Sample records for ru-te binary system

  1. Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1989-09-01

    The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.

  2. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  3. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  4. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex.

    PubMed

    Fu, Xiaomin; Tan, Xingrong; Yuan, Ruo; Chen, Shihong

    2017-04-15

    A novel dual-potential ratiometric electrochemiluminescence (ECL) sensor was designed for detecting dopamine (DA) based on graphene-CdTe quantum dots (G-CdTe QDs) as the cathodic emitter and self-enhanced Ru(II) composite (TAEA-Ru) as the anodic emitter. TAEA-Ru was prepared by linking ruthenium(II) tris(2,2'-bipyridyl-4,4'-dicarboxylato) with tris(2-aminoethyl)amine. Firstly, 3-aminopropyltriethoxysilane founctionalized G-CdTe QDs was used as the substrate for capturing target DA via the specific recognition of the diol of DA to the oxyethyl group of APTES. Then, Cu 2 O nanocrystals supported TAEA-Ru was further bound by the strong interaction between amino groups of DA and carboxyl groups of the Cu 2 O-TAEA-Ru. With the increase in DA concentration, the loading of Cu 2 O-TAEA-Ru at the electrode increased. As a result, the anodic ECL signal from TAEA-Ru increased, and the cathodic ECL signal from G-CdTe QDs/O 2 system decreased correspondingly. Such a decrease was resulted from the ECL resonance energy transfer (RET) from G-CdTe QDs to TAEA-Ru as well as the dual quenching effects of Cu 2 O to G-CdTe QDs, namely the ECL-RET from G-CdTe QDs to Cu 2 O and the consumption of coreactant O 2 by Cu 2 O. Based on the ratio of two ECL signals, the determination of DA was achieved with a linear range from 10.0 fM to 1.0nM and a detection limit low to 2.9 fM (S/N=3). The combination of G-CdTe QDs/O 2 and TAEA-Ru would break the limitation of the same coreatant shared in previous ECL ratiometric systems and provide a potential application of ECL ratiometric sensor in the detection of biological small molecules with the assistance of the dual molecular recognition strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  6. Raman characterization of a new Te-rich binary compound: CdTe2.

    PubMed

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-02

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te.

  7. First principles study of surface stability and segregation of PdRuRh ternary metal alloy system

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki

    2018-05-01

    The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.

  8. Metal-insulator transition and superconductivity induced by Rh doping in the binary pnictides RuPn (Pn=P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Takagi, Hidenori

    2012-04-01

    Binary ruthenium pnictides, RuP and RuAs, with an orthorhombic MnP structure, were found to show a metal to a nonmagnetic insulator transition at TMI = 270 and 200 K, respectively. In the metallic region above TMI, a structural phase transition, accompanied with a weak anomaly in the resistivity and the magnetic susceptibility, indicative of a pseudogap formation, was identified at Ts = 330 and 280 K, respectively. These two transitions were suppressed by substituting Ru with Rh. We found superconductivity with a maximum Tc = 3.7 and 1.8 K in a narrow composition range around the critical point for the pseudogap phase, Rh content xc = 0.45 and 0.25 for Ru1-xRhxP and Ru1-xRhxAs, respectively, which may provide us with a nonmagnetic route to superconductivity at a quantum critical point.

  9. Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage

    NASA Astrophysics Data System (ADS)

    Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian

    2018-01-01

    The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.

  10. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  11. Vaporization thermodynamic studies by high-temperature mass spectrometry on some three-phase regions over the MnO-TeO2 binary line in the Mn-Te-O ternary system.

    PubMed

    Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R

    2006-12-28

    Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.

  12. A thermodynamic database for tellurium-bearing systems relevant to nuclear technology

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, G.; Juneja, J. M.

    1993-06-01

    A thermodynamic database for tellurium-bearing condensed phases and gaseous species which are relevant to nuclear technology is presented. It contains phase diagrams of the binary systems, PdTe, RhTe, PuTe, SmTe, CsTe, ZrTe, of the ternary systems, ZrTeO, MoTeO, AgTeO, UTeO, CsTeO, BaTeO as well as thermodynamic data for crystalline and liquid Te, for the solid phases Cs 2Te, Ag 2Te, SnTe, BaTe, CeTe, SmTe, RuTe 2, ZrTe 2, Fe 0.53Te 0.47, Mo 0.43Te 0.57, Cr 0.43Te 0.57, Ni 0.5Te 0.4, Cs 2TeO 3 and for the gaseous species, Te, Te 2, TeO, TeO 2, TeO(OH) 2, H 2Te, TeI, TeI 2, TeI 4, TeOI 2, SnTe, Sn 2Te 2, SnTe 2.

  13. Superconductivity in the Nb-Ru-Ge σ phase

    DOE PAGES

    Carnicom, Elizabeth M.; Xie, Weiwei; Sobczak, Zuzanna; ...

    2017-12-07

    Here, we show that the previously unreported ternary σ-phase material Nb 20.4Ru 5.7Ge 3.9 (Nb 0.68Ru 0.19Ge 0.13) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for Nb 20.4Ru 5.7Ge 3.9 is 91 mJ mol-f.u. -1K -2 (~3 mJ mol-atom -1K -2) and the specific heat anomaly at the superconducting transition, ΔC/γT c, is approximately 1.38. The zero-temperature upper critical field (µ 0Hc 2(0)) was estimated to be 2 T by resistance data. Field-dependent magnetization data analysis estimated µmore » 0Hc 1(0) to be 5.5 mT. Thus, the characterization shows Nb 20.4Ru 5.7Ge 3.9 to be a type II BCS superconductor. This material appears to be the first reported ternary phase in the Nb-Ru-Ge system, and the fact that there are no previously reported binary Nb-Ru, Nb-Ge, or Ru-Ge σ-phases shows that all three elements are necessary to stabilize the material. An analogous σ-phase in the Ta-Ru-Ge system did not display superconductivity above 1.7 K, which suggests that electron count cannot govern the superconductivity observed. Preliminary characterization of a possible superconducting σ-phase in the Nb-Ru-Ga system is also reported.« less

  14. Binary photonic crystal for refractometric applications (TE case)

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.; Shaheen, Somaia A.

    2018-04-01

    In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.

  15. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  16. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-09-01

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary

  17. THE MULTI-WAVELENGTH CHARACTERISTICS OF THE TeV BINARY LS I+61°303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, L.; Chitnis, V. R.; Shukla, A.

    2016-06-01

    We study the characteristics of the TeV binary LS I+61°303 in radio, soft X-ray, hard X-ray, and gamma-ray (GeV and TeV) energies. The long-term variability characteristics are examined as a function of the phase of the binary period of 26.496 days as well as the phase of the superorbital period of 1626 days, dividing the observations into a matrix of 10 × 10 phases of these two periods. We find that the long-term variability can be described by a sine function of the superorbital period, with the phase and amplitude systematically varying with the binary period phase. We also findmore » a definite wavelength-dependent change in this variability description. To understand the radiation mechanism, we define three states in the orbital/superorbital phase matrix and examine the wideband spectral energy distribution. The derived source parameters indicate that the emission geometry is dominated by a jet structure showing a systematic variation with the orbital/superorbital period. We suggest that LS I+61°303 is likely a microquasar with a steady jet.« less

  18. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors.

    PubMed

    Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-10-07

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.

  19. Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys

    NASA Astrophysics Data System (ADS)

    Farías, D.; Minniti, M.; Miranda, R.

    2017-05-01

    The reactivity of a Pd monolayer epitaxially grown on Ru(0001) toward O2 has been investigated by molecular beam techniques. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range of 40-450 meV and for sample temperatures of 100 K and 300 K, and compared to the corresponding values measured on the clean Ru(0001) and Pd(111) surfaces. In contrast to the high reactivity shown by Ru(0001) at 100 K, the Pd/Ru(0001) system exhibits a monotonic decrease in the sticking probability of O2 as a function of normal incident energy. At room temperature, the system was found to be inert. Thermal desorption measurements show that O2 is adsorbed molecularly at 100 K. A completely different behaviour has been measured for the Pd0.95Ru0.05/Ru(0001) surface alloy. On this surface, the O2 sticking probability increases with incident energy and resembles the one observed on the clean Ru(0001) surface, even at 300 K. Thermal desorption measurements point to dissociative adsorption of O2 in this system. Both the charge transfer from the Pd to the Ru substrate and the compressive strain on the Pd monolayer contribute to decrease in the reactivity of the Pd/Ru(0001) system well below those of both Ru(0001) and Pd(111).

  20. Multiwavelength observations of the TeV binary LS I +61° 303 with Veritas, Fermi-LAT, and Swift/xrt during a TeV outburst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Behera, B.

    2013-12-10

    We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61° 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift/XRT (2-10 keV). The data were taken from 2011 December through 2012 January and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hr of quality selected livetime data in which LS I +61° 303 was detected at a statistical significance of 11.9σ. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6σ. The combination of the simultaneouslymore » obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61° 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERITAS observations following a simple power-law above 200 GeV. This feature in the spectrum of LS I +61° 303, obtained from overlapping observations with Fermi-LAT and VERITAS, may indicate that there are two distinct populations of accelerated particles producing the GeV and TeV emission.« less

  1. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-12-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  2. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  3. Hypo-electronic triple-decker sandwich complexes: synthesis and structural characterization of [(Cp*Mo)2{μ-η(6):η(6)-B4H4E-Ru(CO)3}] (E = S, Se, Te or Ru(CO)3 and Cp* = η(5)-C5Me5).

    PubMed

    Mondal, Bijan; Bhattacharyya, Moulika; Varghese, Babu; Ghosh, Sundargopal

    2016-07-05

    The syntheses and structural characterization of hypo-electronic di-molybdenum triple-decker sandwich clusters are reported. Thermolysis of [Ru3(CO)12] with an in situ generated intermediate obtained from the reaction of [Cp*MoCl4] with [LiBH4·THF] yielded an electron deficient triple-decker sandwich complex, [(Cp*Mo)2{μ-η(6):η(6)-B4H4Ru2(CO)6}], . In an effort to generate analogous triple-deckers containing group-16 elements, we isolated [(Cp*Mo)2{μ-η(6):η(6)-B4H4ERu(CO)3}] (: E = Te; : E = S; : E = Se). These clusters show a high metal coordination number and cross cluster Mo-Mo bond. The formal cluster electron count of these compounds is four or three skeletal electron pairs less than required for a canonical closo-structure of the same nuclearity. Therefore, these compounds represent a novel class of triple-decker sandwich complex with 22 or 24 valence-electrons (VE), wherein the "chair" like hexagonal middle ring is composed of B, Ru and chalcogen. One of the key differences among the synthesized triple-decker molecules is the puckering nature of the middle ring [B4RuE], which increases in the order S < Se < Ru(CO)3 < Te. In addition, Fenske-Hall and quantum-chemical calculations with DFT methods at the BP86 level of theory have been used to analyze the bonding of these novel complexes. The studies not only explain the electron unsaturation of the molecules, but also reveal the reason for the significant puckering of the middle deck. All the compounds have been characterized by IR, (1)H, (11)B, and (13)C NMR spectroscopy in solution and the solid state structures were established by crystallographic analysis.

  4. Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Bordier, S.; Guéneau, C.; Brackx, E.; Domenger, R.; Rogez, J.

    2018-03-01

    Ruthenium (Ru) and rhodium (Rh) are abundant platinum-group metals formed during burn-up of nuclear fuels. Under normal operating conditions, Rh and Ru accumulate and predominantly form metallic precipitates with other fission products like Mo, Pd and Tc. In the framework of vitrification of high-level nuclear waste, these fission products are poorly soluble in molten glasses. They precipitate as metallic particles and oxide phases. Moreover, these Ru and Rh rich phases strongly depend on temperature and the oxygen fugacity of the glass melt. In case of severe accidental conditions with air ingress, oxidation of the Ru and Rh is possible. At low temperatures (T < 1422 K for rhodium sesquioxide and T < 1815 K for ruthenium dioxide), the formed oxides are relatively stable. On the other hand, at high temperatures (T > 1422 K for rhodium sesquioxide and T > 1815 K for ruthenium dioxide), they may decompose into (Rh)-FCC or (Ru)-HCP metallic phases and radiotoxic volatile gaseous species. A thermodynamic assessment of the Rh-Ru-O system will enable the prediction of: (1) the metallic and oxide phases that form during the vitrification of high-level nuclear wastes and (2) the release of volatile gaseous species during a severe accident. The Calphad method developed herein employs a thermodynamic approach in the investigation of the thermochemistry of rhodium and ruthenium at high temperatures. Current literature on the thermodynamic properties and phase diagram data enables preliminary thermodynamic assessments of the Rh-O and Ru-O systems. Additionally, select compositions in the ternary Rh-Ru-O system underwent experimental tests to complement data found in literature and to establish the phase equilibria in the ternary system.

  5. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherchenkov, A. A.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Lazarenko, P. I.

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shiftmore » along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.« less

  7. Application of regular associated solution model to the liquidus curves of the Sn-Te and Sn-SnS systems

    NASA Astrophysics Data System (ADS)

    Eric, H.

    1982-12-01

    The liquidus curves of the Sn-Te and Sn-SnS systems were evaluated by the regular associated solution model (RAS). The main assumption of this theory is the existence of species A, B and associated complexes AB in the liquid phase. Thermodynamic properties of the binary A-B system are derived by ternary regular solution equations. Calculations based on this model for the Sn-Te and Sn-SnS systems are in agreement with published data.

  8. Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.

  9. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  10. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    PubMed

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  12. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Zywucka, N.; H. E. S. S. Collaboration

    2017-12-01

    We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 {GeV} to 8.55 {TeV}. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.

  13. Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2015-05-01

    Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018-589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ2/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018-589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018-589 A is best fit with a power-law function with photon index Γ = 2.20 ± 0.14stat ± 0.2sys. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 ± 0.4) × 10-13 TeV-1 cm-2 s-1 at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of Nσ> 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ ≲ 1 at 300 GeV).

  14. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  15. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  16. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2017-11-22

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  17. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  18. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru

    NASA Astrophysics Data System (ADS)

    Bai, Lei

    2018-03-01

    Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.

  19. New catalysts and adsorbents on the basis of the InSb-CdTe semiconducting system

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.

    2007-04-01

    The acid-base properties of solid solutions and binary components of the InSb-CdTe system were studied by IR spectroscopy, pH isoelectric point measurements, and conductometric titration; adsorption properties with respect to CO, O2, NO2, NH3, CO + O2, and NO2 + NH3, by piezoquartz microweighing; and catalytic properties in the oxidation of carbon(II) oxide and reduction of nitrogen(IV) oxide with ammonia, by the pulsed and circulation flow methods. The nature, strength, and concentration of acid centers were determined. Changes in the concentration of acid centers under the action of gases (NO2 and NH3), gamma irradiation, and composition variations were estimated. The experimental dependences, thermodynamic and kinetic adsorption characteristics, the electrophysical, acid-base, and other physicochemical characteristics of the adsorbents, and adsorption characteristic-composition phase diagrams were analyzed taking into account the electronic nature of adsorbate molecules to determine the mechanism and characteristics of adsorption processes depending on the conditions of adsorption and the composition of the system. The results of adsorption studies were used to preliminarily determine the temperature regions of the occurrence and the mechanism of the reactions studied. A shock mechanism was suggested. Separate components (predominantly, solid solutions) of the InSb-CdTe system showed high catalytic activity at comparatively low temperatures. Along with behavior common to the system and its binary compounds (InSb and CdTe), solid solutions exhibited features characteristic of multi-component systems. These were the presence of extrema in the pHiso-composition, adsorption characteristic-composition, and catalytic activity-composition diagrams. The use of these diagrams allowed us to discover system components most active with respect to the gases and reactions studied and create high-sensitivity and selective sensors and high-activity and selective catalysts on

  20. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  1. Ru sub 3 (CO) sub 12 and Mo(CO) sub 6 adsorbed on Ru(001) and Au/Ru: An infrared reflection-absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1990-01-01

    We obtained IRAS and TDS data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. We characterized the C-O stretching mode of both systems (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo(CO){sub 6} at 608 cm{sup {minus}1} (1 cm{sup {minus}1} FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger for Ru{sub 3}(CO){sub 12}more » (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68. 31 refs., 4 figs.« less

  2. Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.

    PubMed

    Yang, Ying; McElwee-White, Lisa

    2004-08-07

    The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.

  3. Properties of binary transition-metal arsenides (TAs)

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2012-08-01

    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs, with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is carried out with powder x-ray diffraction, temperature- and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic ordering below TN ≈ 71 K and TN ≈ 260 K, respectively. MnAs is a ferromagnet below TC ≈ 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS ≈ 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 and - 40 μV K-1 in the 2-300 K range, whereas thermal conductivity values stay below 18 W m-1 K-1. The Sommerfeld coefficients γ are less than 10 mJ K-2 mol-1. At room temperature with application of 8 T magnetic field, large positive magnetoresistance is found for TaAs (˜25%), MnAs (˜90%) and NbAs (˜75%).

  4. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  5. Ru sub 3 (CO) sub 12 and Mo(CO) sub 6 adsorbed on Ru(001) and Au/Ru: An infrared reflection-absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1990-01-01

    The authors obtained infrared reflection absorption (IRAS) and thermal desorption spectroscopy (TDS) data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. They characterized the C-O stretching mode of both systems (4cm{sup {minus}1}FWHM) and a deformation mode of Mo(CO){sub 6} at 608cm{sup {minus}1} (1 cm{sup {minus}1}FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger formore » Ru{sub 3}(CO){sub 12} (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68.« less

  6. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  7. Infrared spectra of RuTPP, RuCOTPP, and Ru(CO)2TPP isolated in solid argon.

    PubMed

    Krim, Lahouari; Sorgues, Sébastien; Soep, Benoit; Shafizadeh, Niloufar

    2005-09-22

    Infrared spectra of unstable species such as CO-free ruthenium tetraphenylporphyrin RuTPP and RuCOTPP (species with vacant coordination sites) isolated in solid argon at 8 K have been recorded. Selective deposition conditions allow the isolation of either RuTPP and RuCOTPP or RuCOTPP and Ru(CO)2TPP. This depends on the preparation conditions of the sample. A specific Ru-CO bending mode has been characterized at 590.1 cm(-1) for Ru(CO)2TPP. The behavior of each vibrational mode of RuTPP, RuCOTPP, and Ru(CO)2TPP has been analyzed. Modes such as gamma8 at 721.3 cm(-1) (out-of-plane stretching mode gamma(Cbeta-H)sym) and nu41 at 1342.8 cm(-1) (nuCalpha-N coupled with deltaCalpha-Cm) reflect the charge transfer in the porphyrin. Indeed, the addition of one or two CO ligands to RuTPP reduces the charge transfer between the metal center and the porphyrin, which appears as an increase in the frequency of the nu41 mode and in a decrease in that of the gamma8 mode.

  8. A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application.

    PubMed

    Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang

    2018-08-24

    In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off  > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.

  9. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  10. Dielectric properties of grain-grainboundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Li, Sheng-Tao; Wang, Hui

    2014-09-01

    Dielectric properties of grain-grainboundary binary system are analyzed theoretically and compared with unary system and classical Maxwell-Wagner (MW) polarization in binary system. It is found that MW polarization appears at higher frequency compared with intrinsic polarization for grain-grainboundary binary system, which is abnormal compared with classical dielectric theory. This dielectric anomaly is premised on the existence of electronic relaxation at grainboundary. The origin of giant dielectric constant of CaCu3Ti4O12 (CCTO) ceramics is also investigated on the basis of the theoretical results. It is proposed that low frequency relaxation originates from electronic relaxation of oxygen vacancy at depletion layer, while high frequency relaxation comes from MW polarization. The results of this paper offer a quantitative identification of MW polarization from intrinsic polarization at grainboundary and a judgment of the mechanism and location of a certain polarization in grain-grainboundary binary system.

  11. Reinforcement of double-exchange ferromagnetic coupling by Ru in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} manganite system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Fontes, M.B.; Lopes, A.M.L.

    2014-03-01

    Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{submore » C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.« less

  12. Hydrodynamic Interaction between the Be Star and the Pulsar in the TeV Binary PSR B1259-63/LS 2883

    NASA Astrophysics Data System (ADS)

    Okazaki, Atsuo T.; Nagataki, Shigehiro; Naito, Tsuguya; Kawachi, Akiko; Hayasaki, Kimitake; Owocki, Stanley P.; Takata, Jumpei

    2011-08-01

    We have been studying the interaction between the Be star and the pulsar in the TeV binary PSR B1259-63/LS 2883, using 3-D SPH simulations of the tidal and wind interactions in this Be-pulsar system. We first ran a simulation without pulsar wind nor Be wind, while taking into account only the gravitational effect of the pulsar on the Be disk. In this simulation, the gas particles are ejected at a constant rate from the equatorial surface of the Be star, which is tilted in a direction consistent with multi-waveband observations. We ran the simulation until the Be disk was fully developed and started to repeat a regular tidal interaction with the pulsar. Then, we turned on the pulsar wind and the Be wind. We ran two simulations with different wind mass-loss rates for the Be star, one for a B2 V type and the other for a significantly earlier spectral type. Although the global shape of the interaction surface between the pulsar wind and the Be wind agrees with the analytical solution, the effect of the pulsar wind on the Be disk is profound. The pulsar wind strips off an outer part of the Be disk, truncating the disk at a radius significantly smaller than the pulsar orbit. Our results, therefore, rule out the idea that the pulsar passes through the Be disk around periastron, which has been assumed in previous studies. It also turns out that the location of the contact discontinuity can be significantly different between phases when the pulsar wind directly hits the Be disk and those when the pulsar wind collides with the Be wind. It is thus important to adequately take into account the circumstellar environment of the Be star, in order to construct a satisfactory model for this prototypical TeV binary.

  13. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumpingmore » from Py into Ru.« less

  14. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  15. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  16. Brown Dwarf Binaries from Disintegrating Triple Systems

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Mikkola, Seppo

    2015-04-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  17. Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.

    2008-05-01

    A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.

  18. Dynamical evolution of young binaries and multiple systems

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.

  19. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE PAGES

    Wu, D.; Zhao, L. -D.; Tong, X.; ...

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe) 1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM)more » observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  20. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  1. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  2. The formation of high-mass binary star systems

    NASA Astrophysics Data System (ADS)

    Lund, Kristin; Bonnell, Ian A.

    2018-06-01

    We develop a semi-analytic model to investigate how accretion onto wide low-mass binary stars can result in a close high-mass binary system. The key ingredient is to allow mass accretion while limiting the gain in angular momentum. We envision this process as being regulated by an external magnetic field during infall. Molecular clouds are made to collapse spherically with material either accreting onto the stars or settling in a disk. Our aim is to determine what initial conditions are needed for the resulting binary to be both massive and close. Whether material accretes, and what happens to the binary separation as a result, depends on the relative size of its specific angular momentum, compared to the specific angular momentum of the binary. When we add a magnetic field we are introducing a torque to the system which is capable of stripping the molecular cloud of some of its angular momentum, and consequently easing the formation of high-mass binaries. Our results suggest that clouds in excess of 1000 M⊙ and radii of 0.5 pc or larger, can easily form binary systems with masses in excess of 25 M⊙ and separations of order 10 R⊙ with magnetic fields of order 100 μG (mass-to-flux ratios of order 5).

  3. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  4. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  5. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  6. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  7. Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.

    Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.

  8. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  9. Are Binary Separations related to their System Mass?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.

    2004-08-01

    We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.

  10. New Eclipsing Contact Binary System in Auriga

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.

    2004-05-01

    We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.

  11. Planetary Formation and Dynamics in Binary Systems

    NASA Astrophysics Data System (ADS)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  12. Atomistic Modeling of RuAl and (RuNi) Al Alloys

    NASA Technical Reports Server (NTRS)

    Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.

  13. Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube

    NASA Technical Reports Server (NTRS)

    Abassi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found.

  14. Fabrication of thermoelectric modules with Mg2Si and SrRuO3 by the spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Nishio, Keishi; Sawada, Yukie; Arai, Koya; Sakamoto, Tatsuya; Kogo, Yasuo; Iida, Tsutomu

    2012-06-01

    Thermoelectric (TE) modules with a π structure were fabricated by the spark plasma sintering method. The modules were composed of SrRuO3 for the p-type semiconductor, Mg2Si for the n-type semiconductor, and Ni for the electrodes. The SrRuO3 powder was synthesized using the metal-citric-acid complex decomposition method. Mg2Si bulk prepared by meltquenching was ground into powder and sieved to a particle size of 75 μm or less. To obtain the sintered body of SrRuO3, the powder was sintered using spark plasma sintering (SPS). For SPS, the precursor powder was placed in a graphite die and kept at that temperature under a uni-axial pressure of 50 MPa and in vacuum conditions (less than 7 Pa). After sintering by SPS, the ceramic sample was annealed at 1573K in air because the SrRuO3 was slightly reduced during the SPS process in the graphite die. These TE sintered bodies were cut and polished. The dimensions of the samples used for fabrication of the p-type parts of the TE modules were 4.50×9.50×7.45 mm3 and those for the n-type parts were 5.50×11.45×7.45 mm3. Pressed Ni powder was put between these TE materials and the Ni electrodes in order to connect them together, and electrical power was passed through the electrodes from the SPS equipment. The output power under temperature differences ΔT ranging from 100 to 500 K was measured. The open-circuit voltage, maximum output current and maximum output power increased with increasing temperature difference ΔT. The open-circuit voltage of the single module was 91.0 mV, and the maximum output current and maximum output power were 5000 mA and 110 mW at ΔT=500 K, respectively.

  15. Magnetization measurements of Sr2RuO4-Ru eutectic microplates using dc-SQUIDs

    NASA Astrophysics Data System (ADS)

    Nago, Y.; Sakuma, D.; Ishiguro, R.; Kashiwaya, S.; Nomura, S.; Kono, K.; Maeno, Y.; Takayanagi, H.

    2018-03-01

    We report magnetization measurements of Sr2RuO4-Ru eutectic microplates using micro-dc-SQUIDs. Sr2RuO4 is considered as a chiral p-wave superconductor and hence Sr2RuO4-Ru eutectic becomes in an unstable state with a superconducting phase frustration between a chiral p-wave state of Sr2RuO4 and a s-wave state of Ru. To compensate the frustration, a single quantum vortex is spontaneously formed at the center of the Ru inclusion at sufficiently low temperatures. However, such a spontaneous vortex state has not been experimentally observed yet. In this study, we prepared a micro-dc-SQUID and a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion at the center of the microplate. We performed magnetization measurements down below the superconducting transition temperature of the Ru inclusion to investigate the spontaneous Ru-center vortex state.

  16. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  17. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  18. Electronically highly cubic conditions for Ru in α -RuCl3

    NASA Astrophysics Data System (ADS)

    Agrestini, S.; Kuo, C.-Y.; Ko, K.-T.; Hu, Z.; Kasinathan, D.; Vasili, H. B.; Herrero-Martin, J.; Valvidares, S. M.; Pellegrin, E.; Jang, L.-Y.; Henschel, A.; Schmidt, M.; Tanaka, A.; Tjeng, L. H.

    2017-10-01

    We studied the local Ru 4 d electronic structure of α -RuCl3 by means of polarization-dependent x-ray absorption spectroscopy at the Ru L2 ,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4 d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2 g orbitals is -12 ±10 meV, i.e., negligible as compared to the Ru 4 d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff=1/2 ground state. We have thus shown that as far as the Ru 4 d local properties are concerned, α -RuCl3 is an ideal candidate for the realization of Kitaev physics.

  19. Electron microscope studies of nano-domain structures in Ru-based magneto-superconductors: RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212).

    PubMed

    Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio

    2004-01-01

    Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).

  20. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, H.; Borkovits, T.; Rappaport, S. A.

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less

  1. EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I +61° 303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Archer, A.; Buckley, J. H.

    2016-01-20

    The TeV binary system LS I +61° 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (>300 GeV). In this article, VERITAS observations of LS I +61° 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity frommore » this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I +61° 303 during the flares, provides constraints on the properties of the accelerator in the source.« less

  2. Close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Jeffries, R. D.; Maxted, P. F. L.

    2005-12-01

    Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.

  3. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  4. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  5. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.

    PubMed

    Arachchige, Shamindri M; Shaw, Ryan; White, Travis A; Shenoy, Vimal; Tsui, Hei-Man; Brewer, Karen J

    2011-04-18

    Covalent coupling of Ru(II) light absorbers to a Rh(III) electron collecting site through polyazine bridging ligands affords photocatalytic production of H(2) in the presence of visible light and a sacrificial electron donor. A robust photocatalytic system displaying a high turnover of the photocatalyst has been developed using the photoinitiated electron collector [{(bpy)(2)Ru(dpp)}(2)RhBr(2)](5+) (bpy=2,2'-bipyridine; dpp=2,3-bis(2-pyridyl)pyrazine) and N,N-dimethylaniline in DMF/H(2)O. Studies have shown that increased [DMA], the headspace volume, and the use of DMF solvent improves the systems performance and stability providing mechanistic insight into the deactivation routes of the photocatalytic system. Photolysis of the system at 460 nm generates 20 mL of H(2) in 19.5 h with a maximum Φ=0.023 based on H(2) produced and an overall Φ=0.014 and 280 turnovers of the photocatalyst. The photocatalytic system also displays long-term photostability with 30 mL of H(2) generated and 420 turnovers in 50 h under the same conditions. Prolonged photolysis provides 820 mol H(2) per mole of catalyst. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ferromagnetism and Ru-Ru distance in SrRuO3 thin film grown on SrTiO3 (111) substrate

    PubMed Central

    2014-01-01

    Epitaxial SrRuO3 thin films were grown on both (100) and (111) SrTiO3 substrates with atomically flat surfaces that are required to grow high-quality films of materials under debate. The following notable differences were observed in the (111)-oriented SrRuO3 films: (1) slightly different growth mode, (2) approximately 10 K higher ferromagnetic transition temperature, and (3) better conducting behavior with higher relative resistivity ratio, than (100)c-oriented SrRuO3 films. Together with the reported results on SrRuO3 thin films grown on (110) SrTiO3 substrate, the different physical properties were discussed newly in terms of the Ru-Ru nearest neighbor distance instead of the famous tolerance factor. PACS 75.70.Ak; 75.60.Ej; 81.15.Fg PMID:24393495

  7. A MAGNETAR-LIKE EVENT FROM LS I +61 Degree-Sign 303 AND ITS NATURE AS A GAMMA-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Diego F.; Rea, Nanda; Esposito, Paolo

    2012-01-10

    We report on the Swift Burst Alert Telescope detection of a short burst from the direction of the TeV binary LS I +61 Degree-Sign 303, resembling those generally labeled as magnetar-like. We show that it is likely that the short burst was indeed originating from LS I +61 Degree-Sign 303 (although we cannot totally exclude the improbable presence of a far-away, line-of-sight magnetar) and that it is a different phenomenon with respect to the previously observed ks-long flares from this system. Accepting the hypothesis that LS I +61 Degree-Sign 303 is the first magnetar detected in a binary system, wemore » study those implications. We find that a magnetar-composed LS I +61 Degree-Sign 303 system would most likely be (i.e., for the usual magnetar parameters and mass-loss rate) subject to a flip-flop behavior, from a rotationally powered regime (in the apastron) to a propeller regime (in the periastron) along each of the LS I +61 Degree-Sign 303 eccentric orbital motion. We prove that, unlike near an apastron, where an interwind shock can lead to the normally observed LS I +61 Degree-Sign 303 behavior, during TeV emission the periastron propeller is expected to efficiently accelerate particles only to sub-TeV energies. This flip-flop scenario would explain the system's behavior when a recurrent TeV emission only appears near the apastron, the anti-correlation of the GeV and TeV emission, and the long-term TeV variability (which seems correlated to LS I +61 Degree-Sign 303's super-orbital period), including the appearance of a low TeV state. Finally, we qualitatively put the multi-wavelength phenomenology into the context of our proposed model and make some predictions for further testing.« less

  8. Dynamical Evolution and Momentum Transfer for Binary Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Bellerose, Julie

    Over the past decade, robotic missions have been sent to small bodies, providing a basic understanding of their environment. Some of these small systems are found to be in pairs, orbiting each other, which are thought to represent about 16% of the near-Earth asteroid population. It is fair to assume that a mission will target a binary asteroid system in the near future as they can enable scientific insight into both the geology and dynamics of asteroids. In previous work, the dynamical evolution of binary systems was investigated for an ellipsoidsphere model. From the dynamics of two celestial bodies, equilibrium configurations and their stability were analyzed. For a given value of angular momentum, it was shown that there are in general two relative equilibrium configurations which are opposite in stability. When perturbations are introduced, we found that the equilibrium states are the minimum energy points of nearby periodic families. General dynamics from unstable to stable configurations were investigated for binaries in close proximity. Accounting for the dynamics of binaries, the dynamics of particles in this gravitational field were also studied. The location of the analogue Lagrangian points and energy associated with them were characterized. The L1 region is a key element for transfers between the bodies. It was shown that L1 can be situated between or inside the bodies depending on the free parameters of the system modifying the transfer possibilities since L1 has a hyperbolic manifold associated with it. In the current work, we look at the L1 region for binary system where the bodies are in relative equilibrium, close to each other. We find that L1 transits from outside to inside the ellipsoid when the mass ratio is larger than 0.6. For binary systems in close proximity with L1 being inside the ellipsoidal body, simulations show that particles on the surface tend to move away from the ellipsoid, toward the spherical primary. We can relate this to the

  9. Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; De Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Gozzini, S. R.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; MAGIC Collaboration; Cognard, I.; Guillemot, L.

    2017-10-01

    B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ˜2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.

  10. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  11. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun

    2017-12-01

    The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.

  12. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  13. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  14. The Acid-Base Properties and Chemical Composition of the Surface of the InSb-ZnTe System

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.; Shubenkova, E. G.; Timoshenko, O. T.; Filatova, T. N.

    2008-04-01

    The acid-base properties and chemical composition of the surface of solid solutions and binary components of the InSb-ZnTe system were studied by the hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and mass spectrometry methods. The strength, nature, and concentration of acid centers were determined. Changes in the concentration of acid centers caused by surface exposure to CO and changes in the composition of the system were also studied. The mechanism of acid-base interactions was established. The chemical composition of the surface of system components exposed to air included adsorbed H2O molecules, OH- groups, hydrocarbon and oxocarbon compounds, and the products of surface atom oxidation. After thermal treatment in a vacuum, the composition of the surface approached the stoichiometric composition.

  15. Syntheses, structures, and physicochemical properties of diruthenium compounds of tetrachlorocatecholate with metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) cores (R = CH(3) and C(2)H(5)).

    PubMed

    Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S

    2001-07-02

    Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2

  16. The True Ultracool Binary Fraction Using Spectral Binaries

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant

  17. First-principles study of amorphous Ga4Sb6Te3 phase-change alloys

    NASA Astrophysics Data System (ADS)

    Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco

    2015-05-01

    First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.

  18. Lattice animals in diffusion limited binary colloidal system

    NASA Astrophysics Data System (ADS)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  19. Life and light: exotic photosynthesis in binary and multiple-star systems.

    PubMed

    O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S

    2012-02-01

    The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.

  20. Comparative acid-base properties of the surface of components of the CdTe-ZnS system in series of substitutional solid solutions and their analogs

    NASA Astrophysics Data System (ADS)

    Kirovskaya, I. A.; Kasatova, I. Yu.

    2011-07-01

    The acid-base properties of the surface of solid solutions and binary components of the CdTe-ZnS system are studied by hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and Raman scattering spectroscopy. The strength, nature, and concentration of acid centers on the original surface and that exposed to CO are determined. The changes in acid-base properties in dependence on the composition of the system under investigation in the series of CdB6, ZnB6 analogs are studied.

  1. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  2. Determination of the Period of Binary Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Lust, Nathaniel B.; Britt, D. T.

    2008-09-01

    In the study of asteroids, binary pairs offer a unique window of study. By observing these systems and determining the period of the secondary, it is possible to determine system mass (e.g. Pravec and Hahn 1997; Ryan et al., 2004). With mass and volume, properties such as bulk density and porosity can be derived. At the University of Central Florida we have begun a binary asteroid hunt, in conjunction with the Prague consortium, in order to identify new binary candidates and to better constrain data on known pairs. All of the observations are collected on campus using a 0.5meter f/8.1 Ritchey-Chretien telescope with a SBIG STL-6303E detector. For our first test target we observed the known binary asteroid 107 Camila over a period of six days for approximately six to eight hours a night. The data is then processed using an open source python algorithm developed by Nate Lust. The data is read in, reduced, and compared to a standard star. Once the light curve was generated we make use of the CLEAN algorithm, originally developed by Hogbom (1974), to extract meaningful periods from the light curve.

  3. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  4. DISCOVERY OF EXTENDED AND VARIABLE RADIO STRUCTURE FROM THE GAMMA-RAY BINARY SYSTEM PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldon, Javier; Ribo, Marc; Paredes, Josep M.

    2011-05-01

    PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less

  5. Substituent-directed structural and physicochemical controls of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.

  6. Electrodeposition of MWNT/Bi2Te3 Composite Thermoelectric Films

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Wei

    2013-07-01

    The effect of multiwalled carbon nanotubes (MWNTs) on the electrochemical behavior of the Bi-Te binary system in nitric acid baths was investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Based on the results, MWNT/Bi2Te3 composite thermoelectric films were prepared by potentiostatic electrodeposition at room temperature. The morphology, composition, and structure of the MWNT/Bi2Te3 composite films were analyzed by environmental scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The results show that addition of MWNTs to the electrolyte did not change the electrochemical reduction mechanisms of Bi3+, HTeO{2/+} or their mixture, but the reduction processes of Bi3+, HTeO{2/+}, and their mixture become easier. MWNT/Bi2Te3 composite thermoelectric films can be obtained by potentiostatic electrodeposition at a wide range of potentials with subsequent annealing. The MWNTs in the films act as nucleation sites for Bi2Te3 compound and thereby elevate the film deposition rate. The content of Bi element and MWNTs in the films increased as the potential was shifted negatively. In addition, the MWNTs can enhance the crystallization of Bi2Te3 film.

  7. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  8. Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes.

    PubMed

    Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm

    2017-02-08

    Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  10. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    PubMed

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  11. Planetary Systems Dynamics Eccentric patterns in debris disks & Planetary migration in binary systems

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.

    2014-01-01

    We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.

  12. Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films

    NASA Astrophysics Data System (ADS)

    Makise, K.; Shinozaki, B.; Ichikawa, F.

    2018-03-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.

  13. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  14. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  15. Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru(0.5)Pd(0.5)Sb3

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Kulleck, J.; Borshchevsky, A.; Fleurial, J.-P.

    1996-01-01

    A new skutterudite phase Ru(0.5)Pd(0.5)Sb3 was prepared. This new phase adds to a large number of already known materials with the skutterudite structure which have shown good potential for thermoelectric applications. Single phase, polycrystalline samples were prepared and characterized by x-ray analysis, electron probe microanalysis, density, sound velocity, thermal-expansion coefficient, and differential thermal analysis measurements. Ru(0.5)Pd(0.5)Sb3 has a cubic lattice, space group Im3 (T(sup 5, sub h)), with a = 9.298 A and decomposes at about 920 K. The Seebeck coefficient, the electrical resistivity, the Hall effect, and the thermal conductivity were measured on hot-pressed samples over a wide range of temperatures. Preliminary results show that Ru(0.5)Pd(0.5)Sb3 behaves as a heavily doped semiconductor with an estimated band gap of about 0.6 eV. The lattice thermal conductivity of Ru(0.5)Pd(0.5)Sb3 is substantially lower than that of the binary isostructural compounds CoSb3 and IrSb3. The unusually low thermal conductivity might be explained by additional hole and charge transfer phonon scattering in this material. The potential of this material for thermoelectric applications is discussed.

  16. Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems

    NASA Astrophysics Data System (ADS)

    Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.

    2017-01-01

    A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.

  17. HESS J1844-030: A New Gamma-Ray Binary?

    NASA Astrophysics Data System (ADS)

    McCall, Hannah; Errando, Manel

    2018-01-01

    Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.

  18. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly

  19. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  20. Revisiting RuBisCO.

    PubMed

    Yokota, Akiho

    2017-11-01

    Since the discovery of its role in the CO 2 fixation reaction in photosynthesis, RuBisCO has been one of the most extensively researched enzymes in the fields of biochemistry, molecular biology, and molecular genetics as well as conventional plant physiology, agricultural chemistry, and crop science. In addition, the RuBisCO and RuBisCO-like genes of more than 2000 organisms have been sequenced during the past 20 years. During the course of those studies, the origin of the RuBisCO gene began to be discussed. Recent studies have reported that the RuBisCO gene emerged in methanogenic bacteria long before photosynthetic organisms appeared. The origin of similar early genes might have allowed this gene to overcome changes in global environments during ancient and recent eras and to participate in the fixation of 200 GT of CO 2 annually. In this review, I focus on several points that have not been discussed at length in the literature thus far.

  1. Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs

    NASA Astrophysics Data System (ADS)

    Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki

    2017-11-01

    We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist, J. Phys. Soc. Jpn. 79, 053706 (2010)]. Our experimental results show no positive evidence for such a spontaneous vortex state. However, in an applied field, an abrupt change in the magnetic flux distribution was observed at a superconducting transition of Ru. The flux distribution is clarified by comparing our experimental results with electromagnetic field simulations in our sample geometry. We discuss the transition of the vortex states and the superconducting coupling at the Sr2RuO4/Ru interface.

  2. The new eclipsing magnetic binary system E 1114 + 182

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.

    1985-01-01

    A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.

  3. Searching for Solar System Wide Binaries with Pan-STARRS-1

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Protopapas, P.; Tholen, D. J.

    2007-10-01

    Roughly 60% of the observing time of the Pan-STARRS-1 (PS1) telescope will be dedicated to a "3pi steradian" survey with an observing cadence that is designed for the detection of near-Earth asteroids and slow-moving solar system bodies. Over this course of its 3.5 year cience mission, this unprecedented survey will discover nearly every asteroid, Trojan, Centaur, long-period comet, short-period comet, and trans-neptunian object (TNO) brighter than magnitude R=23. This census will be used to address a large number of questions regarding the physical and dynamical properties of the various small body populations of the solar system. Roughly 1-2% of TNOs are wide binaries with companions at separations greater than 1 arcsec and brightness differences less than 2 magnitudes (Kern & Elliot 2006; Noll et al 2007). These can be readily detected by PS1; we will carry out such a search with PS1 data. To do so, we will modify the Pan-STARRS Moving Object Processing System (MOPS) such that it will associate the components of resolved or marginally resolved binaries, link such pairs of detections obtained at different epochs, and the estimate the relative orbit of the binary. We will also determine the efficiency with which such binaries are detected as a function of the binary's relative orbit and the relative magnitudes of the components. Based on an estimated 7000 TNOs that PS1 will discover, we anticipate finding 70-140 wide binaries. The PS1 data, 60 epochs over three years, is naturally suited to determining the orbits of these objects. Our search will accurately determine the binary fraction for a variety of subclasses of TNOs.

  4. Bifunctional supramolecular systems on the platform of p-sulfonatothiacalix[4]arene containing photochromic mononitrosyl Ru (II) and paramagnetic aqua Gd or Dy complexes

    NASA Astrophysics Data System (ADS)

    Kushch, L. A.; Yagubskii, E. B.; Dmitriev, A. I.; Morgunov, R. B.; Emel'Yanov, V. A.; Mustafina, A. R.; Gubaidullin, A. T.; Burilov, V. A.; Solovieva, S. E.; Schaniel, D.; Woike, Th.

    2010-06-01

    Two bifunctional supramolecular systems [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Gd3+(H2O)6·2[TCAS]4-·4H2O (1) and [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Dy3+(H2O)6·2[TCAS]4-·4H2O (2) on the platform of p-sulfonatothiacalix[4]arene containing photochromic mononitrosyl Ru and paramagnetic rare-earth (Gd3+, Dy3+) cations have been synthesized. The crystal structures of 1 and 2 are discussed. Their photochromic, magnetic and photomagnetic properties studied by IR and SQUID experimental techniques are presented

  5. Ferromagnetic CaRuO3

    PubMed Central

    Tripathi, Shivendra; Rana, Rakesh; Kumar, Sanjay; Pandey, Parul; Singh, R. S.; Rana, D. S.

    2014-01-01

    The non-magnetic and non-Fermi-liquid CaRuO3 is the iso-structural analog of the ferromagnetic (FM) and Fermi-liquid SrRuO3. We show that an FM order in the orthorhombic CaRuO3 can be established by the means of tensile epitaxial strain. The structural and magnetic property correlations in the CaRuO3 films formed on SrTiO3 (100) substrate establish a scaling relation between the FM moment and the tensile strain. The strain dependent crossover from non-magnetic to FM CaRuO3 was observed to be associated with switching of non-Fermi liquid to Fermi-liquid behavior. The intrinsic nature of this strain-induced FM order manifests in the Hall resistivity too; the anomalous Hall component realizes in FM tensile-strained CaRuO3 films on SrTiO3 (100) whereas the non-magnetic compressive-strained films on LaAlO3 (100) exhibit only the ordinary Hall effect. These observations of an elusive FM order are consistent with the theoretical predictions of scaling of the tensile epitaxial strain and the magnetic order in tensile CaRuO3. We further establish that the tensile strain is more efficient than the chemical route to induce FM order in CaRuO3. PMID:24464302

  6. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  7. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  8. The valence of Ru, Ce and Eu ions in the magneto-superconductor Eu 1.5Ce 0.5RuSr 2Cu 2O 10

    NASA Astrophysics Data System (ADS)

    Felner, I.; Asaf, U.; Godart, C.; Alleno, E.

    1999-01-01

    The superconducting (T c∼32 K) Eu 1.5Ce 0.5RuSr 2Cu 2O 10 (Ru-2122) material is also magnetically ordered (T M∼122 K) with TM≫ Tc. Superconductivity (SC) is confined to the CuO 2 planes, whereas magnetism is due to the Ru sublattice. Mossbauer spectroscopy performed at 90 and 300 K on 151Eu shows a single narrow line with an isomer shift=0.69(2) and a quadrupole splitting of 1.84 mm/s, indicating that the Eu ions are trivalent with a nonmagnetic J=0 ground state. This is in agreement with X-ray-absorption spectroscopy (XAS) taken at L III edges of Eu, Ce which shows that Eu is trivalent and Ce is tetravalent. XAS experiments at the K edge of Ru indicate that Ru is pentavalent. This indicates, that in the M-2122 system, SC exists only for pentavalent M ions such as Ta, Nb and Ru.

  9. Reduction of RuVI≡N to RuIII-NH3 by Cysteine in Aqueous Solution.

    PubMed

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Yiu, Shek-Man; Tse, Man-Kit; Lau, Tai-Chu

    2018-05-21

    The reduction of metal nitride to ammonia is a key step in biological and chemical nitrogen fixation. We report herein the facile reduction of a ruthenium(VI) nitrido complex [(L)Ru VI (N)(OH 2 )] + (1, L = N, N'-bis(salicylidene)- o-cyclohexyldiamine dianion) to [(L)Ru III (NH 3 )(OH 2 )] + by l-cysteine (Cys), an ubiquitous biological reductant, in aqueous solution. At pH 1.0-5.3, the reaction has the following stoichiometry: [(L)Ru VI (N)(OH 2 )] + + 3HSCH 2 CH(NH 3 )CO 2 → [(L)Ru III (NH 3 )(OH 2 )] + + 1.5(SCH 2 CH(NH 3 )CO 2 ) 2 . Kinetic studies show that at pH 1 the reaction consists of two phases, while at pH 5 there are three distinct phases. For all phases the rate law is rate = k 2 [1][Cys]. Studies on the effects of acidity indicate that both HSCH 2 CH(NH 3 + )CO 2 - and - SCH 2 CH(NH 3 + )CO 2 - are kinetically active species. At pH 1, the reaction is proposed to go through [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a), [(L)Ru III (NH 2 SCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (3), and [(L)Ru IV (NH 2 )(OH 2 )] + (4) intermediates. On the other hand, at pH around 5, the proposed intermediates are [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 )(OH 2 )] + (2b) and [(L)Ru IV (NH 2 )(OH 2 )] + (4). The intermediate ruthenium(IV) sulfilamido species, [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a) and the final ruthenium(III) ammine species, [(L)Ru III (NH 3 )(MeOH)] + (5) (where H 2 O was replaced by MeOH) have been isolated and characterized by various spectroscopic methods.

  10. Enhanced interfacial Dzyaloshinskii-Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films

    NASA Astrophysics Data System (ADS)

    Samardak, Alexander; Kolesnikov, Alexander; Stebliy, Maksim; Chebotkevich, Ludmila; Sadovnikov, Alexandr; Nikitov, Sergei; Talapatra, Abhishek; Mohanty, Jyoti; Ognev, Alexey

    2018-05-01

    An enhancement of the spin-orbit effects arising on an interface between a ferromagnet (FM) and a heavy metal (HM) is possible through the strong breaking of the structural inversion symmetry in the layered films. Here, we show that an introduction of an ultrathin W interlayer between Co and Ru in Ru/Co/Ru films enables to preserve perpendicular magnetic anisotropy (PMA) and simultaneously induce a large interfacial Dzyaloshinskii-Moriya interaction (iDMI). The study of the spin-wave propagation in the Damon-Eshbach geometry by Brillouin light scattering spectroscopy reveals the drastic increase in the iDMI value with the increase in W thickness (tW). The maximum iDMI of -3.1 erg/cm2 is observed for tW = 0.24 nm, which is 10 times larger than for the quasi-symmetrical Ru/Co/Ru films. We demonstrate the evidence of the spontaneous field-driven nucleation of isolated skyrmions supported by micromagnetic simulations. Magnetic force microscopy measurements reveal the existence of sub-100-nm skyrmions in the zero magnetic field. The ability to simultaneously control the strength of PMA and iDMI in quasi-symmetrical HM/FM/HM trilayer systems through the interface engineered inversion asymmetry at the nanoscale excites new fundamental and practical interest in ultrathin ferromagnets, which are a potential host for stable magnetic skyrmions.

  11. The interacting binary white dwarf systems

    NASA Astrophysics Data System (ADS)

    Provencal, Judith Lucille

    1994-01-01

    Interacting binary white dwarfs are believed to contain two white dwarfs of extreme mass ratio, one of which is filling its Roche Lobe, transferring material to its companion via an accretion disk. The defining characteristic of an IBWD is the nondetection of hydrogen in the system. IBWD's represent the culmination of binary star evolution. In this final death dance, two degenerate objects are entangled, the massive white dwarf tidally stripping and devouring its helpless companion's outer layers. Because a white dwarf expands as it loses mass, the end result of this process is the complete absorption of one star by the other . My goal in the examination of these systems is to understand their photometric behavior and determine the best model of these objects. The IBWD's represent the endpoint of binary evolution. Knowledge of the physical properties of these objects will provide constraints on theories of binary evolution, white dwarf formation, the thermal and physical structure of accreting white dwarfs, and nucleosynthesis. To achieve this goal, I have analyzed the most comprehensive high speed photometric data sets available on 5 of the 6 known objects: AM CVn, PG1346+082, CP Eri, V803 Cen, and G61-29. AM CVn and PG1346+0S2 were targets of the Whole Earth Telescope in 1988 and 1990 respectively. We find a range of variation timescales, from minutes to days, and a range of physical behaviour. Most importantly, we measure a rate of period change of P = 1.68 +/- 0.03 x 10-11s/s for the dominant variation in AM CVn. We also find the differences in behavior can be attributed to a difference in mass transfer rate that may be evolutionary in origin. Finally, I discuss in detail the observational characteristics of each object, and overall properties of the IBWD family. In conclusion, I discuss past and future history of these objects, and touch on their possible influence on our knowledge of white dwarf evolution and formation. The IBWD's are possible progenitors of

  12. Between metamagnetic transition and spin-flip behavior in Ce 122 system of (Ce-Gd)Ru2Si2

    NASA Astrophysics Data System (ADS)

    Yano, K.; Amakai, Y.; Hara, Y.; Sato, K.; Kita, E.; Takano, H.; Ohta, T.; Murayama, S.

    2018-03-01

    Aiming at getting some clues to the mechanism of meta-magnetic transition and surprisingly small magnetic moment of Ce along hard axis in CeRu2Si2, the (Ce-Gd)Ru2Si2 system where Ce was substituted by Gd were studied through magnetic properties mainly in Gd-rich regions. At Gd=0, i.e. in CeRu2Si2, the magnetic moment of Ce showed a symptom of saturation in M-H curve under H=90,000 Oe at 2 K and the Ce magnetic moment at 4.2 K can be nearly identical to that at 2 K employing 1/H plot. At Gd-rich content of 0.8, Ce magnetic moment coupled parallel to that of Gd, Ce ↑ Gd ↑ both in easy and hard axis and the extremely smallness of Ce magnetic moment in hard axis disappeared perfectly at x=0.8. Furthermore at Gd=1, GdRu2Si2, Gd magnetic moment caused 2-step like spin-flip in both easy and hard axis.

  13. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V =O 3+ and Ru IV =O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-02-21

    Significant rate enhancements are found for benzyl alcohol oxidation by the RuV=O3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to RuIV=O2+ and for the RuIV=O2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).

  14. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-01-20

    Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).

  15. Evolution of close binary systems: Observational aspects

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    Detached close binary systems define the main sequence band satisfactorily, but very little is known about the masses of giants and supergiants. High dispersion international ultraviolet explorer satellite observations promise an improvement, since blue companions are now frequently found to late type supergiants. Mu Sagittaril and in particular Xi Aurigae are discussed in more detail. The barium star abundance anomaly appears to be due to mass transfer in interacting systems. The symbiotic stars are another type of binary systems containing late type giants; several possible models for the hotter star and for the type of interaction are discussed. The W Serpentis stars appear to be Algols in the rapid phase of mass transfer, but a possible link relating them to the symbiotics is also indicated. Evidence of hot circumstellar plasmas has now been found in several ordinary Algols; there may exist a smooth transition between very quiescent Algols and the W Serpentis stars. Beta Lyrae is discussed in the light of new spectrophotometric results.

  16. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less

  17. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  18. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    PubMed

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  19. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-01-20

    Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway involving concerted hydride proton transfer (HPT).

  20. Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions

    NASA Astrophysics Data System (ADS)

    Tjong, S. C.

    1990-03-01

    The effect of ruthenium addition on the spontaneous passivation behaviour of Fe-40Cr alloy in 0.5M H 2SO 4 and 0.5M HCl acid solutions has been studied. Auger and XPS techniques were also used to investigate the surface chemistries of the spontaneously passivated film. Electrochemical measurements indicate that the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys exhibit spontaneous passivation upon exposing them in both hydrochloric and sulphuric acid solutions from 25 to 85 ° C. However, the transition time for spontaneous passivation reduces dramatically with an increase in the ruthenium content and solution temperature. Furthermore, this transition time also decreases for the investigated alloys exposed in a less aggressive sulphuric acid solution. AES results show that ruthenium and chromium are enriched in the spontaneous passive films formed on the Fe-40Cr-0.1Ru alloy in both hydrochloric and sulphuric acid solutions at 25 °C, and also in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in hydrochloric acid solution at 25 ° C. AES does not detect the presence of ruthenium in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in sulphuric acid solution. However, XPS analysis shows that ruthenium and chromium are incorporated into the spontaneous passive films formed on the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys in both hydrochloric and sulphuric acid solutions as Ru 4+ and Cr 3+ species.

  1. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  2. Induced Ellipticity for Inspiraling Binary Systems

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Xianyu, Zhong-Zhi

    2018-01-01

    Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.

  3. Classification of close binary systems by Svechnikov

    NASA Astrophysics Data System (ADS)

    Dryomova, G. N.

    The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.

  4. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.

    PubMed

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-08-07

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.

  5. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.

    2015-11-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  6. Direct evidence for double-exchange coupling in Ru- substituted La0.7Pb0.3Mn 1 - x Ru x O3, 0.0 <= x <= 0.4

    NASA Astrophysics Data System (ADS)

    Sundar Manoharan, S.; Sahu, R. K.; Rao, M. L.; Elefant, D.; Schneider, C. M.

    2002-08-01

    The La0.7Pb0.3Mn 1 - x Ru x O3 (0.0 <= x <= 0.4) system shows an innate relationship between Mn and Ru ions by a unique double-exchange mediated transport behavior. This is exonerated by the coexistence of Tp and Tc (range 330 K 245 K for 0.0 <= x <= 0.4). For Ru > 30%, the hole carrier mass influences the transport property. X-ray absorption spectra suggest that the Tc-Tp match is due to the transport mediated by the Mn3+/Mn4+ leftrightarrow Ru4+/Ru5+ redox pair and also due to the broad low-spin Ru:4d conduction band. For x > 0.2, T < 0.5Tc obeys a modified variable-range hopping model, where kT0 propto (M/Ms)2, suggesting a random magnetic potential which localizes the charge carriers.

  7. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  8. Obtaining gravitational waves from inspiral binary systems using LIGO data

    NASA Astrophysics Data System (ADS)

    Antelis, Javier M.; Moreno, Claudia

    2017-01-01

    The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

  9. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  10. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE PAGES

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  11. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Evans, James W.

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atommore » in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)« less

  12. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsingmore » binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.« less

  13. Binary Systems and the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  14. Percolation of binary disk systems: Modeling and theory

    DOE PAGES

    Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.

    2017-01-12

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less

  15. Searching for low-workfunction phases in the Cs-Te system: The case of Cs2Te5

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Németh, Károly; Harkay, Katherine C.; Terdik, Joseph Z.; Spentzouris, Linda; Terry, Jeff

    2013-05-01

    We have computationally explored workfunction values of Cs2Te5 surfaces, an existing crystalline phase of the Cs-Te system and a small bandgap semiconductor, in order to search for reduced workfunction alternatives of Cs2Te that preserve the exceptionally high quantum efficiency of the Cs2Te seasoned photoemissive material. We have found that the Cs2Te5(010) surface exhibits a workfunction value of ≈1.9 eV when it is covered by Cs atoms. Cs2Te5 is analogous to our recently proposed low-workfunction materials, Cs2TeC2, and other ternary acetylides [J. Z. Terdik et al., Phys. Rev. B 86, 035142 (2012)], in as much as it also contains quasi one-dimensional substructures embedded in a Cs-matrix, forming the foundation for anomalous workfunction anisotropy and low workfunction values. The one-dimensional substructures in Cs2Te5 are polytelluride ions in a tetragonal rod-like packing. Cs2Te5 has the advantage of simpler composition and availability as compared to Cs2TeC2; however, its low workfunction surface is less energetically favored to the other surfaces than in Cs2TeC2. A significant and remarkable advantage of Cs2Te5 as compared to Cs2Te is its high optical absorption of visible photons that can allow for high quantum efficiency electron emission at visible photon energies.

  16. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  17. Near-Infrared Polarimetry of the GG Tauri A Binary System

    NASA Technical Reports Server (NTRS)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  18. Computational identification of promising thermoelectric materials among known quasi-2D binary compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    Quasi low-dimensional structures are abundant among known thermoelectric materials, primarily because of their low lattice thermal conductivities. In this work, we have computationally assessed the potential of 427 known binary quasi-2D structures in 272 different chemistries for thermoelectric performance. To assess the thermoelectric performance, we employ an improved version of our previously developed descriptor for thermoelectric performance [Yan et al., Energy Environ. Sci., 2015, 8, 983]. The improvement is in the explicit treatment of van der Waals interactions in quasi-2D materials, which leads to significantly better predictions of their crystal structures and lattice thermal conductivities. The improved methodology correctly identifiesmore » known binary quasi-2D thermoelectric materials such as Sb2Te3, Bi2Te3, SnSe, SnS, InSe, and In2Se3. As a result, we propose candidate quasi-2D binary materials, a number of which have not been previously considered for thermoelectric applications.« less

  19. Laser Spectroscopy of Ruthenium Containing Diatomic Molecules: RuH/D and RuP.

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Konder, Ricarda M.; Nickerson, Nicole M.; Linton, Colan; Tokaryk, D. W.

    2015-06-01

    In the last few years, the Cheung group in Hong Kong and the Steimle group in Arizona have successfully studied several ruthenium containing diatomic molecules, RuX (X =C, O, N, B, using the laser-ablation molecular jet technique. Based on this success, the UNB spectroscopy group decided to try and find the optical signatures of other RuX molecules. Using CH_3OH and PH_3 as reactant gases, the RuH and RuP diatomic molecules have been detected in surveys of the 420 - 675 nm spectral region. RuD has also been made using fully deuterated methanol as a reactant. Dispersed fluorescence experiments have been performed to determine ground state vibrational frequencies and the presence of any low-lying electronic states. Rotationally resolved spectra for these molecules have also been taken and the analysis is proceeding. The most recent results will be presented. F. Wang et al., Journal of Chemical Physics 139, 174318 (2013). N. Wang et al., Journal of Physical Chemistry A 117, 13279 (2013). T. Steimle et al., Journal of Chemical Physics 119, 12965 (2003). N. Wang et al., Chemical Physics Letters 547, 21 (2012).

  20. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    NASA Astrophysics Data System (ADS)

    Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.

    2018-05-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.

  1. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  2. New Binary Systems With Asymmetric Light Curves

    NASA Astrophysics Data System (ADS)

    Virnina, Natalia A.

    2010-12-01

    We present the results of investigation of the light curves of 27 newly discovered binary systems. Among the examined curves, there were 10 curves with statistically significant asymmetry of maximums, according the 3σ criterion for the difference between the maximal brightness. Half of these 10 curves have a higher first maximum, another half the second one. Two of these 10 curves, USNO-B1.0 1629-0064825 = VSX J052807.9+725606 and USNO-B1.0 1586-0116785, show the largest difference between magnitudes in maxima. The star VSX J052807.9+725606 also shows the secondary minimum, which is shifted from the phase φ = 0.5. The shape of the curve argues that the physical processes of this star could be close to that of well known short periodic binary system V361 Lyr, which has a spot on the surface of one star of the system. Another star, USNO-B1.0 1586-0116785, probably has a cold spot, or several spots, in the photosphere of one of the components.

  3. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  4. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  5. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  6. Local structure of amorphous Ag5In5Sb60Te30 and In3SbTe2 phase change materials revealed by X-ray photoelectron and Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.

    2017-07-01

    Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.

  7. Testing Modified Gravity Theories via Wide Binaries and GAIA

    NASA Astrophysics Data System (ADS)

    Pittordis, Charalambos; Sutherland, Will

    2018-06-01

    The standard ΛCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale ˜10-10 m s-2. Wide-binary (WB) star systems with separations ≳ 5 kAU provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities, relative to equilibrium circular velocity predicted from the (2D) projected separation predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories without an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to ˜0.04 - 0.08, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to ≲ 0.03 { km s^{-1}} should be able to produce an interesting new constraint on modified-gravity theories.

  8. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.

    PubMed

    Yue, Chaoyang; Qiu, Longhui; Trudeau, Michel; Antonelli, David

    2007-06-11

    A series of early metal-promoted Ru-, Pd-, Pt-, and Rh-doped mesoporous tantalum oxide catalysts were synthesized using a variety of dopant ratios and dopant precursors, and the effects of these parameters on the catalytic activity of NH3 synthesis from H2 and N2 were explored. Previous studies on this system supported an unprecedented mechanism in which N-N cleavage occurred at the Ta sites rather than on Ru. The results of the present study showed, for all systems, that Ba is a better promoter than Cs or La and that the nitrate is a superior precursor for Ba than the isopropoxide or the hydroxide. 15N-labeling studies showed that residual nitrate functions as the major ammonia source in the first hour but that it does not account for the ammonia produced after the nitrate is completely consumed. Ru3(CO)12 proved to be a better Ru precursor than RuCl(3).3H2O, and an almost linear increase in activity with increasing Ru loading level was observed at 350 degrees C (623 K). However, at 175 degrees C (448 K), the increase in Ru had no effect on the reaction rate. Pd functioned with comparable rates to Ru, while Pt and Rh functioned far less efficiently. The surprising activities for the Pd-doped catalysts, coupled with XPS evidence for low-valent Ta in this catalyst system, support a mechanism in which cleavage of the N-N triple bond occurs on Ta rather than the precious metal because the Ea value for N-N cleavage on Pd is 2.5 times greater than that for Ru, and the 9.3 kJ mol-1 Ea value measured previously for the Ru system suggests that N-N cleavage cannot occur at the Ru surface.

  9. On the orbital evolution of radiating binary systems

    NASA Astrophysics Data System (ADS)

    Bekov, A. A.; Momynov, S. B.

    2018-05-01

    The evolution of dynamic parameters of radiating binary systems with variable mass is studied. As a dynamic model, the problem of two gravitating and radiating bodies is considered, taking into account the gravitational attraction and the light pressure of the interacting bodies with the additional assumption of isotropic variability of their masses. The problem combines the Gylden-Meshchersky problem, acquiring a new physical meaning, and the two-body photogravitational Radzievsky problem. The evolving orbit is presented, unlike Kepler, with varying orbital elements - parameter and eccentricity, defines by the parameter µ(t), area integral C and quasi-integral energy h(t). Adiabatic invariants of the problem, which are of interest for the slow evolution of orbits, are determined. The general course of evolution of orbits of binary systems with radiation are determined by the change of the parameter µ(t) and the total energy of the system.

  10. Observational Evidence for Tidal Interaction in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Mazeh, T.

    This paper reviews the rich corpus of observational evidence for tidal effects, mostly based on photometric and radial-velocity measurements. This is done in a period when the study of binaries is being revolutionized by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. We begin by examining the short-term effects, such as ellipsoidal variability and apsidal motion. We next turn to the long-term effects, of which circularization was studied the most: a transition period between circular and eccentric orbits has been derived for eight coeval samples of binaries. The study of synchronization and spin-orbit alignment is less advanced. As binaries are supposed to reach synchronization before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. We also discuss synchronization in PMS and young stars, and compare the emerging timescale with the circularization timescale. We next examine the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We elaborate on the impact of the pumped eccentricity on the tidal evolution of close binaries residing in triple systems, which may shrink the binary separation. Finally we consider the extrasolar planets and the observational evidence for tidal interaction with their parent stars. This includes a mechanism that can induce radial drift of short-period planets, either inward or outward, depending on the planetary radial position relative to the corotation radius. Another effect is the circularization of planetary orbits, the evidence for which can be found in eccentricity-versus-period plot of the planets already known. Whenever possible, the paper attempts to address the possible confrontation between theory and observations, and to point out noteworthy cases and observations that can be

  11. Massive companions of binary systems

    NASA Astrophysics Data System (ADS)

    Jableka, D.; Zola, S.; Zakrzewski, B.; Kreiner, J. M.; Ogloza, W.

    2018-04-01

    We examined the O-C diagrams of eclipsing binary systems and selected these exhibiting cyclic shape, either sinusoidal or quasi sinusoidal. Assuming these variations being due to the Light Time Travel effect (LTE), we estimated the parameters of companions with the Monte Carlo method. As a result, we identified nearly two dozen of eclipsing systems that might have companions with a minimum mass larger than that of a neutron star. Their masses fall into the range between 1.7 and 34 solar masses. This sample of triples with high mass companions can be confirmed with the help of observations gathered by Gaia: parallaxes and astrometric measurements.

  12. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  13. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  14. Thermoelectric properties of Te doped bulk Bi2Se3 system

    NASA Astrophysics Data System (ADS)

    Adam, A. M.; Elshafaie, A.; Mohamed, Abd El-Moez A.; Petkov, P.; Ibrahim, E. M. M.

    2018-03-01

    Polycrystalline bulk samples of Bi2(Se1‑xTex)3 system with x = 0.0–0.9 were prepared by the conventional melting method. Successfully and cheaply, Se atoms were replaced by Te atoms to get Bi2Se3-Bi2Te3 or even Bi2Te3 alone. Difference of mass and size between Te and Se atoms is expected to result in interesting properties in the Bi2(Se1‑xTex)3 system. All compounds showed a metal-semiconductor conductivity transition. The electrical conduction in the pristine Bi2Se3 compound increases with the low Te doping ratio (x = 0.3) then decreases monotonically for further amounts of Te. The Seebeck coefficient of Bi2Se3 compound is positive showing up a p-type conduction. However, introducing Te content increases the n-type conduction with a decrease in the Seebeck coefficient absolute value. In addition, Bi2Se3 compound is found to exhibit relatively high room temperature power factor and figure of merit values of 2.13 μW/m.k2. In an attempt to determine the figure of merit ZT, Bi2Se3 seems to be the best for room temperature, whereas, Te addition at high values makes the system just suitable for high temperature application.

  15. Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.

    2008-03-01

    The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.

  16. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    NASA Astrophysics Data System (ADS)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  17. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition

    NASA Astrophysics Data System (ADS)

    Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru

    2018-03-01

    The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.

  18. Period change of a contact binary system RW Comae Berenices

    NASA Astrophysics Data System (ADS)

    Maithong, Wiraporn; Phao-ai, Parinda

    2017-08-01

    In this work, we studied about the period change of a contact binary system RW Comae Berenices. The binary system was observed on March 9th, 2016 by the 105 mm diameter of a refraction telescope with the DSLR digital camera at the Regional Observatory for the Public Nakhon Ratchasima, Thailand. The photometry used the IRIS program. The period change was analyzed by used the O-C diagram. The result shows that the period of the RW Comae Berenices is increasing with 1.89×10-3 seconds/year.

  19. First-principles study of the amorphous In3SbTe2 phase change compound

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  20. Physical Parameters of Components in Close Binary Systems. V

    NASA Astrophysics Data System (ADS)

    Zola, S.; Kreiner, J. M.; Zakrzewski, B.; Kjurkchieva, D. P.; Marchev, D. V.; Baran, A.; Rucinski, S. M.; Ogloza, W.; Siwak, M.; Koziel, D.; Drozdz, M.; Pokrzywka, B.

    2005-12-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.

  1. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  2. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.

  3. Effect of RuO2 growth temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt capacitors

    NASA Astrophysics Data System (ADS)

    Norga, G. J.; Fè, Laura; Wouters, D. J.; Maes, H. E.

    2000-03-01

    We present a promising method for obtaining Pb(Zr, Ti)O3(PZT) layers with excellent endurance and pulse-switching properties on RuO2 electrodes using the sol-gel method. As the substrate temperature during reactive sputtering of the RuO2 bottom electrode layer is reduced, the (111) PZT texture component becomes more pronounced, an effect attributed to the change from columnar to granular RuO2 film morphology. Reducing the residual PZT (100) and (101) texture components was found to be a necessary condition for obtaining optimal pulse switching and endurance properties of the layers. Highly (111)-oriented PZT layers, obtained on RuO2 grown at 150 °C exhibit a net switched charge of >60 μC/cm2 during pulse measurement and <10% degradation after 1011 fatigue cycles.

  4. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  5. Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan

    2017-01-01

    I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.

  6. Gravitational radiation from compact binary systems in screened modified gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Liu, Tan; Zhao, Wen

    2017-05-01

    Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which can suppress the fifth force in dense regions and allow theories to evade the solar system and laboratory tests. In this paper, we investigate how the screening mechanisms in SMG affect the gravitational radiation damping effects, calculate in detail the rate of the energy loss due to the emission of tensor and scalar gravitational radiations, and derive their contributions to the change in the orbital period of the binary system. We find that the scalar radiation depends on the screened parameters and the propagation speed of scalar waves, and the scalar dipole radiation dominates the orbital decay of the binary system. For strongly self-gravitating bodies, all effects of scalar sector are strongly suppressed by the screening mechanisms in SMG. By comparing our results to observations of binary system PSR J 1738 +0333 , we place the stringent constraints on the screening mechanisms in SMG. As an application of these results, we focus on three specific models of SMG (chameleon, symmetron, and dilaton), and derive the constraints on the model parameters, respectively.

  7. The Binary System Laboratory Activities Based on Students Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  8. Role of RuO2(100) in surface oxidation and CO oxidation catalysis on Ru(0001).

    PubMed

    Flege, Jan Ingo; Lachnitt, Jan; Mazur, Daniel; Sutter, Peter; Falta, Jens

    2016-01-07

    We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 165407], at O coverages exceeding 1 monolayer, using the combination of intensity-voltage (I(V)) low-energy electron microscopy (LEEM) and multiple scattering calculations for the (00) beam in the very-low-energy range (E≤ 50 eV) we identified three surface components during the initial Ru oxidation: a (1 × 1)-O chemisorption phase, the RuO2(110) oxide phase, and a surface oxide structure characterized by a trilayer O-Ru-O stacking. Here, we use dark-field LEEM imaging and micro-illumination low-energy electron diffraction in the range of 100 to 400 eV to show that this trilayer phase is actually a RuO2(100)-(1 × 1) phase with possibly mixed O and Ru surface terminations. This identification rationalizes the thermodynamic stability of this phase at elevated temperatures and is consistent with the observation of catalytic activity of the phase in CO oxidation.

  9. New polymorphs of Ru IIIP 3O 9: Cyclo-hexaphosphate Ru 2P 6O 18 and metaphosphate Ru(PO 3) 3 with a novel structure

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1995-10-01

    Two new polymorphs of ruthenium phosphate with RuP 3O 9 composition were prepared and their crystal structures were determined by single-crystal X-ray diffraction. They are cyclo-hexaphosphate Ru 2P 6O 18 and metaphosphate Ru(PO 3) 3. Ru 2P 6O 18 crystallizes in the monoclinic space group P2 1/ c with a = 6.292(2) Å, b = 15.276(2) Å, c = 8.365(2) Å, β = 106.54(2)°, V = 770.6(3) Å 3, Z = 2, R = 0.043, RW = 0.035. The structure contains cyclo-hexaphosphate rings stacking obliquely along the [100] direction and is isotypic with B-form cyclo-phosphates. Ru(PO 3) 3 has a novel structure and crystallizes in the triclinic space group P overline1 with a = 6.957(1) Å, b = 10.324(2) Å, c = 5.030(1) Å, α = 92.45(2)°, β = 92.31(2)°, γ = 98.61(1)°, V = 356.5(1) Å 3, Z = 2, R = 0.030, RW = 0.027. It is built up of a network of infinite [PO 3-] ∞ chains and RuO 6 octahedra. The configuration of the metaphosphate chains is different from that in the C-form Ru(PO 3) 3. While the chains in the C-form consisting of PO 3OPO 3 units are condensed in nearly staggered configurations, the units in the new phosphate are eclipsed.

  10. Pneumatic binary encoder replaces multiple solenoid system

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Pneumatic binary encoder replaces solenoid system in the pilot stage of a digital actuator. The encoder operates in flip-flop manner to valve gas at either high or low pressures. By rotating the disk in a pinion-to-encoding gear ratio, six to eight adder circuits may be operated from single encoder.

  11. The composition effect on the thermal and optical properties across CdZnTe crystals

    NASA Astrophysics Data System (ADS)

    Strzałkowski, K.

    2016-11-01

    Cd1-x Zn x Te mixed crystals investigated in this work were grown from the melt using the vertical Bridgman-Stockbarger method in the whole range of composition 0  <  x  <  1 that is from one binary crystal (CdTe) to another (ZnTe). The real composition of grown crystals was measured with the SEM/EDS method along the growth axis. The segregation coefficient of Zn in a CdTe matrix has been evaluated as being close to unity. The energy gap as a function of the composition was determined from transmission spectroscopy. Thanks to that, the bowing parameter of this ternary alloy was found to be 0.458. In this work the systematical study of thermal properties of Cd1-x Zn x Te alloys from one binary crystal (CdTe) to another (ZnTe) grown by the vertical Bridgman technique were undertaken for the first time. The thermal diffusivity and effusivity of the investigated crystals were derived from the experimental data and allowed the thermal conductivity to be calculated. Diagrams of the thermal conductivity versus composition were analyzed applying the model for mixed semiconducting crystals given by Sadao Adachi. Thanks to that, the contribution of the thermal resistivity arising from the lattice disorder to the total resistivity of the crystal has been determined.

  12. High-Performance Ru1 /CeO2 Single-Atom Catalyst for CO Oxidation: A Computational Exploration.

    PubMed

    Li, Fengyu; Li, Lei; Liu, Xinying; Zeng, Xiao Cheng; Chen, Zhongfang

    2016-10-18

    By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO 2 (111), TiO 2 (110) and Al 2 O 3 (001) surfaces. The heterogeneous system Ru 1 /CeO 2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO 2 (110) and Al 2 O 3 (001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru 1 /CeO 2 exhibits good catalytic activity for CO oxidation via the Langmuir-Hinshelwood mechanism, thus is a promising single-atom catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of binary and multiple systems in TGAS using the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Jiménez-Esteban, F.; Solano, E.

    2018-04-01

    Binary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.

  14. Habitability in Binary Systems: The Role of UV Reduction and Magnetic Protection

    NASA Astrophysics Data System (ADS)

    Clark, Joni; Mason, P. A.; Zuluaga, J. I.; Cuartas, P. A.; Bustamonte, S.

    2013-06-01

    The number of planets found in binary systems is growing rapidly and the discovery of many more planets in binary systems appears inevitable. We use the newly refined and more restrictive, single star habitable zone (HZ) models of Kopparapu et al. (2013) and include planetary magnetic protection calculations in order to investigate binary star habitability. Here we present results on circumstellar or S-type planets, which are planets orbiting a single star member of a binary. P-type planets, on the other hand, orbit the center of mass of the binary. Stable planetary orbits exist in HZs for both types of binaries as long as the semi-major axis of the planet is either greater than (P-type) or less than (S-type) a few times the semi-major axis of the binary. We define two types of S-type binaries for this investigation. The SA-type is a circumstellar planet orbiting the binary’s primary star. In this case, the limits of habitability are dominated by the primary being only slightly affected by the presence of the lower mass companion. Thus, the SA-type planets have habitability characteristics, including magnetic protection, similar to single stars of the same type. The SB-type is a circumstellar planet orbiting the secondary star in a wide binary. An SB-type planet needs to orbit slightly outside the secondary’s single star HZ and remain within the primary’s single star HZ at all times. We explore the parameter space for which this is possible. We have found that planets lying in the combined HZ of SB binaries can be magnetically protected against the effects of stellar winds from both primary and secondary stars in a limited number of cases. We conclude that habitable conditions exist for a subset of SA-type, and a smaller subset of SB-type binaries. However, circumbinary planets (P-types) provide the most intriguing possibilities for the existence of complex life due to the effect of synchronization of binaries with periods in the 20-30 day range which allows

  15. Very High Energy Emission from the Binary System Cyg X-3

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Sinitsyna, V. Yu.

    2018-03-01

    Cyg X-3 is actively studied in the entire range of the electromagnetic spectrum from the radio band to ultrahigh energies. Based on the detection of ultrahigh-energy gamma-ray emission, it has been suggested that Cyg X-3 could be one of the most powerful sources of charged cosmic-ray particles in the Galaxy. We present the results of long-term observations of the Cygnus X-3 region at energies 800 GeV-100 TeV by the SHALON mirror Cherenkov telescope. In 1995 the SHALON observations revealed a new Galactic source of very high energy gamma-ray emission coincident in its coordinates with the microquasar Cyg X-3. To reliably identify the detected source with Cyg X-3, an analysis has been performed and an orbital period of 4.8 h has been found, which is a signature of Cyg X-3. A series of flares in Cyg X-3 at energies >800 GeV and their correlation with the activity in the X-ray and radio bands have been observed. The results obtained in a wide energy range for Cyg X-3, including those during the periods of relativistic jet events, are needed to find the connection and to understand the different components of an accreting binary system.

  16. High Fill-out, Extreme Mass Ratio Overcontact Binary Systems. X. The Newly Discovered Binary XY Leonis Minoris

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.

    2011-05-01

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  17. ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    NASA Astrophysics Data System (ADS)

    Flores, M.; Saffe, C.; Buccino, A.; Jaque Arancibia, M.; González, J. F.; Nuñez, N. E.; Jofré, E.

    2018-05-01

    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ˜10 yr, similar to the solar one (˜11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ˜0.220 dex difference between the average log (R^' }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.

  18. Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-12-28

    Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less

  19. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ffuzz: Towards full system high coverage fuzz testing on binary executables

    PubMed Central

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool—Ffuzz—on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently. PMID:29791469

  1. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    PubMed

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  2. Coverage evolution of the unoccupied Density of States in sulfur superstructures on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Pisarra, M.; Bernardo-Gavito, R.; Navarro, J. J.; Black, A.; Díaz, C.; Calleja, F.; Granados, D.; Miranda, R.; Martín, F.; Vázquez de Parga, A. L.

    2018-03-01

    Sulfur adsorbed on Ru(0001) presents a large number of ordered structures. This characteristic makes S/Ru(0001) the ideal system to investigate the effect of different periodicities on the electronic properties of interfaces. We have performed scanning tunneling microscopy/spectroscopy experiments and density functional theory calculations showing that a sulfur adlayer generates interface states inside the Γ directional gap of Ru(0001) and that the position of such states varies monotonically with sulfur coverage. This is the result of the interplay between band folding effects arising from the new periodicity of the system and electron localization on the sulfur monolayer. As a consequence, by varying the amount of sulfur in S/Ru(0001) one can control the electronic properties of these interfacial materials.

  3. Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi

    2007-07-12

    The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less

  4. Visible-Light-Driven Oxidation of Organic Substrates with Dioxygen Mediated by a [Ru(bpy)3 ](2+) /Laccase System.

    PubMed

    Schneider, Ludovic; Mekmouche, Yasmina; Rousselot-Pailley, Pierre; Simaan, A Jalila; Robert, Viviane; Réglier, Marius; Aukauloo, Ally; Tron, Thierry

    2015-09-21

    Oxidation reactions are highly important chemical transformations that still require harsh reaction conditions and stoichiometric amounts of chemical oxidants that are often toxic. To circumvent these issues, olefins oxidation is achieved in mild conditions upon irradiation of an aqueous solution of the complex [Ru(bpy)3 ](2+) and the enzyme laccase. Epoxide formation is coupled to the light-driven reduction of O2 by [Ru(bpy)3 ](2+) /laccase system. The reactivity can be explained by dioxygen acting both as an oxidative agent and as renewable electron acceptor, avoiding the use of a sacrificial electron acceptor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Generalized Roche potential for misaligned binary systems - Properties of the critical lobe

    NASA Technical Reports Server (NTRS)

    Avni, Y.; Schiller, N.

    1982-01-01

    The paper considers the Roche potential for binary systems where the stellar rotation axis is not aligned with the orbital revolution axis. It is shown that, as the degree of misalignment varies, internal Lagrangian points and external Lagrangian points may switch their roles. A systematic method to identify the internal Lagrangian point and to calculate the volume of the critical lobe is developed, and numerical results for a wide range of parameters of binary systems with circular orbits are presented. For binary systems with large enough misalignment, discrete changes occur in the topological structure of the equipotential surfaces as the orbital phase varies. The volume of the critical lobe has minima, as a function of orbital phase, at the two instances when the secondary crosses the equatorial plane of the primary. In semidetached systems, mass transfer may be confined to the vicinity of these two instances.

  6. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  7. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  8. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE PAGES

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; ...

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Au core–Ru shell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity,more » the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  9. On the frequency of close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Jeffries, R. D.

    2005-09-01

    We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a= 4au and 0.6 <=σlog(a/au)<= 1.0, correctly predict the number of observed binaries, yielding a close (a < 2.6au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.

  10. A comparative study using WHO and binary oral epithelial dysplasia grading systems in actinic cheilitis.

    PubMed

    Câmara, P R; Dutra, S N; Takahama Júnior, A; Fontes, Kbfc; Azevedo, R S

    2016-09-01

    To evaluate comparatively the influence of histopathological features on epithelial dysplasia (ED) and the effectiveness in usage of WHO and binary grading systems in actinic cheilitis (AC). Cytological and architectural alterations established by WHO for ED were evaluated in 107 cases of AC. Epithelial dysplasia was graded using WHO and binary systems. The comparisons were performed using kappa, chi-square, and phi coefficient tests (P < 0.05). Most cases were classified as mild ED (44.5%) in the WHO system and as low risk for malignant transformation (64.5%) in the binary system. There was a positive correlation between WHO and binary systems (k = 0.33; P < 0.0002). Loss of basal cell polarity (P < 0.001) was associated with severity of ED grade in the WHO system. Anisonucleosis (P < 0.0001), nuclear pleomorphism (P < 0.0001), anisocytosis (P = 0.03), cell pleomorphism (P = 0.002) increased nuclear/cytoplasm ratio (P < 0.0001), increased nuclear size (P < 0.0001), increased number of mitotic figures (P = 0.0006), and dyskeratosis (P = 0.008) were associated with severity of ED grade in the binary system. It seems that usage of binary ED grading system in AC may be more precise because there is correlation between many of cytological and some of architectural microscopic alterations with increased grade of ED. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Wind accretion and formation of disk structures in symbiotic binary systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  12. Reevaluation of the Åkermanite-Gehlenite Binary System

    NASA Astrophysics Data System (ADS)

    Mendybaev, R. A.; Richter, F. M.; Davis, A. M.

    2006-03-01

    Experiments were conducted to reevaluate 65+ years old data for the Åk-Ge binary system. The liquidus position from our experiments is consistent with the previous results, while the solidus is shifted by up to 20ºC to lower temperatures for gehlenitic compositions.

  13. Mechanistic diversity in the RuBisCO superfamily: RuBisCO from Rhodospirillum rubrum is not promiscuous for reactions catalyzed by RuBisCO-like proteins.

    PubMed

    Warlick, Benjamin P E; Imker, Heidi J; Sriram, Jaya; Tabita, F Robert; Gerlt, John A

    2012-11-27

    d-Ribulose 1,5-bisphosphate carboxylase/oxygenases (RuBisCOs) are promiscuous, catalyzing not only carboxylation and oxygenation of d-ribulose 1,5-bisphosphate but also other promiscuous, presumably nonphysiological, reactions initiated by abstraction of the 3-proton of d-ribulose 1,5-bisphosphate. Also, RuBisCO has homologues that do not catalyze carboxylation; these are designated RuBisCO-like proteins or RLPs. Members of the two families of RLPs catalyze reactions in the recycling of 5'-methylthioadenosine (MTA) generated by polyamine synthesis: (1) the 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) "enolase" reaction in the well-known "methionine salvage" pathway in Bacillus sp. and (2) the 5-methylthio-d-ribulose 1-phosphate (MTRu 1-P) 1,3-isomerase reaction in the recently discovered "MTA-isoprenoid shunt" that generates 1-deoxy-d-xylulose 5-phosphate for nonmevalonate isoprene synthesis in Rhodospirillum rubrum. We first studied the structure and reactivity of DK-MTP 1-P that was reported to decompose rapidly [Ashida, H., Saito, Y., Kojima, C., and Yokota, A. (2008) Biosci., Biotechnol., Biochem. 72, 959-967]. The 2-carbonyl group of DK-MTP 1-P is rapidly hydrated and can undergo enolization both nonenzymatically and enzymatically via the small amount of unhydrated material that is present. We then examined the ability of RuBisCO from R. rubrum to catalyze both of the RLP-catalyzed reactions. Contrary to a previous report [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) Science 302, 286-290], we were unable to confirm that this RuBisCO catalyzes the DK-MTP 1-P "enolase" reaction either in vitro or in vivo. We also determined that this RuBisCO does not catalyze the MTRu 1-P 1,3-isomerase reaction in vitro. Thus, although RuBisCOs can be functionally promiscuous, RuBisCO from R. rubrum is not promiscuous for either of the known RLP-catalyzed reactions.

  14. Magnetic behavior of Fe(Se,Te) systems: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Huang, Zhong-Bing; Tse, John S.; Lin, Hai-Qing

    2011-08-01

    The magnetic behaviors in Fe(Se,Te) systems have been investigated systematically using density functional calculations. At the experimental lattice parameters, the ground state is found to be in the double stripe magnetic phase for FeTe but in the single stripe magnetic phase for FeSe and FeSe0.5Te0.5, and there is no preference in the different easy axes of magnetization. Substitution of Se by Te enlarges the size of the Fermi surface in FeSe0.5Te0.5, resulting in a stronger nesting effect and thus enhancing the superconductivity. It is found that the double stripe order in FeTe1-xSex changes to the single stripe order when x > 0.18. Spiral calculations on FeSe0.5Te0.5 show that the lowest energy is at the commensurate point Q→= (0.5,0.5), accompanied by additional local minima at two incommensurate points near Q→= (0.5,0.5). This observation is consistent with the experimentally observed positions of low energy magnetic excitations. Geometry optimization calculations show that the tetragonal cell relaxes to orthorhombic and monoclinic cells for FeSe and FeTe, respectively, but remains unchanged for FeSe0.5Te0.5.

  15. New isomer and decay half-life of {sup 115}Ru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurpeta, J.; Plochocki, A.; Rissanen, J.

    2010-12-15

    Exotic, neutron-rich nuclei of mass A=115 produced in proton-induced fission of {sup 238}U were extracted using the IGISOL mass separator. The beam of isobars was transferred to the JYFLTRAP Penning trap system for further separation to the isotopic level. Monoisotopic samples of {sup 115}Ru nuclei were used for {gamma}and {beta} coincidence spectroscopy. In {sup 115}Ru we have observed excited levels, including an isomer with a half-life of 76(6) ms and (7/2{sup -}) spin and parity. The first excited 61.7-keV level in {sup 115}Ru with spins and parity (3/2{sup +}) may correspond to an oblate 3/2{sup +}[431] Nilsson orbital. A half-lifemore » of 318(19) ms for the {beta}{sup -} decay of the (1/2{sup +}) ground state in {sup 115}Ru has been firmly established in two independent measurements, a value which is significantly shorter than that previously reported.« less

  16. Ru sub 3 (CO) sub 12 and Mo (CO) sub 6 overlayers adsorbed on Ru(001) and Au/Ru and their interaction with electrons and photons: An infrared reflection--absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1991-05-01

    We studied adsorbed Ru{sub 3}(CO){sub 12} and Mo (CO){sub 6} overlayers on Ru(001) and Au/Ru surfaces by infrared reflection--absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). We characterized the C--O stretching mode of both metal carbonyls (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo (CO){sub 6} at 608 cm{sup {minus}1} with an unusually narrow FWHM of 1 cm{sup {minus}1}. Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. We discuss annealing experiments of Ru{sub 3}(CO){sub 12}/Ru(001), the interaction of Ru{sub 3}(CO){sub 12} overlayers with electronsmore » of up to 100-eV energy, and the interaction of Mo (CO){sub 6} overlayers with 300-nm photons.« less

  17. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios

    NASA Astrophysics Data System (ADS)

    Nair, Hari P.; Liu, Yang; Ruf, Jacob P.; Schreiber, Nathaniel J.; Shang, Shun-Li; Baek, David J.; Goodge, Berit H.; Kourkoutis, Lena F.; Liu, Zi-Kui; Shen, Kyle M.; Schlom, Darrell G.

    2018-04-01

    Epitaxial SrRuO3 and CaRuO3 films were grown under an excess flux of elemental ruthenium in an adsorption-controlled regime by molecular-beam epitaxy (MBE), where the excess volatile RuOx (x = 2 or 3) desorbs from the growth front leaving behind a single-phase film. By growing in this regime, we were able to achieve SrRuO3 and CaRuO3 films with residual resistivity ratios (ρ300 K/ρ4 K) of 76 and 75, respectively. A combined phase stability diagram based on the thermodynamics of MBE (TOMBE) growth, termed a TOMBE diagram, is employed to provide improved guidance for the growth of complex materials by MBE.

  18. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  19. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System.

    PubMed

    Ramírez-Herrera, Doris E; Rodríguez-Velázquez, Eustolia; Alatorre-Meda, Manuel; Paraguay-Delgado, Francisco; Tirado-Guízar, Antonio; Taboada, Pablo; Pina-Luis, Georgina

    2018-04-11

    In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608-750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency ( E ) up to 95%. The distance between the QDs and dye ( r ), the Förster distance ( R ₀), and the binding constant ( K ) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  20. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    PubMed Central

    Ramírez-Herrera, Doris E.; Rodríguez-Velázquez, Eustolia; Alatorre-Meda, Manuel; Paraguay-Delgado, Francisco; Tirado-Guízar, Antonio; Taboada, Pablo; Pina-Luis, Georgina

    2018-01-01

    In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency (E) up to 95%. The distance between the QDs and dye (r), the Förster distance (R0), and the binding constant (K) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications. PMID:29641435

  1. The journey of Typhon-Echidna as a binary system through the planetary region

    NASA Astrophysics Data System (ADS)

    Araujo, R. A. N.; Galiazzo, M. A.; Winter, O. C.; Sfair, R.

    2018-06-01

    Among the current population of the 81 known trans-Neptunian binaries (TNBs), only two are in orbits that cross the orbit of Neptune. These are (42355) Typhon-Echidna and (65489) Ceto-Phorcys. In this work, we focused our analyses on the temporal evolution of the Typhon-Echidna binary system through the outer and inner planetary systems. Using numerical integrations of the N-body gravitational problem, we explored the orbital evolutions of 500 clones of Typhon, recording the close encounters of those clones with planets. We then analysed the effects of those encounters on the binary system. It was found that only {≈ }22 per cent of the encounters with the giant planets were strong enough to disrupt the binary. This binary system has an ≈ 3.6 per cent probability of reaching the terrestrial planetary region over a time-scale of approximately 5.4 Myr. Close encounters of Typhon-Echidna with Earth and Venus were also registered, but the probabilities of such events occurring are low ({≈}0.4 per cent). The orbital evolution of the system in the past was also investigated. It was found that in the last 100 Myr, Typhon might have spent most of its time as a TNB crossing the orbit of Neptune. Therefore, our study of the Typhon-Echidna orbital evolution illustrates the possibility of large cometary bodies (radii of 76 km for Typhon and 42 km for Echidna) coming from a remote region of the outer Solar system and that might enter the terrestrial planetary region preserving its binarity throughout the journey.

  2. The evolution of eccentricity in the eclipsing binary system AS Camelopardalis

    NASA Astrophysics Data System (ADS)

    Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey

    2018-01-01

    In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.

  3. HP-41CX Programs for HgCdTe Detectors and IR Systems.

    DTIC Science & Technology

    1987-10-01

    FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a

  4. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  5. Ru-Catalyzed Estragole Isomerization under Homogeneous and Ionic Liquid Biphasic Conditions

    PubMed Central

    2017-01-01

    The isomerization of estragole to trans-anethole is an important reaction and is industrially performed using an excess of NaOH or KOH in ethanol at high temperatures with very low selectivity. Simple Ru-based transition-metal complexes, under homogeneous, ionic liquid (IL)-supported (biphasic) and “solventless” conditions, can be used for this reaction. The selectivity of this reaction is more sensitive to the solvent/support used than the ligands associated with the metal catalyst. Thus, under the optimized reaction conditions, 100% conversion can be achieved in the estragole isomerization, using as little as 4 × 10–3 mol % (40 ppm) of [RuHCl(CO)(PPh3)3] in toluene, reflecting a total turnover number (TON) of 25 000 and turnover frequencies (TOFs) of up to 500 min–1 at 80 °C. Using a dimeric Ru precursor, [RuCl(μ-Cl)(η3:η3-C10H16)]2, in ethanol associated with P(OEt)3, a TON of 10 000 and a TOF of 125 min–1 are obtained with 100% conversion and 99% selectivity. These two Ru catalytic systems can be transposed to biphasic IL systems by using ionic-tagged P-ligands such as 1-(3-(diphenylphosphanyl)propyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide immobilized in 1-(3-hydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide with up to 99% selectivity and almost complete estragole conversion. However, the reaction is much slower than that performed under solventless or homogeneous conditions. The use of ionic-tagged ligands significantly reduces the Ru leaching to the organic phase, compared to that in reactions performed under homogeneous conditions, where the catalytic system loses catalytic performance after the second recycling. Detailed kinetic investigations of the reaction catalyzed by [RuHCl(CO)(PPh3)3] indicate that a simplified kinetic model (a monomolecular reversible first-order reaction) is adequate for fitting the homogeneous reaction at 80 °C and under biphasic conditions. However, the kinetics of

  6. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  7. Evidence of High-Spin Ru and Universal Magnetic Anisotropy in SrRuO(3) Thin Films

    DTIC Science & Technology

    2012-04-17

    UNIVERSAL . . . PHYSICAL REVIEW B 85, 134429 (2012) (a) (b) FIG. 5. (Color online) (a) Ru M3,2 and (b) O K - edge x-ray absorption ( XA ) and x-ray magnetic...134429-2 EVIDENCE OF HIGH-SPIN Ru AND UNIVERSAL . . . PHYSICAL REVIEW B 85, 134429 (2012) FIG. 1. (Color online) Hysteresis loops taken at 10 K of 60...SQUID magnetometry measurements. a smaller contribution from O2− ions. Typical examples of Ru and O XA spectra can be seen in Fig. 5. As there is no

  8. Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system.

    PubMed

    Zhu, Tianyi; Huang, Wei; Zhang, Lingfan; Gao, Jie; Zhang, Wenqing

    2017-10-01

    In this work, cerium immobilized cross-linked chitosan (CTS-Ce) composite, employed as an efficient adsorbent for Cr(VI) in single system and coexisted with Orange II (OII) in binary system, was prepared by co-precipitation method. The as-obtained adsorbent was characterized by FTIR, SEM, EDS and XPS before and after adsorption. The adsorption behaviors of Cr(VI) in single and binary system were systematically studied. The maximum adsorption capacity of Cr(VI) on CTS-Ce (202.8mg/g) was calculated by Langmuir equation in single metal system, but it decreased to 112.9mg/g with initial concentration of 100mg/L OII in binary system at pH 2 and 293K. The adsorption data for Cr(VI) followed the Langmuir model in single system, while fitted Temkin model well in binary system. In both single and binary system, the kinetics of adsorption exhibited pseudo-second order behavior and adsorption capacity increased with increasing temperature. Moreover, the data of thermodynamic parameters (ΔG°<0, ΔH°>0) indicated that the adsorption was a spontaneous and endothermic process. Besides, |ΔG Cr |>|ΔG Cr-OII | at the same temperature further suggested that Cr(VI) was adsorbed on the CTS-Ce composite faster in binary system than in single system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    NASA Astrophysics Data System (ADS)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  10. Round table on RU486.

    PubMed

    Shallat, L

    1993-01-01

    As a non-invasive means of early abortion, RU-486 has the potential to increase women's reproductive options; at the same time, the "abortion pill" has stimulated debate about the ethics and safety of new medical technologies. When combined with a prostaglandin (PG), the success rate for RU-486 is 96% for pregnancies of up to 9 weeks' gestation. In France, over 120,000 women have used RU-486/PG to terminate pregnancy, and this regimen is now used in about 25% of abortions. Clinical trials of RU-486 are underway in Cuba, China, India, Singapore, and Zambia. The Program for Appropriate Technology has identified four considerations for introducing RU-486 to developing countries: whether abortion or menstrual regulation is legal; whether women find the method acceptable and can comply with the multiple visit treatment regimen; whether the health infrastructure can support safe method use, including prevention of misuse and provision of appropriate medical backup personnel and facilities; and whether the cost of the regimen is affordable to individuals and/or programs --conditions unlikely to be met in most such countries. Ideal would be development of a medical abortifacient that is single dose and the lowest possible dose of each drug, provokes miscarriage within a more predictable time frame with less acute and prolonged bleeding, is safe and effective beyond two months, has minimal side effects, and maximizes short-term safety and minimizes long-term effects. Technological advances are being undermined, however, by political and religious attacks on the method. Even some feminists have expressed concerns about potential long-term effects of RU-486 use.

  11. Binary Model for the Heartbeat Star System KIC 4142768

    NASA Astrophysics Data System (ADS)

    Manuel, Joseph; Hambleton, Kelly

    2018-01-01

    Heartbeat stars are a class of eccentric (e > 0.2) binary systems that undergo strong tidal forces. These tidal forces cause the shape of each star and the temperature across the stellar surfaces to change. This effect also generates variations in the light curve in the form of tidally-induced pulsations, which are theorized to have a significant effect on the circularization of eccentric orbits (Zahn, 1975). Using the binary modeling software PHOEBE (Prša & Zwitter 2005) on the Kepler photometric data and Keck radial velocity data for the eclipsing, heartbeat star KIC 4142768, we have determined the fundamental parameters including masses and radii. The frequency analysis of the residual data has surprisingly revealed approximately 29 pulsations with 8 being Delta Scuti pulsations, 10 being Gamma Doradus pulsations, and 11 being tidally-induced pulsations. After subtracting an initial binary model from the original, detrended photometric data, we analyzed the pulsation frequencies in the residual data. We then were able to disentangle the identified pulsations from the original data in order to conduct subsequent binary modeling. We plan to continue this study by applying asteroseismology to KIC 4142768. Through our continued investigation, we hope to extract information about the star’s internal structure and expect this will yield additional, interesting results.

  12. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  13. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  14. NO-binding in {Ru(NO)₂}⁸-type [Ru(NO)₂(PR₃)₂X]BF₄ compounds.

    PubMed

    Gallien, Anna K E; Schaniel, Dominik; Woike, Theo; Klüfers, Peter

    2014-09-21

    Two different structure types were found for a series of mononuclear dinitrosyl complexes of the general formula [RuL2(NO)2X]BF4 (L = monodentate phosphane, X = Cl, Br, I). The {Ru(NO)2}(8)-type target compounds were prepared by the reduction of the respective {RuNO}(6) precursors and subsequent oxidative addition of (NO)BF4. About one half of the new compounds share their molecular structure with the hitherto only representative of this class of dinitrosyls, Pierpont and Eisenberg's [RuCl(NO)2(PPh3)2]PF6·C6H6 (Inorg. Chem., 1972, 11, 1088-1094). The Cs-symmetric cations exhibit both a linear and a bent Ru-N-O fragment, in line with a formal 6 + 2 split of the {Ru(NO)2}(8) electron sum in the sense of a [Ru(II)(NO(+))((1)NO(-))](2+) bonding. The coordination entity's configuration in this subgroup is described by IUPAC's polyhedral symbol SPY-5. Continuous shape measures (CShM) as defined by Alvarez et al. (Coord. Chem. Rev., 2005, 249, 1693-1708) reveal a uniform deviation from the L-M-L angles expected for SPY-5, in a narrower sense, towards a vacant octahedron (vOC-5). DFT calculations confirmed that Enemark and Feltham's analysis (Coord. Chem. Rev., 1974, 13, 339-406) of the electronic situation of the {Ru(NO)2}(8) group remains adequate. The same holds for the second subclass of new compounds the existence of which had been predicted in the same paper by Enemark and Feltham, namely C(2v)-symmetric, TBPY-5-type cations with two almost equally bonded nitrosyl ligands. In agreement with an 8 + 0 distribution of the relevant electrons, the formal [Ru(0)(NO(+))2](2+) entities are found for L/X couples that donate more electron density on the central metal. Two solid compounds (8a/b, 12a/b) were found in both structures including the special case of the P(i)Pr3/Br couple 12a/b, which led to crystals that contained both structure types in the same solid. Conversely, four compounds showed a single form in the solid but both forms in dichloromethane solution in terms

  15. Raman and electronic transport characterization of few- and single-layer-thick α-RuCl3

    NASA Astrophysics Data System (ADS)

    Zhou, Boyi; Henriksen, Erik

    The layered magnetic semiconductor α-RuCl3, having a honeycomb lattice of spin-1/2 moments, has been identified as a potential candidate material to realize the Kitaev quantum spin liquid. In particular, bulk RuCl3 crystals have been studied and found to be on the cusp of manifesting QSL behavior. As the QSL is primarily a two-dimensional phenomenon, and since the layers of RuCl3 are weakly coupled, we propose to create and study a 2D spin-1/2 honeycomb system by isolating single sheets. Here we report the exfoliation of RuCl3 down to few- and single-layer-thick samples, which we characterize by Raman spectroscopy and atomic force microscopy at room temperature. We will also report our progress on measurements of basic electronic transport properties in the 2D RuCl3 system by controlling the chemical potential via gating in a field-effect configuration.

  16. Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y.

    2017-06-01

    Single crystals of the Sr2RuO4 -Ru eutectic system are known to exhibit enhanced superconductivity at 3 K in addition to the bulk superconductivity of Sr2RuO4 at 1.5 K. The 1.5 K phase is believed to be a spin-triplet, chiral p -wave state with a multicomponent order parameter, giving rise to chiral domain structure. In contrast, the 3 K phase is attributable to enhanced superconductivity of Sr2RuO4 in the strained interface region between Ru inclusion of a few to tens of micrometers in size and the surrounding Sr2RuO4 . We investigate the dynamic behavior of a topological junction, where a superconductor is surrounded by another superconductor. Specifically, we fabricated Nb/Ru/Sr2RuO4 topological superconducting junctions, in which the difference in phase winding between the s -wave superconductivity in Ru microislands induced from Nb and the superconductivity of Sr2RuO4 mainly governs the junction behavior. Comparative results of the asymmetry, hysteresis, and noise in junctions with different sizes, shapes, and configurations of Ru inclusions are explained by the chiral domain-wall motion in these topological junctions. Furthermore, a striking difference between the 1.5 and 3 K phases is clearly revealed: the large noise in the 1.5 K phase sharply disappears in the 3 K phase. These results confirm the multicomponent order-parameter superconductivity of the bulk Sr2RuO4 , consistent with the chiral p -wave state, and the proposed nonchiral single-component superconductivity of the 3 K phase.

  17. Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem

    2016-10-01

    Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.

  18. The formation of planetary systems during the evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.

    1991-08-01

    Modern scenarios of the formation of planetary systems around single stars and products of merging close binaries are described. The frequencies of the realization of different scenarios in the Galaxy are estimated. It is concluded that the modern theory of the early stages of the evolution of single stars and the theory of the evolution of close binaries offer several possible versions for the origin of planetary systems, while the scenario dating back to Kant and Laplace remains the likeliest.

  19. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    PubMed

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  20. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  1. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    PubMed

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  2. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts

    DOE PAGES

    Manbeck, Gerald F.; Fujita, Etsuko; Brewer, Karen J.

    2017-06-01

    Supramolecular mixed metal complexes combining the trimetallic chromophore [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 6+ (Ru 3) with [Rh(bpy)Cl 2] + or [RhCl 2] + catalytic fragments to form [{(bpy) 2Ru(dpp)} 2Ru(dpp)RhCl 2(bpy)](PF 6) 7 (Ru 3Rh) or [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 2RhCl 2(PF 6) 13 (Ru 3RhRu 3) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) catalyze the photochemical reduction of protons to H 2. This first example of a heptametallic Ru,Rh photocatalyst produces over 300 turnovers of H 2 upon photolysis of a solution of acetonitrile, water, triflic acid, and N,N-dimethylaniline as an electron donor. Conversely, the tetrametallic Ru 3Rh produces only 40more » turnovers of H 2 due to differences in the excited state properties and nature of the catalysts upon reduction as ascertained from electrochemical data, transient absorption spectroscopy, and flash-quench experiments. And while the lowest unoccupied molecular orbital of Ru 3Rh is localized on a bridging ligand, it is Rh-centered in Ru 3RhRu 3 facilitating electron collection at Rh in the excited state and reductively quenched state. The Ru → Rh charge separated state of Ru 3RhRu 3 is endergonic with respect to the emissive Ru → dpp 3MLCT excited and cannot be formed by static electron transfer quenching of the 3MLCT state. Instead, a mechanism of subnanosecond charge separation from high lying states is proposed. Multiple reductions of Ru 3 and Ru 3Rh using sodium amalgam were carried out to compare UV–vis absorption spectra of reduced species and to evaluate the stability of highly reduced complexes. Furthermore, the Ru 3 and Ru 3Rh can be reduced by 10 and 13 electrons, respectively, to final states with all bridging ligands doubly reduced and all bpy ligands singly reduced.« less

  3. Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, C.; Deng, L.

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.

  4. Nonergodicity of microfine binary systems

    NASA Astrophysics Data System (ADS)

    Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.

    2016-02-01

    The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.

  5. The critical binary star separation for a planetary system origin of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  6. Binary nanoparticle superlattices of soft-particle systems

    DOE PAGES

    Travesset, Alex

    2015-08-04

    The solid-phase diagram of binary systems consisting of particles of diameter σ A=σ and σ B=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversitymore » observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less

  7. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  8. Effects of countercations on the structures and redox and spectroscopic properties of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    The molecular structures and physicochemical properties of diruthenium complexes with ligand-unsupported Ru-Ru bonds, generally formulated as [A2{Ru2(DTBCat)4}] (DTB = 3,5- or 3,6-di-tert-butyl; Cat(2-) = catecholate), were studied in detail by changing the countercations. First, the binding structures of the cations in a family of [{A(DME)n}2{Ru2(3,5-DTBCat)4}] (n = 2 for A+ = Li+ and Na+ and n = 1 for A+ = K+ and Rb+) were systematically examined to reveal the effects of the cations on the molecular structures and electrochemical properties. Second, the complex (n-Bu4N)2[Ru2(3,6-DTBCat)4] with a cation-free structure was synthesized using tetra-n-butylammonium cations. The complex clearly demonstrates first that the ligand-unsupported Ru-Ru bonds are essentially stabilized by the dianionic nature of the catecholate derivatives without any other bridging or supporting species. In contrast, the redox potentials and absorption spectra of the complexes can sensitively respond to the countercations depending upon the polarity of the solvents.

  9. H.E.S.S. observations of the binary system PSR B1259-63/LS 2883 around the 2010/2011 periastron passage

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häer, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Lan, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-03-01

    Aims: We present very high energy (VHE; E > 100 GeV) data from the γ-ray binary system PSR B1259-63/LS 2883 taken around its periastron passage on 15th of December 2010 with the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov Telescopes. We aim to search for a possible TeV counterpart of the GeV flare detected by the Fermi LAT. In addition, we aim to study the current periastron passage in the context of previous observations taken at similar orbital phases, testing the repetitive behaviour of the source. Methods: Observations at VHEs were conducted with H.E.S.S. from 9th to 16th of January 2011. The total dataset amounts to ~6 h of observing time. The data taken around the 2004 periastron passage were also re-analysed with the current analysis techniques in order to extend the energy spectrum above 3 TeV to fully compare observation results from 2004 and 2011. Results: The source is detected in the 2011 data at a significance level of 11.5σ revealing an averaged integral flux above 1 TeV of (1.01 ± 0.18stat ± 0.20sys) × 10-12 cm-2 s-1. The differential energy spectrum follows a power-law shape with a spectral index Γ = 2.92 ± 0.30stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.95 ± 0.32stat ± 0.39sys) × 10-12 TeV-1 cm-2 s-1. The measured light curve does not show any evidence for variability of the source on the daily scale. The re-analysis of the 2004 data yields results compatible with the published ones. The differential energy spectrum measured up to ~10 TeV is consistent with a power law with a spectral index Γ = 2.81 ± 0.10stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.29 ± 0.08stat ± 0.26sys) × 10-12 TeV-1 cm-2 s-1. Conclusions: The measured integral flux and the spectral shape of the 2011 data are compatible with the results obtained around previous periastron passages. The absence of variability in the H.E.S.S. data indicates that the GeV flare observed by Fermi LAT in the time period covered also by H

  10. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  11. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  12. A Search for Binary Systems among the Nearest L Dwarfs

    NASA Astrophysics Data System (ADS)

    Reid, I. Neill; Lewitus, E.; Allen, P. R.; Cruz, Kelle L.; Burgasser, Adam J.

    2006-08-01

    We have used the Near-Infrared Camera and Multi-Object Spectrometer NIC1 camera on the Hubble Space Telescope to obtain high angular resolution images of 52 ultracool dwarfs in the immediate solar neighborhood. Nine systems are resolved as binary, with component separations from 1.5 to 15 AU. Based on current theoretical models and empirical bolometric corrections, all systems have components with similar luminosities and, consequently, high mass ratios, q>0.8. Limiting analysis to L dwarfs within 20 pc, the observed binary fraction is 12%+7-3. Applying Bayesian analysis to our data set, we derive a mass-ratio distribution that peaks strongly at unity. Modeling the semimajor axis distribution as a logarithmic Gaussian, the best fit is centered at loga0=0.8 AU (~6.3 AU), with a (logarithmic) width of +/-0.3. The current data are consistent with an overall binary frequency of ~24%. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Improved electron density through hetero-junction binary sensitized TiO2/ CdTe / D719 system as photoanode for dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd

    2018-07-01

    The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.

  14. Supernovae in Binary Systems: An Application of Classical Mechanics.

    ERIC Educational Resources Information Center

    Mitalas, R.

    1980-01-01

    Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)

  15. Gravitational radiation from binary systems in alternative metric theories of gravity - Dipole radiation and the binary pulsar

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1977-01-01

    The generation of gravitational radiation in several currently viable metric theories of gravitation (Brans-Dicke, Rosen, Ni, and Lightman-Lee) is analyzed, and it is shown that these theories predict the emission of dipole gravitational radiation from systems containing gravitationally bound objects. In the binary system PSR 1913 + 16, this radiation results in a secular change in the orbital period of the system with a nominal magnitude of 3 parts in 100,000 per year. The size of the effect is proportional to the reduced mass of the system, to the square of the difference in (self-gravitational energy)/(mass) between the two components of the system, and to a parameter, xi, whose value varies from theory to theory. In general relativity xi equals 0, in Rosen's (1973) theory xi equals -20/3, and in Ni's (1973) theory xi equals -400/3. The current upper limit on such a secular period change is one part in 1 million per year. It is shown that further observations of the binary system that tighten this limit and that establish the masses of the components and the identity of the companion may provide a crucial test of otherwise viable alternatives to general relativity.

  16. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    DOE PAGES

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less

  17. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  18. A massive binary black-hole system in OJ 287 and a test of general relativity.

    PubMed

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.

  19. Tuning the Photophysical Properties of Ru(II) Monometallic and Ru(II),Rh(III) Bimetallic Supramolecular Complexes by Selective Ligand Deuteration.

    PubMed

    Wagner, Alec T; Zhou, Rongwei; Quinn, Kevan S; White, Travis A; Wang, Jing; Brewer, Karen J

    2015-07-02

    A series of three new complexes of the design [(TL)2Ru(BL)](2+), two new complexes of the design [(TL)2Ru(BL)Ru(TL)2](4+), and three new complexes of the design [(TL)2Ru(BL)RhCl2(TL)](3+) (TL = bpy or d8-bpy; BL = dpp or d10-dpp; TL = terminal ligand; BL = bridging ligand; bpy = 2,2'-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) were synthesized and the (1)H NMR spectroscopy, electrochemistry, electronic absorbance spectroscopy, and photophysical properties studied. Incorporation of deuterated ligands into the molecular architecture simplifies the (1)H NMR spectra, allowing for complete (1)H assignment of [(d8-bpy)2Ru(dpp)](PF6)2 and partial assignment of [(bpy)2Ru(d10-dpp)](PF6)2. The electrochemistry for the deuterated and nondeuterated species showed nearly identical redox properties. Electronic absorption spectroscopy of the deuterated and nondeuterated complexes are superimposable with the lowest energy transition being Ru(dπ) → BL(π*) charge transfer in nature (BL = dpp or d10-dpp). Ligand deuteration impacts the excited-state properties with an observed increase in the quantum yield of emission (Φ(em)) and excited-state lifetime (τ) of the Ru(dπ) → d10-dpp(π*) triplet metal-to-ligand charge transfer ((3)MLCT) excited state when dpp is deuterated, and a decrease in the rate constant for nonradiative decay (knr). Choice of ligand deuteration between bpy and dpp strongly impacts the observed photophysical properties with BL = d10-dpp complexes showing an enhanced Φ(em) and τ, providing further support that the lowest electronic excited state populated via UV or visible excitation is the photoactive Ru(dπ) → dpp(π*) CT excited state. The Ru(II),Rh(III) complex incorporating the deuterated BL shows increased hydrogen production compared to the variants incorporating the protiated BL, while demonstrating identical dynamic quenching behaviors in the presence of sacrificial electron donor.

  20. Magnetic phase transitions and magnetization reversal in MnRuP

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  1. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  2. Radiation-induced polymerization of glass-forming systems. V. Initial polymerization rate in binary glass-forming systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko

    1973-06-01

    The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less

  3. Nanoscale decomposition of Nb-Ru-O

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  4. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  5. A 3D dynamical model of the colliding winds in binary systems

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  6. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  7. Colliding stellar winds in O-type close binary systems

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1991-01-01

    A study of the stellar wind properties of O-type close binary systems is presented. The main objective of this program was to search for colliding winds in four systems, AO Cas, iota Ori, Plaskett's star, and 29 UW CMa, through an examination of high dispersion UV spectra from IUE and optical spectra of the H alpha and He I lambda 6678 emission lines.

  8. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  9. Activation of H2 over the Ru-Zn Bond in the Transition Metal-Lewis Acid Heterobimetallic Species [Ru(IPr)2(CO)ZnEt](.).

    PubMed

    Riddlestone, Ian M; Rajabi, Nasir A; Lowe, John P; Mahon, Mary F; Macgregor, Stuart A; Whittlesey, Michael K

    2016-09-07

    Reaction of [Ru(IPr)2(CO)H]BAr(F)4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BAr(F)4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η(2)-H2)(H)2ZnEt]BAr(F)4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BAr(F)4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented.

  10. Contact Binaries on Their Way Towards Merging

    NASA Astrophysics Data System (ADS)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  11. The influence of metal-support interactions on the accurate determination of Ru dispersion for Ru/TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komaya, Takashi; Bell, A.T.; Weng-Sieh, Zara

    1994-09-01

    Titania-supported Ru catalysts have been characterized by TEM, {sup 1}H NMR, and H{sub 2} chemisorption to determine the metal particle size, the fraction of the metal surface available for H{sub 2} chemisorption, and the H{sub 2} adsorption capacity of the catalyst, as functions of the reduction temperature. TEM micrographs show that as the reduction temperature rises from 573 to 773K, the average particle size of Ru remains the same but the surface of the particles is covered to an increasing extent by an amorphous layer of titania. Quantitative estimates of the fraction of the Ru particle surface available for H{submore » 2} chemisorption were obtained by {sup 1}H NMR. The NMR spectra also show that a fraction of the adsorbed H{sub 2} spills over onto the support and that as a consequence measurements of total H{sub 2} chemisorption overestimate the number of Ru sites available for H{sub 2} adsorption. The implications of these results for the correct calculation of Ru dispersion and the determination of turnover frequencies for reactions carried out over Ru/TiO{sub 2} are discussed. 16 refs., 5 figs., 1 tab.« less

  12. Measuring the spin of black holes in binary systems using gravitational waves.

    PubMed

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  13. Thermodynamic Re-modeling of the Sb-Te System Using Associate and Ionic Models

    NASA Astrophysics Data System (ADS)

    Guo, Cuiping; Li, Changrong; Du, Zhenmin

    2014-11-01

    The Sb-Te system is re-modeled using the calculation of phase diagram (CALPHAD) technique. The liquid phase is modeled as (Sb, Sb2Te3, Te) using the associate model and as (Sb3+) p (Te2-,Te,Va) q using the ionic model. The solution phases rhom(Sb) and hex(Te) are described as substitutional solutions. Two compounds, delta and gamma, are treated as (Sb)0.4(Sb,Te)0.6 according to their homogeneity ranges, while the compound Sb2Te3 follows a strict stoichiometry. A set of self-consistent thermodynamic parameters is obtained. Using these thermodynamic parameters, the experimental Sb-Te phase diagram, mixing enthalpies of liquid at 911 K and 935 K, activities of Sb and Te in liquid at 911 K and 1023 K, and Gibbs energy of liquid at 911 K, is well reproduced by the calculations. And the calculated enthalpy of formation, enthalpy of fusion, and heat capacity of Sb2Te3 are also in fairly good agreement with all the available experimental data.

  14. Synthesis and characterization of RuS2 nanostructures.

    PubMed

    Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith

    2005-12-08

    Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.

  15. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less

  16. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  17. Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy

    PubMed Central

    Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2015-01-01

    The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752

  18. A possible additional body in eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.

    2016-12-01

    Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.

  19. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    NASA Astrophysics Data System (ADS)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  20. Thermodynamic modeling of the Ge-La binary system

    NASA Astrophysics Data System (ADS)

    Liu, Miao; Li, Chang-rong; Du, Zhen-min; Guo, Cui-ping; Niu, Chun-ju

    2012-08-01

    The Ge-La binary system was critically assessed by means of the calculation of phase diagram (CALPHAD) technique. The associate model was used for the liquid phase containing the constituent species Ge, La, Ge3La5, and Ge1.7La. The terminal solid solution diamond-(Ge) with a small solubility of La was described using the substitutional model, in which the excess Gibbs energy was formulated with the Redlich-Kister equation. The compounds with homogeneity ranges, α(Ge1.7La), β(Ge1.7La), and (GeLa), were modeled using two sublattices as α(Ge,La)1.7La, β(Ge,La)1.7La, and (Ge,La)(Ge,La), respectively. The intermediate phases with no solubility ranges, Ge4La5, Ge3La4, Ge3La5, and GeLa3, were treated as stoichiometric compounds. The three allotropic modifications of La, dhcp-La, fcc-La, and bcc-La, were kept as pure element phases since no solubility of Ge in La was reported. A set of self-consistent thermodynamic parameters of the Ge-La binary system was obtained. The calculation results agree well with the available experimental data from literatures.

  1. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  2. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less

  3. Structural studies of Bi 2 O 3 -Nb 2 O 5 -TeO 2 glasses

    DOE PAGES

    Wilding, Martin C.; Delaizir, Gaelle; Benmore, Chris J.; ...

    2016-07-25

    Bi 2O 3-Nb 2O 5-TeO 2 glasses show unusual annealing behavior with appearance of spherulites within the matrix glass structure for the Bi 0.5Nb 0.5Te 3O 8 composition. The textures resemble those found previously among polyamorphic Al 2O 3-Y 2O 3 glasses containing metastably co-existing high- and low-density phases produced during quenching. However the spherulites produced within the Bi 2O 3-Nb 2O 5-TeO 2 glass are crystalline and can be identified as an “anti-glass” phase related to β-Bi 2Te 4O 11. Here, we used high energy synchrotron X-ray diffraction data to study structures of binary and ternary glasses quenched frommore » liquids within the Bi 2O 3-Nb 2O 5-TeO 2 system. These reveal a glassy network based on interconnected TeO 4 and TeO 3 units that is related to TeO 2 crystalline materials but with larger Te…Te separations due to the presence of TeO 3 groups and non-bridging oxygens linked to modifier (Bi 3 +, Nb 5 +) cations. Analysis of the viscosity-temperature relations indicates that the glass-forming liquids are “fragile” and there is no evidence for a LLPT occurring in the supercooled liquid. The glasses obtained by quenching likely correspond to a high-density amorphous (HDA) state. Subsequent annealing above T g shows mainly evidence for direct crystallization of the “anti-glass” tellurite phase. But, some evidence may exist for simultaneous formation of nanoscale amorphous spherulites that could correspond to the LDA polyamorph. The quenching and annealing behavior of Bi 2O 3-Nb 2O 5-TeO 2 supercooled liquids and glasses is compared with similar materials in the Al 2O 3-Y 2O 3 system.« less

  4. Near-infrared emission bands of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  5. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  6. Half-metallic ferromagnetism in Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2017-05-01

    The bilayered member of the Ruddesden-Popper family of ruthenates, Sr3Ru2O7 , has received increasing attention due to its interesting properties and phases. By using first principle calculations we find that the ground state is characterized by a ferromagnetic (FM) half-metallic state. This state strongly competes with an antiferromagnetic metallic phase, which indicates the possible presence of a particular state characterized by the existence of different magnetic domains. To drive the system towards a phase transition we studied the electronic and magnetic properties as a function of RuO6 octahedra rotations and found that the magnetic phase does not couple with the rotation angle. Our results provide accurate electronic, structure, and magnetic ground-state properties of Sr3Ru2O7 and stimulate the investigation of other types of octahedra rotations and distortions in the search of phase transitions.

  7. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  8. Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data

    NASA Astrophysics Data System (ADS)

    Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.

    2018-02-01

    Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.

  9. Crystal structure of a mononuclear Ru(II) complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy-tpy)](.).

    PubMed

    Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C

    2015-09-01

    We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.

  10. Binary Number System Training for Graduate Foreign Students at New York Institute of Technology.

    ERIC Educational Resources Information Center

    Sudsataya, Nuntawun

    This thesis describes the design, development, implementation, and evaluation of a training module to instruct graduate foreign students to learn the representation of the binary system and the method of decimal-binary conversion. The designer selected programmed instruction as the method of instruction and used the "lean" approach to…

  11. Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.

    2015-03-01

    The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.

  12. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    NASA Astrophysics Data System (ADS)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  13. A State Change In The Missing Link Binary Pulsar System Psr J1023+0038

    DOE PAGES

    Stappers, B. W.; Archibald, A. M.; Hessels, J. W. T.; ...

    2014-07-01

    We present radio, X-ray, and γ-ray observations which reveal that the binary millisecond pulsar / low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditionsmore » to create the γ-ray increase. The system is the first example of a transient, compact, low-mass γ-ray binary and will continue to provide an exceptional test bed for better understanding the formation of millisecond pulsars as well as accretion onto neutron stars in general.« less

  14. Ru nanoframes with an fcc structure and enhanced catalytic properties

    DOE PAGES

    Ye, Haihang; Wang, Qingxiao; Catalano, Massimo; ...

    2016-03-21

    Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd–Ru core–frame octahedra could be easily converted to Ru octahedral nanoframes of ~2 nm inmore » thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. Furthermore, the fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH 4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.« less

  15. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE PAGES

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; ...

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru 1-xIr xSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru 0.8Ir 0.2Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  16. Artificial equilibrium points in binary asteroid systems with continuous low-thrust

    NASA Astrophysics Data System (ADS)

    Bu, Shichao; Li, Shuang; Yang, Hongwei

    2017-08-01

    The positions and dynamical characteristics of artificial equilibrium points (AEPs) in the vicinity of a binary asteroid with continuous low-thrust are studied. The restricted ellipsoid-ellipsoid model of binary system is employed for the binary asteroid system. The positions of AEPs are obtained by this model. It is found that the set of the point L1 or L2 forms a shape of an ellipsoid while the set of the point L3 forms a shape like a "banana". The effect of the continuous low-thrust on the feasible region of motion is analyzed by zero velocity curves. Because of using the low-thrust, the unreachable region can become reachable. The linearized equations of motion are derived for stability's analysis. Based on the characteristic equation of the linearized equations, the stability conditions are derived. The stable regions of AEPs are investigated by a parametric analysis. The effect of the mass ratio and ellipsoid parameters on stable region is also discussed. The results show that the influence of the mass ratio on the stable regions is more significant than the parameters of ellipsoid.

  17. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.

    PubMed

    Liao, Kaiming; Zhang, Tao; Wang, Yongqing; Li, Fujun; Jian, Zelang; Yu, Haijun; Zhou, Haoshen

    2015-04-24

    Porous carbon-free cathodes are critical to achieve a high discharge capacity and efficient cycling for rechargeable Li-O2 battery. Herein, we present a very simple method to directly grow nanoporous Ru (composed of polycrystalline particles of ∼5 nm) on one side of a current collector of Ni foam via a galvanic replacement reaction. The resulting Ru@Ni can be employed as a carbon- and binder-free cathode for Li-O2 batteries and delivers a specific capacity of 3720 mAh gRu (-1) at a current density of 200 mA gRu (-1) . 100 cycles of continuous discharge and charge are obtained at a very narrow terminal voltage window of 2.75∼3.75 V with a limited capacity of 1000 mAh gRu (-1) . The good performance of the nanoporous Ru@Ni cathode can be mainly attributed to the effective suppression of the by-products related to carbon or binder, the good adhesion of the catalyst to the current collector, and the good permeation of O2 and electrolyte into the active sites of the nanoporous Ru with the open pore system. This new type electrode provides a snapshot toward developing high-performance carbon- and binder-free Li-O2 batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  19. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    NASA Technical Reports Server (NTRS)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  20. Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand.

    PubMed

    Kobayashi, Katsuaki; Ohtsu, Hideki; Nozaki, Koichi; Kitagawa, Susumu; Tanaka, Koji

    2016-03-07

    An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.

  1. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations

  2. Structural and functional similarities between a ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Bacillus subtilis and photosynthetic RuBisCO.

    PubMed

    Saito, Yohtaro; Ashida, Hiroki; Sakiyama, Tomoko; de Marsac, Nicole Tandeau; Danchin, Antoine; Sekowska, Agnieszka; Yokota, Akiho

    2009-05-08

    The sequences classified as genes for various ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO)-like proteins (RLPs) are widely distributed among bacteria, archaea, and eukaryota. In the phylogenic tree constructed with these sequences, RuBisCOs and RLPs are grouped into four separate clades, forms I-IV. In RuBisCO enzymes encoded by form I, II, and III sequences, 19 conserved amino acid residues are essential for CO(2) fixation; however, 1-11 of these 19 residues are substituted with other amino acids in form IV RLPs. Among form IV RLPs, the only enzymatic activity detected to date is a 2,3-diketo-5-methylthiopentyl 1-phosphate (DK-MTP-1-P) enolase reaction catalyzed by Bacillus subtilis, Microcystis aeruginosa, and Geobacillus kaustophilus form IV RLPs. RLPs from Rhodospirillum rubrum, Rhodopseudomonas palustris, Chlorobium tepidum, and Bordetella bronchiseptica were inactive in the enolase reaction. DK-MTP-1-P enolase activity of B. subtilis RLP required Mg(2+) for catalysis and, like RuBisCO, was stimulated by CO(2). Four residues that are essential for the enolization reaction of RuBisCO, Lys(175), Lys(201), Asp(203), and Glu(204), were conserved in RLPs and were essential for DK-MTP-1-P enolase catalysis. Lys(123), the residue conserved in DK-MTP-1-P enolases, was also essential for B. subtilis RLP enolase activity. Similarities between the active site structures of RuBisCO and B. subtilis RLP were examined by analyzing the effects of structural analogs of RuBP on DK-MTP-1-P enolase activity. A transition state analog for the RuBP carboxylation of RuBisCO was a competitive inhibitor in the DK-MTP-1-P enolase reaction with a K(i) value of 103 mum. RuBP and d-phosphoglyceric acid, the substrate and product, respectively, of RuBisCO, were weaker competitive inhibitors. These results suggest that the amino acid residues utilized in the B. subtilis RLP enolase reaction are the same as those utilized in the RuBisCO RuBP enolization reaction.

  3. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-07-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.

  4. Evidence that Ribulose 1,5-Bisphosphate (RuBP) Binds to Inactive Sites of RuBP Carboxylase in Vivo and an Estimate of the Rate Constant for Dissociation 1

    PubMed Central

    Cardon, Zoe G.; Mott, Keith A.

    1989-01-01

    The binding of ribulose 1,5-bisphosphate (RuBP) to inactive (noncarbamylated) sites of the enzyme RuBP carboxylase in vivo was investigated in Spinacia oleracea and Helianthus annuus. The concentrations of RuBP and inactive sites were determined in leaf tissue as a function of time after a change to darkness. RuBP concentrations fell rapidly after the change to darkness and were approximately equal to the concentration of inactive sites after 60 s. Variations in the concentration of inactive sites, which were induced by differences in the light intensity before the light-dark transition, correlated with the concentration of RuBP between 60 and 120 s after the change to darkness. These data are discussed as evidence that RuBP binds to inactive sites of RuBP carboxylase in vivo. After the concentration of RuBP fell below that of inactive sites (at times longer than 60 s of darkness), the decline in RuBP was logarithmic with time. This would be expected if the dissociation of RuBP from inactive sites controlled the decline in RuBP concentration. These data were used to estimate the rate constant for dissociation of RuBP from inactive sites in vivo. PMID:16666692

  5. Polar alignment of a protoplanetary disc around an eccentric binary II: Effect of binary and disc parameters

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.

    2018-06-01

    In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.

  6. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  7. High pressure structural stability of the Na-Te system

    NASA Astrophysics Data System (ADS)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2018-03-01

    The ab initio evolutionary algorithm is used to search for all thermodynamically stable Na-Te compounds at extreme pressure. In our calculations, several new structures are discovered at high pressure, namely, Imma Na2Te, Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3. Like the known structures of Na2Te (Fm-3m, Pnma and P63/mmc), the Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3 structures also show semiconductor properties with band-gap decreases when pressure increased. However, we find that the band-gap of Imma Na2Te structure increases with pressure. We presume that the result may be caused by the increasing of splitting between Te p states and Na s, Na p and Te d states. Furthermore, we think that the strong hybridization between Na p state and Te d state result in the band gap increasing with pressure.

  8. Biochemical characterization of predicted Precambrian RuBisCO

    PubMed Central

    Shih, Patrick M.; Occhialini, Alessandro; Cameron, Jeffrey C.; Andralojc, P John; Parry, Martin A. J.; Kerfeld, Cheryl A.

    2016-01-01

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism. PMID:26790750

  9. Biochemical characterization of predicted Precambrian RuBisCO.

    PubMed

    Shih, Patrick M; Occhialini, Alessandro; Cameron, Jeffrey C; Andralojc, P John; Parry, Martin A J; Kerfeld, Cheryl A

    2016-01-21

    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism.

  10. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  11. Intramolecular electron transfer in cyanide bridged adducts comprising Ru(II)/Ru(III) tetracarboxylate and [Mn(I)(CO)(CN)((t)BuNC)(4)] units.

    PubMed

    Imhof, Wolfgang; Sterzik, Anke; Krieck, Sven; Schwierz, Markus; Hoffeld, Thomas; Spielberg, Eike T; Plass, Winfried; Patmore, Nathan

    2010-07-21

    Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.

  12. Planetary Nebulae that Cannot Be Explained by Binary Systems

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2017-03-01

    We examine the images of hundreds of planetary nebulae (PNe) and find that for about one in six PNe the morphology is too “messy” to be accounted for by models of stellar binary interaction. We speculate that interacting triple stellar systems shaped these PNe. In this preliminary study, we qualitatively classify PNe by one of four categories. (1) PNe that show no need for a tertiary star to account for their morphology. (2) PNe whose structure possesses a pronounced departure from axial-symmetry and/or mirror-symmetry. We classify these, according to our speculation, as “having a triple stellar progenitor.” (3) PNe whose morphology possesses departure from axial-symmetry and/or mirror-symmetry, but not as pronounced as in the previous class, and are classified as “likely shaped by triple stellar system.” (4) PNe with minor departure from axial-symmetry and/or mirror-symmetry that could have been also caused by an eccentric binary system or the interstellar medium. These are classified as “maybe shaped by a triple stellar system.” Given a weight η t = 1, η l = 0.67, and η m = 0.33 to classes 2, 3, and 4, respectively, we find that according to our assumption about 13%-21% of PNe have been shaped by triple stellar systems. Although in some evolutionary scenarios not all three stars survive the evolution, we encourage the search for a triple stellar systems at the center of some PNe.

  13. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  14. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  15. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  16. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the

  17. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  18. Quality Assurance and T&E of Inertial Systems for RLV Mission

    NASA Astrophysics Data System (ADS)

    Sathiamurthi, S.; Thakur, Nayana; Hari, K.; Peter, Pilmy; Biju, V. S.; Mani, K. S.

    2017-12-01

    This work describes the quality assurance and Test and Evaluation (T&E) activities carried out for the inertial systems flown successfully in India's first reusable launch vehicle technology demonstrator hypersonic experiment mission. As part of reliability analysis, failure mode effect and criticality analysis and derating analysis were carried out in the initial design phase, findings presented to design review forums and the recommendations were implemented. T&E plan was meticulously worked out and presented to respective forums for review and implementation. Test data analysis, health parameter plotting and test report generation was automated and these automations significantly reduced the time required for these activities and helped to avoid manual errors. Further, T&E cycle is optimized without compromising on quality aspects. These specific measures helped to achieve zero defect delivery of inertial systems for RLV application.

  19. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  20. Electron Capture Supernovae from Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James; Cole Adams, L.; Hills, Spencer T.

    2017-12-01

    We present the first detailed study of the Electron Capture Supernova Channel (ECSN Channel) for a primary star in a close binary star system. Progenitors of ECSN occupy the lower end of the mass spectrum of supernova progenitors and are thought to form the transition between white dwarf progenitors and core-collapse progenitors. The mass range for ECSN from close binary systems is thought to be wider than the range for single stars, because of the effects of mass transfer on the helium core. Using the MESA stellar evolution code, we explored the parameter space of initial primary masses between 8 and 17 {M}⊙ , using a large grid of models. We find that the initial primary mass and the mass transfer evolution are important factors in the final fate of stars in this mass range. Mass transfer due to Roche lobe overflow during and after carbon burning causes the core to cool down so that it avoids neon ignition, even in helium-free cores with masses up to 1.52 {M}⊙ , which in single stars would ignite neon. If the core is able to contract to high enough densities for electron captures to commence, we find that, for the adopted Ledoux convection criterion, the initial mass range for the primary to evolve into an ECSN is between 13.5 and 17.6 {M}⊙ . The mass ratio, initial period, and mass-loss efficiency only marginally affect the predicted ranges.

  1. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  2. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.

    PubMed

    Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando

    2009-02-28

    The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type

  3. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    NASA Astrophysics Data System (ADS)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  4. Localized-itinerant dichotomy and unconventional magnetism in SrRu2O6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Satoshi; Ochi, Masayuki; Arita, Ryotaro

    Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRumore » $$_2$$O$$_6$$ has a relatively high N{\\'e}el temperature but small local moments, which seem to be at odds with the nominal valence of Ru$$^{5+}$$ in the $$t_{2g}^3$$ configuration. Here, we investigate the electronic and magnetic properties of SrRu$$_2$$O$$_6$$ using density functional theory (DFT) combined with dynamical mean field theory (DMFT). We find that the strong hybridization between Ru $d$ and O $p$ states results in a Ru valence that is closer to $+4$, leading to the small ordered moment, consistent with a DFT prediction. While the agreement with DFT might indicate that SrRu$$_2$$O$$_6$$ is in the weak coupling regime, our DMFT studies provide evidence from the mass enhancement and local moment formation that indicate correlation effects play a significant role. The local moment per Ru site is about a factor 2 larger than the ordered moment at low temperatures and remains finite in the whole temperature range investigated. Our theoretical N{\\'e}el temperature $$\\sim 700$$~K is in reasonable agreement with experimental observations. Due to a small lattice distortion, the degenerate $$t_{2g}$$ manifold is split and the quasiparticle weight is renormalized significantly in the $$a_{1g}$$ state, while correlation effects in $$e_g'$$ states are about a factor of 2--3 weaker. SrRu$$_2$$O$$_6$$ is a unique system in which localized and itinerant electrons coexist with the proximity to an orbitally-selective Mott transition within the $$t_{2g}$$ sector.« less

  5. Binary Systems as Test-Beds of Gravity Theories

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.

  6. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. A new open cluster binary system in the Milky Way

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    2011-10-01

    We have obtained CCD UBVI_{KC} photometry for the open clusters (OCs) Hogg 12 and NGC 3590. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to consider them a new open cluster binary system candidate.

  8. Contact binaries in the Trans-neptunian Belt

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Sheppard, Scott S.

    2017-10-01

    A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.

  9. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.

    2017-01-01

    Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.

  10. Into the Modelling of RU Vir

    NASA Astrophysics Data System (ADS)

    Rau, G.; Hron, J.; Paladini, C.; Eriksson, K.; Aringer, B.; Groenewegen, M. A. T.; Mečina, M.

    2015-08-01

    We present an attempt to model the atmosphere of the carbon-rich Mira star RU Vir, using different techniques including spectroscopy, photometry, and interferometry. A radiative transfer code and hydrostatic model atmospheres were used for a preliminary study. To investigate the dynamic processes happening in RU Vir, dynamic model atmospheres were compared to new MIDI/VLTI observations obtained in April 2014, and SiC opacities were added.

  11. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. Future Combat Systems Use of M&S for T&E

    DTIC Science & Technology

    2008-03-13

    providing M &S for both SBA and objective operations. M &S WG Subgroup (EMS) IS&T SSEI / C4ISR / NSI Network Analysis & Modeling SoS Analysis 3CE MSO M &S...IPTs & OTPs Inter-CoP grid M &S Enterprise Management- SSEI / LRR Modeling and Simulation Implementation Strategy Approved for public release...Future Combat Systems Use of M &S for T&E DoD Modeling and Simulation Conference Acquisition and T&E M &S Practitioners Panel Phil Zimmerman, FCS M &S

  13. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  14. Radial mixing and Ru-Mo isotope systematics under different accretion scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.

    2018-01-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  15. Radial Mixing and Ru-Mo Isotope Systematics Under Different Accretion Scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Nimmo, F.; O'Brien, D. P.

    2017-12-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥7-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is 3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  16. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    NASA Astrophysics Data System (ADS)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  17. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  18. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of amore » free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.« less

  19. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar

  1. Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.

    2016-10-01

    Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics.

  2. Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions

    PubMed Central

    Anwar, M. S.; Lee, S. R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S. J.; Shin, Y. J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; Noh, T. W.; Maeno, Y.

    2016-01-01

    Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics. PMID:27782151

  3. Synthesis, crystal structures and luminescence properties of the Eu 3+-doped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13

    NASA Astrophysics Data System (ADS)

    Höss, Patrick; Osvet, Andres; Meister, Frank; Batentschuk, Miroslaw; Winnacker, Albrecht; Schleid, Thomas

    2008-10-01

    Y 2Te 4O 11:Eu 3+ and Y 2Te 5O 13:Eu 3+ single crystals in sub-millimeter scale were synthesized from the binary oxides (Y 2O 3, Eu 2O 3 and TeO 2) using CsCl as fluxing agent. Crystallographic structures of the undoped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13 have been determined and refined from single-crystal X-ray diffraction data. In Y 2Te 4O 11, a layered structure is present where the reticulated sheets consisting of edge-sharing [YO 8] 13- polyhedra are interconnected by the oxotellurate(IV) units, whereas in Y 2Te 5O 13 only double chains of condensed yttrium-oxygen polyhedra with coordination numbers of 7 and 8 are left, now linked in two crystallographic directions by the oxotellurate(IV) entities. The Eu 3+ luminescence spectra and the decay time from different energy levels of the doped compounds were investigated and all detected emission levels were identified. Luminescence properties of the Eu 3+ cations have been interpreted in consideration of the now accessible detailed crystallographic data of the yttrium compounds, providing the possibility to examine the influence of the local symmetry of the oxygen coordination spheres.

  4. Synthesis, structure, and electronic properties of a dimer of Ru(bpy)2 doubly bridged by methoxide and pyrazolate.

    PubMed

    Jude, Hershel; Rein, Francisca N; White, Peter S; Dattelbaum, Dana M; Rocha, Reginaldo C

    2008-09-01

    The heterobridged dinuclear complex cis,cis-[(bpy) 2Ru(mu-OCH 3)(mu-pyz)Ru(bpy) 2] (2+) ( 1; bpy = 2,2'-bipyridine; pyz = pyrazolate) was synthesized and isolated as a hexafluorophosphate salt. Its molecular structure was fully characterized by X-ray crystallography, (1)H NMR spectroscopy, and ESI mass spectrometry. The compound 1.(PF 6) 2 (C 44H 38F 12N 10OP 2Ru 2) crystallizes in the monoclinic space group P2 1/ c with a = 13.3312(4) A, b = 22.5379(6) A, c = 17.2818(4) A, beta = 99.497(2) degrees , V = 5121.3(2) A (3), and Z = 4. The meso diastereoisomeric form was exclusively found in the crystal structure, although the NMR spectra clearly demonstrated the presence of two stereoisomers in solution (rac and meso forms at approximately 1:1 ratio). The electronic properties of the complex in acetonitrile were investigated by cyclic voltammetry and UV-vis and NIR-IR spectroelectrochemistries. The stepwise oxidation of the Ru (II)-Ru (II) complex into the mixed-valent Ru (II)-Ru (III) and fully oxidized Ru (III)-Ru (III) states is fully reversible on the time scale of the in situ (spectro)electrochemical measurements. The mixed-valent species displays strong electronic coupling, as evidenced by the large splitting between the redox potentials for the Ru(III)/Ru(II) couples (Delta E 1/2 = 0.62 V; K c = 3 x 10 (10)) and the appearance of an intervalence transfer (IT) band at 1490 nm that is intense, narrow, and independent of solvent. Whereas this salient band in the NIR region originates primarily from highest-energy of the three IT transitions predicted for Ru(II)-Ru(III) systems, a weaker absorption band corresponding to the lowest-energy IT transition was clearly evidenced in the IR region ( approximately 3200 cm (-1)). The observation of totally coalesced vibrational peaks in the 1400-1650 cm (-1) range for a set of five bpy spectator vibrations in Ru (II)-Ru (III) relative to Ru (II)-Ru (II) and Ru (III)-Ru (III) provided evidence for rapid electron transfer and

  5. A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Correia, S.; Zinnecker, H.; Ratzka, Th.; Sterzik, M. F.

    2006-12-01

    Aims.This paper describes a systematic search for high-order multiplicity among wide visual Pre-Main Sequence (PMS) binaries. Methods: .We conducted an Adaptive Optics survey of a sample of 58 PMS wide binaries from various star-forming regions, which include 52 T Tauri systems with mostly K- and M-type primaries, with the NIR instrument NACO at the VLT. Results: .Of these 52 systems, 7 are found to be triple (2 new) and 7 quadruple (1 new). The new close companions are most likely physically bound based on their probability of chance projection and, for some of them, on their position on a color-color diagram. The corresponding degree of multiplicity among wide binaries (number of triples and quadruples divided by the number of systems) is 26.9 ± 7.2% in the projected separation range ~0.07 arcsec -12'', with the largest contribution from the Taurus-Auriga cloud. We also found that this degree of multiplicity is twice in Taurus compared to Ophiuchus and Chamaeleon for which the same number of sources are present in our sample. Considering a restricted sample composed of systems at distance 140-190 pc, the degree of multiplicity is 26.8 ± 8.1%, in the separation range 10/14 AU-1700/2300 AU (30 binaries, 5 triples, 6 quadruples). The observed frequency agrees with results from previous multiplicity surveys within the uncertainties, although a significant overabundance of quadruple systems compared to triple systems is apparent. Tentatively including the spectroscopic pairs in our restricted sample and comparing the multiplicity fractions to those measured for solar-type main-sequence stars in the solar neighborhood leads to the conclusion that both the ratio of triples to binaries and the ratio of quadruples to triples seems to be in excess among young stars. Most of the current numerical simulations of multiple star formation, and especially smoothed particles hydrodynamics simulations, over-predict the fraction of high-order multiplicity when compared to our

  6. Geometric relationships for homogenization in single-phase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1978-01-01

    A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.

  7. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  8. Period Variations of the Eclipsing Binary Systems T LMi and VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; İzci, D. D.; Gümüş, D.; Özavci, İ.; Selam, S. O.

    2015-07-01

    We present a period analysis of the two Algol-type eclipsing binary systems T LMi and VX Lac using all available times of minimum in the literature, as well as new minima obtained at the Ankara University Kreiken Observatory. The period analysis of T LMi suggests mass transfer between the components and also a third body that is dynamically bound to the binary system. The analysis of VX Lac also suggests mass transfer between the components, and the presence of a third and a fourth body under the assumption of a Light-Time Effect. In addition, the periodic variation of VX Lac was examined under the hypothesis of magnetic activity, and the corresponding parameters were derived. We report here the orbital parameters for both systems, along with the ones related to mass transfer, and those for the third and fourth bodies.

  9. Detection of variable VHE γ-ray emission from the extra-galactic γ-ray binary LMC P3

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-03-01

    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods: LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results: VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 ± 0.2) × 1035 erg s-1. A luminosity of (5 ± 1) × 1035 erg s-1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. LMC P3 is the most luminous γ-ray binary known so far.

  10. Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-02-01

    Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less

  11. Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less

  12. ASTROPHYSICAL PARAMETERS OF LS 2883 AND IMPLICATIONS FOR THE PSR B1259-63 GAMMA-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negueruela, Ignacio; Lorenzo, Javier; Ribo, Marc

    2011-05-01

    Only a few binary systems with compact objects display TeV emission. The physical properties of the companion stars represent basic input for understanding the physical mechanisms behind the particle acceleration, emission, and absorption processes in these so-called gamma-ray binaries. Here we present high-resolution and high signal-to-noise optical spectra of LS 2883, the Be star forming a gamma-ray binary with the young non-accreting pulsar PSR B1259-63, showing it to rotate faster and be significantly earlier and more luminous than previously thought. Analysis of the interstellar lines suggests that the system is located at the same distance as (and thus is likelymore » a member of) Cen OB1. Taking the distance to the association, d = 2.3 kpc, and a color excess of E(B - V) = 0.85 for LS 2883 results in M{sub V} {approx} -4.4. Because of fast rotation, LS 2883 is oblate (R{sub eq} {approx_equal} 9.7 R{sub sun} and R{sub pole} {approx_equal} 8.1 R{sub sun}) and presents a temperature gradient (T{sub eq}{approx} 27,500 K, log g{sub eq} = 3.7; T{sub pole}{approx} 34,000 K, log g{sub pole} = 4.1). If the star did not rotate, it would have parameters corresponding to a late O-type star. We estimate its luminosity at log(L{sub *}/L{sub sun}) {approx_equal} 4.79 and its mass at M{sub *} {approx} 30 M{sub sun}. The mass function then implies an inclination of the binary system i{sub orb} {approx} 23{sup 0}, slightly smaller than previous estimates. We discuss the implications of these new astrophysical parameters of LS 2883 for the production of high-energy and very high-energy gamma rays in the PSR B1259-63/LS 2883 gamma-ray binary system. In particular, the stellar properties are very important for prediction of the line-like bulk Comptonization component from the unshocked ultrarelativistic pulsar wind.« less

  13. Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D. E.; Ivarsen, K.; Haislip, J.; LaCluyze, A.; Krugly, Yu. N.; Gaftonyuk, N.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Chiorny, V.; Vaduvescu, O.; Longa-Peña, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Shevchenko, V.; Molotov, I.; Marchis, F.

    2012-03-01

    Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8 km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary’s irregular shape dominate the solar-tide effect.

  14. Numerical Modeling of HgCdTe Solidification: Effects of Phase Diagram, Double-Diffusion Convection and Microgravity Level

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1997-01-01

    Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.

  15. On-line measurements of RuO{sub 4} during a PWR severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reymond-Laruinaz, S.; Doizi, D.; Manceron, L.

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is notmore » trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)« less

  16. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  17. Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes

    DOE PAGES

    Rudd, Jennifer A.; Brennaman, M. Kyle; Michaux, Katherine E.; ...

    2016-03-09

    The complexes [Ru(qpy)LL']2+ (qpy = 2,2':6',2'':6'',2''-quaterpyridine), with 1: L = acetonitrile, L'= chloride; 2: L = L'= acetonitrile; and 3: L = L'= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping 1A1 → 1MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected RuIII/II redox couples. In 0.1 M trifluoroacetic acid (TFA), 1more » and 2 undergo aquation to give [RuII(qpy)(OH2)2]2+, as evidenced by the appearance of waves for the couples [RuIII(qpy)(OH2)2]3+/[RuII(qpy)(OH2)2]2+, [RuIV(qpy)(O)(OH2)]2+/[RuIII(qpy)(OH2)2]3+, and [RuVI(qpy)(O)2]2+/[RuIV(qpy)(O)(OH2)]2+ in cyclic voltammograms.« less

  18. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  19. Antiferromagnetic instability in Sr3Ru2O7: stabilized and revealed by dilute Mn impurities

    NASA Astrophysics Data System (ADS)

    Hossain, Muhammed; Bohnenbuck, B.; Chuang, Y.-D.; Cruz, E.; Wu, H.-H.; Tjeng, L. H.; Elfimov, I. S.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2009-03-01

    X-ray Absorption Spectroscopy (XAS) and Resonant Elastic Soft X-ray Scattering (RESXS) studies have been performed on Mn-doped Sr3Ru2O7, both on the Ru and Mn L-edges, to investigate the origin of the metal insulator transition. Extensive simulations based on our experimental findings point toward an intrinsic antiferromagnetic instability in the parent Sr3Ru2O7 compound that is stabilized by the dilute Mn impurities. We show that the metal-insulator transition is a direct consequence of the antiferromagnetic order and we propose a phenomenological model that may be applicable also to metal-insulator transitions seen in other oxides. Moreover, a comparison of Ru and Mn L-edge data on 5% Mn doped system reveals that dilute Mn impurities are generating much more intense signal than Ru which is occupying 95% of the lattice sites. This suggests the embedding of dilute impurities as a powerful mean to probe weak and, possibly, spatially inhomogeneous order in solid-state systems. In collaboration with: Y. Yoshida (AIST), J. Geck, D.G. Hawthorn (UBC), M.W. Haverkort, Z. Hu, C. Sch"ußler-Langeheine (Cologne), R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo), J.D. Denlinger (ALS).

  20. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  1. Formation of wide binaries by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.

    2017-08-01

    Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.

  2. Heterojunctions of model CdTe/CdSe mixtures

    DOE PAGES

    van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; ...

    2015-03-18

    We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II-VI compounds such as CdTe and CdSe. We also employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To further analyze bilayer bending, we introduce a simple one-dimensional model and use energy minimization tomore » find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. We thus learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.« less

  3. Simulation of thermally induced processes of diffusion and phase formation in layered binary metallic systems

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.

    2010-05-01

    Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.

  4. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    DOE PAGES

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; ...

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg –1), and, like methanol, can be synthesized frommore » recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt 55Ru 35Pd 10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.« less

  5. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  6. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less

  7. Itinerant Antiferromagnetism in RuO 2

    DOE PAGES

    Berlijn, Tom; Snijders, Paul C.; Delaire, Oliver A.; ...

    2017-02-15

    Bulk rutile RuO 2 has long been considered a Pauli paramagnet. Here, in this article, we report that RuO 2 exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05μ B as evidenced by polarized neutron diffraction. Density functional theory plus U(DFT+U) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard U of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposedmore » by the rutile crystal field. The combination of high Néel temperature and small itinerant moments make RuO 2 unique among ruthenate compounds and among oxide materials in general.« less

  8. FERMI STUDY OF 5–300 GeV EMISSION FROM THE HIGH-MASS PULSAR BINARY PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yi; Wang, Zhongxiang; Takata, Jumpei

    2016-09-01

    We report the results from our detailed analysis of the Fermi Large Area Telescope data for the pulsar binary PSR B1259−63/LS 2883. During the GeV flares that occurred when the pulsar was in the periastron passages, we have detected a 5–300 GeV component at ≃5 σ in emission from the binary. The detection verifies the presence of the component that has been marginally found in previous studies of the binary. Furthermore, we have discovered that this component was marginally present even in the quiescent state of the binary, specifically the mean anomaly phase 0.7–0.9. The component can be described bymore » a power law with a photon index Γ ∼ 1.4, and the flux in the flares is approximately one order of magnitude higher than that in quiescence. We discuss the origin of this component. It likely arises from the inverse-Compton process: due to the interaction between the winds from the pulsar and its massive companion, high-energy particles from the shock scatter the seed photons from the companion to GeV/TeV energies. Based on this scenario, model fits to the broad-band X-ray to TeV spectra of the binary in the flaring and quiescent states are provided.« less

  9. REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    1996-08-01

    Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.

  10. The O-type eclipsing contact binary LY Aurigae - member of a quadruple system

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav

    2013-11-01

    The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.

  11. Binary statistics among population II stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Köhler, R.; Jahreiß, H.

    2004-08-01

    Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.

  12. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  13. Tidal resonances in binary star systems. II - Slowly rotating stars

    NASA Astrophysics Data System (ADS)

    Alexander, M. E.

    1988-12-01

    The potential energy of tidal interactions in a binary system with rotating components is formulated as a perturbation Hamiltonian which self-consistently couples the dynamics of the rotating stars' oscillations and orbital motion. The action-angle formalism used to discuss tidal resonances in the nonrotating case (Alexander, 1987) is extended to rotating stars. The behavior of a two-mode system and the procedure for treating an arbitrary number of modes are discussed.

  14. A FUSE Survey of Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, C.

    We propose a survey of Algol-type interacting binaries with FUSE. The observing list contains 15 systems with deltage40o for which systemic parameters are known. The program stars span the range from early-type contact systems that will eventually become conventional Algols to wide binaries in an advanced evolutionary state with prominent accretion disks. Some physical parameters that can be obtained include the ionization temperature and density in the accretion disk, domain of infall (gas stream), high temperature plasma on the trailing side of the system, and in certain systems the splash zone. We will look for the presence of ionO6 absorption and assess the phase interval over which it is observed. Emission from this ion has already been found in FUSE observations of three Algols (V356Sgr, TTHya, and RYPer) during total eclipse and confirms the presence of a sim300,000K plasma abovebelow the orbital plane. In accordance with the policy on the FUSE Survey and Supplementary Program, the observations will be obtained at random phases, but we request 5 visits of each target in order to secure good phase coverage and maximize the probability of obtaining data at interesting phases, such as the interval containing the mass outflow in the splash region where a tangentially-impacting gas stream is deflected off of the mass gainers photosphere. The physical parameters that are obtained in this project will constrain future 3-D hydrodynamical simulations of mass flow in Algols. This project will build upon the successful one (Z902) carried through in FUSE Cycle3.

  15. Preparation and characterization of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) by partial melting

    NASA Astrophysics Data System (ADS)

    Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.

    2018-07-01

    In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.

  16. Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).

  17. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.

    PubMed

    Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong

    2014-07-01

    Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.

  18. Binary catalogue of exoplanets

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  19. Ceria nanoclusters on graphene/Ru(0001): A new model catalyst system

    DOE PAGES

    Novotny, Z.; Netzer, F. P.; Dohnalek, Z.

    2016-03-22

    In this study, the growth of ceria nanoclusters on single-layer graphene on Ru(0001) has been examined, with a view towards fabricating a stable system for model catalysis studies. The surface morphology and cluster distribution as a function of oxide coverage and substrate temperature has been monitored by scanning tunneling microscopy (STM), whereas the chemical composition of the cluster deposits has been determined by Auger electron spectroscopy (AES). The ceria nanoparticles are of the CeO 2(111)-type and are anchored at the intrinsic defects of the graphene surface, resulting in a variation of the cluster densities across the macroscopic sample surface. Themore » ceria clusters on graphene display a remarkable stability against reduction in ultrahigh vacuum up to 900 K, but some sintering of clusters is observed for temperatures > 450 K. The evolution of the cluster size distribution suggests that the sintering proceeds via a Smoluchowski ripening mechanism, i.e. diffusion and aggregation of entire clusters.« less

  20. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhong; Zhang, Yu; Liu, Shizhong

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  1. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE PAGES

    Ma, Zhong; Zhang, Yu; Liu, Shizhong; ...

    2017-10-28

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  2. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  3. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  4. Subcritical and supercritical fuel injection and mixing in single and binary species systems

    NASA Astrophysics Data System (ADS)

    Roy, Arnab

    Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and

  5. An Astrometric Observation of Binary Star System WDS 15559-0210 at the Great Basin Observatory

    NASA Astrophysics Data System (ADS)

    Musegades, Lila; Niebuhr, Cole; Graham, Mackenzie; Poore, Andrew; Freed, Rachel; Kenney, John; Genet, Russell

    2018-04-01

    Researchers at Concordia University Irvine measured the position angle and separation of the double star system WDS 15559-0210 using a SBIG STX-16803 CCD camera on the PlaneWave 0.7-m CDK 700 telescope at the Great Basin Observatory. Images of the binary star system were measured using AstroImageJ software. Twenty observations of WDS 15559-0210 were measured and analyzed. The calculated mean resulted in a position angle of 345.95° and a separation of 5.94". These measurements were consistent with the previous values for this binary system listed in the Washington Double Star Catalog.

  6. A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Simon, T.; Linsky, J. L.

    1985-01-01

    Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.

  7. Real-time observation of coadsorption layers on Ru(001) using a temperature-programmed ESDIAD/TOF system

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Itai, Y.; Iwasawa, Y.

    1997-11-01

    For the purpose of utilizing ESDIAD as a real-time probe for surface processes, we have developed an instrument which can measure ESDIAD images and time of flight (TOF) spectra of desorbing ions in temperature-programmed surface processes. TOF measurements are carried out to identify the mass and to determine the kinetic energy distribution of the desorbed ions. This temperature-programmed (TP-) ESDIAD/TOF system was used to observe coadsorption layers of methylamine and CO on Ru(001) which have been previously studied by our group using LEED, TPD and HREELS, also drawing upon a comparison of findings with the coadsorption system of CO and ammonia. ESDIAD images acquired for temperature-programmed surface processes in real time were found to provide new insight into the dynamic behaviour of the coadsorption layers. As to the pure adsorption of ammonia and methylamine, the second and the first (chemisorbed) layers can be easily discriminated in their different ESD detection efficiency due to the difference in neutralization rate. The intensity change of H + ions with temperature shows the process of the decomposition of methylamine to be dependent on CO coverage. The intensity of O + originating from CO changes due to the change of CO adsorption site in the reaction process. The angular distribution of H + ions which correspond to CH2NH…Ru species appears at 250-300 K in the presence of high CO pre-coverage.

  8. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    NASA Astrophysics Data System (ADS)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  9. Creation of an anti-imaging system using binary optics.

    PubMed

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin

    2016-09-13

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element.

  10. Large enhancement of oscillating chemiluminescence with [Ru(bpy)3 ](2+) -catalyzed Belousov-Zhabotinsky reaction in the presence of tri-n-propylamine.

    PubMed

    Lan, Xiaolan; Zheng, Baozhan; Zhao, Yan; Yuan, Hongyan; Du, Juan; Xiao, Dan

    2013-01-01

    Oscillating chemiluminescence enhanced by the addition of tri-n-propylamine (TPrA) to the typical Belousov-Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'-bipyridine)(Ru(bpy)3 (2+) ) was investigated using a luminometry method. The [Ru(bpy)3 ](2+) /TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3 ](2+) /TPrA-BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3 ](2+) /TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.

  11. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    PubMed

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent progress in the structure control of Pd–Ru bimetallic nanomaterials

    PubMed Central

    Wu, Dongshuang; Kusada, Kohei; Kitagawa, Hiroshi

    2016-01-01

    Abstract Pd and Ru are two key elements of the platinum-group metals that are invaluable to areas such as catalysis and energy storage/transfer. To maximize the potential of the Pd and Ru elements, significant effort has been devoted to synthesizing Pd–Ru bimetallic materials. However, most of the reports dealing with this subject describe phase-separated structures such as near-surface alloys and physical mixtures of monometallic nanoparticles (NPs). Pd–Ru alloys with homogenous structure and arbitrary metallic ratio are highly desired for basic scientific research and commercial material design. In the past several years, with the development of nanoscience, Pd–Ru bimetallic alloys with different architectures including heterostructure, core-shell structure and solid-solution alloy were successfully synthesized. In particular, we have now reached the stage of being able to obtain Pd–Ru solid-solution alloy NPs over the whole composition range. These Pd–Ru bimetallic alloys are better catalysts than their parent metal NPs in many catalytic reactions, because the electronic structures of Pd and Ru are modified by alloying. In this review, we describe the recent development in the structure control of Pd–Ru bimetallic nanomaterials. Aiming for a better understanding of the synthesis strategies, some fundamental details including fabrication methods and formation mechanisms are discussed. We stress that the modification of electronic structure, originating from different nanoscale geometry and chemical composition, profoundly affects material properties. Finally, we discuss open issues in this field. PMID:27877905

  13. Isonitrile-functionalized ruthenium nanoparticles: intraparticle charge delocalization through Ru=C=N interfacial bonds

    NASA Astrophysics Data System (ADS)

    Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei

    2017-09-01

    Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.

  14. The Großschwabhausen binary survey

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Buder, S.; Reum, F.; Birth, A.

    2017-01-01

    Background: Since 2009, the Großschwabhausen binary survey is being carried out at the University Observatory Jena. This new imaging survey uses available time slots during photometric monitoring campaigns, caused by nonphotometric weather conditions, which often exhibit good atmospheric seeing. The goal of the project is to obtain current relative astrometric measurements of the binary systems that are listed in the Washington Visual Double Star Catalog. Materials and Methods: For the survey we use the Refraktor-Teleskop-Kamera at the University Observatory Jena to take imaging data of selected visual binary systems. Results: In this paper, we characterize the target sample of the survey, describe the imaging observations and the astrometric measurements including the astrometric calibration, and present the relative astrometric measures of 352 binaries that could be obtained during the course of the Großschwabhausen binary survey, so far.

  15. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electricallymore » active defects and is essential to achieve a low leakage current in the MIM capacitor.« less

  16. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru(V) (O)(Py2 (Me) tacn)] Intermediate.

    PubMed

    Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio

    2016-07-11

    A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less

  18. Astrometric observations of visual binaries using 26-inch refractor during 2007-2014 at Pulkovo

    NASA Astrophysics Data System (ADS)

    Izmailov, I. S.; Roshchina, E. A.

    2016-04-01

    We present the results of 15184 astrometric observations of 322 visual binaries carried out in 2007-2014 at Pulkovo observatory. In 2007, the 26-inch refractor ( F = 10413 mm, D = 65 cm) was equipped with the CCD camera FLI ProLine 09000 (FOV 12' × 12', 3056 × 3056 pixels, 0.238 arcsec pixel-1). Telescope automation and weather monitoring system installation allowed us to increase the number of observations significantly. Visual binary and multiple systems with an angular distance in the interval 1."1-78."6 with 7."3 on average were included in the observing program. The results were studied in detail for systematic errors using calibration star pairs. There was no detected dependence of errors on temperature, pressure, and hour angle. The dependence of the 26-inch refractor's scale on temperature was taken into account in calculations. The accuracy of measurement of a single CCD image is in the range of 0."0005 to 0."289, 0."021 on average along both coordinates. Mean errors in annual average values of angular distance and position angle are equal to 0."005 and 0.°04 respectively. The results are available here http://izmccd.puldb.ru/vds.htmand in the Strasbourg Astronomical Data Center (CDS). In the catalog, the separations and position angles per night of observation and annual average as well as errors for all the values and standard deviations of a single observation are presented. We present the results of comparison of 50 pairs of stars with known orbital solutions with ephemerides.

  19. Creation of an anti-imaging system using binary optics

    PubMed Central

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  20. Preparation and structure of BiCrTeO{sub 6}: A new compound in Bi–Cr–Te–O system. Thermal expansion studies of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Bal Govind; Phatak, Rohan; Krishnan, K.

    Graphical abstract: A new compound BiCrTeO{sub 6} in the Bi–Cr–Te–O system was prepared by solid state route and characterized by X-ray diffraction method. The crystal structure of BiCrTeO{sub 6} shows that there is one distinct site for bismuth (Bi) atom (pink color), one chromium rich (Cr/Te = 68/32) (blue/green color), one tellurium rich (Te/Cr = 68/32) sites (green/blue color), and one distinct site for oxygen (O) atom (red color) in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogram (TG) of the compound in air shows that it ismore » stable up to 1103 K and decomposes thereafter. The thermal expansion behaviour of BiCrTeO{sub 6} was studied using high temperature X-ray diffraction method from room temperature to 923 K under vacuum of 10{sup −8} atmosphere and showed positive thermal expansion with the average volume thermal expansion coefficients of 16.0 × 10{sup −6}/K. - Highlights: • A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared and characterized. • The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method. • The structure of BiCrTeO{sub 6} shows an octahedral coordination for all the metal ions. • The thermal expansion behavior of BiCrTeO{sub 6} from room temperature to 923 K showed a positive thermal expansion. • The average volume thermal expansion coefficient for BiCrTeO{sub 6} is 16.0 × 10{sup −6}/K. - Abstract: A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared by solid state reaction of Bi{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and H{sub 6}TeO{sub 6} in oxygen and characterized by X-ray diffraction (XRD) method. It could be indexed on a trigonal lattice, with the space group P-31c, unit cell parameters a = 5.16268(7) Å and c = 9.91861(17) Å. The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method using the powder XRD data. Structure shows that there is one

  1. New Results on Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.

    2014-08-01

    Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.

  2. Search for companions in visual binary systems using precise radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Katoh, Noriyuki; Itoh, Yoichi; Sato, Bun'ei

    2018-05-01

    The frequency of triple and quadruple systems is considered to be high in the early phase of star formation. Some multiple systems decay in the pre-main-sequence phase. The multiplicity of main-sequence stars provides clues about the evolution of binary systems. This work searched for companions of five components of visual binary systems using precise radial-velocity measurements. Their radial velocities were monitored from 2007 to 2012 using the HIgh Dispersion Echelle Spectrograph (HIDES) installed on the Okayama Astrophysical Observatory (OAO) 1.88 m reflector. In combination with previous work, this work searched for companions with an orbital period of less than 9 yr for the five bodies. We found periodic variations in the radial velocities for ADS 6190 A and BDS 10966A. The radial velocities of ADS 7311 A, 31 Dra A, and 31 Dra B show significant trends. ADS 6190 A is an SB1 binary with an orbital period of 366.2 d. The minimum mass of the secondary star is 0.5^{+0.7}_{-0.2} M_{⊙}. The radial velocity of ADS 7311 A was monitored for an observational span of 3200 d. We rejected a planetary-mass companion as the cause of a decreasing trend in the radial velocity of ADS 7311 A. This work confirmed that the periodic variation in the radial velocity of BDS 10966 A is 771.1 d. Bisector analysis did not reveal a correlation between the asymmetry of a spectral line and the radial velocity of BDS 10966 A. We rejected nonradial oscillation of the photosphere as the source of the radial velocity variation. The variation may be caused by the rotational modulation owing to surface inhomogeneity. The orbital elements of 31 Dra A derived in this paper are consistent with those in a previous paper. 31 Dra A system is an SB1 binary with a minimum mass ratio of 0.30 ± 0.08. 31 Dra B exhibits a periodic variation in radial velocity. The orbital elements derived in this work are consistent with those reported previously by others. The variation is caused by a circumstellar

  3. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    DOE PAGES

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; ...

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here wemore » carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.« less

  4. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  5. Relaxation of Vibrationally Excited States in Solid Binary Carbonate-Sulfate Systems

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-02-01

    The processes of molecular relaxation in solid binary carbonate-sulfate systems, such as Li2CO3-Li2SO4, Na2CO3-Na2SO4, K2CO3-K2SO4, have been studied by Raman spectroscopy. It has been revealed that the relaxation time of CO 3 2- anion vibration ν1(A) in a binary system is higher than in an individual carbonate. It is shown that an increase in the relaxation rate may be explained by the existence of an additional mechanism of the relaxation of vibrationally excited states of a carbonate anion. This mechanism is associated with the excitation of the vibration of another anion (SO 4 2- ) and the "birth" of a lattice phonon. It has been established that the condition for the implementation of such a relaxation mechanism is that the difference between the frequencies of these vibrations must correspond to the region of a rather high density of phonon spectrum states.

  6. Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung

    2018-01-01

    The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.

  7. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    NASA Astrophysics Data System (ADS)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  8. Elaboration of a Highly Porous RuII,II Analogue of HKUST-1.

    PubMed

    Zhang, Wenhua; Freitag, Kerstin; Wannapaiboon, Suttipong; Schneider, Christian; Epp, Konstantin; Kieslich, Gregor; Fischer, Roland A

    2016-12-19

    When the dinuclear Ru II,II precursor [Ru 2 (OOCCH 3 ) 4 ] is employed under redox-inert conditions, a Ru II,II analogue of HKUST-1 was successfully prepared and characterized as a phase-pure microcrystalline powder. X-ray absorption near-edge spectroscopy confirms the oxidation state of the Ru centers of the paddle-wheel nodes in the framework. The porosity of 1371 m 2 /mmol of Ru II,II -HKUST-1 exceeds that of the parent compound HKUST1 (1049 m 2 / mmol).

  9. Magnetic Excitations in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Nagler, Stephen; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Knolle, Johannes; Moessner, Roderich; Tennant, Alan

    2015-03-01

    The layered material α-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3+ ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. Here we discuss new time-of-flight inelastic neutron scattering data on α-RuCl3. A high energy excitation near 200 meV is identified as a transition from the single ion J=1/2 ground state to the J=3/2 excited state, yielding a direct measurement of the spin orbit coupling energy. Higher resolution measurements reveal two collective modes at much lower energy scales. The results are compared with the theoretical expectations for excitations in the Heisenberg - Kitaev model on a honeycomb lattice, and show that Kitaev interactions are important. Research at SNS supported by the DOE BES Scientific User Facilities Division.

  10. Photometric constraints on binary asteroid dynamics

    NASA Astrophysics Data System (ADS)

    Scheirich, Peter

    2015-08-01

    To date, about 50 binary NEAs, 20 Mars-crossing and 80 small MB asteroids are known. We observe also a population of about 200 unbound asteroid systems (asteroid pairs). I will review the photometric observational data we have for the best observed cases and compare them with theories of binary and paired asteroids evolution.The observed characteristics of asteroid systems suggest their formation by rotational fission of parent rubble-pile asteroids after being spun up by the YORP effect. The angular momentum content of binary asteroids is close to critical. The orientations of satellite orbits of observed binary systems are non-random; the orbital poles concentrate near the obliquities of 0 and 180 degrees, i.e., near the YORP asymptotic states.Recently, a significant excess of retrograde satellite orbits was detected, which is not yet explained characteristic.An evolution of binary system depend heavily on the BYORP effect. If BYORP is contractive, the primary and secondary could end in a tidal-BYORP equilibrium. Observations of mutual events between binary components in at least four apparitions are needed for BYORP to be revealed by detecting a quadratic drift in mean anomaly of the satellite. I will show the observational evidence of single-synchronous binary asteroid with tidally locked satellite (175706 1996 FG3), i.e, with the quadratic drift equal to zero, and binary asteroid with contracting orbit (88710 2001 SL9), with positive value of the quadratic drift (the solution for the quadratic drift is ambiguous so far, with possible values of 5 and 8 deg/yr2).The spin configuration of the satellite play a crucial role in the evolution of the system under the influence of the BYORP effect. I will show that the rotational lightcurves of the satellites show that most of them have small libration amplitudes (up to 20 deg.), with a few interesting exceptions.Acknowledgements: This work has been supported by the Grant Agency of the Czech Republic, Grant P209

  11. Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)

    NASA Astrophysics Data System (ADS)

    Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori

    2011-03-01

    Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.

  12. RU 486 in France and England: corporate ethics and compulsory licensing.

    PubMed

    Boland, R

    1992-01-01

    Prospects for the introduction of RU-486 into the US in the foreseeable future are not good. The governments of France and England moved forward expeditiously with testing and approval of the drug. The legal developments surrounding the introduction of RU-486 in France and England as well as American, French, and English legal issues of corporate responsibility for licensing valuable drugs and compulsory licensing are outlined. The French government on October 28, 1988, ordered the company Roussel-Uclaf to resume plans to distribute RU-486 out of concern for public health and stated that RU-486 was the moral property of women. Roussel-Uclaf agreed to resume plans for distribution. RU-486 suits were finally decided in late 1990 and early 1991 by the State Council, France's highest administrative court, which issued a series of significant rulings. The French government issued new rules prohibiting the use of RU-486 by women who are heavy smokers or over 35 years old and modifying the dose of prostaglandin to be administered because of an RU-486-related death of an overweight 31-year old woman. In England, RU-486 was initially approved in July 1991. The conditions set were similar to those in France: the drug would have be used within 9 weeks of amenorrhea, as opposed to 7 in France; women over 35 or moderate to heavy smokers would be ineligible; and visits 36-48 hours later would be necessary to have a prostaglandin administered with check ups 7-10 days later. The hostility of the current US administration to the introduction of RU-486 blocks access to the drug. In 1989, the Food and Drug Administration placed reluctant to enter the American market. Under the Bush administration there is little possibility that the American government will act and take an active role in facilitating access to RU-486.

  13. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  14. Design of Arithmetic Circuits for Complex Binary Number System

    NASA Astrophysics Data System (ADS)

    Jamil, Tariq

    2011-08-01

    Complex numbers play important role in various engineering applications. To represent these numbers efficiently for storage and manipulation, a (-1+j)-base complex binary number system (CBNS) has been proposed in the literature. In this paper, designs of nibble-size arithmetic circuits (adder, subtractor, multiplier, divider) have been presented. These circuits can be incorporated within von Neumann and associative dataflow processors to achieve higher performance in both sequential and parallel computing paradigms.

  15. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  16. The chemistry of (ring)Ru sup 2+ (ring = tetramethylthiophene, p-cymene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganja, E.A.; Rauchfuss, T.B.; Stern, C.L.

    1991-01-01

    Described are the compounds ((ring)Ru(OTf){sub 2}){sub x}, where ring = 2,3,4,5-tetramethylthiophene (TMT, 1), and p-cymene (2). These electrophilic reagents serve as precursors to ((ring)RuL{sub 3}){sup 2+}, where L{sub 3} = (H{sub 2}O){sub 3}, (NH{sub 3}){sub 3}, and (PH{sub 3}){sub 3}. Solutions of 1 and 2 react with carbon monoxide to give (ring)Ru(CO)(OTf){sub 2}. The addition of thiophenes to CH{sub 2}Cl{sub 2} solutions of 1 or 2 leads to the precipitation of the sandwich compounds ((ring)(SC{sub 4}R{sub 4})Ru)(OTf){sub 2}, where SC{sub 4}R{sub 4} = thiophene, 2,5-dimethylthiophene, and TMT. ((TMT)Ru(H{sub 2}O){sub 3})(OTf){sub 2} was characterized by single-crystal X-ray crystallography, which established amore » piano-stool geometry with a planar TMT ligand. ((TMT)Ru(D{sub 2}O){sub 3})(OTf){sub 2} decomposes in D{sub 2}O solution at 150C to give ((TMT){sub 2}Ru){sup 2+}, which undergoes selective deuteration at the 2,5-methyl groups. D{sub 2}O solutions of ((TMT){sub 2}Ru){sup 2+} undergo photochemical loss of one TMT ligand in water to give ((TMT)Ru(H{sub 2}O){sub 3}){sup 2+}. A procedure is described for the reversible loading of 1 onto {gamma}-alumina, which in turn was characterized by {sup 13}C CP-MAS NMR spectroscopy.« less

  17. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  18. Incorporation of organometallic Ru complexes into apo-ferritin cage.

    PubMed

    Takezawa, Yusuke; Böckmann, Philipp; Sugi, Naoki; Wang, Ziyue; Abe, Satoshi; Murakami, Tatsuya; Hikage, Tatsuo; Erker, Gerhard; Watanabe, Yoshihito; Kitagawa, Susumu; Ueno, Takafumi

    2011-03-14

    Spherical protein cages such as an iron storage protein, ferritin, have great potential as nanometer-scale capsules to assemble and store metal ions and complexes. We report herein the synthesis of a composite of an apo-ferritin cage and Ru(p-cymene) complexes. Ru complexes were efficiently incorporated into the ferritin cavity without degradation of its cage structure. X-Ray crystallography revealed that the Ru complexes were immobilized on the interior surface of the cage mainly by the coordination of histidine residues.

  19. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    EPA Science Inventory

    The expected results from this project include:

    • a new formula and preparation procedures for Ru-Ni-S catalyst;
    • demonstration of CO and S tolerance of the new catalyst;
    • a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

    • Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung

      2014-11-22

      Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  1. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  2. Nucleosynthesis of Mo and Ru isotopes in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Bliss, Julia; Arcones, Almudena

    2018-01-01

    The solar system origin of the p-isotopes 92,94Mo and 96,98Ru is a long-lasting mystery. Several astrophysical scenarios failed to explain their formation. Moreover, SiC X grains show a different abundance ratio of 95,97Mo than in the solar system. We have investigated if neutrino-driven winds can offer a solution to those problems.

  3. Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

    PubMed

    La Ganga, Giuseppina; Nastasi, Francesco; Campagna, Sebastiano; Puntoriero, Fausto

    2009-12-07

    A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum.

  4. Accretion dynamics in pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.

    Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.

  5. Nanoscale structural and electronic characterization of α-RuCl3 layered compound

    NASA Astrophysics Data System (ADS)

    Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei

    The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.

  6. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  7. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less

  8. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  9. Coupled Electronic and Magnetic Phase Transition in the Infinite-Layer Phase LaSrNiRuO4.

    PubMed

    Patino, Midori Amano; Zeng, Dihao; Bower, Ryan; McGrady, John E; Hayward, Michael A

    2016-09-06

    Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.

  10. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  11. Binary system and jet precession and expansion in G35.20-0.74N

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Cesaroni, R.; Moscadelli, L.; Sánchez-Monge, Á.; Hirota, T.; Kumar, M. S. N.

    2016-09-01

    Context. Atacama Large Millimeter/submillimeter Array (ALMA) observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18 M⊙, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. Aims: We establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. Methods: We carried out VLA continuum observations of G35.20-0.74N at 2 cm in the B configuration and at 1.3 cm and 7 mm in the A and B configurations. The bandwidth at 7 mm covers the CH3OH maser line at 44.069 GHz. Continuum images at 6 and 3.6 cm in the A configuration were obtained from the VLA archive. We also carried out VERA observations of the H2O maser line at 22.235 GHz. Results: The observations have revealed the presence of a binary system of UC/HC Hii regions at the geometrical center of the radio jet in G35.20-0.74N. This binary system, which is associated with a Keplerian rotating disk, consists of two B-type stars of 11 and 6 M⊙. The S-shaped morphology of the radio jet has been successfully explained as being due to precession produced by the binary system. The analysis of the precession of the radio jet has allowed us to better interpret the IR emission in the region, which would be not tracing a wide-angle cavity open by a single outflow with a position angle of ~55°, but two different flows: a precessing one in the NE-SW direction associated with the radio jet, and a second one in an almost E-W direction. Comparison of the radio jet images

  12. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  13. Physical Parameters of Components in Close Binary Systems: IV

    NASA Astrophysics Data System (ADS)

    Gazeas, K. D.; Baran, A.; Niarchos, P.; Zola, S.; Kreiner, J. M.; Ogloza, W.; Rucinski, S. M.; Zakrzewski, B.; Siwak, M.; Pigulski, A.; Drozdz, M.

    2005-03-01

    The paper presents new geometric, photometric and absolute parameters, derived from combined spectroscopic and photometric solutions, for ten contact binary systems. The analysis shows that three systems (EF Boo, GM Dra and SW Lac) are of W-type with shallow to moderate contact. Seven systems (V417 Aql, AH Aur, YY CrB, UX Eri, DZ Psc, GR Vir and NN Vir) are of A-type in a deep contact configuration. For six systems (V417 Aql, YY CrB, GM Dra, UX Eri, SW Lac and GR Vir) a spot model is introduced to explain the O'Connell effect in their light curves. The photometric and geometric elements of the systems are combined with the spectroscopic data taken at David Dunlap Observatory to yield the absolute parameters of the components.

  14. Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, Shufen; Zhao, Junnan; Yan, Qingyu; Ma, Jan; Hng, Huey Hoon

    2011-05-01

    n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3- x Se x materials are used.

  15. Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at $$\\sqrt{s_\\mathrm{{NN}}}=5.02~\\text {TeV}$$ = 5.02 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2014-09-16

    The transverse momentum (p T) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at √s NN = 5.02 TeV with the ALICE detector at the LHC in the range. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for p T larger than 2 GeV/c, with a weak indication of a Cronin-like enhancement for p T around 4 GeV/c. The measurement is compared to theoretical calculations and to data in Pb–Pb collisions at √s NN = 2.76 TeV.

  16. Raman spectroscopy of glasses in the As-Te system

    NASA Astrophysics Data System (ADS)

    Tverjanovich, A.; Rodionov, K.; Bychkov, E.

    2012-06-01

    For the first time, the Raman spectra of AsxTe1-x glasses, 0.2≤x≤0.6, have been measured over the entire glass-forming range. The spectra exhibit three broad spectral features attributed to vibrations of structural units having Te-Te, As-Te and As-As bonds. The observed chemical disorder in the glasses is discussed on the basis of partial bond fractions derived from the integrated intensity of the Raman modes. The underlying structural model suggests a dissociation of AsTe- or As2Te3-related units in the glass melt. The spectra of glasses quenched from different temperatures, as well as those of the annealed vitreous alloys, are consistent with predictions of the model.

  17. Motion of the moonlet in the binary system 243 Ida

    NASA Astrophysics Data System (ADS)

    Lan, L.; Ni, Y.; Jiang, Y.; Li, J.

    2018-02-01

    The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark-Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.

  18. Young Binaries and Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang

    1996-07-01

    Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample

  19. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by

  20. Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Corradi, L.; Szilner, S.; Fioretto, E.; Pollarolo, G.; Mijatović, T.; Montanari, D.; Ackermann, D.; Bourgin, D.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; Jia, H. M.; John, P. R.; Mengoni, D.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Skukan, N.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.

    2018-05-01

    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code.

  1. Tracing CNO exposed layers in the Algol-type binary system u Her

    NASA Astrophysics Data System (ADS)

    Kolbas, V.; Dervişoğlu, A.; Pavlovski, K.; Southworth, J.

    2014-11-01

    The chemical composition of stellar photospheres in mass-transferring binary systems is a precious diagnostic of the nucleosynthesis processes that occur deep within stars, and preserves information on the components' history. The binary system u Her belongs to a group of hot Algols with both components being B stars. We have isolated the individual spectra of the two components by the technique of spectral disentangling of a new series of 43 high-resolution échelle spectra. Augmenting these with an analysis of the Hipparcos photometry of the system yields revised stellar quantities for the components of u Her. For the primary component (the mass-gaining star), we find MA = 7.88 ± 0.26 M⊙, RA = 4.93 ± 0.15 R⊙ and Teff, A = 21 600 ± 220 K. For the secondary (the mass-losing star) we find MB = 2.79 ± 0.12 M⊙, RB = 4.26 ± 0.06 R⊙ and Teff, B = 12 600 ± 550 K. A non-local thermodynamic equilibrium analysis of the primary star's atmosphere reveals deviations in the abundances of nitrogen and carbon from the standard cosmic abundance pattern in accord with theoretical expectations for CNO nucleosynthesis processing. From a grid of calculated evolutionary models the best match to the observed properties of the stars in u Her enabled tracing the initial properties and history of this binary system. We confirm that it has evolved according to case A mass transfer. A detailed abundance analysis of the primary star gives C/N = 0.9, which supports the evolutionary calculations and indicates strong mixing in the early evolution of the secondary component, which was originally the more massive of the two. The composition of the secondary component would be a further important constraint on the initial properties of u Her system, but requires spectra of a higher signal-to-noise ratio.

  2. ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  3. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    PubMed

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  4. Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity

    PubMed Central

    Hien, Nguyen Thi Bich; Kim, Hyo Young; Jeon, Mina; Lee, Jin Hee; Ridwan, Muhammad; Tamarany, Rizcky; Yoon, Chang Won

    2015-01-01

    For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.

  5. Flare Activity of Wide Binary Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  6. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    burst of gravitational waves, as predicted by Einstein's theory of relativity. This event will produce one of the brightest sources of gravitational radiation in the Universe. Although we will not be around to see this particular one, the observations provide additional evidence that such bound systems exist and are currently merging. The gravitational waves produced by these mergers are believed to be the biggest source of gravitational waves to be detected by the future Laser Interferometer Space Antenna (LISA). Notes to the Editors The team includes D.S. Hudson (AIfA,Germany), T.H. Reiprich (AIfA,Germany), T.E. Clarke (NRL & Interferometrics Inc.,USA), and C.L. Sarazin (UVa,USA). X-ray detection of the proto supermassive binary black hole at the centre of Abell 400 by D.S Hudson, T.H. Reiprich, T.E. Clarke, and C.L. Sarazin. To be published in Astronomy & Astrophysics (DOI number: 10.1051/0004-6361:20064955) Full article available in PDF format. Electronic edition of the press release available at http://www.edpsciences.org/aa.

  7. RuO2 Thermometer for Ultra-Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hait, Thomas; Shirron, Peter J.; DiPirro, Michael

    2009-01-01

    A small, high-resolution, low-power thermometer has been developed for use in ultra-low temperatures that uses multiple RuO2 chip resistors. The use of commercially available thick-film RuO2 chip resistors for measuring cryogenic temperatures is well known due to their low cost, long-term stability, and large resistance change.

  8. Constructing molecular structures on periodic superstructure of graphene/Ru(0001)

    PubMed Central

    Li, Geng; Huang, Li; Xu, Wenyan; Que, Yande; Zhang, Yi; Lu, Jianchen; Du, Shixuan; Liu, Yunqi; Gao, Hong-Jun

    2014-01-01

    We review the way to fabricate large-scale, high-quality and single crystalline graphene epitaxially grown on Ru(0001) substrate. A moiré pattern of the graphene/Ru(0001) is formed due to the lattice mismatch between graphene and Ru(0001). This superstructure gives rise to surface charge redistribution and could behave as an ordered quantum dot array, which results in a perfect template to guide the assembly of organic molecular structures. Molecules, for example iron phthalocyanine and C60, on this template show how the molecule–substrate interaction makes different superstructures. These results show the possibility of constructing ordered molecular structures on graphene/Ru(0001), which is helpful for practical applications in the future. PMID:24615151

  9. The search for meaning: RU 486 and the law of abortion.

    PubMed Central

    Banwell, S S; Paxman, J M

    1992-01-01

    The advent of RU 486 (mifepristone), a steroid analogue capable of inducing menses within 8 to 10 weeks of a missed menstrual period, has provoked a firestorm of concern and controversy. When used in conjunction with prostaglandin (RU 486/PG), it is at least 95% effective. Used in France principally to terminate confirmed pregnancies very early in the process of gestation, RU 486 raises many interesting legal questions. This article focuses on whether and how RU 486/PG can be accommodated within the framework of the world's current abortion laws. Four avenues are explored and conclusions drawn. First, it is clear that RU 486/PG can be used readily, if approved, within the regimens established by liberal abortion laws, as has been the experience in France, the United Kingdom, and even China. Second, although unlikely, the introduction of this new technology may inspire a reexamination of restrictive abortion statutes themselves. Third, some of the presently restrictive laws may be interpreted to permit RU 486/PG use as a legal procedure, for a very narrow range of reasons. Finally, in some settings the early use of RU 486/PG (before pregnancy can be confirmed) may fall outside the reach of abortion legislation and hence be acceptable from a legal point of view. PMID:1415870

  10. Estrogen and progesterone receptors in human decidua after RU486 treatment.

    PubMed

    Shi, W L; Wang, J D; Fu, Y; Zhu, P D

    1993-07-01

    To examine RU486 action on decidua at the level of cellular estrogen receptor (ER) and P receptor (PR). Controlled basic study for contragestion mechanism of mifepristone. Normal human volunteers in an academic research environment. Sixty women with 6 to 7 weeks of gestation who voluntarily requested termination of pregnancy were recruited and randomly divided into three groups. A single dose of 200 mg RU486 was orally administered to the two treatment groups 12 and 24 hours, respectively, before surgical interruption of pregnancies. Placebo was used for control group. Decidual tissues were collected right after operation. Immunocytochemical reactions of PR and ER in decidua after RU486 treatment were compared with the control subjects. The differences of the reaction in decidual area with or without trophoblast invasion were noted. RU486 treatment increased PR and ER staining in vessel and stroma of decidua without trophoblast invasion (decidua parietalis) but not in decidua with trophoblast invasion (decidua capsularis or basalis). Chi-squared analysis indicated a significant increase in the number of ER-positive samples after RU486 treatment. The decidua parietalis was the primary target site of RU486. The lack of RU486 effect on decidua capsularis implied that trophoblast invasion prevented against antiprogestin impact.

  11. δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

    NASA Astrophysics Data System (ADS)

    Şenyüz, T.; Soydugan, E.

    2014-02-01

    In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

  12. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin.

    PubMed Central

    Vazifeh, D; Abdelghaffar, H; Labro, M T

    1997-01-01

    We analyzed the uptake of RU 64004 by human neutrophils (polymorphonuclear leukocytes [PMNs]) relative to those of azithromycin and roxithromycin. RU 64004 was strongly and rapidly accumulated by PMNs, with a cellular concentration/extracellular concentration ratio (C/E) of greater than 200 in the first 5 min, and this was followed by a plateau at 120 to 180 min, with a C/E of 461 +/- 14.8 (10 experiments) at 180 min. RU 64004 uptake was moderately sensitive to external pH, and activation energy was also moderate (63 +/- 3.8 kJ/mol). RU 64004 was mainly located in PMN granules (about 70%) and egressed slowly from loaded cells, owing to avid reuptake. The possibility that PMN uptake of RU 64004 and other macrolides occurs through a carrier-mediated system was suggested by three key results. First, there existed a strong interindividual variability in uptake kinetics, suggesting variability in the numbers or activity of a transport protein. Second, macrolide uptake displayed saturation kinetics characteristic of that of a carrier-mediated transport system: RU 64004 had the highest Vmax value (3,846 ng/2.5 x 10(6) PMNs/5 min) and the lowest Km value (about 28 microM), indicating a high affinity for the transporter. Third, as observed previously with other erythromycin A derivatives, Ni2+ (a blocker of the Na+/Ca2+ exchanger which mediates Ca2+ influx in resting neutrophils) impaired RU 64004 uptake by PMNs, with a 50% inhibitory concentration of about 3.5 mM. In addition, we found that an active process is also involved in macrolide efflux, because verapamil significantly potentiated the release of all three macrolides tested. This effect of verapamil does not seem to be related to an inhibition of Ca2+ influx, because neither EGTA [ethylene glycol-bis (beta-aminoethyl ether)-N,N',N'-tetraacetic acid] nor Ni2+ modified macrolide efflux. The nature and characteristics of the entry- and efflux-mediating carrier systems are under investigation. PMID:9333032

  13. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.

    2012-10-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.

  14. Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs

    NASA Astrophysics Data System (ADS)

    Petrovic, N.; Di Stefano, R.; Perna, R.

    2003-12-01

    Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8

  15. A spectroscopic search for colliding stellar winds in O-type close binary systems. I - AO Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Wiggs, Michael S.

    1991-01-01

    AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.

  16. Photophysical properties of [Ru(2,2‧-bipyridine)3]2+ encapsulated within the Uio-66 zirconium based metal organic framework

    NASA Astrophysics Data System (ADS)

    Larsen, Randy W.; Wojtas, Lukasz

    2017-03-01

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2‧-bipyridine)3]2+([Ru(bpy)3]2+) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation of Uio-66 in the presence of [Ru(bpy)3]2+. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy)3]2+ complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy)3]2+ into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy)3]2+ encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy)3]2+ complexes.

  17. Tidal formation of Hot Jupiters in binary star systems

    NASA Astrophysics Data System (ADS)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  18. CO oxidation on Ru-Pt bimetallic nanoclusters supported on TiO2(101): The effect of charge polarization

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyi; Zhong, Wenhui; Deng, Mingsen; Jiang, Jun

    2018-03-01

    Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.

  19. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  20. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  1. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  2. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Naguib, Ibrahim A

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra ((1)DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4-50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives.

  3. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin

    PubMed Central

    Darwish, Hany W.; Bakheit, Ahmed H.; Naguib, Ibrahim A.

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra (1DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4–50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives. PMID:26885440

  4. Accretion Structures in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine

    The physics of mass transfer in interacting binaries of the Algol type will be investigated through an analysis of an extensive collection of FUV spectra from the FUSE spacecraft, Kepler photometry, and FUV spectra from IUE and ORFEUS-SPAS II. The Algols range from close direct impact systems to wider systems that contain prominent accretion disks. Several components of the circumstellar (CS) material have been identified, including the gas stream, splash/outflow domains, a high temperature accretion region (HTAR), accretion disk, and magnetically-controlled flows (cf. Peters 2001, 2007, Richards et al. 2010). Hot spots are sometimes seen at the site where the gas stream impacts the mass gainer's photosphere. Collectively we call these components of mass transfer "accretion structures". The CS material will be studied from an analysis of both line-of-sight FUV absorption features and emission lines. The emission line regions will be mapped in and above/below the orbital plane with 2D and 3D Doppler tomography techniques. We will look for the presence of hot accretion spots in both the Kepler photometry of Algols in the Kepler fields and phase-dependent flux variability in the FUSE spectra. We will also search for evidence of microflaring at the impact site of the gas stream. An abundance study of the mass gainer will reveal the extent to which CNO-processed material from the core of the mass loser is being deposited on the primary. Analysis codes that will be used include 2D and 3D tomography codes, SHELLSPEC, light curve analysis programs such as PHOEBE and Wilson-Devinney, and the NLTE codes TLUSTY/SYNSPEC. This project will transform our understanding of the mass transfer process from a generic to a hydrodynamical one and provide important information on the degree of mass loss from the system which is needed for calculations of the evolution of Algol binaries.

  5. Hydrodynamics on Supercomputers: Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1997-05-01

    The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.

  6. Enhancement of Curie temperature in Mn{sub 2}RuSn by Co substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A.; Huh, Y.; Fuglsby, R.

    2015-04-21

    The Co-substituted Mn{sub 2}RuSn nanomaterials, namely, Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn have been synthesized and investigated. The presence of Co in the Mn{sub 2}RuSn (a = 6.21 Å) decreased the lattice parameter, where a = 6.14 Å and 6.12 Å for the as prepared Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn, respectively. The samples show a ferrimagnetic spin order with relatively small coercivities, similar to those of soft magnetic materials. There is a substantial increase in the Curie temperature (T{sub c} = 448 K for Mn{sub 2}Ru{sub 0.5}Co{sub 0.5}Sn and 506 K for Mn{sub 2}Ru{sub 0.35}Co{sub 0.65}Sn) of Mn{sub 2}RuSn (T{sub c} = 272.1 K) due to Comore » substitution, which is a result of strengthening of the positive exchange interaction in this material. These materials are highly stable against heat treatment of up to 450 °C. The first-principles calculations are consistent with our experimentally observed structural and magnetic properties. They also provide insight on how the magnetic and electronic structures change when Ru is replaced with Co in Mn{sub 2}RuSn.« less

  7. Monitoring of RU Peg requested for Swift observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that

  8. Gamma–Gamma Absorption in the γ-ray Binary System PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushch, Iurii; Van Soelen, Brian, E-mail: iurii.sushch@desy.de, E-mail: vansoelenb@ufs.ac.za

    2017-03-10

    The observed TeV light curve from the γ -ray binary PSR B1259-63/LS 2883 shows a decrease in the flux at periastron that has not been fully explained by emission mechanisms alone. This observed decrease can, however, be explained by γγ absorption due to the stellar and disk photons. We calculate the γγ absorption in PSR B1259-63/LS 2883 taking into account photons from both the circumstellar disk and star, assuming that the γ -rays originate at the position of the pulsar. The γγ absorption due to the circumstellar disk photons produces a ≈14% decrease in the flux, and there is amore » total decrease of ≈52% (>1 TeV) within a few days before periastron, accompanied by a hardening of the γ -ray photon index. While the γγ absorption alone is not sufficient to explain the full complexity of the H.E.S.S. γ -ray light curve, it results in a significant decrease in the predicted flux, which is coincident with the observed decrease. In addition, we have calculated an upper limit on the γγ absorption, assuming that the emission is produced at the apex of the bow shock. Future observations with CTA during the 2021 periastron passage may be able to confine the location of the emission based on the degree of γγ absorption, as well as measure the hardening of the spectrum around periastron.« less

  9. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  10. Anisotropic distribution of orbit poles of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kusnirak, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdos, S.; Kornos, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; Lacluyze, A.; Krugly, Y. N.; Gaftonyuk, N.; Dyvig, R.; Reddy, V.; Stephens, R. D.; Chiorny, V.; Vaduvescu, O.; Longa, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Marchis, F.

    2011-10-01

    Our photometric observations of 18 mainbelt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that the data strongly suggest that poles of mutual orbits between components of binary asteroids are not distributed randomly: The null hypothesis of the isotropic distribution of orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to formation of small binary systems by rotational fission of critically spinning parent bodies with poles near the YORP asymptotic states with obliquities near 0 and 180°. An alternative process of elimination of binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational perturbations from the sun does not explain the observed orbit pole concentration as in the close asteroid binary systems the J2 perturbation due to the primary dominates the solar-tide effect.

  11. Candidate Binary Microlensing Events from the MACHO Project

    NASA Astrophysics Data System (ADS)

    Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration

    1998-12-01

    We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.

  12. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  13. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  14. The binary system containing the classical Cepheid T Mon

    NASA Technical Reports Server (NTRS)

    Evans, Nancy Remage; Lyons, Ronald W.

    1994-01-01

    Several new results are presented for the binary system containing the 27(sup d) classical Cepheid T Mon. New radial velocities for the Cepheid have been obtained, which confirm the decreasing orbital motion at the current epoch. The spectral type of the companion (B9.8 V) has been determined from an International Ultraviolet Explorer (IUE) low resolution spectrum. An IUE high resolution spectrum has been measured to search for the velocity of the companion. A velocity signal at +36 km/s on JD 2,446,105.21 has been tentatively identified as the velocity of the companion, but confirmation of this velocity would be very valuable. Results based on this tentative identification of the velocity are that the companion does not have a high projected rotation velocity, that the companion is unlikely to be a short period binary, and that the gamma velocity of the system is between 20 and 36 km/s. The luminosity and temperature of both the Cepheid and the companion are well determined from the satellite and ground-based observations and the Cepheid PLC relation. However, the companion is above the ZAMS in the H-R diagram, which is inconsistent with the large luminosity difference between the two stars. High rotation for the companion (viewed pole-on) is a possible explanation. The lower limit to the mass function (from the lower limits to the orbital period and amplitude) requires a very high eccentricity for the system for reasonable estimates for the masses of the two stars.

  15. Solidification phenomena of binary organic mixtures

    NASA Technical Reports Server (NTRS)

    Chang, K.

    1982-01-01

    The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.

  16. Modulus spectroscopy of grain-grain boundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui

    2015-02-01

    Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.

  17. Multi-band Electronic Structure of Ferromagnetic CeRuPO

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi

    2018-04-01

    We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.

  18. Binary Microlensing Events from the MACHO Project

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Baines, D.; Becker, A. C.; Bennett, D. P.; Bourke, A.; Brakel, A.; Cook, K. H.; Crook, B.; Crouch, A.; Dan, J.; Drake, A. J.; Fragile, P. C.; Freeman, K. C.; Gal-Yam, A.; Geha, M.; Gray, J.; Griest, K.; Gurtierrez, A.; Heller, A.; Howard, J.; Johnson, B. R.; Kaspi, S.; Keane, M.; Kovo, O.; Leach, C.; Leach, T.; Leibowitz, E. M.; Lehner, M. J.; Lipkin, Y.; Maoz, D.; Marshall, S. L.; McDowell, D.; McKeown, S.; Mendelson, H.; Messenger, B.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pozza, E.; Purcell, P.; Pratt, M. R.; Quinn, J.; Quinn, P. J.; Rhie, S. H.; Rodgers, A. W.; Salmon, A.; Shemmer, O.; Stetson, P.; Stubbs, C. W.; Sutherland, W.; Thomson, S.; Tomaney, A.; Vandehei, T.; Walker, A.; Ward, K.; Wyper, G.

    2000-09-01

    We present the light curves of 21 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey that are likely examples of lensing by binary systems. These events were manually selected from a total sample of ~350 candidate microlensing events that were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. At least 14 of these 21 events exhibit strong (caustic) features, and four of the events are well fit with lensing by large mass ratio (brown dwarf or planetary) systems, although these fits are not necessarily unique. The total binary event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars, but a precise comparison cannot be made without a determination of our binary lens event detection efficiency. Toward the Galactic bulge, we find a ratio of caustic crossing to noncaustic crossing binary lensing events of 12:4, excluding one event for which we present two fits. This suggests significant incompleteness in our ability to detect and characterize noncaustic crossing binary lensing. The distribution of mass ratios, N(q), for these binary lenses appears relatively flat. We are also able to reliably measure source-face crossing times in four of the bulge caustic crossing events, and recover from them a distribution of lens proper motions, masses, and distances consistent with a population of Galactic bulge lenses at a distance of 7+/-1 kpc. This analysis yields two systems with companions of ~0.05 Msolar.

  19. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  20. Viscosity Relaxation in Molten HgZnTe

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Kim, Yeong Woo; Baird, James K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Rotating cup measurements of the viscosity of the pseudo-binary melt, HgZnTe have shown that the isothermal liquid with zinc mole fraction 0.16 requires tens of hours of equilibration time before a steady viscous state can be achieved. Over this relaxation period, the viscosity at 790 C increases by a factor of two, while the viscosity at 810 C increases by 40%. Noting that the Group VI elements tend to polymerize when molten, we suggest that the viscosity of the melt is enhanced by the slow formation of Te atom chains. To explain the build-up of linear Te n-mers, we propose a scheme, which contains formation reactions with second order kinetics that increase the molecular weight, and decomposition reactions with first order kinetics that inactivate the chains. The resulting rate equations can be solved for the time dependence of each molecular weight fraction. Using these molecular weight fractions, we calculate the time dependence of the average molecular weight. Using the standard semi-empirical relation between polymer average molecular weight and viscosity, we then calculate the viscosity relaxation curve. By curve fitting, we find that the data imply that the rate constant for n-mer formation is much smaller than the rate constant for n-mer deactivation, suggesting that Te atoms only weakly polymerize in molten HgZnTe. The steady state toward which the melt relaxes occurs as the rate of formation of an n-mer becomes exactly balanced by the sum of the rate for its deactivation and the rate for its polymerization to form an (n+1)-mer.

  1. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  2. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Learning to assign binary weights to binary descriptor

    NASA Astrophysics Data System (ADS)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  4. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  5. Experimental partitioning of Tc, Mo, Ru, and Re between solid and liquid during crystallization in Fe-Ni-S 1

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Walker, D.; Walker, R. J.

    2004-02-01

    Technetium isotopes 97Tc, 98Tc and 99Tc decay to 97Mo, 98Ru and 99Ru, with half-lives of 2.6 My, 4.1 My, and 0.21 My respectively. If there were early solar system processes that resulted in significant fractionation of Tc from the daughter elements, decay of extant Tc could have led to the creation of Mo and Ru isotopic heterogeneities. To assess the potential of metallic core crystallization to fractionate these elements, we examine the partitioning behavior of Tc relative to Re, Mo and Ru in the Fe-Ni-S system between solid metal and liquid metal alloy. The experimental evidence shows that Tc behaves more like the modestly compatible siderophile element Ru than the more highly compatible siderophile element Re, and that Tc is substantially more compatible than Mo. We also demonstrate a pressure effect in the partitioning of Mo during the crystallization of Fe-Ni-S melts. For a sulfur concentration in the liquid fraction of the core of 10 wt% (16.3 at%), the Jones and Malvin (1990) parameter is -ln(1-2 × 1.09 × 0.163) ≅ 0.44, which yields: D(Re) ≅ 4.1; D(Ru) ≅ 2.3; D(Tc) ≅ 1.7; D(Mo) Lo-P ≅ 1.0;.and D(Mo) Hi-P ≅ 0.5. Our results suggest that detectable Tc-induced isotopic anomalies (≥0.1 ɛ unit) in Ru and Mo could only be produced by unrealistically extreme degrees of crystallization of metal during asteroidal core fractionation, regardless of the time scales and initial Tc abundances involved.

  6. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    NASA Astrophysics Data System (ADS)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  7. Multiwavelength observations of the binary system PSR B1259-63/LS 2883 around the 2010-2011 periastron passage

    DOE PAGES

    Chernyakova, M.; Abdo, A. A.; Neronov, A.; ...

    2014-01-30

    Here, we report on broad multiwavelength observations of the 2010–2011 periastron passage of the γ-ray loud binary system PSR B1259-63. High-resolution interferometric radio observations establish extended radio emission trailing the position of the pulsar. Observations with the FermiGamma-ray Space Telescope reveal GeV γ-ray flaring activity of the system, reaching the spin-down luminosity of the pulsar, around 30 d after periastron. Furthermore, there are no clear signatures of variability at radio, X-ray and TeV energies at the time of the GeV flare. Variability around periastron in the Hα emission line, can be interpreted as the gravitational interaction between the pulsar andmore » the circumstellar disc. The equivalent width of the Hα grows from a few days before periastron until a few days later, and decreases again between 18 and 46 d after periastron. In near-infrared we observe the similar decrease of the equivalent width of Brγ line between the 40th and 117th day after the periastron. For the idealized disc, the variability of the Hα line represents the variability of the mass and size of the disc. Finally, we discuss possible physical relations between the state of the disc and GeV emission under assumption that GeV flare is directly related to the decrease of the disc size.« less

  8. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    NASA Astrophysics Data System (ADS)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  9. Accreting Black Hole Binaries in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  10. BOREAS TE-17 Production Efficiency Model Images

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Papagno, Andrea (Editor); Goetz, Scott J.; Goward, Samual N.; Prince, Stephen D.; Czajkowski, Kevin; Dubayah, Ralph O.

    2000-01-01

    A Boreal Ecosystem-Atmospheric Study (BOREAS) version of the Global Production Efficiency Model (http://www.inform.umd.edu/glopem/) was developed by TE-17 (Terrestrial Ecology) to generate maps of gross and net primary production, autotrophic respiration, and light use efficiency for the BOREAS region. This document provides basic information on the model and how the maps were generated. The data generated by the model are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.

    PubMed

    Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang

    2016-12-14

    The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.

  12. Ru-core/Cu-shell bimetallic nanoparticles with controlled size formed in one-pot synthesis.

    PubMed

    Helgadottir, I; Freychet, G; Arquillière, P; Maret, M; Gergaud, P; Haumesser, P H; Santini, C C

    2014-12-21

    Suspensions of bimetallic nanoparticles (NPs) of Ru and Cu have been synthesized by simultaneous decomposition of two organometallic compounds in an ionic liquid. These suspensions have been characterized by Anomalous Small-Angle X-ray Scattering (ASAXS) at energies slightly below the Ru K-edge. It is found that the NPs adopt a Ru-core, a Cu-shell structure, with a constant Ru core diameter of 1.9 nm for all Ru : Cu compositions, while the Cu shell thickness increases with Cu content up to 0.9 nm. The formation of RuCuNPs thus proceeds through rapid decomposition of the Ru precursor into RuNPs of constant size followed by the reaction of the Cu precursor and agglomeration as a Cu shell. Thus, the different decomposition kinetics of precursors make possible the elaboration of core-shell NPs composed of two metals without chemical affinity.

  13. Orbital period study of the Algol-type eclipsing binary system TW Draconis

    NASA Astrophysics Data System (ADS)

    Qian, S. B.; Boonrucksar, S.

    2002-10-01

    The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.

  14. A possible third component in the eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.

    2016-05-01

    We used a differential photometry method in which we compared the flow of program star and standard one. Observations of the 21 nights in the period from July 26 to December 2, 2015 are used for processing. The accuracy of determining for each measurement is in the range 0,003...0,009 m for different nights. On the basis of obtained data were created corresponding light curves. Next, we calculate the time difference between the centers of transits. Its time dependence showed the presence of a possible periodic change in the deflection of the middle transit time from the calculated average value. This may indicate the presence of a third object in the eclipsing binary system. It has been found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10 d.

  15. Ru(II) complexes containing chelating phosphine ligands. Synthesis, characterizatin, and x-ray crystal structures of dichlorobis (1,2-bis(diphenylphosphino)ethane)Ru(II) and the coordinatetively unsaturated trigonal-bipyramidal cation, chlorobis(1,2-bis(diphenylphosphino)ethane)Ru(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polam, J.R.; Porter, L.C.

    1993-01-01

    The reaction of trans-RuCl[sub 2](dppe)[sub 2] (1), with AgBF[sub 4] in tetrahydrofuran leads to abstraction of one of the halide ligands to produce the trigonal-bipyrimidal complex. [RuCl(dppe)[sub 2

  16. Conjugating binary systems for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Grodzka, Philomena G.; Dean, William G.; Sisk, Lori A.; Karu, Zain S.

    1989-01-01

    The materials search was directed to liquid pairs which can form hydrogen bonds of just the right strength, i.e., strong enough to give a high heat of mixing, but weak enough to enable phase change to occur. The cursory studies performed in the area of additive effects indicate that Conjugating Binary (CB) performance can probably be fine-tuned by this means. The Fluid Loop Test Systems (FLTS) tests of candidate CBs indicate that the systems Triethylamine (TEA)/water and propionaldehyde/water show close to the ideal, reversible behavior, at least initially. The Quick Screening Tests QSTs and FLTS tests, however, both suffer from rather severe static due either to inadequate stirring or temperature control. Thus it is not possible to adequately evaluate less than ideal CB performers. Less than ideal performers, it should be noted, may have features that make them better practical CBs than ideal performers. Improvement of the evaluation instrumentation is thus indicated.

  17. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  18. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  19. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  20. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.