Science.gov

Sample records for rrna single nucleotide

  1. Targeting single-nucleotide polymorphisms in the 16S rRNA gene to detect and differentiate Legionella pneumophila and non-Legionella pneumophila species.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-08-01

    A PCR-based method targeting single-nucleotide polymorphisms (SNPs) in the 16S rRNA gene was developed for differential identification of Legionella pneumophila and non-Legionella pneumophila. Based on the bioinformatics analysis for 176 Legionella 16S rRNA gene fragments of 56 different Legionella species, a set of SNPs, A(628)C(629) was found to be highly specific to L. pneumophila strains. A multiplex assay was designed that was able to distinguish sites with limited sequence heterogeneity between L. pneumophila and non-L. pneumophila in the targeted 16S rRNA gene. The assay amplified a 261-bp amplicon for Legionella spp. and a set of 203- and 97-bp amplicons only specific to L. pneumophila species. Among 49 ATCC strains and 284 Legionella isolates from environmental water and clinical samples, 100 % of L. pneumophila and non-L. pneumophila strains were correctly identified and differentiated by this assay. The assay presents a more rapid, sensitive and alternative method to the currently available PCR-sequencing detection and differentiation method. PMID:27112927

  2. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  3. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  4. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A.

    PubMed Central

    Rosendahl, G; Douthwaite, S

    1994-01-01

    The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A. Images PMID:8127673

  5. Methanosarcina acetivorans 16S rRNA and transcription factor nucleotide fluctuation with implications in exobiology and pathology

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Marchese, P.; Hiciano, O.; Yao, H.; Lieberman, D.; Cheung, T.

    2008-08-01

    Cultures of the methane-producing archaea Methanosarcina, have recently been isolated from Alaskan sediments. It has been proposed that methanogens are strong candidates for exobiological life in extreme conditions. The spatial environmental gradients, such as those associated with the polygons on Mars' surface, could have been produced by past methanogenesis activity. The 16S rRNA gene has been used routinely to classify phenotypes. Using the fractal dimension of nucleotide fluctuation, a comparative study of the 16S rRNA nucleotide fluctuation in Methanosarcina acetivorans C2A, Deinococcus radiodurans, and E. coli was conducted. The results suggest that Methanosarcina acetivorans has the lowest fractal dimension, consistent with its ancestral position in evolution. Variation in fluctuation complexity was also detected in the transcription factors. The transcription factor B (TFB) was found to have a higher fractal dimension as compared to transcription factor E (TFE), consistent with the fact that a single TFB in Methanosarcina acetivorans can code three different TATA box proteins. The average nucleotide pair-wise free energy of the DNA repair genes was found to be highest for Methanosarcina acetivorans, suggesting a relatively weak bonding, which is consistent with its low prevalence in pathology. Multitasking capacity comparison of type-I and type-II topoisomerases has been shown to correlate with fractal dimension using the methicillin-resistant strain MRSA 252. The analysis suggests that gene adaptation in a changing chemical environment can be measured in terms of bioinformatics. Given that the radiation resistant Deinococcus radiodurans is a strong candidate for an extraterrestrial origin and that the cold temperature Psychrobacter cryohalolentis K5 can function in Siberian permafrost, the fractal dimension comparison in this study suggests that a chemical resistant methanogen could exist in extremely cold conditions (such as that which existed on early

  6. Monovar: single-nucleotide variant detection in single cells.

    PubMed

    Zafar, Hamim; Wang, Yong; Nakhleh, Luay; Navin, Nicholas; Chen, Ken

    2016-06-01

    Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets. PMID:27088313

  7. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15.

    PubMed

    Serganov, A; Bénard, L; Portier, C; Ennifar, E; Garber, M; Ehresmann, B; Ehresmann, C

    2001-01-26

    Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly. PMID:11162092

  8. Methylation of 23S rRNA Nucleotide G748 by RlmAII Methyltransferase Renders Streptococcus pneumoniae Telithromycin Susceptible

    PubMed Central

    Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-01-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmAII, which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmAII to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmAII renders S. pneumoniae TEL susceptible. PMID:23716046

  9. From Single Nucleotide Polymorphism to Transcriptional Mechanism

    PubMed Central

    Martini, Sebastian; Nair, Viji; Patel, Sanjeevkumar R.; Eichinger, Felix; Nelson, Robert G.; Weil, E. Jennifer; Pezzolesi, Marcus G.; Krolewski, Andrzej S.; Randolph, Ann; Keller, Benjamin J.; Werner, Thomas; Kretzler, Matthias

    2013-01-01

    Genome-wide association studies have proven to be highly effective at defining relationships between single nucleotide polymorphisms (SNPs) and clinical phenotypes in complex diseases. Establishing a mechanistic link between a noncoding SNP and the clinical outcome is a significant hurdle in translating associations into biological insight. We demonstrate an approach to assess the functional context of a diabetic nephropathy (DN)-associated SNP located in the promoter region of the gene FRMD3. The approach integrates pathway analyses with transcriptional regulatory pattern-based promoter modeling and allows the identification of a transcriptional framework affected by the DN-associated SNP in the FRMD3 promoter. This framework provides a testable hypothesis for mechanisms of genomic variation and transcriptional regulation in the context of DN. Our model proposes a possible transcriptional link through which the polymorphism in the FRMD3 promoter could influence transcriptional regulation within the bone morphogenetic protein (BMP)-signaling pathway. These findings provide the rationale to interrogate the biological link between FRMD3 and the BMP pathway and serve as an example of functional genomics-based hypothesis generation. PMID:23434934

  10. Single Nucleotide Polymorphisms for Pig Identification and Parentage Exclusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms have become an important type of marker for commercial diagnostic and parentage genotyping applications as automated genotyping systems have been developed that yield accurate genotypes. Unfortunately, a large number of highly informative public SNP markers tested in ...

  11. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

    PubMed

    Yang, Rui; Cruz-Vera, Luis R; Yanofsky, Charles

    2009-06-01

    Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression. PMID:19329641

  12. A single-nucleotide exon found in Arabidopsis.

    PubMed

    Guo, Lei; Liu, Chun-Ming

    2015-01-01

    The presence of introns in gene-coding regions is one of the most mysterious evolutionary inventions in eukaryotic organisms. It has been proposed that, although sequences involved in intron recognition and splicing are mainly located in introns, exonic sequences also contribute to intron splicing. The smallest constitutively spliced exon known so far has 6 nucleotides, and the smallest alternatively spliced exon has 3 nucleotides. Here we report that the Anaphase Promoting Complex subunit 11 (APC11) gene in Arabidopsis thaliana carries a constitutive single-nucleotide exon. In vivo transcription and translation assays performed using APC11-Green Fluorescence Protein (GFP) fusion constructs revealed that intron splicing surrounding the single-nucleotide exon is effective in both Arabidopsis and rice. This discovery warrants attention to genome annotations in the future. PMID:26657562

  13. A single-nucleotide exon found in Arabidopsis

    PubMed Central

    Guo, Lei; Liu, Chun-Ming

    2015-01-01

    The presence of introns in gene-coding regions is one of the most mysterious evolutionary inventions in eukaryotic organisms. It has been proposed that, although sequences involved in intron recognition and splicing are mainly located in introns, exonic sequences also contribute to intron splicing. The smallest constitutively spliced exon known so far has 6 nucleotides, and the smallest alternatively spliced exon has 3 nucleotides. Here we report that the Anaphase Promoting Complex subunit 11 (APC11) gene in Arabidopsis thaliana carries a constitutive single-nucleotide exon. In vivo transcription and translation assays performed using APC11-Green Fluorescence Protein (GFP) fusion constructs revealed that intron splicing surrounding the single-nucleotide exon is effective in both Arabidopsis and rice. This discovery warrants attention to genome annotations in the future. PMID:26657562

  14. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  15. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  16. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  17. Single nucleotide markers of D-loop for identification of Indian wild pig (Sus scrofa cristatus)

    PubMed Central

    Srivastava, Gaurav Kumar; Rajput, Nidhi; Jadav, Kajal Kumar; Shrivastav, Avadh Bihari; Joshi, Himanshu R.

    2015-01-01

    Aim: Partial fragment of D-loop region extending from 35 to 770 were compared with corresponding sequences of 16 wild pigs and 9 domestic pig breeds from different parts of the world for detection of single nucleotide polymorphism (SNP) markers in the region. The paper also reappraises SNP markers from two fragments of cytochrome b gene and a fragment 12S rRNA gene distinguishing the Indian wild pig from other pig species of the world. Materials and Methods: Deoxyribonucleic acid (DNA) was isolated from 14 and 12 tissue samples of Indian wild and domestic pigs, respectively, collected from Central India for characterization of the D-loop DNA sequences using universal primers. The sequences obtained were aligned along with the retrieved sequences to analyze species-specific SNP marker. Results: A total of 58 mitochondrial D-loop gene sequences of pig races were aligned to identify 1349 polymorphic sites in the fragment from nucleotide positions 35-770 bp and four SNP markers were identified to differentiate Indian wild pig from all the sequences investigated in this study. With the inclusion of cytochrome b gene and 12S rRNA gene fragments, the present study contributes to the total 15 SNP markers, which have been identified in the mitochondrial fragment of 1936 bp for identification of Indian wild pig. Conclusion: SNP markers have advantages over other marker types and do not require subsequent standardization to compare data across studies or laboratories. PMID:27047129

  18. Guanine nucleotide metabolism in a mutant strain of Escherichia coli with a temperature sensitive lesion in rRNA synthesis.

    PubMed

    Harris, J S; Chaney, S G

    1978-12-21

    We have described a mutant of Escherichia coli (designated 2S142) which shows specific inhibition of rRNA synthesis at 42 degrees C. ppGpp levels increase at the restrictive temperature, as expected. However, when the cells are returned to 30 degrees C, rRNA synthesis resumes before ppGpp levels have returned to normal. Furthermore, when ppGpp levels are decreased by the addition of tetracycline or choramphenicol, rRNA synthesis does not resume at 42 degrees C. Also, a derivative of 2S142 with a temperature-sensitive G factor (which cannot synthesize either protein or ppGpp at 42 degrees C) shows identical kinetics of rRNA shut-off at 42 degrees C as 2S142. Thus, the elevated ppGpp levels in this mutant do not appear to be directly responsible for the cessation of rRNA synthesis at 42 degrees C. PMID:367439

  19. Update on Pneumocystis carinii f. sp. hominis Typing Based on Nucleotide Sequence Variations in Internal Transcribed Spacer Regions of rRNA Genes

    PubMed Central

    Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.

    1998-01-01

    Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304

  20. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  1. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms.

    PubMed

    Fakhrai-Rad, Hossein; Pourmand, Nader; Ronaghi, Mostafa

    2002-05-01

    Pyrosequencing, a non-electrophoretic method for DNA sequencing, is emerging as a popular platform for analysis of single nucleotide polymorphisms (SNPs). This technology has the advantage of accuracy, ease-of-use, and high flexibility for different applications. Here, we review the methodology and the use of this technique for SNP genotyping, SNP discovery, haplotyping, and allelic frequency studies. In addition, we describe new schemes for template preparation and multiplexing as an effort for cost reduction in large-scale studies. PMID:11968080

  2. Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA

    PubMed Central

    Watson, Claire L.; Lockwood, Diana N. J.

    2009-01-01

    Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306

  3. Identification of single nucleotides in MoS2 nanopores.

    PubMed

    Feng, Jiandong; Liu, Ke; Bulushev, Roman D; Khlybov, Sergey; Dumcenco, Dumitru; Kis, Andras; Radenovic, Aleksandra

    2015-12-01

    The size of the sensing region in solid-state nanopores is determined by the size of the pore and the thickness of the pore membrane, so ultrathin membranes such as graphene and single-layer molybdenum disulphide could potentially offer the necessary spatial resolution for nanopore DNA sequencing. However, the fast translocation speeds (3,000-50,000 nt ms(-1)) of DNA molecules moving across such membranes limit their usability. Here, we show that a viscosity gradient system based on room-temperature ionic liquids can be used to control the dynamics of DNA translocation through MoS2 nanopores. The approach can be used to statistically detect all four types of nucleotide, which are identified according to current signatures recorded during their transient residence in the narrow orifice of the atomically thin MoS2 nanopore. Our technique, which exploits the high viscosity of room-temperature ionic liquids, provides optimal single nucleotide translocation speeds for DNA sequencing, while maintaining a signal-to-noise ratio higher than 10. PMID:26389660

  4. Evaluation of published single nucleotide polymorphisms associated with acute GVHD.

    PubMed

    Chien, Jason W; Zhang, Xinyi Cindy; Fan, Wenhong; Wang, Hongwei; Zhao, Lue Ping; Martin, Paul J; Storer, Barry E; Boeckh, Michael; Warren, Edus H; Hansen, John A

    2012-05-31

    Candidate genetic associations with acute GVHD (aGVHD) were evaluated with the use of genotyped and imputed single-nucleotide polymorphism data from genome-wide scans of 1298 allogeneic hematopoietic cell transplantation (HCT) donors and recipients. Of 40 previously reported candidate SNPs, 6 were successfully genotyped, and 10 were imputed and passed criteria for analysis. Patient and donor genotypes were assessed for association with grades IIb-IV and III-IV aGVHD, stratified by donor type, in univariate and multivariate allelic, recessive and dominant models. Use of imputed genotypes to replicate previous IL10 associations was validated. Similar to previous publications, the IL6 donor genotype for rs1800795 was associated with a 20%-50% increased risk for grade IIb-IV aGVHD after unrelated HCT in the allelic (adjusted P = .011) and recessive (adjusted P = .0013) models. The donor genotype was associated with a 60% increase in risk for grade III-IV aGVHD after related HCT (adjusted P = .028). Other associations were found for IL2, CTLA4, HPSE, and MTHFR but were inconsistent with original publications. These results illustrate the advantages of using imputed single-nucleotide polymorphism data in genetic analyses and demonstrate the importance of validation in genetic association studies. PMID:22282500

  5. Syndrome-based discrimination of single nucleotide polymorphism.

    PubMed

    May, E E; Dolan, P; Crozier, P; Brozik, S

    2006-01-01

    The ability to discriminate nucleic acid sequences is necessary for a wide variety of applications: high throughput screening, distinguishing genetically modified organisms (GMOs), molecular computing, differentiating biological markers, fingerprinting a specific sensor response for complex systems, etc. Hybridization-based target recognition and discrimination is central to the operation of nucleic acid sensor systems. Therefore developing a quantitative correlation between mishybridization events and sensor out put is critical to the accurate interpretation of results. In this work, using experimental data produced by introducing single mutations (single nucleotide polymorphisms, SNPs) in the probe sequence of computational catalytic molecular beacons (deoxyribozyme gates) [1], we investigate coding theory algorithms for uniquely categorizing SNPs based on the calculation of syndromes. PMID:17947098

  6. A single natural nucleotide mutation alters bacterial pathogen host tropism.

    PubMed

    Viana, David; Comos, María; McAdam, Paul R; Ward, Melissa J; Selva, Laura; Guinane, Caitriona M; González-Muñoz, Beatriz M; Tristan, Anne; Foster, Simon J; Fitzgerald, J Ross; Penadés, José R

    2015-04-01

    The capacity of microbial pathogens to alter their host tropism leading to epidemics in distinct host species populations is a global public and veterinary health concern. To investigate the molecular basis of a bacterial host-switching event in a tractable host species, we traced the evolutionary trajectory of the common rabbit clone of Staphylococcus aureus. We report that it evolved through a likely human-to-rabbit host jump over 40 years ago and that only a single naturally occurring nucleotide mutation was required and sufficient to convert a human-specific S. aureus strain into one that could infect rabbits. Related mutations were identified at the same locus in other rabbit strains of distinct clonal origin, consistent with convergent evolution. This first report of a single mutation that was sufficient to alter the host tropism of a microorganism during its evolution highlights the capacity of some pathogens to readily expand into new host species populations. PMID:25685890

  7. Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse

    PubMed Central

    Han, Haoyuan; Zhang, Qin; Gao, Kexin; Yue, Xiangpeng; Zhang, Tao; Dang, Ruihua; Lan, Xianyong; Chen, Hong; Lei, Chuzhao

    2015-01-01

    In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five Y-SNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (π = 5.6×10−4) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (π = 0.00000) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses. PMID:26104513

  8. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping

    PubMed Central

    Zhu, Jing; Palla, Mirkó; Ronca, Stefano; Warpner, Ronald; Ju, Jingyue; Lin, Qiao

    2014-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) allows diagnosis of human genetic disorders associated with single base mutations. Conventional SNP genotyping methods are capable of providing either accurate or high-throughput detection, but are still labor-, time-, and resource-intensive. Microfluidics has been applied to SNP detection to provide fast, low-cost, and automated alternatives, although these applications are still limited by either accuracy or throughput issues. To address this challenge, we present a MEMS-based SNP genotyping approach that uses solid-phase-based reactions in a single microchamber on a temperature control chip. Polymerase chain reaction (PCR), allele specific single base extension (SBE), and desalting on microbeads are performed in the microchamber, which is coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the SBE product. Experimental results from genotyping of the SNP on exon 1 of the HBB gene, which causes sickle cell anemia, demonstrate the potential of the device for rapid, accurate, multiplexed and high-throughput detection of SNPs. PMID:24729659

  9. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    SciTech Connect

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  10. [Application of single nucleotide polymorphism in crop genetics and improvement].

    PubMed

    Du, Chun-Fang; Liu, Hui-Min; Li, Run-Zhi; Li, Peng-Bo; Ren, Zhi-Qiang

    2003-11-01

    Single nucleotide polymorphism(SNP) is the most common type of sequence difference between alleles, which can be used as a kind of high-throughput genetic marker. Several different routes have been developed to discover and identify SNP. These include the direct sequencing of PCR amplicons, electronic SNP(eSNP) and so on. SNP assays have been made in many crop species such as maize and soybean. The elite germplasm of some crops have been narrowed in genetic diversity, increasing the amount of linkage disequilibrium (LD) present and facilitating the association of SNP haplotypes at candidate gene loci with phenotypes. SNP analysis has been broadly used in the field of plant gene mapping, integration of genetic and physical maps, DNA marker-assisted breeding and functional genomics. PMID:15639972

  11. Single nucleotide variations: biological impact and theoretical interpretation.

    PubMed

    Katsonis, Panagiotis; Koire, Amanda; Wilson, Stephen Joseph; Hsu, Teng-Kuei; Lua, Rhonald C; Wilkins, Angela Dawn; Lichtarge, Olivier

    2014-12-01

    Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease-causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics. PMID:25234433

  12. Single Nucleotide Polymorphism Mapping Using Genome-Wide Unique Sequences

    PubMed Central

    Chen, Leslie Y.Y.; Lu, Szu-Hsien; Shih, Edward S.C.; Hwang, Ming-Jing

    2002-01-01

    As more and more genomic DNAs are sequenced to characterize human genetic variations, the demand for a very fast and accurate method to genomically position these DNA sequences is high. We have developed a new mapping method that does not require sequence alignment. In this method, we first identified DNA fragments of 15 bp in length that are unique in the human genome and then used them to position single nucleotide polymorphism (SNP) sequences. By use of four desktop personal computers with AMD K7 (1 GHz) processors, our new method mapped more than 1.6 million SNP sequences in 20 hr and achieved a very good agreement with mapping results from alignment-based methods. PMID:12097348

  13. Current research status, databases and application of single nucleotide polymorphism.

    PubMed

    Javed, R; Mukesh

    2010-07-01

    Single Nucleotide Polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. SNPs are genetic markers which are bi-allelic in nature and grow at a very fast rate. Current genomic databases contain information on several million SNPs. More than 6 million SNPs have been identified and the information is publicly available through the efforts of the SNP Consortium and others data bases. The NCBI plays a major role in facillating the identification and cataloging of SNPs through creation and maintenance of the public SNP database (dbSNP) by the biomedical community worldwide and stimulate many areas of biological research including the identification of the genetic components of disease. In this review article, we are compiling the existing SNP databases, research status and their application. PMID:21717869

  14. ENGINES: exploring single nucleotide variation in entire human genomes

    PubMed Central

    2011-01-01

    Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to

  15. Electrophoretic Transport of Single DNA Nucleotides through Nanoslits: A Molecular Dynamics Simulation Study.

    PubMed

    Xia, Kai; Novak, Brian R; Weerakoon-Ratnayake, Kumuditha M; Soper, Steven A; Nikitopoulos, Dimitris E; Moldovan, Dorel

    2015-09-01

    There is potential for flight time based DNA sequencing involving disassembly into individual nucleotides which would pass through a nanochannel with two or more detectors. We performed molecular dynamics simulations of electrophoretic motion of single DNA nucleotides through 3 nm wide hydrophobic slits with both smooth and rough walls. The electric field (E) varied from 0.0 to 0.6 V/nm. The nucleotides adsorb and desorb from walls multiple times during their transit through the slit. The nucleotide-wall interactions differed due to nucleotide hydrophobicities and wall roughness which determined duration and frequency of nucleotide adsorptions and their velocities while adsorbed. Transient association of nucleotides with one, two, or three sodium ions occurred, but the mean association numbers (ANs) were weak functions of nucleotide type. Nucleotide-wall interactions contributed more to separation of nucleotide flight time distributions than ion association and thus indicate that nucleotide-wall interactions play a defining role in successfully discriminating between nucleotides on the basis of their flight times through nanochannels/slits. With smooth walls, smaller nucleotides moved faster, but with rough walls larger nucleotides moved faster due to fewer favorable wall adsorption sites. This indicates that roughness, or surface patterning, might be exploited to achieve better time-of-flight based discrimination between nucleotides. PMID:26237155

  16. A Microfluidic Device for Multiplex Single-Nucleotide Polymorphism Genotyping

    PubMed Central

    Zhu, Jing; Qiu, Chunmei; Palla, Mirkó; Nguyen, ThaiHuu; Russo, James J.; Ju, Jingyue; Lin, Qiao

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) are the most abundant type of genetic variations; they provide the genetic fingerprint of individuals and are essential for genetic biomarker discoveries. Accurate detection of SNPs is of great significance for disease prevention, diagnosis and prognosis, and for prediction of drug response and clinical outcomes in patients. Nevertheless, conventional SNP genotyping methods are still limited by insufficient accuracy or labor-, time-, and resource-intensive procedures. Microfluidics has been increasingly utilized to improve efficiency; however, the currently available microfluidic genotyping systems still have shortcomings in accuracy, sensitivity, throughput and multiplexing capability. To address these challenges, we developed a multi-step SNP genotyping microfluidic device, which performs single-base extension of SNP specific primers and solid-phase purification of the extension products on a temperature-controlled chip. The products are ready for immediate detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), providing identification of the alleles at the target loci. The integrated device enables efficient and automated operation, while maintaining the high accuracy and sensitivity provided by MS. The multiplex genotyping capability was validated by performing rapid, accurate and simultaneous detection of 4 loci on a synthetic template. The microfluidic device has the potential to perform automatic, accurate, quantitative and high-throughput assays covering a broad spectrum of applications in biological and clinical research, drug development and forensics. PMID:26594354

  17. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    PubMed

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  18. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  19. Single nucleotide polymorphism genotyping using BeadChip microarrays.

    PubMed

    Lambert, Gilliam; Tsinajinnie, Darwin; Duggan, David

    2013-07-01

    The genotyping of single nucleotide polymorphisms (SNPs) has successfully contributed to the study of complex diseases more than any other technology to date. Genome-wide association studies (GWAS) using 10,000s to >1,000,000 SNPs have identified 1000s of statistically significant SNPs pertaining to 17 different human disease and trait categories. Post-GWAS fine-mapping studies using 10,000s to 100,000s SNPs on a microarray have narrowed the region of interest for many of these GWAS findings; in addition, independent signals within the original GWAS region have been identified. Focused content, SNP-based microarrays such as the human exome, for example, have too been used successfully to identify novel disease associations. Success has come to studies where 100s to 10,000s (mostly) to >100,000 samples were genotyped. For the time being, SNP-based microarrays remain cost-effective especially when studying large numbers of samples compared to other "genotyping" technologies including next generation sequencing. In this unit, protocols for manual (LIMS-free), semi-manual, and automated processing of BeadChip microarrays are presented. Lower throughput studies will find value in the manual and semi-manual protocols, while all types of studies--low-, medium-, and high-throughput--will find value in the semi-manual and automated protocols. PMID:23853082

  20. Research on Single Nucleotide Polymorphisms Interaction Detection from Network Perspective

    PubMed Central

    Su, Lingtao; Liu, Guixia; Wang, Han; Tian, Yuan; Zhou, Zhihui; Han, Liang; Yan, Lun

    2015-01-01

    Single Nucleotide Polymorphisms (SNPs) found in Genome-Wide Association Study (GWAS) mainly influence the susceptibility of complex diseases, but they still could not comprehensively explain the relationships between mutations and diseases. Interactions between SNPs are considered so important for deeply understanding of those relationships that several strategies have been proposed to explore such interactions. However, part of those methods perform poorly when marginal effects of disease loci are weak or absent, others may lack of considering high-order SNPs interactions, few methods have achieved the requirements in both performance and accuracy. Considering the above reasons, not only low-order, but also high-order SNP interactions as well as main-effect SNPs, should be taken into account in detection methods under an acceptable computational complexity. In this paper, a new pairwise (or low-order) interaction detection method IG (Interaction Gain) is introduced, in which disease models are not required and parallel computing is utilized. Furthermore, high-order SNP interactions were proposed to be detected by finding closely connected function modules of the network constructed from IG detection results. Tested by a wide range of simulated datasets and four WTCCC real datasets, the proposed methods accurately detected both low-order and high-order SNP interactions as well as disease-associated main-effect SNPS and it surpasses all competitors in performances. The research will advance complex diseases research by providing more reliable SNP interactions. PMID:25763929

  1. Research on single nucleotide polymorphisms interaction detection from network perspective.

    PubMed

    Su, Lingtao; Liu, Guixia; Wang, Han; Tian, Yuan; Zhou, Zhihui; Han, Liang; Yan, Lun

    2015-01-01

    Single Nucleotide Polymorphisms (SNPs) found in Genome-Wide Association Study (GWAS) mainly influence the susceptibility of complex diseases, but they still could not comprehensively explain the relationships between mutations and diseases. Interactions between SNPs are considered so important for deeply understanding of those relationships that several strategies have been proposed to explore such interactions. However, part of those methods perform poorly when marginal effects of disease loci are weak or absent, others may lack of considering high-order SNPs interactions, few methods have achieved the requirements in both performance and accuracy. Considering the above reasons, not only low-order, but also high-order SNP interactions as well as main-effect SNPs, should be taken into account in detection methods under an acceptable computational complexity. In this paper, a new pairwise (or low-order) interaction detection method IG (Interaction Gain) is introduced, in which disease models are not required and parallel computing is utilized. Furthermore, high-order SNP interactions were proposed to be detected by finding closely connected function modules of the network constructed from IG detection results. Tested by a wide range of simulated datasets and four WTCCC real datasets, the proposed methods accurately detected both low-order and high-order SNP interactions as well as disease-associated main-effect SNPS and it surpasses all competitors in performances. The research will advance complex diseases research by providing more reliable SNP interactions. PMID:25763929

  2. Single nucleotide polymorphisms in clinics: Fantasy or reality for cancer?

    PubMed

    Srinivasan, Srilakshmi; Clements, Judith A; Batra, Jyotsna

    2016-01-01

    Single nucleotide polymorphisms (SNPs) have been classically used for dissecting various human complex disorders using candidate gene studies. During the last decade, large scale SNP analysis, i.e. genome-wide association studies (GWAS) have provided an agnostic approach to identify possible genetic loci associated with heterogeneous disease such as cancer susceptibility, prognosis of survival or drug response. Further, the advent of new technologies, including microarray-based genotyping as well as high throughput next generation sequencing has opened new avenues for SNPs to be used in clinical practice. It is speculated that the utility of SNPs to understand the mechanisms, biology of variable drug response and ultimately treatment individualization based on the individual's genome composition will be indispensable in the near future. In the current review, we discuss the advantages and disadvantages of the clinical utility of genetic variants in disease risk-prediction, prognosis, clinical outcome and pharmacogenomics. The lessons and challenges for the utility of SNP-based biomarkers are also discussed, including the need for additional functional validation studies. PMID:26398894

  3. Single nucleotide polymorphisms of Kit gene in Chinese indigenous horses.

    PubMed

    Han, Haoyuan; Mao, Chunchun; Chen, Ningbo; Lan, Xianyong; Chen, Hong; Lei, Chuzhao; Dang, Ruihua

    2016-02-01

    Kit gene is a genetic determinant of horse white coat color which has been a highly valued trait in horses for at least 2,000 years. Single nucleotide polymorphisms (SNPs) in Kit are of importance due to their strong associations with melanoblast survival during embryonic development. In this study, a mutation analysis of all 21 Kit exons in 14 Chinese domestic horse breeds revealed six SNPs (g.91214T>G, g.143245T>G, g.164297C>T, g.170189C>T, g.171356C>G, and g.171471G>A), which located in 5'-UTR region, intron 6, exon 15, exon 20, intron 20, and exon 21 of the equine Kit gene, respectively. Subsequently, these six SNPs loci were genotyped in 632 Chinese horses by PCR-RFLP or direct sequencing. The six SNPs together defined 18 haplotypes, demonstrating abundant haplotype diversities in Chinese horses. All the mutant alleles and haplotypes were shared among different breeds. But fewer mutations were detected in horses from China than that from abroad, indicating that Chinese horses belong to a more ancient genetic pool. This study will provide fundamental genetic information for evaluating the genetic diversity of Kit gene in Chinese indigenous horse breeds. PMID:27348891

  4. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling.

    PubMed

    Norman, Anita J; Spong, Göran

    2015-08-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km(2) in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  5. Single nucleotide polymorphisms predict symptom severity of autism spectrum disorder

    PubMed Central

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H

    2011-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs) can predict symptom severity of autism spectrum disorder (ASD). We divided 118 ASD children into a mild/moderate autism group (n = 65) and a severe autism group (n = 53), based on the Childhood Autism Rating Scale (CARS). For each child, we obtained 29 SNPs of 9 ASD-related genes. To generate predictive models, we employed three machine-learning techniques: decision stumps (DSs), alternating decision trees (ADTrees), and FlexTrees. DS and FlexTree generated modestly better classifiers, with accuracy = 67%, sensitivity = 0.88 and specificity = 0.42. The SNP rs878960 in GABRB3 was selected by all models, and was related associated with CARS assessment. Our results suggest that SNPs have the potential to offer accurate classification of ASD symptom severity. PMID:21786105

  6. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling

    PubMed Central

    Norman, Anita J; Spong, Göran

    2015-01-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km2 in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon’s rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  7. Single Nucleotide Polymorphism in Patients with Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion. PMID:26180609

  8. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases

    PubMed Central

    Charlon, Thomas; Bossini-Castillo, Lara; Carmona, F. David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  9. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases.

    PubMed

    Charlon, Thomas; Martínez-Bueno, Manuel; Bossini-Castillo, Lara; Carmona, F David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav; Martín, Javier; Alarcón-Riquelme, Marta E

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this "ancestry signal", we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  10. Promoter of the Mycoplasma pneumoniae rRNA operon.

    PubMed Central

    Hyman, H C; Gafny, R; Glaser, G; Razin, S

    1988-01-01

    RNA transcripts starting from the 5' end of the single Mycoplasma pneumoniae rRNA operon were analyzed by several methods. By primer extension analysis a start site was found 62 nucleotides upstream from the start site of the 16S rRNA. This site was preceded by a putative Pribnow box; however, a defined -35 recognition region was absent. The cloned rRNA operon was transcribed in vitro by using purified RNA polymerase of Escherichia coli. A single start site could be demonstrated within a few nucleotides of the start site found by primer extension analysis of M. pneumoniae transcripts. When fragments from the cloned operon were used as hybridization probes, S1 nuclease mapping yielded a single transcript extending approximately 193 nucleotides upstream from the 16S rRNA start site. The region surrounding this endpoint did not resemble any known promoter sequence. Dot blot hybridization of M. pneumoniae RNA to three oligonucleotides consisting of nucleotides -5 to -21, -38 to -54, and -112 to -132 (from the start of the 16S rRNA gene) indicated that most rRNA transcripts were processed at the stem site preceding the 16S rRNA gene. The majority of the longer precursor transcripts, extending beyond this point, did not extend further upstream to an oligonucleotide consisting of nucleotides -112 to -132. It was concluded that transcription of the rRNA operon of M. pneumoniae is initiated by a single promoter. The nucleotide sequence of the region is presented. Images PMID:2838465

  11. Are Immune Modulating Single Nucleotide Polymorphisms Associated with Necrotizing Enterocolitis?

    PubMed Central

    Franklin, Ashanti L.; Said, Mariam; Cappiello, Clint D.; Gordish-Dressman, Heather; Tatari-Calderone, Zohreh; Vukmanovic, Stanislav; Rais-Bahrami, Khodayar; Luban, Naomi L. C.; Devaney, Joseph M.; Sandler, Anthony D.

    2015-01-01

    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48–29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56–32.52). Neonates with TGFβ-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08–0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 – 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09–19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFβ-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC. PMID:26670709

  12. Dynamics of tongue microbial communities with single-nucleotide resolution using oligotyping

    PubMed Central

    Mark Welch, Jessica L.; Utter, Daniel R.; Rossetti, Blair J.; Mark Welch, David B.; Eren, A. Murat; Borisy, Gary G.

    2014-01-01

    The human mouth is an excellent system to study the dynamics of microbial communities and their interactions with their host. We employed oligotyping to analyze, with single-nucleotide resolution, oral microbial 16S ribosomal RNA (rRNA) gene sequence data from a time course sampled from the tongue of two individuals, and we interpret our results in the context of oligotypes that we previously identified in the oral data from the Human Microbiome Project. Our previous work established that many of these oligotypes had dramatically different distributions between individuals and across oral habitats, suggesting that they represented functionally different organisms. Here we demonstrate the presence of a consistent tongue microbiome but with rapidly fluctuating proportions of the characteristic taxa. In some cases closely related oligotypes representing strains or variants within a single species displayed fluctuating relative abundances over time, while in other cases an initially dominant oligotype was replaced by another oligotype of the same species. We use this high temporal and taxonomic level of resolution to detect correlated changes in oligotype abundance that could indicate which taxa likely interact synergistically or occupy similar habitats, and which likely interact antagonistically or prefer distinct habitats. For example, we found a strong correlation in abundance over time between two oligotypes from different families of Gamma Proteobacteria, suggesting a close functional or ecological relationship between them. In summary, the tongue is colonized by a microbial community of moderate complexity whose proportional abundance fluctuates widely on time scales of days. The drivers and functional consequences of these community dynamics are not known, but we expect they will prove tractable to future, targeted studies employing taxonomically resolved analysis of high-throughput sequencing data sampled at appropriate temporal intervals and spatial scales

  13. The application and performance of single nucleotide polymorphism markers for population genetic analyses of Lepidoptera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) are nucleotide substitution mutations that tend to be at high densities within eukaryotic genomes. The development of assays that detect allelic variation at SNP loci is attractive for genome mapping, population genetics, and phylogeographic applications. A p...

  14. Single nucleotide polymorphism discovery in rainbow trout using reduced representation libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single Nucleotide Polymorphisms (SNPs) are highly abundant, widespread and evenly distributed markers, which can be easily genotyped using high-throughput assays. These characteristics explain their increasing popularity in genome analyses such as quantitative trait loci mapping, linkage disequilibr...

  15. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly. PMID:18211817

  16. A novel MALDI-TOF based methodology for genotyping single nucleotide polymorphisms.

    PubMed

    Blondal, Thorarinn; Waage, Benedikt G; Smarason, Sigurdur V; Jonsson, Frosti; Fjalldal, Sigridur B; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V

    2003-12-15

    A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708

  17. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  18. Bulk segregant analysis using single nucleotide polymorphism microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk segregant analysis using microarrays, and extreme array mapping have recently been used to rapidly identify genomic regions associated with phenotypes in multiple species. These experiments, however require the identification of single feature polymorphisms between the cross parents for each ne...

  19. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery

    PubMed Central

    Eck, Sebastian H; Benet-Pagès, Anna; Flisikowski, Krzysztof; Meitinger, Thomas; Fries, Ruedi; Strom, Tim M

    2009-01-01

    Background The majority of the 2 million bovine single nucleotide polymorphisms (SNPs) currently available in dbSNP have been identified in a single breed, Hereford cattle, during the bovine genome project. In an attempt to evaluate the variance of a second breed, we have produced a whole genome sequence at low coverage of a single Fleckvieh bull. Results We generated 24 gigabases of sequence, mainly using 36-bp paired-end reads, resulting in an average 7.4-fold sequence depth. This coverage was sufficient to identify 2.44 million SNPs, 82% of which were previously unknown, and 115,000 small indels. A comparison with the genotypes of the same animal, generated on a 50 k oligonucleotide chip, revealed a detection rate of 74% and 30% for homozygous and heterozygous SNPs, respectively. The false positive rate, as determined by comparison with genotypes determined for 196 randomly selected SNPs, was approximately 1.1%. We further determined the allele frequencies of the 196 SNPs in 48 Fleckvieh and 48 Braunvieh bulls. 95% of the SNPs were polymorphic with an average minor allele frequency of 24.5% and with 83% of the SNPs having a minor allele frequency larger than 5%. Conclusions This work provides the first single cattle genome by next-generation sequencing. The chosen approach - low to medium coverage re-sequencing - added more than 2 million novel SNPs to the currently publicly available SNP resource, providing a valuable resource for the construction of high density oligonucleotide arrays in the context of genome-wide association studies. PMID:19660108

  20. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  1. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  2. Using 90,113 single nucleotide polymorphisms in genomic evaluation of dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accuracy of genomic evaluation is expected to increase when more markers are used because of better tracking of causative genetic variants. However, Illumina BovineHD genotypes based on 777,962 single nucleotide polymorphisms (SNP) have not been used for US genomic evaluation because the small relia...

  3. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  4. ASSOCIATION OF RESISTANCE TO AVIAN COCCIDIOSIS WITH SINGLE NUCLEOTIDE POLYMORPHISMS IN THE ZYXIN GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous genetic studies demonstrated that resistance to avian coccidiosis was linked with microsatellite markers LEI0071 and LEI0101 on chromosome 1. In this study, the associations between parameters of resistance to coccidiosis and single nucleotide polymorphisms (SNPs) in 3 candidate genes ...

  5. The effects of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene on meat tenderness of yak.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...

  6. Development of a web services based system for dissemination of single nucleotide polymorphism data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) can be used to generate DNA-based fingerprints for individual identification. The efficiency of DNA fingerprinting is greatest when the frequency of both SNP alleles is near 0.50. A number of SNPs have been identified in cattle populations with minor allele f...

  7. Relationships among calpastatin single nucleotide polymorphisms, calpastatin expression and tenderness in pork longissimus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...

  8. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association studies (GWAS) may benefit from using haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on the genetic architecture of traits, patter...

  9. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (...

  10. Increasing the number of single nucleotide polymorphisms used in genomic evaluation of dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GeneSeek designed a new version of the GeneSeek Genomic Profiler HD BeadChip for Dairy Cattle, which had >77,000 single nucleotide polymorphisms (SNPs). A set of >140,000 SNPs was selected that included all SNPs on the existing GeneSeek chip, all SNPs used in U.S. national genomic evaluations, SNPs ...

  11. Association of a single nucleotide polymorphism of calpain 1 gene with meat tenderness of the yak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n = 181) was studied. The experimental design was a repeated measures with the main unit in a completely randomized design...

  12. Development of Single Nucleotide Polymorphism Markers via Sequence-based Genotyping in Cotton (Gossypium spp)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput single nucleotide polymorphism (SNP) genotyping has become the dominant approach to genomic analysis and genetic manipulation in many crop plants. In cotton (Gossypium spp), however, only a very limited number of loci and a dearth of information have been generated from SNP genotypi...

  13. Association of Single Nucleotide Polymorphisms in the CAST Gene Associated with Longissimus Tenderness in Beef Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on the CAST gene, with longissimus tenderness. Forty one SNP were identified in the CAST gene and assays were developed. Markers were scattered throughout the gene. These markers, in conjunction with a com...

  14. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  15. Association of single nucleotide polymorphisms in candidate genes residing under quantitative trait loci in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on candidate genes residing under previously identified quantitative trait loci for marbling score and meat tenderness. Two hundred five SNP were identified on twenty candidate genes. Genes selected under ...

  16. Development of Single Nucleotide Polymorphism (SNP) Markers for Use in Commercial Maize (Zea Mays L.) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of single nucleotide polymorphism (SNP) markers in maize offer the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding, and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and ...

  17. Single nucleotide polymorphisms in sheep varying in tolerance to elevated dietary nitrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discovery of single nucleotide polymorphisms (SNPs) may lead to development of marker panels predictive of tolerance to high dietary nitrate (NO3-). The aims of this research were to identify SNPs in Arginiosuccinate Lyase (ASL), determine the relationship of ASL SNP genotypes on NO3- tolerance, an...

  18. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and suita...

  19. Characterization of 22 novel single nucleotide polymorphism markers in steelhead and rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-two individuals representing coastal and inland populations of steelhead and rainbow trout (Oncorhynchus mykiss) were sequenced at 15 ESTs and 9 microsatellite loci to identify single nucleotide polymorphisms (SNPs). Sixty-two polymorphisms were discovered during the screen and 13 were devel...

  20. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly.

    PubMed

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-08-25

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2'-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2'-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  1. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly

    PubMed Central

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-01-01

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2′-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2′-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  2. Rapid and label-free single-nucleotide discrimination via an integrative nanoparticle-nanopore approach.

    PubMed

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2012-10-23

    Single-nucleotide polymorphism (SNP) is an important biomarker for disease diagnosis, treatment monitoring, and development of personalized medicine. Recent works focused primarily on ultrasensitive detection, while the need for rapid and label-free single-nucleotide discrimination techniques, which are crucial criteria for translation into clinical applications, remains relatively unexplored. In this work, we developed a novel SNP detection assay that integrates two complementary nanotechnology systems, namely, a highly selective nanoparticle-DNA detection system and a single-particle sensitive nanopore readout platform, for rapid detection of single-site mutations. Discrete nanoparticle-DNA structures formed in the presence of perfectly matched (PM) or single-mismatched (SM) targets exhibited distinct size differences, which were resolved on a size-tunable nanopore platform to generate corresponding "yes/no" readout signals. Leveraging the in situ reaction monitoring capability of the nanopore platform, we demonstrated that real-time single-nucleotide discrimination of a model G487A mutation, responsible for glucose-6-phosphate dehydrogenase deficiency, can be achieved within 30 min with no false positives. Semiquantification of DNA samples down to picomolar concentration was carried out using a simple parameter of particle count without the need for sample labeling or signal amplification. The unique combination of nanoparticle-based detection and nanopore readout presented in this work brings forth a rapid, specific, yet simple biosensing strategy that can potentially be developed for point-of-care application. PMID:22994459

  3. Single nucleotide polymorphism mining and nucleotide sequence analysis of Mx1 gene in exonic regions of Japanese quail

    PubMed Central

    Niraj, Diwesh Kumar; Kumar, Pushpendra; Mishra, Chinmoy; Narayan, Raj; Bhattacharya, Tarun Kumar; Shrivastava, Kush; Bhushan, Bharat; Tiwari, Ashok Kumar; Saxena, Vishesh; Sahoo, Nihar Ranjan; Sharma, Deepak

    2015-01-01

    Aim: An attempt has been made to study the Myxovirus resistant (Mx1) gene polymorphism in Japanese quail. Materials and Methods: In the present, investigation four fragments viz. Fragment I of 185 bp (Exon 3 region), Fragment II of 148 bp (Exon 5 region), Fragment III of 161 bp (Exon 7 region), and Fragment IV of 176 bp (Exon 13 region) of Mx1 gene were amplified and screened for polymorphism by polymerase chain reaction-single-strand conformation polymorphism technique in 170 Japanese quail birds. Results: Out of the four fragments, one fragment (Fragment II) was found to be polymorphic. Remaining three fragments (Fragment I, III, and IV) were found to be monomorphic which was confirmed by custom sequencing. Overall nucleotide sequence analysis of Mx1 gene of Japanese quail showed 100% homology with common quail and more than 80% homology with reported sequence of chicken breeds. Conclusion: The Mx1 gene is mostly conserved in Japanese quail. There is an urgent need of comprehensive analysis of other regions of Mx1 gene along with its possible association with the traits of economic importance in Japanese quail. PMID:27047057

  4. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  5. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology. PMID:27010123

  6. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins.

    PubMed Central

    Jacob, W F; Santer, M; Dahlberg, A E

    1987-01-01

    A single base mutation was constructed at position 1538 of Escherichia coli 16S rRNA, changing a cytidine to a uridine. This position is in the Shine-Dalgarno region, thought to be involved in base-pairing to mRNA during initiation of protein synthesis. The mutation was constructed by using a synthetic oligodeoxynucleotide that differs in sequence by one base from the wild-type sequence of 16S rRNA. This oligonucleotide was used as a primer on single-stranded DNA of phage M13, into which was cloned a specific region of DNA encoding 16S rRNA. The mutation is lethal when expressed from the normal promoters of rRNA operons, P1 and P2, in a high-copy-number plasmid. Expression can be repressed by a temperature-sensitive repressor, cI857, in combination with the bacteriophage lambda PL promoter. Induction of transcription by temperature shift yields mutant 16S rRNA that is processed and assembled into functional ribosomal subunits. The presence of mutant ribosomes retards cell growth and dramatically alters incorporation of [35S]methionine into a large proportion of the cellular proteins. The change in level of synthesis of individual proteins correlates with the change in base-pairing between mutant rRNA and the Shine-Dalgarno region of the mRNA. Images PMID:2440027

  7. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon.

    PubMed

    Prokhorova, Irina V; Osterman, Ilya A; Burakovsky, Dmitry E; Serebryakova, Marina V; Galyamina, Maria A; Pobeguts, Olga V; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A

    2013-01-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon. PMID:24241179

  8. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon

    NASA Astrophysics Data System (ADS)

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A.

    2013-11-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show - using proteomic analysis and dual fluorescence reporter in vivo assays - that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  9. Association of Nitric Oxide Synthase and Matrix Metalloprotease Single Nucleotide Polymorphisms with Preeclampsia and Its Complications

    PubMed Central

    Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura

    2015-01-01

    Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342

  10. New single nucleotide variation in the promoter region of androgen receptor (AR) gene in hypospadic patients

    PubMed Central

    Borhani, Nasim; Ghaffari Novin, Marefat; Manoochehri, Mehdi; Rouzrokh, Mohsen; Kazemi, Bahram; Koochaki, Ameneh; Hosseini, Ahmad; Masteri Farahani, Reza; Omrani, Mir Davood

    2014-01-01

    Background: Hypospadias is one of the most common congenital abnormalities in the male which is characterized by altered development of urethra, foreskin and ventral surface of the penis. Androgen receptor gene plays a critical role in the development of the male genital system by mediating the androgens effects. Objective: In present study, we looked for new variations in androgen receptor promoter and screened its exon 1 for five single nucleotide polymorphisms (SNP) in healthy and hypospadias Iranian men. Materials and Methods: In our study, at first DNA was extracted from patients (n=100) and controls (n=100) blood samples. Desired fragments of promoter and exon 1 were amplified using polymerase chain reaction. The promoter region was sequenced for the new variation and exone 1 screened for five SNPs (rs139767835, rs78686797, rs62636528, rs62636529, rs145326748) using restriction fragment length polymorphism technique. Results: The results showed a new single nucleotide variation (C→T) at -480 of two patients’ promoter region (2%). None of the mentioned SNPs were detected in patients and controls groups (0%). Conclusion: This finding indicates that new single nucleotide polymorphism in androgen receptor promoter may have role in etiology of hypospadias and development of this anomaly. This article extracted from Ph.D. thesis. (Nasim Borhani) PMID:24799883

  11. A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion.

    PubMed

    Yu, Yingjie; Wu, Tongbo; Johnson-Buck, Alexander; Li, Lidan; Su, Xin

    2016-08-15

    Point mutations have emerged as prominent biomarkers for disease diagnosis, particularly in the case of cancer. Discovering single-nucleotide variants (SNVs) is also of great importance for the identification of single-nucleotide polymorphisms within the population. The competing requirements of thermodynamic stability and specificity in conventional nucleic acid hybridization probes make it challenging to achieve highly precise detection of point mutants. Here, we present a fluorescence-based assay for low-abundance mutation detection based on toehold-mediated strand displacement and nuclease-mediated strand digestion that enables highly precise detection of point mutations. We demonstrate that this combined assay provides 50-1000-fold discrimination (mean value: 255) between all possible single-nucleotide mutations and their corresponding wild-type sequence for a model DNA target. Using experiments and kinetic modeling, we investigate probe properties that obtain additive benefits from both strand displacement and nucleolytic digestion, thus providing guidance for the design of enzyme-mediated nucleic acid assays in the future. PMID:27100949

  12. Single nucleotide polymorphism analysis reveals heterogeneity within a seedling tree population of a polyembryonic mango cultivar.

    PubMed

    Winterhagen, Patrick; Wünsche, Jens-Norbert

    2016-05-01

    Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population. PMID:27093244

  13. High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Chen, Shu-Hwa; Lu, I.-Hsuan; Lin, Chung-Yen; Chin, Robert G.; Luan, Harding H.; Nguyen, Nguyen; Nelson, Stanley F.; Li, Xinmin; Wu, Ting-Ting; Sun, Ren

    2014-01-01

    Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to interrogate the fitness effect of point mutations in 98% of the amino acid positions in the influenza A virus hemagglutinin (HA) gene. Our HA fitness map provides a reference to identify indispensable regions to aid in drug and vaccine design as targeting these regions will increase the genetic barrier for the emergence of escape mutations. This study offers a new platform for studying genome dynamics, structure-function relationships, virus-host interactions, and can further rational drug and vaccine design. Our approach can also be applied to any virus that can be genetically manipulated. PMID:24820965

  14. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    SciTech Connect

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  15. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  16. Prediction of Unobserved Single Nucleotide Polymorphism Genotypes of Jersey Cattle Using Reference Panels and Population-Based Imputation Algorithms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of dense single nucleotide polymorphism (SNP) genotypes for dairy cattle has created exciting research opportunities and revolutionized practical breeding programs. Broader application of this technology will lead to situations in which genotypes from different low-, medium-, or hig...

  17. Regulatory single nucleotide polymorphisms at the beginning of intron 2 of the human KRAS gene.

    PubMed

    Antontseva, Elena V; Matveeva, Marina Yu; Bondar, Natalia P; Kashina, Elena V; Leberfarb, Elena Yu; Bryzgalov, Leonid O; Gervas, Polina A; Ponomareva, Anastasia A; Cherdyntseva, Nadezhda V; Orlov, Yury L; Merkulova, Tatiana I

    2015-12-01

    There are two regulatory single nucleotide polymorphisms (rSNPs) at the beginning of the second intron of the mouse K-ras gene that are strongly associated with lung cancer susceptibility. We performed functional analysis of three SNPs (rs12228277: T greater than A, rs12226937: G greater than A, and rs61761074: T greater than G) located in the same region of human KRAS. We found that rs12228277 and rs61761074 result in differential binding patterns of lung nuclear proteins to oligonucleotide probes corresponding two alternative alleles; in both cases, the transcription factor NF-Y is involved. G greater than A substitution (rs12226937) had no effect on the binding of lung nuclear proteins. However, all the nucleotide substitutions under study showed functional effects in a luciferase reporter assay. Among them, rs61761074 demonstrated a significant correlation with allele frequency in non-small-cell lung cancer (NSCLC). Taken together, the results of our study suggest that a T greater than G substitution at nucleotide position 615 in the second intron of the KRAS gene (rs61761074) may represent a promising genetic marker of NSCLC. PMID:26648033

  18. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome.

    PubMed

    Linder, Bastian; Grozhik, Anya V; Olarerin-George, Anthony O; Meydan, Cem; Mason, Christopher E; Jaffrey, Samie R

    2015-08-01

    N(6)-methyladenosine (m6A) is the most abundant modified base in eukaryotic mRNA and has been linked to diverse effects on mRNA fate. Current mapping approaches localize m6A residues to transcript regions 100-200 nt long but cannot identify precise m6A positions on a transcriptome-wide level. Here we developed m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) and used it to demonstrate that antibodies to m6A can induce specific mutational signatures at m6A residues after ultraviolet light-induced antibody-RNA cross-linking and reverse transcription. We found that these antibodies similarly induced mutational signatures at N(6),2'-O-dimethyladenosine (m6Am), a modification found at the first nucleotide of certain mRNAs. Using these signatures, we mapped m6A and m6Am at single-nucleotide resolution in human and mouse mRNA and identified small nucleolar RNAs (snoRNAs) as a new class of m6A-containing non-coding RNAs (ncRNAs). PMID:26121403

  19. Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR.

    PubMed

    Chiapparino, E; Lee, D; Donini, P

    2004-04-01

    Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA polymorphism. These polymorphisms can be used in plants as simple genetic markers for many breeding applications, for population studies, and for germplasm fingerprinting. The great increase in the available DNA sequences in the databases has made it possible to identify SNPs by "database mining", and the single most important factor preventing their widespread use appears to be the genotyping cost. Many genotyping platforms rely on the use of sophisticated, automated equipment coupled to costly chemistry and detection systems. A simple and economical method involving a single PCR is reported here for barley SNP genotyping. Using the tetra-primer ARMS-PCR procedure, we have been able to assay unambiguously five SNPs in a set of 132 varieties of cultivated barley. The results show the reliability of this technique and its potential for use in low- to moderate-throughput situations; the association of agronomically important traits is discussed. PMID:15060595

  20. Morpholino-functionalized nanochannel array for label-free single nucleotide polymorphisms detection.

    PubMed

    Gao, Hong-Li; Wang, Min; Wu, Zeng-Qiang; Wang, Chen; Wang, Kang; Xia, Xing-Hua

    2015-04-01

    The sensitive identification of single nucleotide polymorphisms becomes increasingly important for disease diagnosis, prevention, and practical applicability of pharmacogenomics. Herein, we propose a simple, highly selective, label-free single nucleotide polymorphisms (SNPs) sensing device by electrochemically monitoring the diffusion flux of ferricyanide probe across probe DNA/morpholino duplex functionalized nanochannels of porous anodic alumina. When perfectly matched or mismatched target DNA flows through the nanochannels modified with probe DNA/morpholino duplex, it competes for the probe DNA from morpholino, resulting in a change of the surface charges. Thus, the diffusion flux of negatively charged electroactive probe ferricyanide is modulated since it is sensitive to the surface charge due to the electrostatic interactions in electric double layer-merged nanochannels. Monitoring of the change in diffusion flux of probe enables us to detect not only a single base or two base mismatched sequence but also the specific location of the mismatched base. As is demonstrated, SNPs in the PML/RARα fusion gene, known as a biomarker of acute promyelocytic leukemia (APL), have been successfully detected. PMID:25734499

  1. Using Digital Polymerase Chain Reaction to Detect Single-Nucleotide Substitutions Induced by Genome Editing.

    PubMed

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-01-01

    This protocol is designed to detect single-nucleotide substitutions generated by genome editing in a highly sensitive and quantitative manner. It uses a combination of allele-specific hydrolysis probes and a new digital polymerase chain reaction (dPCR) technology called droplet digital PCR (ddPCR). ddPCR partitions a reaction into more than 10,000 nanoliter-scale water-in-oil droplets. As a result, each droplet contains only a few copies of the genome so that ddPCR is able to detect rare genome-editing events without missing them. PMID:27250210

  2. Steady-State Kinetic Analysis of DNA Polymerase Single-Nucleotide Incorporation Products

    PubMed Central

    O'Flaherty, Derek K.

    2014-01-01

    This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases. PMID:25501593

  3. Investigation of bacterial nucleotide excision repair using single-molecule techniques.

    PubMed

    Van Houten, Bennett; Kad, Neil

    2014-08-01

    Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER. PMID:24472181

  4. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A. ); Haces, A.; Shih, P.J.; Harding, J.D. )

    1993-01-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  5. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A.; Haces, A.; Shih, P.J.; Harding, J.D.

    1993-02-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  6. Single Nucleotide Polymorphism–Single Nucleotide Polymorphism Interactions Among Inflammation Genes in the Genetic Architecture of Blood Pressure in the Framingham Heart Study

    PubMed Central

    de las Fuentes, Lisa; Rao, Dabeeru C.

    2015-01-01

    BACKGROUND Hypertension is a major global health burden, but, although systolic and diastolic blood pressure (BP) each have estimated heritability of at least 30%, <3% of their variance has been attributed to particular genetic variants. Few studies have shown interactions between pairs of single nucleotide polymorphisms (SNPs) to be associated with BP. Although many studies use a Bonferroni correction for multiple testing to control type I error, thereby potentially reducing power, false discovery rate (FDR) approaches are also used in genome-wide studies. Renal ion balance genes have been associated with BP regulation, but, although inflammation has been studied in connection with BP, few studies have reported associations between inflammation genes and BP. METHODS We analyzed SNP-SNP interactions among 31 SNPs from genes involved in renal ion balance and 30 SNPs from genes involved in inflammation using data from the Framingham Heart Study. RESULTS No evidence of association was found for interactions among renal ion balance SNPs for either systolic or diastolic BP. A group of 3 interactions involving 6 inflammation genes (IKBKB–NFKBIA, IKBKE–CHUK, and ADIPOR2–RETN) showed evidence of association with diastolic BP with an FDR of 4.2%; no single interaction reached experiment-wide significance. CONCLUSIONS This study identified promising and biologically plausible candidates for interactions between inflammation genes that may be associated with DBP. Analysis using the FDR may allow detection of signals in the presence of modest noise (false positives) that a stringent approach based on Bonferroni-corrected P value thresholds may miss. PMID:25063733

  7. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  8. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  9. The evolution of lineage-specific clusters of single nucleotide substitutions in the human genome.

    PubMed

    Xu, Ke; Wang, Jianrong; Elango, Navin; Yi, Soojin V

    2013-10-01

    Genomic regions harboring large numbers of human-specific single nucleotide substitutions are of significant interest since they are potential genomic foci underlying the evolution of human-specific traits as well as human adaptive evolution. Previous studies aimed to identify such regions either used pre-defined genomic locations such as coding sequences and conserved genomic elements or employed sliding window methods. Such approaches may miss clusters of substitutions occurring in regions other than those pre-defined locations, or not be able to distinguish human-specific clusters of substitutions from regions of generally high substitution rates. Here, we conduct a 'maximal segment' analysis to scan the whole human genome to identify clusters of human-specific substitutions that occurred since the divergence of the human and the chimpanzee genomes. This method can identify species-specific clusters of substitutions while not relying on pre-defined regions. We thus identify thousands of clusters of human-specific single nucleotide substitutions. The evolution of such clusters is driven by a combination of several different evolutionary processes including increased regional mutation rate, recombination-associated processes, and positive selection. These newly identified regions of human-specific substitution clusters include large numbers of previously identified human accelerated regions, and exhibit significant enrichments of genes involved in several developmental processes. Our study provides a useful tool to study the evolution of the human genome. PMID:23770436

  10. Single Nucleotide Variants in the Protein C Pathway and Mortality in Dialysis Patients

    PubMed Central

    Ocak, Gürbey; Drechsler, Christiane; Vossen, Carla Y.; Vos, Hans L.; Rosendaal, Frits R.; Reitsma, Pieter H.; Hoffmann, Michael M.; März, Winfried; Ouwehand, Willem H.; Krediet, Raymond T.; Boeschoten, Elisabeth W.; Dekker, Friedo W.; Wanner, Christoph; Verduijn, Marion

    2014-01-01

    Background The protein C pathway plays an important role in the maintenance of endothelial barrier function and in the inflammatory and coagulant processes that are characteristic of patients on dialysis. We investigated whether common single nucleotide variants (SNV) in genes encoding protein C pathway components were associated with all-cause 5 years mortality risk in dialysis patients. Methods Single nucleotides variants in the factor V gene (F5 rs6025; factor V Leiden), the thrombomodulin gene (THBD rs1042580), the protein C gene (PROC rs1799808 and 1799809) and the endothelial protein C receptor gene (PROCR rs867186, rs2069951, and rs2069952) were genotyped in 1070 dialysis patients from the NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort) and in 1243 dialysis patients from the German 4D cohort. Results Factor V Leiden was associated with a 1.5-fold (95% CI 1.1–1.9) increased 5-year all-cause mortality risk and carriers of the AG/GG genotypes of the PROC rs1799809 had a 1.2-fold (95% CI 1.0–1.4) increased 5-year all-cause mortality risk. The other SNVs in THBD, PROC, and PROCR were not associated with 5-years mortality. Conclusion Our study suggests that factor V Leiden and PROC rs1799809 contributes to an increased mortality risk in dialysis patients. PMID:24816905

  11. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing.

    PubMed

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R(2) = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells. PMID:27120517

  12. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    PubMed Central

    Zhang, Jing; Wu, Huizhe; Chen, Qiuchen; Zhao, Pengfei; Zhao, Haishan; Yao, Weifan; Wei, Minjie

    2015-01-01

    Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A) from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature. PMID:26347880

  13. Multiplex single-nucleotide polymorphism typing of the human Y chromosome using TaqMan probes

    PubMed Central

    2011-01-01

    Background The analysis of human Y-chromosome variation in the context of population genetics and forensics requires the genotyping of dozens to hundreds of selected single-nucleotide polymorphisms (SNPs). In the present study, we developed a 121-plex (121 SNPs in a single array) TaqMan array capable of distinguishing most haplogroups and subhaplogroups on the Y-chromosome human phylogeny in Europe. Results We present data from 264 samples from several European areas and ethnic groups. The array developed in this study shows >99% accuracy of assignation to the Y human phylogeny (with an average call rate of genotypes >96%). Conclusions We have created and evaluated a robust and accurate Y-chromosome multiplex which minimises the possible errors due to mixup when typing the same sample in several independent reactions. PMID:21627798

  14. Genetic Aberrations in Childhood Acute Lymphoblastic Leukaemia: Application of High-Density Single Nucleotide Polymorphism Array

    PubMed Central

    Sulong, Sarina

    2010-01-01

    Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single platform for the quantification of chromosomal amplifications, deletions, and loss of heterozygosity or for allelic imbalance studies. Importantly, this array analysis has the potential to reveal novel genetic findings involved in the multistep development of cancer. Given the importance of genetic factors in leukaemogenesis and the usefulness of screening the whole genome, SNPA analysis has been utilised in many studies to characterise genetic aberrations in childhood acute lymphoblastic leukaemia. PMID:22135543

  15. Estimating population size using single-nucleotide polymorphism-based pedigree data.

    PubMed

    Spitzer, Robert; Norman, Anita J; Schneider, Michael; Spong, Göran

    2016-05-01

    Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single-nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (N = 630 for CS, N = 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture-mark-recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging. PMID:27096081

  16. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping.

    PubMed

    Pu, Dan; Mao, Chengguang; Cui, Lunbiao; Shi, Zhiyang; Xiao, Pengfeng

    2016-05-01

    We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings. Graphical Abstract Conventional pyrosequencing adds one base (A, G, C, or T) at a time to determine the SNP site (left). Pyrosequencing with di-base addition adds di-base AG, AC, AT, CT, GC or GT at a time to determine the SNP site (right). Higher signals at SNP site will be produced due to the addition of di-bases. PMID:26935928

  17. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  18. Study of single-nucleotide polymorphisms by means of electrical conductance measurements

    PubMed Central

    Hihath, Joshua; Xu, Bingqian; Zhang, Peiming; Tao, Nongjian

    2005-01-01

    Understanding the complexities of DNA has been a hallmark of science for over a half century, and one of the important topics in DNA research is recognizing the occurrence of mutations in the base-stack. In this article, we present a study of SNPs by direct-contact electrical measurements to a single DNA duplex. We have used short, 11- and 12-bp dsDNA to investigate the change in conductance that occurs if a single base pair, a single base, or two separate bases in the stack are modified. All measurements are carried out in aqueous solution with the DNA chemically bound to the electrodes. These measurements demonstrate that the presence of a single base pair mismatch can be identified by the conductance of the molecule and can cause a change in the conductance of dsDNA by as much as an order of magnitude, depending on the specific details of the double helix and the single nucleotide polymorphism. PMID:16284253

  19. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  20. Fluorescence detection of single-nucleotide polymorphism with single-strand triplex-forming DNA probes.

    PubMed

    Li, Xinpeng; Wang, Yuan; Guo, Jiajie; Tang, Xinjing

    2011-12-16

    Triple-helix-forming oligonucleotides (TFOs) are widespread in the genome and have been found in regulatory regions, especially in promoter zones and recombination hotspots of DNA. To specifically detect these polypurine sequences, we designed and synthesized two dual pyrene-labeled single-strand oligonucleotide probes (TFO-FPs) consisting of recognition, linker, and detection sequences. The hybridization processes of TFO-FPs with target polypurine oligonucleotides involve both Watson-Crick and Hoogsteen base-pairings. Through double sensing of oligonucleotide sequences, single mutations of target oligonucleotides are detected by monitoring changes in pyrene fluorescence. The high specificities of the probes are maintained over a wide temperature range without sacrifice of hybridization kinetics. PMID:22095630

  1. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase.

    PubMed

    Guard, Jean; Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J

    2016-07-01

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  2. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  3. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes.

    PubMed

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  4. Single-nucleotide resolution mapping of m6A and m6Am throughout the transcriptome

    PubMed Central

    Linder, Bastian; Grozhik, Anya V.; Olarerin-George, Anthony O.; Meydan, Cem; Mason, Christopher E.; Jaffrey, Samie R.

    2015-01-01

    N6-methyladenosine (m6A) is the most abundant modified base in eukaryotic mRNA and has been linked to diverse effects on mRNA fate. Current m6A mapping approaches localize m6A residues to 100–200 nt-long regions of transcripts. The precise position of m6A in mRNAs cannot be identified on a transcriptome-wide level because there are no chemical methods to distinguish between m6A and adenosine. Here we show that anti-m6A antibodies can induce specific mutational signatures at m6A residues after ultraviolet light-induced antibody-RNA crosslinking and reverse transcription. We find these antibodies similarly induce mutational signatures at N6,2′-O-dimethyladenosine (m6Am), a nucleotide found at the first encoded position of certain mRNAs. Using these mutational signatures, we map m6A and m6Am at single-nucleotide resolution in human and mouse mRNA and identify snoRNAs as a novel class of m6A-containing ncRNAs. PMID:26121403

  5. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    PubMed

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA. PMID:27570235

  6. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  7. Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1

    PubMed Central

    Peris, Joan B.; Davis, Paulina; Cuevas, José M.; Nebot, Miguel R.; Sanjuán, Rafael

    2010-01-01

    Empirical knowledge of the fitness effects of mutations is important for understanding many evolutionary processes, yet this knowledge is often hampered by several sources of measurement error and bias. Most of these problems can be solved using site-directed mutagenesis to engineer single mutations, an approach particularly suited for viruses due to their small genomes. Here, we used this technique to measure the fitness effect of 100 single-nucleotide substitutions in the bacteriophage f1, a filamentous single-strand DNA virus. We found that approximately one-fifth of all mutations are lethal. Viable ones reduced fitness by 11% on average and were accurately described by a log-normal distribution. More than 90% of synonymous substitutions were selectively neutral, while those affecting intergenic regions reduced fitness by 14% on average. Mutations leading to amino acid substitutions had an overall mean deleterious effect of 37%, which increased to 45% for those changing the amino acid polarity. Interestingly, mutations affecting early steps of the infection cycle tended to be more deleterious than those affecting late steps. Finally, we observed at least two beneficial mutations. Our results confirm that high mutational sensitivity is a general property of viruses with small genomes, including RNA and single-strand DNA viruses infecting animals, plants, and bacteria. PMID:20382832

  8. High-Throughput Sequencing Reveals Single Nucleotide Variants in Longer-Kernel Bread Wheat

    PubMed Central

    Chen, Feng; Zhu, Zibo; Zhou, Xiaobian; Yan, Yan; Dong, Zhongdong; Cui, Dangqun

    2016-01-01

    The transcriptomes of bread wheat Yunong 201 and its ethyl methanesulfonate derivative Yunong 3114 were obtained by next-sequencing technology. Single nucleotide variants (SNVs) in the wheat strains were explored and compared. A total of 5907 and 6287 non-synonymous SNVs were acquired for Yunong 201 and 3114, respectively. A total of 4021 genes with SNVs were obtained. The genes that underwent non-synonymous SNVs were significantly involved in ATP binding, protein phosphorylation, and cellular protein metabolic process. The heat map analysis also indicated that most of these mutant genes were significantly differentially expressed at different developmental stages. The SNVs in these genes possibly contribute to the longer kernel length of Yunong 3114. Our data provide useful information on wheat transcriptome for future studies on wheat functional genomics. This study could also help in illustrating the gene functions of the non-synonymous SNVs of Yunong 201 and 3114. PMID:27551288

  9. Gene comparison based on the repetition of single-nucleotide structure patterns.

    PubMed

    Qi, Zhao-Hui; Du, Ming-Hui; Qi, Xiao-Qin; Zheng, Li-Juan

    2012-10-01

    According to the repetition structure patterns of single-nucleotides, we propose a novel digital representation method to characterize primary DNA sequences. Based on this representation we give a new RP-SP (repeat and space) vector to compute the distance of different sequences. The examination of similarities/dissimilarities among different sequences illustrates the utility of the proposed RP-SP vector distance. Then, we use the proposed RP-SP vector method to analyze two groups of genomes, 15 E. coli genomes and 31 mitochondrial genomes. For comparison, we also apply other alignment-free methods to the two groups of genomes. The results show that the proposed method can distinguish characteristics of different genomes and used to reconstruct the phylogenetic tree of different genomes. PMID:22902300

  10. Chemical Gradient-mediated Melting Curve Analysis for Genotyping of Single Nucleotide Polymorphisms

    PubMed Central

    Russom, Aman; Irimia, Daniel; Toner, Mehmet

    2009-01-01

    This report describes a microfluidic solid-phase Chemical Gradient-mediated Melting Curve Analysis (CGMCA) method for single nucleotide polymorphism (SNP) analysis. The method is based on allele-specific denaturation to discriminate mismatched (MM) from perfectly matched (PM) DNA duplexes upon exposure to linear chemical gradient. PM and MM DNA duplexes conjugated on beads are captured in a microfluidic gradient generator device designed with dams, keeping the beads trapped perpendicular to a gradient generating channel. Two denaturants, formamide and urea, were tested for their ability to destabilize the DNA duplex by competing with Watson-Crick pairing. Upon exposure to the chemical gradient, rapid denaturing profile was monitored in real time using fluorescence microscopy. The results show that the two duplexes exhibit different kinetics of denaturation profiles, enabling discrimination of MM from PM DNA duplexes to score SNP. PMID:19593749

  11. Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions

    PubMed Central

    Li, Yi; Mendiratta, Saurabh; Ehrhardt, Kristina; Kashyap, Neha; White, Michael A.; Bleris, Leonidas

    2016-01-01

    CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif. PMID:26788852

  12. Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder.

    PubMed

    Tortajada-Genaro, Luis A; Mena, Salvador; Niñoles, Regina; Puigmule, Marta; Viladevall, Laia; Maquieira, Ángel

    2016-03-01

    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance. PMID:26832728

  13. Epidemic population structure of extraintestinal pathogenic Escherichia coli determined by single nucleotide polymorphism pyrosequencing.

    PubMed

    Fernández-Romero, Natalia; Romero-Gómez, María Pilar; Gómez-Gil, María Rosa; Mingorance, Jesús

    2011-10-01

    We have developed an MLST-based scheme for typing Escherichia coli isolates using pyrosequencing of single nucleotide polymorphic positions (SNP). The SNP sequences are converted into allelic patterns and analyzed using the same approach used for MLST analyses. We have tested the method in two unselected collections of clinical isolates of E. coli obtained from blood and urine cultures. The two collections had a similar structure, 25% of the profiles (representing 68% of the isolates) were common to both, and 62% of the profiles (nearly 20% of the isolates) were unique. The four major profiles accounted for 44% of the isolates, and among these the most frequent one was related to the pandemic ST131 clone. The method is easy to implement and might be useful for typing large microbial collections. PMID:21723423

  14. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  15. Candidate single-nucleotide polymorphisms and cerebral palsy: A case-control study

    PubMed Central

    HE, XIAO-GUANG; PENG, QI; CHEN, YAN-HUA; HE, TING; HUANG, HUI; MA, ZE-KE; FAN, XUE-JIN; LUO, LING; LIU, SHAO-JI; LU, XIAO-MEI

    2015-01-01

    Certain genetic polymorphisms have been suggested to be associated with cerebral palsy; the candidate genes are involved in thrombophilia, inflammation and preterm labor, but the mechanism remains to be elucidated. The aim of the present study was to investigate the associations between selected single-nucleotide polymorphisms (SNPs) and cerebral palsy among children. A case-control study was conducted, including 74 infants with cerebral palsy (case group) and 99 healthy infants (control group). The distributions of the allele and genotype frequencies were examined for the total cerebral palsy patient population in addition to subgroups divided according to gestational age (preterm versus full-term). The results showed that the rs1042714 variant in adrenergic receptor β-2 (ADRB2) and heterozygosity for ADRB2 were associated with the cerebral palsy risk among the preterm infants. No significant differences in the allele or genotype frequencies were observed between the total cerebral palsy patient population and controls for the eight SNPs investigated. PMID:26623029

  16. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    PubMed

    Su, Yan; Peter Guengerich, F

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785

  17. High-Throughput Sequencing Reveals Single Nucleotide Variants in Longer-Kernel Bread Wheat.

    PubMed

    Chen, Feng; Zhu, Zibo; Zhou, Xiaobian; Yan, Yan; Dong, Zhongdong; Cui, Dangqun

    2016-01-01

    The transcriptomes of bread wheat Yunong 201 and its ethyl methanesulfonate derivative Yunong 3114 were obtained by next-sequencing technology. Single nucleotide variants (SNVs) in the wheat strains were explored and compared. A total of 5907 and 6287 non-synonymous SNVs were acquired for Yunong 201 and 3114, respectively. A total of 4021 genes with SNVs were obtained. The genes that underwent non-synonymous SNVs were significantly involved in ATP binding, protein phosphorylation, and cellular protein metabolic process. The heat map analysis also indicated that most of these mutant genes were significantly differentially expressed at different developmental stages. The SNVs in these genes possibly contribute to the longer kernel length of Yunong 3114. Our data provide useful information on wheat transcriptome for future studies on wheat functional genomics. This study could also help in illustrating the gene functions of the non-synonymous SNVs of Yunong 201 and 3114. PMID:27551288

  18. Novel single nucleotide polymorphism of UGT1A9 gene in Japanese.

    PubMed

    Fujita, Ken-ichi; Ando, Yuichi; Nagashima, Fumio; Yamamoto, Wataru; Endo, Hisashi; Kodama, Keiji; Araki, Kazuhiro; Miya, Toshimichi; Narabayashi, Masaru; Sasaki, Yasutsuna

    2006-02-01

    We sequenced from 5'-franking region to intron 1 (to 337 bp downstream from exon 1) of the UDP-glucuronosyltransferase (UGT) 1A9 gene prepared from 55 Japanese cancer patients. Seven single nucleotide polymorphisms (SNPs) were found. Two of them were UGT1A9 -118(T)n (n=10) and UGT1A9*5, and four were reported SNPs in intron 1 of UGT1A9 gene (89540C>T, 89549G>A, 89616T>A and 89710A>C). A novel SNP (89587T>C) was found. The sequence is as follows: SNP, 050824FujitaK001; Gene Name, UGT1A9; Accession Number, AF297093; Length, 25 bases; 5'-CCTTCTTGAAGAT/CATGTATTTATAA-3'. Two patients were heterozygous for the mutant allele, resulting in the allele frequency of 1.82%. PMID:16547398

  19. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data. PMID:26214460

  20. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  1. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients.

    PubMed

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-06-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. PMID:27174795

  2. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  3. Single Nucleotide Polymorphism Genotyping and Distribution of Coxiella burnetii Strains from Field Samples in Belgium

    PubMed Central

    Dal Pozzo, Fabiana; Renaville, Bénédicte; Martinelle, Ludovic; Renaville, Robert; Thys, Christine; Smeets, François; Kirschvink, Nathalie; Grégoire, Fabien; Delooz, Laurent; Czaplicki, Guy

    2015-01-01

    The genotypic characterization of Coxiella burnetii provides useful information about the strains circulating at the farm, region, or country level and may be used to identify the source of infection for animals and humans. The aim of the present study was to investigate the strains of C. burnetii circulating in caprine and bovine Belgian farms using a single nucleotide polymorphism (SNP) technique. Direct genotyping was applied to different samples (bulk tank milk, individual milk, vaginal swab, fetal product, and air sample). Besides the well-known SNP genotypes, unreported ones were found in bovine and caprine samples, increasing the variability of the strains found in the two species in Belgium. Moreover, multiple genotypes were detected contemporarily in caprine farms at different years of sampling and by using different samples. Interestingly, certain SNP genotypes were detected in both bovine and caprine samples, raising the question of interspecies transmission of the pathogen. PMID:26475104

  4. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene.

    PubMed

    Pruthviraj, D R; Usha, A P; Venkatachalapathy, R T

    2016-03-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity. PMID:26950860

  5. Characterization of frequencies and distribution of single nucleotide insertions/deletions in the human genome.

    PubMed

    Tan, Ene-Choo; Li, Haixia

    2006-07-19

    Most of the studies on single nucleotide variations are on substitutions rather than insertions/deletions. In this study, we examined the distribution and characteristics of single nucleotide insertions/deletions (SNindels), using data available from dbSNP for all the human chromosomes. There are almost 300,000 SNindels in the database, of which only 0.8% are validated. They occur at the frequency of 0.887 per 10 kb on average for the whole genome, or approximately 1 for every 11,274 bp. More than half occur in regions with mononucleotide repeats the longest of which is 47 bases. Overall the mononucleotide repeats involving C and G are much shorter than those for A and T. About 12% are surrounded by palindromes. There is general correlation between chromosome size and total number for each chromosome. Inter-chromosomal variation in density ranges from 0.6 to 21.7 per kilobase. The overall spectrum shows very high proportion of SNindel of types -/A and -/T at over 81%. The proportion of -/A and -/T SNindels for each chromosome is correlated to its AT content. Less than half of the SNindels are within or near known genes and even fewer (<0.183%) in coding regions, and more than 1.4% of -/C and -/G are in coding compared to 0.2% for -/A and -/T types. SNindels of -/A and -/T types make up 80% of those found within untranslated regions but less than 40% of those within coding regions. A separate analysis using the subset of 2324 validated SNindels showed slightly less AT bias of 74%, SNindels not within mononucleotide repeats showed even less AT bias at 58%. Density of validated SNindels is 0.007/10 kb overall and 90% are found within or near genes. Among all chromosomes, Y has the lowest numbers and densities for all SNindels, validated SNindels, and SNindels not within repeats. PMID:16781088

  6. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene

    PubMed Central

    Pruthviraj, D. R.; Usha, A. P.; Venkatachalapathy, R. T.

    2016-01-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5′-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity. PMID:26950860

  7. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities

    PubMed Central

    2014-01-01

    Background Although our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest. Results We leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the

  8. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  9. A single nucleotide polymorphism in an exon dictates allele dependent differential splicing of episialin mRNA.

    PubMed Central

    Ligtenberg, M J; Gennissen, A M; Vos, H L; Hilkens, J

    1991-01-01

    The episialin gene (MUC1) encodes an epithelial mucin containing a variable number of repeats with a length of twenty amino acids, resulting in many different alleles that can be subdivided into two size classes. The episialin pre-mRNA uses either one of two neighbouring splice acceptor sites for exon 2, which mainly encodes the repeats. Using the genetic polymorphism of the episialin gene to identify different alleles, we show here that the splice site recognition is allele dependent and is based on a single A/G nucleotide difference in exon 2 eight nucleotides downstream of the second splice acceptor site. Transfection experiments confirm that this polymorphic nucleotide regulates the splice site selection. The identity of this nucleotide is in most cases correlated with one of the size classes of the alleles, indicating that mutations altering the number of repeats seldom arise by unequal cross-over between the repeat regions. Images PMID:2014168

  10. Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis

    PubMed Central

    Gopaul, Krishna K; Koylass, Mark S; Smith, Catherine J; Whatmore, Adrian M

    2008-01-01

    Background Brucellosis, caused by members of the genus Brucella, remains one of the world's major zoonotic diseases. Six species have classically been recognised within the family Brucella largely based on a combination of classical microbiology and host specificity, although more recently additional isolations of novel Brucella have been reported from various marine mammals and voles. Classical identification to species level is based on a biotyping approach that is lengthy, requires extensive and hazardous culturing and can be difficult to interpret. Here we describe a simple and rapid approach to identification of Brucella isolates to the species level based on real-time PCR analysis of species-specific single nucleotide polymorphisms (SNPs) that were identified following a robust and extensive phylogenetic analysis of the genus. Results Seven pairs of short sequence Minor Groove Binding (MGB) probes were designed corresponding to SNPs shown to possess an allele specific for each of the six classical Brucella spp and the marine mammal Brucella. Assays were optimised to identical reaction parameters in order to give a multiple outcome assay that can differentiate all the classical species and Brucella isolated from marine mammals. The scope of the assay was confirmed by testing of over 300 isolates of Brucella, all of which typed as predicted when compared to other phenotypic and genotypic approaches. The assay is sensitive being capable of detecting and differentiating down to 15 genome equivalents. We further describe the design and testing of assays based on three additional SNPs located within the 16S rRNA gene that ensure positive discrimination of Brucella from close phylogenetic relatives on the same platform. Conclusion The multiple-outcome assay described represents a new tool for the rapid, simple and unambiguous characterisation of Brucella to the species level. Furthermore, being based on a robust phylogenetic framework, the assay provides a platform

  11. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    PubMed Central

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  12. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection

    NASA Astrophysics Data System (ADS)

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-01

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities.Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a

  13. On-chip detection of a single nucleotide polymorphism without polymerase amplification

    PubMed Central

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H.; Kennedy, Ian M.

    2014-01-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD− wild type and three PKD positive cats. The standard curves for PKD positive (PKD+) and negative (PKD−) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable. PMID:25580203

  14. Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas.

    PubMed

    Wang, Jiafeng; Qi, Haigang; Li, Li; Que, Huayong; Wang, Di; Zhang, Guofan

    2015-01-01

    The economic and ecological importance of the oyster necessitates further research on the molecular mechanisms, which both regulate the commercially important traits of the oyster and help it to survive in the variable marine environment. Single nucleotide polymorphisms (SNPs) have been widely used to assess genetic variation and identify genes underlying target traits. In addition, high-resolution melting (HRM) analysis is a potentially powerful method for validating candidate SNPs. In this study, we adopted a rapid and efficient pipeline for the screening and validation of SNPs in the genic region of Crassostrea gigas based on transcriptome sequencing and HRM analysis. Transcriptomes of three wild oyster populations were sequenced using Illumina sequencing technology. In total, 50-60 million short reads, corresponding to 4.5-5.4 Gbp, from each population were aligned to the oyster genome, and 5.8 × 10(5) SNPs were putatively identified, resulting in a predicted SNP every 47 nucleotides on average. The putative SNPs were unevenly distributed in the genome and high-density (≥2%), nonsynonymous coding SNPs were enriched in genes related to apoptosis and responses to biotic stimuli. Subsequently, 1,671 loci were detected by HRM analysis, accounting for 64.7% of the total selected candidate primers, and finally, 1,301 polymorphic SNP markers were developed based on HRM analysis. All of the validated SNPs were distributed into 897 genes and located in 672 scaffolds, and 275 of these genes were stress inducible under unfavourable salinity, temperature, and exposure to air and heavy metals. The validated SNPs in this study provide valuable molecular markers for genetic mapping and characterization of important traits in oysters. PMID:24823694

  15. Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication

    PubMed Central

    2013-01-01

    Background The common ancestor of salmonid fishes, including rainbow trout (Oncorhynchus mykiss), experienced a whole genome duplication between 20 and 100 million years ago, and many of the duplicated genes have been retained in the trout genome. This retention complicates efforts to detect allelic variation in salmonid fishes. Specifically, single nucleotide polymorphism (SNP) detection is problematic because nucleotide variation can be found between the duplicate copies (paralogs) of a gene as well as between alleles. Results We present a method of differentiating between allelic and paralogous (gene copy) sequence variants, allowing identification of SNPs in organisms with multiple copies of a gene or set of genes. The basic strategy is to: 1) identify windows of unique cDNA sequences with homology to each other, 2) compare these unique cDNAs if they are not shared between individuals (i.e. the cDNA is homozygous in one individual and homozygous for another cDNA in the other individual), and 3) give a “SNP score” value between zero and one to each candidate sequence variant based on six criteria. Using this strategy we were able to detect about seven thousand potential SNPs from the transcriptomes of several clonal lines of rainbow trout. When directly compared to a pre-validated set of SNPs in polyploid wheat, we were also able to estimate the false-positive rate of this strategy as 0 to 28% depending on parameters used. Conclusions This strategy has an advantage over traditional techniques of SNP identification because another dimension of sequencing information is utilized. This method is especially well suited for identifying SNPs in polyploids, both outbred and inbred, but would tend to be conservative for diploid organisms. PMID:24237905

  16. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  17. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  18. Single-nucleotide polymorphisms in porcine mannan-binding lectin A.

    PubMed

    Lillie, Brandon N; Keirstead, Natalie D; Squires, E James; Hayes, M Anthony

    2006-12-01

    The MBL1 and MBL2 genes encode mannan-binding lectins (MBL) A and C, respectively, that are collagenous lectins (collectins) produced mainly by the liver. Several single-nucleotide polymorphisms (SNPs) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. The MBL1 gene encodes MBL-A, which has bacteria-binding properties in pigs and rodents but is mutated to a pseudogene in humans and chimpanzees. In these studies, we surveyed both porcine MBL genes for SNPs that might impair disease resistance. Single-strand conformational polymorphism (SSCP) analysis of MBL cDNAs from porcine liver revealed three SNPs within the coding region of MBL1 in various breeds of pigs. One nonsynonymous SNP that substituted cysteine for glycine in the collagen-like domain of pig MBL-A was found by a multiplex PCR test in all European pig breeds examined, with allele frequencies ranging from 1.4 to 46.4%. No SNPs were identified in the coding region of porcine MBL2 but the expression of MBL-C in the liver was widely variable in comparison to the expression of MBL-A, GAPDH, PigMAP, and haptoglobin. These results indicate that some pigs have a miscoding defect in MBL-A and a possible expression defect in MBL-C, which are analogous to coding and promoter polymorphisms that affect human MBL-C. PMID:17089118

  19. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  20. A single natural nucleotide mutation alters bacterial pathogen host-tropism

    PubMed Central

    Ward, Melissa J.; Selva, Laura; Guinane, Caitriona M.; González-Muñoz, Beatriz M.; Tristan, Anne; Foster, Simon J; Fitzgerald, J. Ross; Penadés, José R.

    2015-01-01

    The capacity of microbial pathogens to alter their host-tropism leading to epidemics in distinct host-species populations is a global public and veterinary health concern. In order to investigate the molecular basis of a bacterial host-switching event in a tractable host-species, we traced the evolutionary trajectory of the common rabbit clone of Staphylococcus aureus. We report that it evolved through a likely human-to-rabbit host jump over 40 years ago, and that only a single natural nucleotide mutation was required and sufficient to convert a human-specific S. aureus strain into one which could infect rabbits. Related mutations were identified at the same locus in other rabbit strains of distinct clonal origin, consistent with convergent evolution. This first report of a single mutation that was sufficient to alter the host-tropism of a micro-organism during its evolution highlights the capacity of some pathogens to readily expand into novel host-species populations. PMID:25685890

  1. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. PMID:24128588

  2. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detectiona)

    PubMed Central

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen

    2014-01-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186

  3. The human BARX2 gene: genomic structure, chromosomal localization, and single nucleotide polymorphisms.

    PubMed

    Hjalt, T A; Murray, J C

    1999-12-15

    The BARX genes 1 and 2 are Bar class homeobox genes expressed in craniofacial structures during development. In this report, we present the genomic structure, chromosomal localization, and polymorphic markers in BARX2. The gene has four exons, ranging in size from 85 to 1099 bp. BARX2 is localized on human chromosome 11q25, as determined by radiation hybrid mapping. In the mouse, Barx2 is coexpressed with Pitx2 in several tissues. Based on the coexpression, BARX2 was assumed to be a candidate gene for those cases of Rieger syndrome that cannot be associated with mutations of PITX2. Mutations in PITX2 cause some cases of Rieger syndrome, an autosomal dominant disorder affecting eyes, teeth, and umbilicus. DNA from Rieger patients was subjected to single-strand conformation polymorphism screening of the BARX2 coding region. Three single nucleotide polymorphisms were found in a normal population, although no etiologic mutations were detectable in over 100 cases of Rieger syndrome or in individuals with related ocular disorders. PMID:10644443

  4. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection.

    PubMed

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-14

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities. PMID:27127876

  5. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry.

    PubMed

    Sauer, Sascha; Gelfand, David H; Boussicault, Francis; Bauer, Keith; Reichert, Fred; Gut, Ivo G

    2002-03-01

    In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or alpha-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and alpha-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease. PMID:11861927

  6. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism.

    PubMed

    Khoshfetrat, Seyyed Mehdi; Ranjbari, Mitra; Shayan, Mohsen; Mehrgardi, Masoud A; Kiani, Abolfazl

    2015-08-18

    The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders. PMID:26176414

  7. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    PubMed Central

    Faruqi, A Fawad; Hosono, Seiyu; Driscoll, Mark D; Dean, Frank B; Alsmadi, Osama; Bandaru, Rajanikanta; Kumar, Gyanendra; Grimwade, Brian; Zong, Qiuling; Sun, Zhenyu; Du, Yuefen; Kingsmore, Stephen; Knott, Tim; Lasken, Roger S

    2001-01-01

    Background Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring. PMID:11511324

  8. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing

    PubMed Central

    Pearson, Talima; Busch, Joseph D.; Ravel, Jacques; Read, Timothy D.; Rhoton, Shane D.; U'Ren, Jana M.; Simonson, Tatum S.; Kachur, Sergey M.; Leadem, Rebecca R.; Cardon, Michelle L.; Van Ert, Matthew N.; Huynh, Lynn Y.; Fraser, Claire M.; Keim, Paul

    2004-01-01

    Phylogenetic reconstruction using molecular data is often subject to homoplasy, leading to inaccurate conclusions about phylogenetic relationships among operational taxonomic units. Compared with other molecular markers, single-nucleotide polymorphisms (SNPs) exhibit extremely low mutation rates, making them rare in recently emerged pathogens, but they are less prone to homoplasy and thus extremely valuable for phylogenetic analyses. Despite their phylogenetic potential, ascertainment bias occurs when SNP characters are discovered through biased taxonomic sampling; by using whole-genome comparisons of five diverse strains of Bacillus anthracis to facilitate SNP discovery, we show that only polymorphisms lying along the evolutionary pathway between reference strains will be observed. We illustrate this in theoretical and simulated data sets in which complex phylogenetic topologies are reduced to linear evolutionary models. Using a set of 990 SNP markers, we also show how divergent branches in our topologies collapse to single points but provide accurate information on internodal distances and points of origin for ancestral clades. These data allowed us to determine the ancestral root of B. anthracis, showing that it lies closer to a newly described “C” branch than to either of two previously described “A” or “B” branches. In addition, subclade rooting of the C branch revealed unequal evolutionary rates that seem to be correlated with ecological parameters and strain attributes. Our use of nonhomoplastic whole-genome SNP characters allows branch points and clade membership to be estimated with great precision, providing greater insight into epidemiological, ecological, and forensic questions. PMID:15347815

  9. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet

  10. Empirically derived subgroups in rheumatoid arthritis: association with single-nucleotide polymorphisms on chromosome 6

    PubMed Central

    Wilcox, Marsha A; McAfee, Andrew T

    2007-01-01

    Rheumatoid arthritis (RA) is a disorder with important public health implications. It is possible that there are clinically distinctive subtypes of the disorder with different genetic etiologies. We used the data provided to the participants in the Genetic Analysis Workshop 15 to evaluate and describe clinically based subgroups and their genetic associations with single-nucleotide polymorphisms (SNPs) on chromosome 6, which harbors the HLA region. Detailed two- and three-SNP haplotype analyses were conducted in the HLA region. We used demographic, clinical self-report, and biomarker data from the entire sample (n = 8477) to identify and characterize the subgroups. We did not use the RA diagnosis itself in the identification of the subgroups. Nuclear families (715 families, 1998 individuals) were used to examine the genetic association with the HLA region. We found five distinct subgroups in the data. The first comprised unaffected family members. Cluster 2 was a mix of affected and unaffected in which patients endorsed symptoms not corroborated by physicians. Clusters 3 through 5 represented a severity continuum in RA. Cluster 5 was characterized by early onset severe disease. Cluster 2 showed no association on chromosome 6. Clusters 3 through 5 showed association with 17 SNPs on chromosome 6. In the HLA region, Cluster 3 showed single-, two-, and three-SNP association with the centromeric side of the region in an area of linkage disequilibrium. Cluster 5 showed both single- and two-SNP association with the telomeric side of the region in a second area of linkage disequilibrium. It will be important to replicate the subgroup structure and the association findings in an independent sample. PMID:18466517

  11. Characterization of single-nucleotide-polymorphism markers for Plasmopara viticola, the causal agent of grapevine downy mildew.

    PubMed

    Delmotte, F; Machefer, V; Giresse, X; Richard-Cervera, S; Latorse, M P; Beffa, R

    2011-11-01

    We report 34 new nuclear single-nucleotide-polymorphism (SNP) markers that have been developed from an expressed sequence tag library of Plasmopara viticola, the causal agent of grapevine downy mildew. This newly developed battery of markers will provide useful additional genetic tools for population genetic studies of this important agronomic species. PMID:21926208

  12. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  13. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  14. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low- heritability traits. Semen from 550 Holstein bulls of high (>= 1.7; n=288) or low (<= -2; n = 262) daughter pregnancy rate (DPR) was geno...

  15. Single Nucleotide Polymorphisms in ABCG5 and ABCG8 are associated with changes in cholestrol metabolism during weight loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine whether changes in cholesterol lowering and metabolism after weight loss were affected by single nucleotide polymorphisms (SNPs) in ABCG5 and ABCG8 genes. Methods and Results: Thirty-five hypercholesterolemic women lost 11.7 +/- 2.5 kg (P<0.001). Cholesterol kinetics were ass...

  16. Use of the Illumina GoldenGate assay for single nucleotide polymorphism (SNP) genotyping in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly parallel genotyping assay, such as the GoldenGate assay developed by Illumina, capable of interrogating up to 3,072 single nucleotide polymorphisms (SNPs) simultaneously, has greatly facilitated the genome-wide studies particularly for crops with large and complex genome structures. In th...

  17. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  18. Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allel...

  19. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  20. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...

  1. Effects of bovine cytochrome P450 single nucleotide polymorphism, forage type, and body condition on production traits in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relating single nucleotide polymorphisms (SNP) to cows with acceptable productivity could benefit cattle breeders especially in areas where tall fescue is the predominant forage. This study aimed to 1) identify SNPs in bovine cytochrome P450 3A28 (CYP3A28) and 2) determine associations between SNP g...

  2. A ferrofluid-based homogeneous assay for highly sensitive and selective detection of single-nucleotide polymorphisms.

    PubMed

    Shen, Wei; Lim, Cai Le; Gao, Zhiqiang

    2013-09-21

    A simple and low-cost colorimetric assay utilizing ferrofluidic nanoparticulate probes (FNPs) and a ligase for single-nucleotide polymorphism genotyping is described. Excellent sensitivity and selectivity were accomplished through the engagement of the FNPs and a ligase chain reaction. PMID:23923128

  3. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the association of single nucleotide polymorphisms in the thyroglobulin gene, including a previously reported marker in current industry use, with marbling score in beef cattle. Three populations, designated GPE6, GPE7, and GPE8, were studied. The GPE6 pop...

  4. Association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with meat tenderness of yak.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each yak...

  5. Comparison of single nucleotide polymorphisms and simple sequence repeats in genotype identification and diversity assessment of cacao germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification of individual genotypes in an efficient manner is especially important for cacao (Theobroma cacao L.) germplasm conservation and breeding. The development of single nucleotide polymorphism (SNP) markers in cacao offers the opportunity to use a high throughput genotyping syste...

  6. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton genome complexity was investigated with a saturated molecular genetic map that combined several sets of microsatellites or simple sequence repeats (SSR) and the first major public set of single nucleotide polymorphism (SNP) markers in cotton genomes (Gossypium spp.), and that was constructed ...

  7. Detection of single-nucleotide variations by monitoring the blinking of fluorescence induced by charge transfer in DNA.

    PubMed

    Kawai, Kiyohiko; Majima, Tetsuro; Maruyama, Atsushi

    2013-08-19

    Charge transfer dynamics in DNA: Photo-induced charge separation and charge-recombination dynamics in DNA was assessed by monitoring the blinking of fluorescence. Single nucleotide variations, mismatch and one base deletion, were differentiated based on the length of the off-time of the blinking, which corresponds to the lifetime of the charge-separated state. PMID:23846860

  8. Species diagnostic single-nucleotide polymorphism and sequence-tagged site markers for the parasitic WASP Genus Nasonia (Hymenoptera: Ptermalidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed, identified and evaluated eight single nucleotide polymorphism (SNP) and three sequence-tagged site (STS) markers in nuclear gene sequences of the wasp genus Nasonia (Hymenoptera). We studied variation of these markers in natural populations of the closely related and regionally sympatr...

  9. Selection of single nucleotide polymorphisms and genotype quality for genomic prediction of genetic merit in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process to prepare high-density genotypic data for use in genomic prediction of genetic merit was developed. Marker genotypes from over 51,000 single nucleotide polymorphisms (SNP) were generated for 3,139 Holstein bulls on the Illumina Bovine SNP50™ chip. The SNP were categorized by minor allele ...

  10. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  11. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  12. A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes.

    PubMed

    Alipoor, Behnam; Ghaedi, Hamid; Omrani, Mir Davood; Bastami, Milad; Meshkani, Reza; Golmohammadi, Taghi

    2016-01-01

    It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences of SNPs in TLRs network. The consequences of non-synonymous coding SNPs (nsSNPs) were predicted by SIFT, PolyPhen, PANTHER, SNPs&GO, I-Mutant, ConSurf and NetSurf tools. Structural visualization of wild type and mutant protein was performed using the project HOPE and Swiss PDB viewer. The influence of 5'-UTR and 3'- UTR SNPs were analyzed by appropriate computational approaches. Nineteen nsSNPs in TLRs pathway genes were found to have deleterious consequences as predicted by the combination of different algorithms. Moreover, our results suggested that SNPs located at UTRs of TLRs pathway genes may potentially influence binding of transcription factors or microRNAs. By applying a pathway-based bioinformatics analysis of genetic variations, we provided a prioritized list of potentially deleterious variants. These findings may facilitate the selection of proper variants for future functional and/or association studies. PMID:27478803

  13. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers

    PubMed Central

    Fang, Wan-Ping; Meinhardt, Lyndel W; Tan, Hua-Wei; Zhou, Lin; Mischke, Sue; Zhang, Dapeng

    2014-01-01

    Apart from water, tea is the world’s most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential. PMID:26504544

  14. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    PubMed Central

    Amoako-Sakyi, Daniel; Adukpo, Selorme; Kusi, Kwadwo A.; Dodoo, Daniel; Ofori, Michael F.; Adjei, George O.; Edoh, Dominic E.; Asmah, Richard H.; Brown, Charles; Adu, Bright; Obiri-Yeboah, Dorcas; Futagbi, Godfred; Abubakari, Sharif Buari; Troye-Blomberg, Marita; Akanmori, Bartholomew D.; Goka, Bamenla Q.; Arko-Mensah, John; Gyan, Ben A.

    2016-01-01

    Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974), total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP). Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001), severe malarial anemia (OR = 0.18, P < 0.001), and cerebral malaria (OR = 0.39, P = 0.022). Levels of total IgE significantly differed among malaria phenotypes (P = 0.044) and rs3024974 genotypes (P = 0.037). Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis. PMID:27279750

  15. Human Aldo-Keto Reductases: Function, Gene Regulation, and Single Nucleotide Polymorphisms

    PubMed Central

    Penning, Trevor M.; Drury, Jason E.

    2007-01-01

    Aldo-Keto Reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases that are generally monomeric 34- 37 kDa proteins present in all phyla. The superfamily consists of 15 families, which contains 151 members (www.med.upenn.edu/akr). Thirteen human AKRs exist that use endogenous substrates (sugar and lipid aldehydes, prostaglandins, retinals and steroid hormones), and in many instances they regulate nuclear receptor signaling. Exogenous substrates include metabolites implicated in chemical carcinogenesis: NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), polycyclic aromatic hydrocarbon trans-dihydrodiols, and aflatoxin dialdehyde. Promoter analysis of the human genes identifies common elements involved in their regulation which include osmotic response elements, antioxidant response elements, xenobiotic response elements, AP-1 sites and steroid response elements. The human AKRs are highly polymorphic, and in some instances single nucleotide polymorphisms (SNPs) of high penetrance exist. This suggests that there will be inter-individual variation in endogenous and xenobiotic metabolism which in turn affect susceptibility to nuclear receptor signaling and chemical carcinogenesis. PMID:17537398

  16. Predicting mendelian disease-causing non-synonymous single nucleotide variants in exome sequencing studies.

    PubMed

    Li, Miao-Xin; Kwan, Johnny S H; Bao, Su-Ying; Yang, Wanling; Ho, Shu-Leong; Song, Yong-Qiang; Sham, Pak C

    2013-01-01

    Exome sequencing is becoming a standard tool for mapping Mendelian disease-causing (or pathogenic) non-synonymous single nucleotide variants (nsSNVs). Minor allele frequency (MAF) filtering approach and functional prediction methods are commonly used to identify candidate pathogenic mutations in these studies. Combining multiple functional prediction methods may increase accuracy in prediction. Here, we propose to use a logit model to combine multiple prediction methods and compute an unbiased probability of a rare variant being pathogenic. Also, for the first time we assess the predictive power of seven prediction methods (including SIFT, PolyPhen2, CONDEL, and logit) in predicting pathogenic nsSNVs from other rare variants, which reflects the situation after MAF filtering is done in exome-sequencing studies. We found that a logit model combining all or some original prediction methods outperforms other methods examined, but is unable to discriminate between autosomal dominant and autosomal recessive disease mutations. Finally, based on the predictions of the logit model, we estimate that an individual has around 5% of rare nsSNVs that are pathogenic and carries ~22 pathogenic derived alleles at least, which if made homozygous by consanguineous marriages may lead to recessive diseases. PMID:23341771

  17. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children.

    PubMed

    Kuo, Ho-Chang; Yu, Hong-Ren; Juo, Suh-Hang Hank; Yang, Kuender D; Wang, Yu-Shiuan; Liang, Chi-Di; Chen, Wei-Chiao; Chang, Wei-Pin; Huang, Chien-Fu; Lee, Chiu-Ping; Lin, Li-Yan; Liu, Yu-Chen; Guo, Yuh-Cherng; Chiu, Chien-Chih; Chang, Wei-Chiao

    2011-02-01

    Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. A study from Japan reported that G to A substitution of a single-nucleotide polymorphism (SNP) located in the 5'-untranslated region of caspase 3 (CASP3) (rs72689236), which was associated with nuclear factor of activated T cell-mediated T-cell activation, is responsible for susceptibility to KD. This study was conducted to investigate whether the polymorphism of CASP3 is responsible for susceptibility and coronary artery lesion (CAL) formation in KD in the Taiwanese population. A total of 1092 subjects (341 KD patients and 751 controls) were investigated to identify an SNP of rs72689236 using Invader assays (Third Wave Technologies). Our data provided a borderline significant association between the genotypes and allele frequency of rs72689236 in control subjects and KD patients (P=0.0535 under the dominant model; P=0.0575 under the allelic model). The A allele of rs72689236 in KD patients and in patients with CAL and intravenous immunoglobulin resistance was seen in a higher frequency. Importantly, a significant association was obtained between rs72689236 and KD patients with aneurysm formation (P=0.009, under the recessive model). The A allele of rs72689236 is very likely to be a risk allele in the development of aneurysm in patients with KD. PMID:21160486

  18. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  19. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents

    PubMed Central

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-01-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54 837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10−7), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits. PMID:24514566

  20. A high-density single nucleotide polymorphism map for Neurospora crassa.

    PubMed

    Lambreghts, Randy; Shi, Mi; Belden, William J; Decaprio, David; Park, Danny; Henn, Matthew R; Galagan, James E; Bastürkmen, Meray; Birren, Bruce W; Sachs, Matthew S; Dunlap, Jay C; Loros, Jennifer J

    2009-02-01

    We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users. PMID:19015548

  1. Single nucleotide polymorphisms across a species' range: implications for conservation studies of Pacific salmon.

    PubMed

    Seeb, L W; Templin, W D; Sato, S; Abe, S; Warheit, K; Park, J Y; Seeb, J E

    2011-03-01

    Studies of the oceanic and near-shore distributions of Pacific salmon, whose migrations typically span thousands of kilometres, have become increasingly valuable in the presence of climate change, increasing hatchery production and potentially high rates of bycatch in offshore fisheries. Genetics data offer considerable insights into both the migratory routes as well as the evolutionary histories of the species. However, these types of studies require extensive data sets from spawning populations originating from across the species' range. Single nucleotide polymorphisms (SNPs) have been particularly amenable for multinational applications because they are easily shared, require little interlaboratory standardization and can be assayed through increasingly efficient technologies. Here, we discuss the development of a data set for 114 populations of chum salmon through a collaboration among North American and Asian researchers, termed PacSNP. PacSNP is focused on developing the database and applying it to problems of international interest. A data set spanning the entire range of species provides a unique opportunity to examine patterns of variability, and we review issues associated with SNP development. We found evidence of ascertainment bias within the data set, variable linkage relationships between SNPs associated with ancestral groupings and outlier loci with alleles associated with latitude. PMID:21429175

  2. StructMAn: annotation of single-nucleotide polymorphisms in the structural context.

    PubMed

    Gress, Alexander; Ramensky, Vasily; Büch, Joachim; Keller, Andreas; Kalinina, Olga V

    2016-07-01

    The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de. PMID:27150811

  3. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. PMID:26397421

  4. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  5. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies. PMID:21670789

  6. High-density single-nucleotide polymorphism maps of the human genome

    PubMed Central

    Miller, Raymond D.; Phillips, Michael S.; Jo, Inho; Donaldson, Miriam A.; Studebaker, Joel F.; Addleman, Nicholas; Alfisi, Steven V.; Ankener, Wendy M.; Bhatti, Hamid A.; Callahan, Chad E.; Carey, Benjamin J.; Conley, Cheryl L.; Cyr, Justin M.; Derohannessian, Vram; Donaldson, Rachel A.; Elosua, Carolina; Ford, Stacey E.; Forman, Angela M.; Gelfand, Craig A.; Grecco, Nicole M.; Gutendorf, Susan M.; Hock, Cricket R.; Hozza, Mark J.; Hur, Soyoung; In, Sun Mi; Jackson, Diana L.; Jo, Sangmee Ahn; Jung, Sung-Chul; Kim, Sook; Kimm, Kuchan; Kloss, Ellen F.; Koboldt, Daniel C.; Kuebler, Jennifer M.; Kuo, Feng-Shen; Lathrop, Jessica A.; Lee, Jong-Keuk; Leis, Kathy L.; Livingston, Stephanie A.; Lovins, Elizabeth G.; Lundy, Maria L.; Maggan, Sima; Minton, Matthew; Mockler, Michael A.; Morris, David W.; Nachtman, Eric P.; Oh, Bermseok; Park, Chan; Park, Chang-Wook; Pavelka, Nicholas; Perkins, Adrienne B.; Restine, Stephanie L.; Sachidanandam, Ravi; Reinhart, Andrew J.; Scott, Kathryn E.; Shah, Gira J.; Tate, Jatana M.; Varde, Shobha A.; Walters, Amy; White, J. Rebecca; Yoo, Yeon-Kyeong; Lee, Jong-Eun; Boyce-Jacino, Michael T.; Kwok, Pui-Yan

    2007-01-01

    Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese–Chinese), and European Americans as part of The SNP Consortium’s Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans. Because these SNPs were ascertained in the same way, the data set is particularly useful for modeling. Our results document that much genetic variation is shared among populations. For autosomes, some 44% of these SNPs have a minor allele frequency ≥10% in each population, and the average allele frequency differences between populations with different continental origins are less than 19%. However, the several percentage point allele frequency differences among the closely related Korean, Japanese, and Chinese populations suggest caution in using mixtures of well-established populations for case–control genetic studies of complex traits. We estimate that ~7% of these SNPs are private SNPs with minor allele frequencies <1%. A useful set of characterized SNPs with large allele frequency differences between populations (>60%) can be used for admixture studies. High-density maps of high-quality, characterized SNPs produced by this project are freely available. PMID:15961272

  7. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp.

    PubMed

    Garcés-Claver, Ana; Fellman, Shanna Moore; Gil-Ortega, Ramiro; Jahn, Molly; Arnedo-Andrés, María S

    2007-11-01

    A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages. PMID:17882396

  8. Analysis of endogenous nucleotides by single cell capillary electrophoresis-mass spectrometry

    PubMed Central

    Liu, Jing-Xin; Aerts, Jordan T.; Rubakhin, Stanislav S.; Zhang, Xin-Xiang; Sweedler, Jonathan V.

    2015-01-01

    Analytical technologies that enable investigations at the single cell level facilitate a range of studies; here a lab-fabricated capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) platform was used to analyze anionic metabolites from individual Aplysia californica neurons. The system employs a customized coaxial sheath-flow nanospray interface connected to a separation capillary, with the sheath liquid and separation buffer optimized to ensure a stable spray. The method provided good repeatability of separation and reliable detection sensitivity for 16 mono-, di- and triphosphate nucleosides. For a range of anionic analytes, including cyclic adenosine monophosphate (cAMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), the detection limits were in the low nanomolar range (<22 nM). A large Aplysia R2 neuron was used to demonstrate the ability of CE-ESI-MS to quantitatively characterize anionic metabolites within individual cells, with 15 nucleotides and derivatives detected. Following the method validation process, we probed smaller, 60-μm diameter Aplysia sensory neurons where sample stacking was used as a simple on-line analyte preconcentration approach. The calculated energy balance ([ATP] + 0.5 × [ADP])/([AMP] + [ADP] + [ATP]) of these cells was comparable with the value obtained from bulk samples. PMID:25212237

  9. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees.

    PubMed

    Pritchard, Victoria L; Erkinaro, Jaakko; Kent, Matthew P; Niemelä, Eero; Orell, Panu; Lien, Sigbjørn; Primmer, Craig R

    2016-09-01

    Many wild Atlantic salmon (Salmo salar) populations are threatened by introgressive hybridization from domesticated fish that have escaped from aquaculture facilities. A detailed understanding of the hybridization dynamics between wild salmon and aquaculture escapees requires discrimination of different hybrid classes; however, markers currently available to discriminate the two types of parental genome have limited power to do this. Using a high-density Atlantic salmon single nucleotide polymorphism (SNP) array, in combination with pooled-sample allelotyping and an Fst outlier approach, we identified 200 SNPs that differentiated an important Atlantic salmon stock from the escapees potentially hybridizing with it. By simulating multiple generations of wild-escapee hybridization, involving wild populations in two major phylogeographic lineages and a genetically diverse set of escapees, we showed that both the complete set of SNPs and smaller subsets could reliably assign individuals to different hybrid classes up to the third hybrid (F3) generation. This set of markers will be a useful tool for investigating the genetic interactions between native wild fish and aquaculture escapees in many Atlantic salmon populations. PMID:27606009

  10. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms

    PubMed Central

    Holmans, PA; Riley, B; Pulver, AE; Owen, MJ; Wildenauer, DB; Gejman, PV; Mowry, BJ; Laurent, C; Kendler, KS; Nestadt, G; Williams, NM; Schwab, SG; Sanders, AR; Nertney, D; Mallet, J; Wormley, B; Lasseter, VK; O’Donovan, MC; Duan, J; Albus, M; Alexander, M; Godard, S; Ribble, R; Liang, KY; Norton, N; Maier, W; Papadimitriou, G; Walsh, D; Jay, M; O’Neill, A; Lerer, FB; Dikeos, D; Crowe, RR; Silverman, JM; Levinson, DF

    2008-01-01

    A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families. After all quality control checks, the analysis of 707 European-ancestry families included 1,615 affected and 1,602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction for marker-marker linkage disequilibrium was carried out with 5,861 single nucleotide polymorphisms (SNPs; Illumina 4.0 linkage map). Suggestive evidence for linkage (European families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in non-parametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-lod support interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci might exist in the region. In this era of genomewide association and deep resequencing studies, consensus linkage regions deserve continued attention, given that linkage signals can be produced by many types of genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a region. PMID:19223858

  11. Single nucleotide polymorphisms of TNFAIP3 are associated with systemic lupus erythematosus in Han Chinese population.

    PubMed

    Han, J-W; Wang, Y; Li, H-B; Alateng, C; Bai, Y-H; Sun, Z-Q; Lv, X-X; Wu, R-N

    2016-04-01

    The polymorphisms of tumour necrosis factor alpha-induced protein 3 (TNFAIP3) have been found to associate with several autoimmune diseases. This study aimed to explore the association of single nucleotide polymorphisms (SNPs) of TNFAIP3 gene with systemic lupus erythematosus (SLE) in Han Chinese. Thirty-two SNPs were genotyped in 284 patients with SLE and 630 controls using the ligation detection reaction (LDR) method. The quality control steps and statistical analyses were performed using the plink 1.07 package and haploview software. We found that 13 SNPs in TNFAIP3 showed significant association with SLE (P < 1.85 × 10(-3) ), and all of them were in high linkage disequilibrium (LD). After conditioning on the SNP rs2230926, other 12 SNPs did not show association (P > 0.27). All 13 SNPs showed most significant association in the dominant model. In haplotype analysis, a long risk SNP haplotype (GCCCGTGTCATGG) showed most significant association (P = 1.00 × 10(-4) ). In conclusion, our data suggest that TNFAIP3 is a susceptible gene for SLE in the Han Chinese population. PMID:26846592

  12. Development of a cassava core collection based on single nucleotide polymorphism markers.

    PubMed

    Oliveira, E J; Ferreira, C F; Santos, V S; Oliveira, G A F

    2014-01-01

    Single nucleotide polymorphism (SNP) markers were used in the largest cassava (Manihot esculenta Crantz) germplasm collection from Brazil to develop core collections based on the maximization strategy. Subsets with 61, 64, 84, 128, 256, and 384 cassava accessions were selected and named PoHEU, MST64, PoRAN, MST128, MST256, and MST384, respectively. All the 798 alleles identified by 402 SNP markers in the entire collection were captured in all core collections. Only small alterations in the diversity parameters were observed for the different core collections compared with the complete collection. Because of the optimal adjustment of the validation parameters representative of the complete collection, the absence of genotypes with high genetic similarity and the maximization of the genetic distances between accessions of the PoHEU core collection, which contained 4.7% of the accessions of the complete collection, maximized the genetic conservation of this important cassava collection. Furthermore, the development of this core collection will allow concentrated efforts toward future characterization and agronomic evaluation of accessions to maximize the diversity and genetic gains in cassava breeding programs. PMID:25158266

  13. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles.

    PubMed

    Xie, Yingjun; Pei, Xiaojuan; Dong, Yu; Wu, Huiqun; Wu, Jianzhu; Shi, Huijuan; Zhuang, Xuying; Sun, Xiaofang; He, Jialing

    2016-07-01

    In clinical diagnostics, single nucleotide polymorphism (SNP)-based microarray analysis enables the detection of copy number variations (CNVs), as well as copy number neutral regions, that are absent of heterozygosity throughout the genome. The aim of the present study was to evaluate the effectiveness and sensitivity of SNP‑based microarray analysis in the diagnosis of hydatidiform mole (HM). By using whole‑genome SNP microarray analysis, villous genotypes were detected, and the ploidy of villous tissue was determined to identify HMs. A total of 66 villous tissues and two twin tissues were assessed in the present study. Among these samples, 11 were triploid, one was tetraploid, 23 were abnormal aneuploidy, three were complete genome homozygosity, and the remaining ones were normal ploidy. The most noteworthy finding of the present study was the identification of six partial HMs and three complete HMs from those samples that were not identified as being HMs on the basis of the initial diagnosis of experienced obstetricians. This study has demonstrated that the application of an SNP‑based microarray analysis was able to increase the sensitivity of diagnosis for HMs with partial and complete HMs, which makes the identification of these diseases at an early gestational age possible. PMID:27151252

  14.  Monozygotic twins with NASH cirrhosis: cumulative effect of multiple single nucleotide polymorphisms?

    PubMed

    Grove, Jane I; Austin, Mark; Tibble, Jeremy; Aithal, Guruprasad P; Verma, Sumita

    2016-01-01

     Multiple genetic and environmental factors interact to determine an individual's predisposition to non-alcoholic fatty liver disease and its phenotypic characteristics. Association studies have found a number of alleles associated with the development of non-alcoholic steatohepatitis. Our aim was to investigate whether multiple risk-associated alleles may be present in affected monozygotic twins, indicating underlying genetic predisposition to non-alcoholic steatohepatitis. We determined the genotype of 14 candidate gene polymorphisms (at 11 unlinked loci) in a set of monozygotic twins who presented with cirrhosis within 18 months of each other. Genotyping revealed multiple single nucleotide polymorphisms at 9 independent loci in genes PNPLA3, APOC3, GCKR, TRIB1, LYPLAL1, PPP1R3B, COL13A1, and EFCAB4B, previously implicated in contributing to non-alcoholic steatohepatitis pathogenesis. In conclusion, this case series illustrates the potential cumulative effect of multiple polymorphisms in the development and potential progression of a complex trait such as NASH cirrhosis. PMID:26845607

  15. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing.

    PubMed

    Tejedor, J Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-06-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137

  16. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism

    PubMed Central

    Ozburn, Angela R.; Purohit, Kush; Parekh, Puja K.; Kaplan, Gabrielle N.; Falcon, Edgardo; Mukherjee, Shibani; Cates, Hannah M.; McClung, Colleen A.

    2016-01-01

    Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional–translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3′-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock−/− knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3′-UTR SNP affects the expression, function, and stability of CLOCK mRNA. PMID:27148095

  17. Associations of immunity-related single nucleotide polymorphisms with overall survival among prostate cancer patients

    PubMed Central

    Miles, Fayth L; Rao, Jian-Yu; Eckhert, Curtis; Chang, Shen-Chih; Pantuck, Allan; Zhang, Zuo-Feng

    2015-01-01

    The progression of prostate cancer is influenced by systemic inflammation, and may be attributed, in part, to genetic predisposition. Single nucleotide polymorphisms associated with the immune response may help mediate prostate cancer progression. We analyzed data from a hospital-based case-control study of 164 prostate cancer patients and 157 healthy male controls from the Memorial Sloan Kettering Cancer Center. We evaluated associations between six immunity-related polymorphisms (CRP rs1205 and rs1800947, FGFR2 rs1219648 and rs2981582, IFNGR1 rs11914, and IL10 rs1800871) and overall survival among prostate cancer patients, calculating adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. FGFR2 rs1219648 (GG vs. AA) and rs2981582 (TT vs. CC) polymorphisms were associated with more favorable overall survival (HR: 0.13, 95% CI: 0.03-0.62 and HR: 0.13, 95% CI: 0.03-0.53, respectively) in patients with primary prostate cancer. These observations highlight the need to validate and identify these and other immunity-related polymorphisms in larger studies examining survival of prostate cancer patients. PMID:26379965

  18. Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer.

    PubMed

    Yang, Yuan; Wang, Wenjing; Liu, Guiyou; Yu, Yingcui; Liao, Mingzhi

    2016-01-01

    Large scale association studies have identified the single nucleotide polymorphism rs3803662 associated with breast cancer risk. However, the sample size of most studies is too small. Here, we performed this meta-analysis to make the result more convincing. Relevant articles published up to 2016 were identified by searching the PubMed database. 13 studies, involving a total of 29405 participants, were included in the meta-analysis. Odds Ratios (ORs) with 95% confidence intervals (CIs) was calculated with random or fixed effects model. All data analyses were analyzed by Review Manger 5.3 software. In Caucasian subgroup: Dominant model (TT + CT vs CC): OR = 1.17 (1.06, 1.29), Recessive model (TT vs CT + CC): OR = 1.25 (1.13, 1.39) and Allele frequency (T vs C): OR = 1.15 (1.08, 1.22). The present meta-analysis suggests that rs3803662 polymorphism is significantly associated with breast cancer risk in Caucasian women, and we did not find the association in Asian women. PMID:27350156

  19. Efficient Detection of Mediterranean β-Thalassemia Mutations by Multiplex Single-Nucleotide Primer Extension

    PubMed Central

    Atanasovska, Biljana; Bozhinovski, Georgi; Plaseska-Karanfilska, Dijana; Chakalova, Lyubomira

    2012-01-01

    β-Thalassemias and abnormal hemoglobin variants are among the most common hereditary abnormalities in humans. Molecular characterization of the causative genetic variants is an essential part of the diagnostic process. In geographic areas with high hemoglobinopathy prevalence, such as the Mediterranean region, a limited number of genetic variants are responsible for the majority of hemoglobinopathy cases. Developing reliable, rapid and cost-effective mutation-specific molecular diagnostic assays targeting particular populations greatly facilitates routine hemoglobinopathy investigations. We developed a one-tube single-nucleotide primer extension assay for the detection of eight common Mediterranean β-thalassemia mutations: Codon 5 (-CT); CCT(Pro)->C–, Codon 6 (-A); GAG(Glu)->G-G, Codon 8 (-AA); AAG(Lys)->–G, IVS-I-1 (G->A), IVS-I-6 (T->C), IVS-I-110 (G->A), Codon 39 (C->T), and IVS-II-745 (C->G), as well as the hemoglobin S variant beta 6(A3) Glu>Val. We validated the new assay using previously genotyped samples obtaining 100% agreement between independent genotyping methods. Our approach, applicable in a range of Mediterranean countries, offers a combination of high accuracy and rapidity exploiting standard techniques and widely available equipment. It can be further adapted to particular populations by including/excluding assayed mutations. We facilitate future modifications by providing detailed information on assay design. PMID:23110203

  20. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    PubMed

    Nonnemacher, Michael R; Pirrone, Vanessa; Feng, Rui; Moldover, Brian; Passic, Shendra; Aiamkitsumrit, Benjamas; Dampier, Will; Wojno, Adam; Kilareski, Evelyn; Blakey, Brandon; Ku, Tse-Sheun Jade; Shah, Sonia; Sullivan, Neil T; Jacobson, Jeffrey M; Wigdahl, Brian

    2016-01-01

    The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count). PMID:27100290

  1. Phenotype Prediction of Pathogenic Nonsynonymous Single Nucleotide Polymorphisms in WFS1

    PubMed Central

    Qian, Xuli; Qin, Luyang; Xing, Guangqian; Cao, Xin

    2015-01-01

    Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder that has an autosomal recessive pattern of inheritance. The gene for WS, wolfram syndrome 1 gene (WFS1), is located on human chromosome 4p16.1 and encodes a transmembrane protein. To date, approximately 230 mutations in WFS1 have been confirmed, in which nonsynonymous single nucleotide polymorphisms (nsSNPs) are the most common forms of genetic variation. Nonetheless, there is poor knowledge on the relationship between SNP genotype and phenotype in other nsSNPs of the WFS1 gene. Here, we analysed 395 nsSNPs associated with the WFS1 gene using different computational methods and identified 20 nsSNPs to be potentially pathogenic. Furthermore, to identify the amino acid distributions and significances of pathogenic nsSNPs in the protein of WFS1, its transmembrane domain was constructed by the TMHMM server, which suggested that mutations outside of the TMhelix could have more effects on protein function. The predicted pathogenic mutations for the nsSNPs of the WFS1 gene provide an excellent guide for screening pathogenic mutations. PMID:26435059

  2. Selecting a Maximally Informative Set of Single-Nucleotide Polymorphisms for Association Analyses Using Linkage Disequilibrium

    PubMed Central

    Carlson, Christopher S.; Eberle, Michael A.; Rieder, Mark J.; Yi, Qian; Kruglyak, Leonid; Nickerson, Deborah A.

    2004-01-01

    Common genetic polymorphisms may explain a portion of the heritable risk for common diseases. Within candidate genes, the number of common polymorphisms is finite, but direct assay of all existing common polymorphism is inefficient, because genotypes at many of these sites are strongly correlated. Thus, it is not necessary to assay all common variants if the patterns of allelic association between common variants can be described. We have developed an algorithm to select the maximally informative set of common single-nucleotide polymorphisms (tagSNPs) to assay in candidate-gene association studies, such that all known common polymorphisms either are directly assayed or exceed a threshold level of association with a tagSNP. The algorithm is based on the r2 linkage disequilibrium (LD) statistic, because r2 is directly related to statistical power to detect disease associations with unassayed sites. We show that, at a relatively stringent r2 threshold (r2>0.8), the LD-selected tagSNPs resolve >80% of all haplotypes across a set of 100 candidate genes, regardless of recombination, and tag specific haplotypes and clades of related haplotypes in nonrecombinant regions. Thus, if the patterns of common variation are described for a candidate gene, analysis of the tagSNP set can comprehensively interrogate for main effects from common functional variation. We demonstrate that, although common variation tends to be shared between populations, tagSNPs should be selected separately for populations with different ancestries. PMID:14681826

  3. Haplotype of single nucleotide polymorphisms in exon 6 of the MZF-1 gene and Alzheimer's disease.

    PubMed

    Porcellini, Elisa; Carbone, Ilaria; Martelli, Pier Luigi; Ianni, Manuela; Casadio, Rita; Pession, Annalisa; Licastro, Federico

    2013-01-01

    Our previous works showed that single nucleotide polymorphisms (SNPs) in genes with regulatory function upon inflammatory response and cholesterol metabolism were associated with Alzheimer's disease (AD) risk. The list comprises SNPs located on the promoters of alpha 1 antichymotrypsin (rs1884082), hydroxy methyl glutaryl coenzime A reductase (rs376140), tumor necrosis factor alpha (rs1800629), and interleukin 10 (rs1800869). Here we investigated the effect of these SNPs on the binding for transcription factors. We computationally detected putative binding sites for transcription factors located in the SNP regions. To this aim, the TESS program for scanning the promoter sequences against the binding-site models available at TRANSFACT and JASPAR databases was adopted. All the analyzed SNPs appeared to affect the binding of myeloid zinc finger protein 1 (MZF-1) to the promoter sequence of the above reported genes. Therefore 16 SNPs in MZF-1 gene were tested in 120 AD cases and 88 controls to asses a possible association between MZF-1 and AD. 14 SNPs showed no variability in AD and control populations, while two SNPs rs4756 and rs2228162 showed the three genotypes. Genotype distributions and allele frequencies of these two SNPs were comparable between AD and controls. On the other hand, the haplotype distribution of rs4756 and rs2228162 was different between AD and controls; being the AG haplotype associated with a decreased AD risk. In conclusion, selected SNPs in MZF-1 gene exert a minor effect on AD risk. PMID:23241556

  4. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution.

    PubMed

    Zhao, Zhongming; Fu, Yun-Xin; Hewett-Emmett, David; Boerwinkle, Eric

    2003-07-17

    We investigated the single nucleotide polymorphism (SNP) density across the human genome and in different genic categories using two SNP databases: Celera's CgsSNP, which includes SNPs identified by comparing genomic sequences, and Celera's RefSNP, which includes SNPs from a variety of sources and is biased toward disease-associated genes. Based on CgsSNP, the average numbers of SNPs per 10 kb was 8.33, 8.44, and 8.09 in the human genome, in intergenic regions, and in genic regions, respectively. In genic regions, the SNP density in intronic, exonic and adjoining untranslated regions was 8.21, 5.28, and 7.51 SNPs per 10 kb, respectively. The pattern of SNP density based on RefSNP was different from that based on CgsSNP, emphasizing its utility for genotype-phenotype association studies but not for most population genetic studies. The number of SNPs per chromosome was correlated with chromosome length, but the density of SNPs estimated by CgsSNP was not significantly correlated with the GC content of the chromosome. Based on CgsSNP, the ratio of nonsense to missense mutations (0.027), the ratio of missense to silent mutations (1.15), and the ratio of non-synonymous to synonymous mutations (1.18) was less than half of that expected in a human protein coding sequence under the neutral mutation theory, reflecting a role for natural selection, especially purifying selection. PMID:12909357

  5. Association of single nucleotide polymorphisms in MPO and COX genes with oral lichen planus.

    PubMed

    Wu, D; Chen, X; Dong, C; Liu, Q; Yang, Y; He, C; Wang, J; Sun, M; Wu, Y

    2015-06-01

    Oral lichen planus (OLP) is an intractable, chronic inflammatory disorder, and its pathogenesis is still largely unknown. Some literatures supported that genes involved in both oxidative stress and prostaglandin metabolism play an important role in the process of inflammation. To explore their association with OLP, we investigated four single nucleotide polymorphisms (SNPs) from myeloperoxidase (MPO) and cyclooxygenase (COX) genes in 475 Chinese individuals (242 case and 233 controls) by MassArray. Although the genotype distributions had no significant differences between the patients and controls, we found that in different gender, rs2243828 from MPO displayed the statistically significant variance genotype frequencies between patients and controls (P = 0.018 in females, P = 0.035 in males). Moreover, for the major allele recessive model, this SNP also showed a significant difference between case and control groups in males (P = 0.015). In this study, we first observed significant association with MPO polymorphism and OLP risk in different gender groups in Chinese, suggesting MPO polymorphism is a gender-specific risk factor of OLP probably by influencing sex hormone-sensitive elements to regulate inflammatory gene expression networks, and we further revealed that oxidative stress was actually involved in the pathogenesis of this disease. Moreover, these findings inspire us some constructive solutions to the treatment of this disease. PMID:25823564

  6. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenstrom's macroglobulinemia.

    PubMed

    Adamia, Sophia; Treon, Steven P; Reiman, Tony; Tournilhac, Olivier; McQuarrie, Carrie; Mant, Michael J; Belch, Andrew R; Pilarski, Linda M

    2005-03-01

    The hyaluronan synthase 1 (HAS1) gene encodes a plasma membrane protein that synthesizes hyaluronan, an extracellular matrix molecule. Previously, in patients with Waldenstrom's macroglobulinemia (WM), we detected upregulation of HAS1 transcripts and identified aberrant splice variants of this gene. Aberrant splicing of HAS1 results from activation of cryptic splice sites. In turn, activation of cryptic donor and acceptor splice sites can be promoted by mutations occurring upstream of these sites and/or at the branch point of slicing. We measured the frequency of the HAS1 833A/G polymorphism (ie, single-nucleotide polymorphism; SNP) in patients with WM and healthy donors. Additionally, HAS1 gene expression was evaluated in the same group of patients. Our observations so far suggest that HAS1 833A/G SNPs contribute to aberrant splicing of this gene; this idea is supported by the fact that 833A/G SNP is located on an exonic splicing enhancer motif. Based on the results obtained thus far, we speculate that individuals with HAS1 833G/G genotype are predisposed toward aberrant HAS1 splicing and expression of HAS1 variants, resulting in an enhanced risk of developing WM. Study of a larger group of patients and healthy donors is needed to confirm these speculations and to evaluate the prognostic significance of these findings. PMID:15794859

  7. Quantitative genotyping of single-nucleotide polymorphisms by allele-specific oligonucleotide hybridization on DNA microarrays.

    PubMed

    Rickert, Andreas M; Ballvora, Agim; Matzner, Ulrich; Klemm, Manfred; Gebhardt, Christiane

    2005-08-01

    Genotyping of SNPs (single-nucleotide polymorphisms) has challenged the development of several novel techniques. Most of these methods have been introduced to discriminate binary SNPs in diploid species. In the present study, the quantitative genotyping of SNPs in natural DNA pools of a polyploid organism via DNA microarrays was analysed. Three randomly selected SNP loci were genotyped in the tetraploid species potato (Solanum tuberosum). For each SNP, 24 oligomers were designed, 12 with forward and 12 with reverse orientation. They contained the polymorphic site at one of the positions 11, 14 and 17. Several steps of optimizations were performed, including the 'materials' used and the establishment of hybridization conditions. Glass surfaces were either epoxy- or aldehyde-modified, and allele-specific oligonucleotides contained either SH or NH2 groups. Hybridization stringency conditions were established by varying the concentration of formamide in the hybridization buffer. For SNP BA213c14t7/403, the quantitative discrimination between all four different naturally occurring genotypes could be demonstrated. PMID:15847606

  8. A study of single nucleotide polymorphisms of GRIN2B in schizophrenia from Chinese Han population.

    PubMed

    Guo, Zhenming; Niu, Weibo; Bi, Yan; Zhang, Rui; Ren, Decheng; Hu, Jiaxin; Huang, Xiaoye; Wu, Xi; Cao, Yanfei; Yang, Fengping; Wang, Lu; Li, Weidong; Li, Xingwang; Xu, Yifeng; He, Lin; Yu, Tao; He, Guang

    2016-09-01

    Schizophrenia is a severe and complex mental disorder with high heritability. There is evidence that mutations in the gene of Nmethyl-d-aspartate-type glutamate receptors (NMDAR) are associated with schizophrenia. GRIN2B encodes a subunit of NMDARs, and has been identified as a candidate gene for many psychiatric disorders, especially schizophrenia. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in GRIN2B were associated with schizophrenia. Four SNPs (rs890, rs1806191, rs219872, rs172677) were genotyped in 752 schizophrenic patients and 846 healthy controls of the Chinese Han population. Our results indicate differences in allele and genotype frequencies of rs890 between case and control. These results were assessed by adapting different genetic models (codominant, dominant, recessive, overdominant, log-additive models). After controlling for confounding factors including sex and age, rs890 remained associated with schizophrenia. In addition, rs890 and rs1806191 were found to form a haplotype associated with schizophrenia. In summary, our results indicate that the GRIN2B SNP rs890 might be associated with schizophrenia in the Chinese Han population. PMID:27453061

  9. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism.

    PubMed

    Ozburn, Angela R; Purohit, Kush; Parekh, Puja K; Kaplan, Gabrielle N; Falcon, Edgardo; Mukherjee, Shibani; Cates, Hannah M; McClung, Colleen A

    2016-01-01

    Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3'-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock(-/-) knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3'-UTR SNP affects the expression, function, and stability of CLOCK mRNA. PMID:27148095

  10. Single nucleotide polymorphism profiling across the methotrexate pathway in normal subjects and patients with rheumatoid arthritis.

    PubMed

    Ranganathan, Prabha; Culverhouse, Robert; Marsh, Sharon; Ahluwalia, Ranjeet; Shannon, William D; Eisen, Seth; McLeod, Howard L

    2004-07-01

    Methotrexate (MTX) is a commonly used disease-modifying antirheumatic drug in rheumatoid arthritis (RA). Polymorphisms occur in several genes encoding key enzymes in the folic acid pathway, which is influenced by MTX, but have not been evaluated in patients with RA. The effect of race on allele frequency has also not been evaluated. In this study, the allele frequencies of polymorphisms in six key enzymes in the MTX-folate pathway in patients with RA and healthy controls, including several common racial groups were studied. European- and African-American patients with RA and European and African healthy controls were genotyped for 22 genetic loci in six genes in the MTX cellular pathway. Differences in genotype distributions between the different racial groups were evaluated using chi(2) tests. Allele frequencies were significantly different (p < 0.001) for eight single nucleotide polymorphisms between the European and African controls. The allele frequencies of two polymorphisms showed significant differences (p < 0.001) between the African- and European-American patients with RA. Thus, racial differences exist between the allele frequencies of several polymorphisms in enzymes in the MTX-folate pathway in patients with RA and healthy controls. Whether such differences contribute to a differential response to MTX in patients with RA deserves to be investigated. PMID:15212592

  11. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    PubMed

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits. PMID:18779133

  12. Single nucleotide polymorphisms in DKK3 gene are associated with prostate cancer risk and progression

    PubMed Central

    Kim, Min Su; Lee, Ha Na; Kim, Hae Jong; Myung, Soon Chul

    2015-01-01

    ABSTRACT We had investigated whether sequence variants within DKK3 gene are associated with the development of prostate cancer in a Korean study cohort. We evaluated the association between 53 single nucleotide polymorphisms (SNPs) in the DKK3 gene and prostate cancer risk as well as clinical characteristics (PSA, clinical stage, pathological stage and Gleason score) in Korean men (272 prostate cancer subjects and 173 benign prostate hyperplasia subjects) using unconditional logistic regression analysis. Of the 53 SNPs and 25 common haplotypes, 5 SNPs and 4 haplotypes were associated with prostate cancer risk (P=0.02–0.04); 3 SNPs and 2 haplotypes were significantly associated with susceptibility to prostate cancer, however 2 SNPs and 2 haplotypes exhibited a significant protective effect on prostate cancer. Logistic analyses of the DKK3 gene polymorphisms with several prostate cancer related factors showed that several SNPs were significant; three SNPs and two haplotypes to PSA level, three SNPs and two haplotypes to clinical stage, nine SNPs and two haplotype to pathological stage, one SNP and one haplotypes to Gleason score. To the author's knowledge, this is the first report documenting that DKK3 polymorphisms are not only associated with prostate cancer but also related to prostate cancer-related factors. PMID:26689513

  13. Investigation of Rare Single-Nucleotide PCDH15 Variants in Schizophrenia and Autism Spectrum Disorders.

    PubMed

    Ishizuka, Kanako; Kimura, Hiroki; Wang, Chenyao; Xing, Jingrui; Kushima, Itaru; Arioka, Yuko; Oya-Ito, Tomoko; Uno, Yota; Okada, Takashi; Mori, Daisuke; Aleksic, Branko; Ozaki, Norio

    2016-01-01

    Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders. PMID:27058588

  14. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals

    PubMed Central

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K.; Chowdhury, Shantanu

    2012-01-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14 500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter—remarkable difference in promoter activity in the ‘quadruplex-destabilized’ versus ‘quadruplex-intact’ promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals. PMID:22238381

  15. In silico prediction of splice-altering single nucleotide variants in the human genome

    PubMed Central

    Jian, Xueqiu; Boerwinkle, Eric; Liu, Xiaoming

    2014-01-01

    In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies. PMID:25416802

  16. Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer

    PubMed Central

    Yang, Yuan; Wang, Wenjing; Liu, Guiyou; Yu, Yingcui; Liao, Mingzhi

    2016-01-01

    Large scale association studies have identified the single nucleotide polymorphism rs3803662 associated with breast cancer risk. However, the sample size of most studies is too small. Here, we performed this meta-analysis to make the result more convincing. Relevant articles published up to 2016 were identified by searching the PubMed database. 13 studies, involving a total of 29405 participants, were included in the meta-analysis. Odds Ratios (ORs) with 95% confidence intervals (CIs) was calculated with random or fixed effects model. All data analyses were analyzed by Review Manger 5.3 software. In Caucasian subgroup: Dominant model (TT + CT vs CC): OR = 1.17 (1.06, 1.29), Recessive model (TT vs CT + CC): OR = 1.25 (1.13, 1.39) and Allele frequency (T vs C): OR = 1.15 (1.08, 1.22). The present meta-analysis suggests that rs3803662 polymorphism is significantly associated with breast cancer risk in Caucasian women, and we did not find the association in Asian women. PMID:27350156

  17. Investigation of Rare Single-Nucleotide PCDH15 Variants in Schizophrenia and Autism Spectrum Disorders

    PubMed Central

    Ishizuka, Kanako; Kimura, Hiroki; Wang, Chenyao; Xing, Jingrui; Kushima, Itaru; Arioka, Yuko; Oya-Ito, Tomoko; Uno, Yota; Okada, Takashi; Mori, Daisuke; Ozaki, Norio

    2016-01-01

    Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders. PMID:27058588

  18. Association of SCNN1A Single Nucleotide Polymorphisms with neonatal respiratory distress syndrome.

    PubMed

    Li, Wang; Long, Chen; Renjun, Li; Zhangxue, Hu; Yin, Hu; Wanwei, Li; Juan, Ma; Yuan, Shi

    2015-01-01

    Increasing evidence has demonstrated that lung fluid absorption disorders might be an important cause of neonatal respiratory distress syndrome (RDS) by influencing gas exchange or surfactant function. The SCNN1A gene, which encodes the α-ENaC, might predispose infants to RDS. To explore whether the single-nucleotide polymorphisms (SNPs) of SCNN1A are associated with RDS, we conducted a case-control study to investigate the RDS-associated loci in Han Chinese infants. Seven target SNPs were selected from the SCNN1A gene and were genotyped using the improved multiplex ligase detection reaction (iMLDR). In the total sample, only rs4149570 was associated with NRDS; this association was further confirmed in logistic regression analysis after adjusting for birth weight, gestational age and sex. In the subgroup of infants whose gestational age was 37 weeks and older, in addition to rs4149570, rs7956915 also showed a significant association with RDS. Interestingly, these associations were only observed in term infants. No significant association was observed between the target SNPs and the risk of RDS in preterm infants. We report for the first time that the rs4149570 and rs7956915 polymorphisms of SCNN1A might play important roles in the susceptibility to RDS, particularly in term infants. PMID:26611714

  19. Genetic Diversity of Eurycoma longifolia Inferred from Single Nucleotide Polymorphisms1[w

    PubMed Central

    Osman, Asiah; Jordan, Barbara; Lessard, Philip A.; Muhammad, Norwati; Haron, M. Rosli; Riffin, Norifiza Mat; Sinskey, Anthony J.; Rha, ChoKyun; Housman, David E.

    2003-01-01

    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites. PMID:12644679

  20. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits.

    PubMed

    Smith, T; Thomas, M G; Bidner, T D; Paschal, J C; Franke, D E

    2009-01-01

    Data from purebred Brahman steers (N = 467) were used to study the association of single nucleotide polymorphisms (SNP) with carcass traits and measures of tenderness. Fall weaned calves were grazed and fed in a subtropical environment and then harvested for processing in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were obtained to measure calpastatin activity and shear force. DNA was used to determine genotypes of thyroglobulin (TG5), calpastatin (CAST) and mu-calpain (CAPN 316 and CAPN 4751) SNP. Minor allele frequencies for CAST, CAPN 316 and CAPN 4751 were 0.342, 0.031, and 0.051, respectively. CAST genotypes were associated with calpastatin enzyme activity (P < 0.01) and shear force of steaks aged for 14-day postmortem (P < 0.05). CAPN 316 genotypes were also associated with variation in shear force of steaks aged for 14 days (P < 0.05). CAPN 4751 genotypes approached significance for association with shear force of steaks after 7 and 14 days (P < 0.08). Genotypes for TG5 were non-polymorphic (i.e., minor allele frequency = 0.004) and omitted from further analyses. Neither CAST nor CAPN SNP was associated with variation in other carcass traits. PMID:19224465

  1. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    PubMed

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. PMID:26806806

  2. Association of IL-13 single nucleotide polymorphisms in Iranian patients to multiple sclerosis

    PubMed Central

    Seyfizadeh, Narges; Kazemi, Tohid; Farhoudi, Mehdi; Aliparasti, Mohammad Reza; Sadeghi-Bazargani, Homayoun; Almasi, Shohreh; Babaloo, Zohreh

    2014-01-01

    MS is an autoimmune disease and interleukin 13 (IL-13) has been proposed to be an important neuroprotective mediator in MS. Because of plausible effect of single nucleotide polymorphisms (SNPs) in expression level or biological activity of any cytokine, we sought to investigate association of IL-13 SNPs, C-1112T, A-1512C and G+2044A, with risk to MS. Sixty-eight RRMS patients and 110 healthy controls were involved in this study. After extraction of genomic DNA, frequency of genotypes and alleles were determined by PCR-RFLP and data were analyzed statistically. Results showed significant higher frequency of CC, CC, and AA genotypes and C, C, and A alleles of -1112CT, -1512AC and +2044GA SNPs respectively, in patients group. There was significant association between -1112C allele with onset age of MS. No significant association was seen between any of genotypes or alleles with expanded disability status scale (EDSS) of patients. Our findings showed significant association between three studied SNPs of IL-13 with susceptibility to MS in Iranian patients. More studies should be done on other IL-13 SNPs, and also polymorphisms of IL-13 receptor and other cytokines to determine the exact role of SNPs in protecting or predisposing of individuals for MS. PMID:25628961

  3. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    PubMed

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. PMID:26450523

  4. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  5. Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay.

    PubMed

    Nishida, Nao; Tanabe, Tetsuya; Takasu, Miwa; Suyama, Akira; Tokunaga, Katsushi

    2007-05-01

    A number of single nucleotide polymorphisms (SNPs) are considered to be candidate susceptibility or resistance genetic factors for multifactorial disease. Genome-wide searches for disease susceptibility regions followed by high-resolution mapping of primary genes require cost-effective and highly reliable technology. To accomplish successful and low-cost typing for candidate SNPs, new technologies must be developed. We previously reported a multiplex SNP typing method, designated the DigiTag assay, that has the potential to analyze nearly any SNP with high accuracy and reproducibility. However, the DigiTag assay requires multiple washing steps in manipulation and uses genotyping probes modified with biotin for each target SNP. Here we describe the next version of the assay, DigiTag2, which works with simple protocols and uses unmodified genotyping probes. We investigated the feasibility of the DigiTag2 assay by genotyping 96 target SNPs spanning a 610-kb region of human chromosome 5. The DigiTag2 assay is suitable for genotyping an intermediate number of SNPs (tens to hundreds of sites) with a high conversion rate (>90%), high accuracy, and low cost. PMID:17359929

  6. The role of TNXB single-nucleotide polymorphisms in recurrent shoulder dislocation.

    PubMed

    Geiger, Emanuel V; Henrich, Dirk; Wutzler, Sebastian; Schneidmüller, Dorien; Jakob, Heike; Frank, Johannes M; Marzi, Ingo

    2013-02-01

    Tenascin-X (TNX) is an extra-cellular matrix glycoprotein associated with collagen fibril deposition. Recent reports have linked truncated TNX mutations (TNXB) to generalized joint hypermobility and most importantly recurrent joint dislocation. In the present study, we investigated whether there is an association between joint dislocation recurrence rate and the frequency of TNXB single-nucleotide polymorphisms (SNPs). Seventy-eight patients treated for post-traumatic shoulder instability and 82 healthy controls were genotyped for selected TNXB SNP using TaqMan® Genotyping Assays. At a mean follow-up of 24 months recurrence rate and clinical outcomes were evaluated using the Constant and Murley, Rowe, and DASH scores. The association between genotypes and joint dislocation was tested using the dominant, recessive and additive models, and the model-free approach. Genotype distribution of the examined SNPs did not significantly deviate from the Hardy-Weinberg equilibrium (HWE) neither in patients nor in the controls. Moreover, there was no significant difference in genotype and allele distribution between patients and controls. Finally, no difference in genotype frequency was detected between patients who experienced a re-dislocation after the initial surgery and patients who did not sustain a re-dislocation. The SNPs investigated in this study have no clinically relevant influence on TNXB gene expression and/or TNX function. Therefore, these SNPs could not be used for predicting individual risk of recurrent shoulder dislocation. PMID:22991340

  7. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles

    PubMed Central

    XIE, YINGJUN; PEI, XIAOJUAN; DONG, YU; WU, HUIQUN; WU, JIANZHU; SHI, HUIJUAN; ZHUANG, XUYING; SUN, XIAOFANG; HE, JIALING

    2016-01-01

    In clinical diagnostics, single nucleotide polymorphism (SNP)-based microarray analysis enables the detection of copy number variations (CNVs), as well as copy number neutral regions, that are absent of heterozygosity throughout the genome. The aim of the present study was to evaluate the effectiveness and sensitivity of SNP-based microarray analysis in the diagnosis of hydatidiform mole (HM). By using whole-genome SNP microarray analysis, villous genotypes were detected, and the ploidy of villous tissue was determined to identify HMs. A total of 66 villous tissues and two twin tissues were assessed in the present study. Among these samples, 11 were triploid, one was tetraploid, 23 were abnormal aneuploidy, three were complete genome homozygosity, and the remaining ones were normal ploidy. The most noteworthy finding of the present study was the identification of six partial HMs and three complete HMs from those samples that were not identified as being HMs on the basis of the initial diagnosis of experienced obstetricians. This study has demonstrated that the application of an SNP-based microarray analysis was able to increase the sensitivity of diagnosis for HMs with partial and complete HMs, which makes the identification of these diseases at an early gestational age possible. PMID:27151252

  8. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  9. StructMAn: annotation of single-nucleotide polymorphisms in the structural context

    PubMed Central

    Gress, Alexander; Ramensky, Vasily; Büch, Joachim; Keller, Andreas; Kalinina, Olga V.

    2016-01-01

    The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de. PMID:27150811

  10. Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies

    PubMed Central

    Bao, Su-Ying; Yang, Wanling; Ho, Shu-Leong; Song, Yong-Qiang; Sham, Pak C.

    2013-01-01

    Exome sequencing is becoming a standard tool for mapping Mendelian disease-causing (or pathogenic) non-synonymous single nucleotide variants (nsSNVs). Minor allele frequency (MAF) filtering approach and functional prediction methods are commonly used to identify candidate pathogenic mutations in these studies. Combining multiple functional prediction methods may increase accuracy in prediction. Here, we propose to use a logit model to combine multiple prediction methods and compute an unbiased probability of a rare variant being pathogenic. Also, for the first time we assess the predictive power of seven prediction methods (including SIFT, PolyPhen2, CONDEL, and logit) in predicting pathogenic nsSNVs from other rare variants, which reflects the situation after MAF filtering is done in exome-sequencing studies. We found that a logit model combining all or some original prediction methods outperforms other methods examined, but is unable to discriminate between autosomal dominant and autosomal recessive disease mutations. Finally, based on the predictions of the logit model, we estimate that an individual has around 5% of rare nsSNVs that are pathogenic and carries ∼22 pathogenic derived alleles at least, which if made homozygous by consanguineous marriages may lead to recessive diseases. PMID:23341771