report here a new erythrocytosis-associated mutation, p.Asp539Glu, in the HIF2A gene. Similar to all reported cases, the affected residue is in close vicinity and C-terminal to the primary hydroxylation site in HIF-2α, Pro531. This mutation, however, is notable in producing a rather subtle amino acid substitution. Nonetheless, we find that this mutation compromises binding of HIF-2α to both PHD2 and VHL, and we propose that this mutation is the cause of erythrocytosis in this individual. PMID:20007141

  7. Splice Site Mutations in the ATP7A Gene

    PubMed Central

    Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555

  8. The STAT3 HIES mutation is a gain-of-function mutation that activates genes via AGG-element carrying promoters.

    PubMed

    Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y Eugene

    2015-10-15

    Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, 'TTC(N3)GAA')-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320-494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence 'AGG(N3)AGG'. Surprisingly, the helical N-terminal region (1-355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.

    PubMed

    Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei

    2017-10-03

    Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  10. [Hyperuricemia and gene mutations: a case report].

    PubMed

    Tattoli, Fabio; Falconi, Daniela; De Prisco, Ornella; Maurizio, Gherzi; Marazzi, Federico; Marengo, Marita; Serra, Ilaria; Tamagnone, Michela; Cordero di Montezemolo, Luca; Pasini, Barbara; Formica, Marco

    2017-06-01

    Hyperuricemia is frequently found in nephrology. The case presented may be useful to clarify some pathogenetic aspects. It is a patient of 18 years, hyperuricaemic. Non-consanguineous parents, hyperuricemia in the paternal line, not neuropsychiatric disorders in the family. Delay in neuromotor acquisitions, average intellectual disabilities, anxiety disorder, obsessive-compulsive personality traits. Normal renal function and renal ultrasound. Evidence of hyperuricemia in 2015. Never gouty episodes and / or lithiasis, initiated allopurinol 100 mg on alternate days, with no side effects, urea in the control range, slightly below normal uricuria. Given the complex clinical, he carried out a genetic analysis of array-CGH. He showed a deletion on the short arm of chromosome 3 (3p12.3) and a duplication of the long arm of chromosome 1 (19q13-42). The deletion 3p12.3 (paternal inheritance), involves the ROBO2 gene. Duplication 19q13.42, (maternal inheritance), includes NLRP12, DPRX, ZNF331 genes. The ROBO2 gene with its mutation, is associated with vesicoureteral reflux. The NLRP12 gene encodes proteins called "Nalps", forming a subfamily of proteins "CATERPILLAR". Many "Nalps" as well as the "Nalps 12" have an N-terminal domain (DYP) with a purin. Since uric acid is a byproduct of purine metabolism, considered the familiarity, we believe that we can hypothesize that the mutations found. In particular those concerning the NLRP-12 gene, may have a role in the presence of hyperuricemia. We believe that in patients with hyperuricemia, associated with a particular impairment of neurological picture, it is likely that there is a subtended common genetic deficiency. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  11. Sequence Variation in the Small-Subunit rRNA Gene of Plasmodium malariae and Prevalence of Isolates with the Variant Sequence in Sichuan, China

    PubMed Central

    Liu, Qing; Zhu, Shenghua; Mizuno, Sahoko; Kimura, Masatsugu; Liu, Peina; Isomura, Shin; Wang, Xingzhen; Kawamoto, Fumihiko

    1998-01-01

    By two PCR-based diagnostic methods, Plasmodium malariae infections have been rediscovered at two foci in the Sichuan province of China, a region where no cases of P. malariae have been officially reported for the last 2 decades. In addition, a variant form of P. malariae which has a deletion of 19 bp and seven substitutions of base pairs in the target sequence of the small-subunit (SSU) rRNA gene was detected with high frequency. Alignment analysis of Plasmodium sp. SSU rRNA gene sequences revealed that the 5′ region of the variant sequence is identical to that of P. vivax or P. knowlesi and its 3′ region is identical to that of P. malariae. The same sequence variations were also found in P. malariae isolates collected along the Thai-Myanmar border, suggesting a wide distribution of this variant form from southern China to Southeast Asia. PMID:9774600

  12. Brachdactyly Instigated as a Result of Mutation in GDF5 and NOG Genes in Pakistani Population.

    PubMed

    Khan, Samiullah; Mudassir, Muhammad; Khan, Naqab; Marwat, Asmatullah

    2018-01-01

    Brachdactyly a genetic disorder associated with the abnormal development of metacarpals, phalanges or both which results in the shortening of hands and feet. Mutations in the contributing genes has been recognized with the majority of the investigated syndromic form of brachdactyly. The current study was proposed to examine mutation in NOG and GDF5 genes in a Pakistani family. Poly Acrylamide Gel Electrophoresis and Polymerase Chain Reaction was used for the genomic screening and linkage analysis to observe the mutation in genes. The samples were collected from Luckki Marwat district, KPK, while the research study was conducted in the department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan. After survey, family was identified with brachdactyly type A2 and investigated a heterozygous arginine to glutamine exchange in the growth demarcation factor 5 in all the victim persons. Different types of skeletal dysplasia resulted due to mutation in the GDF5 genes. Novel GDF5 genes mutations were reported with distinct limb malformation and sequencing of coding region revealed that the mildly affected individuals were heterozygous while the harshly affected individuals were homozygous. The current study reported the genetic variability and concluded that the Brachdacytyly type A2 and type B2 resulted due to mutation in GDF5 and NOG genes respectively. A new subtype of brachydactyly (BDB2) was instigated as a result of novel mutations in NOG. The mutation has been reported for the first time in Pakistani population and especially in Pushtoon ethnic population.

  13. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013).

    PubMed

    Mohon, Abu Naser; Alam, Mohammad Shafiul; Bayih, Abebe Genetu; Folefoc, Asongna; Shahinas, Dea; Haque, Rashidul; Pillai, Dylan R

    2014-11-18

    Bangladesh is a malaria hypo-endemic country sharing borders with India and Myanmar. Artemisinin combination therapy (ACT) remains successful in Bangladesh. An increase of artemisinin-resistant malaria parasites on the Thai-Cambodia and Thai-Myanmar borders is worrisome. K13 propeller gene (PF3D7_1343700 or PF13_0238) mutations have been linked to both in vitro artemisinin resistance and in vivo slow parasite clearance rates. This group undertook to evaluate if mutations seen in Cambodia have emerged in Bangladesh where ACT use is now standard for a decade. Samples were obtained from Plasmodium falciparum-infected malaria patients from Upazila health complexes (UHC) between 2009 and 2013 in seven endemic districts of Bangladesh. These districts included Khagrachari (Matiranga UHC), Rangamati (Rajasthali UHC), Cox's Bazar (Ramu and Ukhia UHC), Bandarban (Lama UHC), Mymensingh (Haluaghat UHC), Netrokona (Durgapur and Kalmakanda UHC), and Moulvibazar (Sreemangal and Kamalganj UHC). Out of 296 microscopically positive P. falciparum samples, 271 (91.6%) were confirmed as mono-infections by both real-time PCR and nested PCR. The K13 propeller gene from 253 (93.4%) samples was sequenced bi-directionally. One non-synonymous mutation (A578S) was found in Bangladeshi clinical isolates. The A578S mutation was confirmed and lies adjacent to the C580Y mutation, the major mutation causing delayed parasite clearance in Cambodia. Based on computational modeling A578S should have a significant effect on tertiary structure of the protein. The data suggest that P. falciparum in Bangladesh remains free of the C580Y mutation linked to delayed parasite clearance. However, the mutation A578S is present and based on structural analysis could affect K13 gene function. Further in vivo clinical studies are required to validate the effect of this mutation.

  14. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    PubMed Central

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. Results: In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions. PMID:23508290

  15. Seventeen Novel Mutations in PCCA and PCCB Genes in Indian Propionic Acidemia Patients, and Their Outcomes.

    PubMed

    Gupta, Deepti; Bijarnia-Mahay, Sunita; Kohli, Sudha; Saxena, Renu; Puri, Ratna Dua; Shigematsu, Yosuke; Yamaguchi, Seiji; Sakamoto, Osamu; Gupta, Neerja; Kabra, Madhulika; Thakur, Seema; Deb, Roumi; Verma, Ishwar Chander

    2016-07-01

    The goal of this study was to identify mutations in the propionyl-CoA carboxylase alpha subunit (PCCA) and propionyl-CoA carboxylase beta subunit (PCCB) genes, and to assess their effects on propionic academia (PA) patients. Twenty-five Indian children with PA were enrolled in this study. Bidirectional Sanger sequencing was performed on both the coding and flanking regions of the PCCA and PCCB genes and the chromatograms were analyzed. Bioinformatic tools were used to classify novel variations into pathogenic or benign. The majority of the cases (19/25, 76%) were of the early-onset (<90 days of age) type and 5 were of the late-onset type. The majority of patients had mutations in the PCCA gene (18/25). A total of 26 mutations were noted: 20 in the PCCA gene and 6 in PCCB gene. Seventeen mutations were novel (14 in PCCA and 3 in PCCB). The SNP c.937C>T (p.Arg313Ter), was noted in 9/36 (25%) alleles in the PCCA gene. All of the children were symptomatic and only three survived who are doing well with no major disabilities. The spectrum of mutations in the PCCA and PCCB genes among Indians is distinct from other populations. The absence of a common mutation signifies the heterogeneity and admixture of various subpopulations. These findings also suggest that individuals of Indian origin may not benefit from the mutation-based "carrier screening panels" offered by many genetic laboratories.

  16. Clinical evaluation and mutational analysis of GALK and GALE genes in patients with galactosemia in Greece: one novel mutation and two rare cases.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-07-26

    Deficiencies of galactokinase (GALK) and UDP-epimerase (GALE) are implicated with galactose metabolic disorders. The aim of the study was the identification of mutations in GALK and GALE genes and clinical evaluation of patients. Five patients with GALK and five with GALE deficiency were picked up via the Neonatal Screening Program. Additionally, two females, 4 years old, were referred with late diagnosed galactosemia, as rare cases. Mutational analysis was conducted via Sanger sequencing, while in silico analysis tools were utilized for the novel mutation. Psychomotor and speech development tests were performed, as well. The mutation p.Pro28Thr was identified in both alleles in GALK-deficient patients of Roma (gypsy) origin, whereas the novel p.Asn39Ser was detected in two non-Roma patients. In GALE-deficient patients benign and/or likely benign mutations were found. Psychomotor and speech delay were determined in the Roma GALK patients. In each of the late diagnosed females, four mutations were identified in all galactosemia-related genes. The mutational spectrums of GALE- and GALK-deficient patients in Greece are presented for the first time along with a clinical evaluation. Mutational analysis in all galactosemia-related genes of symptomatic patients is highly recommended for future cases.

  17. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  18. NDP gene mutations in 14 French families with Norrie disease.

    PubMed

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  19. The interplay of mutations and electronic properties in disease-related genes

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Wells, Stephen A.; Hsu, Ching-Ling; Cheng, Yun-Yin; Römer, Rudolf A.

    2012-02-01

    Electronic properties of DNA are believed to play a crucial role in many phenomena in living organisms, for example the location of DNA lesions by base excision repair (BER) glycosylases and the regulation of tumor-suppressor genes such as p53 by detection of oxidative damage. However, the reproducible measurement and modelling of charge migration through DNA molecules at the nanometer scale remains a challenging and controversial subject even after more than a decade of intense efforts. Here we show, by analysing 162 disease-related genes from a variety of medical databases with a total of almost 20,000 observed pathogenic mutations, a significant difference in the electronic properties of the population of observed mutations compared to the set of all possible mutations. Our results have implications for the role of the electronic properties of DNA in cellular processes, and hint at the possibility of prediction, early diagnosis and detection of mutation hotspots.

  20. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia.

    PubMed Central

    Wright, J.; Teraoka, S.; Onengut, S.; Tolun, A.; Gatti, R. A.; Ochs, H. D.; Concannon, P.

    1996-01-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. PMID:8808599