Sample records for rrna single nucleotide

  1. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    PubMed

    Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M

    2009-10-19

    Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  2. The nucleotide sequence of 5S rRNA from a cellular slime mold Dictyostelium discoideum.

    PubMed Central

    Hori, H; Osawa, S; Iwabuchi, M

    1980-01-01

    The nucleotide sequence of ribosomal 5S rRNA from a cellular slime mold Dictyostelium discoideum is GUAUACGGCCAUACUAGGUUGGAAACACAUCAUCCCGUUCGAUCUGAUA AGUAAAUCGACCUCAGGCCUUCCAAGUACUCUGGUUGGAGACAACAGGGGAACAUAGGGUGCUGUAUACU. A model for the secondary structure of this 5S rRNA is proposed. The sequence is more similar to those of animals (62% similarity on the average) rather than those of yeasts (56%). Images PMID:7465421

  3. Methanosarcina acetivorans 16S rRNA and transcription factor nucleotide fluctuation with implications in exobiology and pathology

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Marchese, P.; Hiciano, O.; Yao, H.; Lieberman, D.; Cheung, T.

    2008-08-01

    Cultures of the methane-producing archaea Methanosarcina, have recently been isolated from Alaskan sediments. It has been proposed that methanogens are strong candidates for exobiological life in extreme conditions. The spatial environmental gradients, such as those associated with the polygons on Mars' surface, could have been produced by past methanogenesis activity. The 16S rRNA gene has been used routinely to classify phenotypes. Using the fractal dimension of nucleotide fluctuation, a comparative study of the 16S rRNA nucleotide fluctuation in Methanosarcina acetivorans C2A, Deinococcus radiodurans, and E. coli was conducted. The results suggest that Methanosarcina acetivorans has the lowest fractal dimension, consistent with its ancestral position in evolution. Variation in fluctuation complexity was also detected in the transcription factors. The transcription factor B (TFB) was found to have a higher fractal dimension as compared to transcription factor E (TFE), consistent with the fact that a single TFB in Methanosarcina acetivorans can code three different TATA box proteins. The average nucleotide pair-wise free energy of the DNA repair genes was found to be highest for Methanosarcina acetivorans, suggesting a relatively weak bonding, which is consistent with its low prevalence in pathology. Multitasking capacity comparison of type-I and type-II topoisomerases has been shown to correlate with fractal dimension using the methicillin-resistant strain MRSA 252. The analysis suggests that gene adaptation in a changing chemical environment can be measured in terms of bioinformatics. Given that the radiation resistant Deinococcus radiodurans is a strong candidate for an extraterrestrial origin and that the cold temperature Psychrobacter cryohalolentis K5 can function in Siberian permafrost, the fractal dimension comparison in this study suggests that a chemical resistant methanogen could exist in extremely cold conditions (such as that which existed on early

  4. Methylation of 23S rRNA Nucleotide G748 by RlmAII Methyltransferase Renders Streptococcus pneumoniae Telithromycin Susceptible

    PubMed Central

    Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-01-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmAII, which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmAII to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmAII renders S. pneumoniae TEL susceptible. PMID:23716046

  5. Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible.

    PubMed

    Takaya, Akiko; Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-08-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmA(II), which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmA(II) to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmA(II) renders S. pneumoniae TEL susceptible.

  6. Nucleotides in 16S rRNA that are required in unmodified form for features recognized by ribosomal protein S8.

    PubMed Central

    Thurlow, D L; Ehresmann, C; Ehresmann, B

    1983-01-01

    Nucleotides in 16S rRNA which are required in unmodified form for specific recognition of ribosomal protein S8 from Escherichia coli were identified using a damage-selection experimental approach. Prior to complex formation with S8, 16S rRNA was treated under fully denaturing conditions with either diethyl pyrocarbonate or 25% hydrazine. Following separation of bound from unbound fragments of RNA, those associated with S8 were analyzed for their content of modified bases by treatment with aniline. Nucleotides found to be consistently unmodified in such fragments were located near the base of a stable helix (encompassing bases 581-656) or near the apex of the helix on the 3' proximal side. A minor S8 ribonucleoprotein particle was found to contain fragments which extended in the 3' direction to position 671. Images PMID:6356037

  7. The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris.

    PubMed

    van Keulen, H; Gutell, R R; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1992-10-01

    The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.

  8. Functional analysis of regulatory single-nucleotide polymorphisms.

    PubMed

    Pampín, Sandra; Rodríguez-Rey, José C

    2007-04-01

    The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.

  9. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket.

    PubMed

    Long, Katherine S; Poehlsgaard, Jacob; Hansen, Lykke H; Hobbie, Sven N; Böttger, Erik C; Vester, Birte

    2009-03-01

    Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.

  10. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  11. Compositions and methods for detecting single nucleotide polymorphisms

    DOEpatents

    Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.

    2016-11-22

    Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.

  12. Development of a simple and practical method of discrimination between Vibrio furnissii and V. fluvialis based on single-nucleotide polymorphisms of 16S rRNA genes observed in V. furnissii but not in V. fluvialis.

    PubMed

    Takajo, Ichiro; Yamada, Akiteru; Umeki, Kazumi; Saeki, Yuji; Hashikura, Yuuki; Yamamoto, Ikuo; Umekita, Kunihiko; Urayama-Kawano, Midori; Yamasaki, Shogo; Taniguchi, Takako; Misawa, Naoaki; Okayama, Akihiko

    2018-01-01

    Vibrio furnissii and V. fluvialis are closely related, the discrimination of which by conventional biochemical assay remains a challenge. Investigation of the sequence of the 16S rRNA genes in a clinical isolate of V. furnissii by visual inspection of a sequencing electropherogram revealed two sites of single-nucleotide polymorphisms (SNPs; positions 460 A/G and 1261 A/G) in these genes. A test of 12 strains each of V. fluvialis and V. furnissii revealed these SNPs to be common in V. furnissii but not in V. fluvialis. Divergence of SNP frequency was observed among the strains of V. furnissii tested. Because the SNPs described in V. furnissii produce a difference in the target sequence of restriction enzymes, a combination of polymerase chain reaction (PCR) of the 16S rRNA genes using conventional primers and restriction fragment length polymorphism analysis using Eco RV and Eae I was shown to discriminate between V. fluvialis and V. furnissii. This method is simple and alleviates the need for expensive equipment or primer sets specific to these bacteria. Therefore, we believe that this method can be useful, alongside specific PCR and mass spectrometry, when there is a need to discriminate between V. fluvialis and V. furnissii. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript.

    PubMed Central

    Veldman, G M; Klootwijk, J; van Heerikhuizen, H; Planta, R J

    1981-01-01

    We have determined the nucleotide sequence of part of a cloned yeast ribosomal RNA operon extending from the 5.8S RNA gene downstream into the 5' -terminal region of the 26S RNA gene. We mapped the pertinent processing sites, viz. the 5' end of 26S rRNA and the 3'ends of 5.8S rRNA and its immediate precursor, 7S RNA. At the 3' end of 7S RNA we find the sequence UCGUUU which is very similar to the type I consensus sequence UCAUUA/U present at the 3' ends of 17S, 5.8S and 26S rRNA as well as 18S precursor rRNA in yeast. At the 5' end of the 26S RNA gene we find a sequence of thirteen nucleotides which is homologous to the type II sequence present at the 5' termini of both the 17S and the 5.8S RNA gene. These findings further support the suggestion put forward earlier (G.M. Veldman et al. (1980) Nucl. Acids Res. 8, 2907-2920) that both consensus sequences are involved in the recognition of precursor rRNA by the processing nuclease(s). We discuss a model for the processing of yeast rRNA in which a processing enzyme sequentially recognizes several combinations of a type I and a type II consensus sequence. We also describe the existence of a significant base complementarity between sequences in the 5' -terminal region of 26S rRNA and the 3' -terminal region of 5.8S rRNA. We suggest that base pairing between these sequences contributes to the binding between 5.8S and 26S rRNA. Images PMID:7312619

  14. Identification of new single nucleotide polymorphism-based markers for inter- and intraspecies discrimination of obligate bacterial parasites (Pasteuria spp.) of invertebrates.

    PubMed

    Mauchline, Tim H; Knox, Rachel; Mohan, Sharad; Powers, Stephen J; Kerry, Brian R; Davies, Keith G; Hirsch, Penny R

    2011-09-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of "cryptic" SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms.

  15. Update on Pneumocystis carinii f. sp. hominis Typing Based on Nucleotide Sequence Variations in Internal Transcribed Spacer Regions of rRNA Genes

    PubMed Central

    Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.

    1998-01-01

    Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304

  16. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    PubMed

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  17. Identification of New Single Nucleotide Polymorphism-Based Markers for Inter- and Intraspecies Discrimination of Obligate Bacterial Parasites (Pasteuria spp.) of Invertebrates ▿ †

    PubMed Central

    Mauchline, Tim H.; Knox, Rachel; Mohan, Sharad; Powers, Stephen J.; Kerry, Brian R.; Davies, Keith G.; Hirsch, Penny R.

    2011-01-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of “cryptic” SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms. PMID:21803895

  18. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  19. Neighborhood of 16S rRNA nucleotides U788/U789 in the 30S ribosomal subunit determined by site-directed crosslinking.

    PubMed

    Mundus, D; Wollenzien, P

    1998-11-01

    Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.

  20. Identification of relevant single-nucleotide polymorphisms in Pneumocystis jirovecii: relationship with clinical data.

    PubMed

    Esteves, F; Gaspar, J; Marques, T; Leite, R; Antunes, F; Mansinho, K; Matos, O

    2010-07-01

    Pneumocystis jirovecii is a poorly understood pathogen that causes opportunistic pneumonia (Pneumocystis pneumonia (PcP)) in patients with AIDS. The present study was aimed at correlating genetic differences in P. jirovecii isolates and clinical patient data. A description of genetic diversity in P. jirovecii isolates from human immunodeficiency virus-positive patients, based on the identification of multiple single-nucleotide polymorphisms (SNPs) at five distinct loci encoding mitochondrial large-subunit rRNA (mtLSU rRNA), cytochrome b (CYB), superoxide dismutase (SOD), dihydrofolate reductase (DHFR), and dihydropteroate synthase (DHPS), was achieved using PCR with DNA sequencing and restriction fragment length polymorphism analysis. The statistical analysis revealed several interesting correlations among the four most relevant SNPs (mt85, SOD110, SOD215, and DHFR312) and specific clinical parameters: mt85C was associated with undiagnosed or atypical PcP episodes and favourable follow-up; SOD215C was associated with favourable follow-up; and DHFR312T was associated with PcP cases presenting moderate to high parasite burdens. The genotypes mt85C/SOD215C and SOD110T/SOD215C were found to be associated with less virulent P. jirovecii infections, whereas the genotype SOD110T/SOD215T was found to be related to more virulent PcP episodes. The present work demonstrated that potential P. jirovecii haplotypes may be related to the clinical data and outcome of PcP.

  1. Control of rRNA transcription in Escherichia coli.

    PubMed Central

    Condon, C; Squires, C; Squires, C L

    1995-01-01

    The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889

  2. Terminator oligo blocking efficiently eliminates rRNA from Drosophila small RNA sequencing libraries.

    PubMed

    Wickersheim, Michelle L; Blumenstiel, Justin P

    2013-11-01

    A large number of methods are available to deplete ribosomal RNA reads from high-throughput RNA sequencing experiments. Such methods are critical for sequencing Drosophila small RNAs between 20 and 30 nucleotides because size selection is not typically sufficient to exclude the highly abundant class of 30 nucleotide 2S rRNA. Here we demonstrate that pre-annealing terminator oligos complimentary to Drosophila 2S rRNA prior to 5' adapter ligation and reverse transcription efficiently depletes 2S rRNA sequences from the sequencing reaction in a simple and inexpensive way. This depletion is highly specific and is achieved with minimal perturbation of miRNA and piRNA profiles.

  3. Clinical Relevance of Multiple Single-Nucleotide Polymorphisms in Pneumocystis jirovecii Pneumonia: Development of a Multiplex PCR-Single-Base-Extension Methodology▿

    PubMed Central

    Esteves, F.; Gaspar, J.; De Sousa, B.; Antunes, F.; Mansinho, K.; Matos, O.

    2011-01-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP. PMID:21389160

  4. Clinical relevance of multiple single-nucleotide polymorphisms in Pneumocystis jirovecii Pneumonia: development of a multiplex PCR-single-base-extension methodology.

    PubMed

    Esteves, F; Gaspar, J; De Sousa, B; Antunes, F; Mansinho, K; Matos, O

    2011-05-01

    Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP.

  5. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekova, legal representative, Natalia V.; Mirzabekov, deceased, Andrei D.

    2007-12-04

    The present invention relates to methods and compositions for using nucleotide sequence variations of 16S and 23S rRNA within the B. cereus group to discriminate a highly infectious bacterium B. anthracis from closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations and discriminate B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed samples, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  6. Identification of an Alternative rRNA Post-transcriptional Maturation of 26S rRNA in the Kingdom Fungi.

    PubMed

    Navarro-Ródenas, Alfonso; Carra, Andrea; Morte, Asunción

    2018-01-01

    Despite of the integrity of their RNA, some desert truffles present a non-canonical profile of rRNA where 3.3 kb is absent, 1.8 kb is clear and a band of 1.6 kb is observed. A similar rRNA profile was identified in organisms belonging to different life kingdoms, with the exception of the Kingdom Fungi, as a result of a split LSU rRNA called hidden gap . rRNA profiles of desert truffles were analyzed to verify the presence of the non-canonical profile. The RNA of desert truffles and yeast were blotted and hybridized with probes complementary to LSU extremes. RACE of LSU rRNA was carried out to determine the LSU rRNA breakage point. LSU rRNA of desert truffles presents a post-transcriptional cleavage of five nucleotides that generates a hidden gap located in domain D7. LSU splits into two molecules of 1.6 and 1.8 kb. Similar to other organisms, a UAAU tract, downstream of the breakage point, was identified. Phylogenetic comparison suggests that during fungi evolution mutations were introduced in the hypervariable D7 domain, resulting in a sequence that is specifically post-transcriptionally cleaved in some desert truffles.

  7. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  8. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition.

    PubMed

    Valinsky, Lea; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2002-12-01

    Thorough assessments of fungal diversity are currently hindered by technological limitations. Here we describe a new method for identifying fungi, oligonucleotide fingerprinting of rRNA genes (OFRG). ORFG sorts arrayed rRNA gene (ribosomal DNA [rDNA]) clones into taxonomic clusters through a series of hybridization experiments, each using a single oligonucleotide probe. A simulated annealing algorithm was used to design an OFRG probe set for fungal rDNA. Analysis of 1,536 fungal rDNA clones derived from soil generated 455 clusters. A pairwise sequence analysis showed that clones with average sequence identities of 99.2% were grouped into the same cluster. To examine the accuracy of the taxonomic identities produced by this OFRG experiment, we determined the nucleotide sequences for 117 clones distributed throughout the tree. For all but two of these clones, the taxonomic identities generated by this OFRG experiment were consistent with those generated by a nucleotide sequence analysis. Eighty-eight percent of the clones were affiliated with Ascomycota, while 12% belonged to BASIDIOMYCOTA: A large fraction of the clones were affiliated with the genera Fusarium (404 clones) and Raciborskiomyces (176 clones). Smaller assemblages of clones had high sequence identities to the Alternaria, Ascobolus, Chaetomium, Cryptococcus, and Rhizoctonia clades.

  9. Detecting Single-Nucleotide Substitutions Induced by Genome Editing.

    PubMed

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-08-01

    The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells. © 2016 Cold Spring Harbor Laboratory Press.

  10. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  11. On the structural features of hairpin triloops in rRNA: from nucleotide to global conformational change upon ligand binding.

    PubMed

    Mitrasinovic, Petar M

    2006-03-01

    RNA structure can be viewed as both a construct composed of various structural motifs and a flexible polymer that is substantially influenced by its environment. In this light, the present paper represents an attempt to reconcile the two standpoints. By using the 3D structures both of four (16S and 23S) portions of unbound 50S, H50S, and T30S ribosomal subunits and of 38 large ribonucleoligand complexes as the starting point, the behavior, which is induced by ligand binding, of 73 hairpin triloops with closing g-c and c-g base pairs was investigated using root-mean-square deviation (RMSD) approach and pseudotorsional (eta,theta) convention at the nucleotide-by-nucleotide level. Triloops were annotated in accordance with a recent proposal of geometric nomenclature. A simple measure for the determination of the strain of a triloop is introduced. It is believed that a possible classification of the interior triloops, based on the 2D eta-theta unique path, will aid to conceive their local behavior upon ligand binding. All rRNA residues in contact with ligands as well as regions of considerable conformational changes upon complex formation were identified. The analysis offers the answer to: how proximal to and how far from the actual ligand-binding sites the structural changes occur?

  12. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  13. rRNA fragmentation induced by a yeast killer toxin.

    PubMed

    Kast, Alene; Klassen, Roland; Meinhardt, Friedhelm

    2014-02-01

    Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins. © 2013 John Wiley & Sons Ltd.

  14. A novel MALDI–TOF based methodology for genotyping single nucleotide polymorphisms

    PubMed Central

    Blondal, Thorarinn; Waage, Benedikt G.; Smarason, Sigurdur V.; Jonsson, Frosti; Fjalldal, Sigridur B.; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V.

    2003-01-01

    A new MALDI–TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3′-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708

  15. Bioluminescent symbionts of the Caribbean flashlight fish (Kryptophanaron alfredi) have a single rRNA operon.

    PubMed

    Wolfe, C J; Haygood, M G

    1993-08-01

    Ribosomal RNA (rRNA) operon copy number and gene order were determined for the luminous bacterial symbiont of Kryptophanaron alfredi, an anomalopid (flashlight) fish, and estimated for the luminous symbionts of 3 other fish families and of 3 luminous seawater isolates. Compared with the seawater isolates and other fish symbionts, the copy number of rRNA genes in the K. alfredi symbiont was radically reduced, although gene order appeared conserved among all the strains. The K. alfredi symbiont possesses only a single rRNA operon, whereas the other strains examined have minimum copy numbers ranging from 8 to 11. No difference in copy number was observed between light organ and seawater isolates of the same species, or between isolates of the same species from the light organs of 2 different host families. Thus, the anomalopid symbiosis appears unique among characterized light organ symbioses.

  16. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose.

    PubMed

    Treede, Irina; Jakobsen, Lene; Kirpekar, Finn; Vester, Birte; Weitnauer, Gabriele; Bechthold, Andreas; Douthwaite, Stephen

    2003-07-01

    Avilamycin is an orthosomycin antibiotic that has shown considerable potential for clinical use, although it is presently used as a growth promoter in animal feed. Avilamycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit. The ribosomes of the producer strain, Streptomyces viridochromogenes Tü57, are protected from the drug by the action of three resistance factors located in the avilamycin biosynthetic gene cluster. Two of the resistance factors, aviRa and aviRb, encode rRNA methyltransferases that specifically target 23S rRNA. Recombinant AviRa and AviRb proteins retain their activity after purification, and both specifically methylate in vitro transcripts of 23S rRNA domain V. Reverse transcriptase primer extension indicated that AviRa is an N-methyltransferase that targets G2535 within helix 91 of the rRNA, whereas AviRb modified the 2'-O-ribose position of nucleotide U2479 within helix 89. MALDI mass spectrometry confirmed the exact positions of each of these modifications, and additionally established that a single methyl group is added at each nucleotide. Neither of these two nucleotides have previously been described as a target for enzymatic methylation. Molecular models of the 50S subunit crystal structure show that the N-1 of the G2535 base and the 2'-hydroxyl of U2479 are separated by approximately 10 A, a distance that can be spanned by avilamycin. In addition to defining new resistance mechanisms, these data refine our understanding of the probable ribosome contacts made by orthosomycins and of how these antibiotics inhibit protein synthesis.

  17. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  18. Infectious mononucleosis-linked HLA class I single nucleotide polymorphism is associated with multiple sclerosis.

    PubMed

    Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q

    2010-11-01

    Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.

  19. Electrical detection and quantification of single and mixed DNA nucleotides in suspension

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah

    2016-09-01

    High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.

  20. Tomato (Solanum lycopersicum) variety discrimination and hybridization analysis based on the 5S rRNA region.

    PubMed

    Sun, Yan-Lin; Kang, Ho-Min; Kim, Young-Sik; Baek, Jun-Pill; Zheng, Shi-Lin; Xiang, Jin-Jun; Hong, Soon-Kwan

    2014-05-04

    The tomato ( Solanum lycopersicum ) is a major vegetable crop worldwide. To satisfy popular demand, more than 500 tomato varieties have been bred. However, a clear variety identification has not been found. Thorough understanding of the phylogenetic relationship and hybridization information of tomato varieties is very important for further variety breeding. Thus, in this study, we collected 26 tomato varieties and attempted to distinguish them based on the 5S rRNA region, which is widely used in the determination of phylogenetic relations. Sequence analysis of the 5S rRNA region suggested that a large number of nucleotide variations exist among tomato varieties. These variable nucleotide sites were also informative regarding hybridization. Chromas sequencing of Yellow Mountain View and Seuwiteuking varieties indicated three and one variable nucleotide sites in the non-transcribed spacer (NTS) of the 5S rRNA region showing hybridization, respectively. Based on a phylogenetic tree constructed using the 5S rRNA sequences, we observed that 16 tomato varieties were divided into three groups at 95% similarity. Rubiking and Sseommeoking, Lang Selection Procedure and Seuwiteuking, and Acorn Gold and Yellow Mountain View exhibited very high identity with their partners. This work will aid variety authentication and provides a basis for further tomato variety breeding.

  1. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation.

    PubMed

    Briggs, M W; Burkard, K T; Butler, J S

    1998-05-22

    The eukaryotic 25 S, 18 S, and 5.8 S rRNAs are synthesized as a single transcript with two internal transcribed spacers (ITS1 and ITS2), which are removed by endo- and exoribonucleolytic steps to produce mature rRNA. Genetic selection for suppressors of a polyadenylation defect yielded two cold-sensitive alleles of a gene that we named RRP6 (ribosomal RNA processing). Molecular cloning of RRP6 revealed its homology to a 100-kDa human, nucleolar PM-Scl autoantigen and to Escherichia coli RNase D, a 3'-5' exoribonuclease. Recessive mutations in rrp6 result in the accumulation of a novel 5. 8 S rRNA processing intermediate, called 5.8 S*, which has normal 5' ends, but retains approximately 30 nucleotides of ITS2. Pulse-chase analysis of 5.8 S rRNA processing in an rrp6- strain revealed a precursor-product relationship between 5.8 S* and 5.8 S rRNAs, suggesting that Rrp6p plays a role in the removal of the last 30 nucleotides of ITS2 from 5.8 S precursors. A portion of 5.8 S* rRNA assembles into 60 S ribosomes which form polyribosomes, suggesting that they function in protein synthesis. These findings indicate that Rrp6p plays a role in 5.8 S rRNA 3' end formation, and they identify a functional intermediate in the rRNA processing pathway.

  2. Detecting associated single-nucleotide polymorphisms on the X chromosome in case control genome-wide association studies.

    PubMed

    Chen, Zhongxue; Ng, Hon Keung Tony; Li, Jing; Liu, Qingzhong; Huang, Hanwen

    2017-04-01

    In the past decade, hundreds of genome-wide association studies have been conducted to detect the significant single-nucleotide polymorphisms that are associated with certain diseases. However, most of the data from the X chromosome were not analyzed and only a few significant associated single-nucleotide polymorphisms from the X chromosome have been identified from genome-wide association studies. This is mainly due to the lack of powerful statistical tests. In this paper, we propose a novel statistical approach that combines the information of single-nucleotide polymorphisms on the X chromosome from both males and females in an efficient way. The proposed approach avoids the need of making strong assumptions about the underlying genetic models. Our proposed statistical test is a robust method that only makes the assumption that the risk allele is the same for both females and males if the single-nucleotide polymorphism is associated with the disease for both genders. Through simulation study and a real data application, we show that the proposed procedure is robust and have excellent performance compared to existing methods. We expect that many more associated single-nucleotide polymorphisms on the X chromosome will be identified if the proposed approach is applied to current available genome-wide association studies data.

  3. Prospects for inferring pairwise relationships with single nucleotide polymorphisms

    Treesearch

    Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody

    2003-01-01

    An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...

  4. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    PubMed

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  5. Single-molecule comparison of DNA Pol I activity with native and analog nucleotides

    NASA Astrophysics Data System (ADS)

    Gul, Osman; Olsen, Tivoli; Choi, Yongki; Corso, Brad; Weiss, Gregory; Collins, Philip

    2014-03-01

    DNA polymerases are critical enzymes for DNA replication, and because of their complex catalytic cycle they are excellent targets for investigation by single-molecule experimental techniques. Recently, we studied the Klenow fragment (KF) of DNA polymerase I using a label-free, electronic technique involving single KF molecules attached to carbon nanotube transistors. The electronic technique allowed long-duration monitoring of a single KF molecule while processing thousands of template strands. Processivity of up to 42 nucleotide bases was directly observed, and statistical analysis of the recordings determined key kinetic parameters for the enzyme's open and closed conformations. Subsequently, we have used the same technique to compare the incorporation of canonical nucleotides like dATP to analogs like 1-thio-2'-dATP. The analog had almost no affect on duration of the closed conformation, during which the nucleotide is incorporated. On the other hand, the analog increased the rate-limiting duration of the open conformation by almost 40%. We propose that the thiolated analog interferes with KF's recognition and binding, two key steps that determine its ensemble turnover rate.

  6. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  7. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  8. [Single nucleotide polymorphism and its application in allogeneic hematopoietic stem cell transplantation--review].

    PubMed

    Li, Su-Xia

    2004-12-01

    Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.

  9. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  10. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.

    PubMed Central

    Dron, M; Rahire, M; Rochaix, J D

    1982-01-01

    The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related. Images PMID:6296784

  11. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  12. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  13. Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.

    PubMed Central

    Schnare, M N; Gray, M W

    1982-01-01

    In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. Images PMID:7079176

  14. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  15. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  16. A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein.

    PubMed Central

    Mougel, M; Philippe, C; Ebel, J P; Ehresmann, B; Ehresmann, C

    1988-01-01

    We have investigated in detail the secondary and tertiary structures of E. coli 16S rRNA binding site of protein S15 using a variety of enzymatic and chemical probes. RNase T1 and nuclease S1 were used to probe unpaired nucleotides and RNase V1 to monitor base-paired or stacked nucleotides. Bases were probed with dimethylsulfate (at A(N-1), C(N-3) and G(N-7)), with 1-cyclohexyl-3 (2-(1-methylmorpholino)-ethyl)-carboiimide-p- toluenesulfonate (at U(N-3) and G(N-1)) and with diethylpyrocarbonate (at A(N-7)). The RNA region corresponding to nucleotides 652 to 753 was tested within: (1) the complete 16S rRNA molecule; (2) a 16S rRNA fragment corresponding to nucleotides 578 to 756 obtained by transcription in vitro; (3) the S15-16S rRNA complex; (4) the S15-fragment complex. Cleavage and modification sites were detected by primer extension with reverse transcriptase. Our results show that: (1) The synthetized fragment folds into the same overall secondary structure as in the complete 16S rRNA, with the exception of the large asymmetrical internal loop (nucleotides 673-676/714-733) which is fully accessible in the fragment while it appears conformationally heterogeneous in the 16S rRNA; (2) the reactivity patterns of the S15-16S rRNA and S15-fragment complexes are identical; (3) the protein protects defined RNA regions, located in the large interior loop and in the 3'-end strand of helix [655-672]-[734-751]; (4) the protein also causes enhanced chemical reactivity and enzyme accessibility interpreted as resulting from a local conformational rearrangement, induced by S15 binding. Images PMID:2453025

  18. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity.

    PubMed Central

    Prestle, J; Schönfelder, M; Adam, G; Mundry, K W

    1992-01-01

    Four different type 1 ribosome-inactivating proteins (RIPs) with RNA N-glycosidase activity were tested for their ability to attack the large rRNA of plant ribosomes derived from tobacco plants, as well as from the plant species from which the particular RIP had been isolated. Incubation of tobacco ribosomes with RIPs isolated from either Phytolacca americana L. (pokeweed), Dianthus barbatus L. (carnation), Spinacia oleracea L. (spinach) or Chenopodium amaranthicolor Coste and Reyn. (chenopodium) rendered the 25S rRNA sensitive to aniline-catalyzed hydrolysis, generating a single rRNA-fragment of about 350 nucleotides. The same fragment was generated when rRNAs from pokeweed, carnation, spinach or chenopodium ribosomes were aniline-treated without any deliberate treatment of the ribosomes with the respective RIP. This indicated that ribosomes from all RIP-producing plants were already inactivated by their own RIPs during preparation. These results demonstrate that plant ribosomes are generally susceptible to RIP attack, including modification by their own RIPs. Direct sequencing of the newly generated fragments revealed that a single N-glycosidic bond at an adenosine residue within the highly conserved sequence 5'-AGUACGAGAGGA-3' was cleaved by all of the RIPs investigated, a situation also found in animal, yeast and Escherichia coli ribosomes. Images PMID:1620614

  19. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  20. Identification and characterization of single nucleotide polymorphisms (SNPs) in Culex theileri (Diptera: Culicidae).

    PubMed

    Demirci, Berna; Lee, Yoosook; Lanzaro, Gregory C; Alten, Bulent

    2012-05-01

    Culex theileri Theobald (Diptera: Culicidae) is one of the most common mosquito species in northeastern Turkey and serves as a vector for various zoonotic diseases including West Nile virus. Although there have been some studies on the ecology of Cx. theileri, very little genetic data has been made available. We successfully sequenced 11 gene fragments from Cx. theileri specimens collected from the northeastern part of Turkey. On average, we found a Single nucleotide polymorphism every 45 bp. Transitions outnumbered transversions, at a ratio of 2:1. This is the first report of genetic polymorphisms in Cx. theileri and Single nucleotide polymorphism discovered from this study can be used to investigate population structure and gene-environmental interactions.

  1. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?

    PubMed

    Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T

    2018-03-15

    The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA

  2. Nucleotide sequence of the ribosomal RNA gene of Physarum polycephalum: intron 2 and its flanking regions of the 26S rRNA gene.

    PubMed Central

    Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y

    1981-01-01

    The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776

  3. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  4. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    PubMed

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    PubMed

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  6. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  7. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical

  8. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  10. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.

    PubMed

    Bao, Zehua; HamediRad, Mohammad; Xue, Pu; Xiao, Han; Tasan, Ipek; Chao, Ran; Liang, Jing; Zhao, Huimin

    2018-07-01

    We developed a CRISPR-Cas9- and homology-directed-repair-assisted genome-scale engineering method named CHAnGE that can rapidly output tens of thousands of specific genetic variants in yeast. More than 98% of target sequences were efficiently edited with an average frequency of 82%. We validate the single-nucleotide resolution genome-editing capability of this technology by creating a genome-wide gene disruption collection and apply our method to improve tolerance to growth inhibitors.

  11. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  12. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    PubMed

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  13. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    PubMed Central

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  14. Relationships among calpastatin single nucleotide polymorphisms, calpastatin expression and tenderness in pork longissimus

    USDA-ARS?s Scientific Manuscript database

    Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...

  15. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  16. Single nucleotide polymorphism analysis reveals heterogeneity within a seedling tree population of a polyembryonic mango cultivar.

    PubMed

    Winterhagen, Patrick; Wünsche, Jens-Norbert

    2016-05-01

    Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.

  17. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki

    2013-09-23

    Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    PubMed

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  19. Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA

    PubMed Central

    Watson, Claire L.; Lockwood, Diana N. J.

    2009-01-01

    Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306

  20. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  1. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    PubMed

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  2. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2011-10-01

    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  3. [Meta-analysis on relationship between single nucleotide polymorphism of rs2231142 in ABCG2 gene and gout in East Asian population].

    PubMed

    Wu, Lei; He, Yao; Zhang, Di

    2015-11-01

    To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.

  4. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  5. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes.

    PubMed

    Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F

    2007-08-01

    Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.

  6. Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antiretroviral therapy.

    PubMed

    Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E

    2007-09-01

    HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.

  7. Single nucleotide variations: Biological impact and theoretical interpretation

    PubMed Central

    Katsonis, Panagiotis; Koire, Amanda; Wilson, Stephen Joseph; Hsu, Teng-Kuei; Lua, Rhonald C; Wilkins, Angela Dawn; Lichtarge, Olivier

    2014-01-01

    Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease-causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics. PMID:25234433

  8. Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis.

    PubMed

    Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A

    2012-05-01

    The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  10. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    PubMed Central

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  11. Growth properties associated with A-U replacement of specific G-C base pairs in 16S rRNA from Escherichia coli.

    PubMed Central

    Triman, K L

    1995-01-01

    Mutations that disrupt each of seven specific G-C base pairs in 16S rRNA from Escherichia coli confer loss of expression of a plasmid-encoded 16S rRNA selectable marker (spectinomycin resistance). However, A-U replacement of G-C base pairs at nucleotides 359/52 or 1292/1245 in 16S rRNA permits normal expression of the marker. By contrast, A-U replacements at 146/176, 153/168, 350/339, or 1293/1244 are associated with loss of expression of the marker. These genetic studies are designed to determine the importance of specific base pairs by assessment of the structural and functional impairments of 16S rRNA molecules resulting from expression of base pair substitutions at these positions. PMID:7543481

  12. Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis

    PubMed Central

    Olsen, Randall J.; Sitkiewicz, Izabela; Ayeras, Ara A.; Gonulal, Vedia E.; Cantu, Concepcion; Beres, Stephen B.; Green, Nicole M.; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P.; Montgomery, Charles A.; Cartwright, Joiner; McGeer, Allison; Low, Donald E.; Whitney, Adeline R.; Cagle, Philip T.; Blasdel, Terry L.; DeLeo, Frank R.; Musser, James M.

    2010-01-01

    Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research. PMID:20080771

  13. Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis.

    PubMed

    Olsen, Randall J; Sitkiewicz, Izabela; Ayeras, Ara A; Gonulal, Vedia E; Cantu, Concepcion; Beres, Stephen B; Green, Nicole M; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P; Montgomery, Charles A; Cartwright, Joiner; McGeer, Allison; Low, Donald E; Whitney, Adeline R; Cagle, Philip T; Blasdel, Terry L; DeLeo, Frank R; Musser, James M

    2010-01-12

    Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.

  14. Informativeness of single nucleotide polymorphisms and relationships among onion populations from important world production regions

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...

  15. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    PubMed

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  16. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  17. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  18. Genotyping of single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers.

    PubMed

    Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T

    2017-02-01

    To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.

  19. ENGINES: exploring single nucleotide variation in entire human genomes.

    PubMed

    Amigo, Jorge; Salas, Antonio; Phillips, Christopher

    2011-04-19

    Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to the web interface is granted from

  20. Associations between single nucleotide polymorphisms in multiple candidate genes and body weight in rabbits

    PubMed Central

    El-Sabrout, Karim; Aggag, Sarah A.

    2017-01-01

    Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458

  1. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, G K; Hillier, L; Brandstrom, M

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to theirmore » wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.« less

  2. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  3. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    USDA-ARS?s Scientific Manuscript database

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  4. Precise detection of de novo single nucleotide variants in human genomes.

    PubMed

    Gómez-Romero, Laura; Palacios-Flores, Kim; Reyes, José; García, Delfino; Boege, Margareta; Dávila, Guillermo; Flores, Margarita; Schatz, Michael C; Palacios, Rafael

    2018-05-22

    The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use. Copyright © 2018 the Author(s). Published by PNAS.

  5. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  6. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    Khrustaleva, A M; Gritsenko, O F; Klovach, N V

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.

  7. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  8. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; El Fantroussi, Said; Smidt, Hauke; Smoot, James C.; Tribou, Erik H.; Kelly, John J.; Noble, Peter A.; Stahl, David A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.

  9. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    PubMed

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the

  10. Association of Nitric Oxide Synthase and Matrix Metalloprotease Single Nucleotide Polymorphisms with Preeclampsia and Its Complications

    PubMed Central

    Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura

    2015-01-01

    Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342

  11. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    PubMed

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  12. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  13. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  14. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    PubMed

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough

  15. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  16. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  17. Development of single-nucleotide polymorphism markers for Bromus tectorum (Poaceae) from a partially sequenced transcriptome

    Treesearch

    Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins

    2016-01-01

    Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...

  18. Meta-analysis of the relationship between single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease.

    PubMed

    Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang

    2018-02-23

    The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.

  19. DNAzyme based gap-LCR detection of single-nucleotide polymorphism.

    PubMed

    Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo

    2013-07-15

    Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  1. Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.

    PubMed

    Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S

    2012-11-10

    We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.

    PubMed

    Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Generation of DNA single-strand displacement by compromised nucleotide excision repair

    PubMed Central

    Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina

    2012-01-01

    Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773

  4. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  5. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk

    USDA-ARS?s Scientific Manuscript database

    Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...

  6. Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.

    PubMed

    Cao, Jiaxue; Wei, Caihong; Zhang, Shuzhen; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Du, Lixin; Zhang, Hongping

    2016-11-01

    Extensive variation in reproduction has arisen in Chinese Mongolian sheep during recent domestication. Hu and Small-tailed Han sheep, for example, have become non-seasonal breeders and exhibit higher fecundity than Tan and Ujumqin breeds. We therefore scanned reproduction-related single-nucleotide variations from methylated DNA-immunoprecipitation sequencing data generated from each of those four breeds to uncover potential mechanisms underlying this breed variation. We generated a high-quality map of single nucleotide variations (SNVs) in DNA methylation enriched regions, and found that the majority of variants are located within non-coding regions. We identified 359 SNVs within the Sheep Quantitative Trait Locus (QTL) database. Nineteen of these SNVs associated with the Aseasonal Reproduction QTL, and 10 out of the 19 reside close to genes with known reproduction functions. We also identified the well-known FecB mutation in high-fecundity sheep (Hu and Small-tailed Han sheep). When we applied these FecB finding to our breeding system, we improved lambing rate by 175%. In summary, this study provided strong candidate SNVs associated with sheep fecundity that can serve as targets for functional testing and to enhance selective breeding strategies. Mol. Reprod. Dev. 83: 958-967, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    PubMed Central

    2010-01-01

    Background Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR) have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH) assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples. PMID:20205957

  8. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis.

    PubMed

    Silva-Junior, Orzenil B; Grattapaglia, Dario

    2015-11-01

    We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. KBG syndrome involving a single-nucleotide duplication in ANKRD11

    PubMed Central

    Kleyner, Robert; Malcolmson, Janet; Tegay, David; Ward, Kenneth; Maughan, Annette; Maughan, Glenn; Nelson, Lesa; Wang, Kai; Robison, Reid; Lyon, Gholson J.

    2016-01-01

    KBG syndrome is a rare autosomal dominant genetic condition characterized by neurological involvement and distinct facial, hand, and skeletal features. More than 70 cases have been reported; however, it is likely that KBG syndrome is underdiagnosed because of lack of comprehensive characterization of the heterogeneous phenotypic features. We describe the clinical manifestations in a male currently 13 years of age, who exhibited symptoms including epilepsy, severe developmental delay, distinct facial features, and hand anomalies, without a positive genetic diagnosis. Subsequent exome sequencing identified a novel de novo heterozygous single base pair duplication (c.6015dupA) in ANKRD11, which was validated by Sanger sequencing. This single-nucleotide duplication is predicted to lead to a premature stop codon and loss of function in ANKRD11, thereby implicating it as contributing to the proband's symptoms and yielding a molecular diagnosis of KBG syndrome. Before molecular diagnosis, this syndrome was not recognized in the proband, as several key features of the disorder were mild and were not recognized by clinicians, further supporting the concept of variable expressivity in many disorders. Although a diagnosis of cerebral folate deficiency has also been given, its significance for the proband's condition remains uncertain. PMID:27900361

  10. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.

    PubMed

    Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio

    2002-10-15

    Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.

  11. Reconstructing population histories from single nucleotide polymorphism data.

    PubMed

    Sirén, Jukka; Marttinen, Pekka; Corander, Jukka

    2011-01-01

    Population genetics encompasses a strong theoretical and applied research tradition on the multiple demographic processes that shape genetic variation present within a species. When several distinct populations exist in the current generation, it is often natural to consider the pattern of their divergence from a single ancestral population in terms of a binary tree structure. Inference about such population histories based on molecular data has been an intensive research topic in the recent years. The most common approach uses coalescent theory to model genealogies of individuals sampled from the current populations. Such methods are able to compare several different evolutionary scenarios and to estimate demographic parameters. However, their major limitation is the enormous computational complexity associated with the indirect modeling of the demographies, which limits the application to small data sets. Here, we propose a novel Bayesian method for inferring population histories from unlinked single nucleotide polymorphisms, which is applicable also to data sets harboring large numbers of individuals from distinct populations. We use an approximation to the neutral Wright-Fisher diffusion to model random fluctuations in allele frequencies. The population histories are modeled as binary rooted trees that represent the historical order of divergence of the different populations. A combination of analytical, numerical, and Monte Carlo integration techniques are utilized for the inferences. A particularly important feature of our approach is that it provides intuitive measures of statistical uncertainty related with the estimates computed, which may be entirely lacking for the alternative methods in this context. The potential of our approach is illustrated by analyses of both simulated and real data sets.

  12. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.

    PubMed

    Shevidi, Saba; Uchida, Alicia; Schudrowitz, Natalie; Wessel, Gary M; Yajima, Mamiko

    2017-12-01

    A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Genome-wide association study of fertility traits in dairy cattle using high-density single nucleotide polymorphism marker panels

    USDA-ARS?s Scientific Manuscript database

    Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...

  14. The effects of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene on meat tenderness of yak.

    USDA-ARS?s Scientific Manuscript database

    The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...

  15. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    PubMed Central

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  16. Imputation of single nucleotide polymorhpism genotypes of Hereford cattle: reference panel size, family relationship and population structure

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to investigate single nucleotide polymorphism (SNP) genotypes imputation of Hereford cattle. Purebred Herefords were from two sources, Line 1 Hereford (N=240) and representatives of Industry Herefords (N=311). Using different reference panels of 62 and 494 males with 1...

  17. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  18. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  19. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes.

    PubMed

    Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing

    2009-06-01

    The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.

  20. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    PubMed

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  1. [Identification of single nucleotide polymorphisms related to frailty].

    PubMed

    Inglés, Marta; Gimeno-Mallench, Lucia; Mas-Bargues, Cristina; Dromant, Mar; Cruz-Guerrero, Raquel; García-García, Francisco José; Rodríguez-Mañas, Leocadio; Gambini, Juan; Borrás, Consuelo; Viña, José

    2018-04-07

    The search for biomarkers that can lead to the early diagnosis and thus, early treatment of frailty, has become one of the main challenges facing the geriatric scientific community. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) related to frailty. The study was conducted on 152 subjects from the Toledo Study for Healthy Aging (65 to 95 years of age), and classified as frail (n=78), and non-frail (n=74), according to Fried's criteria. After blood collection, DNA was isolated and amplified for the analysis of SNPs using Axiom TM Genotyping technology (Affymetrix). Statistical analyses were performed using the Plink program and library SNPassoc. The results of the study showed 15 SNPs with a P<.001. Those SNPs involved in processes related to frailty, such as energy metabolism, regulation of biological processes, cell motility and integrity, and cognition are highlighted. These results suggest that the genetic variations identified in frail individuals that are involved in biological processes related to frailty may be considered as biomarkers for the early detection of frailty. Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  3. Forensically informative nucleotide sequencing (FINS) for the first time authentication of Indian Varanus species: implication in wildlife forensics and conservation.

    PubMed

    Rajpoot, Ankita; Kumar, Ved Prakash; Bahuguna, Archana; Kumar, Dhyanendra

    2017-11-01

    Monitor lizards are Varanus species widely distributed, endangered reptile in the IUCN red data list. In India, based on the morphological and ecological characteristic, it is divided into four species viz. Bengal monitor lizard, Yellow monitor lizard, Desert monitor lizard and Water monitor lizard. These four species listed as Schedule I species in Indian Wildlife (Protection) Act 1972. This paper first attempt to present Forensically Informative Nucleotide Sequencing (FINS) for the Indian Varanus based on three mitochondrial genes. The molecular framework will be useful for the identification of Indian Varanus species and trade products derived from monitors and as such, have important applications for wildlife management and conservation. Here, we used known 14 individual skin pieces of four species of monitor lizards; the partial fragment of three mitochondrial genes (Cyt b, 12S rRNA, and 16S rRNA) were amplified for genetic study. In Cyt b, 12S rRNA and 16s rRNA, we observed, 5, 5 and 4 Haplotypes; 71, 69, and 43 Variables sites; 90, 89, and 50 Parsimony Informative sites within four species of Indian monitor lizards, respectively. Despite it, the nucleotide composition was T 26.4, C 32.8, A 29.2 and G11.6; T 18.8, C 29.7, A 34.0 and G 17.5; T 21.7, C 27.3, A 32.5 and G 18.5 in Cyt b, 12S rRNA and 16S rRNA, respectively. The neighbor joining phylogenetic tree and maximum parsimony tree of three mitochondrial genes, showed similar results and reveal that, there are two major clades are present in Indian monitor lizards.

  4. The association of single-nucleotide polymorphisms in the oxytocin receptor and G protein-coupled receptor kinase 6 (GRK6) genes with oxytocin dosing requirements and labor outcomes.

    PubMed

    Grotegut, Chad A; Ngan, Emily; Garrett, Melanie E; Miranda, Marie Lynn; Ashley-Koch, Allison E; Swamy, Geeta K

    2017-09-01

    Oxytocin is a potent uterotonic agent that is widely used for induction and augmentation of labor. Oxytocin has a narrow therapeutic index and the optimal dosing for any individual woman varies widely. The objective of this study was to determine whether genetic variation in the oxytocin receptor (OXTR) or in the gene encoding G protein-coupled receptor kinase 6 (GRK6), which regulates desensitization of the oxytocin receptor, could explain variation in oxytocin dosing and labor outcomes among women being induced near term. Pregnant women with a singleton gestation residing in Durham County, NC, were prospectively enrolled as part of the Healthy Pregnancy, Healthy Baby cohort study. Those women undergoing an induction of labor at 36 weeks or greater were genotyped for 18 haplotype-tagging single-nucleotide polymorphisms in OXTR and 7 haplotype-tagging single-nucleotide polymorphisms in GRK6 using TaqMan assays. Linear regression was used to examine the relationship between maternal genotype and maximal oxytocin infusion rate, total oxytocin dose received, and duration of labor. Logistic regression was used to test for the association of maternal genotype with mode of delivery. For each outcome, backward selection techniques were utilized to control for important confounding variables and additive genetic models were used. Race/ethnicity was included in all models because of differences in allele frequencies across populations, and Bonferroni correction for multiple testing was used. DNA was available from 482 women undergoing induction of labor at 36 weeks or greater. Eighteen haplotype-tagging single-nucleotide polymorphisms within OXTR and 7 haplotype-tagging single-nucleotide polymorphisms within GRK6 were examined. Five single-nucleotide polymorphisms in OXTR showed nominal significance with maximal infusion rate of oxytocin, and two single-nucleotide polymorphisms in OXTR were associated with total oxytocin dose received. One single-nucleotide polymorphism in

  5. Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA gene.

    PubMed Central

    Li, S; Cullen, D; Hjort, M; Spear, R; Andrews, J H

    1996-01-01

    Aureobasidium pullulans, a cosmopolitan yeast-like fungus, colonizes leaf surfaces and has potential as a biocontrol agent of pathogens. To assess the feasibility of rRNA as a target for A. pullulans-specific oligonucleotide probes, we compared the nucleotide sequences of the small-subunit rRNA (18S) genes of 12 geographically diverse A. pullulans strains. Extreme sequence conservation was observed. The consensus A. pullulans sequence was compared with other fungal sequences to identify potential probes. A 21-mer probe which hybridized to the 12 A. pullulans strains but not to 98 other fungi, including 82 isolates from the phylloplane, was identified. A 17-mer highly specific for Cladosporium herbarum was also identified. These probes have potential in monitoring and quantifying fungi in leaf surface and other microbial communities. PMID:8633850

  6. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    USDA-ARS?s Scientific Manuscript database

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  7. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  8. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  9. Association of single nucleotide polymorphism in CD28(C/T-I3 + 17) and CD40 (C/T-1) genes with the Graves' disease.

    PubMed

    Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan

    2018-01-01

    To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (p<0.001), education (p<0.001), smoking (p<0.001), tri-iodothyronine (P <0.001), thyroxin (p<0.001) and thyroid-stimulating hormone (p<0.000) levels in blood were associated with Graves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.

  10. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    PubMed

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  11. [The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].

    PubMed

    Bai, Peng; Tian, Li; Zhou, Xue-ping

    2005-05-01

    DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.

  12. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers.

    PubMed

    Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2012-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.

  13. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whethermore » Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.« less

  14. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing

    PubMed Central

    Tourlousse, Dieter M.; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro

    2017-01-01

    Abstract High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. PMID:27980100

  15. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene.

    PubMed

    Multani, Shaleen; Saranath, Dhananjaya

    2016-11-01

    Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

  16. Human Mitochondrial RNA Polymerase: Evaluation of the Single-Nucleotide-Addition Cycle on Synthetic RNA/DNA Scaffolds

    PubMed Central

    Smidansky, Eric D.; Arnold, Jamie J.; Reynolds, Shelley L.; Cameron, Craig E.

    2013-01-01

    The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed. PMID:21548588

  17. Single nucleotide polymorphisms of TNF-Α gene in febrile seizures.

    PubMed

    Zare-Shahabadi, Ameneh; Ashrafi, Mahmoud Reza; Shahrokhi, Amin; Soltani, Samaneh; Zoghi, Samaneh; Soleimani, Farin; Vameghi, Roshanak; Badv, Reza Shervin; Rezaei, Nima

    2015-09-15

    Febrile seizures (FS) is the most common seizure disorder during childhood. This study was performed in 78 patients with FS and 137 control subjects to assess polymorphisms of the TNF-α gene at positions -308 and -238, using the polymerase chain reaction and the sequence specific primers method. The highest positive allelic association that made the patients susceptible to FS was seen for TNF-α -238/G (p<0.0001). The GG genotype at TNF-α -238 was significantly higher in the patients with FS, compared to the controls (p=0.0001). Also, GA genotype at the same position was significantly lower in patients than in controls (P=0.0001). The GG haplotype had a significant positive association at TNF-α (308, 238) while GA haplotype showed a negative association (P<0.001). Our data support the idea that TNF-α single-nucleotide polymorphisms play a role in the pathogenesis of FS. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    USDA-ARS?s Scientific Manuscript database

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  19. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    PubMed Central

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  20. Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility

    PubMed Central

    Kimura, Hiroki; Tsuboi, Daisuke; Wang, Chenyao; Kushima, Itaru; Koide, Takayoshi; Ikeda, Masashi; Iwayama, Yoshimi; Toyota, Tomoko; Yamamoto, Noriko; Kunimoto, Shohko; Nakamura, Yukako; Yoshimi, Akira; Banno, Masahiro; Xing, Jingrui; Takasaki, Yuto; Yoshida, Mami; Aleksic, Branko; Uno, Yota; Okada, Takashi; Iidaka, Tetsuya; Inada, Toshiya; Suzuki, Michio; Ujike, Hiroshi; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Iwata, Nakao; Kaibuchi, Kozo; Ozaki, Norio

    2015-01-01

    Background: Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. Methods and Results: We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). Conclusions: This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder. PMID:25332407

  1. Association of glutathione S-transferase pi isoform single-nucleotide polymorphisms with exudative age-related macular degeneration in a Chinese population.

    PubMed

    Gu, Hong; Sun, Erdan; Cui, Lei; Yang, Xiufen; Lim, Apiradee; Xu, Jun; Snellingen, Torkel; Liu, Xipu; Wang, Ningli; Liu, Ningpu

    2012-10-01

    To investigate the association between single-nucleotide polymorphisms in the pi isoform of glutathione S-transferase (GSTP1) gene and the risk of exudative age-related macular degeneration (AMD) in a Chinese case-control cohort. A total of 131 Chinese patients with exudative AMD and 138 control individuals were recruited. Genomic DNA was extracted from venous blood leukocytes. Two common nonsynonymous single-nucleotide polymorphisms in GSTP1 (rs1695 and rs1138272) were genotyped by polymerase chain reaction followed by allele-specific restriction enzyme digestion and direct sequencing. Significant association with exudative AMD was detected for single-nucleotide polymorphism, rs1695 (P = 0.019). The risk G allele frequencies were 21.8% in AMD patients and 12.7% in control subjects (P = 0.007). Compared with the wild-type AA genotype, odds ratio for the risk of AMD was 1.91 (95% confidence interval, 1.09-3.35) for the heterozygous AG genotype and 2.52 (95% confidence interval, 0.6-10.61) for the homozygous GG genotype. In contrast, rs1138272 was not associated with exudative AMD (P = 1.00). The risk G allele frequencies of rs1138272 were 0.4% in AMD patients and 0.4% in control subjects (P = 1.00). Our data suggest that the GSTP1 variant rs1695 moderately increases the risk of exudative AMD. The variant rs1138272 was rare and was not associated with exudative AMD in this Chinese cohort.

  2. Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening

    PubMed Central

    Jenkins, Mark A; Makalic, Enes; Dowty, James G; Schmidt, Daniel F; Dite, Gillian S; MacInnis, Robert J; Ait Ouakrim, Driss; Clendenning, Mark; Flander, Louisa B; Stanesby, Oliver K; Hopper, John L; Win, Aung K; Buchanan, Daniel D

    2016-01-01

    Aim: To determine whether single nucleotide polymorphisms (SNPs) can be used to identify people who should be screened for colorectal cancer. Methods: We simulated one million people with and without colorectal cancer based on published SNP allele frequencies and strengths of colorectal cancer association. We estimated 5-year risks of colorectal cancer by number of risk alleles. Results: We identified 45 SNPs with an average 1.14-fold increase colorectal cancer risk per allele (range: 1.05–1.53). The colorectal cancer risk for people in the highest quintile of risk alleles was 1.81-times that for the average person. Conclusion: We have quantified the extent to which known susceptibility SNPs can stratify the population into clinically useful colorectal cancer risk categories. PMID:26846999

  3. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  4. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    PubMed

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  5. Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing

    PubMed Central

    Sharma, Kishor; Tollervey, David

    1999-01-01

    The loop of a stem structure close to the 5′ end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A1, the 5′ end of the 18S rRNA, and at site A2, located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3–pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5′ external transcribed spacer (5′ ETS). Cleavage at site A0 in the yeast 5′ ETS strictly requires base pairing between U3 and a sequence within the 5′ ETS. In contrast, the U3-18S interaction is not required for A0 cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A1 cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A1 cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing. PMID:10454548

  6. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli.

    PubMed

    Triman, K; Becker, E; Dammel, C; Katz, J; Mori, H; Douthwaite, S; Yapijakis, C; Yoast, S; Noller, H F

    1989-10-20

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.

  7. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    PubMed Central

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  8. Antibiotic Resistance and Single-Nucleotide Polymorphism Cluster Grouping Type in a Multinational Sample of Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.

    2007-01-01

    A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140

  9. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    PubMed

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  10. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  11. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    PubMed

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing.

    PubMed

    Tourlousse, Dieter M; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro; Sekiguchi, Yuji

    2017-02-28

    High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC.

    PubMed

    Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L

    2006-01-15

    Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.

  14. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  15. Three Cases of Anaerobiospirillum succiniciproducens Bacteremia Confirmed by 16S rRNA Gene Sequencing

    PubMed Central

    Tee, Wee; Korman, Tony M.; Waters, Mary Jo; Macphee, Andrew; Jenney, Adam; Joyce, Linda; Dyall-Smith, Michael L.

    1998-01-01

    We describe three cases of Anaerobiospirillum succiniciproducens bacteremia from Australia. We believe one of these cases represents the first report of A. succiniciproducens bacteremia in a human immunodeficiency virus (HIV)-infected individual. The other two patients had an underlying disorder (one patient had bleeding esophageal varices complicating alcohol liver disease and one patient had non-Hodgkin’s lymphoma). A motile, gram-negative, spiral anaerobe was isolated by culturing blood from all patients. Electron microscopy showed a curved bacterium with bipolar tufts of flagella resembling Anaerobiospirillum spp. Sequencing of the 16S rRNA genes of the isolates revealed no close relatives (organisms likely to be in the same genus) in the sequence databases, nor were any sequence data available for A. succiniciproducens. This report presents for the first time the 16S rRNA gene sequence of the type strain of A. succiniciproducens, strain ATCC 29305. Two of the three clinical isolates have sequences identical to that of the type strain, while the sequence of the other strain differs from that of the type strain at 4 nucleotides. PMID:9574678

  16. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.

    PubMed

    Yokoyama, Keiko; Doi, Yohei; Yamane, Kunikazu; Kurokawa, Hiroshi; Shibata, Naohiro; Shibayama, Keigo; Yagi, Tetsuya; Kato, Haru; Arakawa, Yoshichika

    2003-12-06

    Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.

  17. Crystal Structure of the Escherichia coli 23S rRNA: m{5}C Methyltransferase RlmI (YccW) Reveals Evolutionary Links Between RNA Modification Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita, S.; Tkaczuk, K; Purta, E

    2008-01-01

    Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 {angstrom} to a final R-factor of 0.194 (R{sub free} = 0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously foundmore » in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a {Beta}-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.« less

  18. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice.

    PubMed

    Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, Hongbin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan

    2007-04-17

    The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.

  19. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice

    PubMed Central

    Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, HongBin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan

    2007-01-01

    Background The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. Results A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. Conclusion A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia. PMID:17439653

  20. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Bae, Taeok; Mankin, Alexander S.

    2008-01-01

    A2503 in 23S rRNA of the Gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in Gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction. PMID:18025251

  1. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    ERIC Educational Resources Information Center

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  2. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  3. The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans.

    PubMed Central

    Kumazaki, T; Hori, H; Osawa, S; Ishii, N; Suzuki, K

    1982-01-01

    The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%). PMID:6891053

  4. The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans.

    PubMed

    Kumazaki, T; Hori, H; Osawa, S; Ishii, N; Suzuki, K

    1982-11-11

    The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%).

  5. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  6. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

    USDA-ARS?s Scientific Manuscript database

    Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...

  7. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania.

    PubMed

    Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B

    2012-12-01

    Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.

  8. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania

    PubMed Central

    Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B

    2012-01-01

    Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved. PMID:22767185

  9. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    PubMed

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  10. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  11. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  12. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  13. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  14. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  15. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markersmore » is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.« less

  16. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    PubMed

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Single Nucleotide Variants Associated With Polygenic Hypercholesterolemia in Families Diagnosed Clinically With Familial Hypercholesterolemia.

    PubMed

    Lamiquiz-Moneo, Itziar; Pérez-Ruiz, María Rosario; Jarauta, Estíbaliz; Tejedor, María Teresa; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Baila-Rueda, Lucía; Marco-Benedí, Victoria; de Castro-Orós, Isabel; Cenarro, Ana; Civeira, Fernando

    2018-05-01

    Approximately 20% to 40% of clinically defined familial hypercholesterolemia cases do not show a causative mutation in candidate genes, and some of them may have a polygenic origin. A cholesterol gene risk score for the diagnosis of polygenic hypercholesterolemia has been demonstrated to be valuable to differentiate polygenic and monogenic hypercholesterolemia. The aim of this study was to determine the contribution to low-density lipoprotein cholesterol (LDL-C) of the single nucleotide variants associated with polygenic hypercholesterolemia in probands with genetic hypercholesterolemia without mutations in candidate genes (nonfamilial hypercholesterolemia genetic hypercholesterolemia) and the genetic score in cascade screening in their family members. We recruited 49 nonfamilial hypercholesterolemia genetic hypercholesterolemia families (294 participants) and calculated cholesterol gene scores, derived from single nucleotide variants in SORT1, APOB, ABCG8, APOE and LDLR and lipoprotein(a) plasma concentration. Risk alleles in SORT1, ABCG8, APOE, and LDLR showed a statistically significantly higher frequency in blood relatives than in the 1000 Genomes Project. However, there were no differences between affected and nonaffected members. The contribution of the cholesterol gene score to LDL-C was significantly higher in affected than in nonaffected participants (P = .048). The percentage of the LDL-C variation explained by the score was 3.1%, and this percentage increased to 6.9% in those families with the highest genetic score in the proband. Nonfamilial hypercholesterolemia genetic hypercholesterolemia families concentrate risk alleles for high LDL-C. Their contribution varies greatly among families, indicating the complexity and heterogeneity of these forms of hypercholesterolemias. The gene score explains a small percentage of LDL-C, which limits its use in diagnosis. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All

  18. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet

  19. Association Between Single Nucleotide Polymorphism +276G > T (rs1501299) in ADIPOQ and Endometrial Cancer.

    PubMed

    Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej

    2016-01-01

    Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.

  20. Effect of increasing the number of single-nucleotide polymorphisms from 60,000 to 85,000 in genomic evaluation of Holsteins

    USDA-ARS?s Scientific Manuscript database

    The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...

  1. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  2. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer.

    PubMed

    Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu

    2016-10-01

    Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.

  3. Single nucleotide polymorphisms in specific candidate genes are associated with phenotypic differences in days open for first lactation in Holstein cows

    USDA-ARS?s Scientific Manuscript database

    Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...

  4. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  5. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  6. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  7. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome.

    PubMed

    Wang, Hui-Yun; Luo, Minjie; Tereshchenko, Irina V; Frikker, Danielle M; Cui, Xiangfeng; Li, James Y; Hu, Guohong; Chu, Yi; Azaro, Marco A; Lin, Yong; Shen, Li; Yang, Qifeng; Kambouris, Manousos E; Gao, Richeng; Shih, Weichung; Li, Honghua

    2005-02-01

    A high-throughput genotyping system for scoring single nucleotide polymorphisms (SNPs) has been developed. With this system, >1000 SNPs can be analyzed in a single assay, with a sensitivity that allows the use of single haploid cells as starting material. In the multiplex polymorphic sequence amplification step, instead of attaching universal sequences to the amplicons, primers that are unlikely to have nonspecific and productive interactions are used. Genotypes of SNPs are then determined by using the widely accessible microarray technology and the simple single-base extension assay. Three SNP panels, each consisting of >1000 SNPs, were incorporated into this system. The system was used to analyze 24 human genomic DNA samples. With 5 ng of human genomic DNA, the average detection rate was 98.22% when single probes were used, and 96.71% could be detected by dual probes in different directions. When single sperm cells were used, 91.88% of the SNPs were detectable, which is comparable to the level that was reached when very few genetic markers were used. By using a dual-probe assay, the average genotyping accuracy was 99.96% for 5 ng of human genomic DNA and 99.95% for single sperm. This system may be used to significantly facilitate large-scale genetic analysis even if the amount of DNA template is very limited or even highly degraded as that obtained from paraffin-embedded cancer specimens, and to make many unpractical research projects highly realistic and affordable.

  8. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time.

    PubMed

    Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett

    2017-01-01

    Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.

  9. Using Single-Nucleotide Polymorphisms To Discriminate Disease-Associated from Carried Genomes of Neisseria meningitidis▿†

    PubMed Central

    Katz, Lee S.; Sharma, Nitya V.; Harcourt, Brian H.; Thomas, Jennifer Dolan; Wang, Xin; Mayer, Leonard W.; Jordan, I. King

    2011-01-01

    Neisseria meningitidis is one of the main agents of bacterial meningitis, causing substantial morbidity and mortality worldwide. However, most of the time N. meningitidis is carried as a commensal not associated with invasive disease. The genomic basis of the difference between disease-associated and carried isolates of N. meningitidis may provide critical insight into mechanisms of virulence, yet it has remained elusive. Here, we have taken a comparative genomics approach to interrogate the difference between disease-associated and carried isolates of N. meningitidis at the level of individual nucleotide variations (i.e., single nucleotide polymorphisms [SNPs]). We aligned complete genome sequences of 8 disease-associated and 4 carried isolates of N. meningitidis to search for SNPs that show mutually exclusive patterns of variation between the two groups. We found 63 SNPs that distinguish the 8 disease-associated genomes from the 4 carried genomes of N. meningitidis, which is far more than can be expected by chance alone given the level of nucleotide variation among the genomes. The putative list of SNPs that discriminate between disease-associated and carriage genomes may be expected to change with increased sampling or changes in the identities of the isolates being compared. Nevertheless, we show that these discriminating SNPs are more likely to reflect phenotypic differences than shared evolutionary history. Discriminating SNPs were mapped to genes, and the functions of the genes were evaluated for possible connections to virulence mechanisms. A number of overrepresented functional categories related to virulence were uncovered among SNP-associated genes, including genes related to the category “symbiosis, encompassing mutualism through parasitism.” PMID:21622743

  10. Using PCR-RFLP technology to teach single nucleotide polymorphism for undergraduates.

    PubMed

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a serial experiment in molecular biology laboratory course to teach single nucleotide polymorphism (SNP) to undergraduate students majoring in molecular biology or genetics. The flanking sequence of rs4382766 was located in Prdx6 gene, which contained a restriction site of SspI, and was used as a target in this lab course. The students could mimic real research by integrating different techniques, such as database retrieving, genomic DNA isolation, PCR, and restriction enzyme assay. This serial experiment of PCR-RFLP helps students set up intact idea of molecular biology and understand the relation among individual experiments. Students were found to be more enthusiastic during the laboratory classes than those in the former curriculum. Copyright © 2013 Wiley Periodicals, Inc.

  11. Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse.

    PubMed

    Parliament, Matthew B; Murray, David

    2010-10-01

    Radiation therapy is a key modality in the treatment of cancer. Substantial progress has been made in unraveling the molecular events which underpin the responses of malignant and surrounding normal tissues to ionizing radiation. An understanding of the genes involved in processes such as DNA double-strand break repair, DNA damage response, cell-cycle control, apoptosis, cellular antioxidant defenses, and cytokine production, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Experimental approaches, such as candidate SNP-association studies, genome-wide association studies, and massively parallel sequencing are being proposed to address these questions. We present a focused review of the evidence supporting an association between SNPs in DNA repair genes and radioresponse in normal tissues and tumors. Although preliminary results indicate possible associations, there are methodological weaknesses in many of the studies, and independent validation of SNPs as biomarkers of radioresponse in much larger cohorts will likely require research cooperation through international consortia. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.

    PubMed

    Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A

    2006-08-01

    Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.

  13. SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.

    PubMed

    Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi

    2017-09-14

    The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. An integrated genetic linkage map of watermelon and genetic diversity based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...

  15. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different

  16. Increased 5S rRNA oxidation in Alzheimer's disease.

    PubMed

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  17. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.

    PubMed

    van Binsbergen, R; Veerkamp, R F; Calus, M P L

    2012-04-01

    The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  19. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  20. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain

    PubMed Central

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan

    2017-01-01

    Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621

  1. High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling

    PubMed Central

    Till, Bradley J.; Zerr, Troy; Bowers, Elisabeth; Greene, Elizabeth A.; Comai, Luca; Henikoff, Steven

    2006-01-01

    Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease. PMID:16893952

  2. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer

    PubMed Central

    Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu

    2016-01-01

    Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262

  3. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.

  4. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  5. Impact of IL-10 (-1082) promoter-single nucleotide polymorphism on the outcome of hepatitis C virus genotype 4 infection.

    PubMed

    Helal, Soheir F; Gomaa, Howayda E; Thabet, Eman H; Younan, Mariam A; Helmy, Neveen A

    2014-01-01

    Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (-1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (-1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (-1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects.

  6. Characterization of frequencies and distribution of single nucleotide insertions/deletions in the human genome.

    PubMed

    Tan, Ene-Choo; Li, Haixia

    2006-07-19

    Most of the studies on single nucleotide variations are on substitutions rather than insertions/deletions. In this study, we examined the distribution and characteristics of single nucleotide insertions/deletions (SNindels), using data available from dbSNP for all the human chromosomes. There are almost 300,000 SNindels in the database, of which only 0.8% are validated. They occur at the frequency of 0.887 per 10 kb on average for the whole genome, or approximately 1 for every 11,274 bp. More than half occur in regions with mononucleotide repeats the longest of which is 47 bases. Overall the mononucleotide repeats involving C and G are much shorter than those for A and T. About 12% are surrounded by palindromes. There is general correlation between chromosome size and total number for each chromosome. Inter-chromosomal variation in density ranges from 0.6 to 21.7 per kilobase. The overall spectrum shows very high proportion of SNindel of types -/A and -/T at over 81%. The proportion of -/A and -/T SNindels for each chromosome is correlated to its AT content. Less than half of the SNindels are within or near known genes and even fewer (<0.183%) in coding regions, and more than 1.4% of -/C and -/G are in coding compared to 0.2% for -/A and -/T types. SNindels of -/A and -/T types make up 80% of those found within untranslated regions but less than 40% of those within coding regions. A separate analysis using the subset of 2324 validated SNindels showed slightly less AT bias of 74%, SNindels not within mononucleotide repeats showed even less AT bias at 58%. Density of validated SNindels is 0.007/10 kb overall and 90% are found within or near genes. Among all chromosomes, Y has the lowest numbers and densities for all SNindels, validated SNindels, and SNindels not within repeats.

  7. Structure of a eukaryotic cyclic nucleotide-gated channel

    PubMed Central

    Li, Minghui; Zhou, Xiaoyuan; Wang, Shu; Michailidis, Ioannis; Gong, Ye; Su, Deyuan; Li, Huan; Li, Xueming; Yang, Jian

    2018-01-01

    Summary Cyclic nucleotide-gated (CNG) channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5 Å-resolution single-particle electron cryomicroscopy structure of a CNG channel from C. elegans in the cGMP-bound open state. The channel has an unusual voltage-sensor-like domain (VSLD), accounting for its deficient voltage dependence. A C-terminal linker connecting S6 and the cyclic nucleotide-binding domain interacts directly with both the VSLD and pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of CNG channels and cyclic nucleotide modulation of related channels. PMID:28099415

  8. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes.

    PubMed

    Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C

    2002-11-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.

  9. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer.

    PubMed

    Wong, Wing Chung; Kim, Dewey; Carter, Hannah; Diekhans, Mark; Ryan, Michael C; Karchin, Rachel

    2011-08-01

    Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python <3.0*, MySQL server >5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM.

  10. Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro

    2012-04-01

    A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.

  11. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0

    PubMed Central

    Tomecki, Rafal; Labno, Anna; Drazkowska, Karolina; Cysewski, Dominik; Dziembowski, Andrzej

    2015-01-01

    Production of ribosomes relies on more than 200 accessory factors to ensure the proper sequence of steps and faultless assembly of ribonucleoprotein machinery. Among trans-acting factors are numerous enzymes, including ribonucleases responsible for processing the large rRNA precursor synthesized by RNA polymerase I that encompasses sequences corresponding to mature 18S, 5.8S, and 25/28S rRNA. In humans, the identity of most enzymes responsible for individual processing steps, including endoribonucleases that cleave pre-rRNA at specific sites within regions flanking and separating mature rRNA, remains largely unknown. Here, we investigated the role of hUTP24 in rRNA maturation in human cells. hUTP24 is a human homolog of the Saccharomyces cerevisiae putative PIN domain-containing endoribonuclease Utp24 (yUtp24), which was suggested to participate in the U3 snoRNA-dependent processing of yeast pre-rRNA at sites A0, A1, and A2. We demonstrate that hUTP24 interacts to some extent with proteins homologous to the components of the yeast small subunit (SSU) processome. Moreover, mutation in the putative catalytic site of hUTP24 results in slowed growth of cells and reduced metabolic activity. These effects are associated with a defect in biogenesis of the 40S ribosomal subunit, which results from decreased amounts of 18S rRNA as a consequence of inaccurate pre-rRNA processing at the 5′-end of the 18S rRNA segment (site A1). Interestingly, and in contrast to yeast, site A0 located upstream of A1 is efficiently processed upon UTP24 dysfunction. Finally, hUTP24 inactivation leads to aberrant processing of 18S rRNA 2 nucleotides downstream of the normal A1 cleavage site. PMID:26237581

  12. Performance of Single Nucleotide Polymorphisms versus Haplotypes for Genome-Wide Association Analysis in Barley

    PubMed Central

    Jannink, Jean-Luc

    2010-01-01

    Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data. PMID:21124933

  13. IL10 single nucleotide polymorphisms are related to upregulation of constitutive IL-10 production and susceptibility to Helicobacter pylori infection.

    PubMed

    Assis, Shirleide; Marques, Cintia Rodrigues; Silva, Thiago Magalhães; Costa, Ryan Santos; Alcantara-Neves, Neuza Maria; Barreto, Mauricio Lima; Barnes, Kathleen Carole; Figueiredo, Camila Alexandrina

    2014-06-01

    Helicobacter pylori infection is a strong risk factor for gastric cancer, likely due to the extensive inflammation in the stomach mucosa caused by these bacteria. Many studies have reported an association between IL10 polymorphisms, the risk of gastric cancer, and IL-10 production. The aim of the study was to evaluate the association between IL10 genetic variants, Helicobacter pylori infection, and IL-10 production by peripheral blood leukocytes in children. We genotyped a total of 12 single nucleotide polymorphisms in IL10 in 1259 children aged 4-11 years living in a poor urban area in Salvador, Brazil, using TaqMan probe based, 5' nuclease assay minor groove binder chemistry. Association tests were performed by logistic regression for Helicobacter pylori infection and linear regression for IL-10 spontaneous production (whole-blood cultures) including sex, age, and principal components for informative ancestry markers as covariates, using PLINK. Our results shown that IL10 single nucleotide polymorphisms rs1800896 (OR = 1.63; 95% CI = 1.11-2.39), rs3024491 (OR = 1.71; 95% CI = 1.14-2.57), rs1878672 (OR = 1.79; 95% CI = 1.19-2.68), and rs3024496 (OR = 1.48; 95% CI = 1.05-2.08) were positively associated with Helicobacter pylori infection. Eight single nucleotide polymorphisms were associated with spontaneous production of IL-10 in culture, of which three (rs1800896 and rs1878672, p = .04; rs3024491, p = .01) were strongly associated with infection by Helicobacter pylori. Our results indicate that IL10 variants rs1800896, rs3024491, rs1878672, and rs3024496 are more consistently associated with the presence of anti-H. pylori IgG by inducing increased production of IL-10. Further studies are underway to elucidate the role of additional genetic variants and to investigate their impact on the occurrence of gastric cancer. © 2014 John Wiley & Sons Ltd.

  14. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.

    PubMed

    Pulk, Arto; Maiväli, Ulo; Remme, Jaanus

    2006-05-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.

  16. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association

    PubMed Central

    Pulk, Arto; Maiväli, Ülo; Remme, Jaanus

    2006-01-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts. PMID:16556933

  17. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  18. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria.

    PubMed

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association.

  19. Optimization of the Divergent method for genotyping single nucleotide variations using SYBR Green-based single-tube real-time PCR.

    PubMed

    Gentilini, Fabio; Turba, Maria E

    2014-01-01

    A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. N6-Methylation Assessment in Escherichia coli 23S rRNA Utilizing a Bulge Loop in an RNA-DNA Hybrid.

    PubMed

    Yoshioka, Kyoko; Kurita, Ryoji

    2018-06-07

    We propose a sequence-selective assay of N6-methyl-adenosine (m6A) in RNA without PCR or reverse transcription, by employing a hybridization assay with a DNA probe designed to form a bulge loop at the position of a target modified nucleotide. The m6A in the bulge in the RNA-DNA hybrid was assumed to be sufficiently mobile to be selectively recognized by an anti-m6A antibody with a high affinity. By employing a surface-plasmon-resonance measurement or using a microtiter-plate immunoassay method, a specific m6A in the Escherichia coli 23S rRNA sequence could be detected at the nanomolar level when synthesized and purified oligo-RNA fragments were used for measurement. We have successfully achieved the first selective detection of m6A 2030 specifically in 23S rRNA from real samples of E. coli total RNA by using our immunochemical approach.

  1. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  2. Failure of replicating the association between hippocampal volume and 3 single-nucleotide polymorphisms identified from the European genome-wide association study in Asian populations.

    PubMed

    Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing

    2014-12-01

    Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer

    PubMed Central

    Carter, Hannah; Diekhans, Mark; Ryan, Michael C.; Karchin, Rachel

    2011-01-01

    Summary: Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. Availability and Implementation: MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python <3.0*, MySQL server >5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM. Contact: karchin@jhu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21685053

  4. [Association between single-nucleotide polymorphisms in the IRAK-4 gene and allergic rhinitis].

    PubMed

    Zhang, Yuan; Xi, Lin; Zhao, Yan-ming; Zhao, Li-ping; Zhang, Luo

    2012-06-01

    To investigate the genetic association pattern between single-nucleotide polymorphisms (SNP) in the interleukin-1 receptor-associated kinase 4 (IRAK-4) gene and allergic rhinitis (AR). A population of 379 patients with the diagnosis of AR and 333 healthy controls who lived in Beijing region was recruited. A total of 8 reprehensive marker SNP which were in IRAK-4 gene region were selected according to the Beijing people database from Hapmap website. The individual genotyping was performed by MassARRAY platform. SPSS 13.0 software was used for statistic analysis. Subgroup analysis for the presence of different allergen sensitivities displayed associations only in the house dust mite-allergic cohorts (rs3794262: P = 0.0034, OR = 1.7388; rs4251481: P = 0.0023, OR = 2.6593), but not in subjects who were allergic to pollens as well as mix allergens. The potential genetic contribution of the IRAK-4 gene to AR demonstrated an allergen-dependant association pattern in Chinese population.

  5. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  6. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).

    PubMed

    Douzery, E; Catzeflis, F M

    1995-11-01

    The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of the suborder Ruminantia was not supported and the branching pattern between Cetacea and the artiodacytyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced

  7. Impact of IL-10 (−1082) Promoter–Single Nucleotide Polymorphism on the Outcome of Hepatitis C Virus Genotype 4 Infection

    PubMed Central

    Helal, Soheir F.; Gomaa, Howayda E.; Thabet, Eman H.; Younan, Mariam A.; Helmy, Neveen A.

    2014-01-01

    Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (−1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (−1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (−1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). CONCLUSION No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects. PMID:24833945

  8. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    PubMed

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  9. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    PubMed

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  11. Identification of single-nucleotide polymorphisms of the prion protein gene in sika deer (Cervus nippon laiouanus)

    PubMed Central

    Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun

    2007-01-01

    Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779

  12. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria

    PubMed Central

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association. PMID:28158221

  13. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    PubMed

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  14. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.

    PubMed

    Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C

    2003-09-30

    Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.

  15. Association of PTPN22 Single Nucleotide Polymorphisms with Celiac Disease.

    PubMed

    Aflatounian, Majid; Rezaei, Arezou; Sadr, Maryam; Saghazadeh, Amene; Elhamian, Nazanin; Sadeghi, Hengameh; Motevasselian, Fatemeh; Farahmand, Fatemeh; Fallahi, Gholamhossein; Motamed, Farzaneh; Najafi, Mehri; Rezaei, Nima

    2017-06-01

    Celiac disease is a chronic autoimmune disease in which gene-environment interactions cause the immune system to unfavorably react to naturally gluten-containing foods. PTPN22 plays a crucial role in regulating the function of various cells of the immune system, particularly T cells. Polymorphisms of the PTPN22 gene have been associated with many autoimmune diseases. The present genetic association study was conducted to investigate the possible associations between PTPNTT single nucleotide polymorphisms (SNPs) and celiac disease in an Iranian population. The study population consisted of 45 patients with celiac disease and 93 healthy controls. The study genotyped five SNPs of the PTPN22 gene: rs12760457, rs1310182, rs1217414, rs33996649, and rs2476601. Control and patient groups did not differ on the genotype distribution of four of five investigated SNPs in the PTPN22 gene, for example, rs12760457, rs2476601, rs1217414, and rs33996649. The only investigated PTPN22 variant, which could be associated with CD, was rs1310182. A significant increase in the carriage of the T allele of rs1310182 in CD patients was observed (OR (95% CI) = 11.42 (5.41, 24.1), p value < 0.0001). The TT genotype of this SNP was significantly associated with celiac disease. Our study suggests that the rs1310182 SNP of PTPN22 gene may be a predisposing factor of celiac disease in the Iranian population. Further studies are required to investigate the issue in other racial and ethnic subgroups.

  16. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.

    PubMed

    Van der Borght, Koen; Thys, Kim; Wetzels, Yves; Clement, Lieven; Verbist, Bie; Reumers, Joke; van Vlijmen, Herman; Aerssens, Jeroen

    2015-11-10

    Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNV(D)). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNV(HS)). To also increase specificity, SNVs called were overruled when their frequency was below the 80(th) percentile calculated on the distribution of error frequencies (QQ-SNV(HS-P80)). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNV(D) performed similarly to the existing approaches. QQ-SNV(HS) was more sensitive on all test sets but with more false positives. QQ-SNV(HS-P80) was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5%, QQ-SNV(HS-P80) revealed a sensitivity of 100% (vs. 40-60% for the existing methods) and a specificity of 100% (vs. 98.0-99.7% for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5% were consistently detected by QQ-SNV(HS-P80) from different

  17. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils.

    PubMed

    Duan, Y P; Castro, H F; Hewlett, T E; White, J H; Ogram, A V

    2003-01-01

    Various bacterial species in the genus Pasteuria have great potential as biocontrol agents against plant-parasitic nematodes, although study of this important genus is hampered by the current inability to cultivate Pasteuria species outside their host. To aid in the study of this genus, an extensive 16S rRNA gene sequence phylogeny was constructed and this information was used to develop cultivation-independent methods for detection of Pasteuria in soils and nematodes. Thirty new clones of Pasteuria 16S rRNA genes were obtained directly from nematodes and soil samples. These were sequenced and used to construct an extensive phylogeny of this genus. These sequences were divided into two deeply branching clades within the low-G + C, Gram-positive division; some sequences appear to represent novel species within the genus Pasteuria. In addition, a surprising degree of 16S rRNA gene sequence diversity was observed within what had previously been designated a single strain of Pasteuria penetrans (P-20). PCR primers specific to Pasteuria 16S rRNA for detection of Pasteuria in soils were also designed and evaluated. Detection limits for soil DNA were 100-10,000 Pasteuria endospores (g soil)(-1).

  18. Bacterial Community Dynamics during Production of Registered Designation of Origin Salers Cheese as Evaluated by 16S rRNA Gene Single-Strand Conformation Polymorphism Analysis

    PubMed Central

    Duthoit, Frédérique; Godon, Jean-Jacques; Montel, Marie-Christine

    2003-01-01

    Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products. PMID:12839752

  19. N-acetyltransferase single nucleotide polymorphisms: Emerging concepts serve as a paradigm for understanding complexities of personalized medicine

    PubMed Central

    Hein, David W.

    2009-01-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125

  20. SNPHunter: a bioinformatic software for single nucleotide polymorphism data acquisition and management.

    PubMed

    Wang, Lin; Liu, Simin; Niu, Tianhua; Xu, Xin

    2005-03-18

    Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at http://www.hsph.harvard.edu/ppg/software.htm

  1. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.

    PubMed

    Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H

    2006-04-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.

  2. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed Central

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-01-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804

  3. Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms.

    PubMed

    Chahin, Nassif; Uribe, Laura A; Debela, Ahmed M; Thorimbert, Serge; Hasenknopf, Bernold; Ortiz, Mayreli; Katakis, Ioannis; O'Sullivan, Ciara K

    2018-06-07

    Polyoxymetalates (POMs) ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ), and [SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis. Copyright © 2018. Published by Elsevier B.V.

  4. Rhabdomyolysis After Out-of-Water Exercise in an Elite Adolescent Water Polo Player Carrying the IL-6 174C Allele Single-Nucleotide Polymorphism.

    PubMed

    Eliakim, Alon; Ben Zaken, Sigal; Meckel, Yoav; Yamin, Chen; Dror, Nitzan; Nemet, Dan

    2015-12-01

    We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.

  5. The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes.

    PubMed Central

    Robinett, C C; O'Connor, A; Dunaway, M

    1997-01-01

    We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359

  6. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India.

    PubMed

    Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre; Schurr, Erwin

    2011-05-01

    Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10⁻⁹)-rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10⁻⁷ and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis.

  8. Human Leukocyte Antigen Class I Region Single-Nucleotide Polymorphisms are Associated with Leprosy Susceptibility in Vietnam and India

    PubMed Central

    Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre

    2011-01-01

    Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10−9)—rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10−7 and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis. PMID:21459816

  9. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles.

    PubMed

    Sun, Feifei; You, Ying; Liu, Jie; Song, Quanwei; Shen, Xiaotong; Na, Na; Ouyang, Jin

    2017-05-23

    A label- and enzyme-free fluorescent sensor for the detection of single-nucleotide polymorphisms (SNPs) at room temperature is proposed, using new copper nanoparticles (CuNPs) as fluorescent reporters. The CuNPs were constructed by using a DNA three-way junction (3WJ) template. In this assay, two complementary adenine/thymine-rich probes can hybridize with the wild-type target simultaneously to construct a 3WJ structure, serving as an efficient scaffold for the generation of CuNPs. However, the CuNPs produce weak fluorescence when the probes bind with a mutant-type target. SNPs can be identified by the difference in fluorescence intensity of the CuNPs. This SNPs detection strategy is straightforward, cost-effective, and avoids the complicated procedures of labeling or enzymatic reactions. The fluorescent sensor is versatile and can be applied to all types of mutation because the probes are programmable. Moreover, the sensor exhibits good detection performance in biological samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    PubMed

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  11. The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.

    PubMed

    Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning

    2017-11-01

    Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC.

    PubMed

    Nakajima, Kazuki; Kitazume, Shinobu; Angata, Takashi; Fujinawa, Reiko; Ohtsubo, Kazuaki; Miyoshi, Eiji; Taniguchi, Naoyuki

    2010-07-01

    Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.

  13. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome

    PubMed Central

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-01-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064

  14. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome.

    PubMed

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-09-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.

  15. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children.

    PubMed

    Gerreth, Karolina; Zaorska, Katarzyna; Zabel, Maciej; Borysewicz-Lewicka, Maria; Nowicki, Michał

    2017-09-01

    It is increasingly emphasized that the influence of a host's factors in the etiology of dental caries are of most interest, particularly those concerned with genetic aspect. The aim of the study was to analyze the genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in AMELX, AMBN, TUFT1, TFIP11, MMP20 and KLK4 genes and to prove their association with dental caries occurrence in a population of Polish children. The study was performed in 96 children (48 individuals with caries - "cases" and 48 free of this disease - "controls"), aged 20-42 months, chosen out of 262 individuals who had dental examination performed and attended 4 day nurseries located in Poznań (Poland). From both groups oral swab was collected for molecular evaluation. Eleven selected SNPs markers were genotyped by Sanger sequencing. Genotype and allele frequencies were calculated and a standard χ2 analysis was used to test for deviation from Hardy-Weinberg equilibrium. The association of genetic variations with caries susceptibility or resistance was assessed by the Fisher's exact test and p ≤ 0.05 was considered statistically significant. Five markers were significantly associated with caries incidence in children in the study: rs17878486 in AMELX (p < 0.0001), rs34538475 in AMBN (p < 0.0001), rs2337360 in TUFT1 (p < 0.0001), and rs2235091 (p = 0.0085) and rs198969 (p = 0.0069) in KLK4. Genotype and allele frequencies indicated both risk and protective variants for these markers. Single nucleotide polymorphisms in AMELX, AMBN, TUFT1, KLK4 genes may be considered as a risk factor for dental caries occurrence in Polish children.

  16. Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices.

    PubMed

    Robertson, Neil M; Hizir, Mustafa Salih; Balcioglu, Mustafa; Wang, Rui; Yavuz, Mustafa Selman; Yumak, Hasan; Ozturk, Birol; Sheng, Jia; Yigit, Mehmet V

    2015-09-15

    In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.

  17. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  18. Brief Report: Glutamate Transporter Gene ("SLC1A1") Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2010-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…

  19. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  20. Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease

    PubMed Central

    2012-01-01

    The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org. PMID:23013645

  1. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale.

    PubMed

    Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun

    2015-01-01

    Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.

  2. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.

    PubMed

    Ohdate, Takumi; Omura, Fumihiko; Hatanaka, Haruyo; Zhou, Yan; Takagi, Masami; Goshima, Tetsuya; Akao, Takeshi; Ono, Eiichiro

    2018-01-01

    For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.

  3. A novel canine model for Duchenne muscular dystrophy (DMD): single nucleotide deletion in DMD gene exon 20.

    PubMed

    Mata López, Sara; Hammond, James J; Rigsby, Madison B; Balog-Alvarez, Cynthia J; Kornegay, Joe N; Nghiem, Peter P

    2018-05-29

    Boys with Duchenne muscular dystrophy (DMD) have DMD gene mutations, with associated loss of the dystrophin protein and progressive muscle degeneration and weakness. Corticosteroids and palliative support are currently the best treatment options. The long-term benefits of recently approved compounds such as eteplirsen and ataluren remain to be seen. Dogs with naturally occurring dystrophinopathies show progressive disease akin to that of DMD. Accordingly, canine DMD models are useful for studies of pathogenesis and preclinical therapy development. A dystrophin-deficient, male border collie dog was evaluated at the age of 5 months for progressive muscle weakness and dysphagia. Dramatically increased serum creatine kinase levels (41,520 U/L; normal range 59-895 U/L) were seen on a biochemistry panel. Histopathologic changes characteristic of dystrophinopathy were seen. Dystrophin was absent in the skeletal muscle on immunofluorescence microscopy and western blot. Whole genome sequencing, polymerase chain reaction, and Sanger sequencing revealed a frameshift, single nucleotide deletion in canine DMD exon 20, position 27,626,466 (c.2841delT mRNA), resulting in a stop codon six nucleotides downstream. Semen was archived for future line perpetuation. This spontaneous canine dystrophinopathy occurred due to a novel mutation in the minor DMD mutation hotspot (between exons 2 through 20). Perpetuating this line could allow for preclinical testing of genetic therapies targeted to this area of the DMD gene.

  4. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    PubMed

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    PubMed Central

    2012-01-01

    Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13

  6. Detection of de novo single nucleotide variants in offspring of atomic-bomb survivors close to the hypocenter by whole-genome sequencing.

    PubMed

    Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro

    2018-03-01

    Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.

  7. A Single Nucleotide Polymorphism in the Phospholipase D1 Gene is Associated with Risk of Non-Small Cell Lung Cancer

    PubMed Central

    Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo

    2012-01-01

    Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264

  8. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite

  9. The nucleotide sequence and genome organization of Plasmopara halstedii virus.

    PubMed

    Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar

    2011-03-17

    Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates

  10. Association of Notch3 single-nucleotide polymorphisms and lacunar infarctions in patients.

    PubMed

    Li, Ying; Liu, Nan; Chen, Hui; Huang, Yonghua; Zhang, Weiwei

    2016-01-01

    Cerebrovascular disease is a leading cause of morbidity and mortality worldwide, which is influenced by genetic and environmental factors. The aim of the present study was to examine the association between single-nucleotide polymorphisms (SNPs) in Notch3 exons 3-6 and lacunar infarction by comparing SNPs between control subjects and those with lacunar infarction. A single-center case-control study was conducted to investigate the association between Notch3 SNPs and risk of stroke. A total of 140 patients were included in the study, 30 of whom had no infarction (control) and 110 had lacunar infarction. Lacunar patients were divided into the 'pure lacunar' and 'lacunar + leukoarasis' groups based on brain imaging. All the patients were of Chinese Han ethnicity, and the male to female ratio was 84:56. Patient clinical histories included hypertension, diabetes mellitus (DM), hyperlipidemia, and heart disease were recorded. The Notch3 sequence was obtained from the National Centser for Biotechnology Information database. Notch3 was amplified by polymerase chain reaction from whole blood samples, and exons 3-6 were sequenced to identify SNPs. The result showed that there was no significant difference in the prevalence of hypertension, DM, hyperlipidemia, and heart disease between the control and lacunar infarction patients. Notabley, the age of the lacunar + leukoarasis patients was significantly higher than that of the control and pure lacunar patients (P<0.05). Eight SNPs were detected at low frequencies, and only rs3815388 and rs1043994 exhibited slightly higher frequencies. A χ 2 test indicated that Notch3 SNPs, particularly rs1043994, were associated with lacunar infarction (P<0.05). In conclusion, the result of the present study have shown that Notch3 SNPs, particularly rs1043994, are associated with lacunar infarction.

  11. Relationship Between Some Single-nucleotide Polymorphism and Response to Hydroxyurea Therapy in Iranian Patients With β-Thalassemia Intermedia.

    PubMed

    Karimi, Mehran; Zarei, Tahereh; Haghpanah, Sezaneh; Moghadam, Mohamad; Ebrahimi, Ahmad; Rezaei, Narges; Heidari, Ghazaleh; Vazin, Afsaneh; Khavari, Maryam; Miri, Hamid R

    2017-05-01

    To evaluate the possible relationship between hydroxyurea (HU) response and some single-nucleotide polymorphism (SNP) in patients affected by β-thalassemia intermedia. In this cross-sectional study, 100 β-thalassemia intermedia patients who were taking HU with a dose of 8 to 15 mg/kg body weight per day for a period of at least 6 months were randomly selected between February 2013 and October 2014 in southern Iran. HU response was defined based on decrease or cessation of the blood transfusion need and evaluation of Hb level. In univariate analysis, from all evaluated SNPs, only rs10837814 SNP of olfactory receptors (ORs) OR51B2 showed a significant association with HU response (P=0.038) and from laboratory characteristics, only nucleated red blood cells showed significant associations (116%±183%) in good responders versus (264%±286%) in poor responders (P=0.045). In multiple logistic regression, neither laboratory variables nor different SNPs, showed significant association with HU response. Three novel nucleotide variations (-665 [A→C], -1301 [T→G],-1199 delA) in OR51B2 gene were found in good responders. None of the evaluated SNPs in our study showed significant association with HU response. Further larger studies and evaluation of other genes are suggested.

  12. Identification of single nucleotide polymorphism in ginger using expressed sequence tags

    PubMed Central

    Chandrasekar, Arumugam; Riju, Aikkal; Sithara, Kandiyl; Anoop, Sahadevan; Eapen, Santhosh J

    2009-01-01

    Ginger (Zingiber officinale Rosc) (Family: Zingiberaceae) is a herbaceous perennial, the rhizomes of which are used as a spice. Ginger is a plant which is well known for its medicinal applications. Recently EST-derived SNPs are a free by-product of the currently expanding EST (Expressed Sequence Tag) databases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion/deletion) has led to a revolution in their use as molecular markers. Available (38139) Ginger EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script AutoSNP version 1.0 which has used 31905 ESTs for detecting SNPs and Indel sites. We found 64026 SNP sites and 7034 indel polymorphisms with frequency of 0.84 SNPs / 100 bp. Among the three tissues from which the EST libraries had been generated, Rhizomes had high frequency of 1.08 SNPs/indels per 100 bp whereas the leaves had lowest frequency of 0.63 per 100 bp and root is showing relative frequency 0.82/100bp. Transitions and transversion ratio is 0.90. In overall detected SNP, transversion is high when compare to transition. These detected SNPs can be used as markers for genetic studies. Availability The results of the present study hosted in our webserver www.spices.res.in/spicesnip PMID:20198184

  13. Single-nucleotide polymorphisms of TNFA and IL1 in allergic rhinitis.

    PubMed

    Nasiri, R; Amirzargar, A Akbar; Movahedi, M; Hirbod-Mobarakeh, A; Farhadi, E; Behniafard, N; Tavakkol, M; Ansaripour, B; Moradi, B; Zare, A; Rezaei, N

    2013-01-01

    Allergic rhinitis is a complex polygenic disorder of the upper respiratory tract. Given that proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL) 1 seem to play a role in the development of allergic rhinitis, we evaluated the associations between various single-nucleotide polymorphisms (SNPs) of the TNF and IL1 genes in a case-control study. The study population comprised 98 patients with allergic rhinitis. Genotyping was performed using polymerase chain reaction with sequence-specific primers for 2 TNFA promoter variants (rs1800629 and rs361525), 1 variant in the promoter region of IL1A (rs1800587), 2 SNPs in the IL1B gene (rs16944 and rs1 143634), 1 variant in the IL1 receptor (rs2234650), and 1 in IL1RA (rs315952). Patients who were homozygous for the T allele of rs16944 in IL1B had an 8.1-fold greater risk of allergic rhinitis than those with the C allele. In TNFA, a significant relationship was also detected between rs1800629 and rs361525 and allergic rhinitis. Except for rs1800587 in IL1A and rs315952 in IL1RA, significant differences were found between the patient and control groups for all other SNPs. We found that allelic variants in the TNFA and IL1 genes were not only associated with the risk of developing allergic rhinitis, but also affected disease course and severity.

  14. Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking.

    PubMed Central

    Stancheva, I; Lucchini, R; Koller, T; Sogo, J M

    1997-01-01

    By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity. PMID:9108154

  15. Reinvestigations of six unusual paternity cases by typing of autosomal single-nucleotide polymorphisms.

    PubMed

    Børsting, Claus; Morling, Niels

    2012-02-01

    In some relationship cases, the initial investigations of autosomal short tandem repeats (STRs) lead to an ambiguous conclusion and supplementary investigations become necessary. Six unusual paternity cases were previously investigated by other researchers and published as case work examples in forensic journals. Here, the cases were reinvestigated by typing the samples for 49 autosomal single-nucleotide polymorphisms (SNPs) using the SNPforID multiplex assay. Three cases were solved by the SNP investigation without the need for any additional testing. In two cases, the SNP results supported the conclusions based on STRs. In the last case, the SNP results spoke in favor of paternity, and the combined paternity index based on autosomal STRs and SNPs was 12.3 billion. Nevertheless, the alleged father was excluded by X-chromosome typing. The case work examples underline the importance of performing supplementary investigations, and they advocate for the implementation of several panels that may be used in the highly unusual cases. Panels with SNPs or other markers with low mutation probabilities are preferable as supplementary markers, because the risk of detecting (additional) mutations is very low. © 2012 American Association of Blood Banks.

  16. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  17. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    PubMed

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  18. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences

    PubMed Central

    Guo, Juan; Wang, Yunsheng; Song, Chi; Zhou, Jianfeng; Qiu, Lijuan; Huang, Hongwen; Wang, Ying

    2010-01-01

    Background and Aims It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean. Methods The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck. Key Results Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years. Conclusions As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south

  19. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease.

    PubMed

    Assari, Raheleh; Aghighi, Yahya; Ziaee, Vahid; Sadr, Maryam; Rahmani, Farzaneh; Rezaei, Arezou; Sadr, Zeinab; Moradinejad, Mohammad Hassan; Raeeskarami, Seyed Reza; Rezaei, Nima

    2016-07-25

    Kawasaki disease (KD) is a systemic vasculitis of children associated with cardiovascular sequelae. Proinflammatory cytokines play a major role in KD pathogenesis. However, their role is both influenced and modified by regulatory T-cells. IL-1 gene cluster, IL-6 and TNF-α polymorphisms have shown significant associations with some vasculitides. Herein we investigated their role in KD. Fifty-five patients with KD who were randomly selected from referrals to the main pediatric hospital were enrolled in this case-control study. Single nucleotide polymorphisms (SNPs) of the following genes were assessed in patients and 140 healthy subjects as control group: IL-1α at -889 (rs1800587), IL-1β at -511 (rs16944), IL-1β at +3962 (rs1143634), IL-1R at Pst-I 1970 (rs2234650), IL-1RN/A at Mspa-I 11100 (rs315952), TNF-α at -308 (rs1800629), TNF-α at -238, IL-6 at -174 (rs1800795) and IL-6 at +565. Twenty-one percent of the control group had A allele at TNF-α -238 while only 8% of KD patients had A allele at this position (P = 0.003, OR [95%CI] = 0.32 [0.14-0.71]). Consistently, TNF-α genotype GG at -238 had significant association with KD (OR [95% CI] = 4.31 [1.79-10.73]). Most controls carried the CG genotype at IL-6 -174 (n = 93 [66.9%]) while GG genotype was the most common genotype (n = 27 [49%]) among patients. Carriers of the GG haplotype at TNF-α (-308, -238) were significantly more prevalent among the KD group. No association was found between IL-1 gene cluster, allelic or haplotypic variants and KD. TNF-α GG genotype at -238 and GG haplotype at positions -308 and -238 were associated with KD in an Iranian population. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  20. Colorectal cancer-susceptibility single-nucleotide polymorphisms in Korean population.

    PubMed

    Hong, Sung Noh; Park, Changho; Kim, Jong-Il; Kim, Duk-Hwan; Kim, Hee Cheol; Chang, Dong Kyung; Rhee, Poong-Lyul; Kim, Jae J; Rhee, Jong Chul; Son, Hee Jung; Kim, Young-Ho

    2015-05-01

    Considering the significant racial and ethnic diversity in genetic variation, it is unclear whether the genome-wide association studies-identified colorectal cancer (CRC)-susceptibility single-nucleotide polymorphisms (SNPs) discovered in European populations are also relevant to the Korean population. However, studies on CRC-susceptibility SNPs in Koreans are limited. To investigate the racial and ethnic diversity of CRC-susceptibility genetic variants, we genotyped for the established European CRC-susceptibility SNPs in 198 CRC cases and 329 controls in Korea. To identify novel genetic variants using genome-wide screening in Korea, Illumina HumanHap 370K/610K BeadChips were performed on 105 CRC patients, and candidate CRC-susceptibility SNPs were selected. Subsequently, genotyping for replication was done in 189 CRC cases and 190 controls. Among the European CRC-susceptibility SNPs, rs4939827 in SMAD7 was associated with a significant decreased risk of Korean CRC (age-/gender-adjusted odds ratio [95% confidence interval]: additive model, 0.67 [95% CI, 0.47-0.95]; dominant model, 0.59 [95% CI, 0.39-0.91]). rs4779584 and rs10795668 were associated with CRC risk in females and males, respectively. Among candidate CRC-susceptibility SNPs selected from genome-wide screening, novel SNP, rs17051076, was found to be associated with a significantly increased risk of microsatellite instability-high CRC (age-/gender-adjusted odds ratio [95% confidence interval]: additive model, 4.25 [95% CI, 1.51-11.98]; dominant model, 3.52 [95% CI, 1.13-10.94]) in the replication study. rs4939827, rs4779584, and rs10795668 may contribute to the risk of CRC in the Korean population as well as in European populations. Novel rs17051076 could be associated with microsatellite instability-high CRC in Koreans. These associations support the ethnic diversity of CRC-susceptibility SNPs and should be taken into account in large-scale studies. © 2013 Journal of Gastroenterology and Hepatology

  1. Sequence-Based Prioritization of Nonsynonymous Single-Nucleotide Polymorphisms for the Study of Disease Mutations

    PubMed Central

    Jiang, Rui ; Yang, Hua ; Zhou, Linqi ; Kuo, C.-C. Jay ; Sun, Fengzhu ; Chen, Ting 

    2007-01-01

    The increasing demand for the identification of genetic variation responsible for common diseases has translated into a need for sophisticated methods for effectively prioritizing mutations occurring in disease-associated genetic regions. In this article, we prioritize candidate nonsynonymous single-nucleotide polymorphisms (nsSNPs) through a bioinformatics approach that takes advantages of a set of improved numeric features derived from protein-sequence information and a new statistical learning model called “multiple selection rule voting” (MSRV). The sequence-based features can maximize the scope of applications of our approach, and the MSRV model can capture subtle characteristics of individual mutations. Systematic validation of the approach demonstrates that this approach is capable of prioritizing causal mutations for both simple monogenic diseases and complex polygenic diseases. Further studies of familial Alzheimer diseases and diabetes show that the approach can enrich mutations underlying these polygenic diseases among the top of candidate mutations. Application of this approach to unclassified mutations suggests that there are 10 suspicious mutations likely to cause diseases, and there is strong support for this in the literature. PMID:17668383

  2. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  3. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.

    2018-03-01

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  4. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase.

    PubMed

    Wang, Quan; Serban, Andrew J; Wachter, Rebekka M; Moerner, W E

    2018-03-28

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ∼0.1 s -1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  5. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  6. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  7. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    PubMed

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  9. Trichomonas vaginalis Metronidazole Resistance Is Associated with Single Nucleotide Polymorphisms in the Nitroreductase Genes ntr4Tv and ntr6Tv

    PubMed Central

    Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.

    2014-01-01

    Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324

  10. Effect of BCHE single nucleotide polymorphisms on lipid metabolism markers in women.

    PubMed

    Oliveira, Jéssica de; Tureck, Luciane Viater; Santos, Willian Dos; Saliba, Louise Farah; Schenknecht, Caroline Schovanz; Scaraboto, Débora; Souza, Ricardo Lehtonen R; Furtado-Alle, Lupe

    2017-01-01

    Butyrylcholinesterase (BChE) activity and polymorphisms in its encoding gene had previously been associated with metabolic traits of obesity. This study investigated the association of three single nucleotide polymorphisms (SNPs) in the BCHE gene: -116G > A (rs1126680), 1615GA (rs1803274), 1914A < G (rs3495), with obesity and lipid metabolism markers, body mass index (BMI), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglyceride (TG) levels, and BChE enzymatic activity in obese (BMI≥30/n = 226) and non-obese women (BMI < 25/n = 81). BCHE SNPs genotyping was obtained by TaqMan allelic discrimination assay and by RFLP-PCR. Plasmatic BChE activity was measured using propionylthiocholine as substrate. Similar allele frequencies were found in obese and non-obese women for the three studied SNPs (p > 0.05). The dominant and recessive models were tested, and different effects were found. The -116A allele showed a dominant effect in BChE activity reduction in both non-obese and obese women (p = 0.045 and p < 0.001, respectively). The 1914A > G and 1615GA SNPs influenced the TG levels only in obese women. The 1914G and the 1615A alleles were associated with decreased plasma levels of TG. Thus, our results suggest that the obesity condition, characterized by loss of energy homeostasis, is modulated by BCHE polymorphisms.

  11. Evaluation and identification of damaged single nucleotide polymorphisms in COL1A1 gene involved in osteoporosis

    PubMed Central

    Alsaif, Mohammed A.; Al Shammari, Sulaiman A.; Alhamdan, Adel A.

    2012-01-01

    Introduction Single-nucleotide polymorphisms (SNPs) are biomarkers for exploring the genetic basis of many complex human diseases. The prediction of SNPs is promising in modern genetic analysis but it is still a great challenge to identify the functional SNPs in a disease-related gene. The computational approach has overcome this challenge and an increase in the successful rate of genetic association studies and reduced cost of genotyping have been achieved. The objective of this study is to identify deleterious non-synonymous SNPs (nsSNPs) associated with the COL1A1 gene. Material and methods The SNPs were retrieved from the Single Nucleotide Polymorphism Database (dbSNP). Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on proteins were predicted by PolyPhen and SIFT respectively. FASTSNP was used for estimation of risk score. Results Our analysis revealed 247 SNPs as non-synonymous, out of which 5 nsSNPs were found to be least stable by I-Mutant 2.0 with a DDG value of > –1.0. Four nsSNPs, namely rs17853657, rs17857117, rs57377812 and rs1059454, showed a highly deleterious tolerance index score of 0.00 with a change in their physicochemical properties by the SIFT server. Seven nsSNPs, namely rs1059454, rs8179178, rs17853657, rs17857117, rs72656340, rs72656344 and rs72656351, were found to be probably damaging with a PSIC score difference between 2.0 and 3.5 by the PolyPhen server. Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, were found to be highly polymorphic with a risk score of 3-4 with a possible effect of non-conservative change and splicing regulation by FASTSNP. Conclusions Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, are potential functional polymorphisms that are likely to have a functional impact on the COL1A1 gene. PMID:24273577

  12. A Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops1[W

    PubMed Central

    Feltus, F.A.; Singh, H.P.; Lohithaswa, H.C.; Schulze, S.R.; Silva, T.D.; Paterson, A.H.

    2006-01-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031

  13. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  14. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detectiona)

    PubMed Central

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen

    2014-01-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186

  15. Prediction of peripheral neuropathy in multiple myeloma patients receiving bortezomib and thalidomide: a genetic study based on a single nucleotide polymorphism array.

    PubMed

    García-Sanz, Ramón; Corchete, Luis Antonio; Alcoceba, Miguel; Chillon, María Carmen; Jiménez, Cristina; Prieto, Isabel; García-Álvarez, María; Puig, Noemi; Rapado, Immaculada; Barrio, Santiago; Oriol, Albert; Blanchard, María Jesús; de la Rubia, Javier; Martínez, Rafael; Lahuerta, Juan José; González Díaz, Marcos; Mateos, María Victoria; San Miguel, Jesús Fernando; Martínez-López, Joaquín; Sarasquete, María Eugenia

    2017-12-01

    Bortezomib- and thalidomide-based therapies have significantly contributed to improved survival of multiple myeloma (MM) patients. However, treatment-induced peripheral neuropathy (TiPN) is a common adverse event associated with them. Risk factors for TiPN in MM patients include advanced age, prior neuropathy, and other drugs, but there are conflicting results about the role of genetics in predicting the risk of TiPN. Thus, we carried out a genome-wide association study based on more than 300 000 exome single nucleotide polymorphisms in 172 MM patients receiving therapy involving bortezomib and thalidomide. We compared patients developing and not developing TiPN under similar treatment conditions (GEM05MAS65, NCT00443235). The highest-ranking single nucleotide polymorphism was rs45443101, located in the PLCG2 gene, but no significant differences were found after multiple comparison correction (adjusted P = .1708). Prediction analyses, cytoband enrichment, and pathway analyses were also performed, but none yielded any significant findings. A copy number approach was also explored, but this gave no significant results either. In summary, our study did not find a consistent genetic component associated with TiPN under bortezomib and thalidomide therapies that could be used for prediction, which makes clinical judgment essential in the practical management of MM treatment. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Single nucleotide polymorphisms in the mitochondrial displacement loop and outcome of esophageal squamous cell carcinoma.

    PubMed

    Zhang, Ruixing; Wang, Rui; Zhang, Fengbin; Wu, Chensi; Fan, Haiyan; Li, Yan; Wang, Cuiju; Guo, Zhanjun

    2010-11-26

    Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers and might be associated with cancer risk and disease outcome. We used a population-based series of esophageal squamous cell carcinoma (ESCC) patients for investigating the prediction power of SNPs in mitochondrial D-loop. The D-loop region of mtDNA was sequenced for 60 ESCC patients recorded in the Fourth Hospital of Hebei Medical University between 2003 and 2004. The 5 year survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. The SNP sites of nucleotides 16274G/A, 16278C/T and 16399A/G were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16278 and 16399 alleles were identified as independent predictors of ESCC outcome. The length of survival of patients with the minor allele 16278T genotype was significantly shorter than that of patients with 16278C at the 16278 site (relative risk, 3.001; 95% CI, 1.029 - 8.756; p = 0.044). The length of survival of patients with the minor allele 16399G genotype was significantly shorter than that of patients with the more frequent allele 16399A at the 16399 site in ESCC patients (relative risk, 3.483; 95% CI, 1.068 - 11.359; p = 0.039). Genetic polymorphisms in the D-loop are independent prognostic markers for patients with ESCC. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop can help identify patient subgroups at high risk of a poor disease outcome.

  17. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  18. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  19. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms.

    PubMed

    Van, K; Onoda, S; Kim, M Y; Kim, K D; Lee, S-H

    2008-03-01

    The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.

  20. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    PubMed

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  1. Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods.

    PubMed

    Arlindo, Samuel; Calo, Pilar; Franco, Carlos; Prado, Marta; Cepeda, Alberto; Barros-Velázquez, Jorge

    2006-12-01

    The bacteriocins produced by two lactic acid bacteria isolated from nonfermented fresh meat and fish, respectively, and exhibiting a remarkable antilisterial activity, were characterized. Bacteriocinogenic strains were identified as Enterococcus faecium and the maximum bacteriocin production by both strains was detected in the stationary phase of growth. The activity against Listeria monocytogenes was maintained in pH range of 3-7 and was stable in both strains after heating at 100 or 121 degrees C. The genes coding for enterocin P were detected, isolated, and sequenced in both E. faecium strains. They exhibited DNA/DNA homology in the 87.1-97.2% range with respect to the other four enterocin P genes reported so far. Three single nucleotide polymorphism events, silent at the amino acid level, were detected at nucleotide positions 45 (G/A), 75 (A/G), and 90 (T/C) in E. faecium LHICA 28-4 and may explain the differences reported for those loci in other enterocin P-producing E. faecium strains. This work provides the first description of enterocin P-producing E. faecium strains in nonfermented foodstuffs and, in the case of E. faecium LHICA 51, the first report of an enterocin P-producing strain isolated from fish so far.

  2. Single nucleotide primer extension to detect genetic diseases: Experimental application to hemophilia B (factor IX) and cystic fibrosis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.

    1991-02-15

    In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less

  3. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs)

    PubMed Central

    Qi, Xiaoquan; Bakht, Saleha; Devos, Katrien M.; Gale, Mike D.; Osbourn, Anne

    2001-01-01

    A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays. PMID:11713336

  4. In silico prediction of splice-altering single nucleotide variants in the human genome.

    PubMed

    Jian, Xueqiu; Boerwinkle, Eric; Liu, Xiaoming

    2014-12-16

    In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.

  5. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts.

    PubMed

    El-Hoss, Jad; Jing, Duohui; Evans, Kathryn; Toscan, Cara; Xie, Jinhan; Lee, Hyunjoo; Taylor, Renea A; Lawrence, Mitchell G; Risbridger, Gail P; MacKenzie, Karen L; Sutton, Rosemary; Lock, Richard B

    2016-09-13

    Patient derived xenografts (PDXs) have become a vital, frequently used, component of anti-cancer drug development. PDXs can be serially passaged in vivo for years, and shared across laboratories. As a consequence, the potential for mis-identification and cross-contamination is possible, yet authentication of PDXs appears limited. We present a PDX Authentication System (PAS), by combining a commercially available OpenArray assay of single nucleotide polymorphisms (SNPs) with in-house R studio programs, to validate PDXs established in individual mice from acute lymphoblastic leukemia biopsies. The PAS is sufficiently robust to identify contamination at levels as low as 3%, similar to the gold standard of short tandem repeat (STR) profiling. We have surveyed a panel of PDXs established from 73 individual leukemia patients, and found that the PAS provided sufficient discriminatory power to identify each xenograft. The identified SNP-discrepant PDXs demonstrated distinct gene expression profiles, indicating a risk of contamination for PDXs at high passage number. The PAS also allows for the authentication of tumor cells with complex karyotypes from solid tumors including prostate cancer and Ewing's sarcoma. This study highlights the demands of authenticating PDXs for cancer research, and evaluates a reliable authentication platform that utilizes a commercially available and cost-effective system.

  6. Skeletal muscle plasticity induced by seasonal acclimatization in carp involves differential expression of rRNA and molecules that epigenetically regulate its synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Nardocci, Gino; Fernandez de la Reguera, Catalina; Simonet, Nicolas; Fumeron, Robinson; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-01-01

    Ribosomal biogenesis controls cellular growth in living organisms, with the rate-limiting step of this process being the transcription of ribosomal DNA (rDNA). Considering that epigenetic mechanisms allow an organism to respond to environmental changes, the expression in muscle of several molecules that regulate epigenetic rRNA synthesis, as well as rDNA transcription, were evaluated during the seasonal acclimatization of the carp. First, the nucleotide sequences encoding the components forming the NoRC (ttf-I, tip5) and eNoSC (sirt1, nml, suv39h1), two chromatin remodeling complexes that silence rRNA synthesis, as well as the sequence of ubf1, a key regulator of rDNA transcription, were obtained. Subsequently the transcriptional regulation of the aforementioned molecules, and other key molecules involved in rRNA synthesis (mh2a1, mh2a2, h2a.z, h2a.z.7, nuc, p80), was assessed. The carp sequences for TTF-I, TIP5, SIRT1, NML, SUV39H1, and UBF1 showed a high conservation of domains and key amino acids in comparison with other fish and higher vertebrates. The mRNA contents in muscle for ttf-I, tip5, sirt1, nml, suv39h1, mh2a1, mh2a.z, and nuc were up-regulated during winter in comparison with summer, whereas the mRNA levels of mh2a2, ubf1, and p80 were down-regulated. Also, the contents of molecules involved in processing the rRNA (snoRNAs) and pRNA, a stabilizer of NoRC complex, were analyzed, finding that these non-coding RNAs were not affected by seasonal acclimatization. These results suggest that variations in the expression of rRNA and the molecules that epigenetically regulate its synthesis are contributing to the muscle plasticity induced by seasonal acclimatization in carp. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine.

    PubMed

    Gehring, I; Geider, K

    2012-07-01

    Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.

  8. A novel single-nucleotide polymorphism of the visfatin gene and its associations with performance traits in the chicken.

    PubMed

    Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H

    2010-01-01

    Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.

  9. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    NASA Astrophysics Data System (ADS)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  10. Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms.

    PubMed

    Litos, Ioannis K; Ioannou, Penelope C; Christopoulos, Theodore K; Traeger-Synodinos, Jan; Kanavakis, Emmanuel

    2009-06-15

    DNA biosensors involve molecular recognition of the target sequence by hybridization with specific probes and detection by electrochemical, optical or gravimetric transduction. Disposable, dipstick-type biosensors have been developed recently, which enable visual detection of DNA without using instruments. In this context, we report a multianalyte DNA biosensor for visual genotyping of two single-nucleotide polymorphisms (SNPs). As a model, the biosensor was applied to the simultaneous genotyping of two SNPs, entailing the detection of four alleles. A PCR product that flanks both polymorphic sites is subjected to a single primer extension (PEXT) reaction employing four allele-specific primers, each containing a region complementary to an allele and a characteristic segment that enables subsequent capture on a test zone of the biosensor. The primers are extended with dNTPs and biotin-dUTP only if there is perfect complementarity with the interrogated sequence. The PEXT mixture is applied to the biosensor. As the developing buffer migrates along the strip, all the allele-specific primers are captured by immobilized oligonucleotides at the four test zones of the biosensor and detected by antibiotin-functionalized gold nanoparticles. As a result, the test zones are colored red if extension has occurred denoting the presence of the corresponding allele in the original sample. The excess nanoparticles are captured by immobilized biotinylated albumin at the control zone of the sensor forming another red zone that indicates the proper performance of the system. The assay was applied successfully to the genotyping of twenty clinical samples for two common SNPs of MBL2 gene.

  11. A Single Nucleotide Polymorphism in 3′-Untranslated Region Contributes to the Regulation of Toll-like Receptor 4 Translation*

    PubMed Central

    Sato, Kayo; Yoshimura, Atsutoshi; Kaneko, Takashi; Ukai, Takashi; Ozaki, Yukio; Nakamura, Hirotaka; Li, Xinyue; Matsumura, Hiroyoshi; Hara, Yoshitaka; Ogata, Yorimasa

    2012-01-01

    We have previously shown that a single nucleotide polymorphism rs11536889 in the 3′-untranslated region (UTR) of TLR4 was associated with periodontitis. In this study the effects of this single nucleotide polymorphism on Toll-like receptor (TLR) 4 expression were investigated. Monocytes from subjects with the C/C genotype expressed higher levels of TLR4 on their surfaces than those from subjects with the other genotypes. Peripheral blood mononuclear cells (PBMCs) from the C/C and G/C subjects secreted higher levels of IL-8 in response to lipopolysaccharide (LPS), a TLR4 ligand, than the cells from the G/G subjects. However, there was no significant difference in TLR4 mRNA levels in PBMCs from the subjects with each genotype. After stimulation with tripalmitoylated CSK4 (Pam3CSK4), TLR4 mRNA levels increased in PBMCs from both the C/C and G/G subjects, whereas TLR4 protein levels increased in PBMCs from the C/C but not G/G subjects. Transient transfection of a series of chimeric luciferase constructs revealed that a fragment of 3′-UTR containing rs11536889 G allele, but not C allele, suppressed luciferase activity induced by LPS or IL-6. Two microRNAs, hsa-miR-1236 and hsa-miR-642a, were predicted to bind to rs11536889 G allele. Inhibition of these microRNAs reversed the suppressed luciferase activity. These microRNA inhibitors also up-regulated endogenous TLR4 protein on THP-1 cells (the G/G genotype) after LPS stimulation. Furthermore, mutant microRNAs that bind to the C allele inhibited the luciferase activity of the construct containing the C allele. These results indicate that genetic variation of rs11536889 contributes to translational regulation of TLR4, possibly by binding to microRNAs. PMID:22661708

  12. CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    PubMed Central

    Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin

    2004-01-01

    Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145

  13. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  14. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. © 2015 IUMS.

  15. Molecular gene organisation and secondary structure of the mitochondrial large subunit ribosomal RNA from the cultivated Basidiomycota Agrocybe aegerita: a 13 kb gene possessing six unusual nucleotide extensions and eight introns.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1999-04-01

    The complete gene sequence and secondary structure of the mitochondrial LSU rRNA from the cultivated Basidiomycota Agrocybe aegerita was derived by chromosome walking. The A.aegerita LSU rRNA gene (13 526 nt) represents, to date, the longest described, due to the highest number of introns (eight) and the occurrence of six long nucleotidic extensions. Seven introns belong to group I, while the intronic sequence i5 constitutes the first typical group II intron reported in a fungal mitochondrial LSU rDNA. As with most fungal LSU rDNA introns reported to date, four introns (i5-i8) are distributed in domain V associated with the peptidyl-transferase activity. One intron (i1) is located in domain I, and three (i2-i4) in domain II. The introns i2-i8 possess homologies with other fungal, algal or protozoan introns located at the same position in LSU rDNAs. One of them (i6) is located at the same insertion site as most Ascomycota or algae LSU introns, suggesting a possible inheritance from a common ancestor. On the contrary, intron i1 is located at a so-far unreported insertion site. Among the six unusual nucleotide extensions, five are located in domain I and one in domain V. This is the first report of a mitochondrial LSU rRNA gene sequence and secondary structure for the whole Basidiomycota division.

  16. [Association of single nucleotide polymorphism at interleukin-10 gene 1082 nt with the risk of gastric cancer in Chinese population].

    PubMed

    Zhou, Shao-zhang; Zhu, Wei-liang; Li, Ming-ying; Li, Hong-yi; Zhang, Ji-ren

    2008-08-01

    To study the association of single nucleotide polymorphism at interleukin-10 gene 1082 locus with Helicobacter pylori (Hp) infection and the risk of gastric cancer in high prevalent region (Shaanxi Province)aand low prevalence region (Guangdong Province) in China. The genomic DNA was extracted from the peripheral blood of 104 healthy individuals, 104 gastric cancer patients from Guangdong Province, and from 102 healthy volunteers and 102 gastric cancer patients in Shaanxi Province, China. The single nucleotide polymorphism at IL-10 gene 1082 locus was analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The serum levels of anit-Hp IgG was measured by enzyme-linked immunosorbent assay. The frequencies of IL-10-1082 A/A, A/G and G/G genotypes in the 412 subjects were 86.7%, 10.7% and 2.4%, respectively. In the low prevalence region, the number of carriers of IL-10-1082 G* was much greater in the cancer patients than in the healthy controls (14.4% vs 7.7%, Chi2=4.02, P<0.05, OR=1.01, 95% CI=1.08-3.10). The presence of IL-10-1082 G* was associated with significantly increased risk of gastric cancer following Hp infection (Chi(2)=5.36, P<0.05, OR=6.0, 95% CI=1.23-17.52). In the high prevalence region, the frequency of IL-10-1082 G* was slightly higher among the cancer patients than in the healthy controls, but this difference was not statistically significant (12.7% vs 16.6%, P>0.05). The G* genotype of IL-10 gene 1082 locus may be associated with increased risk of gastric cancer in China.

  17. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2R, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults.

    USDA-ARS?s Scientific Manuscript database

    Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...

  18. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update.

    PubMed

    Sheikh, Ishfaq A; Ahmad, Ejaz; Jamal, Mohammad S; Rehan, Mohd; Assidi, Mourad; Tayubi, Iftikhar A; AlBasri, Samera F; Bajouh, Osama S; Turki, Rola F; Abuzenadah, Adel M; Damanhouri, Ghazi A; Beg, Mohd A; Al-Qahtani, Mohammed

    2016-10-17

    Preterm birth (PTB), birth at <37 weeks of gestation, is a significant global public health problem. World-wide, about 15 million babies are born preterm each year resulting in more than a million deaths of children. Preterm neonates are more prone to problems and need intensive care hospitalization. Health issues may persist through early adulthood and even be carried on to the next generation. Majority (70 %) of PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs) that are reported to be associated with PTB. A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007-2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.

  19. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    PubMed

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.

  20. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    NASA Astrophysics Data System (ADS)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  1. The single-nucleotide polymorphisms in CHD5 affect the prognosis of patients with hepatocellular carcinoma

    PubMed Central

    Zhu, Xiao; Kong, Qingming; Xie, Liwei; Chen, Zhihong; Li, Hongmei; Zhu, Zhu; Huang, Yongmei; Lan, Feifei; Luo, Haiqing; Zhan, Jingting; Ding, Hongrong; Lei, Jinli; Xiao, Qin; Fu, Weiming; Fan, Wenguo; Zhang, Jinfang; Luo, Hui

    2018-01-01

    Previous studies showed that the low expressions of chromodomain-helicase-DNA-binding protein 5 (CHD5) were intensively associated with deteriorative biologic and clinical characteristics as well as outcomes in many tumors. The aim of this study is to determine whether CHD5 single nucleotide polymorphisms (SNPs) contribute to the prognosis of hepatocellular carcima (HCC). The SNPs were selected according to their linkage disequilibrium (LD) in the targeted next-generation sequencing (NGS) and then genotyped with TaqMan probers. We revealed a rare haplotype AG in CHD5 (SNPs: rs12564469-rs9434711) was markedly associated with HCC prognosis. The univariate and multivariate regression analyses revealed the patients with worse overall survival time were those with tumor metastasis and haplotype AG, as well as cirrhosis, poor differentiation and IV-TNM stage. Based on the available public databases, we discovered the significant association between haplotype AG and CHD5 mRNA expressions only existed in Chinese. These data proposed that the potentially genetic haplotype might functionally contribute to HCC prognosis and CHD5 mRNA expressions. PMID:29568352

  2. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms.

    PubMed

    Lin, Wei-Jye; Salton, Stephen R

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  3. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    PubMed

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  4. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  5. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

    PubMed

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-03-28

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  6. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    PubMed

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  7. Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases

    PubMed Central

    Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten

    2013-01-01

    Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002

  8. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    PubMed Central

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  9. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  10. Identification and validation of single nucleotide polymorphisms as tools to detect hybridization and population structure in freshwater stingrays.

    PubMed

    Cruz, Vanessa P; Vera, Manuel; Pardo, Belén G; Taggart, John; Martinez, Paulino; Oliveira, Claudio; Foresti, Fausto

    2017-05-01

    Single nucleotide polymorphism (SNP) markers were identified and validated for two stingrays species, Potamotrygon motoro and Potamotrygon falkneri, using double digest restriction-site associated DNA (ddRAD) reads using 454-Roche technology. A total of 226 774 reads (65.5 Mb) were obtained (mean read length 289 ± 183 bp) detecting a total of 5399 contigs (mean contig length: 396 ± 91 bp). Mining this data set, a panel of 143 in silico SNPs was selected. Eighty-two of these SNPs were successfully validated and 61 were polymorphic: 14 in P. falkneri, 21 in P. motoro, 3 in both species and 26 fixed for alternative variants in both species, thus being useful for population analyses and hybrid detection. © 2016 John Wiley & Sons Ltd.

  11. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  12. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  13. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  14. WEB-server for search of a periodicity in amino acid and nucleotide sequences

    NASA Astrophysics Data System (ADS)

    E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.

    2017-12-01

    A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.

  15. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice.

    PubMed

    Jenkins, Claire; Ling, Clare L; Ciesielczuk, Holly L; Lockwood, Julianne; Hopkins, Susan; McHugh, Timothy D; Gillespie, Stephen H; Kibbler, Christopher C

    2012-04-01

    Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.

  16. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    PubMed Central

    Villahermosa, Desirée; Christensen, Olaf; Knapp, Karen; Fleck, Oliver

    2017-01-01

    Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes. PMID:28341698

  17. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats.

    PubMed

    Villahermosa, Desirée; Christensen, Olaf; Knapp, Karen; Fleck, Oliver

    2017-05-05

    Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade + reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2 FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe , but contributes to DNA repeat stability in MMR-independent processes. Copyright © 2017 Villahermosa et al.

  18. Single nucleotide polymorphisms in obesity-related genes and the risk of esophageal cancers.

    PubMed

    Doecke, James D; Zhao, Zhen Zhen; Stark, Mitchell S; Green, Adèle C; Hayward, Nicholas K; Montgomery, Grant W; Webb, Penelope M; Whiteman, David C

    2008-04-01

    Rates of adenocarcinoma of the esophagus (EAC) and esophagogastric junction (EGJAC) have been rising rapidly in recent decades, in contrast to the declining rates of esophageal squamous cell carcinomas (ESCC). Obesity is a major risk factor for both EAC and EGJAC, but not ESCC, and there is speculation that obesity promotes adenocarcinoma development through endocrine and related pathways. We therefore compared the prevalence of 12 single nucleotide polymorphisms (SNPs) in nine candidate genes previously implicated in obesity pathways (LEP, LEPR, ADIPOQ, POMC, PPARalpha, PPARgamma, RXRgamma, GHRL, and INSIG2) in a large Australian case-control study comprising DNA samples from 260 EAC cases, 301 EGJAC cases, 213 ESCC cases, and 1,352 population controls. No SNPs were associated with EGJAC or ESCC. Although several SNPs seemed to be associated with EAC on crude analysis [ADIPOQ (rs1501299), LEP (5'-untranslated region), PPARgamma (H447H), and GHRL (M72L)], effect sizes were modest and none of the associations was significant after correcting for multiple comparisons. Further, we found no consistent evidence that any of the genotypes were associated with risk of EAC or EGJAC within strata of body mass index (<25.0 kg/m(2), 25.0-29.9 kg/m(2), >30 kg/m(2)). In conclusion, our data suggest that these SNPs do not play a major role in esophageal carcinogenesis.

  19. Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees

    PubMed Central

    Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio

    2011-01-01

    Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465

  20. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  1. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)—Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria

    PubMed Central

    Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    Fourteen weeks after field release of luciferase gene-tagged Sinorhizobium meliloti L33 in field plots seeded with Medicago sativa, we found that the inoculant also occurred in bulk soil from noninoculated control plots. In rhizospheres of M. sativa plants, S. meliloti L33 could be detected in noninoculated plots 12 weeks after inoculation, indicating that growth in the rhizosphere preceded spread into bulk soil. To determine whether inoculation affected bacterial diversity, 1,119 bacteria were isolated from the rhizospheres of M. sativa and Chenopodium album, which was the dominant weed in the field plots. Amplified ribosomal DNA restriction analysis (ARDRA) revealed plant-specific fragment size frequencies. Dominant ARDRA groups were identified by 16S rRNA gene nucleotide sequencing. Database comparisons indicated that the rhizospheres contained members of the Proteobacteria (α, β, and γ subgroups), members of the Cytophaga-Flavobacterium group, and gram-positive bacteria with high G+C DNA contents. The levels of many groups were affected by the plant species and, in the case of M. sativa, by inoculation. The most abundant isolates were related to Variovorax sp., Arthrobacter ramosus, and Acinetobacter calcoaceticus. In the rhizosphere of M. sativa, inoculation reduced the numbers of cells of A. calcoaceticus and members of the genus Pseudomonas and increased the number of rhizobia. Cultivation-independent PCR–single-strand conformation polymorphism (SSCP) profiles of a 16S rRNA gene region confirmed the existence of plant-specific rhizosphere communities and the effect of the inoculant. All dominant ARDRA groups except Variovorax species could be detected. On the other hand, the SSCP profiles revealed products which could not be assigned to the dominant cultured isolates, indicating that the bacterial diversity was greater than the diversity suggested by cultivation. PMID:10919821

  2. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay

  3. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    PubMed

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive

  4. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene.

    PubMed

    Tremblay, Johanne; Wang, Yujia; Raelson, John; Marois-Blanchet, Francois-Christophe; Wu, Zenghui; Luo, Hongyu; Bradley, Edward; Chalmers, John; Woodward, Mark; Harrap, Stephen; Hamet, Pavel; Wu, Jiangping

    2017-03-08

    EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3' untranslated region or within the adjacent region just 3' of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.

  5. Comprehensive thermodynamic analysis of 3′ double-nucleotide overhangs neighboring Watson–Crick terminal base pairs

    PubMed Central

    O'Toole, Amanda S.; Miller, Stacy; Haines, Nathan; Zink, M. Coleen; Serra, Martin J.

    2006-01-01

    Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented. PMID:16820533

  6. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    PubMed

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  7. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome.

    PubMed

    Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Benita, Miri; Ish-Shalom, Mazal; Sharabi-Schwager, Michal; Rozen, Ada; Saada, David; Cohen, Yuval; Ophir, Ron

    2015-11-14

    Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and

  8. Identification of Critical Residues for the Tight Binding of Both Correct and Incorrect Nucleotides to Human DNA Polymerase λ

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai

    2010-01-01

    DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705

  9. IRF6 rs2235375 single nucleotide polymorphism is associated with isolated non-syndromic cleft palate but not with cleft lip with or without palate in south Indian population.

    PubMed

    Gurramkonda, Venkatesh Babu; Syed, Altaf Hussain; Murthy, Jyotsna; Lakkakula, Bhaskar V K S

    2017-06-26

    Transcription factors are very diverse family of proteins involved in activating or repressing the transcription of a gene at a given time. Several studies using animal models demonstrated the role of transcription factor genes in craniofacial development. We aimed to investigate the association of IRF6 intron-6 polymorphism in the non-syndromic cleft lip with or without Palate in a south Indian population. 173 unrelated nonsyndromic cleft lip with or without Palate patients and 176 controls without clefts patients were genotyped for IRF6 rs2235375 variant by allele-specific amplification using the KASPar single nucleotide polymorphism genotyping system. The association between interferon regulatory factor-6 gene intron-6 dbSNP208032210:g.G>C (rs2235375) single nucleotide polymorphism and non-syndromic cleft lip with or without palate risk was investigated by chi-square test. There were significant differences in genotype or allele frequencies of rs2235375 single nucleotide polymorphism between controls and cases with non-syndromic cleft lip with or without palate. IRF6 rs2235375 variant was significantly associated with increased risk of non-syndromic cleft lip with or without palate in co-dominant, dominant (OR: 1.19; 95% CI 1.03-2.51; p=0.034) and allelic models (OR: 1.40; 95% CI 1.04-1.90; p=0.028). When subset analysis was applied significantly increased risk was observed in cleft palate only group (OR dominant: 4.33; 95% CI 1.44-12.97; p=0.005). These results suggest that IRF6 rs2235375 SNP play a major role in the pathogenesis and risk of developing non-syndromic cleft lip with or without palate. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  11. Candida kantuleensis sp. nov., a d-xylose-fermenting yeast species isolated from peat in a tropical peat swamp forest.

    PubMed

    Nitiyon, Sukanya; Khunnamwong, Pannida; Lertwattanasakul, Noppon; Limtong, Savitree

    2018-05-24

    Three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) representing a single novel anamorphic and d-xylose-fermenting yeast species were obtained from three peat samples collected from Khan Thulee peat swamp forest in Surat Thani province, Thailand. The strains differed from each other by one to two nucleotide substitutions in the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and zero to one nucleotide substitution in the internal transcribed spacer (ITS) region. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions showed that the three strains represented a single Candida species that was distinct from the other related species in the Lodderomyces/Candida albicans clade. The three strains form a subclade with the other Candida species including Candida sanyaensis, Candida tropicalis and Candida sojae. C. sanyaensis was the most closely related species, with 2.1-2.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 3.8-4.0 % nucleotide substitutions in the ITS region. The three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) were assigned as a single novel species, which was named Candida kantuleensis sp. nov. The type strain is DMKU-XE11 T (=CBS 15219 T =TBRC 7764 T ). The MycoBank number for C. kantuleensis sp. nov. is MB 824179.

  12. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  13. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  14. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum , indicating a population bottleneck during domestication of C. baccatum . In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum , 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index ( F ST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  15. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  16. Saturation Mutagenesis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Smith, Maria W.; Meskauskas, Arturas; Wang, Pinger; Sergiev, Petr V.; Dinman, Jonathan D.

    2001-01-01

    rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome. PMID:11713264

  17. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  18. Single-Nucleotide Polymorphisms Associated with Skin Naphthyl–Keratin Adduct Levels in Workers Exposed to Naphthalene

    PubMed Central

    Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei

    2012-01-01

    Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508

  19. Eukaryotic 5S rRNA biogenesis

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  20. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  1. The Regulated Secretory Pathway and Human Disease: Insights from Gene Variants and Single Nucleotide Polymorphisms

    PubMed Central

    Lin, Wei-Jye; Salton, Stephen R.

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269

  2. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment

    DOE PAGES

    Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; ...

    2015-04-09

    Here, the causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences inmore » nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated.« less

  3. Precise Estimation of Allele Frequencies of Single-Nucleotide Polymorphisms by a Quantitative SSCP Analysis of Pooled DNA

    PubMed Central

    Sasaki, Tomonari; Tahira, Tomoko; Suzuki, Akari; Higasa, Koichiro; Kukita, Yoji; Baba, Shingo; Hayashi, Kenshi

    2001-01-01

    We show that single-nucleotide polymorphisms (SNPs) of moderate to high heterozygosity (minor allele frequencies >10%) can be efficiently detected, and their allele frequencies accurately estimated, by pooling the DNA samples and applying a capillary-based SSCP analysis. In this method, alleles are separated into peaks, and their frequencies can be reliably and accurately quantified from their peak heights (SD <1.8%). We found that as many as 40% of publicly available SNPs that were analyzed by this method have widely differing allele frequency distributions among groups of different ethnicity (parents of Centre d'Etude Polymorphisme Humaine families vs. Japanese individuals). These results demonstrate the effectiveness of the present pooling method in the reevaluation of candidate SNPs that have been collected by examination of limited numbers of individuals. The method should also serve as a robust quantitative technique for studies in which a precise estimate of SNP allele frequencies is essential—for example, in linkage disequilibrium analysis. PMID:11083945

  4. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth.

    PubMed

    Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias

    2010-04-01

    Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.

  5. The allele frequency of two single nucleotide polymorphisms in the von Hippel-Lindau (VHL) tumor suppressor gene in the Taiwanese population.

    PubMed

    Wang, Wen-Chung; Chen, Hui-Ju; Shu, Wei-Pang; Tsai, Yi-Chang; Lai, Yen-Chein

    2011-10-01

    The von Hippel-Lindau (VHL) tumor suppressor gene located on chromosome 3p25-26 is implicated in VHL disease. Two informative single nucleotide polymorphisms are at positions 19 and 1149 on the nucleotide sequence from Gene Bank NM_000551. In this study we examined the allele frequencies at these two loci in the Taiwanese population and compared the results to those from European ethnic populations. The allele frequency was examined in 616 healthy individuals including 301 university students and 315 neonates. Both A/G polymorphisms were investigated using restriction fragment length polymorphism analysis created by restriction enzymes, BsaJ I and Acc I. Among these subjects, the allele frequencies at 19 SNP and 1149 SNP for variant G were 0.130 and 0.133, respectively. And these results were significant differences from those of the Caucasian populations. In addition, 90% of the tested subjects had identical genotypes at these two loci suggesting the existence of nonrandom association of alleles. We found that the G allele frequency at these two loci in the Taiwanese population is much lower than that in people from Western countries. This phenomenon may be attributed to ethnic effects. Copyright © 2011. Published by Elsevier B.V.

  6. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Kiparisov, S.; Sergiev, P. V.; Dontsova, O. A.; Petrov, A.; Meskauskas, A.; Dinman, J. D.

    2005-01-01

    5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semidominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression. PMID:16047201

  7. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  8. Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

    PubMed Central

    Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John J; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M; Asmann, Yan W; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I; Bertrand, Kimberly A; Birmann, Brenda M; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M; Brennan, Paul; Brooks-Wilson, Angela R; Cerhan, James R; Chanock, Stephen J; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J; de Sanjose, Silvia; Di Lollo, Simonetta; Diver, W Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G; Glimelius, Bengt; Habermann, Thomas M; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R; Holly, Elizabeth A; Jackson, Rebecca D; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S; Klein, Robert J; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry J; Monnereau, Alain; Morton, Lindsay M; Nieters, Alexandra; North, Kari E; Novak, Anne J; Offit, Kenneth; Purdue, Mark P; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K; Skibola, Christine F; Slager, Susan L; Smith, Alex; Smith, Martyn T; Southey, Melissa C; Staines, Anthony; Teras, Lauren R; Thompson, Carrie A; Tilly, Hervé; Tinker, Lesley F; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E

    2017-01-01

    Objective Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions These data suggest several plausible genetic links between DLBCL and SLE. PMID:29214033

  9. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCOM1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults

    USDA-ARS?s Scientific Manuscript database

    In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...

  10. Single nucleotide polymorphisms of the bovine VEGF-B gene and their associations with growth traits in the Nanyang cattle breed.

    PubMed

    Pang, Y H; Lei, C Z; Zhang, C L; Lan, X Y; Shao, S M; Gao, X M; Chen, H

    2012-01-01

    PCR-SSCP and DNA sequencing methods were applied to reveal single nucleotide polymorphisms (SNPs) in the bovine VEGF-B gene in 675 samples belonging to three native Chinese cattle breeds. We found 3 SNPs and a duplication NC_007330.5: g. [782 A>G p. (Gly112 =) (;) 1000-1001dup CT (;) 1079 C>T (;) 2129 G>A p. (Arg184Gln)]. We also observed a statistically significant association of the polymorphism (1000-1001dup CT) in intron 3 of the VEGF-B gene with the body weight of the Nanyang cattle (p < 0.05). This polymorphisms of VEGF-B gene need to be verified among a larger cattle population before it can be identified as a marker for bovine body weight.

  11. Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas, Morocco.

    PubMed

    Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis

    2013-10-01

    Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi

    2013-01-01

    In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257

  13. Antinociceptive effect of purine nucleotides.

    PubMed

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  14. Single Nucleotide Polymorphism in ATM Gene, Cooking Oil Fumes and Lung Adenocarcinoma Susceptibility in Chinese Female Non-Smokers: A Case-Control Study

    PubMed Central

    Shen, Li; Yin, Zhihua; Wu, Wei; Ren, Yangwu; Li, Xuelian; Zhou, Baosen

    2014-01-01

    Background The ataxia-telangiectasia mutated (ATM) gene plays an important role in the DNA double-strand breaks repair pathway. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ATM -111G>A (rs189037) polymorphism, environmental risk factors and the risk of lung adenocarcinoma in Chinese female non-smokers. Methods A hospital-based case-control study of 487 lung cancer patients and 516 matched cancer-free controls was conducted. Information concerning demographic and environmental risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, 10 ml venous blood was collected from each subject for biomarker testing. Single nucleotide polymorphism was determined by using TaqMan method. Results This study showed that the individuals with ATM rs189037 AA genotype were at an increased risk for lung adenocarcinoma compared with those carrying the GA or GG genotype (adjusted odds ratios (OR) 1.44, 95% confidence interval (CI) 1.02–2.02, P = 0.039). The stratified analysis suggested that increased risk associated with ATM rs189037 AA genotype in individuals who never or seldom were exposed to cooking oil fumes (adjusted OR 1.89, 95%CI 1.03–3.49, P = 0.040). Conclusions ATM rs189037 might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, ATM rs189037 AA genotype might be a risk factor of lung adenocarcinoma among female non-smokers without cooking oil fume exposure. PMID:24819391

  15. Nucleotide-binding oligomerization domain containing 1 (NOD1) haplotypes and single nucleotide polymorphisms modify susceptibility to inflammatory bowel diseases in a New Zealand caucasian population: a case-control study

    PubMed Central

    Huebner, Claudia; Ferguson, Lynnette R; Han, Dug Yeo; Philpott, Martin; Barclay, Murray L; Gearry, Richard B; McCulloch, Alan; Demmers, Pieter S; Browning, Brian L

    2009-01-01

    Background The nucleotide-binding oligomerization domain containing 1 (NOD1) gene encodes a pattern recognition receptor that senses pathogens, leading to downstream responses characteristic of innate immunity. We investigated the role of NOD1 single nucleotide polymorphisms (SNPs) on IBD risk in a New Zealand Caucasian population, and studied Nod1 expression in response to bacterial invasion in the Caco2 cell line. Findings DNA samples from 388 Crohn's disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis patients and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in NOD1, using the MassARRAY® iPLEX Gold assay. Transcriptional activation of the protein produced by NOD1 (Nod1) was studied after infection of Caco2 cells with Escherichia coli LF82. Carrying the rs2075818 G allele decreased the risk of CD (OR = 0.66, 95% CI = 0.50–0.88, p < 0.002) but not UC. There was an increased frequency of the three SNP (rs2075818, rs2075822, rs2907748) haplotype, CTG (p = 0.004) and a decreased frequency of the GTG haplotype (p = 0.02).in CD. The rs2075822 CT or TT genotypes were at an increased frequency (genotype p value = 0.02), while the rs2907748 AA or AG genotypes showed decreased frequencies in UC (p = 0.04), but not in CD. Functional assays showed that Nod1 is produced 6 hours after bacterial invasion of the Caco2 cell line. Conclusion The NOD1 gene is important in signalling invasion of colonic cells by pathogenic bacteria, indicative of its' key role in innate immunity. Carrying specific SNPs in this gene significantly modifies the risk of CD and/or UC in a New Zealand Caucasian population. PMID:19327158

  16. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers

    PubMed Central

    2011-01-01

    Background Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. Results This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. Conclusions Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus. PMID:21992066

  17. A Single Nucleotide Deletion in Gibberellin20-oxidase1 Causes Alpine Dwarfism in Arabidopsis.

    PubMed

    Luo, Yonghai; Dong, Xinwei; Yu, Tianying; Shi, Xuan; Li, Zongyun; Yang, Weicai; Widmer, Alex; Karrenberg, Sophie

    2015-07-01

    Alpine dwarfism is widely observed in alpine plant populations and often considered a high-altitude adaptation, yet its molecular basis and ecological relevance remain unclear. In this study, we used map-based cloning and field transplant experiments to investigate dwarfism in natural Arabidopsis (Arabidopsis thaliana) accessions collected from the Swiss Alps. A loss-of-function mutation due to a single nucleotide deletion in gibberellin20-oxidase1 (GA5) was identified as the cause of dwarfism in an alpine accession. The mutated allele, ga5-184, was found in two natural Arabidopsis populations collected from one geographic region at high altitude, but was different from all other reported ga5 null alleles, suggesting that this allele has evolved locally. In field transplant experiments, the dwarf accession with ga5-184 exhibited a fitness pattern consistent with adaptation to high altitude. Across a wider array of accessions from the Swiss Alps, plant height decreased with altitude of origin, but fitness patterns in the transplant experiments were variable and general altitudinal adaptation was not evident. In general, our study provides new insights into molecular basis and possible ecological roles of alpine dwarfism, and demonstrates the importance of the GA-signaling pathway for the generation of ecologically relevant variation in higher plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    PubMed

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data.

    PubMed

    Glessner, Joseph T; Bick, Alexander G; Ito, Kaoru; Homsy, Jason; Rodriguez-Murillo, Laura; Fromer, Menachem; Mazaika, Erica; Vardarajan, Badri; Italia, Michael; Leipzig, Jeremy; DePalma, Steven R; Golhar, Ryan; Sanders, Stephan J; Yamrom, Boris; Ronemus, Michael; Iossifov, Ivan; Willsey, A Jeremy; State, Matthew W; Kaltman, Jonathan R; White, Peter S; Shen, Yufeng; Warburton, Dorothy; Brueckner, Martina; Seidman, Christine; Goldmuntz, Elizabeth; Gelb, Bruce D; Lifton, Richard; Seidman, Jonathan; Hakonarson, Hakon; Chung, Wendy K

    2014-10-24

    Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis. To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD. We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10(-5); odds ratio, 4.6) or whole exome sequencing data (P=6×10(-4); odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions. We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD. © 2014 American Heart Association, Inc.

  1. Prokaryotic nucleotide composition is shaped by both phylogeny and the environment.

    PubMed

    Reichenberger, Erin R; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth

    2015-04-09

    The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences-which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  3. Extension of the COG and arCOG databases by amino acid and nucleotide sequences

    PubMed Central

    Meereis, Florian; Kaufmann, Michael

    2008-01-01

    Background The current versions of the COG and arCOG databases, both excellent frameworks for studies in comparative and functional genomics, do not contain the nucleotide sequences corresponding to their protein or protein domain entries. Results Using sequence information obtained from GenBank flat files covering the completely sequenced genomes of the COG and arCOG databases, we constructed NUCOCOG (nucleotide sequences containing COG databases) as an extended version including all nucleotide sequences and in addition the amino acid sequences originally utilized to construct the current COG and arCOG databases. We make available three comprehensive single XML files containing the complete databases including all sequence information. In addition, we provide a web interface as a utility suitable to browse the NUCOCOG database for sequence retrieval. The database is accessible at . Conclusion NUCOCOG offers the possibility to analyze any sequence related property in the context of the COG and arCOG framework simply by using script languages such as PERL applied to a large but single XML document. PMID:19014535

  4. [Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Gritsenko, O F; Seeb, J E

    2014-07-01

    The variability of 45 single nucleotide polymorphism (SNP) loci was studied in nine samples of the sockeye salmon Oncorhynchus nerka from the rivers of southwestern Kamchatka. The Wahlund effect, gametic disequilibrium at some loci, and a decrease in interpopulation genetic diversity estimates observed in samples from the Bolshaya River outlet are explained in terms of the samples' heterogeneity. Partitioning of mixed samples using some biological characteristics of the individuals led to a noticeable decrease in the frequency of these phenomena. It was demonstrated that the allelic diversity between the populations within the river Plotnikovs accounted for the larger part of genetic variation, as compared to the differentiation between the basins. The SNP loci responsible for intra- and interpopulation differentiation of sockeye salmon from the rivers of southwestern Kamchatka were identified. Some recommendations for field population genetic studies of Asian sockeye salmon were formulated.

  5. Single nucleotide polymorphisms associated with coronary heart disease predict incident ischemic stroke in the atherosclerosis risk in communities study.

    PubMed

    Morrison, Alanna C; Bare, Lance A; Luke, May M; Pankow, James S; Mosley, Thomas H; Devlin, James J; Willerson, James T; Boerwinkle, Eric

    2008-01-01

    Ischemic stroke and coronary heart disease (CHD) may share genetic factors contributing to a common etiology. This study investigates whether 51 single nucleotide polymorphisms (SNPs) associated with CHD in multiple antecedent studies are associated with incident ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. From the multiethnic ARIC cohort of 14,215 individuals, 495 validated ischemic strokes were identified. Cox proportional hazards models, adjusted for age and gender, identified three SNPs in Whites and two SNPs in Blacks associated with incident stroke (p

  6. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.

    PubMed

    Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris

    2004-07-14

    With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  7. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.

    PubMed

    Kim, K S; Lee, S E; Jeong, H W; Ha, J H

    1998-10-01

    The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.

  8. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    PubMed

    Clendenen, Tess V; Rendleman, Justin; Ge, Wenzhen; Koenig, Karen L; Wirgin, Isaac; Currie, Diane; Shore, Roy E; Kirchhoff, Tomas; Zeleniuch-Jacquotte, Anne

    2015-01-01

    Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA. We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison. We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping. Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  9. Role of the DGAT gene C79T single-nucleotide polymorphism in French obese subjects.

    PubMed

    Coudreau, Sylvie Kipfer; Tounian, Patrick; Bonhomme, Geneviève; Froguel, Philippe; Girardet, Jean-Philippe; Guy-Grand, Bernard; Basdevant, Arnaud; Clément, Karine

    2003-10-01

    Acyl-coenzyme A, diacylglycerol acyltransferase (DGAT), is a key enzyme involved in adipose-cell triglyceride storage. A 79-bp T-to-C single-nucleotide polymorphism (SNP) on the 3' region of the DGAT transcriptional site has been reported to increase promoter activity and is associated with higher BMI in Turkish women. To validate the possible role of this genetic variant in obesity, as well as the variant's possible cellular-functional significance, we performed an association study between the T79C change and several obesity-related phenotypes in 1357 obese French adults and children. The prevalence of the T79C SNP was similar between obese adults and children when each group was compared with the controls. (CC genotype carrier frequencies were 0.25 to 0.29 in the obese groups and 0.21 in controls; p > 0.05.) In each of the obese adult and child groups studied, the T79C variant was not found to be associated with any of the obesity-related phenotypes tested. Although the T79C SNP of the DGAT gene was studied in several groups of white subjects, the association between this SNP and obesity-related phenotypes, previously described, was not confirmed in our population.

  10. Population Genetics of Verticillium dahliae in Iran Based on Microsatellite and Single Nucleotide Polymorphism Markers.

    PubMed

    Rafiei, Vahideh; Banihashemi, Ziaeddin; Bautista-Jalon, Laura S; Del Mar Jiménez-Gasco, Maria; Turgeon, B Gillian; Milgroom, Michael G

    2018-06-01

    Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B 824 ; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B 824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B 824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.

  11. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    PubMed

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. © 2016 The Royal Entomological Society.

  12. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    PubMed

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  13. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data

    PubMed Central

    Feng, Hao; Conneely, Karen N.; Wu, Hao

    2014-01-01

    DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS. PMID:24561809

  14. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  15. Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene.

    PubMed

    Martínez-Herrero, Sonia; Martínez, Alfredo

    2013-04-01

    The risk of developing cancer is regulated by genetic variants, including polymorphisms. Characterizing such variants may help in developing protocols for personalized medicine. Adrenomedullin is a regulatory peptide involved in cancer promotion and progression. Carriers of a single nucleotide polymorphism (SNP) in the proximity of the adrenomedullin gene have lower levels of circulating peptide. The aim of the present work was to investigate whether carriers of this SNP (rs4910118) are protected against cancer. This was a retrospective study. DNA samples were obtained from the Carlos III DNA National Bank (University of Salamanca, Salamanca, Spain). Samples represent a variety of donors and patients from Spain. DNA from patients with breast cancer (n = 238), patients with lung cancer (n = 348), patients with cardiac insufficiency (n = 474), and healthy donors of advanced age (n = 500) was used. All samples were genotyped using double-mismatch PCR, and confirmation was achieved by direct sequencing. The minor allele frequency was calculated in all groups. The Pearson χ(2) was used to compare SNP frequencies. Of 1560 samples, 14 had the minor allele, with a minor allele frequency in healthy donors of 0.90%. Patients with cancer had a statistically significantly lower frequency than healthy donors (odds ratio = 0.216, 95% confidence interval = 0.048-0.967, P = .028). Carriers of the minor allele have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele. Knowledge of the rs4910118 genotype may be useful for stratifying patients in clinical trials and for designing prevention strategies.

  16. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    PubMed

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  17. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-04

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India.

    PubMed

    Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U

    2013-11-01

    Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  19. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    PubMed

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  20. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  1. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  2. Relationships between Podolic cattle breeds assessed by single nucleotide polymorphisms (SNPs) genotyping.

    PubMed

    Pariset, L; Mariotti, M; Nardone, A; Soysal, M I; Ozkan, E; Williams, J L; Dunner, S; Leveziel, H; Maróti-Agóts, A; Bodò, I; Valentini, A

    2010-12-01

    Italian Maremmana, Turkish Grey and Hungarian Grey breeds belong to the same Podolic group of cattle, have a similar conformation and recently experienced a similar demographic reduction. The aim of this study was to assess the relationship among the analysed Podolic breeds and to verify whether their genetic state reflects their history. To do so, approximately 100 single nucleotide polymorphisms (SNPs) were genotyped on individuals belonging to these breeds and compared to genotypes of individuals of two Italian beef breeds, Marchigiana and Piemontese, which underwent different selection and migration histories. Population genetic parameters such as allelic frequencies and heterozygosity values were assessed, genetic distances calculated and assignment test performed to evaluate the possibility of recent admixture between the populations. The data show that the physical similarity among the Podolic breeds examined, and particularly between Hungarian Grey and Maremmana cattle that experienced admixture in the recent past, is mainly morphological. The assignment of individuals from genotype data was achieved using Bayesian inference, confirming that the set of chosen SNPs is able to distinguish among the breeds and that the breeds are genetically distinct. Individuals of Turkish Grey breed were clearly assigned to their breed of origin for all clustering alternatives, showing that this breed can be differentiated from the others on the basis of the allelic frequencies. Remarkably, in the Turkish Grey there were differences observed between the population of Enez district, where in situ conservation studies are practised, and that of Bandirma district of Balikesir, where ex situ conservation studies are practised out of the original raising area. In conclusion, this study demonstrates that molecular data could be used to reveal an unbiased view of past events and provide the basis for a rational exploitation of livestock, suggesting appropriate cross-breeding plans

  3. EnsembleGASVR: a novel ensemble method for classifying missense single nucleotide polymorphisms.

    PubMed

    Rapakoulia, Trisevgeni; Theofilatos, Konstantinos; Kleftogiannis, Dimitrios; Likothanasis, Spiros; Tsakalidis, Athanasios; Mavroudi, Seferina

    2014-08-15

    Single nucleotide polymorphisms (SNPs) are considered the most frequently occurring DNA sequence variations. Several computational methods have been proposed for the classification of missense SNPs to neutral and disease associated. However, existing computational approaches fail to select relevant features by choosing them arbitrarily without sufficient documentation. Moreover, they are limited to the problem of missing values, imbalance between the learning datasets and most of them do not support their predictions with confidence scores. To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a two-step algorithm, which in its first step applies a novel evolutionary embedded algorithm to locate close to optimal Support Vector Regression models. In its second step, these models are combined to extract a universal predictor, which is less prone to overfitting issues, systematizes the rebalancing of the learning sets and uses an internal approach for solving the missing values problem without loss of information. Confidence scores support all the predictions and the model becomes tunable by modifying the classification thresholds. An extensive study was performed for collecting the most relevant features for the problem of classifying SNPs, and a superset of 88 features was constructed. Experimental results show that the proposed framework outperforms well-known algorithms in terms of classification performance in the examined datasets. Finally, the proposed algorithmic framework was able to uncover the significant role of certain features such as the solvent accessibility feature, and the top-scored predictions were further validated by linking them with disease phenotypes. Datasets and codes are freely available on the Web at http://prlab.ceid.upatras.gr/EnsembleGASVR/dataset-codes.zip. All the required information about the article is available through http

  4. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  5. Functional single nucleotide polymorphisms of matrix metalloproteinase 7 and 12 genes in idiopathic recurrent spontaneous abortion.

    PubMed

    Barišić, Anita; Pereza, Nina; Hodžić, Alenka; Kapović, Miljenko; Peterlin, Borut; Ostojić, Saša

    2017-03-01

    The aim of this study was to investigate the potential association of matrix metalloproteinase 7 (MMP7) -181 A/G and MMP12 -82 A/G functional single nucleotide polymorphisms (SNP) with idiopathic recurrent spontaneous abortion (IRSA) in Slovenian reproductive couples. A case-control study was conducted on 149 couples with 3 or more consecutive idiopathic spontaneous pregnancy loses and 149 women and men with at least 2 live births and no history of pregnancy complications. Genotyping of MMP7 -181 A/G and MMP12 -82 A/G SNPs was performed using polymerase chain reaction and restriction fragment length polymorphism methods. There were no statistically significant differences in the distribution of MMP7 -181 A/G and MMP12 -82 A/G genotype, allele, or haplotype frequencies between IRSA patients and controls, as well as patients' primary and secondary IRSA. We also found no association of MMP7 -181 A/G and MMP12 -82 A/G genotypes, alleles, and haplotypes with IRSA. We found no evidence to support the association between IRSA and MMP7 -181 A/G and MMP12 -82 A/G SNPs in Slovenian reproductive couples.

  6. SNPing Away at Complex Diseases: Analysis of Single-Nucleotide Polymorphisms around APOE in Alzheimer Disease

    PubMed Central

    Martin, Eden R.; Lai, Eric H.; Gilbert, John R.; Rogala, Allison R.; Afshari, A. J.; Riley, John; Finch, K. L.; Stevens, J. F.; Livak, K. J.; Slotterbeck, Brandon D.; Slifer, Susan H.; Warren, Liling L.; Conneally, P. Michael; Schmechel, Donald E.; Purvis, Ian; Pericak-Vance, Margaret A.; Roses, Allen D.; Vance, Jeffery M.

    2000-01-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (P⩽.05) was identified for 7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie <16 kb from APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes. PMID:10869235

  7. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease.

    PubMed

    Martin, E R; Lai, E H; Gilbert, J R; Rogala, A R; Afshari, A J; Riley, J; Finch, K L; Stevens, J F; Livak, K J; Slotterbeck, B D; Slifer, S H; Warren, L L; Conneally, P M; Schmechel, D E; Purvis, I; Pericak-Vance, M A; Roses, A D; Vance, J M

    2000-08-01

    There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association (Psingle-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes.

  8. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria.

    PubMed

    Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K

    2015-11-10

    Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs

  9. The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs

    PubMed Central

    Parker, Michael S.; Balasubramaniam, Ambikaipakan; Sallee, Floyd R.; Parker, Steven L.

    2018-01-01

    Eukaryote ribosomal RNAs (rRNAs) have expanded in the course of phylogeny by addition of nucleotides in specific insertion areas, the expansion segments. These number about 40 in the larger (25–28S) rRNA (up to 2,400 nucleotides), and about 12 in the smaller (18S) rRNA (<700 nucleotides). Expansion of the larger rRNA shows a clear phylogenetic increase, with a dramatic rise in mammals and especially in hominids. Substantial portions of expansion segments in this RNA are not bound to ribosomal proteins, and may engage extraneous interactants, including messenger RNAs (mRNAs). Studies on the ribosome-mRNA interaction have focused on proteins of the smaller ribosomal subunit, with some examination of 18S rRNA. However, the expansion segments of human 28S rRNA show much higher density and numbers of mRNA matches than those of 18S rRNA, and also a higher density and match numbers than its own core parts. We have studied that with frequent and potentially stable matches containing 7–15 nucleotides. The expansion segments of 28S rRNA average more than 50 matches per mRNA even assuming only 5% of their sequence as available for such interaction. Large expansion segments 7, 15, and 27 of 28S rRNA also have copious long (≥10-nucleotide) matches to most human mRNAs, with frequencies much higher than in other 28S rRNA parts. Expansion segments 7 and 27 and especially segment 15 of 28S rRNA show large size increase in mammals compared to other metazoans, which could reflect a gain of function related to interaction with non-ribosomal partners. The 28S rRNA expansion segment 15 shows very high increments in size, guanosine, and cytidine nucleotide content and mRNA matching in mammals, and especially in hominids. With these segments (but not with other 28S rRNA or any 18S rRNA expansion segments) the density and number of matches are much higher in 5′-terminal than in 3′-terminal untranslated mRNA regions, which may relate to mRNA mobilization via 5′ termini. Matches

  10. Probing the nucleotide binding domain of the osmoregulator EnvZ using fluorescent nucleotide derivatives.

    PubMed

    Plesniak, Leigh; Horiuchi, Yuki; Sem, Daniel; Meinenger, David; Stiles, Linda; Shaffer, Jennifer; Jennings, Patricia A; Adams, Joseph A

    2002-11-26

    EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.

  11. The AVPR1A Gene and Its Single Nucleotide Polymorphism rs10877969: A Literature Review of Associations with Health Conditions and Pain.

    PubMed

    Roach, Keesha L; Hershberger, Patricia E; Rutherford, Julienne N; Molokie, Robert E; Wang, Zaijie Jim; Wilkie, Diana J

    2018-03-01

    Pain is the quintessential symptom for individuals suffering from sickle cell disease (SCD). Although the degree of suffering and the cost of treatment are staggering, SCD continues to be grossly understudied, including a lack of data for pain-related genes and prevalence of polymorphisms in this population. This lack of data adds to the inadequacy of pain therapy in this population. Pain genetics investigators have recently examined allele frequencies of single-nucleotide polymorphisms from candidate genes in people who have SCD. One of the genes identified was the arginine vasopressin receptor 1A gene (AVPR1A) and its associated single-nucleotide polymorphism (SNP) rs10877969. Progress in explaining pain-related polymorphisms associated with SCD can be facilitated by understanding the literature. The purpose of this literature review was to describe mechanisms of the polymorphic gene AVPR1A and the phenotypic variations associated with its SNPs relative to health conditions and pain. Published studies were included if the research addressed AVPR1A and was a full article in a peer-reviewed journal, in the English language, a human or animal study, and published 2009 to present. Abstracts were included if they were in English and provided information not found in a full article. The results of this review revealed that AVPR1A is associated with behavioral phenotypes, which include pair bonding, autism spectrum disorder, musical aptitude, infidelity, altruism, monogamy, mating, substance abuse, and alcohol preference. In addition, there were associations with pain, stress pain by sex, and sickle cell pain. Summary of this literature could provide insights into future pain research of this SNP in people with SCD. Copyright © 2018 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  12. Sequence data for two large-subunit rRNA genes from an Asian strain of Alexandrium catenella.

    PubMed Central

    Yeung, P K; Kong, K F; Wong, F T; Wong, J T

    1996-01-01

    PCR generated two distinct products from a toxic isolate of Alexandrium catenella, which had been taken from Dai Ya Bay (southern China), by using primers for large-subunit rRNA. This pattern is distinct from published data for North American Alexandrium species. Sequences of the two products suggest that the smaller was generated by a deletion event. Single-cell PCR generated the same pattern, confirming that the two products were not the results from different individuals. PMID:8900010

  13. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes

    PubMed Central

    Németh, Attila; Guibert, Sylvain; Tiwari, Vijay Kumar; Ohlsson, Rolf; Längst, Gernot

    2008-01-01

    Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes. PMID:18354495

  14. Expansion of the aminoglycoside-resistance 16S rRNA (m(1)A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin.

    PubMed

    Witek, Marta A; Conn, Graeme L

    2014-09-01

    The global dissemination, potential activity in diverse species and broad resistance spectrum conferred by the aminoglycoside-resistance ribosomal RNA methyltransferases make them a significant potential new threat to the efficacy of aminoglycoside antibiotics in the treatment of serious bacterial infections. The N1 methylation of adenosine 1408 (m(1)A1408) confers resistance to structurally diverse aminoglycosides, including kanamycin, neomycin and apramycin. The limited analyses to date of the enzymes responsible have identified common features but also potential differences in their molecular details of action. Therefore, with the goal of expanding the known 16S rRNA (m(1)A1408) methyltransferase family as a platform for developing a more complete mechanistic understanding, we report here the cloning, expression and functional analyses of four hypothetical aminoglycoside-resistance rRNA methyltransferases from recent genome sequences of diverse bacterial species. Each of the genes produced a soluble, folded protein with a secondary structure, as determined from circular dichroism (CD) spectra, consistent with enzymes for which high-resolution structures are available. For each enzyme, antibiotic minimum inhibitory concentration (MIC) assays revealed a resistance spectrum characteristic of the known 16S rRNA (m(1)A1408) methyltransferases and the modified nucleotide was confirmed by reverse transcription as A1408. In common with other family members, higher binding affinity for the methylation reaction by-product S-adenosylhomocysteine (SAH) than the cosubstrate S-adenosyl-L-methionine (SAM) was observed for three methyltransferases, while one unexpectedly showed no measurable affinity for SAH. Collectively, these results confirm that each hypothetical enzyme is a functional 16S rRNA (m(1)A1408) methyltransferase but also point to further potential mechanistic variation within this enzyme family. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences

    PubMed Central

    Wright, Erik S.; Yilmaz, L. Safak

    2012-01-01

    DECIPHER is a new method for finding 16S rRNA chimeric sequences by the use of a search-based approach. The method is based upon detecting short fragments that are uncommon in the phylogenetic group where a query sequence is classified but frequently found in another phylogenetic group. The algorithm was calibrated for full sequences (fs_DECIPHER) and short sequences (ss_DECIPHER) and benchmarked against WigeoN (Pintail), ChimeraSlayer, and Uchime using artificially generated chimeras. Overall, ss_DECIPHER and Uchime provided the highest chimera detection for sequences 100 to 600 nucleotides long (79% and 81%, respectively), but Uchime's performance deteriorated for longer sequences, while ss_DECIPHER maintained a high detection rate (89%). Both methods had low false-positive rates (1.3% and 1.6%). The more conservative fs_DECIPHER, benchmarked only for sequences longer than 600 nucleotides, had an overall detection rate lower than that of ss_DECIPHER (75%) but higher than those of the other programs. In addition, fs_DECIPHER had the lowest false-positive rate among all the benchmarked programs (<0.20%). DECIPHER was outperformed only by ChimeraSlayer and Uchime when chimeras were formed from closely related parents (less than 10% divergence). Given the differences in the programs, it was possible to detect over 89% of all chimeras with just the combination of ss_DECIPHER and Uchime. Using fs_DECIPHER, we detected between 1% and 2% additional chimeras in the RDP, SILVA, and Greengenes databases from which chimeras had already been removed with Pintail or Bellerophon. DECIPHER was implemented in the R programming language and is directly accessible through a webpage or by downloading the program as an R package (http://DECIPHER.cee.wisc.edu). PMID:22101057

  16. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms.

    PubMed

    Kino, Tomoshige

    2018-05-11

    The human genome contains numerous single nucleotide variations (SNVs), and the human GR gene harbors ∼450 of these genetic changes. Among them, extremely rare non-synonymous variants known as pathologic GR gene mutations develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others known as pathologic polymorphisms develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DBD also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, we discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts along with brief explanation to recent research achievement on the GR polymorphisms.

  17. Identification of a single nucleotide polymorphism indicative of high risk in acute myocardial infarction

    PubMed Central

    Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.

    2017-01-01

    Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065

  18. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  19. Toward optimal set of single nucleotide polymorphism investigation before IVF.

    PubMed

    Ivanov, A V; Dedul, A G; Fedotov, Y N; Komlichenko, E V

    2016-10-01

    At present, the patient preparation for IVF needs to undergo a series of planned tests, including the genotyping of single nucleotide polymorphism (SNP) alleles of some genes. In former USSR countries, such investigation was not included in overwhelming majority of health insurance programs and paid by patient. In common, there are prerequisites to the study of more than 50 polymorphisms. An important faced task is to determine the optimal panel for SNP genotyping in terms of price/number of SNP. During 2009-2015 in the University Hospital of St. Petersburg State University, blood samples were analyzed from 550 women with different reproductive system disorders preparing for IVF and 46 healthy women in control group. In total, 28 SNP were analyzed in the genes of thrombophilia factors, folic acid cycle, detoxification system, and the renin-angiotensin system. The method used was real-time PCR. A significant increase in the frequency of pathological alleles of some polymorphisms in patients with habitual failure of IVF was shown, compared with the control group. As a result, two options defined panels for optimal typing SNP before IVF were composed. Standard panel includes 8 SNP, 5 in thromborhilic factors, and 3 in folic acid cycle genes. They are 20210 G > A of FII gene, R506Q G > A of FV gene (mutation Leiden), -675 5G > 4G of PAI-I gene, L33P T > C of ITGB3 gene, -455 G > A of FGB gene, 667 C > T of MTHFR gene, 2756 A > G of MTR gene, and 66 A > G of MTRR gene. Extended panel of 15 SNP also includes 807 C > T of ITGA2 gene, T154M C > T of GP1BA gene, second polymorphism 1298 A > C in MTHFR gene, polymorphisms of the renin-angiotensin gene AGT M235T T > C and -1166 A > C of AGTR1 gene, polymorphisms I105V A > G and A114V C > T of detoxification system gene GSTP. The results of SNP genotyping can be adjusted for treatment tactics and IVF, and also medical support getting pregnant. The success rate of

  20. Droplet microfluidics for amplification-free genetic detection of single cells.

    PubMed

    Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei

    2012-09-21

    In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.

  1. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    PubMed

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  2. Correlations between ACE single nucleotide polymorphisms and prognosis of patients with septic shock.

    PubMed

    Dou, Xin-Man; Cheng, Hui-Juan; Meng, Ling; Zhou, Lin-Lin; Ke, Yi-Hong; Liu, Li-Ping; Li, Yu-Min

    2017-04-30

    The aim of the present study is to investigate association between septic shock (SS) and angiotensin I-converting enzyme ( ACE ) single nucleotide polymorphisms (SNPs). From October 2009 to December 2016, 238 SS patients and 242 healthy individuals were selected for our study. ACE activity was detected, ACE rs4291 and rs4646994 polymorphisms were detected using PCR-restriction fragment length polymorphism (PCR-RFLP). The Kaplan-Meier survival curve was employed to evaluate the association between ACE SNPs and patients' survival and univariate and multivariate analyses to estimate risk factors for SS. ACE activity in the case group was increased in comparison with the control group. Allele and genotype frequencies of rs4291 and rs4646994 were different between the case and control groups. The TT genotype frequency of the rs4291 polymorphisms and the DD genotype of the rs4646994 polymorphisms of the case group were higher than those in the control group. The AT and TT genotypes indicated a significant elevation of ACE activity than the AA genotype, while a significant decline was found in the DI and II genotypes in comparison with the DI genotype. Patients with TT or DD genotypes had increased fatality rate within 7 and 30 days when compared with those with non-TT or non-DD genotypes. Lower sepsis-related organ failure assessment (SOFA) scores, rs4291, serum ACE and rs4646994 were all considered as risky factors for SS patients. The study demonstrates that TT genotype of rs4291 or DD genotype of rs4646994 may be indicative of a higher risk of SS and a poorer prognosis in SS patients. © 2017 The Author(s).

  3. Common single nucleotide variants underlying drug addiction: more than a decade of research.

    PubMed

    Bühler, Kora-Mareen; Giné, Elena; Echeverry-Alzate, Victor; Calleja-Conde, Javier; de Fonseca, Fernando Rodriguez; López-Moreno, Jose Antonio

    2015-09-01

    Drug-related phenotypes are common complex and highly heritable traits. In the last few years, candidate gene (CGAS) and genome-wide association studies (GWAS) have identified a huge number of single nucleotide polymorphisms (SNPs) associated with drug use, abuse or dependence, mainly related to alcohol or nicotine. Nevertheless, few of these associations have been replicated in independent studies. The aim of this study was to provide a review of the SNPs that have been most significantly associated with alcohol-, nicotine-, cannabis- and cocaine-related phenotypes in humans between the years of 2000 and 2012. To this end, we selected CGAS, GWAS, family-based association and case-only studies published in peer-reviewed international scientific journals (using the PubMed/MEDLINE and Addiction GWAS Resource databases) in which a significant association was reported. A total of 371 studies fit the search criteria. We then filtered SNPs with at least one replication study and performed meta-analysis of the significance of the associations. SNPs in the alcohol metabolizing genes, in the cholinergic gene cluster CHRNA5-CHRNA3-CHRNB4, and in the DRD2 and ANNK1 genes, are, to date, the most replicated and significant gene variants associated with alcohol- and nicotine-related phenotypes. In the case of cannabis and cocaine, a far fewer number of studies and replications have been reported, indicating either a need for further investigation or that the genetics of cannabis/cocaine addiction are more elusive. This review brings a global state-of-the-art vision of the behavioral genetics of addiction and collaborates on formulation of new hypothesis to guide future work. © 2015 Society for the Study of Addiction.

  4. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  5. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center

    PubMed Central

    Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert

    2018-01-01

    Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687

  6. Association between Single Nucleotide Polymorphism of Vitamin D Receptor Gene FokI Polymorphism and Clinical Progress of Benign Prostatic Hyperplasia

    PubMed Central

    Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de

    2015-01-01

    Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834

  7. ESR1 single nucleotide polymorphisms predict breast cancer susceptibility in the central European Caucasian population.

    PubMed

    Lipphardt, Mark F; Deryal, Mustafa; Ong, Mei Fang; Schmidt, Werner; Mahlknecht, Ulrich

    2013-01-01

    Estrogen and progesterone hormones are key regulators of a wide variety of biological processes. In addition to their influence on reproduction, cell differentiation and apoptosis, they affect inflammatory response, cell metabolism and most importantly, they regulate physiological breast tissue proliferation and differentiation as well as the development and progression of breast cancer. In order to assess whether genetic variants in the steroid hormone receptor gene ESR1 (estrogen receptor alpha) had an effect on sporadic breast cancer susceptibility, we assessed 7 ESR1 single nucleotide polymorphisms (SNPs) for associations with breast cancer susceptibility and clinical parameters in 221 breast cancer patients and 221 controls, respectively. We identified ESR1 intron SNP +2464 C/T (rs3020314) and ESR1 intron SNP -4576 A/C (rs1514348) to correlate with breast cancer susceptibility and progesterone receptor expression status. Patients genotyped CT for ESR1 intron SNP +2464 (rs3020314) (p ≤ 0.045) or genotyped AC for ESR1 intron SNP -4576 (rs1514348) (p ≤ 0.000026) were identified to carry a significant risk as to the development of breast cancer in the Central European Caucasian population (both together: p ≤ 0.000488). Our study could confirm previous associations and revealed new associations of SNP rs1514348 with susceptibility to breast cancer and clinical outcome, which might be used as new additional SNP markers.

  8. Population structure of pigs determined by single nucleotide polymorphisms observed in assembled expressed sequence tags.

    PubMed

    Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi

    2012-01-01

    We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  9. [Efficiency of 27-plex single nucleotide polymorphism multiplex system for ancestry inference in different populations].

    PubMed

    Feng, Xing-Ling; Sun, Qi-Fan; Liu, Hong; Wei, Yi-Liang; DU, Wei-An; Li, Cai-Xia; Chen, Ling; Liu, Chao

    2016-04-20

    To validate the efficiency of 27-plex single nucleotide polymorphism (SNP) multiplex system for ancestry inference. The 27-plex SNP system was validated for its sensitivity and species specificity. A total of 533 samples were collected from African, Southern Chinese Han, China's ethic minorities (Yi, Hui, Miao, Tibet, and Uygur), European, Central Asian, Western Asian, Southern Asian, Southeast Asian and South American populations for clustering analysis of the genotypes by citing 3 representative continental ancestral groups [East Asia (CHB), Europe (CEU), and Africa (YRI)] from HapMap database. The system sensitivity is 0.125 ng. Twenty and six genotypes were detected in chimpanzee and monkeys, respectively. Except in rs10496971, no more products were found in other animals. The system was capable of differentiating intercontinental populations but not of distinguishing between East Asian and Southeast Asian population or between Southern Chinese Han population and Chinese Ethnic populations (Hui, Miao, Yi and Tibet). This system achieved a 100% accuracy for intercontinental population source inference for 46 blind test samples. 27-plex SNPs multiplex system has a high sensitivity and species specificity and can correctly differentiate the ancestry origins of individuals from African, European and East Asian for criminal case investigation. But this system is not capable of distinguishing subpopulation groups and more specific ancestry-informative markers are needed to improve its recognition of Southeast Asian and Chinese ethnic populations.

  10. Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population.

    PubMed

    Saeki, Mayumi; Saito, Yoshiro; Nakamura, Takahiro; Murayama, Norie; Kim, Su-Ryang; Ozawa, Shogo; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Nakajima, Toshiharu; Saito, Hirohisa; Kitamura, Yutaka; Kamatani, Naoyuki; Sawada, Jun-ichi

    2003-06-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A5 in a Japanese population, we sequenced the proximal promoter region, all exons, and the surrounding intronic regions using genomic DNA from 187 Japanese subjects. Thirteen SNPs, including seven novel ones: 13108T>C, 16025A>G, 16903A>G, 16993C>G, 27448C>A, 29782A>G, and 31551T>C (A of the translational start codon of GenBank Accession # NG_000004.2 is numbered 1 according to the CYP Allele Nomenclature), were identified. The most common SNP was 6986A>G (key SNP for CYP3A5*3), with a 0.759 frequency. Two novel SNPs, 29782A>G (I456V) and 31551T>C (I488T), as well as 12952T>C (*5 marker) were found, but these alterations were always associated with the *3A marker SNPs, 6986A>G and 31611C>T. Using these 13 SNPs, haplotype analysis was performed and five novel *1 haplotypes (subtypes) (*1e to *1i) and six novel *3 haplotypes (subtypes) (*3d to *3i) were identified. Our findings suggest that CYP3A5*3 is the major defective allele and that other functional exonic SNPs are rare in the Japanese. Copyright 2003 Wiley-Liss, Inc.

  11. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    PubMed

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    PubMed Central

    Saad, Mohamed N.; Mabrouk, Mai S.; Eldeib, Ayman M.; Shaker, Olfat G.

    2015-01-01

    Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA) is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP) approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field. PMID:26843965

  13. Exploring single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes in the jellyfish (Rhopilema esculentum) by transcriptome sequencing.

    PubMed

    Li, Yunfeng; Zhou, Zunchun; Tian, Meilin; Tian, Yi; Dong, Ying; Li, Shilei; Liu, Weidong; He, Chongbo

    2017-08-01

    In this study, single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes (DEGs) in the oral parts, gonads, and umbrella parts of the jellyfish Rhopilema esculentum were analyzed by RNA-Seq technology. A total of 76.4 million raw reads and 72.1 million clean reads were generated from deep sequencing. Approximately 119,874 tentative unigenes and 149,239 transcripts were obtained. A total of 1,034,708 SNP markers were detected in the three tissues. For microsatellite mining, 5088 SSRs were identified from the unigene sequences. The most frequent repeat motifs were mononucleotide repeats, which accounted for 61.93%. Transcriptome comparison of the three tissues yielded a total of 8841 DEGs, of which 3560 were up-regulated and 5281 were down-regulated. This study represents the greatest sequencing effort carried out for a jellyfish and provides the first high-throughput transcriptomic resource for jellyfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    PubMed

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Indirectly Predict Prosocial Behavior Through Perspective Taking and Empathic Concern.

    PubMed

    Christ, Christa C; Carlo, Gustavo; Stoltenberg, Scott F

    2016-04-01

    Engaging in prosocial behavior can provide positive outcomes for self and others. Prosocial tendencies contribute to the propensity to engage in prosocial behavior. The oxytocin receptor gene (OXTR) has also been associated with prosocial tendencies and behaviors. There has been little research, however, investigating whether the relationship between OXTR and prosocial behaviors is mediated by prosocial tendencies. This relationship may also vary among different types of prosocial behavior. The current study examines the relationship between OXTR, gender, prosocial tendencies, and both altruistic and public prosocial behavior endorsement. Students at a midwestern university (N = 398; 89.2% Caucasian; Mage  = 20.76; 26.6% male) provided self-report measures of prosocial tendencies and behaviors and buccal cells for genotyping OXTR polymorphisms. Results indicated that OXTR single nucleotide polymorphism (SNP) rs2268498 genotype significantly predicted empathic concern, whereas gender moderated the association between several other OXTR SNPs and prosocial tendencies. Increased prosocial tendencies predicted increased altruistic prosocial behavior endorsement and decreased public prosocial behavior endorsement. Our findings suggest an association between genetic variation in OXTR and endorsement of prosocial behavior indirectly through prosocial tendencies, and that the pathway is dependent on the type of prosocial behavior and gender. © 2014 Wiley Periodicals, Inc.

  16. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains.

  17. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates

    PubMed Central

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-01-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  18. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification.

    PubMed

    Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek

    2005-02-01

    Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.

  19. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene.

    PubMed

    Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M

    2016-07-01

    It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  20. How Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Act on Prosociality: The Mediation Role of Moral Evaluation.

    PubMed

    Shang, Siyuan; Wu, Nan; Su, Yanjie

    2017-01-01

    Prosociality is related to numerous positive outcomes, and mechanisms underlying individual differences in prosociality have been widely discussed. Recently, research has found converging evidence on the influence of the oxytocin receptor ( OXTR ) gene on prosociality. Meanwhile, moral reasoning, a key precursor for social behavior, has also been associated with variability in OXTR gene, thus the relationship between OXTR and prosociality is assumed to be mediated by moral evaluation. The current study examines the relationship in question, and includes gender as a potential moderator. Self-reported prosociality on Prosocial Tendencies Measure and evaluation on the moral acceptability of behaviors in stories from 790 Chinese adolescents (32.4% boys) were analyzed for the influence of their OXTR single nucleotide polymorphisms (SNPs). Results showed that SNP at site rs2254298 was indirectly associated with prosocial behaviors via moral evaluation of behaviors, and this effect was moderated by gender. Our findings suggest an indirect association between genetic variations in OXTR and prosociality through moral evaluation, indicating the potential pathway from genetic variability to prosociality through level of moral development. We also provide some evidence that the role of oxytocin system may to some extent depend on gender. These findings may promote our understanding of the genetic and biological roots of prosociality and morality.

  1. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  2. Could single nucleotide polymorphisms influence on the efficacy of platelet-rich plasma in the treatment of sport injuries?

    PubMed Central

    Pruna, Ricard; Til, Lluis; Artells, Rosa

    2014-01-01

    Summary Platelet-rich plasma (PRP) is a new powerful biological tool in sports medicine, when used to treat tendon, ligament and muscle injuries. PRP is a fraction of autologous whole blood containing an increased number of platelets and a wide variety of cytokines that can improve and accelerate the healing of various tissues. An analysis of the literature shows promising pre-clinical results for PRP treatment, but there is a lack of solid clinical proof to support its use in sports medicine, and in fact, clinical findings on individual responses to PRP treatment are contradictory. These contradictions may be due to interindividual differences in the presence of single nucleotide polymorphisms (SNPs) in genes related to PRPs and/or their receptors. These SNPs can determine a greater or lesser response to this treatment and consequently a shorter or longer recovery time. We have focused our attention in the study of genes related to PRP with the aim to develope a genetic profile that will identify the individuals and injuries most likely to benefit from PRP treatment. PMID:24932449

  3. Association study between single nucleotide polymorphisms in promoter region of AVPR1A and Korean autism spectrum disorders.

    PubMed

    Yang, So Young; Cho, Soo-Churl; Yoo, Hee Jeong; Cho, In Hee; Park, Mira; Kim, Boong-Nyun; Kim, Jae-Won; Shin, Min-Sup; Park, Tae-Won; Son, Jung-Woo; Chung, Un-Sun; Kim, Hyo-Won; Yang, Young-Hui; Kang, Je-Ouk; Kim, Soon Ae

    2010-08-02

    To determine the association between arginine vasopressin receptor 1A gene (AVPR1A) and autism spectrum disorders (ASDs), we examined 3 single nucleotide polymorphisms (SNPs), namely, rs7294536, rs3759292, and rs10877969, in the promoter region of AVPR1A by using a family-based association test (FBAT) in 151 Korean trios. Our results demonstrated a statistically significant association between autism and SNPs (additive model: rs7294536, chi(2)=9.328, df=2, P=0.002; rs10877969, chi(2)=11.529, df=2, P<0.001) as well as between autism and haplotype analysis (additive model: chi(2)=14.122, df=3, P=0.003). In addition, we found that ADI-R scores calculated by using a diagnostic algorithm for failure to develop peer relationships (A2) were higher in subjects having the AA genotype than in subjects having the AG and GG genotypes of rs7294536. Thus, our study provides evidence for a possible association between these SNPs and the phenotype of ASDs. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    PubMed

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  5. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  6. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  7. Coupled transcription and processing of mouse ribosomal RNA in a cell-free system.

    PubMed Central

    Mishima, Y; Mitsuma, T; Ogata, K

    1985-01-01

    An in vitro processing system of mouse rRNA was achieved using an RNA polymerase I-specific transcription system, (S100) and recombinant plasmids consisting of mouse rRNA gene (rDNA) segments containing the transcription initiation and 5'-terminal region of 18S (or 41S) rRNA. Pulse-chase experiments showed that a specific processing occurred with transcripts of the plasmid DNAs when the direction of transcription was the correct orientation relative to the 18S rRNA coding sequence, but not with transcripts of the DNA templates in which this coding sequence was in the opposite orientation. From the S1 nuclease protection analyses, we concluded that there are several steps of endonucleolytic cleavage including one 105 nucleotides upstream from the 5' end of 18S rRNA. Intermediates cleaved at this site were identified in in vivo processing of rRNA. This result indicates that endonucleolytic cleavage takes place 105 nucleotides upstream from the 5' terminus of 18S rRNA prior to the formation of mature 18S rRNA. Trimming or cleavage of the 105 nucleotides may be involved in the formation of the 5' terminus of mature 18S rRNA. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3004977

  8. Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder.

    PubMed

    Gadow, Kenneth D; Roohi, Jasmin; DeVincent, Carla J; Kirsch, Sarah; Hatchwell, Eli

    2010-09-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene (SLC1A1) with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children with autism spectrum disorder. Although analyses were not significant for repetitive behaviors, youths homozygous for the high expressing C allele had more severe anxiety than carriers of the T allele. Allelic variation in SLC1A1 may be a biomarker for or modifier of anxiety symptom severity in children with ASD, but study findings are best conceptualized as tentative pending replication with larger independent samples.

  9. Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies.

    PubMed

    Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine

    2010-03-01

    Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.

  10. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  11. Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.

    PubMed

    Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M

    2012-06-01

     The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02).  We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.

  12. Homogeneous real-time detection of single-nucleotide polymorphisms by strand displacement amplification on the BD ProbeTec ET system.

    PubMed

    Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J

    2003-10-01

    The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.

  13. Nucleotide-dependent conformational states of actin

    PubMed Central

    Pfaendtner, Jim; Branduardi, Davide; Parrinello, Michele; Pollard, Thomas D.; Voth, Gregory A.

    2009-01-01

    The influence of the state of the bound nucleotide (ATP, ADP-Pi, or ADP) on the conformational free-energy landscape of actin is investigated. Nucleotide-dependent folding of the DNase-I binding (DB) loop in monomeric actin and the actin trimer is carried out using all-atom molecular dynamics (MD) calculations accelerated with a multiscale implementation of the metadynamics algorithm. Additionally, an investigation of the opening and closing of the actin nucleotide binding cleft is performed. Nucleotide-dependent free-energy profiles for all of these conformational changes are calculated within the framework of metadynamics. We find that in ADP-bound monomer, the folded and unfolded states of the DB loop have similar relative free-energy. This result helps explain the experimental difficulty in obtaining an ordered crystal structure for this region of monomeric actin. However, we find that in the ADP-bound actin trimer, the folded DB loop is stable and in a free-energy minimum. It is also demonstrated that the nucleotide binding cleft favors a closed conformation for the bound nucleotide in the ATP and ADP-Pi states, whereas the ADP state favors an open confirmation, both in the monomer and trimer. These results suggest a mechanism of allosteric interactions between the nucleotide binding cleft and the DB loop. This behavior is confirmed by an additional simulation that shows the folding free-energy as a function of the nucleotide cleft width, which demonstrates that the barrier for folding changes significantly depending on the value of the cleft width. PMID:19620726

  14. The Discovery of Single-Nucleotide Polymorphisms—and Inferences about Human Demographic History

    PubMed Central

    Wakeley, John; Nielsen, Rasmus; Liu-Cordero, Shau Neen; Ardlie, Kristin

    2001-01-01

    A method of historical inference that accounts for ascertainment bias is developed and applied to single-nucleotide polymorphism (SNP) data in humans. The data consist of 84 short fragments of the genome that were selected, from three recent SNP surveys, to contain at least two polymorphisms in their respective ascertainment samples and that were then fully resequenced in 47 globally distributed individuals. Ascertainment bias is the deviation, from what would be observed in a random sample, caused either by discovery of polymorphisms in small samples or by locus selection based on levels or patterns of polymorphism. The three SNP surveys from which the present data were derived differ both in their protocols for ascertainment and in the size of the samples used for discovery. We implemented a Monte Carlo maximum-likelihood method to fit a subdivided-population model that includes a possible change in effective size at some time in the past. Incorrectly assuming that ascertainment bias does not exist causes errors in inference, affecting both estimates of migration rates and historical changes in size. Migration rates are overestimated when ascertainment bias is ignored. However, the direction of error in inferences about changes in effective population size (whether the population is inferred to be shrinking or growing) depends on whether either the numbers of SNPs per fragment or the SNP-allele frequencies are analyzed. We use the abbreviation “SDL,” for “SNP-discovered locus,” in recognition of the genomic-discovery context of SNPs. When ascertainment bias is modeled fully, both the number of SNPs per SDL and their allele frequencies support a scenario of growth in effective size in the context of a subdivided population. If subdivision is ignored, however, the hypothesis of constant effective population size cannot be rejected. An important conclusion of this work is that, in demographic or other studies, SNP data are useful only to the extent that

  15. A critical role for noncoding 5S rRNA in regulating Mdmx stability.

    PubMed

    Li, Muyang; Gu, Wei

    2011-09-16

    Both p53 and Mdmx are ubiquitinated and degraded by the same E3 ligase Mdm2; interestingly, however, while p53 is rapidly degraded by Mdm2, Mdmx is a stable protein in most cancer cells. Thus, the mechanism by which Mdmx is degraded by Mdm2 needs further elucidation. Here, we identified the noncoding 5S rRNA as a major component of Mdmx-associated complexes from human cells. We show that 5S rRNA acts as a natural inhibitor of Mdmx degradation by Mdm2. RNAi-mediated knockdown of endogenous 5S rRNA, while not affecting p53 levels, significantly induces Mdmx degradation and, subsequently, activates p53-dependent growth arrest. Notably, 5S rRNA binds the RING domain of Mdmx and blocks its ubiquitination by Mdm2, whereas Mdm2-mediated p53 ubiquitination remains intact. These results provide insights into the differential effects on p53 and Mdmx by Mdm2 in vivo and reveal a critical role for noncoding 5S rRNA in modulating the p53-Mdmx axis. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions.

    PubMed

    Muhrez, Kienana; Largeau, Bérenger; Emond, Patrick; Montigny, Frédéric; Halimi, Jean-Michel; Trouillas, Patrick; Barin-Le Guellec, Chantal

    2017-09-15

    The ATP-binding cassette family transporter MRP2 (multidrug resistance-associated protein 2), encoded by the ABCC2 gene, is involved in the renal excretion of numerous xenobiotics and it is likely that it also transports many endogenous molecules arising from not only normal essential metabolic processes but also from environmental toxins or food intake. We used a targeted gas chromatography-mass spectrometry metabolomics analysis to study whether endogenous organic anions are differentially excreted in urines of healthy volunteers according to their genotype for three functional single nucleotide polymorphisms (SNPs) in ABCC2. This was the case for 35 of the 108 metabolites analyzed. Eight of them are most likely substrates of MRP2 since they are the most contributive to the difference between carriers of a decreasing function allele vs those carrying an increasing function one. Seven out of 8 metabolites are fatty acids (dodecanoic acid; 3-hydroxypropanoic acid) or metabolites of polyphenols (caffeine; resorcinol; caffeic acid; 2-(3,4-dihydroxyphenyl) acetic acid; and 4-hydroxyhippuric acid). Most of them were structurally similar to a series of substances previously shown to interact with MRP2 function in vitro. Interestingly, coproporphyrin isomer I, a prototypical substrate of MRP2, also belonged to our final list although it was not significantly discriminant on its own. This suggests that the simultaneous measurement of a set of endogenous metabolites in urine, rather than that of unique metabolites, has the potential to provide a phenotypic measure of MRP2 function in vivo. This would represent an innovative tool to study the variability of the transport activity of MRP2 under a physiological or pathological condition, especially in pharmacokinetic studies of its substrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Single nucleotide polymorphisms related to cystic fibrosis in chronic rhinositus-a pilot study.

    PubMed

    Hull, Benjamin P; Jiramongkolchai, Pawina; Turner, Justin H; Olson, Lana; Chandra, Rakesh K

    2017-05-01

    The clinical association between cystic fibrosis (CF) and chronic rhinosinusitis (CRS) is well known. Studies have identified several non-CF transmembrane conductance regulator single nucleotide polymorphisms (SNPs) associated with disease severity in CF patients. We hypothesized that prevalence of these SNPs would be different between CRS patients and age/gender-matched non-CRS controls. This is a targeted SNP study of 1231 CRS patients identified through a large university hospital database who were compared with 8796 age- and gender-matched controls without a history of rhinitis, sinusitis, allergies, or asthma. Prevalence of 5 relevant SNPs was compared between groups, with p < 0.05 considered significant. Stratification by race and gender was performed among groups when statistically appropriate. CRS patients exhibited a statistically significant (p = 0.036) lower prevalence of rs12883884 (associated with an ion transporter) compared with controls. This association was lost when patients were stratified by race. CRS patients manifested a greater prevalence of rs1403543 (chromosome 23) in both Caucasian and African American subgroups (p = 0.036 and p = 0.026, respectively). Statistical significance disappeared among Caucasians when stratified by gender, but persisted among African American women (p = 0.047). rs12188164 and rs12793173 were both more prevalent in African Americans with CRS than controls (p = 0.042 and p = 0.020, respectively). A trend was also observed for decreased prevalence of rs12883884 in CRS patients compared with controls in the African American subgroup (p = 0.086). The identified SNPs were differentially prevalent in CRS compared with control groups, with some variability as a function of race and gender. Further research is required to confirm these findings and elucidate clinical significance. © 2017 ARS-AAOA, LLC.

  18. Nucleotide sequence of a resistance breaking mutant of southern bean mosaic virus.

    PubMed

    Lee, L; Anderson, E J

    1998-01-01

    SBMV-S is a resistance-breaking mutant of an Arkansas isolate of the bean strain of southern bean mosaic virus (SBMV-BARK) that is able to move systemically in Phaseolus vulgaris cvs. Pinto and Great Northern, whereas the wild-type SBMV-BARK causes local necrotic lesions and is restricted to the inoculated leaves of these hosts. Sequence analysis of the 4136 nucleotide genomes of SBMV-BARK and SBMV-S revealed seven nucleotide differences, but only four deduced amino acid changes. A single amino acid change occurred in the C-terminal region of the putative RNA-dependent RNA polymerase and three differences were identified in the N-terminal portion of the virus coat protein. SBMV-BARK and SBMV-S were compared with other sobemoviruses and were found to contain a high level of nucleotide sequence identity (91.3%) to SBMV-B. Unlike SBMV-B however, SBMV-BARK and SBMV-S contained four putative overlapping open reading frames, making them more similar in genome organization to the cowpea strain, SBMV-C. The possibility exists that mutations or even errors, that resulted in mis-identification of open reading frames, occurred in previously published information on nucleotide sequence and genomic organization for SBMV-B.

  19. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron

  20. DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS.

    PubMed

    Chen, Xi; Crupper, Scott S

    2016-09-01

    Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.

  1. Predicted stem-loop structures and variation in nucleotide sequence of 3' noncoding regions among animal calicivirus genomes.

    PubMed

    Seal, B S; Neill, J D; Ridpath, J F

    1994-07-01

    Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.

  2. Nucleotide Sequence Database Comparison for Routine Dermatophyte Identification by Internal Transcribed Spacer 2 Genetic Region DNA Barcoding.

    PubMed

    Normand, A C; Packeu, A; Cassagne, C; Hendrickx, M; Ranque, S; Piarroux, R

    2018-05-01

    Conventional dermatophyte identification is based on morphological features. However, recent studies have proposed to use the nucleotide sequences of the rRNA internal transcribed spacer (ITS) region as an identification barcode of all fungi, including dermatophytes. Several nucleotide databases are available to compare sequences and thus identify isolates; however, these databases often contain mislabeled sequences that impair sequence-based identification. We evaluated five of these databases on a clinical isolate panel. We selected 292 clinical dermatophyte strains that were prospectively subjected to an ITS2 nucleotide sequence analysis. Sequences were analyzed against the databases, and the results were compared to clusters obtained via DNA alignment of sequence segments. The DNA tree served as the identification standard throughout the study. According to the ITS2 sequence identification, the majority of strains (255/292) belonged to the genus Trichophyton , mainly T. rubrum complex ( n = 184), T. interdigitale ( n = 40), T. tonsurans ( n = 26), and T. benhamiae ( n = 5). Other genera included Microsporum (e.g., M. canis [ n = 21], M. audouinii [ n = 10], Nannizzia gypsea [ n = 3], and Epidermophyton [ n = 3]). Species-level identification of T. rubrum complex isolates was an issue. Overall, ITS DNA sequencing is a reliable tool to identify dermatophyte species given that a comprehensive and correctly labeled database is consulted. Since many inaccurate identification results exist in the DNA databases used for this study, reference databases must be verified frequently and amended in line with the current revisions of fungal taxonomy. Before describing a new species or adding a new DNA reference to the available databases, its position in the phylogenetic tree must be verified. Copyright © 2018 American Society for Microbiology.

  3. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  4. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  5. Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): a case study of small Indian civet (Viverricula indica).

    PubMed

    Sahajpal, Vivek; Goyal, S P

    2010-06-01

    The exhibits obtained in wildlife offence cases quite often present a challenging situation for the forensic expert. The selection of proper approach for analysis is vital for a successful analysis. A generalised forensic analysis approach should proceed from the use of non-destructive techniques (morphological and microscopic examination) to partially destructive and finally destructive techniques (DNA analysis). The findings of non-destructive techniques may sometime be inconclusive but they definitely help in steering further forensic analysis in a proper direction. We describe a recent case where a very small dried skin piece (<0.05 mg) with just one small trimmed guard hair (0.4 cm) on it was received for species identification. The single guard hair was examined microscopically to get an indication of the type of species. We also describe the extraction procedure with a lower amount of sample, using an automated extraction method (Qiagen Biorobot EZ1) and PCR amplification of three mitochondrial genes (16s rRNA, 12s rRNA and cytochrome b) for species identification. Microscopic examination of the single hair indicated a viverrid species but the initial DNA analysis with 16s rRNA (through NCBI BLAST) showed the highest homology (93%) with a hyaenid species (Hyaena hyaena). However, further DNA analysis based on 12s rRNA and cytochrome b gene proved that the species was indeed a viverrid i.e. Viverricula indica (small Indian civet). The highest homology shown with a Hyaenid species by the 16s rRNA sequence from the case sample was due to lack of a 16s rRNA sequence for Viverricula indica in the NCBI data base. The case highlights the importance of morphological and microscopic examinations in wildlife offence cases. With respect to DNA extraction technology we found that automatic extraction method of Biorobot EZ1 (Qiagen) is quite useful with less amount of sample (much below recommended amount). Copyright 2009 Forensic Science Society. Published by Elsevier

  6. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1

    PubMed Central

    Zhu, Yuanqi; Hein, David W.

    2007-01-01

    Genetic variants of human N-acetyltransferase 1 (NAT1) are associated with cancer and birth defects. N- and O-acetyltransferase catalytic activities, Michaelis-Menten kinetic constants (Km & Vmax), and steady state expression levels of NAT1-specific mRNA and protein were determined for the reference NAT1*4 and variant human NAT1 haplotypes possessing single nucleotide polymorphisms (SNPs) in the open reading frame. Although none of the SNPs caused a significant effect on steady state levels of NAT1-specific mRNA, C97T(R33stop), C190T(R64W), C559T (R187stop) and A752T(D251V) each reduced NAT1 protein level and/or N- and O-acetyltransferase catalytic activities to levels below detection. G560A(R187Q) substantially reduced NAT1 protein level and catalytic activities and increased substrate Km. The G445A(V149I), G459A(synonymous) and T640G(S214A) haplotype present in NAT1*11 significantly (p<0.05) increased NAT1 protein level and catalytic activity. Neither T21G(synonymous), T402C(synonymous), A613G(M205V), T777C(synonymous), G781A(E261K), or A787G(I263V) significantly affected Km, catalytic activity, mRNA or protein level. These results suggest heterogeneity among slow NAT1 acetylator phenotypes. PMID:17909564

  7. Donor single nucleotide polymorphism in the CCR9 gene affects the incidence of skin GVHD.

    PubMed

    Inamoto, Y; Murata, M; Katsumi, A; Kuwatsuka, Y; Tsujimura, A; Ishikawa, Y; Sugimoto, K; Onizuka, M; Terakura, S; Nishida, T; Kanie, T; Taji, H; Iida, H; Suzuki, R; Abe, A; Kiyoi, H; Matsushita, T; Miyamura, K; Kodera, Y; Naoe, T

    2010-02-01

    The interactions between chemokines and their receptors may have an important role in initiating GVHD after allogeneic hematopoietic SCT (allo-HSCT). CCL25 and CCR9 are unique because they are exclusively expressed in epithelial cells and in Peyer's patches of the small intestine. We focused on rs12721497 (G926A), one of the non-synonymous single nucleotide polymorphisms (SNPs) in the CCR9 gene, and analyzed the SNP of donors in 167 consecutive patients who received allo-HSCT from an HLA-identical sibling donor. Genotypes were tested for associations with acute and chronic GVHD in each organ and transplant outcome. Multivariate analyses showed that the genotype 926AG was significantly associated with the incidence of acute stage > or =2 skin GVHD (hazard ratio: 3.2; 95% confidence interval (95% CI): 1.1-9.1; P=0.032) and chronic skin GVHD (hazard ratio: 4.1; 95% CI: 1.1-15; P=0.036), but not with GVHD in other organs or with relapse, non-relapse mortality or OS. To clarify the functional differences between genotypes, each SNP in retroviral vectors was transfected into Jurkat cells. In chemotaxis assays, the 926G transfectant showed greater response to CCL25 than the 926A transfectant. In conclusion, more active homing of CCR9-926AG T cells to Peyer's patches may produce changes in Ag presentation and result in increased incidence of skin GVHD.

  8. Single nucleotide-level mapping of DNA double-strand breaks in human HEK293T cells.

    PubMed

    Pope, Bernard J; Mahmood, Khalid; Jung, Chol-Hee; Georgeson, Peter; Park, Daniel J

    2017-03-01

    Constitutional biological processes involve the generation of DNA double-strand breaks (DSBs). The production of such breaks and their subsequent resolution are also highly relevant to neurodegenerative diseases and cancer, in which extensive DNA fragmentation has been described Stephens et al. (2011), Blondet et al. (2001). Tchurikov et al. Tchurikov et al. (2011, 2013) have reported previously that frequent sites of DSBs occur in chromosomal domains involved in the co-ordinated expression of genes. This group report that hot spots of DSBs in human HEK293T cells often coincide with H3K4me3 marks, associated with active transcription Kravatsky et al. (2015) and that frequent sites of DNA double-strand breakage are likely to be relevant to cancer genomics Tchurikov et al. (2013, 2016) . Recently, they applied a RAFT (rapid amplification of forum termini) protocol that selects for blunt-ended DSB sites and mapped these to the human genome within defined co-ordinate 'windows'. In this paper, we re-analyse public RAFT data to derive sites of DSBs at the single-nucleotide level across the built genome for human HEK293T cells (https://figshare.com/s/35220b2b79eaaaf64ed8). This refined mapping, combined with accessory ENCODE data tracks and ribosomal DNA-related sequence annotations, will likely be of value for the design of clinically relevant targeted assays such as those for cancer susceptibility, diagnosis, treatment-matching and prognostication.

  9. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays.

    PubMed

    Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K

    2014-12-01

    Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.

  10. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  11. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  12. Pan-genome multilocus sequence typing and outbreak-specific reference-based single nucleotide polymorphism analysis to resolve two concurrent Staphylococcus aureus outbreaks in neonatal services.

    PubMed

    Roisin, S; Gaudin, C; De Mendonça, R; Bellon, J; Van Vaerenbergh, K; De Bruyne, K; Byl, B; Pouseele, H; Denis, O; Supply, P

    2016-06-01

    We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7 months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    PubMed

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J; Vaulot, Daniel

    2011-04-28

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  14. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  15. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

    PubMed Central

    Moore, Michael; Zhang, Chaolin; Gantman, Emily Conn; Mele, Aldo; Darnell, Jennifer C.; Darnell, Robert B.

    2014-01-01

    Summary Identifying sites where RNA binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV-crosslinking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide RNA binding maps with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. Applying CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of crosslinked-induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes approximately eight days to prepare RNA for sequencing. Established pipelines for data analysis, including for CIMS, take 3-4 days. PMID:24407355

  16. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  17. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8.

    PubMed Central

    Allmang, C; Mougel, M; Westhof, E; Ehresmann, B; Ehresmann, C

    1994-01-01

    Ribosomal protein S8 specifically recognizes a helical and irregular region of 16S rRNA that is highly evolutionary constrained. Despite its restricted size, the precise conformation of this region remains a question of debate. Here, we used chemical probing to analyze the structural consequences of mutations in this RNA region. These data, combined with computer modelling and previously published data on protein binding were used to investigate the conformation of the RNA binding site. The experimental data confirm the model in which adenines A595, A640 and A642 bulge out in the deep groove. In addition to the already proposed non canonical U598-U641 interaction, the structure is stabilized by stacking interactions (between A595 and A640) and an array of hydrogen bonds involving bases and the sugar phosphate backbone. Mutations that alter the ability to form these interdependent interactions result in a local destabilization or reorganization. The specificity of recognition by protein S8 is provided by the irregular and distorted backbone and the two bulged adenines 640 and 642 in the deep groove. The third adenine (A595) is not a direct recognition site but must adopt a bulged position. The U598-U641 pair should not be directly in contact with the protein. Images PMID:7937081

  18. Single Nucleotide Polymorphism Array Analysis of Bone Marrow Failure Patients Reveals Characteristic Patterns of Genetic Changes

    PubMed Central

    Babushok, Daria V.; Xie, Hongbo M.; Roth, Jacquelyn J.; Perdigones, Nieves; Olson, Timothy S.; Cockroft, Joshua D.; Gai, Xiaowu; Perin, Juan C.; Li, Yimei; Paessler, Michele E.; Hakonarson, Hakon; Podsakoff, Gregory M.; Mason, Philip J.; Biegel, Jaclyn A.; Bessler, Monica

    2013-01-01

    Summary The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12.2, p<0.01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. PMID:24116929

  19. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes.

    PubMed

    Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica

    2014-01-01

    The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.

  20. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing

    PubMed Central

    Tejedor, J. Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-01-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137