Science.gov

Sample records for rubans amorphes mg

  1. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  2. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained "solubility product" of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  3. Cubic AlNi compound dispersed Mg-based amorphous matrix composites prepared by rapid solidification

    SciTech Connect

    Niikura, A.; Tsai, A.P.; Inoue, A.; Masumoto, T. . Inst. for Materials Research)

    1994-06-01

    Magnesium is known as the lightest metal which has been used as a construction material. Recently, a series of amorphous Al-and Mg-based alloys having high strength and a wider supercooled liquid region have been found in Mg (or Al)-Tm (transition metal)-Ln (lanthanide metal) system, with indications of becoming a high specific strength material. Moreover, it was found that the dispersion of ultrafine fcc or hcp particles in the amorphous matrix improved the mechanical strength. On the other hand, a metal matrix composite material is a promising approach to materials development from which one can realize the enhanced mechanical properties of rapidly quenched metals in widespread technical application. The melt-spinning method has been combined with some techniques to incorporate carbide, nitride, and oxide particles into the molten alloy, to prepare an amorphous metal matrix composite. In general, the composite was prepared by consolidation techniques at sufficiently high temperature, which could lead to the crystallization. Thus, the preparation of amorphous composite is rarely achieved of amorphous phase. Recently, the authors have fabricated magnesium amorphous matrix composites with cubic AlNi compound (c-AlNi) as dispersoid by melt-spinning without any extra process. In this communication, they report the fabrication, structure, and hardness of this special amorphous composite.

  4. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  5. First-principles study of crystalline and amorphous AlMgB14-based materials

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Shevchenko, V. I.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-05-01

    We report first-principles investigations of crystalline and amorphous boron and M1xM2yXzB14-z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called "BAM" materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm-1, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100-1250 cm-1. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  6. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  7. Superconductivity of amorphous Mg 0.70Zn 0.30-xGa x alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-06-01

    The screening dependence theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC , isotope effect exponent α and effective interaction strength NOV of five Mg 0.70Zn 0.30-xGa x ( x = 0.0, 0.06, 0.10, 0.15 and 0.20) ternary amorphous alloys viz. Mg 0.70Zn 0.30Ga 0.00, Mg 0.70Zn 0.24Ga 0.06, Mg 0.70Zn 0.20Ga 0.10, Mg 0.70Zn 0.15Ga 0.15 and Mg 0.70Zn 0.10Ga 0.20 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. It is observed that the electron-phonon coupling strength λ and the transition temperature TC are quite sensitive to the selection of the local field correction functions, whereas the Coulomb pseudopotential μ∗, isotope effect exponent α and effective interaction strength NOV show weak dependences on the local field correction functions. The transition temperature TC obtained from H-local field correction function is found in an excellent agreement with available experimental data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary amorphous alloys.

  8. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    SciTech Connect

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  9. Formation and analysis of amorphous and nanocrystalline phases in Al-Cu-Mg alloy under friction stir processing

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Shi, Qing-yu

    2015-06-01

    Homogeneous amorphous and nanocrystalline phases formed in the nugget zone of a friction stir-processed Al-Cu-Mg alloy have been studied. X-ray diffraction analysis indicated a diffuse scattering peak with characteristics of an amorphous phase existed in the range 15°-29°. Further, TEM analysis proved the existence of an amorphous structure. Friction stir processing provides special physical conditions, such as high temperature, high hydrostatic pressure and large shear stress, which could induce the amorphization of the alloy.

  10. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.

  11. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.

    PubMed

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-09-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg(2+) ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth. PMID:27617291

  12. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel

    PubMed Central

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-01-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg2+ ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth. PMID:27617291

  13. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes.

  14. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Kumta, Prashant N

    2016-07-01

    Biphasic mixtures of either Mg(2+) or combined Mg(2+) and Sr(2+) cation substituted β-tricalcium phosphate (β-TCP) and amorphous calcium phosphate (ACP) were prepared using a low temperature chemical phosphatizing and hydrolysis reaction approach. Scaffolds prepared using the cation substituted calcium phosphates were capable of supporting similar levels of human mesenchymal stem cell proliferation in comparison to commercially available β-TCP. The concentrations of Mg(2+), Sr(2+), and PO4(3-) released from these scaffolds were also within the ranges desired from previous reports to support both hMSC proliferation and osteogenic differentiation. Interestingly, hMSCs cultured directly on scaffolds prepared with only Mg(2+) substituted β-TCP were capable of supporting statistically significantly increased alkaline phosphatase activity, osteopontin, and osteoprotegerin expression in comparison to all compositions containing both Mg(2+) and Sr(2+), and commercially available β-TCP. hMSCs cultured in the presence of scaffold extracts also exhibited similar trends in the expression of osteogenic markers as was observed during direct culture. Therefore, it was concluded that the enhanced differentiation observed was due to the release of bioactive ions rather than the surface microstructure. The role of these ions on transforming growth factor-β and bone morphogenic protein signaling was also evaluated using a PCR array. It was concluded that the release of these ions may support enhanced differentiation through SMAD dependent TGF-β and BMP signaling. PMID:27127047

  15. Equation of State of Amorphous MgSiO3 and (MgFe)SiO3 to Lowermost Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Petitgirard, S.; Malfait, W.; Kupenko, I.; Rubie, D. C.

    2014-12-01

    Melting phenomena have a crucial importance during the Earth's formation and evolution. For example, a deep magma ocean of 1000 km or more has lead to the segregation of the core. Tomographic images of the Earth reveal ultra-low velocity zones at the core-mantle boundary that may be due to the presence of dense magmas or remnant zones of a deep basal magma ocean [1]. Unfortunately, measurements of amorphous silicate density over the entire pressure regime of the mantle are scarce and the density contrast between solid and liquid are difficult to assess due to the lack of such data. Only few studies have reported density measurements of amorphous silicates at high-pressure, with limitation up to 60 GPa. High-pressure acoustic velocity measurements have been used to calculate the density of MgSiO3 glass up to 30 GPa [2] but exhibit a large discrepancy compared to recent calculations [3]. SiO2 glass was measured up to 55 GPa using the X-ray absorption method through the diamond anvils [4] and very recently, X-ray diffraction has been used to infer the density of basaltic melt up to 60 GPa [5]. Here we report density measurement of MgSiO3 glass up to 130 GPa and (MgFe)SiO3 glass up to 55 GPa using a novel variation of the X-ray absorption method. The sample contained in a beryllium gasket was irradiated with a micro-focus X-ray beam in two directions: perpendicular and parallel to the compression axis to obtain the absorption coefficient and density under pressure. Our data constrain the first experimental EoS for (Mg,Fe)SiO3 and the first EoS for MgSiO3 up to lowermost mantle pressures. Technical details and EoS parameters will be shown in the presentation. We will address the implications for melts in the deep Earth based on compressibility, bulk modulus and density contrasts between iron-free and iron-bearing glasses. [1] Labrosse S. et al. Nature 2007 [2] Sanchez-Valle C. et al. Earth Planet. Sc. Lett. 2010 [3] Ghosh D. et al Am. Mineral. 2014 [4] Sato T. et al

  16. Ultraviolet detecting properties of amorphous MgInO thin film phototransistors

    NASA Astrophysics Data System (ADS)

    Lu, Huiling; Bi, Xiaobin; Zhang, Shengdong; Zhou, Hang

    2015-12-01

    The ultraviolet (UV) detecting properties of Mg doped In2O3 (MgInO or MIO) bottom gate thin film transistors (TFTs) were investigated. The optical measurements show that the introduction of Mg dopants effectively widens the optical band gap of In2O3. The cutoff wavelength of MIO films is pushed to deep UV as Mg content increases. Fabricated MIO TFTs with high Mg content demonstrate appraisable UV detecting properties with a dark current of 10-14 A, a UV to visible rejection ratio of 103, a responsivity of 3.2 A/W (300 nm) and a cutoff wavelength of 320 nm, which can be put to good use in deep UV detection. The dynamic photo-response measurement shows that the persistent photo-conductivity (PPC) effect can be alleviated by imposing a transient positive gate pulse.

  17. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  18. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    PubMed

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics. PMID:24760085

  19. Biological Characteristics of the MG-63 Human Osteosarcoma Cells on Composite Tantalum Carbide/Amorphous Carbon Films

    PubMed Central

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics. PMID:24760085

  20. The formation of Mg,Fe-silicates by reactions between amorphous magnesiosilica smoke particles and metallic iron nanograins with implications for comet silicate origins

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.; Pun, Aurora

    2013-10-01

    This thermal annealing experiment at 1000 K for up to 167 h used a physical mixture of vapor phase-condensed magnesiosilica grains and metallic iron nanograins to test the hypothesis that a mixture of magnesiosilica grains and an Fe-source would lead to the formation of ferromagnesiosilica grains. This exploratory study found that coagulation and thermal annealing of amorphous magnesiosilica and metallic grains yielded ferromagnesiosilica grains with the Fe/(Fe + Mg) ratios in interplanetary dust particles. Furthermore, decomposition of brucite present in the condensed magnesiosilica grains was the source for water and the cause of different iron oxidation states, and the formation of amorphous Fe3+-ferrosilica, amorphous Fe3+-Mg, Fe-silicates, and magnesioferrite during thermal annealing. Fayalite and ferrosilite that formed from silica/FeO melts reacted with forsterite and enstatite to form Mg, Fe-silicates. The presence of iron in different oxidation states in extraterrestrial materials almost certainly requires active asteroid-like parent bodies. If so, the possible presence of trivalent Fe compounds in comet P/Halley suggests that Halley-type comets are a mixture of preserved presolar and processed solar nebula dust. The results from this thermal annealing experiment further suggest that the Fe-silicates detected in the impact-induced ejecta from comet 9P/Temple 1 might be of secondary origin and related to the impact experiment or to processing in a regolith.

  1. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  2. Energetic and structural studies of amorphous Ca[subscript 1-x]Mg[subscript x]CO[subscript 3]·nH[subscript 2]O (0 {less than] x [less than] 1))

    SciTech Connect

    Radha, A.V.; Fernandez-Martinez, Alejandro; Hu, Yandi; Jun, Young-Shin; Waychunas, Glenn A.; Navrotsky, Alexandra

    2012-07-25

    Early stage amorphous precursors provide a low energy pathway for carbonate mineralization. Many natural deposits of carbonate minerals and biogenic calcium carbonate (both amorphous and crystalline) include significant amounts of Mg. To understand the role of magnesium-containing amorphous precursors in carbonate mineralization, we investigated the energetics and structure of synthetic amorphous Ca-Mg carbonates with composition Ca{sub 1-x}Mg{sub x}CO{sub 3} {center_dot} nH{sub 2}O (0 {le} x {le} 1) using isothermal acid solution calorimetry and synchrotron X-ray scattering experiments with pair distribution function (PDF) analysis. Amorphous magnesium carbonate (AMC with x = 1) is energetically more metastable than amorphous calcium carbonate (ACC with x = 0), but it is more persistent (crystallizing in months rather than days under ambient conditions), probably due to the slow kinetics of Mg{sup 2+} dehydration. The Ca{sub 1-x}Mg{sub x}CO{sub 3} {center_dot} nH{sub 2}O (0 {le} x {le} 1) system forms a continuous X-ray amorphous series upon precipitation and all intermediate compositions are energetically more stable than a mixture of ACC and AMC, but metastable with respect to crystalline carbonates. The amorphous system can be divided into two distinct regions. For x = 0.00-0.47, thermal analysis is consistent with a homogeneous amorphous phase. The less metastable compositions of this series, with x = 0.0-0.2, are frequently found in biogenic carbonates. If not coincidental, this may suggest that organisms take advantage of this single phase low energy amorphous precursor pathway to crystalline biogenic carbonates. For x {le} 0.47, energetic metastability increases and thermal analysis hints at nanoscale heterogeneity, perhaps of a material near x = 0.5 coexisting with another phase near pure AMC (x = 1). The most hydrated amorphous phases, which occur near x = 0.5, are the least metastable, and may be precursors for dolomite formation.

  3. Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-05-01

    Magnetic tunnel junctions with B2-ordered Co2FeAl full Heusler alloy as a ferromagnetic electrode were fabricated by sputtering on thermally oxidized Si/SiO2 amorphous substrates. A Co2FeAl/MgO/Co50Fe50 structure showed a highly (001)-textured structure and the tunneling magnetoresistance (TMR) ratio of 166% at room temperature and 252% at 48 K were achieved. The temperature dependence of TMR can be fitted with spin wave excitation model, and the bias voltage dependence of differential conductance demonstrated that the high TMR was mainly contributed by coherent tunneling. This work suggests the B2-Co2FeAl is one of the promising candidates for practical spintronic applications.

  4. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  5. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.

    2016-07-01

    The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu, Ni2Mg3 phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  6. Study on glass-forming ability and hydrogen storage properties of amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) alloys

    SciTech Connect

    Lv, Peng; Wang, Zhong-min Zhang, Huai-gang; Balogun, Muhammad-Sadeeq; Ji, Zi-jun; Deng, Jian-qiu; Zhou, Huai-ying

    2013-12-15

    Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. It can be found that the smaller activation energy (ΔΕ) and frequency factor (υ{sub 0}), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K.

  7. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: What do we learn about intracellular calcification by cyanobacteria?

    NASA Astrophysics Data System (ADS)

    Cam, N.; Georgelin, T.; Jaber, M.; Lambert, J.-F.; Benzerara, K.

    2015-07-01

    Some cyanobacteria, including Candidatus Gloeomargarita lithophora, which was isolated from Lake Alchichica (Mexico), can form intracellular carbonates. This contradicts the common paradigm that cyanobacterial calcification is always extracellular and suggests that calcification might be controlled by these cyanobacterial species. Intracellular carbonates have several peculiar characteristics: they are relatively small (between 60 and 500 nm), they are poorly crystalline, and they have Sr/Ca and Ba/Ca ratios much higher than the solution in which the cells grow. It is therefore crucial to understand whether these unique features may indicate the involvement of specific biological processes. Here, in vitro abiotic syntheses were performed to synthesize Mg-, Ca-, Sr- and Ba-containing carbonates with compositions, crystallinities and sizes close to those observed in intracellularly calcifying cyanobacteria. Precipitates were characterized by scanning and transmission electron microscopies coupled with energy dispersive X-ray spectroscopy, thermogravimetric analysis and X-ray diffraction. The size and the poor crystallinity of cyanobacterial intracellular carbonates could be mimicked under these abiotic conditions. It was shown that similarly to Mg, elements such as Sr and Ba can favor stabilization of poorly crystalline carbonates. In contrast, the differential partitioning of Sr, Ba and Ca between the solution and the solids as observed in cyanobacteria could not be mimicked in vitro. This provides keys to a better understanding of biological processes involved in the formation of intracellular carbonates by some cyanobacteria, including the involvement of membrane transporters.

  8. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  9. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  10. Amorphous Computing

    NASA Astrophysics Data System (ADS)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  11. Is simulated amorphous'' silica really amorphous

    SciTech Connect

    Binggeli, N. , PHB Ecublens, 1015 Lausanne ); Chelikowsky, J.R. )

    1994-07-10

    We have carried out extensive molecular dynamics simulations for the pressure induced amorphization of quartz by means of a classical force-field model. In agreement with earlier simulations, we find that a phase transition occurs within the experimental pressure range of the amorphization. However, in contrast to the interpretation of previous simulations, we demonstrate that the new phase is [ital not] amorphous, since the correlation functions for the equilibrated structure can be shown to be consistent with those of a crystalline phase. In addition, two transformations to ordered structures are found to occur sequentially during the simulations. The first transformation is likely to be related to the recently discovered transition of quartz to an intermediate crystalline phase before its amorphization. The second transformation, instead, yields a compact, octahedrally coordinated Si sublattice. The latter may be an artifact of the pair-potential simulation. [copyright] 1994 American Institute of Physics

  12. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  13. In situ structural changes of amorphous diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Moulton, Benjamin J. A.; Henderson, Grant S.; Fukui, Hiroshi; Hiraoka, Nozomu; de Ligny, Dominique; Sonneville, Camille; Kanzaki, Masami

    2016-04-01

    Diopside, CaMgSi2O6, is an important analogue for depolymerized silicate melts. We have used the complimentary spectroscopies, X-ray Raman Scattering (XRS), X-ray absorption near edge structure (XANES) and Raman, to investigate diopside glass in situ to 20 GPa. We observe a stark change in behavior of CaMgSi2O6 near 4 GPa that corresponds to a major change in the rate of inter-tetrahedral angle (∠Si-O-Si) closure. Below 4 GPa, the ∠Si-O-Si closes rapidly at 2-3°/GPa whereas above 4 GPa it decreases by ∼1°/GPa. A distinct shift to higher wavenumbers of the 870 and 905 cm-1 Raman bands are observed at 1.3 GPa suggesting that Q0 species have been completely converted to Q1 or higher Qn species. XRS measurements at the O K-edge suggest that [5]Si is formed by 3 GPa. This formation is accompanied by a rapid decrease in the ∠Si-O-Si and a decrease in Q0 species. A linear increase in the geometric mean of the high frequency envelope, the χb value, from 999 to 1018 cm-1 suggests that the conversion of NBO to BO is continuous up to 14 GPa. Above 14 GPa, the Raman spectra show an obvious negative shift in both, the high frequency peak maximum, and the χb position. Simultaneously, the low frequency envelope looses its asymmetry at 14 GPa. This may be explained by either a loss of a vibrational mode in the range 1000-1200 cm-1 and/or the formation of [6]Si. The structural evolution of CaMgSi2O6 correlates well with a major change in the compressibility and diffusivity around 5 GPa.

  14. Amorphous intergranular phases control the properties of rodent tooth enamel

    NASA Astrophysics Data System (ADS)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  15. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  16. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  17. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  18. [Amorphous silica. Types, health effects of exposure, NDS].

    PubMed

    Woźniak, H; Wiecek, E

    1995-01-01

    Maximum allowable concentration (MAC) values for amorphous silica dust have not been identified in the Polish legal regulations up-to-date. In this work the authors review values of allowable (recommended) amorphous silica dust concentrations in other countries. Data on other types of amorphous silica (natural and synthetic) used in industry as well as data on health effects of exposure to these types of dust are presented. The work encompasses 42 entries in the references and one Table which includes the following proposed MAC values: Non-calcinate diatomaceous earth (diatomite) and synthetic silica: Total dust--10 mg/m3 Respirable dust--2 mg/m3 Calcinate diatomaceous earth (diatomite) and fused silica (vitreous silica): Total dust--2 mg/m3 Respirable dust--1 mg/m3. PMID:7637638

  19. Effect of counterions on the properties of amorphous atorvastatin salts.

    PubMed

    Sonje, Vishal M; Kumar, Lokesh; Puri, Vibha; Kohli, Gunjan; Kaushal, Aditya M; Bansal, Arvind K

    2011-11-20

    Amorphous systems have gained importance as a tool for addressing delivery challenges of poorly water soluble drugs. A careful assessment of thermodynamic and kinetic behavior of amorphous form is necessary for successful use of amorphous form in drug delivery. The present study was undertaken to evaluate effect of monovalent sodium (Na(+); ATV Na), and bivalent calcium (Ca(2+); ATV Ca) and magnesium (Mg(2+); ATV Mg) counterions on properties of amorphous salts of atorvastatin (ATV) model drug. Amorphous form was generated from crystalline salts of ATV by spray drying, and characterized for glass transition temperature (T(g)), fragility and devitrification tendency. In addition, chemical stability of the amorphous salt forms was evaluated. Fragility was studied by calculating activation enthalpy for structural relaxation at T(g), from heating rate dependency of T(g). Density functional theory and relative pK(a)'s of counterions were evaluated to substantiate trend in glass transition temperature. T(g) of salts followed order: ATV Ca>ATV Mg>ATV Na. All salts were fragile to moderately fragile, with D value ranging between 9 and 16. Ease of devitrification followed the order: ATV Na∼ATV Mg≫ATV Ca, using isothermal crystallization and reduced crystallization temperature method. Chemical stability at 80°C showed higher degradation of amorphous ATV Ca (∼5%), while ATV Na and ATV Mg showed degradation of 1-2%. Overall, ATV Ca was better in terms of glass forming ability, higher T(g) and physical stability. The study has importance in selection of a suitable amorphous form, during early drug development phase. PMID:21907794

  20. Pressure-induced amorphous-to-amorphous reversible transformation in Pr{sub 75}Al{sub 25}

    SciTech Connect

    Lin, C. L.; Ahmad, A. S.; Lou, H. B.; Wang, X. D.; Cao, Q. P.; Jiang, J. Z.; Li, Y. C.; Liu, J.; Hu, T. D.; Zhang, D. X.

    2013-12-07

    A pressure-induced amorphous-to-amorphous reversible transformation was revealed in Pr{sub 75}Al{sub 25} metallic glass (MG) using in situ high-pressure synchrotron x-ray diffraction technique. The transition began at about 21 GPa with a ∼ 5% volume collapse and ended at about 35 GPa. This transition is reversible with hysteresis. Based on the high-pressure behaviors of Ce-based metallic glasses and Pr metal here, we suggest that the pressure-induced polyamorphic transition in Pr{sub 75}Al{sub 25} MG stems from 4f-electron delocalization of Pr metal which leads to abrupt change in bond shortening. These results obtained here provide new insights into the underlying mechanism of the amorphous-to-amorphous phase transition in metallic glasses and will trigger more theoretical and experimental investigations for such transition.

  1. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  2. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  3. THE IRRADIATION-INDUCED OLIVINE TO AMORPHOUS PYROXENE TRANSFORMATION PRESERVED IN AN INTERPLANETARY DUST PARTICLE

    SciTech Connect

    Rietmeijer, Frans J. M.

    2009-11-01

    Amorphization of crystalline olivine to glass with a pyroxene composition is well known from high-energy irradiation experiments. This report is on the first natural occurrence of this process preserved in a chondritic aggregate interplanetary dust particle. The Fe-rich olivine grain textures and compositions and the glass grain compositions delineate this transformation that yielded glass with Fe-rich pyroxene compositions. The average glass composition, (Mg, Fe){sub 3}Si{sub 2}O{sub 7}, is a serpentine-dehydroxylate with O/Si = 3.56 +- 0.25, (Mg+Fe)/Si = 1.53 +- 0.24, and Mg/(Mg+Fe) = 0.74 +- 0.1. These measured atomic ratios match the ratios that have been proposed for amorphous interstellar silicate grains very well, albeit the measured Mg/(Mg+Fe) ratio is lower than was proposed for amorphous interstellar silicate grains, Mg/(Mg+Fe) > 0.9.

  4. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  5. Disorder-induced amorphization

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Li, Mo

    1997-03-01

    Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting of a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.

  6. Amorphous silicon photovoltaic devices

    SciTech Connect

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  7. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    PubMed Central

    Combes, Gary B.; Ozkaya, Don; Enache, Dan I.; Ellis, Peter R.; Kelly, Gordon; Rosseinsky, Matthew J.

    2016-01-01

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3−xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3−xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3−xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  8. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer-Tropsch catalysts.

    PubMed

    Gallagher, James R; Boldrin, Paul; Combes, Gary B; Ozkaya, Don; Enache, Dan I; Ellis, Peter R; Kelly, Gordon; Claridge, John B; Rosseinsky, Matthew J

    2016-02-28

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  10. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  11. Superconducting state parameters of amorphous metals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-07-01

    The theoretical computation of the superconducting state parameters (SSP) viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N0V of some monovalent (Li, Na, K, Rb and Cs), divalent (Mg, Zn, Be, Cd and Hg) and polyvalent (In, Tl, Ga, Al, La, Sn, Pb, Ti, Zr, Th, Bi, Nb and W) amorphous metals have been carried out by well known Ashcroft’s empty core (EMC) model pseudopotential. We have employed here five different types of local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to study the exchange and correlation effects on the present investigations. The SSP for Be, Cd, Ga, Al, La, Ti, Zr, Th, Nb and W amorphous metals are reported first time in the present study. A very strong influence of all the exchange and correlation functions is found in the present study. Our results are in fair agreement with other available theoretical as well as experimental data. A strong dependency of the SSP of amorphous metals on the valency Z is found.

  12. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A.; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  13. Nanomoulding with amorphous metals.

    PubMed

    Kumar, Golden; Tang, Hong X; Schroers, Jan

    2009-02-12

    Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials. PMID:19212407

  14. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  15. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    NASA Astrophysics Data System (ADS)

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-01

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayer coating in the 25-80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. The barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  16. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  17. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  18. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  19. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    PubMed

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue. PMID:25678658

  20. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  1. Amorphous and Cellular Computing

    NASA Astrophysics Data System (ADS)

    Abelson, Harold; Sussman, Gerald J.; Knight, Thomas F., Jr

    2001-08-01

    The objective of this research is to create the architectural, algorithmic, and technological foundations for exploiting programmable materials. These are materials that incorporate vast numbers of programmable elements that react to each other and to their environment. Such materials can be fabricated economically, provided that the computing elements are amassed in bulk without arranging for precision interconnect and testing. In order to exploit programmable materials we must identify engineering principles for organizing and instructing myriad programmable entities to cooperate to robustly achieve pre-established goals, even though the individual entities are unreliable and interconnected in unknown, irregular, and time-varying ways. Progress in microfabrication and in bioengineering will make it possible to assemble such amorphous systems at almost no cost, provided that (1) the units need not all work correctly; (2) the units are identically programmed; and (3) there is no need to manufacture precise geometrical arrangements of the units or precise interconnections among them.

  2. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1995-12-31

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to {similar_to}7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of {similar_to}0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe{sup 2+} ions at RT produced amorphization in the implanted ion region after damage levels of {similar_to}1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He{sup +} ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC.

  3. Molecular dynamics simulation of amorphization in forsterite by cosmic rays

    SciTech Connect

    Devanathan, Ram; Durham, Philip; Du, Jincheng; Corrales, Louis R.; Bringa, Eduardo M.

    2007-02-16

    We have examined cosmic ray interactions with silicate dust grains by simulating a thermal spike in a 1.25 million atom forsterite (Mg2SiO4) crystal with periodic boundaries. Spikes were generated by giving a kinetic energy of 1 or 2 eV to every atom within a cylinder of radius 1.73 nm along the [001] direction. An amorphous track of radius ~3 nm was produced for the 2 eV/atom case, but practically no amorphization was produced for 1 eV/atom because of effective dynamic annealing. Chemical segregation was not observed in the track. These results agree with recent experimental studies of ion irradiation effects in silicates, and indicate that cosmic rays can cause the amorphization of interstellar dust.

  4. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B.

    1992-05-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for US products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon US government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United State, and by Germany in the last 2--3 years more than twice that of the US Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W{sub p} for plants with 10 MW/year capacities. 10 refs.

  5. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B. )

    1992-12-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for U.S. products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon U.S. government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United States, and by Germany in the last 2--3 years more than twice that of the U.S. Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W[sub [ital p

  6. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  7. Containerless processing of amorphous ceramics

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  8. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. PMID:27460160

  9. Fabrication of amorphous diamond films

    DOEpatents

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  10. Raman Spectroscopy of Amorphous Carbon

    SciTech Connect

    Tallant, D.R.; Friedmann, T.A.; Missert, N.A.; Siegal, M.P.; Sullivan, J.P.

    1998-01-01

    Amorphous carbon is an elemental form of carbon with low hydrogen content, which may be deposited in thin films by the impact of high energy carbon atoms or ions. It is structurally distinct from the more well-known elemental forms of carbon, diamond and graphite. It is distinct in physical and chemical properties from the material known as diamond-like carbon, a form which is also amorphous but which has a higher hydrogen content, typically near 40 atomic percent. Amorphous carbon also has distinctive Raman spectra, whose patterns depend, through resonance enhancement effects, not only on deposition conditions but also on the wavelength selected for Raman excitation. This paper provides an overview of the Raman spectroscopy of amorphous carbon and describes how Raman spectral patterns correlate to film deposition conditions, physical properties and molecular level structure.

  11. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  12. Preparation and characterization of thin films of MgO, Al2O3 and MgAl2O4 by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ron; Kitai, Adrian H.

    1993-02-01

    MgO, Al2O3 and MgAl2O4 thin films were deposited on silicon substrates at various temperatures by the atomic layer deposition (ALD) method using bis(cyclopentadienyl)magnesium, triethylaluminum, and H2O and were characterized systematically. High-quality polycrystalline MgO films were deposited for a substrate temperature above 500°C, and amorphous thin films were deposited around 400°C. The deposited Al2O3 and MgAl2O4 thin films were characterized as amorphous in structure. Applicability of ALD to complex oxides is discussed.

  13. Hydrous alteration of amorphous silicate smokes - First results

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Donn, B.; Deseife, R.; Donn, A.; Nelson, R.

    1986-01-01

    Results of the initial studies of the hydrous alteration of amorphous Mg-SiO smokes indicate that, although these materials readily adsorb water, the silicate structure is much more stable at 360 K than expected. Drastic changes in the relative absorption strengths of the 10- and 20-micron 'silicate' features that appear quite rapidly at 750 K were observed; these observations might have important implications for the interpretation of cometary dust spectra. Observations of the development of 3.4-3.5 micron features possibly due to hydrocarbons in the spectra of processed Mg-SiO smokes have raised the exciting possibility that these amorphous condensates could act as Fischer-Tropsch type catalysts to produce hydrocarbons in the primitive solar nebula.

  14. Amorphous carbon for photovoltaics

    NASA Astrophysics Data System (ADS)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  15. The use of MTDSC to assess the amorphous phase content of a micronized drug substance.

    PubMed

    Guinot, S; Leveiller, F

    1999-12-01

    Mechanical treatments such as grinding, milling or micronization applied to crystalline drug substances may induce changes such as the occurrence of crystal defects and/or amorphous regions. These changes are likely to affect the chemical and physical properties of the material as well as the corresponding drug product performances. Various analytical techniques such as standard differential scanning calorimetry, isothermal and solution microcalorimetry as well as dynamic vapour sorption can be used to characterise and possibly quantify the amorphous phase content of these materials. These techniques have been applied for the development of analytical methods based on temperature- or solvent-induced (including water) recrystallization of the amorphous phase in semi-crystalline drug substances and excipients and have sometimes allowed for detecting low amounts of amorphous phase. We have developed an alternative MTDSC method for the quantitation of the amorphous content in samples of a micronized drug substance co-crystal (form A), an antibiotic drug substance which does not recrystallize even when exposed to temperature or solvent vapours. This is performed through measurement of the heat capacity jump associated with the amorphous phase glass transition. The MTDSC parameters and experimental conditions were optimised for this system. The amorphous content calibration curve was established using pure crystalline and amorphous drug substance samples and their known mixtures. Limits of detection and quantification of 0.9 and 3.0% (w/w) respectively were obtained for specimen mass less than 5 mg. PMID:10572200

  16. Nanostructures having crystalline and amorphous phases

    SciTech Connect

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  17. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  18. Generalized melting criterion for amorphization

    SciTech Connect

    Devanathan, R. |; Lam, N.Q.; Okamoto, P.R.; Meshii, M.

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr{sub 2}, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  19. Ice formation in amorphous cellulose

    NASA Astrophysics Data System (ADS)

    Czihak, C.; Müller, M.; Schober, H.; Vogl, G.

    2000-03-01

    We investigate the formation of ice in wet amorphous cellulose in the temperature range of 190 K⩽T⩽280 K. Due to voids and pores in the cellulose film, water molecules are able to form crystalline aggregates. Beyond that, water is able to penetrate between cellulose chains where it can adsorb to hydroxyl side groups. From diffraction data we suggest an aggregation of low-density amorphous (lda) ice at cellulose surfaces. The formation of lda ice shows a clear temperature dependence which will be discussed together with recent inelastic neutron scattering results.

  20. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications. PMID:22890518

  1. Amorphous-silicon cell reliability testing

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  2. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  3. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  4. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  5. Amorphous rare earth magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.; Lewis, L.H.; Panchanathan, V.

    1996-08-01

    Gas atomization (GA) processing does not generally have a high enough cooling rate to produce the initial amorphous microstructure needed to obtain optimal magnetic properties in RE{sub 2}Fe{sub 14}B alloys. Phase separation and an underquenched microstructure result from detrimental {alpha}-Fe precipitation, and the resulting magnetic domain structure is very coarse. Additionally, there is a dramatic dependence of the magnetic properties on the cooling rate (and therefore the particle size) and the powders can be sensitive to environmental degradation. Alloy compositions designed just for GA (as opposed to melt spinning) are necessary to produce an amorphous structure that can be crystallized to result in a fine structure with magnetic properties which are independent of particle size. The addition of titanium and carbon to the melt has been found to change the solidification process sufficiently to result in an ``overquenched`` state in which most of the powder size fractions have an amorphous component. Crystallization with a brief heat treatment produces a structure which has improved magnetic properties, in part due to the ability to use compositions with higher Fe contents without {alpha}-Fe precipitation. Results from magnetometry, magnetic force microscopy, and x-ray analyses will be used to contrast the microstructure, domain structure, and magnetic properties of this new generation of amorphous powders with their multiphase predecessors.

  6. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  7. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  8. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  9. Bivalves build their shells from amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  10. Amorphous metal-organic frameworks.

    PubMed

    Bennett, Thomas D; Cheetham, Anthony K

    2014-05-20

    Crystalline metal-organic frameworks (MOFs) are porous frameworks comprising an infinite array of metal nodes connected by organic linkers. The number of novel MOF structures reported per year is now in excess of 6000, despite significant increases in the complexity of both component units and molecular networks. Their regularly repeating structures give rise to chemically variable porous architectures, which have been studied extensively due to their sorption and separation potential. More recently, catalytic applications have been proposed that make use of their chemical tunability, while reports of negative linear compressibility and negative thermal expansion have further expanded interest in the field. Amorphous metal-organic frameworks (aMOFs) retain the basic building blocks and connectivity of their crystalline counterparts, though they lack any long-range periodic order. Aperiodic arrangements of atoms result in their X-ray diffraction patterns being dominated by broad "humps" caused by diffuse scattering and thus they are largely indistinguishable from one another. Amorphous MOFs offer many exciting opportunities for practical application, either as novel functional materials themselves or facilitating other processes, though the domain is largely unexplored (total aMOF reported structures amounting to under 30). Specifically, the use of crystalline MOFs to detect harmful guest species before subsequent stress-induced collapse and guest immobilization is of considerable interest, while functional luminescent and optically active glass-like materials may also be prepared in this manner. The ion transporting capacity of crystalline MOFs might be improved during partial structural collapse, while there are possibilities of preparing superstrong glasses and hybrid liquids during thermal amorphization. The tuning of release times of MOF drug delivery vehicles by partial structural collapse may be possible, and aMOFs are often more mechanically robust than

  11. Exoelectron analysis of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Dekhtyar, Yu. D.; Vinyarskaya, Yu. A.

    1994-04-01

    The method based on registration of photothermostimulated exoelectron emission (PTSE) is used in the proposed new field of investigating the structural defects in amorphous silicon (a-Si). This method can be achieved if the sample under investigation is simultaneously heated and illuminated by ultraviolet light. The mechanism of PTSE from a-Si has been studied in the case of a hydrogenized amorphous silicon (a-Si:H) film grown by glow discharge method. The electronic properties and annealing of defects were analyzed in the study. It has been shown from the results that the PTSE from a-Si:H takes place as a prethreshold single-photon external photoeffect. The exoemission spectroscopy of a-Si:H was shown to be capable in the study of thermally and optically stimulated changes in the electronic structure of defects, their annealing, as well as diffusion of atomic particles, such as hydrogen.

  12. Uranium incorporation into amorphous silica.

    PubMed

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination. PMID:24984107

  13. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement.

    PubMed

    Wairkar, Sarika; Gaud, Ram

    2016-06-01

    The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg) and Metformin hydrochloride (500 mg) COAM, as a dose ratio, were prepared by ball-milling technique. COAMs were characterized for saturation solubility, amorphism and physicochemical interactions (X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)), SEM, in vitro dissolution, and stability studies. Solubility studies revealed a sevenfold rise in solubility of Nateglinide from 0.061 to 0.423 mg/ml in dose ratio of COAM. Solid-state characterization of COAM suggested amorphization of Nateglinide after 6 h of ball milling. XRPD and DSC studies confirmed amorphism in Nateglinide, whereas FTIR elucidated hydrogen interactions (proton exchange between Nateglinide and Metformin hydrochloride). Interestingly, due to low energy of fusion, Nateglinide was completely amorphized and stabilized by Metformin hydrochloride. Consequently, in vitro drug release showed significant increase in dissolution of Nateglinide in COAM, irrespective of dissolution medium. However, little change was observed in the solubility and dissolution profile of Metformin hydrochloride, revealing small change in its crystallinity. Stability data indicated no traces of devitrification in XRPD of stability sample of COAM, and % drug release remained unaffected at accelerated storage conditions. Amorphism of Nateglinide, proton exchange with Metformin hydrochloride, and stabilization of its amorphous form have been noted in ball-milled COAM of Nateglinide-Metformin hydrochloride, revealing enhanced dissolution of Nateglinide. Thus, COAM of Nateglinide-Metformin hydrochloride system is a promising approach for combination therapy in diabetic patients. PMID:26314243

  14. Amorphous Silicate Smokes as Catalysts for the Production of Complex Organic Species in the Primitive Solar Nebula

    NASA Astrophysics Data System (ADS)

    Nuth, J. A., III; Hill, H. G. M.

    2002-03-01

    Amorphous Mg-silicates are excellent Fischer-Tropsch catalysts that convert H2 and CO into hydrocarbons almost as well as Fe-silicates. Mg-silicates do not catalyze formation of ammonia. N is incorporated into the organics if CO, N2 and H2 are used.

  15. Amorphous Silicate Smokes as Catalysts for the Production of Complex Organic Species in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III; Hill, H. G. M.

    2002-01-01

    Amorphous Mg-silicates are excellent Fischer-Tropsch catalysts that convert H2 and CO into hydrocarbons almost as well as Fe-silicates. Mg-silicates do not catalyze formation of ammonia. N is incorporated into the organics if CO, N2 and H2 are used. Additional information is contained in the original extended abstract.

  16. Visual Observations of the Amorphous-Amorphous Transition in H2O Under Pressure.

    PubMed

    Mishima, O; Takemura, K; Aoki, K

    1991-10-18

    The vapor-deposited low-density amorphous phase of H(2)O was directly compressed at 77 kelvin with a diamond-anvil cell, and the boundary between the low-density amorphous phase and the high-density amorphous phase was observed while the sample was warmed under compression. The transition from the low-density amorphous phase to the high-density amorphous phase was distinct and reversible in an apparently narrow pressure range at approximately 130 to approximately 150 kelvin, which provided experimental evidence for polymorphism in amorphous H(2)O. PMID:17742228

  17. Sol-gel-fluorination synthesis of amorphous magnesium fluoride

    SciTech Connect

    Krishna Murthy, J.; Gross, Udo; Ruediger, Stephan; Kemnitz, Erhard . E-mail: erhard.kemnitz@chemie.hu-berlin.de; Winfield, John M.

    2006-03-15

    The sol-gel fluorination process is discussed for the reaction of magnesium alkoxides with HF in non-aqueous solvents to give X-ray amorphous nano-sized magnesium fluoride with high surface areas in the range of 150-350 m{sup 2}/g (HS-MgF{sub 2}). The H2 type hysteresis of nitrogen adsorption-desorption BET-isotherms is indicative for mesoporous solids. A highly distorted structure causes quite high Lewis acidity, shown by NH{sub 3} temperature-programmed desorption (NH{sub 3}-TPD) and catalytic test reactions. XPS data of amorphous and conventionally crystalline MgF{sub 2} are compared, both show octahedral coordination at the metal site. Thermal analysis, F-MAS NMR- and IR-spectroscopy give information on composition and structure of the precursor intermediate as well as of the final metal fluoride. The preparation of complex fluorides, M{sup +}MgF{sub 3} {sup -}, by the sol-gel route is reported. From the magnesium fluoride gel of the above process thin films for optical application are obtained by, e.g., spin coating.

  18. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  19. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  20. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  1. Amorphous powders for inhalation drug delivery.

    PubMed

    Chen, Lan; Okuda, Tomoyuki; Lu, Xiang-Yun; Chan, Hak-Kim

    2016-05-01

    For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles. PMID:26780404

  2. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel

    NASA Astrophysics Data System (ADS)

    Ishimaru, Manabu; Hirotsu, Yoshihiko; Afanasyev-Charkin, Ivan V.; Sickafus, Kurt E.

    2002-02-01

    Ion-beam-induced microstructures in magnesium aluminate (MgAl2O4) spinel have been examined using transmission electron microscopy (TEM). Irradiations were performed at cryogenic temperature (~120 K) on MgAl2O4 spinel single-crystal surfaces with (111) orientation, using 180 keV neon (Ne+) ions to ion fluences ranging from 1016 to 1017 Ne+ cm-2. Cross-sectional TEM observations indicated that the MgAl2O4 spinel transforms first into a metastable crystalline phase and then into an amorphous phase under these irradiation conditions. On the basis of selected-area electron diffraction and high-resolution TEM, we concluded that Ne-ion-beam irradiation induces an ordered spinel-to-disordered rock-salt-like structural phase transformation. Atomistic structures of amorphous MgAl2O4 were also examined on the basis of atomic pair distribution functions. We compared the experimentally obtained results with previous theoretically calculated results for the metastable and amorphous phases of MgAl2O4, and discussed the validity of the proposed ion-beam-induced structural changes in MgAl2O4 spinel.

  3. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  4. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  5. Influence of excipients in comilling on mitigating milling-induced amorphization or structural disorder of crystalline pharmaceutical actives.

    PubMed

    Balani, Prashant N; Ng, Wai Kiong; Tan, Reginald B H; Chan, Sui Yung

    2010-05-01

    The feasibility of using excipients to suppress the amorphization or structural disorder of crystalline salbutamol sulphate (SS) during milling was investigated. SS was subjected to ball-milling in the presence of alpha-lactose monohydrate (LAC), adipic acid (AA), magnesium stearate (MgSt), or polyvinyl pyrrolidone (PVP). X-ray powder diffraction, dynamic vapor sorption (DVS), high sensitivity differential scanning calorimetry (HSDSC) were used to analyze the crystallinity of the milled mixtures. Comilling with crystalline excipients, LAC, AA, and MgSt proved effective in reducing the amorphization of SS. LAC, AA, or MgSt acting as seed crystals to induce recrystallization of amorphous SS formed by milling. During comilling, both SS and LAC turned predominantly amorphous after 45 min but transformed back to a highly crystalline state after 60 min. Amorphous content was below the detection limits of DVS (0.5%) and HSDSC (5%). Comilled and physical mixtures of SS and ALM were stored under normal and elevated humidity conditions. This was found to prevent subsequent changes in crystallinity and morphology of comilled SS:LAC as compared to significant changes in milled SS and physical mixture. These results demonstrate a promising application of comilling with crystalline excipients in mitigating milling induced amorphization of pharmaceutical actives. PMID:19902526

  6. Oxygen Segregation and Ordering in MgB2

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Klie, Robert; Browning, Nigel D.

    2002-03-01

    Polycrystalline MgB2 has been studied by atomic resolution scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). We find that within the detection limits of the techniques, there is no oxygen within the bulk of the grains, but significant oxygen segregated to the grain boundaries. The majority of the grain boundaries contain ordered crystalline MgB_2-xOx and amorphous BOy phases smaller than the coherence length, explaining the high conductivity of the material. Other kinds of grain boundaries containing larger areas of MgO sandwiched between BOy layers were also found. Furthermore, coherent Mg(B,O) precipitates can be formed within the bulk of the MgB2 grains. We will discuss the formation mechanisms of these secondary phases, the presence of oxygen ordering within the precipitates and the effect of the oxide precipitates on the bulk transport properties.

  7. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy.

    PubMed

    Katainen, Erja; Niemelä, Pentti; Harjunen, Päivi; Suhonen, Janne; Järvinen, Kristiina

    2005-11-15

    Solution calorimetry can be used to determine the amorphous content of a compound when the solubility and dissolution rate of the compound in the chosen solvent are reasonably high. Sometimes, it can be difficult find a solvent in which a sample is freely soluble. The present study evaluated the use of solution calorimetry for the assessment of the amorphous content of a sample that is poorly soluble in a solvent. Physical mixtures of lactose and spray-dried lactose samples (the amorphous content varied from 0 to 100%) were analyzed by a solution calorimeter and the results were compared with Raman spectroscopy determinations. The heat of solvation of the samples was determined by solution calorimetry in organic solvents MeOH, EtOH, ACN, THF, acetone (400mg sample/100ml solvent). Lactose is virtually insoluble in ACN, THF and acetone and very slightly soluble in EtOH and MeOH. The amorphous content of the samples could not be determined by solution calorimetry in EtOH, ACN, THF or acetone. However, an excellent correlation was observed between the heat of solvation and the amorphous content of the samples in MeOH. Furthermore, the heat of solvation values of the samples in MeOH showed a linear correlation with the Raman quantifications. Therefore, our results demonstrate that solution calorimetry may represent a rapid and simple method for determining the amorphous content also in samples that are not freely soluble in the solvent. PMID:18970276

  8. Complementary Control by Additivies of the Kinetics of Amorphous CaCO3 Mineralization at an Organic Interface: In-Situ Synchrotron X-ray Observations

    SciTech Connect

    DiMasi,E.; Kwak, S.; Amos, F.; Olszta, M.; Lush, D.; Gower, L.

    2006-01-01

    The kinetics of biomimetic mineralization at a fatty acid monolayer interface have been measured in situ by synchrotron x-ray reflectivity. The formation of biologically relevant amorphous calcium carbonate films is affected by soluble macromolecules, supersaturation rate of change, and Mg cations. We find that these solution conditions influence mineral film formation in a complementary fashion. Poly(sodium acrylate) extends the lifetime of metastable amorphous calcium carbonate, solution saturation controls the mineral film growth rate, and Mg cations create a longer induction time. This is the first quantification of potentially competitive biomineralization mechanisms that addresses nucleation and growth of the amorphous mineral phases, which are important in biomineralization.

  9. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  10. Studies of hydrogenated amorphous silicon

    SciTech Connect

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  11. Ductile crystalline-amorphous nanolaminates.

    PubMed

    Wang, Yinmin; Li, Ju; Hamza, Alex V; Barbee, Troy W

    2007-07-01

    It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper-zirconium glass nanolaminates. These nanocrystalline-amorphous nanolaminates exhibit a high flow stress of 1.09 +/- 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 +/- 1.7%, which is six to eight times higher than that typically observed in conventional crystalline-crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous-crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility. PMID:17592136

  12. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; Treiman, Alan H.; Achilles, Cherie; Bristow, Thomas; Crisp, Joy A.; McAdam, Amy; Archer, Paul Douglas; Sutter, Brad; Rampe, Elizabeth B.

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because

  13. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  14. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  15. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  16. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  17. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  18. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  19. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  20. Structure, thermodynamics, and crystallization of amorphous hafnia

    NASA Astrophysics Data System (ADS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO2. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  1. Solid-state diffusion in amorphous zirconolite

    SciTech Connect

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  2. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  3. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  4. Amorphization of Ti1- x Mn x

    NASA Astrophysics Data System (ADS)

    Chu, B.-L.; Chen, C.-C.; Perng, T.-P.

    1992-08-01

    Three amorphous Ti1- x Mn x alloy powders, with x = 0.4, 0.5, and 0.6, were prepared by mechanical alloying (MA) of the elemental powders in a high-energy ball mill. The amorphous powders were characterized by X-ray diffraction (XRD) and high-resolution transmission elec- tron microscopy (HRTEM). The crystallization temperatures for these alloys detected by dif- ferential scanning calorimetry (DSC) varied from 769 to 830 K. The calculated enthalpies of mixing in these amorphous phases are relatively small compared with those for other Ti-base binary alloys. The criteria for solid-state amorphization reaction are examined. It is suggested that the kinetics of nucleation and growth favors the formation of the amorphous phases and the supply of atoms for nucleation and growth is predominantly through the defective regions induced by MA.

  5. Role of Mg interlayers in Fe/Mg/MgO/Fe and Fe/Mg/MgO/Mg/Fe magnetic tunnel junctions

    SciTech Connect

    Wang, Y.; Zhang, J.; Zhang, Xiaoguang; Cheng, Hai-Ping; Han, Prof. X. F.

    2010-01-01

    -Fe(001)/Mg/MgO/Fe- and -Fe(001)/Mg/MgO/Mg/Fe- magnetic tunnel junctions (MTJs) with Mg interlayers are studied by first-principles calculation. An important role of the Mg interlayer is identified to be preserving the preferential transmission of the majority-spin states with \\Delta_1 symmetry, which dominate the spin-dependent electron transport of MTJs with MgO barrier. One layer of Mg at the electrode/barrier interface does not decrease the tunneling magnetoresistance (TMR) ratio nearly as much as one layer of oxide. At certain Mg thickness case the TMR could be strongly influenced by the resonance tunneling states in minority-spin channel, these states are mainly raised from the quantum-well states formed in the Mg interlayer and coupled with interfacial resonance states which are very sensitive to the interface structures.

  6. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  7. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  8. Defect structure of ultrafine MgB{sub 2} nanoparticles

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Repp, Sergej; Erdem, Emre E-mail: msomer@ku.edu.tr; Thomann, Ralf; Acar, Selçuk

    2014-11-17

    Defect structure of MgB{sub 2} bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB{sub 2}, namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB{sub 2}, respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB{sub 2} in comparison with bulk MgB{sub 2}. Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB{sub 2} can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB{sub 2} material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.

  9. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    PubMed

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  10. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.; Kattelus, H.; So, F.

    1984-01-01

    The general objective was to determine the potential of amorphous metallic thin films as a means of improving the stability of metallic contacts to a silicon substrate. The specific objective pursued was to determine the role of nitrogen in the formation and the resulting properties of amorphous thin-film diffusion barriers. Amorphous metallic films are attractive as diffusion barriers because of the low atomic diffusivity in these materials. Previous investigations revealed that in meeting this condition alone, good diffusion barriers are not necessarily obtained, because amorphous films can react with an adjacent medium (e.g., Si, Al) before they recrystallize. In the case of a silicon single-crystalline substrate, correlation exists between the temperature at which an amorphous metallic binary thin film reacts and the temperatures at which the films made of the same two metallic elements react individually. Amorphous binary films made of Zr and W were investigated. Both react with Si individually only at elevated temperatures. It was confirmed that such films react with Si only above 700 C when annealed in vacuum for 30 min. Amorphous W-N films were also investigated. They are more stable as barriers between Al and Si than polycrystalline W. Nitrogen effectively prevents the W-Al reaction that sets in at 500 C with polycrystalline W.

  11. Crystalline to amorphous transformation in silicon

    SciTech Connect

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  12. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morris, R. V.; Ming, D. W.; Blake, D.; Vaniman, D.; Bish, D. L.; Chipera, S.; Downs, R.; Morrison, S.; Gellert, R.; Campbell, I.; Treiman, A. H.; Achilles, C.; Bristow, T.; Crisp, J. A.; McAdam, A.; Archer, P. D.; Sutter, B.; Rampe, E. B.; Team, M.

    2013-12-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyrox-ene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was cal-culated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiome-try (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (~71 wt.% of bulk sample) and bulk chemical compositon are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be~0 wt.% in the amporphous component. Griffithite is the preferred smectite because the position

  13. Latent ion tracks in amorphous silicon

    SciTech Connect

    Bierschenk, Thomas; Giulian, Raquel; Afra, Boshra; Rodriguez, Matias D; Schauries, D; Mudie, Stephen; Pakarinen, Olli H; Djurabekova, Flyura; Nordlund, Kai; Osmani, Orkhan; Medvedev, Nikita; Rethfield, Baerbel; Ridgway, Mark C; Kluth, Patrick

    2013-01-01

    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

  14. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  15. Peculiarities of Vibration Characteristics of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  16. Structural relaxation of amorphous silicon carbide.

    PubMed

    Ishimaru, Manabu; Bae, In-Tae; Hirotsu, Yoshihiko; Matsumura, Syo; Sickafus, Kurt E

    2002-07-29

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions. PMID:12144449

  17. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Banerjee, Ipsita; Kumta, Prashant N

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation. PMID:27287163

  18. A Spinodal Decomposition Model for the Prediction of the Glass-Forming Ability of Ternary Mg Alloys

    NASA Astrophysics Data System (ADS)

    Eshed, Eyal; Bamberger, Menachem; Katsman, Alexander

    2016-01-01

    The glass-forming ability (GFA) of two alloy systems, Mg-Y-La and Mg-Zn-Nd, was investigated using thermal and microstructural analysis. Rapid solidification was found to lead to microstructural refinement and partial amorphization of the most investigated alloys. The addition of Cu to the Mg-Y-La group was found to increase its tendency to undergo amorphization during rapid solidification, exemplified by the Mg86Y9.5Cu2.5La2 alloy exhibiting a pronounced crystallization peak in the differential scanning calorimetry trace. Two Mg-Zn-Nd alloys, Mg71Zn28Nd and Mg73.6Zn22.1Nd4.3, were found to exhibit significant amorphous behavior, with the former alloy being more amorphous than the latter. An innovative model predicting the GFA of alloys based on spinodal-like decomposition of supercooled alloys is formulated herein. New generalized thermo-kinetic criteria for spinodal decomposition of ternary alloys for time/space-correlated fluctuations were formulated. The time-dependent amplification factor of concentration fluctuations in ternary systems was found to provide adequate GFA evaluation for the compositions of both alloy systems: Mg-Y-La and Mg-Zn-Nd. The model was able to pinpoint the most amorphous alloy in each alloy system, and comparison between both systems pointed to Mg71Zn28Nd as having the best GFA, while also recognizing that it has a lower GFA than the widely known and highly glass-formable Mg65Cu25Y10 alloy. This model is expected to predict the GFA of any envisaged composition, thereby avoiding cumbersome trials.

  19. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches.

    PubMed

    Fakes, Michael G; Vakkalagadda, Blisse J; Qian, Feng; Desikan, Sridhar; Gandhi, Rajesh B; Lai, Chiajen; Hsieh, Alice; Franchini, Miriam K; Toale, Helen; Brown, Jonathan

    2009-03-31

    BMS-488043 is an HIV-attachment inhibitor that exhibited suboptimal oral bioavailability upon using conventional dosage forms prepared utilizing micronized crystalline drug substance. BMS-488043 is classified as a Biopharmaceutics Classification System (BCS) Class-II compound with a poor aqueous solubility of 0.04mg/mL and an acceptable permeability of 178nm/s in the Caco2 cell-line model. Two strategies were evaluated to potentially enhance the oral bioavailability of BMS-488043. The first strategy targeted particle size reduction through nanosizing the crystalline drug substance. The second strategy aimed at altering the drug's physical form by producing an amorphous drug. Both strategies provided an enhancement in oral bioavailability in dogs as compared to a conventional formulation containing the micronized crystalline drug substance. BMS-488043 oral bioavailability enhancement was approximately 5- and 9-folds for nanosizing and amorphous formulation approaches, respectively. The stability of the amorphous coprecipitated drug prepared at different compositions of BMS-488043/polyvinylpyrrolidone (PVP) was evaluated upon exposure to stressed stability conditions of temperature and humidity. The drastic effect of exposure to humidity on conversion of the amorphous drug to crystalline form was observed. Additionally, the dissolution behavior of coprecipitated drug was evaluated under discriminatory conditions of different pH values to optimize the BMS-488043/PVP composition and produce a stabilized, amorphous BMS-488043/PVP (40/60, w/w) spray-dried intermediate (SDI), which was formulated into an oral dosage form for further development and evaluation. PMID:19100319

  20. Synthesis of Amorphous Alloy Nanoparticles by Thermal Plasma Jet in a Quenching Tube

    NASA Astrophysics Data System (ADS)

    Choi, Sooseok; Park, Dong-Wha

    2015-09-01

    Recently, amorphous alloy nanoparticles have received a great attention in various applications such as catalysts, compact and highly efficient transformers, electrode material for Li-ion batteries, etc. Several methods such as microwave heating, laser ablation, and sonification have been studied to synthesize amorphous metal nanoparticles. In the present work, a high velocity thermal plasma jet generated by an arc plasma torch was used to produce iron alloy nanoparticles from an amorphous raw material which was a spherical shaped powder with the mean size of 25 μm. In order to synthesize amorphous alloy nanoparticles, a quenching tube where cooling gas was injected in different axial positions. Alloy nanoparticles were produced in a relatively high input power of higher than 10 kW in a fixed powder feeding at 300 mg/min. The crystallinity of synthesized nanoparticles was decreased with increasing the quenching gas flow rate. The amorphous alloy nanoparticles were found when the quenching gas injection position was 200 mm away from the exit of the plasma torch with the highest quenching gas flow rate of 20 L/min. In the numerical analysis, the highest quenching rate was also expected at the same condition.

  1. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  2. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  3. Amorphization of Silicon Carbide by Carbon Displacement

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-05-10

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and anti-site defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from interstitial production, plays a significant role in the amorphization.

  4. Amorphous Semiconductor Thin Films, an Introduction

    SciTech Connect

    Martin, Peter M.

    2003-12-01

    The field of amorphous semiconductors is so large that I cannot do it justice, but I hope this short column gives you some insight into the properties and materials available, and the issues involved.

  5. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  6. In situ observation of amorphous-amorphous apparently first-order phase transition in zeolites

    NASA Astrophysics Data System (ADS)

    Ovsyuk, Nikolay; Goryainov, Sergei

    2006-09-01

    In this letter, the authors present the observation of the phase transition between low-density amorphous (LDA) and high-density amorphous (HDA) zeolites using a high pressure Raman spectroscopy. It is found that this transition is apparently of the first order and occurs with a silicon coordination rise. It is shown that the Raman spectra of the LDA-HDA phase transitions in zeolites and in silicon are almost identical, suggesting a generality of amorphous-amorphous transformations both in simple substances and in complex polyatomic materials with tetrahedral configurations.

  7. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  8. Amorphous silicon-tellurium alloys

    NASA Astrophysics Data System (ADS)

    Shufflebotham, P. K.; Card, H. C.; Kao, K. C.; Thanailakis, A.

    1986-09-01

    Amorphous silicon-tellurium alloy thin films were fabricated by coevaporation over the composition range of 0-82 at. % Te. The electronic and optical properties of these films were systematically investigated over this same range of composition. The optical gap of these films was found to decrease monotonically with increasing Te content. Conduction near room temperature was due to extended state conduction, while variable range hopping dominated below 250 K. The incorporation of Te in concentrations of less than 1 at. % was found to produce an increase in the density of localized states at the Fermi level and a decrease in the activation energy. This was attributed to the Te being incorporated as a substitutional, fourfold coordinated, double donor in a-Si. At approximately 60 at. % Te, a decrease in the density of localized states at the Fermi level, and an increase in the activation energy and photoresponse was indicated. This was attributed to the possible formation of a less defective a-Si:Te compound.

  9. Ductile crystalline–amorphous nanolaminates

    PubMed Central

    Wang, Yinmin; Li, Ju; Hamza, Alex V.; Barbee, Troy W.

    2007-01-01

    It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 ± 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 ± 1.7%, which is six to eight times higher than that typically observed in conventional crystalline–crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility. PMID:17592136

  10. Structure of Amorphous Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chen, B.; Banfield, J. F.; Waychunas, G. A.

    2008-12-01

    Ultrafine (2 - 3 nm) titania (TiO2) nanoparticles show only diffuse scattering by both conventional powder x-ray diffraction and electron diffraction. We used synchrotron wide-angle x-ray scattering (WAXS) to probe the atomic correlations in this amorphous material. The atomic pair-distribution function (PDF) derived from Fourier transform of the WAXS data was used for reverse Monte Carlo (RMC) simulations of the atomic structure of the small nanoparticles. Molecular dynamics simulations were used to generate input structures for the RMC. X-ray absorption spectroscopy (XAS) simulations were used to screen candidate structures obtained from the RMC. The structure model that best describes both the WAXS and XAS data consists of particles with a highly distorted shell and a small strained anatase-like crystalline core. The average coordination number of Ti is 5.3 and the Ti-O bond length peaks at 1.940 Å. Relative to bulk titania, the reduction of the coordination number is primarily due to the truncation of the Ti-O octahedra at the titania nanoparticle surface, and the shortening of the Ti-O bond length is due to bond contraction in the distorted shell. Core-shell structures in ultrafine nanoparticles may be common in many materials (e.g. ZnS).

  11. A Magnetic Sensor with Amorphous Wire

    PubMed Central

    He, Dongfeng; Shiwa, Mitsuharu

    2014-01-01

    Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/√Hz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor. PMID:24940865

  12. Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  13. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  14. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  15. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  16. Pulsed laser micromachining of Mg-Cu-Gd bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Kai; Lee, Ching-Jen; Hu, Ting-Ting; Li, Chun-Han; Huang, J. C.

    2012-06-01

    Micromachining of Mg-based bulk metallic glasses (BMGs) is performed using two kinds of pulsed nanosecond lasers: a 355 nm ultraviolet (UV) laser and a 1064 nm infrared (IR) laser. Precision machining on the micrometer scale and the preservation of amorphous or short-range order characteristics are important for the application of BMGs in micro-electro-mechanical systems. A higher micromachining rate is achieved using the UV laser than using the IR laser due to a better absorption rate of the former by Mg-based BMGs and a higher photon energy. The cutting depth of Mg-based BMGs ranges from 1 to 80 μm depending on the laser parameters. By appropriate adjustment of the laser power and scan speed, successful machining of the Mg-based BMG with preservation of the amorphous phase is achieved after the laser irradiation process. Short-pulse laser cutting represents a suitable alternative for machining of micro components.

  17. Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel.

    PubMed

    Gordon, Lyle M; Joester, Derk

    2015-01-01

    Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis. PMID:25852562

  18. Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Luo, Jian Yi; Cao, Zhi; Chen, Feng; Li, Li; Lin, Yu Rong; Liang, Bao Wen; Zeng, Qing Guang; Zhang, Mei; He, Xin; Li, Chen

    2013-12-01

    In this paper, authors demonstrate the high performance of the amorphous WO3 nanosheets in the removal of methylene blue (MB) from water. The saturated MB adsorbed amount by using WO3 nanosheets as an adsorbent can reach to 600 mg/g, exceeding the ones of the normal activated carbon powders. Results indicate that the aggregation of adsorbed MB molecules occurs in the porous micro-structures of the amorphous WO3 nanosheets, and a precipitation phenomenon begins to happen when the initial MB concentration reach to 20 mg/L or greater, attributed to the density increase of WO3 nanosheets after their porous micro-structures are adsorbed with enough MB molecules.

  19. Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel

    PubMed Central

    Gordon, Lyle M.; Joester, Derk

    2015-01-01

    Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis. PMID:25852562

  20. A solubility model for amorphous silica in concentrated electrolytes

    SciTech Connect

    Felmy, A.R.; Schroeder, C.C.; Mason, M.J.

    1994-08-01

    Silica is one of the major constituents of the earth`s crust and is ubiquitously present in most natural materials. The solubility of silica and other silica-containing compounds is, therefore, of primary concern in geochemistry and in chemical processing applications where silica scale formation, resulting from changes in temperature and electrolyte composition, can cause problems in process design and operation. This paper describes the development of an aqueous thermodynamic model for accurately predicting the solubility of amorphous silica and other silica-containing compounds in the system Na{sup +}-H{sup +}-Mg{sup 2+}-NO{sub 3}{sup {minus}}-SO{sub 4}{sup 2{minus}}-Cl{sup {minus}}-H{sub 2}O to high concentration and across the temperature range 25--100 C. This model, which utilizes the aqueous thermodynamic model of Pitzer, includes only one dissolved silica species, H{sub 4}SiO{sub 4}(aq), and is valid in neutral to very acidic solutions. The model is parameterized from the extensive set of solubility data in the literature as well as from new experimental data on amorphous silica solubility in HNO{sub 3} and HCl developed as part of this study. The accuracy of the model is tested on solutions more complex than those used in model parameterization.

  1. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  2. Energetics of water interactions with amorphous and nanocrystalline carbonates

    NASA Astrophysics Data System (ADS)

    Radha, A.; Navrotsky, A.

    2013-12-01

    Understanding carbonate surface-water interaction is important as it determines the reactivity, growth and dissolution of mineral surface. The stability and residence time of adsorbed water could influence the mobility of ions on mineral surface or hinder the surface reaction by blocking the surface active sites. The nature of water-carbonate interface has been characterized by several computational studies but not much experimentally measured data are available on such interaction energetics. We report the direct experimental measurement of enthalpies of water adsorption on amorphous and nanocrystalline Ca/Mg/Mn carbonates using a water vapor adsorption calorimetry. The simultaneous measurement of adsorption enthalpy as a function of amount of accurate dosed water vapor gives the actual interaction of water with carbonate surface. The distinct modes of water adsorption on different active sites on the surface would generate adsorption enthalpy curve with distinct energetic trends.

  3. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  4. Slow dissolution behaviour of amorphous capecitabine.

    PubMed

    Meulenaar, Jelte; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2013-01-30

    In this article, we report the anomalous dissolution behaviour of amorphous capecitabine. In contrast to what is expected from thermodynamic theory, amorphous capecitabine dissolves significantly slower compared to its crystalline counterpart. Our experiments show that this is due to the "gelling" properties of amorphous capecitabine in an aqueous environment. The "gel", which is immediately formed upon contact with water, entraps the capecitabine and significantly slows down its dissolution. This "gelling" property is hypothesized to be related to the low glass transition temperature (Tg 19°C) of amorphous capecitabine, resulting in an instant collapse ("gelling") in an aqueous environment. From IR and DSC analysis it is shown that this collapsed capecitabine is remarkably stable and does not recrystallize upon an increased water content or temperature. This highly reproducible dissolution behaviour can be applied in the development of a sustained release dosage form as substantially less sustained release excipient is required in order to attain the desired release profile. As capecitabine is a high-dosed drug, this is highly favourable in view of the size and thus clinical feasibility of the final dosage form. Currently, we are developing and clinically testing a sustained release formulation making use of amorphous capecitabine and its remarkable dissolution behaviour. PMID:23219704

  5. SURVIVAL OF AMORPHOUS WATER ICE ON CENTAURS

    SciTech Connect

    Guilbert-Lepoutre, Aurelie

    2012-10-01

    Centaurs are believed to be Kuiper Belt objects in transition between Jupiter and Neptune before possibly becoming Jupiter family comets. Some indirect observational evidence is consistent with the presence of amorphous water ice in Centaurs. Some of them also display a cometary activity, probably triggered by the crystallization of the amorphous water ice, as suggested by Jewitt and this work. Indeed, we investigate the survival of amorphous water ice against crystallization, using a fully three-dimensional thermal evolution model. Simulations are performed for varying heliocentric distances and obliquities. They suggest that crystallization can be triggered as far as 16 AU, though amorphous ice can survive beyond 10 AU. The phase transition is an efficient source of outgassing up to 10-12 AU, which is broadly consistent with the observations of the active Centaurs. The most extreme case is 167P/CINEOS, which barely crystallizes in our simulations. However, amorphous ice can be preserved inside Centaurs in many heliocentric distance-obliquity combinations, below a {approx}5-10 m crystallized crust. We also find that outgassing due to crystallization cannot be sustained for a time longer than 10{sup 4}-10{sup 4} years, leading to the hypothesis that active Centaurs might have recently suffered from orbital changes. This could be supported by both observations (although limited) and dynamical studies.

  6. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  7. Crystallization of amorphous Zr-Be alloys

    NASA Astrophysics Data System (ADS)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  8. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  9. Mg/Fe FRACTIONATION IN CIRCUMSTELLAR SILICATE DUST INVOLVED IN CRYSTALLIZATION

    SciTech Connect

    Murata, K.; Takakura, T.; Chihara, H.; Koike, C.; Tsuchiyama, A.

    2009-05-10

    Infrared astronomical observations of oxygen-rich young and evolved stars show that only magnesium-rich crystalline silicates exist in circumstellar regions, and iron, one of the most important dust-forming elements, is extremely depleted. The compositional characteristic of circumstellar crystalline silicates is fundamentally different from that of primitive extraterrestrial materials in our solar system, such as chondritic meteorites and interplanetary dust particles. Amorphous silicates are ubiquitous and abundant in space, and are a promising carrier of iron. However, since the first detection of crystalline silicates, there has been an unsolved inconsistency due to differing compositions of coexisting crystalline and amorphous phases, considering that amorphous silicates have been expected to be precursors of these crystals. Here we show the first experimental evidence that Fe-depleted olivine can be formed by crystallization via thermal heating of FeO-bearing amorphous silicates under subsolidus conditions. Mg/Fe fractionation involved in crystallization makes possible to coexist Mg-rich crystalline silicates with Fe-bearing amorphous silicates around stars.

  10. The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing

    NASA Astrophysics Data System (ADS)

    Davoisne, C.; Djouadi, Z.; Leroux, H.; D'Hendecourt, L.; Jones, A.; Deboffle, D.

    2006-03-01

    Aims.We present laboratory studies of the micro-structural evolution of an amorphous ferro-magnesian silicate, of olivine composition, following thermal annealing under vacuum.Methods.The amorphous silicate was prepared as a thin film on a diamond substrate. Annealing under vacuum was performed at temperatures ranging from 870 to 1020 K. After annealing the thin films were extracted from the substrate and analysed by transmission electron microscopy to infer their microstructural and compositional evolution.Results.Spheroidal metallic nano-particles (2-50 nm) are found within the silicate films, which are still amorphous after annealing at 870 K and partially crystallized into forsterite for annealing up to 1020 K. We interpret this microstructure in terms of a reduction of the initial amorphous silicate FeO component, because of the carbon-rich partial pressure in the furnace due to pumping mechanism. Annealing in a controlled oxygen-rich atmosphere confirms this interpretation. Conclusions.The observed microstructures closely resemble those of the GEMS (Glass with Embedded Metal and Sulphides) found in chondritic IDPs (Interplanetary Dust Particles). Since IDPs contain abundant carbonaceous matter, a solid-state reduction reaction may have occurred during heating in the hot inner regions of the proto-solar disc. Related to this, the presence of forsterite grains grown from the amorphous precursor material clearly demonstrates that condensation from gaseous species is not required to explain the occurrence of forsterite around young protostars and in comets. Forsterite grains in these environments can be formed directly in the solid phase by thermal annealing of amorphous ferro-magnesian silicates precursor under reducing conditions. Finally, locking iron as metallic particles within the silicates explains why astronomical silicates always appear observationally Mg-rich.

  11. Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample.

    PubMed

    Ma, Zongqing; Liu, Yongchang; Yu, Liming; Cai, Qi

    2012-01-01

    The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad

  12. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  13. Transverse and longitudinal vibrations in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.

    2015-12-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ω as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.

  14. Amorphous/epitaxial superlattice for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Shibata, Mamoru; Nakashima, Seisuke; Tatsuoka, Hirokazu; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru; Nakamura, Yoshiaki

    2016-08-01

    An amorphous/epitaxial superlattice system is proposed for application to thermoelectric devices, and the superlattice based on a PbGeTeS system was prepared by the alternate deposition of PbS and GeTe using a hot wall epitaxy technique. The structure was analyzed by high-resolution transmission electron microscopy (HRTEM) and X-ray analysis, and it was found that the superlattice consists of an epitaxial PbTe-based layer and a GeS-based amorphous layer by the reconstruction of the constituents. A reduction in thermal conductivity due to the amorphous/epitaxial system was confirmed by a 2ω method. Electrical and thermoelectric properties were measured for the samples.

  15. Measuring strain distributions in amorphous materials

    NASA Astrophysics Data System (ADS)

    Poulsen, Henning F.; Wert, John A.; Neuefeind, Jörg; Honkimäki, Veijo; Daymond, Mark

    2005-01-01

    A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4-10 Å. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions.

  16. IUE observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hjellming, M. S.; Gallagher, J. S., III; Hunter, D. A.

    1985-01-01

    Blue amorphous galaxies are star-forming, irregularlike systems which lack the spatially distinct OB stellar groups that are characteristic of most late-type galaxies. In order to better understand the nature of star-formation processes in these unusual galaxies, short-wavelength IUE spectra of the amorphous galaxies NGC 1705 and NGC 1800 have been obtained. It is found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star-formation rate inferred from new optical data. NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar populations. The UV spectra of these galaxies and a variety of other hot extragalactic stellar systems in fact have similar characteristics, which suggests OB stellar populations are often homogeneous in their properties.

  17. Enthalpy of crystallization of amorphous yttrium oxide

    SciTech Connect

    Reznitskii, L.A.

    1988-02-01

    Measurements have been made on the enthalpies of crystallization of amorphous Fe/sub 2/O/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ from amorphous Fe/sub 2/O/sub 3/ and Y/sub 2/O/sub 3/ as determined by the DSC method. The heat of crystallization for Y/sub 2/O/sub 3am/ does not make itself felt on the heating thermogram, in contrast to that for Fe/sub 2/O/sub 3/, evidently because it is spread out over a wide temperature range, so it is difficult to measure. One can combine thermochemical equations to calculate the enthalpy of crystallization for amorphous yttrium oxide as ..delta..H = -24.9 kJ/mole.

  18. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both

  19. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  20. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  1. Amorphous Insulator Films With Controllable Properties

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Warner, Joseph D.; Liu, David C.; Pouch, John J.

    1987-01-01

    In experiments described in report, amorphous hydrogenated carbon films grown at room temperature by low-frequency plasma deposition, using methane or butane gas. Films have unique array of useful properties; (a) adhere to wide variety of materials; (b) contain only carbon and hydrogen; (c) smooth and free of pinholes; (d) resistant to attack by moisture and chemicals; and (e) have high electric-breakdown strength and electrical resistivity. Two of optical properties and hardness of this film controlled by deposition conditions. Amorphous a-C:H and BN films used for hermetic sealing and protection of optical, electronic, magnetic, or delicate mechanical systems, and for semiconductor field dielectrics.

  2. Short range order in amorphous polycondensates

    SciTech Connect

    Lamers, C.; Richter, D.; Schweika, W.; Batoulis, J.; Sommer, K.; Cable, J.W.; Shapiro, S.M.

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  3. Superhydrophobic amorphous carbon/carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Han, Z. J.; Tay, B. K.; Shakerzadeh, M.; Ostrikov, K.

    2009-06-01

    Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed.

  4. Production feature of soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Tyagunov, A. G.; Baryshev, E. E.; Shmakova, K. Yu

    2016-06-01

    Methods for making nanocrystalline alloys have been discussed. Temperature dependences of the surface tension (σ), electric resistivity (ρ), magnetic susceptibility (χ) and kinematic viscosity (ν) have been obtained. Comparison of the properties of amorphous ribbons obtained by the pilot and serial technologies has been conducted. Science-based technology of multi-component alloy smelting makes it possible to prepare equilibrium smelt, the structure of which has a significant effect on the properties of the amorphous ribbon before spinning and kinetics of its crystallization has been offered.

  5. Nanoindentation-induced amorphization in silicon carbide

    NASA Astrophysics Data System (ADS)

    Szlufarska, Izabela; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-07-01

    The nanoindentation-induced amorphization in SiC is studied using molecular dynamics simulations. The load-displacement response shows an elastic shoulder followed by a plastic regime consisting of a series of load drops. Analyses of bond angles, local pressure, and shear stress, and shortest-path rings show that these drops are related to dislocation activities under the indenter. We show that amorphization is driven by coalescence of dislocation loops and that there is a strong correlation between load-displacement response and ring distribution.

  6. EXAFS Studies of Amorphous MoGe

    NASA Astrophysics Data System (ADS)

    Boyce, J. B.; Carter, W. L.; Geballe, T. H.; Claeson, T.

    1982-06-01

    Extended X-ray Absorption Fine Structure of amorphous and crystalline Mo-Ge samples sputter deposited on glass or kapton substrates was studied. Small local distortions were found in a substitutional b.c.c. Mo rich sample. A coordination in the range 5-7 and Ge-Mo distance of 2.65 A were estimated for an amorphous, intermediate composition Mo-Ge sample. The lack of superconductivity of some samples deposited on kapton was correlated to the presence of oxygen in the material.

  7. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  8. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  9. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  10. Two species/nonideal solution model for amorphous/amorphous phase transitions

    SciTech Connect

    Moynihan, C.T.

    1997-12-31

    A simple macroscopic thermodynamic model for first order transitions between two amorphous phases in a one component liquid is reviewed, augmented and evaluated. The model presumes the existence in the liquid of two species, whose concentrations are temperature and pressure dependent and which form a solution with large, positive deviations from ideality. Application of the model to recent data indicates that water can undergo an amorphous/amorphous phase transition below a critical temperature T{sub c} of 217K and above a critical pressure P{sub c} of 380 atm.

  11. Porous Mg thin films for Mg-air batteries.

    PubMed

    Xin, Gongbiao; Wang, Xiaojuan; Wang, Chongyun; Zheng, Jie; Li, Xingguo

    2013-12-28

    An alkaline primary Mg-air battery made from a porous Mg thin film displayed superior discharge performances, including a flat discharge plateau, a high open-circuit voltage of 1.41 V and a large discharge capacity of 821 mAh g(-1), suggesting that the electrochemical performances of Mg-air batteries can be improved by controlling the Mg anode morphology. PMID:24158667

  12. Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

    SciTech Connect

    Han, T Y; Aizenberg, J

    2007-08-31

    Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.

  13. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles.

    PubMed

    Jiang, Lizhen; Yu, Yongbo; Li, Yang; Yu, Yang; Duan, Junchao; Zou, Yang; Li, Qiuling; Sun, Zhiwei

    2016-12-01

    Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na(+)-K(+) ATPase activity and Ca(2+)-Mg(2+) ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro. PMID:26831695

  14. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Lizhen; Yu, Yongbo; Li, Yang; Yu, Yang; Duan, Junchao; Zou, Yang; Li, Qiuling; Sun, Zhiwei

    2016-02-01

    Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na+-K+ ATPase activity and Ca2+-Mg2+ ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro.

  15. Amorphization and nanocrystallization of silcon under shock compression

    SciTech Connect

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.

  16. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  17. Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions.

    SciTech Connect

    Schreiber, D. K.; Choi, Y. S.; Liu, Y.; Chiaramonti, A. N.; Seidman, D. N.; Petford-Long, A. K.

    2011-05-01

    Three-dimensional atom-probe tomography and transmission electron microscopy have been utilized to study the effects of Ta getter presputtering and either a Mg or Ru free-layer cap on the elemental distributions and properties of MgO-based magnetic tunnel junctions after annealing. Annealing the samples resulted in crystallization of the amorphous CoFeB layer and diffusion of the majority of the boron away from the crystallized CoFeB layers. The Ta getter presputter is found to reduce the segregation of boron at the MgO/CoFeB interface after annealing, improving the tunneling magnetoresistance of the tunnel junction. This effect is observed for samples with either a Ru free-layer cap or a Mg free-layer cap and is thought to be a result of a reduced oxygen concentration within the MgO due to the effect of Ta getter presputtering. A Ru free-layer cap provides superior magnetic and magnetotransport properties compared to a Mg free-layer cap. Mg from the Mg free-layer cap is observed to diffuse toward the MgO tunnel barrier upon annealing, degrading both the crystalline quality of the CoFeB and magnetic isolation of the CoFeB free-layer from the CoFeB reference-layer. Lateral variations in the B distribution within the CoFeB free-layer are observed in the samples with a Ru free-layer cap, which are associated with crystalline and amorphous grains. The B-rich, amorphous grains are found to be depleted in Fe, while the B-poor crystalline grains are slightly enriched in Fe.

  18. Amorphization of embedded Cu nanocrystals by ion irradiation

    NASA Astrophysics Data System (ADS)

    Johannessen, B.; Kluth, P.; Llewellyn, D. J.; Foran, G. J.; Cookson, D. J.; Ridgway, M. C.

    2007-02-01

    While bulk crystalline elemental metals cannot be amorphized by ion irradiation in the absence of chemical impurities, the authors demonstrate that finite-size effects enable the amorphization of embedded Cu nanocrystals. The authors form and compare the atomic-scale structure of the polycrystalline, nanocrystalline, and amorphous phases, present an explanation for the extreme sensitivity to irradiation exhibited by nanocrystals, and show that low-temperature annealing is sufficient to return amorphized material to the crystalline form.

  19. Observations of Local Interstellar Mg I and Mg II

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Oegerle, W.; Weiler, E.; Stencel, R. E.; Kondo, Y.

    1984-01-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.

  20. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  1. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  2. Ion-assisted recrystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Priolo, F.; Spinella, C.; La Ferla, A.; Rimini, E.; Ferla, G.

    1989-12-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The planar motion of the crystal-amorphous interface was monitored in situ, during irradiations, by transient reflectivity measurements. This technique allows the measurement of the ion-induced growth rate with a very high precision. We have observed that this growth rate scales linearly with the number of displacements produced at the crystal-amorphous interface by the impinging ions. Moreover the regrowth onto <100> oriented substrates is a factor of ≈ 4 faster with respect to that on <111> substrates. Impurities dissolved in the amorphous layer influence the kinetics of recrystallization. For instance, dopants such as As, B and P enhance the ion-induced growth rate while oxygen has the opposite effect. The dependence of the rate on impurity concentration is however less strong with respect to pure thermal annealing. For instance, an oxygen concentration of 1 × 1021 / cm3 decreases the ion-induced growth rate by a factor of ≈ 3; this same concentration would have decreased the rate of pure thermal annealing by more than 4 orders of magnitude. The reduced effects of oxygen during ion-beam crystallization allow the regrowth of deposited Si layers despite the presence of a high interfacial oxygen content. The process is investigated in detail and its possible application to the microelectronic technology is discussed.

  3. Athermal nonlinear elastic constants of amorphous solids.

    PubMed

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place. PMID:20866874

  4. Athermal nonlinear elastic constants of amorphous solids

    NASA Astrophysics Data System (ADS)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  5. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  6. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  7. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  8. The Electronic Structure of Amorphous Carbon Nanodots.

    PubMed

    Margraf, Johannes T; Strauss, Volker; Guldi, Dirk M; Clark, Timothy

    2015-06-18

    We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their counterparts doped with nitrogen and/or oxygen feature large electronic band gaps. Surprisingly, descriptors such as the elemental composition and the number of sp(3)-atoms only influence the electronic structure weakly. Instead, the exact topology of the sp(2)-network in terms of effective conjugation defines the band gap. Amorphous carbon nanodots of different structures and sizes were cut out of the periodic structures. Our calculations predict the occurrence of localized electronic surface states, which give rise to interesting effects such as amphoteric reactivity and predicted optical band gaps in the near-UV/visible range. Optical and electronic gaps display a dependence on particle size similar to that of inorganic colloidal quantum dots. PMID:25731776

  9. Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Ab initio calculations are used to optimize the structures and determine the binding energies of Mg(+) to a series of ligands. Mg(+) bonds electrostatically with benzene, acetone, H2, CO, and NH3 and a self-consistent-field treatment gives a good description of the bonding. The bonding in MgCN(+) and MgCH3(+) is largely covalent and a correlated treatment is required.

  10. Molecular dynamics simulation of amorphous indomethacin.

    PubMed

    Xiang, Tian-Xiang; Anderson, Bradley D

    2013-01-01

    Molecular dynamics (MD) simulations have been conducted using an assembly consisting of 105 indomethacin (IMC) molecules and 12 water molecules to investigate the underlying dynamic (e.g., rotational and translational diffusivities and conformation relaxation rates) and structural properties (e.g., conformation, hydrogen-bonding distributions, and interactions of water with IMC) of amorphous IMC. These properties may be important in predicting physical stability of this metastable material. The IMC model was constructed using X-ray diffraction data with the force-field parameters mostly assigned by analogy with similar groups in Amber-ff03 and atomic charges calculated with the B3LYP/ccpVTZ30, IEFPCM, and RESP models. The assemblies were initially equilibrated in their molten state and cooled through the glass transition temperature to form amorphous solids. Constant temperature dynamic runs were then carried out above and below the T(g) (i.e., at 600 K (10 ns), 400 K (350 ns), and 298 K (240 ns)). The density (1.312 ± 0.003 g/cm(3)) of the simulated amorphous solid at 298 K was close to the experimental value (1.32 g/cm(3)) while the estimated T(g) (384 K) was ~64 degrees higher than the experimental value (320 K) due to the faster cooling rate. Due to the hindered rotation of its amide bond, IMC can exist in different diastereomeric states. Different IMC conformations were sufficiently sampled in the IMC melt or vapor, but transitions occurred rarely in the glass. The hydrogen-bonding patterns in amorphous IMC are more complex in the amorphous state than in the crystalline polymorphs. Carboxylic dimers that are dominant in α- and γ-crystals were found to occur at a much lower probability in the simulated IMC glasses while hydrogen-bonded IMC chains were more easily identified patterns in the simulated amorphous solids. To determine molecular diffusivity, a novel analytical method is proposed to deal with the non-Einsteinian behavior, in which the temporal

  11. Synthesis of microforsterite using derived-amorphous-silica of silica sands

    NASA Astrophysics Data System (ADS)

    Nurbaiti, Upik; Triwikantoro, Zainuri, Mochamad; Pratapa, Suminar

    2016-04-01

    Synthesis of microforsterite (Mg2SiO4) has been successfully done by a simple method benefiting of the local silica sands from Tanah Laut, Indonesia. The starting material was amorphous silica powder which was processed using coprecipitation method from the sands. The silica powder was obtained from a series of stages of the purification process of the sands, namely magnetic separation, grinding and soaking with HCl. The microforsterite synthesis followed the reaction of stoichiometric mole ratio mixing of 1:2 of the amorphous silica and MgO powders with 3 wt% addion of PVA as a catalyst.The mixture was calcined at temperatures between 1150-1400°C with 4 hours holding time. XRD data showed that calcination at a temperature of 1150°C for 4 hours was optimum where the weight fraction of forsterite can reach as much as 93 wt% with MgO as the secondary phase and without MgSiO3. SEM photograph of the microforsterite showed tapered morphology with a relatively homogeneous distribution.

  12. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  13. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  14. Amorphization of complex ceramics by heavy-particle irradiations

    SciTech Connect

    Ewing, R.C.; Wang, L.M.; Weber, W.J.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO{sub 2}) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO{sub 4}]; the hexagonal orthosilicate/phosphate apatite structure-type [X{sub 10}(ZO{sub 4}){sub 6}(F,Cl,O){sub 2}]; the isometric pyrochlores [A{sub 1-2}B{sub 2}O{sub 6}(O,OH,F){sub 0-1p}H{sub 2}O] and its monoclinic derivative zirconotite [CaZrTi{sub 2}O{sub 7}]; the olivine (derivative - hcp) structure types, {alpha}-{sup VI}A{sub 2}{sup IV}BO{sub 4}, and spinel (ccp), {gamma}-{sup VI}A{sub 2}{sup IV}BO{sub 4}.

  15. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  16. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. PMID:18449935

  17. Amorphous material of the skin in amyotrophic lateral sclerosis: a morphologic and biochemical study

    NASA Technical Reports Server (NTRS)

    Ono, S.; Nagao, K.; Yamauchi, M.

    1994-01-01

    We performed morphologic studies on skin from seven patients with ALS and seven control subjects. By light microscopy, the wide spaces that separated collagen bundles reacted strongly with colloidal iron and alcian blue in ALS patients. Electron microscopy revealed markedly increased amorphous material that was positive for ruthenium red in the ground substance. These findings were not present in controls. Quantitative amino acid analysis showed that the amount of total amino acids (nmoles per mg dry weight) was significantly decreased (p < 0.01) in ALS patients compared with that of controls, and there was a significant negative correlation between skin amino acid content and duration of illness in ALS patients (r = -0.83, p < 0.001). These morphologic findings and biochemical data indicate that the amorphous material, which is markedly increased in ALS skin, includes glycosaminoglycans.

  18. Petrologic Constraints on Amorphous and Crystalline Magnesium Silicates: Dust Formation and Evolution in Selected Herbig Ae/Be Systems

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and "amorphous silicates with olivine and pyroxene stoichiometry" around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting "astronomical nomenclature" and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the "Principle of Actualism" that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  19. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    SciTech Connect

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  20. Crystallization Experiments on Amorphous Silicates with Chondritic Composition: Quantitative Formulation of the Crystallization

    NASA Astrophysics Data System (ADS)

    Murata, K.; Chihara, H.; Tsuchiyama, A.; Koike, C.; Takakura, T.; Noguchi, T.; Nakamura, T.

    2007-10-01

    In order to make clear crystallization process of silicates in circumstellar environments of oxygen-rich young stars, we have performed laboratory experiments on crystallization of a silicate material by use of a synthetic sample with the chondritic composition for the first time. The aim of this work is to analyze the crystallization process quantitatively using the amorphous material with the chondritic composition. The starting amorphous material was synthesized by the sol-gel method. The sample was heated at 660°-1200°C for 0.5-12 hr to investigate the temperature and time dependence of the crystallization. The run products were analyzed using infrared absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Olivine [(Mg, Fe)2SiO4] was mainly crystallized from the starting amorphous material. We performed infrared spectral fittings of the heated samples using individual spectra of olivine and amorphous silicate, and estimated the degree of crystallization quantitatively. The time-dependent crystallization process could be formulated using the Johnson-Mehl-Avrami equation with the power of about 1.2, which is consistent with theoretical crystallization model of three-dimensional diffusion-controlled growth from a state that a number of nuclei is constant. The constant number of nuclei corresponds to the starting material, which contains crystallites of magnetite (Fe3O4) and ferrihydrite (5Fe2O3 . 9H2O) as nucleation sites of olivine crystals. From the quantitative analyses, we suggest that crystallization processes in circumstellar regions should depend on properties of the interstellar amorphous silicates such as existence of crystallites and/or FeO content.

  1. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  2. The Structure and Properties of Amorphous Indium Oxide

    PubMed Central

    2015-01-01

    A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InOx polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure–property relationship. PMID:25678743

  3. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  4. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  5. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-09-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  6. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-05-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  7. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves; Cousin, Agnès.

    2014-12-01

    X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory mission—the Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstone—show evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides ≥ 0 wt %): 21-22 wt % for Rocknest and 15-20 wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (~27 and ~31 wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO42-), and nanophase ferric oxides.

  8. Structural and tribological characterization of protective amorphous diamond-like carbon and amorphous CNx overcoats for next generation hard disks

    NASA Astrophysics Data System (ADS)

    Scharf, T. W.; Ott, R. D.; Yang, D.; Barnard, J. A.

    1999-03-01

    Further insight into processing-structure-property relationships have been carried out for existing and candidate carbon-based protective overcoats used in the magnetic recording industry. Specifically, 5 nm thick amorphous diamond-like carbon (a:C) and nitrogenated diamond-like carbon (a:CNx) overcoats were deposited by low deposition rate sputtering onto a thin film disk consisting of either CoCrPt/CrV/NiP/AlMg or CoCrPt/CrV/glass. The wear durability and frictional behavior of these hard disks were ascertained using a recently developed depth sensing reciprocating nanoscratch test. It was determined that the CN0.14/CoCrPt/CrV/glass disk exhibited the most wear resistance, least amount of plastic deformation, and lowest kinetic friction coefficient after the last wear event. Core level x-ray photoelectron spectroscopy (XPS) results of sputter cleaned overcoats indicated that nitrogen up to 14 at. % incorporated into the amorphous network resulted in these improvements near the overcoat/magnetic layer interface, since there was an increase in the number of N-sp3 C bonded sites in a predominantly N-sp2 C bonded matrix. However, nonsputter cleaned overcoats exhibited a more graphitic pyridine-like (nondoping configuration) structure near the surface as evidenced by the increase in C=N versus C-N bonds and the valence band XPS determined appearance of the 2p-π band near the Fermi level (EF). Therefore, XPS sputter cleaning revealed a gradient in the chemical nature of the overcoats through the thickness. In addition, micro-Raman spectroscopy established that a further increase of nitrogen (⩾18 at. %) weakened the overcoat structure due to the formation of terminated sites in the amorphous carbon network, since nitrogen failed to connect the sp2 domains within the network. This, in conjunction with an increase in the intensity of the 2p-π band from the valence band XPS spectra and the increase in the G-band position and ID/IG ratio from the Raman spectra

  9. Control of carbonate alkalinity on Mg incorporation in calcite: Insights on the occurrence of high Mg calcites in diagenetic environments

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Dietzel, Martin

    2015-04-01

    High Mg calcites (HMC), with up to 25 mol % of Mg, are common features in early diagenetic environments and are frequently associated with bio-induced anaerobic oxidation of methane (AOM). Such archives hold valuable information about the biogeochemical processes occurring in sedimentary environments in the geological past. Despite the frequency AOM-induced HMC observed in marine diagenetic settings and their potential role in dolomitization, only a minor number of experimental studies has been devoted on deciphering their formation conditions. Thus, in order to improve our understanding on the formation mechanism of HMC induced by elevated carbonate ion concentrations, we precipitated HMC by computer controlled titration of a (Mg,Ca)Cl2 solution at different Mg/Ca ratios into a NaHCO3 solution under precisely defined physicochemical conditions (T = 25.00 ±0.03°C; pH = 8.3 ±0.1). The formation of carbonates was monitored at a high temporal resolution using in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. We identified two distinct mechanisms of HMC formation. In solutions with molar Mg/Ca ratios ≤ 1/8 calcium carbonate was precipitated as crystalline phases directly from homogeneous solution. In contrast, higher Mg/Ca ratios induced the formation of Mg-rich ACC (up to 10 mol % of Mg), which was subsequently transformed to HMC with up 20 mol % of Mg. Our experimental results highlight that the finally formed HMC has a higher Mg content than the ACC precursor phase. Considering experimental data for Mg containing ACC transformation to crystalline calcium carbonate from literature, the continuous enrichment of Mg in the precipitate throughout transformation of amorphous to crystalline CaCO3 most likely occurs due to the high carbonate alkalinity (DIC about 0.1 M) of our reactive solutions. The Mg incorporation into calcite lattice seems to be favored by intensive supply of carbonate ions as

  10. Reversibility and criticality in amorphous solids

    PubMed Central

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  11. Reversibility and criticality in amorphous solids.

    PubMed

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  12. Reversibility and criticality in amorphous solids

    SciTech Connect

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  13. Reversibility and criticality in amorphous solids

    DOE PAGESBeta

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  14. Application of amorphous brush-plated

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Zhu, Y.; Zheng, Z.

    1994-02-01

    The results obtained during industrial trials have shown that the service life of hot work dies can be increased by 33 to 180% using the brush plating technique to prepare amorphous coatings. The coatings possess a much higher hardness, lower friction coefficient at room and elevated temperatures, good scale resistance in addition to higher surface finish, compared to uncoated dies, and thus improve the tribological performance of the dies. In this work, a study of the crystallization process, its kinetics, and the hardness variations of the coatings has been made. According to the data obtained, it can be considered that the main reason for the success of amorphous brush-plated coatings is that, during the operation, crystallization and precipitation takes place instantaneously, which results in a strong secondary hardening effect, thus leading to an increase in the red hardness of the surface layers of dies, therefore ensuring higher thermal wear resistance of the dies.

  15. Amorphous wires in displacement sensing techniques

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Niarchos, D.

    1992-10-01

    In this paper, a new displacement sensor is proposed which is based on the magnetostrictive delay line technique (MDL). Due to this technique, the displacement of a moving magnet at either the acoustic stress point of origin or the detecting coil can be sensed, due to the change of the peak value of the output voltage. This sensor uses the recently developed FeSiB and FeCoCrSiB amorphous wires. Reported results show a linear response for defined regions of displacement, and a monotonic one for the case of the 125 μm FeSiB wires. It is also shown that this sensor arrangement can be used for fabrication of displacement distribution integrated sensors. Finally, it is shown that use of amorphous wires makes the repeatability of the response of the sensor as accurate as 0.6% without using hardware or software calibration.

  16. Surface modified amorphous ribbon based magnetoimpedance biosensor.

    PubMed

    Kurlyandskaya, Galina V; Fal Miyar, Vanessa

    2007-04-15

    Magnetoimpedance (MI) changes due to surface modification of the sensitive element caused by human urine, were studied with the aim of creating a robust biosensor working on a principle of electrochemical magnetoimpedance spectroscopy. A biosensor prototype with an as-quenched amorphous ribbon sensitive element was designed and calibrated for a frequency range of 0.5-10 MHz at a current intensity of 60 mA. Measurements as a function of the exposure time were made both in a regime where chemical surface modification and MI measurements were separated as well as in a regime where they were done simultaneously. The MI variation was explained by the change of the surface magnetic anisotropy. It was shown that the magnetoimpedance effect can be successfully employed as a new option to probe the electric features of the Fe(5)Co(70)Si(15)B(10) amorphous ribbon magnetic electrode surface modified by human urine. PMID:16914305

  17. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  18. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    SciTech Connect

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Thermoluminescence characteristics of hydrogenated amorphous zirconia

    NASA Astrophysics Data System (ADS)

    Montalvo, T. R.; Tenorio, L. O.; Nieto, J. A.; Salgado, M. B.; Estrada, A. M. S.; Furetta, C.

    2005-05-01

    This paper reports the experimental results concerning the thermoluminescent (TL) characteristics of hydrogenated amorphous zirconium oxide (a-Zr:H) powder prepared by the sol-gel method. The advantages of this method are the homogeneity and the purity of the gels associated with a relatively low sintering temperature. Hydrogenated amorphous powder was characterized by thermal analysis and X-ray diffraction. The main TL characteristics investigated were the TL response as a function of the absorbed dose, the reproducibility of the TL readings and the fading. The undoped a-Zr:H powder presents a TL glow curve with two peaks centered at 150 and 260 degrees C, respectively, after beta irradiation. The TL response a-Zr:H as a function of the absorbed dose showed a linear behavior over a wide range. The results presented open the possibility to use this material as a good TL dosimeter.

  1. Low-temperature relaxations in amorphous polyolefins

    NASA Technical Reports Server (NTRS)

    Hiltner, A.; Baer, E.; Martin, J. R.; Gillham, J. K.

    1974-01-01

    The dynamic mechanical relaxation behavior of two series of amorphous polyolefins, was investigated from 4.2 K to the glass transition. Most of the polymers show a damping maximum or plateau in the 40 to 50 K region. Various mechanisms which have been suggested for cryogenic relaxations in amorphous polymers are considered as they might relate to the polyolefins. Two secondary relaxation processes above 80 K are distinguished. A relaxation at about 160 K (beta) in the second and third member of each series is associated with restricted blackbone motion. This process requires a certain degree of chain flexibility since it is not observed in the first member of each series. A lower temperature process (gamma) is observed in each member of the second series and is attributed to motion of the ethyl side group.

  2. Chromic Mechanism in Amorphous WO3 Films

    SciTech Connect

    Zhang, J. G.; Benson, D. K.; Tracy, C. E.; Deb, S. K.; Czanderna, A. W.

    1997-06-01

    We propose a new model for the chromic mechanism in amorphous tungsten oxide films (WO3-y .cntdot. nH2O). This model not only explains a variety of seemingly conflicting experimental results reported in the literature that cannot be explained by existing models, it also has practical implications with respect to improving the coloring efficiency and durability of electrochromic devices. According to this model, a typical as-deposited tungsten oxide film has tungsten mainly in W6+ and W4+ states and can be represented as W6+(1-y) W4+(y)O(3-y) .cntdot. nH2O. The proposed chromic mechanism is based on the small polaron transition between the charge-induced W5+ state and the orignial W4+ state insteasd of the W5+ and W6+ states as suggested in previous models. The correlation between the electrochromic and photochromic behavior in amorphous tungsten oxide films is also discussed.

  3. Insulating behavior of an amorphous graphene membrane

    NASA Astrophysics Data System (ADS)

    Van Tuan, Dinh; Kumar, Avishek; Roche, Stephan; Ortmann, Frank; Thorpe, M. F.; Ordejon, Pablo

    2012-09-01

    We investigate the charge transport properties of planar amorphous graphene that is fully topologically disordered, in the form of sp2 threefold coordinated networks consisting of hexagonal rings but also including many pentagons and heptagons distributed in a random fashion. Using the Kubo transport methodology and the Lanczos method, the density of states, mean free paths, and semiclassical conductivities of such amorphous graphene membranes are computed. Despite a large increase in the density of states close to the charge neutrality point, all electronic properties are dramatically degraded, evidencing an Anderson insulating state caused by topological disorder alone. These results are supported by Landauer-Büttiker conductance calculations, which show a localization length as short as 5 nm.

  4. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  5. Dynamical models of hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand; Lewis, Laurent J.

    1991-04-01

    The results of our molecular-dynamics simulation of bulk hydrogenated amorphous silicon using empirical potentials are presented. More specifically, we discuss a dynamical procedure for incorporating hydrogen into a pure amorphous silicon matrix, which is derived from the concept of floating bonds put forward by Pantelides [Phys. Rev. Lett. 57, 2979 (1986)]. The structures resulting from this model are compared with those obtained with use of a static approach recently developed by us. This method exhibits considerable improvement over the previous one and, in particular, unambiguously reveals the strain-relieving role of hydrogen. While the former model leads to substantial overcoordination, the present one results in almost perfect tetrahedral bonding, with an average coordination number Z=4.03, the lowest value ever achieved using a Stillinger-Weber potential. The simulations are also used to calculate the vibrational densities of states, which are found to be in good accord with corresponding neutron-scattering measurements.

  6. Characterization of Amorphous Zinc Tin Oxide Semiconductors

    SciTech Connect

    Rajachidambaram, Jaana Saranya; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Varga, Tamas; Flynn, Brendan T.; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2012-06-12

    Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and post annealing conditions on film structure, composition, surface contamination, and thin film transistor (TFT) device performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. We found that the bulk Zn:Sn ratio of the sputter deposited films were slightly tin rich compared to the composition of the ceramic sputter target, and there was a significant depletion of zinc at the surface. X-ray photoelectron spectroscopy also indicated that residual surface contamination depended strongly on the sample post-annealing conditions where water, carbonate and hydroxyl species were absorbed to the surface. Electrical characterization of ZTO films, using TFT test structures, indicated that mobilities as high as 17 cm2/Vs could be obtained for depletion mode devices.

  7. A neutron diffraction study of amorphous boron

    NASA Astrophysics Data System (ADS)

    Delaplane, R. G.; Lundström, T.; Dahlborg, U.; Howells, W. S.

    1991-07-01

    The structure of amorphous boron has been studied with pulsed neutron diffraction techniques using the ISIS facilities at the Rutherford Appleton Laboratory. The experimental static structure factor S(Q) and radial distribution function support a structural model based on units of B12 icosahedra resembling those found in crystalline β-rhombohedral boron, but with a certain degree of disorder occurring in the linking between these subunits.

  8. Design Requirements for Amorphous Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Harrison, J. S.

    1999-01-01

    An overview of the piezoelectric activity in amorphous piezoelectric polymers is presented. The criteria required to render a polymer piezoelectric are discussed. Although piezoelectricity is a coupling between mechanical and electrical properties, most research has concentrated on the electrical properties of potentially piezoelectric polymers. In this work, we present comparative mechanical data as a function of temperature and offer a summary of polarization and electromechanical properties for each of the polymers considered.

  9. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  10. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  11. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  12. Shock induced crystallization of amorphous Nickel powders

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  13. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  14. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  15. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  16. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS. PMID:26633346

  17. Enhancing the efficiency of wastewater treatment by addition of Fe-based amorphous alloy powders with H2O2 in ferrofluid

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Cheng; Bian, Xiu-Fang; Yang, Jian-Fei

    2014-03-01

    Using combination of ferrofluid (FF) and Fe-based amorphous alloy in the advanced treatment of high concentration, organic wastewater was investigated. The addition of Fe73.5Nb3Cu1Si13.5B9 amorphous alloy powders into a FF give rise to a dramatic enhancement in decreasing chemical oxygen demand (COD) and decolorization. The removal rate of COD by using FF that combined Fe73.5Nb3Cu1Si13.5B9 metallic glass (MG) particles reached 92% in the presence of H2O2, nearly more than 50% higher than that by using only FF. Furthermore, compared with the FF, the decolorizing effect of the combination was 20% higher. It has been found that MG powders with the amorphous structures have high efficiency of waste water treatment and lead to high catalytic ability.

  18. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders

    PubMed Central

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Perepezko, John H.

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses. PMID:22639726

  19. Investigations on silicon/amorphous-carbon and silicon/nanocrystalline palladium/ amorphous-carbon interfaces.

    PubMed

    Roy, M; Sengupta, P; Tyagi, A K; Kale, G B

    2008-08-01

    Our previous work revealed that significant enhancement in sp3-carbon content of amorphous carbon films could be achieved when grown on nanocrystalline palladium interlayer as compared to those grown on bare silicon substrates. To find out why, the nature of interface formed in both the cases has been investigated using Electron Probe Micro Analysis (EPMA) technique. It has been found that a reactive interface in the form of silicon carbide and/silicon oxy-carbide is formed at the interface of silicon/amorphous-carbon films, while palladium remains primarily in its native form at the interface of nanocrystalline palladium/amorphous-carbon films. However, there can be traces of dissolved oxygen within the metallic layer as well. The study has been corroborated further from X-ray photoelectron spectroscopic studies. PMID:19049221

  20. Etude de la texture des rubans EPR de silicium polycristallin photovoltaïque

    NASA Astrophysics Data System (ADS)

    Chibani, A.; Gauthier, R.; Pinard, P.; Andonov, P.

    1991-09-01

    EPR polysilicon ribbons are obtained from a 5N-6N purity grade silicon powder melting followed by a recrystallization step. Being assigned to the photocell manufacture, we study the texture by X-ray diffraction method to reveal the majority of the crystal orientations and prove the eventual existence of specific orientations adapted to the best photovoltaic conversion efficiencies such as (100), (110) or (111). Moreover, we tested the possibility to induce the (111) orientation with a monocrystalline seed having this orientation. It appears that the crystal growth is essentially anisotropic and that only the orientation of the grains with their (331) planes parallel to the ribbon surface may be considered as dominant after the recrystallization step; finally, the (111) starting seed has an effect only at the recrystallization onset.

  1. Substitution of Mn for Mg in MgB_2*

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Michael D.; Johnston, David C.; Miller, Lance L.; Hill, Julienne M.

    2002-03-01

    The study of solid solutions in which the Mg in MgB2 is partially replaced by magnetic 3d or 4f atoms can potentially reveal important information on the superconducting state of MgB_2. As an end-member of the hypothetical Mg_1-xMn_xB2 system, MnB2 is isostructural with MgB2 and is an antiferromagnet below TN = 760 K which becomes canted at 157 K. A previous study by Moritomo et al.[1] examined the structure and properties of multi-phase samples with 0.01<= x<= 0.15. We attempted to obtain single-phase samples with x<= 0.25 by reacting the constituent elements in sealed Ta tubes and/or using prereacted MnBx synthesized using an arc furnace. The results of x-ray diffraction and magnetization measurements on those samples will be presented. * Supported by the USDOE under contract no. W-7405-Eng-82. [1] "Mn-substitution effects on MgB2 superconductor", Y.Moritomo et al. J. Phys. Soc. Japan b70, 1889 (2001).; “Effects of transition metal doping in MgB2 superconductor", Y. Moritomo at al. arXiv:cond-mat/0104568.

  2. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; Crisp, Joy A.; DesMarais, David J.; Downs, Robert; Farmer, Jack D.; Morookian, John Michael; Morrison, Shaunna; Sarrazin, Philippe; Spanovich, Nicole; Treiman, Allan H.; Yen, Albert S.

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  3. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  4. Enhanced cycling stability and high rate dischargeability of (La,Mg)2Ni7-type hydrogen storage alloys with (La,Mg)5Ni19 minor phase

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Han, Shumin; Han, Da; Li, Yuan; Yang, Shuqin; Zhang, Lu; Zhao, Yumeng

    2015-08-01

    The A2B7-type lanthanum (La)-magnesium (Mg)-nickel (Ni)-based alloy with single (La,Mg)2Ni7 phase and different amounts of (La,Mg)5Ni19 minor phase was obtained by step-wise sintering. The impact of (La,Mg)5Ni19 phase on the alloy's microstructure and electrochemical performance was subsequently studied. It was found that the average subunit volume in (La,Mg)5Ni19 phase is smaller than that in (La,Mg)2Ni7 phase, resulting in increases of strains inside the alloys and decreases of cell volumes. During battery charge/discharge, the (La,Mg)5Ni19 phase network scattered in the alloys relieves internal stress, alleviates pulverization and oxidation of the alloys, stabilizes the stacking structures against amorphization, and finally improves the cycling stability of the alloys. Furthermore, (La,Mg)5Ni19 phase with higher Ni content desorbs hydrogen ahead of (La,Mg)2Ni7 phase. The reduced hydrogen pressure in (La,Mg)5Ni19 phase can subsequently lead to the fast discharge of (La,Mg)2Ni7 phase, thus making a remarkable improvement in high rate dischargeability at 1500 mA g-1 from 46.2% to 58.9% with increasing (La,Mg)5Ni19 phase abundance from 0 to 37.4 wt.%. Therefore, it is believed that A2B7-type La-Mg-Ni-based alloys with A5B19-type minor phase are promising prototypes for high-power and long-lifetime nickel/metal hydride battery electrode materials.

  5. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  6. Thermal properties of amorphous/crystalline silicon superlattices.

    PubMed

    France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos

    2014-09-01

    Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883

  7. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  8. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  9. Electric field modulation of thermopower for transparent amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Koide, Hirotaka; Nagao, Yuki; Koumoto, Kunihito; Takasaki, Yuka; Umemura, Tomonari; Kato, Takeharu; Ikuhara, Yuichi; Ohta, Hiromichi

    2010-11-01

    To clarify the electronic density of states (DOS) around the conduction band bottom for state of the art transparent amorphous oxide semiconductors (TAOSs), InGaZnO4 and In2MgO4, we fabricated TAOS-based transparent thin film transistors (TTFTs) and measured their gate voltage dependence of thermopower (S). TAOS-based TTFTs exhibit an unusual S behavior. The |S|-value abruptly increases but then gradually decreases as Vg increases, clearly suggesting the antiparabolic shaped DOS is hybridized with the original parabolic shaped DOS around the conduction band bottom.

  10. Polyamorphous transition in amorphous fullerites C{sub 70}

    SciTech Connect

    Borisova, P. A.; Agafonov, S. S.; Glazkov, V. P.; D'yakonova, N. P.; Somenkov, V. A.

    2011-12-15

    Samples of amorphous fullerites C{sub 70} have been obtained by mechanical activation (grinding in a ball mill). The structure of the samples has been investigated by neutron and X-ray diffraction. The high-temperature (up to 1200 Degree-Sign C) annealing of amorphous fullerites revealed a polyamorphous transition from molecular to atomic glass, which is accompanied by the disappearance of fullerene halos at small scattering angles. Possible structural versions of the high-temperature amorphous phase are discussed.

  11. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  12. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  13. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: A comparative first-principles study

    NASA Astrophysics Data System (ADS)

    Legrain, Fleur; Malyi, Oleksandr; Manzhos, Sergei

    2015-03-01

    Titanium dioxide (TiO2) has been proposed as a potential electrode material for lithium, sodium, and magnesium ion batteries. Among the phases of TiO2, anatase, rutile, and (B)-TiO2 are the most commonly used phases for electrochemical storage, while the amorphous phase has also been shown to be a promising candidate. We present a comparative density functional theory study of the insertion energetics of Li, Na, and Mg into anatase, rutile, and (B)-TiO2, as well as into the amorphous phase. Our results show that among the crystalline phases, (B)-TiO2 provides the strongest binding between TiO2 and the inserted Li/Na/Mg atom. We also find that for all Li, Na, and Mg, the amorphous phase provides insertion sites well-dispersed in energies, with a lowest energy site more thermodynamically favorable than insertion sites in the crystalline phases. We also obtain the localized Ti3+ states together with the formation of the defect states in the band gap, which are induced by the insertion, at the GGA level of theory (without the Hubbard correction).

  14. Evaluation of Three Amorphous Drug Delivery Technologies to Improve the Oral Absorption of Flubendazole.

    PubMed

    Vialpando, Monica; Smulders, Stefanie; Bone, Scott; Jager, Casey; Vodak, David; Van Speybroeck, Michiel; Verheyen, Loes; Backx, Katrien; Boeykens, Peter; Brewster, Marcus E; Ceulemans, Jens; Novoa de Armas, Hector; Van Geel, Katrien; Kesselaers, Emma; Hillewaert, Vera; Lachau-Durand, Sophie; Meurs, Greet; Psathas, Petros; Van Hove, Ben; Verreck, Geert; Voets, Marieke; Weuts, Ilse; Mackie, Claire

    2016-09-01

    This study investigates 3 amorphous technologies to improve the dissolution rate and oral bioavailability of flubendazole (FLU). The selected approaches are (1) a standard spray-dried dispersion with hydroxypropylmethylcellulose (HPMC) E5 or polyvinylpyrrolidone-vinyl acetate 64, both with Vitamin E d-α-tocopheryl polyethylene glycol succinate; (2) a modified process spray-dried dispersion (MPSDD) with either HPMC E3 or hydroxypropylmethylcellulose acetate succinate (HPMCAS-M); and (3) confining FLU in ordered mesoporous silica (OMS). The physicochemical stability and in vitro release of optimized formulations were evaluated following 2 weeks of open conditions at 25°C/60% relative humidity (RH) and 40°C/75% RH. All formulations remained amorphous at 25°C/60% RH. Only the MPSDD formulation containing HPMCAS-M and 3/7 (wt./wt.) FLU/OMS did not crystallize following 40°C/75% RH exposure. The OMS and MPSDD formulations contained the lowest and highest amount of hydrolyzed degradant, respectively. All formulations were dosed to rats at 20 mg/kg in suspension. One FLU/OMS formulation was also dosed as a capsule blend. Plasma concentration profiles were determined following a single dose. In vivo findings show that the OMS capsule and suspension resulted in the overall highest area under the curve and Cmax values, respectively. These results cross-evaluate various amorphous formulations and provide a link to enhanced biopharmaceutical performance. PMID:27113473

  15. Refractive indices of metastable and amorphous phases in Ne +-ion irradiated magnesium-aluminate spinel

    NASA Astrophysics Data System (ADS)

    Afanasyev-Charkin, I. V.; Cooke, D. W.; Ishimaru, M.; Bennett, B. L.; Gritsyna, V. T.; Williams, J. R.; Sickafus, K. E.

    2001-04-01

    Single-crystal MgAl 2O 4 was subjected to 180 keV Ne +-ion irradiation to fluences of (1, 5, and 10)×10 20 ions/m2. The metastable and amorphous phases induced by irradiation were studied using transmission electron microscopy (TEM) and optical transmission spectroscopy. The thicknesses of implantation-induced layer structures were obtained from TEM observations. This information was then used in conjunction with optical transmission results to deduce the refractive indices of individual structures. It was found that the lowest ion fluence produces a metastable layer with a reduced index of refraction ( n=1.70±0.005) relative to the pristine substrate ( n=1.72), whereas the intermediate fluence induces an amorphous region ( n=1.61±0.01) bounded by metastable regions. The effect of the highest fluence is to increase the thickness of the amorphous layer ( n=1.60±0.01) at the expense of the metastable regions.

  16. Interaction of hydrogen with surfaces of silicates: single crystal vs. amorphous.

    PubMed

    He, Jiao; Frank, Paul; Vidali, Gianfranco

    2011-09-21

    We have studied how the formation of molecular hydrogen on silicates at low temperature is influenced by surface morphology. At low temperature (<30 K), the formation of molecular hydrogen occurs chiefly through weak physical adsorption processes. Morphology then plays a role in facilitating or hindering the formation of molecular hydrogen. We studied the formation of molecular hydrogen on a single crystal forsterite and on thin films of amorphous silicate of general composition (Fe(x)Mg((x-1)))(2)SiO(4), 0 < x < 1. The samples were studied ex situ by Atom Force Microscopy (AFM), and in situ using Thermal Programmed Desorption (TPD). The data were analysed using a rate equation model. The main outcome of the experiments is that TPD features of HD desorbing from an amorphous silicate after its formation are much wider than the ones from a single crystal; correspondingly typical energy barriers for diffusion and desorption of H, H(2) are larger as well. The results of our model can be used in chemical evolution codes of space environments, where both amorphous and crystalline silicates have been detected. PMID:21808801

  17. Strain-induced photoconductivity in thin films of Co doped amorphous carbon.

    PubMed

    Jiang, Y C; Gao, J

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg(1/3)Nb(2/3)O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  18. Strain-induced photoconductivity in thin films of Co doped amorphous carbon

    PubMed Central

    Jiang, Y. C.; Gao, J.

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  19. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders

    NASA Astrophysics Data System (ADS)

    Xu, Da; Wang, Dongliang; Li, Chen; Yuan, Pusheng; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Huang, He; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-04-01

    MgB2/Nb/Monel monofilament wires were fabricated using four different boron powders by an internal Mg diffusion (IMD) process. The microstructure, morphology and the critical current density (J c) of the used boron powders and the formative MgB2 layers were analyzed and compared. It was found that the purity and particle size of the boron powder influence the superconducting properties of MgB2 wires; further that the optimized heat-treatment condition also depends on the quality of the boron powder. The highest J c was obtained in the MgB2 layer made using amorphous boron (AB) powder, although a certain amount of voids existed in the superconducting layer. The IMD-processed MgB2 layer fabricated using high-purity boron (HB) powder had also a high J c compared with the powder-in-tube (PIT) process and a few unreacted boron particles remained in it. MgB2 wire fabricated using low-purity boron (LB) powder had a high cost-performance ratio compared with the others, which is expected to allow the fabrication of large-scale and low-cost superconducting wires for practical application. However, the enhancement of the J c was not found in the MgB2 layer manufactured using the ball-milled LB (MLB) powder as expected due to the increased percentage of impurity.

  20. Advances in amorphous and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryusuke

    2012-10-01

    A new amorphous alloy has been recently introduced which shows a saturation magnetic induction Bs of 1.64 T which is compared with Bs=1.57 T for a currently available Fe-based amorphous alloy and decreased magnetic losses. Such a combination is rare but can be explained in terms of induced magnetic anisotropy being reduced by the alloy's chemistry and its heat treatment. It has been found that the region of magnetization rotation in the new alloy is considerably narrowed, resulting in reduced exciting power in the magnetic devices utilizing the material. Efforts to increase Bs also have been made for nanocrystalline alloys. For example, a nanocrystalline alloy having a composition of Fe80.5Cu1.5Si4B14 shows Bs exceeding 1.8 T. The iron loss at 50 Hz and at 1.6 T induction in a toroidal core of this material is 0.46 W/kg which is 2/3 that of a grain-oriented silicon steel. At 20 kHz/0.2 T excitation, the iron loss is about 60% of that in an Fe-based amorphous alloy which is widely used in power electronics. Another example is a Fe85Si2B8P4Cu1 nanocrystalline alloy with a Bs of 1.8 T, which is reported to exhibit a magnetic core loss of about 0.2 W/kg at 50 Hz and at 1.5 T induction. This article is a review of these new developments and their impacts on energy efficient magnetic devices.

  1. Structure and dynamics of amorphous water ice

    NASA Technical Reports Server (NTRS)

    Laufer, D.; Kochavi, E.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1987-01-01

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  2. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  3. Deuterium in crystalline and amorphous silicon

    SciTech Connect

    Borzi, R.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Boyce, J.B.; Johnson, N.M.; Ready, S.E.; Walker, J.

    1997-07-01

    The authors report deuteron magnetic resonance (DMR) measurements on aged deuterium-implanted single crystal n-type silicon and comparisons with amorphous silicon spectra. The sample film was prepared six years ago by deuteration from a-D{sub 2} plasma and evaluated by a variety of experimental methods. Deuterium has been evolving with time and the present DMR signal shows a smaller deuteron population. A doublet from Si-D configurations along (111) has decreased more than have central molecular DMR components, which include 47 and 12 kHz FWHM gaussians. Transient DMR magnetization recoveries indicate spin lattice relaxation to para-D{sub 2} relaxation centers.

  4. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  5. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  6. Fabrication and characterization of amorphous silica nanostructures

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Wang, Jianbo; Cao, Guangyi; Choy, Wallace C. H.

    2008-06-01

    Large-scale amorphous silica nanostructures, including nanowires, nanotubes and flowerlike nanowire bunches depending on the position, have been fabricated on silicon wafer through a cheap route under the assistance of gold and germanium. Accompanying the observation of blue-green light emission, comprehensive micro-structural characterization reveals that the growth of nanostructures is catalyzed only by gold whereas the final morphology of nanostructures depends on the location to germanium ball. Au 2Si, a compound of gold and silicon, is also disclosed as an intermediate state during the catalysis. Correspondingly, a growth scheme is proposed based on the experimental results and the vapor-liquid-solid mechanism.

  7. Self-Diffusion in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-01

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on 29Si/natSi heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4 ±0.3 ) eV . In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C , which can be interpreted as the consequence of a high diffusion entropy.

  8. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  9. Amorphous computing: examples, mathematics and theory.

    PubMed

    Stark, W Richard

    2013-01-01

    The cellular automata model was described by John von Neumann and his friends in the 1950s as a representation of information processing in multicellular tissue. With crystalline arrays of cells and synchronous activity, it missed the mark (Stark and Hughes, BioSystems 55:107-117, 2000). Recently, amorphous computing, a valid model for morphogenesis in multicellular information processing, has begun to fill the void. Through simple examples and elementary mathematics, this paper begins a computation theory for this important new direction. PMID:23946719

  10. Femtosecond laser crystallization of amorphous Ge

    SciTech Connect

    Salihoglu, Omer; Aydinli, Atilla; Kueruem, Ulas; Gul Yaglioglu, H.; Elmali, Ayhan

    2011-06-15

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm{sup -1} as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  11. Optical multilayers with an amorphous fluoropolymer

    SciTech Connect

    Chow, R.; Loomis, G.E.; Lindsey, E.F.

    1994-07-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 run was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2}, SiO{sub 2}) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  12. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  13. Self-Diffusion in Amorphous Silicon.

    PubMed

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-15

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3)  eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy. PMID:26824552

  14. Cavitation Erosion Resistance of Fe-Based Amorphous/Nanocrystal Coatings Prepared by High-Velocity Arc Spraying

    NASA Astrophysics Data System (ADS)

    Wang, Zehua; Zhang, Xuan; Cheng, Jiangbo; Lin, Jinran; Zhou, Zehua

    2014-04-01

    Two kinds of amorphous/nanocrystal coating (FeCrNiBSiNb and FeCrBSiWNb) were prepared by high-velocity arc spraying. The microhardness, bonding strength, and cavitation erosion resistance of the coatings were measured. The microstructure, amorphous content, and nanocrystal size were checked and the surface morphologies were investigated after cavitation erosion testing. The results indicated that both the FeCrNiBSiNb and FeCrBSiWNb coating consisted of amorphous/nanocrystal and Fe-based solid solution, with amorphous content of 73.6 and 57.2 vol.%, respectively. The Ni-Cr-Fe solid solution of the FeCrNiBSiNb coating had an average grain size of 19.8 nm, whereas the Fe-Cr solid solution of the FeCrBSiWNb coating had an average grain size of 29.4 nm. Moreover, both the FeCrNiBSiNb and FeCrBSiWNb coating exhibited good bonding strength, high hardness, and excellent cavitation erosion resistance. After 180 min of cavitation erosion, the cumulative weight loss of the FeCrNiBSiNb and FeCrBSiWNb coating was 21.3 and 24.0 mg, whereas the weight loss of a 0Cr18Ni9 coating was up to 62.6 mg. This investigation revealed that the cavitation damage to the thermally sprayed amorphous/nanocrystal coatings was mainly in the form of layer detachment, whereas for the conventional coating it took the form of particle breakage.

  15. Cryoflotation: densities of amorphous and crystalline ices.

    PubMed

    Loerting, Thomas; Bauer, Marion; Kohl, Ingrid; Watschinger, Katrin; Winkel, Katrin; Mayer, Erwin

    2011-12-01

    We present an experimental method aimed at measuring mass densities of solids at ambient pressure. The principle of the method is flotation in a mixture of liquid nitrogen and liquid argon, where the mixing ratio is varied until the solid hovers in the liquid mixture. The temperature of such mixtures is in the range of 77-87 K, and therefore, the main advantage of the method is the possibility of determining densities of solid samples, which are instable above 90 K. The accessible density range (~0.81-1.40 g cm(-3)) is perfectly suitable for the study of crystalline ice polymorphs and amorphous ices. As a benchmark, we here determine densities of crystalline polymorphs (ices I(h), I(c), II, IV, V, VI, IX, and XII) by flotation and compare them with crystallographic densities. The reproducibility of the method is about ±0.005 g cm(-3), and in general, the agreement with crystallographic densities is very good. Furthermore, we show measurements on a range of amorphous ice samples and correlate the density with the d spacing of the first broad halo peak in diffraction experiments. Finally, we discuss the influence of microstructure, in particular voids, on the density for the case of hyperquenched glassy water and cubic ice samples prepared by deposition of micrometer-sized liquid droplets. PMID:21879742

  16. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  17. Molecular mobility of the paracetamol amorphous form.

    PubMed

    di Martino, P; Palmieri, G F; Martelli, S

    2000-08-01

    The purpose of this paper is to study the molecular mobility of paracetamol molecules in their amorphous state below the glass transition temperature (Tg) in order to evaluate the thermodynamic driving force which allows the amorphous form to recrystallize under different polymorphic modifications. Samples were aged at temperatures of -15, 0, 6, and 12 degrees C for periods of time from 1 h to a maximum of 360 h. The extent of physical aging was measured by a DSC study of enthalpy recovery in the glass transition region. The onset temperature of glass transition was also determined (Tg). Enthalpy recovery (deltaH) and change in heat capacity (deltaCp) were used to calculate the mean molecular relaxation time constant (tau) using the empirical Kohlausch-Williams-Watts (KWW) equation. Enthalpy recovery and onset glass transition temperature increased gradually with aging and aging temperatures. Structural equilibrium was reached experimentally only at an aging temperature of 12 degrees C (Tg-10 degrees C), according to the deltaH(infinity) results. The experimental model used is appropriate only at lower aging temperatures, while at higher ones the complexity of the system increases and molecular polymorphic arrangement could be involved. When structural equilibrium is experimentally reached, molecules can be arranged in their lowest energy state, and the polymorphic form I formation is the one preferred. PMID:10959571

  18. Anisotropic mechanical amorphization drives wear in diamond

    NASA Astrophysics Data System (ADS)

    Pastewka, Lars; Moser, Stefan; Gumbsch, Peter; Moseler, Michael

    2011-01-01

    Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond’s widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp3-sp2 order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

  19. Amorphous metallic foam: Synthesis and mechanical properties

    NASA Astrophysics Data System (ADS)

    Veazey, Chris

    2007-12-01

    Bulk metallic glass alloys were processed into foam by several synthesis routes. These methods utilize the thermodynamic stability and thermoplastic formability of the supercooled liquid state to produce low-density homogeneous foams. The cellular structure is shown to evolve by growth of randomly distributed spherical bubbles towards polyhedral-like cells separated by microscopic intracellular membranes exhibiting random orientations and aspect ratios. The ability of amorphous metals to develop such random cellular morphologies is attributed primarily to the high ductility exhibited by their softened state, which enables large superplastic membrane elongations during foaming. Upon loading, moderate porosity foams are known to deform plastically by recurring non-linear yielding transitions followed by non-catastrophic collapse events. The ability of these foams to yield non-catastrophically is a result of the plastic deformability of amorphous metals in sub-millimeter dimensions. Nonlinear yielding is found to be accommodated by clusters involving 4--6 cells, which yield by intracellular membrane buckling and ultimately collapse plastically to produce a localized plastic collapse band. By comparison, high-porosity foams deform plastically by multiple recurring non-catastrophic collapse events without undergoing macroscopic failure. The numerous minor collapse events are associated with localized ligament collapse, and the few major collapse events are associated with the cooperative collapse of several adjacent ligaments and the formation of a collapse band. On average, the serrated flow responses between major events appear to be self-similar and resemble the recurring nonlinear yielding responses exhibited by moderate porosity foams.

  20. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  1. Hydrogenated amorphous silicon-germanium alloys

    SciTech Connect

    Luft, W.

    1988-02-01

    This report describes the effects of the germanium fraction in hydrogenated amorphous silicon-germanium alloys on various parameters, especially those that are indicators of film quality, and the impact of deposition methods, feedgas mixtures, and other deposition parameters on a SiGe:H and a-SiGe:H:F film characteristics and quality. Literature data show the relationship between germanium content, hydrogen content, deposition method (various glow discharges and CVD), feedgas lmixture, and other parameters and properties, such as optical band gap, dark and photoconductivities, photosensitivity, activation energy, Urbach parameter, and spin density. Some of these are convenient quality indicators; another is the absence of microstructure. Examining RF glow discharge with both a diode and triode geometry, DC proximity glow discharge, microwave glow discharge, and photo-CVD, using gas mixtures such as hydrogen-diluted and undiluted mixtures of silane/germane, disilane/germane, silane/germaniumtetrafluoride, and others, it was observed that hydrogen dilution (or inert gas dilution) is essential in achieving high photosensitivity in silicon-germanium alloys (in contradistinction to amorphous hydrogenated silicon). Hydrogen dilution results in a higher photosensitivity than do undiluted gas mixtures. 81 refs., 42 figs., 7 tabs.

  2. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  3. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  4. Carbon Doped MgB2 Thin Films using TMB

    NASA Astrophysics Data System (ADS)

    Wilke, R. H. T.; Li, Qi; Xi, X. X.; Lamborn, D. R.; Redwing, J.

    2007-03-01

    The most effective method to enhance the upper critical field in MgB2 is through carbon doping. In the case of thin films, ``alloying'' with carbon has resulted in enhanced Hc2 values estimated to be as high as 70 T for H parallel to ab and 40 T for H perpendicular ab [1]. ``Alloying'' refers to the in-situ Hybrid Physical-Chemical Vapor Deposition (HPCVD) of carbon containing MgB2 films using (C5H5)2Mg as the carbon source. While these films exhibit enhanced Hc2 values, there are amorphous boron- carbon phases in the grain boundaries that reduce the cross section area for superconducting current. We present here the results of our attempts to make more homogeneously carbon doped thin films using gaseuous trimethyl-boron (TMB) as the carbon source. Initial results indicate different behavior upon carbon doping using TMB from carbon-alloying. The microstructures and upper critical fields of the carbon doped films using TMB and carbon alloyed films will be compared. [1] V. Braccini et al., Phys. Rev. B 71 (2005) 012504. [2] A.V. Pogrebnyakov et al., Appl. Phys. Lett 85 (2004) 2017.

  5. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    SciTech Connect

    Sarpi, B.; Daineche, R.; Girardeaux, C.; Bertoglio, M.; Derivaux, F.; Vizzini, S.; Biberian, J. P.; Hemeryck, A.

    2015-01-12

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicide interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.

  6. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  7. Endurance Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Sugimura, Russell S.

    1989-01-01

    Failure mechanisms in high-power service studied. Report discusses factors affecting endurance of amorphous-silicon solar cells. Based on field tests and accelerated aging of photovoltaic modules. Concludes that aggressive research needed if amorphous-silicon modules to attain 10-year life - value U.S. Department of Energy established as goal for photovoltaic modules in commercial energy-generating plants.

  8. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Kimura, Hiroshi

    2010-07-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  9. Pressure-induced transformations in amorphous silicon: A computational study

    SciTech Connect

    Garcez, K. M. S.; Antonelli, A.

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  10. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  11. Method for improving the stability of amorphous silicon

    DOEpatents

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  12. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  13. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGESBeta

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  14. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    SciTech Connect

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua; Zhou, Zhongfu

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  15. Microstructures of MgB2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder

    NASA Astrophysics Data System (ADS)

    Hata, S.; Yoshidome, T.; Sosiati, H.; Tomokiyo, Y.; Kuwano, N.; Matsumoto, A.; Kitaguchi, H.; Kumakura, H.

    2006-02-01

    Microstructures of MgB2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder have been studied by means of x-ray diffraction and analytical transmission electron microscopy combined with a focused ion beam microsampling technique. The overall microstructures in the tapes are characterized as densely crystallized MgB2 areas with 10-200 nm grain size, uncrystallized areas mainly containing MgO and amorphous phases enriched with B, and a number of holes and cracks. The crystallized MgB2 areas increase upon doping with SiC nanoparticles. Si and C atoms decomposed from SiC nanoparticles during heat treatment exhibit different spatial distributions: the Si atoms are inhomogeneously distributed, forming silicides such as Mg2Si with grain size of 5-20 nm, while the C atoms tend to be uniformly distributed in the MgB2 matrix. A significant difference in distribution of O atoms between the SiC-doped and non-doped specimens was observed. The processes of formation of these microstructures and their relationships with the critical current density under magnetic fields have been discussed.

  16. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems. I.

    PubMed

    Alkhamis, Khouloud A

    2008-10-01

    It was of interest to develop a method for solid-state acidity measurements using pH indicators and to correlate this method to the degradation rate of sucrose. Amorphous samples containing lactose 100mg/ml, sucrose 10mg/ml, citrate buffer (1-50mM) and sodium chloride (to adjust the ionic strength) were prepared by freeze-drying. The lyophiles were characterized using powder X-ray diffraction, differential scanning calorimetry and Karl Fischer titremetry. The solid-state acidity of all lyophiles was measured using diffuse reflectance spectroscopy and suitable indicators (thymol blue or bromophenol blue). The prepared lyophiles were subjected to a temperature of 60 degrees C and were analyzed for degradation using the Trinder kit. The results obtained from this study have shown that the solid-state acidity depends mainly on the molar ratio of the salt and the acid used in buffer preparation and not on the initial pH of the solution. The degradation of sucrose in the lyophiles is extremely sensitive to the solid-state acidity and the ionic strength. Reasonable correlation was obtained between the Hammett acidity function and sucrose degradation rate. The use of cosolvents (in the calibration plots) can provide good correlations with the rate of an acid-catalyzed reaction, sucrose inversion, in amorphous lyophiles. PMID:18647642

  17. Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions

    SciTech Connect

    Wang, Shouguo; Ward, R. C. C.; Zhang, Xiaoguang; Kohn, A.; Ma, Q. L.; Zhang, J.; Liu, H. F.; Han, Prof. X. F.

    2012-01-01

    Following predictions by first-principles theory of huge tunnel magnetoresistance (TMR) effect in epitaxial Fe/MgO/Fe magnetic tunnel junctions (MTJs), measured magnetoresistance (MR) ratio about 200% at room temperature (RT) have been reported in MgO-based epitaxial MTJs. Recently, MR ratio of about 600% has been reported at RT in MgO-based amorphous MTJs with core structure of CoFeB/MgO/CoFeB grown by magnetron sputtering with amorphous CoFeB layers. The sputtered CoFeB/MgO/CoFeB MTJs shows a great potential application in spintronic devices. Although epitaxial structure will probably not be used in devices, it remains an excellent model system to compare theoretical calculations with experimental results and to enhance our understanding of the spin dependent tunneling. Both theoretical calculations and experimental results clearly indicate that the interfacial structure plays a crucial role on coherent tunneling across single crystalMgO barrier, especially in epitaxial MgO-based MTJs grown by molecular beam epitaxy (MBE). Surface X-ray diffraction, Auger electron spectroscopy, X-ray absorption spectra, and X-ray magnetic circular dichroism have been used for interface characterization. However, no consistent viewpoint has been reached, and this is still an open issue. In this article, recent studies on the interface characterization in MgO-based epitaxial MTJs will be introduced, with a focus on research by X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and spin dependent tunneling spectroscopy.

  18. Parametrized dielectric functions of amorphous GeSn alloys

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  19. Pressure-Induced Structural Transformation in Radiation-Amorphized Zircon

    SciTech Connect

    Trachenko, Kostya; Dove, Martin T.; Salje, E. K. H.; Brazhkin, V. V.; Tsiok, O. B.

    2007-03-30

    We study the response of a radiation-amorphized material to high pressure. We have used zircon ZrSiO{sub 4} amorphized by natural radiation over geologic times, and have measured its volume under high pressure, using the precise strain-gauge technique. On pressure increase, we observe apparent softening of the material, starting from 4 GPa. Using molecular dynamics simulation, we associate this softening with the amorphous-amorphous transformation accompanied by the increase of local coordination numbers. We observe permanent densification of the quenched sample and a nontrivial 'pressure window' at high temperature. These features point to a new class of amorphous materials that show a response to pressure which is distinctly different from that of crystals.

  20. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  1. Atomistic simulation of damage accumulation and amorphization in Ge

    SciTech Connect

    Gomez-Selles, Jose L. Martin-Bragado, Ignacio; Claverie, Alain; Benistant, Francis

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  2. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  3. Moringa coagulant as a stabilizer for amorphous solids: Part I.

    PubMed

    Bhende, Santosh; Jadhav, Namdeo

    2012-06-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DSC were carried out for understanding thermodynamic stabilization of drugs. PXRD and dissolution studies were performed to support contribution of moringa coagulant. Studies showed that hydrogen bonding and electrostatic interactions between drug and moringa coagulant are responsible for amorphous state stabilization as explored by ATR-FTIR and molecular docking. Especially, H-bonding was found to be predominant mechanism for drug stabilization. Therein, arginine (basic amino acid in coagulant) exhibited various interactions and played important role in stabilization of aforesaid amorphous drugs. PMID:22359158

  4. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  5. Experimental evidence of homonuclear bonds in amorphous GaN

    SciTech Connect

    Ishimaru, Dr. Manabu; Zhang, Yanwen; Wang, Xuemei; Chu, Wei-Kan; Weber, William J

    2011-01-01

    Although GaN is an important semiconductor material, its amorphous structures are not well understood. Currently, theoretical atomistic structural models which contradict each other, are proposed for the chemical short-range order of amorphous GaN: one characterizes amorphous GaN networks as highly chemically ordered, consisting of heteronuclear Ga-N atomic bonds; and the other predicts the existence of a large number of homonuclear bonds within the first coordination shell. In the present study, we examine amorphous structures of GaN via radial distribution functions obtained by electron diffraction techniques. The experimental results demonstrate that amorphous GaN networks consist of heterononuclear Ga-N bonds, as well as homonuclear Ga-Ga and N-N bonds.

  6. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  7. The role of Mg in the crystallization of monohydrocalcite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Bots, Pieter; Roncal-Herrero, Teresa; Benning, Liane G.

    2014-02-01

    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg2+aq/Ca2+aq≥0.17<65. Although found in modern sedimentary deposits and as a product of biomineralization, there is a lack of information about its formation mechanisms and about the role of Mg during its crystallization. In this work we have quantitatively assessed the mechanism of crystallization of monohydrocalcite through in situ synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) and off-line spectroscopic, microscopic and wet chemical analyses. Monohydrocalcite crystallizes via a 4-stage process beginning with highly supersaturated solutions from which a Mg-bearing, amorphous calcium carbonate (ACC) precursor precipitates. This precursor crystallizes to monohydrocalcite via a nucleation-controlled reaction in stage two, while in stage three it is further aged through Ostwald-ripening at a rate of 1.8 ± 0.1 nm/h1/2. In stage four, a secondary Ostwald ripening process (66.3 ± 4.3 nm/h1/2) coincides with the release of Mg from the monohydrocalcite structure and the concomitant formation of minor hydromagnesite. Our data reveal that monohydrocalcite can accommodate significant amounts of Mg in its structure (χMgCO3 = 0.26) and that its Mg content and dehydration temperature are directly proportional to the saturation index for monohydrocalcite (SIMHC) immediately after mixing the stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SIMHC = 3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SIMHC = 2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be

  8. Athermal shear-transformation-zone theory of amorphous plastic deformation. II. Analysis of simulated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Bouchbinder, Eran; Langer, J. S.; Procaccia, Itamar

    2007-03-01

    In the preceding paper, we developed an athermal shear-transformation-zone (STZ) theory of amorphous plasticity. Here we use this theory in an analysis of numerical simulations of plasticity in amorphous silicon by Demkowicz and Argon (DA). In addition to bulk mechanical properties, those authors observed internal features of their deforming system that challenge our theory in important ways. We propose a quasithermodynamic interpretation of their observations in which the effective disorder temperature, generated by mechanical deformation well below the glass temperature, governs the behavior of other state variables that fall in and out of equilibrium with it. Our analysis points to a limitation of either the step-strain procedure used by DA in their simulations, or the STZ theory in its ability to describe rapid transients in stress-strain curves, or perhaps to both. Once we allow for this limitation, we are able to bring our theoretical predictions into accurate agreement with the simulations.

  9. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  10. Nanostructural characterization of amorphous diamondlike carbon films

    SciTech Connect

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  11. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  12. Modeling of magnetostriction in amorphous delay lines

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Hauser, H.; Ktena, A.

    2003-05-01

    A macroscopic model of the response of magnetostrictive delay lines (MDLs) under pulsed current excitation Ie is presented. The basic principles of the MDL operation are outlined and the relevant considerations of the control parameters are discussed. It is shown that the peak value of the voltage response is proportional to the derivative of the magnetostriction λ versus field H. The analytic expression derived for dλ/dH involves two identification parameters, c and A0. Parameter c has field dimensions and is a function of material parameters as described by the energetic model (EM) and proportional to the effective anisotropy field as predicted by EM, and A0 is a normalization constant, related to Ic and saturation magnetostriction λs. Preliminary results are presented comparing theoretical curves with experimental data on a Fe78Si7B15 amorphous ribbon sample with sufficient agreement.

  13. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  14. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  15. Amorphous Silicon Display Backplanes on Plastic Substrates

    NASA Astrophysics Data System (ADS)

    Striakhilev, Denis; Nathan, Arokia; Vygranenko, Yuri; Servati, Peyman; Lee, Czang-Ho; Sazonov, Andrei

    2006-12-01

    Amorphous silicon (a-Si) thin-film transistor (TFT) backplanes are very promising for active-matrix organic light-emitting diode displays (AMOLEDs) on plastic. The technology benefits from a large manufacturing base, simple fabrication process, and low production cost. The concern lies in the instability of the TFTs threshold voltage (VT) and its low device mobility. Although VT-instability can be compensated by means of advanced multi-transistor pixel circuits, the lifetime of the display is still dependent on the TFT process quality and bias conditions. A-Si TFTs with field-effect mobility of 1.1 cm2/V · s and pixel driver circuits have been fabricated on plastic substrates at 150 °C. The circuits are characterized in terms of current drive capability and long-term stability of operation. The results demonstrate sufficient and stable current delivery and the ability of the backplane on plastic to meet AMOLED requirements.

  16. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Payson, J. Scott; Woodyard, James R.

    1988-01-01

    A study of hydrogenated amorphous silicon thin films irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15/sq cm is presented. The films were characterized using photothermal deflection spectroscopy, transmission and reflection spectroscopy, and photoconductivity and annealing measurements. Large changes were observed in the subband-gap optical absorption for energies between 0.9 and 1.7 eV. The steady-state photoconductivity showed decreases of almost five orders of magnitude for a fluence of 1E15/sq cm, but the slope of the intensity dependence of the photoconductivity remained almost constant for all fluences. Substantial annealing occurs even at room temperature, and for temperatures greater than 448 K the damage is completely annealed. The data are analyzed to describe the defects and the density of states function.

  17. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  18. Breakdown of continuum elasticity in amorphous solids

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; DeGiuli, Eric; Düring, Gustavo; Wyart, Matthieu

    We show numerically that the response of simple amorphous solids (elastic networks and particle packings) to a local force dipole is characterized by a lengthscale $\\ell_c$ that diverges as unjamming is approached as $\\ell_c \\sim (z - 2d)^{-1/2}$, where $z \\ge 2d$ is the mean coordination, and $d$ is the spatial dimension, at odds with previous numerical claims. We also show how the magnitude of the lengthscale $\\ell_c$ is amplified by the presence of internal stresses in the disordered solid. Our data suggests a divergence of $\\ell_c\\sim (p_c-p)^{-1/4}$ with proximity to a critical internal stress $p_c$ at which soft elastic modes become unstable.

  19. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  20. Amorphous Silicon-Carbon Nanostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Schriver, Maria; Regan, Will; Loster, Matthias; Zettl, Alex

    2011-03-01

    Taking advantage of the ability to fabricate large area graphene and carbon nanotube networks (buckypaper), we produce Schottky junction solar cells using undoped hydrogenated amorphous silicon thin films and nanostructured carbon films. These films are useful as solar cell materials due their combination of optical transparency and conductance. In our cells, they behave both as a transparent conductor and as an active charge separating layer. We demonstrate a reliable photovoltaic effect in these devices with a high open circuit voltage of 390mV in buckypaper devices. We investigate the unique interface properties which result in an unusual J-V curve shape and optimize fabrication processes for improved solar conversion efficiency. These devices hold promise as a scalable solar cell made from earth abundant materials and without toxic and expensive doping processes.

  1. Thermomechanical behavior of amorphous tactic methacrylate polymers

    NASA Technical Reports Server (NTRS)

    Kiran, E.; Gillham, J. K.; Gipstein, E.

    1974-01-01

    Dynamic mechanical spectra of amorphous stereoregular poly(methyl methacrylate)s and poly(t-butyl methacrylate)s with assigned microtacticities are presented and discussed. An intermolecular argument is invoked to account for the higher glass transition temperature of syndiotactic vis a vis isotactic PMMA, in spite of the higher density of the latter at 30 C. An argument is presented to show that the ratio of glassy-region relaxation temperature to glass transition temperature is not only a measure of the degree of coupling of the beta and glass transition processes, but also of the degree to which intermolecular factors influence these processes. The greater extent of the low-temperature irreversibilities observed in the thermomechanical spectra of poly(t-butyl methacrylate)s is attributed to the brittle character induced by the bulky side groups which presumably weaken cohesive forces.

  2. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. PMID:26705850

  3. Tunable plasticity in amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  4. Amorphous materials molded IR lens progress report

    NASA Astrophysics Data System (ADS)

    Hilton, A. R., Sr.; McCord, James; Timm, Ronald; Le Blanc, R. A.

    2008-04-01

    Amorphous Materials began in 2000 a joint program with Lockheed Martin in Orlando to develop molding technology required to produce infrared lenses from chalcogenide glasses. Preliminary results were reported at this SPIE meeting by Amy Graham1 in 2003. The program ended in 2004. Since that time, AMI has concentrated on improving results from two low softening glasses, Amtir 4&5. Both glasses have been fully characterized and antireflection coatings have been developed for each. Lenses have been molded from both glasses, from Amtir 6 and from C1 Core glass. A Zygo unit is used to evaluate the results of each molded lens as a guide to improving the molding process. Expansion into a larger building has provided room for five production molding units. Molded lens sizes have ranged from 8 mm to 136 mm in diameter. Recent results will be presented

  5. Orientational fluctuations of amorphous nematogenic solids

    NASA Astrophysics Data System (ADS)

    Ye, Fangfu; Lu, Bing; Goldbart, Paul

    2012-02-01

    Amorphous nematogenic solids (ANS) are media comprising rod-like nematogens that have been randomly linked to form elastically deformable macroscopic networks. Classes of ANS include chemical nematogen gels (i.e., networks of small molecules) and liquid crystalline elastomers (built from crosslinked nematogen-containing macromolecules), as well as biophysical networks such as those composed of actin filaments. We use a method inspired by the cavity approach to construct a replica free energy for these random systems, and investigate the correlations of the thermal fluctuations of the orientational alignment of the nematogens at spatially separated points. We identify two qualitatively distinct regimes: (a) a weakly localized regime, in which the correlations decay exponentially with separation; and (b) a strongly localized regime, characterized by correlations that also decay but oscillate as they do.

  6. Superconducting state parameters of ternary amorphous superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-11-01

    The theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N0V of five Nb xTa yMo z ( x = 0.15, 0.30, 0.30, 0.40, 0.45; y = 0.15, 0.30, 0.30, 0.40, 0.45 and z = 0.10, 0.30, 0.30, 0.40, 0.70) ternary amorphous superconductors viz. Nb 0.45Ta 0.45Mo 0.10, Nb 0.30Ta 0.40Mo 0.30, Nb 0.40Ta 0.30Mo 0.30, Nb 0.30Ta 0.30Mo 0.40 and Nb 0.15Ta 0.15Mo 0.70 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The TC obtained from Hartree (H) local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the superconductors.

  7. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  8. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  9. Subdivision of the Mg-suite noritic rocks into Mg-gabbronorites and Mg-norites

    NASA Technical Reports Server (NTRS)

    James, O. B.; Flohr, M. K.

    1983-01-01

    Mg-suite noritic rocks can be divided into two groups, the Mg-gabbronorites and the Mg-norites. The rocks of these groups differ in ratios of high-Ca pyroxene to total pyroxene, compositions of pyroxene and plagioclase, assemblages of Ti-, Nb-, and Zr-bearing minerals, compositions of chrome spinel, bulk-rock Ti/Sm and Sc/Sm, and measured ages. The two groups probably crystallized from different types of parent magmas. Two hypotheses are offered for the differences in composition of the parent magmas. One hypothesis ascribes the differences to compositional heterogeneity of the mantle source areas. The other hypothesis ascribes the differences to variations in extent of partial melting of the mantle source regions and variations in extent of assimilation of the anorthosite and the highly differentiated residual liquid that were produced during the primordial lunar differentiation.

  10. Spin assignments of 22Mg states through a 24Mg(p,t)22Mg measurement

    SciTech Connect

    Chae, K. Y.; Jones, K. L.; Moazen, Brian; Pittman, S. T.; Bardayan, Daniel W; Blackmon, Jeff C; Liang, J Felix; Smith, Michael Scott; Chipps, K.; Hatarik, Robert; O'Malley, Patrick; Pain, Steven D; Kozub, R. L.; Matei, Catalin; Nesaraja, Caroline D

    2009-01-01

    The {sup 18}Ne({alpha},p){sup 21}Na reaction plays a crucial role in the ({alpha},p) process, which leads to the rapid proton capture process in X-ray bursts. The reaction rate depends upon properties of {sup 22}Mg levels above the {alpha} threshold at 8.14 MeV. Despite recent studies of these levels, only the excitation energies are known for most with no constraints on the spins. We have studied the {sup 24}Mg(p,t){sup 22}Mg reaction at the Oak Ridge National Laboratory (ORNL) Holifield Radioactive Ion Beam Facility (HRIBF), and by measuring the angular distributions of outgoing tritons, we provide the first experimental constraints on the spins of astrophysically-important {sup 18}Ne({alpha},p){sup 21}Na resonances.

  11. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  12. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    NASA Astrophysics Data System (ADS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  13. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  14. A comparative study of radiation damage in Al{sub 2}O{sub 3}, FeTiO{sub 3}, and MgTiO{sub 3}

    SciTech Connect

    Mitchell, J.N.; Yu, Ning; Sickafus, K.E.; Nastasi, M.; Taylor, T.N.; McClellan, K.J.; Nord, G.L. Jr.

    1995-12-31

    Oriented single crystals of synthetic alpha-alumina ({alpha}-Al{sub 2}O{sub 3}), geikielite (MgTiO{sub 3}) natural ilmenite (FeTiO{sub 3}) were irradiated with 200 keV argon ions under cryogenic conditions (100 K) to assess their damage response. Using Rutherford backscattering spectrometry combined with ion channeling techniques, it was found that ilmenite amorphized readily at doses below 5{times}10{sup 14}, alumina amorphized at a dose of 1-2{times}{sup 15}, and geikielite was amorphized at {approximately}2{times}10{sup 15} Ar cm{sup {minus}2}. The radiation damage response of the ilmenite crystal may be complicated by the presence of hematite exsolution lamellae and the experimentally induced oxidation of iron. The relative radiation-resistance of geikielite holds promise for similar behavior in other Mg-Ti oxides.

  15. Health hazards due to the inhalation of amorphous silica.

    PubMed

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  16. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  17. Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability.

    PubMed

    Zhaojie, Meng; Ming, Zhang; Shengnan, Wei; Xiaojia, Bi; Hatch, Grant M; Jingkai, Gu; Li, Chen

    2014-06-01

    Low oral bioavailability of berberine due to poor solubility and membrane permeability limits its clinical use for treatment of diabetes. We developed an amorphous solid dispersion of berberine with absorption enhancer sodium caprate, referred to as Huang-Gui Solid Dispersion (HGSD) preparations, and examined them for improvement of dissolution and oral bioavailability. HGSDs were prepared by solvent evaporation, and the formulations of amorphous solid dispersions were characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. According to in vitro solubility and dissolution studies, P9, the 9th production of HGSDs based on orthogonal test, was sorted out. Then pharmacokinetic behavior of P9 was evaluated by in vitro membrane permeation, in situ intestinal perfusion, and in vivo bioavailability in rats. Furthermore, the anti-diabetic effect of P9 was examined in a type 2 diabetic rat model. It was found that majority of berberine in P9 existed in an amorphous form, and its solubility and dissolution rate were significantly increased. Pharmacokinetic studies demonstrated a 3-fold increase in in vitro membrane permeation, a 4-fold increase in in situ intestinal perfusion and a 5-fold increase in vivo bioavailability of P9 compared to berberine or berberine tablets. In addition, oral administration of P9 (100mg/kg) improved glucose and lipid metabolism in diabetic rats compared to pure berberine (100mg/kg), berberine tablets (100mg/kg) or metformin (300 mg/kg) treatment. These findings indicate that P9 enhances oral bioavailability of berberine and may be a potential candidate drug for treatment of diabetes. PMID:24607213

  18. Crystallization of glassy metal surfaces in Mg Zn alloy determined by resonant photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Martínez, O. E.; Crossa Archiopoli, U.; Cesa, Y.; Mingolo, N.

    2005-12-01

    Amorphous layers in a Mg-based alloy are studied by a resonant photoacoustic technique. The technique is shown to provide information on the crystallization temperature of a thin amorphous layer when the sample is heated. This determination provides crucial information regarding thermal stability of the treated surface, not accessible by standard calorimetric techniques. The layer analyzed is tens of micrometers thick, produced by rapid melting by a pulsed electron gun and subsequent rapid cooling towards the substrate. It is shown that the signal from the photoacoustic detection arises mainly from the volume change during crystallization at about 390 K. The volume change due to the structural relaxation of the glass before crystallization is also detected.

  19. An infrared and luminescence study of tritiated amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; Kherani, N.P.; Gaspari, F.; Zukotynski, S.; Shmayda, W.

    1997-07-01

    Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of {beta} particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency.

  20. The 'depletion layer' of amorphous p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1981-01-01

    It is shown that within reasonable approximations for the density of state distribution within the mobility gap of a:Si, a one-to-one correspondence exists between the electric field distribution in the transition region of an amorphous p-n junction and that in the depletion layer of a crystalline p-n junction. Thus it is inferred that the depletion layer approximation which leads to a parabolic potential distribution within the depletion layer of crystalline junctions also constitutes a fair approximation in the case of amorphous junctions. This fact greatly simplifies an analysis of solid-state electronic devices based on amorphous material (i.e., solar cells).

  1. Dissolution and analysis of amorphous silica in marine sediments.

    USGS Publications Warehouse

    Eggimann, D.W.; Manheim, F. T.; Betzer, P.R.

    1980-01-01

    The analytical estimation of amorphous silica in selected Atlantic and Antarctic Ocean sediments, the U.S.G.S. standard marine mud (MAG-1), A.A.P.G. clays, and samples from cultures of a marine diatom, Hemidiscus, has been examined. Our values for amorphous silica-rich circum-Antarctic sediments are equal to or greater than literature values, whereas our values for a set of amorphous silica-poor sediments from a transect of the N. Atlantic at 11oN, after appropriate correction for silica released from clays, are significantly lower than previous estimates from the same region. -from Authors

  2. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  3. Pressure-induced crystallization of amorphous red phosphorus

    NASA Astrophysics Data System (ADS)

    Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Benmore, Chris. J.; Yarger, Jeffery L.

    2012-03-01

    Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 ± 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus.

  4. Robust hydrophobic Fe-based amorphous coating by thermal spraying

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, Y.; Liu, L.

    2012-09-01

    Metallic surface is intrinsically hydrophilic due to its high surface energy. In this work, we present a different picture that highly hydrophobic metallic coatings could be directly fabricated by thermal spraying of Fe-based amorphous powders through the surface roughness control. These hydrophobic coatings are amorphous, exhibiting super-high hardness and excellent corrosion resistance. With low surface energy modification, the coatings become superhydrophobic and exhibit clearly self-cleaning effect. The present work opens a window for the applications of the amorphous coatings.

  5. Amorphization of C-implanted Fe(Cr) alloys

    SciTech Connect

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1990-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C plus Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C alone do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibits good aqueous corrosion resistance. 9 refs., 3 figs., 1 tabs.

  6. Cardiac calcified amorphous tumor in a hemodialysis patient.

    PubMed

    Seo, Hiroyuki; Fujii, Hiromichi; Aoyama, Takanobu; Sasako, Yoshikado

    2016-06-01

    We present a case of cardiac calcified amorphous tumor, a rare intracardiac non-neoplastic tumor, in a hemodialysis patient. A 72-year-old woman with no history of thromboembolic, malignant, or inflammatory disease presented with dyspnea. Echocardiography revealed a highly echoic, slightly mobile mass with an acoustic shadow originating from the mitral subvalvular apparatus, extending to the left ventricular outflow tract. She underwent surgical resection of the mass through the aortic valve, which was easily excised from the papillary muscle and chordae tendineae. Histopathologic examination revealed nodular calcium deposits on a background of amorphous degenerated fibrin material, consistent with calcified amorphous tumor. PMID:25742783

  7. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Scheel, T.; Mikutta, R.; van Hees, P.; Kaiser, K.; Kalbitz, K.

    2010-03-01

    Amorphous Al hydroxides (am-Al(OH) 3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L -1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO 2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH) 3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L -1) during sorption. At low SSRs, hence limited am-Al(OH) 3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH) 3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH) 3 availability, despite constant aromatic C (˜30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the

  8. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    SciTech Connect

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  9. Lucky drift impact ionization in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Rowlands, J. A.; Baranovskii, S. D.; Tanioka, Kenkichi

    2004-08-01

    The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (α) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si :H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si :H. We have extracted the electron impact ionization coefficient versus field (αe vs F) data for a-Si :H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, EI=Eg. If λ is the mean free path associated with momentum relaxing collisions and λE is the energy relaxation length associated with energy relaxing collisions, than the LD model requires λE>λ. The application of the LD model with energy and field independent λE to a-Se leads to ionization threshold energies EI that are quite small, less than Eg/2, and requires the possible but improbable ionization of localized states. By making λE=λE(E ,F) energy and field dependent, we were

  10. The role of Mg in the crystallization of monohydrocalcite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Bots, Pieter; Roncal-Herrero, Teresa; Benning, Liane G.

    2014-02-01

    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg2+aq/Ca2+aq≥0.17<65. Although found in modern sedimentary deposits and as a product of biomineralization, there is a lack of information about its formation mechanisms and about the role of Mg during its crystallization. In this work we have quantitatively assessed the mechanism of crystallization of monohydrocalcite through in situ synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) and off-line spectroscopic, microscopic and wet chemical analyses. Monohydrocalcite crystallizes via a 4-stage process beginning with highly supersaturated solutions from which a Mg-bearing, amorphous calcium carbonate (ACC) precursor precipitates. This precursor crystallizes to monohydrocalcite via a nucleation-controlled reaction in stage two, while in stage three it is further aged through Ostwald-ripening at a rate of 1.8 ± 0.1 nm/h1/2. In stage four, a secondary Ostwald ripening process (66.3 ± 4.3 nm/h1/2) coincides with the release of Mg from the monohydrocalcite structure and the concomitant formation of minor hydromagnesite. Our data reveal that monohydrocalcite can accommodate significant amounts of Mg in its structure (χMgCO3 = 0.26) and that its Mg content and dehydration temperature are directly proportional to the saturation index for monohydrocalcite (SIMHC) immediately after mixing the stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SIMHC = 3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SIMHC = 2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be

  11. Laboratory simulations of thermal annealing in proto-planetary discs - II. Crystallization of enstatite from amorphous thin films

    NASA Astrophysics Data System (ADS)

    Droeger, J.; Burchard, M.; Lattard, D.

    2011-12-01

    Amorphous silicates of olivine and pyroxene composition are thought to be common constituents of circumstellar, interstellar, and interplanetary dust. In proto-planetary discs amorphous dust crystallize essentially as a result of thermal annealing. The present project aims at deciphering the kinetics of crystallization pyroxene in proto-planetary dust on the basis of experiments on amorphous thin films. The thin films are deposited on Si-wafers (111) by pulsed laser deposition (PLD). The thin films are completely amorphous, chemically homogeneous (on the MgSiO3 composition) and with a continuous and flat surface. They are subsequently annealed for 1 to 216 h at 1073K and 1098K in a vertical quench furnace and drop-quenched on a copper block. To monitor the progress of crystallization, the samples are characterized by AFM and SEM imaging and IR spectroscopy. After short annealing durations (1 to 12 h) AFM and SE imaging reveal small shallow polygonal features (diameter 0.5-1 μm; height 2-3 nm) evenly distributed at the otherwise flat surface of the thin films. These shallow features are no longer visible after about 3 h at 1098 K, resp. >12 h at 1073 K. Meanwhile, two further types of features appear small protruding pyramids and slightly depressed spherolites. The orders of appearance of these features depend on temperature, but both persist and steadily grow with increasing annealing duration. Their sizes can reach about 12 μm. From TEM investigations on annealed thin films on the Mg2SiO4 composition we know that these features represent crystalline sites, which can be surrounded by a still amorphous matrix (Oehm et al. 2010). A quantitative evaluation of the size of the features will give insights on the progress of crystallization. IR spectra of the unprocessed thin films show only broad bands. In contrast, bands characteristic of crystalline enstatite are clearly recognizable in annealed samples, e.g. after 12 h at 1078 K. Small bands can also be assigned to

  12. Application of Laser Design of Amorphous Feco-Based Alloys for the Formation of Amorphous-Crystalline Composites

    NASA Astrophysics Data System (ADS)

    Permyakova, I. E.; Glezer, A. M.; Ivanov, A. A.; Shelyakov, A. V.

    2016-01-01

    Morphological and fractographic features of change of FeCo-based amorphous alloy surfaces after laser treatment are studied in detail. Regimes of laser treatment that allow various degrees of crystallization of the examined alloys to be obtained, including thin (<1 •m) crystal layers on amorphous alloy surfaces, amorphous-crystalline composites, and completely crystalline alloys are adjusted. The Vickers hardness is estimated in zones of selective laser irradiation. The structure of the examined alloys attendant to the change of their mechanical properties is analyzed.

  13. Magnesium borohydride as a Hydrogen Stroage Materials: Properties and Dehydrogenation Pahtyway of Unsolvated Mg(BH4)2

    SciTech Connect

    Soloveichik, G.; Gao, Y; Rijssenbeek, J; Andrus, M; Kniajanski, S; Bowman Jr., R; Hwang, S; Zhao, J

    2009-01-01

    The decomposition of crystalline magnesium borohydride upon heating was studied using thermal desorption, calorimetry, in situ X-ray diffraction, and solid state NMR. Hydrogen release from Mg(BH4)2 occurs in at least four steps via formation of several polyborane intermediate species and includes an exothermic reaction yielding crystalline MgH2 as an intermediate. The decomposition products may be only partially recharged after the very first step and also via hydrogenation of Mg metal. The intermediate formation of amorphous MgB12H12, was confirmed by 11B NMR. A four-stage pathway for the thermal decomposition of Mg(BH4)2 is proposed.

  14. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  15. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  16. Hydrogen-free amorphous silicon with no tunneling states.

    PubMed

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications. PMID:25062205

  17. Solid state amorphization kinetic of alpha lactose upon mechanical milling.

    PubMed

    Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc

    2011-11-29

    It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. PMID:21983262

  18. First principles prediction of amorphous phases using evolutionary algorithms.

    PubMed

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ∼2% of those reported by ab initio MD calculations and experimental studies. PMID:27394098

  19. First principles prediction of amorphous phases using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ˜2% of those reported by ab initio MD calculations and experimental studies.

  20. Properties of vacuum arc deposited amorphous hard carbon films

    SciTech Connect

    Anders, S.; Anders, A.; Raoux, S.

    1995-04-01

    Amorphous hard carbon films formed by vacuum arc deposition are hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. The authors have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content they have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.

  1. Influence of amorphous structure on polymorphism in vanadia

    NASA Astrophysics Data System (ADS)

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; Shyam, Badri; Mehta, Apurva; Ndione, Paul F.; Ginley, David S.; Toney, Michael F.

    2016-07-01

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphs of VO2. This suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.

  2. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  3. Photo-electronic properties of CVD amorphous silicon

    NASA Astrophysics Data System (ADS)

    Salau, Akinola Muritala

    1983-12-01

    D.c. conductivity, thermoelectric power and photoconductivity of amorphous silicon films prepared by chemical vapor deposition (CVD) have been measured as functions of operating and annealing temperatures. Several interpretations of the results obtained have been suggested.

  4. Broadband Dielectric Investigation of Amorphous and Semi-Crystalline Polylactides

    NASA Astrophysics Data System (ADS)

    Kanchanasopa, Mantana; Runt, James

    2003-03-01

    Molecular dynamics of poly (L-lactide) and several L-lactide/meso-lactide random copolymers were investigated in the frequency domain using broadband dielectric spectroscopy. The dielectric relaxation spectra of fully amorphous and crystalline samples reveal the influence of crystalline content and microstructure on chain motion in the amorphous phase. Differences in relaxation strength of the segmental processes were observed in these samples. While the strength of the crystalline samples increases with temperature, that of the amorphous samples changes only very little or in the opposite direction with temperature. This behavior will be discussed in the context of a rigid amorphous phase. As expected, mean segmental relaxation time is longer and its distribution is broader (at lower frequencies) in samples with higher crystallinity. Differences in the details of the relaxation processes as a function of the crystallinity and morphology will be discussed.

  5. Amorphous solid dispersions: Rational selection of a manufacturing process.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline. PMID:26826438

  6. Hydrogenated amorphous silicon films prepared by glow discharge of disilane

    SciTech Connect

    Wiesmann, H.J. )

    1990-01-01

    This report describes the results of an investigation of the properties of hydrogenated amorphous silicon films and the efficiency of amorphous silicon solar cells deposited from disilane at rates of 1.5 nanometers/second or greater. The study was divided into two parts, investigation of basic materials properties of hydrogenated amorphous silicon thin films and the fabrication of glass-P-I-N-metal solar cells. The thin film materials properties investigated included the dark conductivity, photoconductivity, dihydride/monohydride concentration ratio, activation energy, and mobility-lifetime product. Hydrogenated amorphous silicon solar cells were fabricated with an intrinsic layer which was deposited at 1.5 nanometers/second. The absolute and reverse bias quantum yields were measured and solar cell efficiencies of 5% were achieved. Attempts to increase the efficiency by reverse bias annealing are also reported. 7 refs., 27 figs.

  7. Simulating the amorphization of [alpha]-quartz under pressure

    SciTech Connect

    Binggeli, N. , PHB-Ecublens, 1015 Lausanne ); Chelikowsky, J.R. ); Wentzcovitch, R.M. )

    1994-04-01

    Extensive molecular-dynamics simulations have been performed within a classical force-field model for the pressure-induced amorphization of quartz. In agreement with earlier molecular-dynamics studies, we find that a phase transition occurs within the experimental pressure range of the amorphization transformation. However, at variance with previous interpretations, we find that the resulting phase is not amorphous. The correlation functions of the equilibrated structure can be shown to be consistent with those of a crystalline phase. Two transformations to ordered structures occur sequentially during the simulations. The first transformation is likely to be related to the recently discovered transition of quartz to an intermediate crystalline phase before its amorphization. The second transformation, instead, yields a compact octahedrally coordinated Si sublattice. The latter structure may be an artifact of the classical force field.

  8. Oxygenated amorphous carbon for resistive memory applications

    NASA Astrophysics Data System (ADS)

    Santini, Claudia A.; Sebastian, Abu; Marchiori, Chiara; Jonnalagadda, Vara Prasad; Dellmann, Laurent; Koelmans, Wabe W.; Rossell, Marta D.; Rossel, Christophe P.; Eleftheriou, Evangelos

    2015-10-01

    Carbon-based electronics is a promising alternative to traditional silicon-based electronics as it could enable faster, smaller and cheaper transistors, interconnects and memory devices. However, the development of carbon-based memory devices has been hampered either by the complex fabrication methods of crystalline carbon allotropes or by poor performance. Here we present an oxygenated amorphous carbon (a-COx) produced by physical vapour deposition that has several properties in common with graphite oxide. Moreover, its simple fabrication method ensures excellent reproducibility and tuning of its properties. Memory devices based on a-COx exhibit outstanding non-volatile resistive memory performance, such as switching times on the order of 10 ns and cycling endurance in excess of 104 times. A detailed investigation of the pristine, SET and RESET states indicates a switching mechanism based on the electrochemical redox reaction of carbon. These results suggest that a-COx could play a key role in non-volatile memory technology and carbon-based electronics.

  9. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  10. RF cavity with co -based amorphous core

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Misu, T.; Sugiura, A.; Sato, K.; Katsuki, K.; Kusaka, T.

    2006-10-01

    A compact cavity for acceleration has been developed with cobalt-based amorphous cores, which is a part of research and development (R&D) for a synchrotron in a cancer therapy facility. This core has high permeability that enables the cavity length to be made short, and its low Q-value of about 0.5 permits an RF system without tuning control of the cavity. The developed acceleration cavity consists of two acceleration gaps; at both sides of the gap there are quarter-wave coaxial resonators. The total length of the cavity is as short as 1.5 m and the inner diameter of the vacuum chamber is 190 mm. Considering the requirements for easy operation and maintenance, a transistor RF amplifier was used instead of the commonly used tetrode in the final stage. Each resonator has a maximum impedance of 400 Ω at 2 MHz, and a 1:9 impedance transformer has been attached to use a solid state amplifier of 50 Ω output impedance. In the frequency range from 0.4 to 8 MHz, an acceleration voltage of more than 4 kV can be obtained with a total input RF power of 8 kW. In this paper the structure of the cavity, the obtained core impedance, and their performances under high-power test are presented.

  11. High performance amorphous selenium lateral photodetector

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Allec, Nicholas; Karim, Karim S.

    2012-03-01

    Lateral amorphous selenium (a-Se) detectors based on the metal-semiconductor-metal (MSM) device structure have been studied for indirect detector medical imaging applications. These detectors have raised interest due to their simple structure, ease of fabrication, high-speed, low dark current, low capacitance per unit area and better light utilization. The lateral device structure has a benefit that the electrode spacing may be easily controlled to reduce the required bias for a given desired electric field. In indirect conversion x-ray imaging, the scintillator is coupled to the top of the a-Se MSM photodetector, which itself is integrated on top of the thin-film-transistor (TFT) array. The carriers generated at the top surface of the a-Se layer experience a field that is parallel to the surface, and does not initially sweep them away from the surface. Therefore these carriers may recombine or get trapped in surface states and change the field at the surface, which may degrade the performance of the photodetector. In addition, due to the finite width of the electrodes, the fill factor of the device is less than unity. In this study we examine the effect of lateral drift of carriers and the fill factor on the photodetector performance. The impact of field magnitude on the performance is also investigated.

  12. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  13. Disordered amorphous calcium carbonate from direct precipitation

    DOE PAGESBeta

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  14. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  15. Modelling amorphous computations with transcription networks

    PubMed Central

    Simpson, Zack Booth; Tsai, Timothy L.; Nguyen, Nam; Chen, Xi; Ellington, Andrew D.

    2009-01-01

    The power of electronic computation is due in part to the development of modular gate structures that can be coupled to carry out sophisticated logical operations and whose performance can be readily modelled. However, the equivalences between electronic and biochemical operations are far from obvious. In order to help cross between these disciplines, we develop an analogy between complementary metal oxide semiconductor and transcriptional logic gates. We surmise that these transcriptional logic gates might prove to be useful in amorphous computations and model the abilities of immobilized gates to form patterns. Finally, to begin to implement these computations, we design unique hairpin transcriptional gates and then characterize these gates in a binary latch similar to that already demonstrated by Kim et al. (Kim, White & Winfree 2006 Mol. Syst. Biol. 2, 68 (doi:10.1038/msb4100099)). The hairpin transcriptional gates are uniquely suited to the design of a complementary NAND gate that can serve as an underlying basis of molecular computing that can output matter rather than electronic information. PMID:19474083

  16. Amorphous silicon bolometer for fire/rescue

    NASA Astrophysics Data System (ADS)

    Francisco, Glenn L.

    2001-03-01

    Thermal imaging sensors have completely changed the way the world views fire and rescue applications. Recently, in the uncooled infrared camera and microbolometer detector areas, major strides have been made in manufacturing personal fire and rescue sensors. A family of new amorphous silicon microbolometers are being produced utilizing low cost, low weight, ultra low power, small size, high volume vacuum packaged silicon wafer-level focal plane array technologies. These bolometers contain no choppers or thermoelectric coolers, require no manual calibration and use readily available commercial off-the-shelf components. Manufacturing and packaging discoveries have allowed infrared sensitive silicon arrays to be produced with the same methods that have driven the rapidly advancing digital wireless telecommunications industries. Fire and rescue professionals are now able to conduct minimum time thermal imaging penetration, surveillance, detection, recognition, rescue and egress while maintaining situational awareness in a manner consistent with the modern technological applications. The purpose of this paper is to describe an uncooled micro bolometer infrared camera approach for meeting fire/rescue wants, needs and requirements, with application of recent technology advancements. This paper also details advances in bolometric focal plane arrays, optical and circuit card technologies, while providing a glimpse into the future of micro sensor growth. Technical barriers are addressed in light of constraints and lessons learned around this technology.

  17. Reversible Avalanches and Criticality in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles

    2015-03-01

    Despite its importance for basic science and industry, the physical process that causes a solid to change its shape permanently under external deformation is still not well understood. In this paper we use molecular dynamics simulations of amorphous solids under oscillatory shear to study this phenomenon, and show that at a critical strain amplitude, the size of the cooperative atomic motion that allows for a permanent deformation diverges. We compare this non-equilibrium critical behavior to that of a ``front depinning'' transition. This viewpoint, based on fluctuations and statistics, is complementary to the dynamical ``transition to chaos'' which was previously identified at the same strain amplitude. Below this irreversibile-depinning transition, we observe large avalanches which are completely repetitive with each shear strain cycle. This suggests that while avalanches on their own do not cause irreversible deformation, it is likely that the irreversibility transition and the ``depinning-like'' transition are two aspects of the same phenomena. One implication is that the transition could be detected before the onset of irreversible flow by an analysis of the power spectra of avalanches. Work done in collaboration with Ido Regev, Karin Dahmen, John Weber, and Turab Lookman.

  18. Relaxation in glassforming liquids and amorphous solids

    SciTech Connect

    Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W.

    2000-09-15

    The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, T{sub g}, and a fourth dealing with ''short time processes.'' The first part tackles the high temperature regime T>T{sub g}, in which the system is ergodic and the evolution of the viscous liquid toward the condition at T{sub g} is in focus. The second part deals with the regime T{approx}T{sub g}, where the system is nonergodic except for very long annealing times, hence has time-dependent properties (aging and annealing). The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for ''superionic'' conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Q mechanical response. (c) 2000 American Institute of Physics.

  19. Tensile properties of amorphous diamond films

    SciTech Connect

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  20. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  1. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  2. Physicochemical investigations and stability studies of amorphous gliclazide.

    PubMed

    Jondhale, Shital; Bhise, Satish; Pore, Yogesh

    2012-06-01

    Gliclazide (GLI), a poorly water-soluble antidiabetic, was transformed into a glassy state by melt quench technique in order to improve its physicochemical properties. Chemical stability of GLI during formation of glass was assessed by monitoring thin-layer chromatography, and an existence of amorphous form was confirmed by differential scanning calorimetry and X-ray powder diffractometry. The glass transition occurred at 67.5°C. The amorphous material thus generated was examined for its in vitro dissolution performance in phosphate buffer (pH 6.8). Surprisingly, amorphous GLI did not perform well and was unable to improve the dissolution characteristics compared to pure drug over entire period of dissolution studies. These unexpected results might be due to the formation of a cohesive supercooled liquid state and structural relaxation of amorphous form toward the supercooled liquid region which indicated functional inability of amorphous GLI from stability point of view. Hence, stabilization of amorphous GLI was attempted by elevation of T(g) via formation of solid dispersion systems involving comprehensive antiplasticizing as well as surface adsorption mechanisms. The binary and ternary amorphous dispersions prepared with polyvinylpyrrolidone K30 (as antiplasticizer for elevation of T (g)) and Aerosil 200® and/or Sylysia® 350 (as adsorbent) in the ratio of 1:1:1 (w/w) using kneading and spray-drying techniques demonstrated significant enhancement in rate and extent of dissolution of drug initially. During accelerated stability studies, ternary systems showed no significant reduction in drug dissolution performance over a period of 3 months indicating excellent stabilization of amorphous GLI. PMID:22382730

  3. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  4. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOEpatents

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  5. Threshold irradiation dose for amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  6. Amorphous silicon-carbon alloys and amorphous carbon from direct methane and ethylene activation by ECR

    SciTech Connect

    Conde, J.P.; Chu, V.; Giorgis, F.; Pirri, C.F.; Arekat, S.

    1997-07-01

    Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.

  7. How does an amorphous surface influence molecular binding?--ovocleidin-17 and amorphous calcium carbonate.

    PubMed

    Freeman, Colin L; Harding, John H; Quigley, David; Rodger, P Mark

    2015-07-14

    Atomistic molecular dynamics simulations of dehydrated amorphous calcium carbonate interacting with the protein ovocleidin-17 are presented. These simulations demonstrate that the amorphisation of the calcium carbonate surface removes water structure from the surface. This reduction of structure allows the protein to bind with many residues, unlike on crystalline surfaces where binding is strongest when only a few residues are attached to the surface. Basic residues are observed to dominate the binding interactions. The implications for protein control over crystallisation are discussed. PMID:26009013

  8. Structural Properties of Amorphous Indium-Based Oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2014-03-01

    Amorphous transparent conducting and semiconducting oxides exhibit similar or even superior properties to those observed in their crystalline counterparts. To understand how the structural properties change upon amorphization and how chemical composition affects the local and long-range structure of the amorphous oxides, we employ first-principles molecular dynamics to generate amorphous In-X-O with X =Zn, Ga, Sn, Ge, Y, or Sc, and compare their local structure features to those obtained for amorphous and crystalline indium oxide. The results reveal that the short-range structure of the Metal-O polyhedra is generally preserved in the amorphous oxides; however, different metals (In and X) show quantitatively or qualitatively different behavior. Some of the metals retain their natural distances and/or coordination; while others allow for a highly distorted environment and thus favor ``defect'' formation under variable oxygen conditions. At the same time, we find that the presence of X increases both the average In-O coordination and the number of the 6-coordinated In atoms as compared to those in IO. The improved In coordination may be responsible for the observed reduction in the carrier concentration as the substitution level in In-X-O increases.

  9. Pressure-induced transformations in amorphous Si-Ge alloy

    SciTech Connect

    Coppari, F.; Polian, A.; Menguy, N.; Trapananti, A.; Congeduti, A.; Newville, M.; Prakapenka, V.B.; Choi, Y.; Principi, E.; Di Cicco, A.

    2012-03-14

    The pressure behavior of an amorphous Si-rich SiGe alloy ({alpha}-Si{sub x}Ge{sub 1-x}, x = 0.75) has been investigated up to about 30 GPa, by a combination of Raman spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction measurements. The trends of microscopic structural properties and of the Raman-active phonon modes are presented in the whole pressure range. Nucleation of nanocrystalline alloy particles and metallization have been observed above 12 GPa, with a range of about 2 GPa of coexistence of amorphous and crystalline phases. Transformations from the amorphous tetrahedral, to the crystalline tetragonal ({beta}-Sn) and to the simple hexagonal structures have been observed around 13.8 and 21.8 GPa. The recovered sample upon depressurization, below about 4 GPa, shows a local structure similar to the as-deposited one. Inhomogeneities of the amorphous texture at the nanometric scale, probed by high-resolution transmission electron microscopy, indicate that the recovered amorphous sample has a different ordering at this scale, and therefore the transformations can not be considered fully reversible. The role of disordered grain boundaries at high pressure and the possible presence of a high-density amorphous phase are discussed.

  10. Au nanoparticles improve amorphous carbon to be gas sensors

    NASA Astrophysics Data System (ADS)

    Liu, Keng-Wen; Lee, Jian-Heng; Chou, Hsiung; Lin, Tzu-Ching; Lin, Si-Ting; Shih-Jye Sun Collaboration

    In order to make the amorphous carbon possess the gas sensing capability transferring some sp3 orbits to sp2 is necessary. It is proposed that the metallic materials having a large charge exchange with sp3 carbon orbits are being catalysts to transfer the carbon orbits. We found embedding gold nanoparticles to the amorphous carbon will induce many compact sp2 orbits around the nanoparticles, which make the amorphous carbon be the candidate material for the gas sensors. The orbits of amorphous carbon near the interface of Au nanoparticles can be changed from sp3 to compact sp2 to reduce the surface energy of Au nanoparticles. Meanwhile, our molecular dynamics simulation has confirmed the fact, when an Au nanoparticle is embedded in the amorphous carbon system the ratio of sp2 orbits increases dramatically. Similar results also have been confirmed from the Raman spectrum measurements. We controlled the carrier transport by changing the hopping barriers formed by amorphous carbon matrix between the Au nanoparticles to modify the resistance. These nanocomposites exhibit a superior sensitivity to NH3 at room temperature as well as good reproducibility and short response/recovery times, which could have potential applications in gas sensors. Dept. of Applied Physics,NUK, Kaohsiung, Taiwan.

  11. Effect of different "states" of sorbed water on amorphous celecoxib.

    PubMed

    Shete, Ganesh; Kuncham, Swathi; Puri, Vibha; Gangwal, Rahul P; Sangamwar, Abhay T; Bansal, Arvind Kumar

    2014-07-01

    Glass transition temperature (Tg) of an amorphous drug is a vital physical phenomenon that influences its visco-elastic properties, physical, and chemical stability. Water acts as a plasticizer for amorphous drugs thus increasing their recrystallization kinetics. This reduces the solubility advantage of an amorphous drug. Hence, there is an interest in understanding the relationship between water content and Tg of amorphous drug. We have studied the effect of "state" of sorbed water on Tg of amorphous celecoxib (ACLB). ACLB was allowed to sorb water at relative humidity of 33%, 53%, 75%, and 93%. ALCB showed biphasic sorption of water designated as "bound" and "solvent-like" state of water associated with ACLB. Molecular modeling studies provided deeper insights into the interaction of water with ACLB. A distinct co-relationship between the state of water and its plasticization capacity was observed. Bound state of water had a very profound effect on the fall in experimentally observed Tg (T(g-exp)) value. Solvent-like state of water had little impact on T(g-exp) value. Tg of ACLB-water mixture was predicted by Gordon-Taylor equation (T(g-pre)). The deviations in T(g-exp) and Tg-pre were correlated to volume non-additivity and non-ideal mixing. This study has implications on the development of formulations based on amorphous forms. PMID:24801826

  12. The Arabidopsis Mg Transporter, MRS2-4, is Essential for Mg Homeostasis Under Both Low and High Mg Conditions.

    PubMed

    Oda, Koshiro; Kamiya, Takehiro; Shikanai, Yusuke; Shigenobu, Shuji; Yamaguchi, Katsushi; Fujiwara, Toru

    2016-04-01

    Magnesium (Mg) is an essential macronutrient, functioning as both a cofactor of many enzymes and as a component of Chl. Mg is abundant in plants; however, further investigation of the Mg transporters involved in Mg uptake and distribution is needed. Here, we isolated an Arabidopsis thaliana mutant sensitive to high calcium (Ca) conditions without Mg supplementation. The causal gene of the mutant encodes MRS2-4, an Mg transporter.MRS2-4 single mutants exhibited growth defects under low Mg conditions, whereas an MRS2-4 and MRS2-7 double mutant exhibited growth defects even under normal Mg concentrations. Under normal Mg conditions, the Mg concentration of the MRS2-4 mutant was lower than that of the wild type. The transcriptome profiles of mrs2-4-1 mutants under normal conditions were similar to those of wild-type plants grown under low Mg conditions. In addition, both mrs2-4 and mrs2-7 mutants were sensitive to high levels of Mg. These results indicate that both MRS2-4 and MRS2-7 are essential for Mg homeostasis, even under normal and high Mg conditions. MRS2-4-green fluorescent protein (GFP) was mainly detected in the endoplasmic reticulum. These results indicate that these two MRS2 transporter genes are essential for the ability to adapt to a wide range of environmental Mg concentrations. PMID:26748081

  13. Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, S.

    2012-01-01

    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs.

  14. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    SciTech Connect

    Babilas, Rafał; Nowosielski, Ryszard; Pawlyta, Mirosława; Fitch, Andy; Burian, Andrzej

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  15. High Silicate Crystalline-to-Amorphous Ratios in Comets C/2001 Q4 (NEAT) and Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Harker, D. E.; Woodward, C. E.

    2004-01-01

    Crystalline silicates, by their apparent absence in the ISM, are dust grains that experienced high temperatures in the solar nebula. Mg-rich crystalline silicates formed either by condensation from hot nebular gases (1450 K) or by the annealing of Mg-rich amorphous silicates (approx. 1000 K) in shocks in the 5-10 AU region or by radial transport into and out of the hot inner zones, e.g., T(sub d) > 1000 K at r(sub h) < 5 AU, 10(exp -6) - 10(exp -5) M(sub O)/yr, alpha = 10(exp -4) of the early solar nebula. Mg-rich crystalline silicates are found in interplanetary dust particles (IDPs) and produce IR spectral features in many Oort cloud comets. In May 2004, we discovered strong crystalline silicate features in the dynamically new Oort cloud comet C/2001 Q4 (NEAT). Thermal emission modeling of comets Q4 and C/1995 O1 (Hale-Bopp) demonstrate that both these comets have similar, high silicate crystalline-to-amorphous ratios of 2.4 and 2.1, respectively, indicating that these icy planetesimals aggregated from similar reservoirs of material or that crystalline silicates were widely distributed within the comet-forming zone. This argues for efficient annealing mechanisms and radial mixing.

  16. Physical vapor deposition synthesis of amorphous silicate layers and nanostructures as cosmic dust analogs

    NASA Astrophysics Data System (ADS)

    De Sio, A.; Tozzetti, L.; Wu, Ziyu; Marcelli, A.; Cestelli Guidi, M.; Della Ventura, G.; Zhao, Haifeng; Pan, Zhiyun; Li, Wenjie; Guan, Yong; Pace, E.

    2016-05-01

    Cosmic dust grains (CD) are part of the evolution of stars and planetary systems and pervade the interstellar medium. Thus, their spectral signature may be used to deduce the physical features of the observed astronomical objects or to study many physical and chemical processes in the interstellar medium. However, CD samples are available only from sample-and-return space missions. Thus, they are rare and not sufficient to be used to perform laboratory experiments of astrophysical interest, such as to produce reference spectra. In this contribution, we describe a new physical vapor deposition (PVD) technique that allows the production of amorphous samples with controlled chemical and morphological characteristics. In particular, this technique was developed to grow uniform or microstructured layers of Mg-Fe amorphous silicates (olivine or pyroxene) that are materials of wide interest for laboratory experiments. We discuss the first results that were achieved by applying this new synthesis method. The layers were studied by combining infrared spectroscopy, scanning electron microscopy, and X-ray spectroscopy. The X-ray microscopy was used for the first time to characterize the internal structure of the grains in these synthetic samples. Finally, future improvements of the technique and foreseen applications are discussed.

  17. Crystal orientation results in different amorphization of olivine during solar wind implantation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Xiongyao; Wang, Shijie; Li, Shijie; Tang, Hong; Coulson, Ian M.

    2013-10-01

    Crystal orientation plays an important role in mineral amorphization during solar wind implantation. To discuss these effects, ion implantation experiments were carried out to irradiate natural olivine grains by 1 × 1017 cm-2 50 keV He+. Based on the olivine grains irradiated in our experiment, residual crystal planes have been identified by reference to the crystal plane's spacing shown in diffraction images. It is found that He+ ions injected along [010] damages the olivine structure more effectively than with other orientations and that this possibly relates to the higher atomic density and the vertical impact of the flux on MO6 (where M commonly represents Fe2+ and Mg2+) octahedra chains. Crystal planes perpendicular or approximately perpendicular to [010] may be destroyed easily during the early stages of irradiation, particularly for (040). However, crystal planes, such as (041), (021), (022), (120), and (140), parallel to [100] or [001] may survive until the final stages of olivine amorphization. These different characteristics affected by crystal orientation in ion implantation might help researchers to better understand the process of solar wind weathering and in dating the exposure time of lunar and asteroidal soil grains as well as interplanetary dust particles affected by the solar wind.

  18. Deformation-Induced Amorphization of Copper-Titanium Intermetallics

    NASA Astrophysics Data System (ADS)

    Askenazy, Philip Douglas

    Two methods of inducing amorphization in Cu-Ti intermetallic compounds by mechanical means have been investigated. Ingots of compositions Cu_{35}Ti _{65} and Cu_ {33.3}Ti_{66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi_2 was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering in close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries caused by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of the wear sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plane-view and cross -sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas. Some amorphous phase is

  19. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Morris, R. V.; Chipera, S.; Bish, D. L.; Bristow, T.; Archer, P. D.; Blake, D.; Achilles, C.; Ming, D. W.; Vaniman, D.; Crisp, J. A.; Des Marais, D. J.; Downs, R.; Farmer, J. D.; Morookian, J.; Morrison, S.; Sarrazin, P.; Spanovich, N.; Treiman, A. H.; Yen, A. S.; Team, M.

    2013-12-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  20. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  1. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  2. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  3. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  4. Molecular mobility in amorphous state: Implications on physical stability

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sunny Piyush

    Amorphous pharmaceuticals are desirable in drug development due to their advantageous biopharmaceutical properties of higher apparent aqueous solubility and dissolution rate. The main obstacle in their widespread use, however, is their higher physicochemical instability than their crystalline counterparts. The goal of the present research project was to investigate correlations between the molecular mobility and physical stability in model amorphous compounds. The objective was to identify the specific mobility which is responsible for the physical instability in each case. This will potentially enable the development of effective strategies for the stabilization of amorphous pharmaceuticals. Moreover, these correlations can be used to develop predictive models for the stability at the pharmaceutically relevant storage conditions. Subtraction of dc conductivity enabled the comprehensive characterization of molecular mobility in amorphous trehalose. This was followed by investigation of correlation between crystallization behavior and different relaxations. Global mobility was found to be strongly coupled to both crystallization onset time and rate. Different preparation methods imparted different mobility states to amorphous trehalose which was postulated to be the reason for the significant physical stability differences. Predictive models were developed and a good agreement was found between the predicted and the experimental crystallization onset times at temperatures around and below the glass transition temperature (Tg). Effect of annealing was investigated on water sorption, enthalpic recovery and dielectric relaxation times in amorphous trehalose. Global mobility was found to be linearly correlated to the water sorption potential which enabled the development of predictive models. Global mobility was also found to be strongly correlated to physical instability in amorphous itraconazole. Effect of polymer (PVP and HPMCAS) on itraconazole mobility and

  5. First-principles study of Mg(0001)/MgO(1-11) interfaces

    NASA Astrophysics Data System (ADS)

    Song, Hong-Quan; Zhao, Ming; Li, Jian-Guo

    2016-06-01

    By means of first-principles density-functional calculations, we studied the surface energy of a nonstoichiometric MgO(1-11) slab, the interfacial energy and interfacial bonding characteristics of Mg-terminated and O-terminated Mg/MgO(1-11) interfaces with three stacking-site (TOP, HCP and FCC sites) models, and the effect of the thickness of Mg films on the O-terminated MgO(1-11) surface. The results indicate that the surface energies of the nonstoichiometric MgO(1-11) slab and interfacial energies of Mg/Mg(1-11) interface depend on Mg chemical potential. We found that the Mg-terminated MgO(1-11) surface is more stable than the O-terminated MgO(1-11) surface at high Mg chemical potential, and Mg/MgO(1-11) with FCC stacking-site model is the most stable configuration in the Mg/MgO(1-11) interfaces. The results of the electronic structure reveals that the interfacial bonding of Mg-terminated interface with FCC site model mainly consists of metallic bond and of the O-terminated interface with FCC site model is mainly ionic with a small degree of σ-type covalent bond. Although the interfacial energy of Mg-terminated Mg/MgO interface with FCC stacking-site model is slightly higher than that of O-terminated Mg/MgO interface, the molten Mg would epitaxially grow on the FCC sites of the Mg-terminated MgO(1-11) surface because of the high evaporation pressure of Mg at high temperature.

  6. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons. PMID:22705959

  7. Defects and metastable structures of MgAl{sub 2}O{sub 4}

    SciTech Connect

    Chen, S.P.; Yan, M.; Grimes, R.W.; Vyas, S.; Gale, J.D.

    1995-07-01

    This paper presents calculated properties of normal and inverse spinel structures of MgAl{sub 2}O{sub 4} and of point defects in the spinel structure. These results provide information for further study of possible metastable states. Calculated properties of ``amorphous`` structure are also presented. Atomistic simulations show that in MgAl{sub 2}O{sub 4} spinel structure, the exchange of an Mg{sup 2+} ion with an Al{sup 3+} ion has the lowest energy increase, 0. 92eV/atom. The Schottky defect increases the energy by 3.71 eV/atom. Frenkel defects are difficult to form, increasing the energy at least 4.59eV/atom for the Mg{sup 2+} Frenkel defect. Proposed rock salt structure of MgAl{sub 2}O{sub 4} has smaller volume and larger Young modulus, and the amorphosu state has larger volume and smaller Young modulus than the MgAl{sub 2}O{sub 4} spinel.

  8. The Role of Carboxydothermus hydrogenoformans in the Conversion of Calcium Phosphate from Amorphous to Crystalline State

    PubMed Central

    Haddad, Mathieu; Vali, Hojatollah; Paquette, Jeanne; Guiot, Serge R.

    2014-01-01

    Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30–50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD) peaks and Fourier transform infrared spectroscopy (FTIR) spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process. PMID:24586811

  9. Structural and Spectral Characteristics of Amorphous Iron Sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E.; Jensen, H. B.; Rogers, D.; Reeder, R. J.

    2014-12-01

    Substantial evidence points to the existence of hydrated sulfate phases on the Martian surface1-3. In addition, the discovery of recurring slope lineae could point to an active brine hydrologic cycle on the surface4,5. The rapid dehydration of both hydrated sulfates and sulfate-rich brines can lead to the formation of amorphous sulfates. Evidence suggests that the Rocknest soil target and the Sheepbed mudstone interrogated by the Mars Science Laboratory at Gale crater contain ~30 wt.% XRD amorphous material that is rich in both sulfur and iron6. These factors have led us to consider hydrated amorphous iron sulfates as possible components in Martian surface materials. Amorphous iron sulfates were created through multiple synthesis routes, and then characterized with total x-ray scattering, TGA, SEM, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3•~5-8H2O) from sulfate-saturated fluids via two pathways: vacuum dehydration and exposure to low relative humidity (<11%) using a LiCl buffer. Amorphous ferrous sulfate (Fe(II)SO4•~1H2O) was synthesized via vacuum dehydration of melanterite (Fe(II) SO4•7H2O). We find that both the ferric and ferrous sulfates synthesized from these methods lack long-range (>10Å) order, and thus are truly amorphous. VNIR and TIR spectral data for the amorphous sulfates display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from all crystalline phase spectra available for comparison. The amorphous sulfates should be distinguishable based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, which is the spectral range that has primarily been used to detect sulfates on Mars, the bands associated with hydration at ~1.4 and 1.9 μm are significantly

  10. Investigation of the Rigid Amorphous Fraction in Nylon-6

    SciTech Connect

    Chen,H.; Cebe, P.

    2007-01-01

    A three-phase model, comprising crystalline, mobile amorphous, and rigid amorphous fractions (X{sub c}, X{sub MA}, X{sub rA}, respectively) has been applied in the study of semicrystalline Nylon-6. The samples studied were Nylon-6 alpha phase prepared by subsequent annealing of a parent sample slowly cooled from the melt. The treated samples were annealed at 110 C, then briefly heated to 136 C, then re-annealed at 110 C. Temperature-modulated differential scanning calorimetry (TMDSC) measurements allow the devitrification of the rigid amorphous fraction to be examined. We observe a lower endotherm, termed the 'annealing' peak in the non-reversing heat flow after annealing at 110 C. By brief heating above this lower endotherm and immediately quenching in LN{sub 2}-cooled glass beads, the glass transition temperature and X{sub RA} decrease substantially, X{sub MA} increases, and the annealing peak disappears. The annealing peak corresponds to the point at which partial de-vitrification of the rigid amorphous fraction (RAF) occurs. Re-annealing at 110 C causes the glass transition and X{sub RA} to increase, and X{sub MA} to decrease. None of these treatments affected the measured degree of crystallinity, but it cannot be excluded that crystal reorganization or recrystallization may also occur at the annealing peak, contributing to the de-vitrification of the rigid amorphous fraction. Using a combined approach of thermal analysis with wide and small angle X-ray scattering, we analyze the location of the rigid amorphous and mobile amorphous fractions within the context of the Heterogeneous and Homogeneous Stack Models. Results show the homogeneous stack model is the correct one for Nylon-6. The cooperativity length ({var_epsilon}{sub A}) increases with a decrease of rigid amorphous fraction, or, increase of the mobile amorphous fraction. Devitrification of some of the RAF leads to the broadening of the glass transition region and shift of T{sub g}.

  11. Highly (100) oriented MgO growth on thin Mg layer in MTJ structure

    NASA Astrophysics Data System (ADS)

    Jimbo, K.; Nakagawa, S.

    2011-01-01

    In order to apply Stress Assisted Magnetization Reversal (SAMR) method to perpendicular magnetoresistive random access memory (p-MRAM) with magnetic tunnel junction (MTJ) using MgO (001) oriented barrier layer, multilayer of Ta/ Terfenol-D/ Mg/ MgO and Ta/ Terfenol-D/ MgO were prepared. While the MgO layer, deposited directly on the Terfenol-D layer, did not show (100) orientatin, very thin metallic Mg layer, deposited prior to the MgO deposition, was effective to attain MgO (100) orientation. The crystalline orientation was very weak without Mg, however, the multilayer with Mg showed very strong MgO(100) peak and the MgO orientation was shifted depending on the Mg thickness.

  12. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    SciTech Connect

    Gamero-Castaño, Manuel Torrents, Anna; Borrajo-Pelaez, Rafael; Zheng, Jian-Guo

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmission electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.

  13. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.

    PubMed

    Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin; McKee, William C; Xu, Ye; Ling, Shigang; Li, Hong; Zhong, Guiming; Yang, Yong; Peng, Zhangquan

    2016-08-26

    When aprotic Li-O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2 O2 . The morphology of Li2 O2 impacts strongly on the electrochemical performance of Li-O2 cells in terms of energy efficiency and rate capability. Crystalline Li2 O2 is readily available and its properties have been studied in depth for Li-O2 batteries. However, little is known about the amorphous Li2 O2 because of its rarity in high purity. Herein, amorphous Li2 O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2 O2 demonstrates enhanced charge-transport properties and increased electro-oxidation kinetics, manifesting itself a desirable discharge phase for high-performance Li-O2 batteries. PMID:27486085

  14. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  15. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  16. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    NASA Astrophysics Data System (ADS)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  17. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  18. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1989-11-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr 2+ beam at a dose rate of 1×10 12/cm 2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  19. Development of amorphous wire type MI sensors for automobile use

    NASA Astrophysics Data System (ADS)

    Honkura, Yoshinobu

    2002-08-01

    Amorphous wire type MI sensors have a high sensitivity compared to thin film MI sensors, but there have been reliability problems in developing an amorphous wire type MI sensor for automobile application because of the wide range of operating temperatures. It was difficult to achieve sufficient soldering strength between the amorphous wire and the electrode of the MI chip. In addition, stress is induced in the amorphous wire during soldering thus lowering the temperature stability characteristics. Therefore, we developed a new method for soldering the amorphous wire and a new method for assembly of the MI chip. Together with the redesign of the electronic circuit, these developments have yielded an MI sensor suitable for automobile application. This MI sensor has a sensitivity of 250 mV/Oe, has stable temperature characteristics between -40°C and 85°C and easily passed the thermal shock test, the most stringent durability test for automobile electronic parts. Two different types of products are under development; one is a standard type whose output is linear to the external magnetic field, and the other is a switch type whose output is ON or OFF relative to a threshold magnetic field. Future applications include an ABS sensor, an electronic compass, an automatic tracking system for automobiles and so on.

  20. Mechanical response of melt-spun amorphous filaments

    NASA Astrophysics Data System (ADS)

    Leal, A. A.; Mohanty, G.; Reifler, F. A.; Michler, J.; Hufenus, R.

    2014-06-01

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials.

  1. Cold Spraying of Amorphous Cu50Zr50 Alloys

    NASA Astrophysics Data System (ADS)

    List, A.; Gärtner, F.; Mori, T.; Schulze, M.; Assadi, H.; Kuroda, S.; Klassen, T.

    2015-01-01

    A new range of applications in cold spraying is expected for bulk metallic glass (BMG) coatings. For retaining amorphous structures in cast multi-component BMG parts, typically high purity raw material must be used. The present investigation explores an alternative approach, where cold spraying is used to deposit a technical-grade binary amorphous alloy. This approach is shown to be potentially cost-effective and suitable for rapid manufacturing. For this purpose, amorphous Cu50Zr50 was chosen as a model alloy system, and cold spraying was performed using nitrogen as process gas. By a systematic variation of the spray parameter sets, the critical velocities for coating formation were determined experimentally. Based on the current models of bonding of amorphous Cu50Zr50 powder in cold spraying, a new, more comprehensive concept of bonding and rebound is presented, which also considers the presence of liquefied interfaces and quenching rates for resolidification. Results concerning impact morphologies and coating formation demonstrate that under suitable choice of spray conditions, well-adhering coatings with amorphous structure of the Cu50Zr50 powders can be obtained by cold spraying.

  2. Parametrized dielectric functions of amorphous GeSn alloys

    SciTech Connect

    D'Costa, Vijay Richard Wang, Wei; Yeo, Yee-Chia; Schmidt, Daniel

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  3. Crystallization of amorphous water ice in the solar system

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.

    1996-01-01

    Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated.

  4. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    SciTech Connect

    Katsumata, Y.; Morita, T.; Morimoto, Y.; Shintani, T.; Saiki, T.

    2014-07-21

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  5. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    NASA Astrophysics Data System (ADS)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  6. Preparation and characterization of hydrogenated amorphous germanium and hydrogenated amorphous germanium carbide thin films

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Sheng

    1989-02-01

    Hydrogenated amorphous germanium (a-Ge:H) and germanium carbide (a-Ge(1-x)Cx:H) films were prepared by rf sputtering of a polycrystalline Ge target in a vacuum approximately 4 x 10 to the 7th Torr at various rf power 50 less than or equal to P less than or equal to 600 W (0.27 to 3.3 W/sq cm), target-substrate distance 1 less than or equal to d less than or equal to 7 minutes, varying partial pressures of Ar, H2, and C3H8, and flow rates f. The vibrational and opto-electronic properties such as infrared (IR) absorption, optical gap, electron-spin-resonance (ESR) signals, and conductivities vary with deposition conditions. The photoconductivity sigma sub ph, in particular, was carefully monitored as a function of the deposition conditions to optimize it.

  7. Particle-induced amorphization complex ceramic

    SciTech Connect

    Ewing, R.C.; Wang, Lu-Min

    1996-02-16

    The presently funded three-year research program, supported by the Division of Materials Sciences of the Office of Basic Energy Sciences, was initiated on August 1, 1993; during the period in which the grant will have been active, $249,561 of support have been provided to date with an additional $79,723 to be spent during the third, final year (ending July 30, 1996). The primary purpose of the program is to develop an understanding of heavy-particle radiation effects -- {alpha}-recoil nuclei, fission fragments, ion-irradiations -- on ceramic materials and the thermal annealing mechanisms by which crystallinity might be restored. During the past two years, we have completed major studies on zircon (ZrSiO{sub 4}), olivine (Mg{sub 2}SiO{sub 4} and ten other compositions), spinel (MgAl{sub 2}O{sub 4} and four other compositions), and silica polymorphs (quartz, coesite and stishovite), as well as berlinite (AlPO{sub 4}) which is isomorphous with quartz. In addition, based on the above research, we propose the use of zircon as a host phase for the immobilization of plutonium resulting from weapons dismantlement.

  8. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction

    SciTech Connect

    Matsuda, Junko; Yoshida, Kenta; Sasaki, Yukichi; Uchiyama, Naoki; Akiba, Etsuo

    2014-08-25

    In situ transmission electron microscopy (TEM) was performed to observe the hydrogenation of Mg-Ni films in a hydrogen atmosphere of 80–100 Pa. An aberration-corrected environmental TEM with a differential pumping system allows us to reveal the Angstrom-scale structure of the films in the initial stage of hydrogenation: first, nucleation and growth of Mg{sub 2}NiH{sub 4} crystals with a lattice spacing of 0.22 nm in an Mg-rich amorphous matrix of the film occurs within 20 s after the start of the high-resolution observation, then crystallization of MgH{sub 2} with a smaller spacing of 0.15 nm happens after approximately 1 min. Our in situ TEM method is also applicable to the analysis of other hydrogen-related materials.

  9. Bacterial Mg2+ Homeostasis, Transport, and Virulence

    PubMed Central

    Hollands, Kerry; Kriner, Michelle A.; Lee, Eun-Jin; Park, Sun-Yang; Pontes, Mauricio H.

    2014-01-01

    Organisms must maintain physiological levels of Mg2+ because this divalent cation is critical for the stabilization of membranes and ribosomes, the neutralization of nucleic acids, and as a cofactor in a variety of enzymatic reactions. In this review, we describe the mechanisms that bacteria utilize to sense the levels of Mg2+ both outside and inside the cytoplasm. We examine how bacteria achieve Mg2+ homeostasis by adjusting the expression and activity of Mg2+ transporters, and by changing the composition of their cell envelope. We discuss the connections that exist between Mg2+ sensing, Mg2+ transport and bacterial virulence. Additionally, we explore the logic behind the fact that bacterial genomes encode multiple Mg2+ transporters and distinct sensing systems for cytoplasmic and extracytoplasmic Mg2+. These analyses may be applicable to the homeostatic control of other cations. PMID:24079267

  10. Matrix sublimation method for the formation of high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Kouchi, A.; Hama, T.; Kimura, Y.; Hidaka, H.; Escribano, R.; Watanabe, N.

    2016-08-01

    A novel method for the formation of amorphous ice involving matrix sublimation has been developed. A CO-rich CO:H2O mixed ice was deposited at 8-10 K under ultra-high vacuum condition, which was then allowed to warm. After the sublimation of matrix CO at 35 K, amorphous ice remained. The amorphous ice formed exhibits a highly porous microscale texture; however, it also rather exhibits a density similar to that of high-density amorphous ice formed under high pressure. Furthermore, unlike conventional vapor-deposited amorphous ice, the amorphous ice is stable up to 140 K, where it transforms directly to cubic ice Ic.

  11. A shear localization mechanism for lubricity of amorphous carbon materials

    PubMed Central

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998

  12. Amorphous silicon carbide coatings for extreme ultraviolet optics

    NASA Technical Reports Server (NTRS)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  13. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  14. Advances and opportunities in the amorphous silicon research field

    SciTech Connect

    Sabisky, E.; Wallace, W.; Mikhall, A.; Mahan, H.; Tsuo, S.

    1984-05-01

    The amorphous materials and thin-film solar cells program was initiated by the US Department of Energy in 1978 and then transferred to the Solar Energy Research Institute. The aim of the present DOE/SERI program is to achieve 5-year DOE research goals by addressing photovoltaic research in single-junction amorphous thin films as well as the most promising option in high-efficiency, multijunction solar cells. Multiyear subcontract awards initiated in 1983 were designed to demonstrate a stable, small-area, p-i-n solar cell of at least 12% (AMI) efficiency, a stable submodule of at least 8% (AMI) efficiency, a stable submodule of at least 8% (AMI) efficiency (total area, 1000 cm/sup 2/), and a proof-of-concept multijunction amorphous silicon alloy thin-film solar cell that will lead to achieving an 18% efficiency goal in 1988.

  15. Amorphization and defect recombination in ion implanted silicon carbide

    SciTech Connect

    Grimaldi, M.G.; Calcagno, L.; Musumeci, P.; Frangis, N.; Van Landuyt, J.

    1997-06-01

    The damage produced in silicon carbide single crystals by ion implantation was investigated by Rutherford backscattering channeling and transmission electron microscopy techniques. Implantations were performed at liquid nitrogen and at room temperatures with several ions to examine the effect of the ion mass and of the substrate temperature on the damaging process. The damage accumulation is approximately linear with fluence until amorphization occurs when the elastic energy density deposited by the ions overcomes a critical value. The critical energy density for amorphization depends on the substrate temperature and is greatest at 300 K indicating that defects recombination occurs already at room temperature. Formation of extended defects never occurred and point defects and uncollapsed clusters of point defects were found before amorphization even in the case of light ion implantation. The atomic displacement energy has been estimated to be {approximately}12 eV/atom from the analysis of the damage process in dilute collision cascades. {copyright} {ital 1997 American Institute of Physics.}

  16. A shear localization mechanism for lubricity of amorphous carbon materials.

    PubMed

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998

  17. A shear localization mechanism for lubricity of amorphous carbon materials

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials.

  18. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.

    PubMed

    Bertran, M S; Dale, B E

    1985-02-01

    Cellulose samples from cotton and wood pulps with varying low degrees of crystallinity (mechanically decrystallized) were studied. The influence of initial cellulose crystallinity on sugar yield after enzymatic hydrolysis was determined by two different methods. As expected, samples with low crystallinity were much more accessible to enzymatic attack and glucose yields were higher than were samples of high initial crystallinity. Hydrolysis of cellulose seems more dependent on cellulose crystallinity than on the source of cellulose. It is known that decrystallized or amorphous cellulose can recrystallize under proper conditions, e.g., during acid hydrolysis. The data reported here also reveal some recrystallization during enzymatic hydrolysis which probably occurs simulataneously with a selective enzymatic attack on the amorphous regions of cellulose. In all cases, the amorphous celluloses recrystallized in the original lattice form, that of native cellulose. PMID:18553653

  19. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    NASA Astrophysics Data System (ADS)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  20. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  1. The rheology of collapsing zeolites amorphized by temperature and pressure.

    PubMed

    Greaves, G N; Meneau, F; Sapelkin, A; Colyer, L M; ap Gwynn, I; Wade, S; Sankar, G

    2003-09-01

    Low-density zeolites collapse to the rigid amorphous state at temperatures that are well below the melting points of crystals of the same composition but of conventional density. Here we show, by using a range of experimental techniques, how the phenomenon of amorphization is time dependent, and how the dynamics of order-disorder transitions in zeolites under temperature and pressure are equivalent. As a result, thermobaric regions of instability can be charted, which are indicative of polyamorphism. Moreover, the boundaries of these zones depend on the rate at which temperature or pressure is ramped. By directly comparing the rheology of collapse with structural relaxation in equivalent melts, we conclude that zeolites amorphize like very strong liquids and, if compression occurs slowly, this is likely to lead to the synthesis of perfect glasses. PMID:12942072

  2. Electronic Structure of NiPdP Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Swihart, J. C.; Nicholson, D. M. C.; Shelton, W. A.; Wang, Y.

    1996-03-01

    The understanding of the structure, properties and required cooling rates for bulk amorphous alloys is hindered by the the large number of constituents in the typical alloy. One of the compositionally simplest systems that can be cast into bulk specimens is Ni_0.4Pd_0.4P_0.2. Furthermore, the thoroughly studied structure of amorphous Ni_0.8P_0.2 provides a useful starting point for its investigation. We use the locally selfconsistent multiple scattering (LSMS) method to determine the electronic structure, mass density, and energy as Pd is substituted at random for Ni in the Ni_0.8P_0.2 amorphous structure. Work supported by Laboratory Directors Research Development program at Oak Ridge National Laboratory, Division of Materials Science, and the Mathematical Information and Computational Science Division of the Office of Computational Technology Research, US DOE under subcontract DEAC05-84OR21400 with Lockheed-Martin Energy Systems, Inc.

  3. Substrate/layer interface of amorphous-carbon hard coatings

    NASA Astrophysics Data System (ADS)

    Böhme, O.; Cebollada, A.; Yang, S.; Teer, D. G.; Albella, J. M.; Román, E.

    2000-08-01

    A combined study of the crystalline structure, the chemical interaction, and diffusion processes of the substrate/layer interface of amorphous-carbon hard coatings is presented. The structure of the coatings and their gradient layer interface to a chromium buffer layer has been investigated on two substrates [Si(100) and tool steel] using x-ray diffraction (XRD). Chemical interaction and diffusion processes at the interfaces and within the layers were analyzed by Auger electron spectroscopy and x-ray photoemission spectroscopy depth profiles. The chromium buffer layer revealed similar textured structure on both substrates. The subsequent gradient layer was determined (within XRD limits) to be amorphous and composed of an amorphous-carbon and chromium-carbide composite. The chromium carbide maintains the same stoichiometry (Cr3C2), regardless of the gradually changing chromium content. No large-scale interdiffusion was measured, either between or within the layers.

  4. International Ultraviolet Explorer observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Gallac gher, J. S.; Hjellming, M.; Hunter, D. A.

    1984-01-01

    In order to better understand the nature of star formation processes in amorphous galaxies, short wavelength International Ultraviolet Explorer (IUE) spectra of galaxies NGC 1705 and NGC 1800 were obtained. The IUE data for NGC 1705 were of excellent quality while the low signal-to-noise NGC 1800 observation was useful only as a rough guide to the ultraviolet energy distribution. It was found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star formation rate inferred from new optical data. The NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar mass distributions. The UV spectra of amorphous galaxies and a variety of other hot extragalactic stellar systems have similar characteristics, which suggests OB stellar populations often are homogeneous in their properties.

  5. International Ultraviolet Explorer observations of amorphous hot galaxies

    SciTech Connect

    Lamb, S.A.; Gallagher, J.S. III; Hjellming, M.S.; Hunter, D.A.

    1984-08-01

    In order to better understand the nature of star formation processes in amorphous galaxies, short wavelength International Ultraviolet Explorer (IUE) spectra of galaxies NGC 1705 and NGC 1800 were obtained. The IUE data for NGC 1705 were of excellent quality while the low signal-to-noise NGC 1800 observation was useful only as a rough guide to the ultraviolet energy distribution. It was found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star formation rate inferred from new optical data. The NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar mass distributions. The UV spectra of amorphous galaxies and a variety of other hot extragalactic stellar systems have similar characteristics, which suggests OB stellar populations often are homogeneous in their properties.

  6. Stability of amorphous metal films on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Perepezko, J. H.; Wiley, J. D.

    In the culmination of work which began in June 1984, goals of this research have been as follows: Investigation of the stability of amorphous alloy films during diffusion and interdiffusion treatments. The atomic transport measurements will be conducted by a combination of RBS and AES techniques as explained in earlier reports. X-ray diffraction and transmission electron microscopy will be used for structural examination. Investigation of the electrical behavior of amorphous metal/semiconductor contacts, including both the interfacial electrical (Schottky barrier and Ohmic) behavior and the stability of the amorphous metallization against current-induced degradation by electromigration. Fundamental studies of the electromigration process itself will be conducted in this broader context. Examination of structural relaxation during post-depression annealing will also take place.

  7. Electrooptical properties and structural features of amorphous ITO

    SciTech Connect

    Amosova, L. P.

    2015-03-15

    Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms. At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.

  8. Connecting Local Yield Stresses with Plastic Activity in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Patinet, Sylvain; Vandembroucq, Damien; Falk, Michael L.

    2016-07-01

    In model amorphous solids produced via differing quench protocols, a strong correlation is established between local yield stress measured by direct local probing of shear stress thresholds and the plastic rearrangements observed during remote loading in shear. This purely local measure shows a higher predictive power for identifying sites of plastic activity when compared with more conventional structural properties. Most importantly, the sites of low local yield stress, thus defined, are shown to be persistent, remaining predictive of deformation events even after fifty or more such plastic rearrangements. This direct and nonperturbative approach gives access to relevant transition pathways that control the stability of amorphous solids. Our results reinforce the relevance of modeling plasticity in amorphous solids based on a gradually evolving population of discrete and local zones preexisting in the structure.

  9. Amorphization and Recrystallization of the ABO(3) Oxides

    SciTech Connect

    Meldrum, Alkiviathes; Boatner, Lynn A.; Weber, William J. ); Ewing, Rodney C.

    2002-01-31

    Single crystals of the ABO3 phases CaTiO3, SrTiO3, BaTiO3, LiNbO3, KNbO3, LiTaO3, and KTaO3 were irradiated by 800 keV Kr+, Xe+, or Ne+ ions over the temperature range from 20 to 1100 K. The critical amorphization temperature, Tc, above which radiation-induced amorphization does not occur varied from approximately 450 K for the titanate compositions to more than 850 K for the tantalates. While the absolute ranking of increasing critical amorphization temperatures could not be explained by any simple physical parameter associated with the ABO3 oxides, within each chemical group defined by the B-site cation (i.e., within the titanates, niobates, and tantalates), Tc tends to increase with increasing mass of the A-site cation. Tc was lower for the Ne+ irradiations as compared to Kr+, but it was approximately the same for the irradiations with Kr+ or Xe+. Thermal recrystallization experiments were performed on the ion-beam-amorphized thin sections in situ in the transmission electron microscope (TEM). In the high vacuum environment of the microscope, the titanates recrystallized epitaxially from the thick areas of the TEM specimens at temperatures of 800 to 850 K. The niobates and tantalates did not recrystallize epitaxially, but instead, new crystals nucleated and grew in the amorphous region in the temperature range 825 to 925 K. These new crystallites apparently retain some''memory'' of the original crystal orientation prior to ion-beam amorphization.

  10. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  11. A transparent ultraviolet triggered amorphous selenium p-n junction

    NASA Astrophysics Data System (ADS)

    Saito, Ichitaro; Miyazaki, Wataru; Onishi, Masanori; Kudo, Yuki; Masuzawa, Tomoaki; Yamada, Takatoshi; Koh, Angel; Chua, Daniel; Soga, Kenichi; Overend, Mauro; Aono, Masami; Amaratunga, Gehan A. J.; Okano, Ken

    2011-04-01

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  12. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    NASA Astrophysics Data System (ADS)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-01

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ˜ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ˜ 1.5% in 2 ˜ 40 K. The origin of this angular MR was also discussed.

  13. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    NASA Technical Reports Server (NTRS)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  14. Embrittlement of metal by solute segregation-induced amorphization.

    PubMed

    Chen, Hsiu-Pin; Kalia, Rajiv K; Kaxiras, Efthimios; Lu, Gang; Nakano, Aiichiro; Nomura, Ken-ichi; van Duin, Adri C T; Vashishta, Priya; Yuan, Zaoshi

    2010-04-16

    Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10(6)-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, an order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path. PMID:20481998

  15. Embrittlement of Metal by Solute Segregation-Induced Amorphization

    SciTech Connect

    Chen, H.-P.; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya; Yuan, Zaoshi; Kaxiras, Efthimios; Lu, Gang; Duin, Adri C. T. van

    2010-04-16

    Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10{sup 6}-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, an order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path.

  16. Shock-Induced Localized Amorphization in Boron Carbide

    NASA Astrophysics Data System (ADS)

    Chen, Mingwei; McCauley, James W.; Hemker, Kevin J.

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  17. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    SciTech Connect

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  18. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  19. Single atom catalysts on amorphous supports: A quenched disorder perspective

    SciTech Connect

    Peters, Baron; Scott, Susannah L.

    2015-03-14

    Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.

  20. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    NASA Technical Reports Server (NTRS)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  1. Metric Description of Defects in Amorphous Elastic Materials

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2014-03-01

    We suggest a description for dislocations, using a torsion-free Riemannian manifold equipped with a reference metric. This metric expresses the local equilibrium geometry within the material. In this description, dislocations are singularities in the intrinsic curvature structure. The model is not based on a crystalline structure; therefore it can describe dislocations even in amorphous materials. We provide explicit expression for edge dislocation, which is a dipole of curvature. Apparently, higher multipoles of curvature can be used to describe plastic deformations in amorphous materials. The model is supported with experimental results.

  2. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Benmore, C. J.; Weber, J. K. R.

    2011-08-01

    It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10-20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  3. Shape anisotropy in zero-magnetostrictive rapidly solidified amorphous nanowires

    NASA Astrophysics Data System (ADS)

    Rotărescu, C.; Atitoaie, A.; Stoleriu, L.; Óvári, T.-A.; Lupu, N.; Chiriac, H.

    2016-04-01

    The magnetic behavior of zero-magnetostrictive rapidly solidified amorphous nanowires has been investigated in order to understand their magnetic bistability. The study has been performed both experimentally - based on inductive hysteresis loop measurements - and theoretically, by means of micromagnetic simulations. Experimental hysteresis loops have shown that the amorphous nanowires display an axial magnetic bistability, characterized by a single-step magnetization reversal when the applied field reaches a critical value called switching field. The simulated loops allowed us to understand the effect of shape anisotropy on coercivity. The results are key for understanding and controlling the magnetization processes in these novel nanowires, with important application possibilities in new miniaturized sensing devices.

  4. A transparent ultraviolet triggered amorphous selenium p-n junction

    SciTech Connect

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro; Amaratunga, Gehan A. J.; Miyazaki, Wataru; Onishi, Masanori; Masuzawa, Tomoaki; Okano, Ken; Kudo, Yuki; Yamada, Takatoshi; Koh, Angel; Chua, Daniel; Aono, Masami

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  5. Recent improvements in amorphous silicon-based multijunction modules

    SciTech Connect

    Arya, R.R.; Bennett, M.; Yang, L.; Newton, J.; Li, Y.M.; Maley, N.; Fieselmann, B.; Chen, L.F.; Rajan, K.; Wilczynski, A.; Wood, G. )

    1994-06-30

    Advances in intrinsic amorphous silicon and in amorphous silicon carbon alloys have resulted in thin single junction devices with V[sub oc]'s over 1.0 volts and excellent stability with both i-layer materials. Incorporation of improved a-Si:H i-layers and thin microcrystalline n-layers in a-Si/a-Si/a-SiGe triple junction modules has resulted in large area triple junction modules with initial efficiencies as high as 11.35%. These modules exhibit a degradation of [similar to]20% after 1000 hours of light-soaking resulting in [similar to]9% stable modules.

  6. Containerless synthesis of amorphous and nanophase organic materials

    DOEpatents

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  7. Nanocrystalline zirconia can be amorphized by ion irradiation.

    PubMed

    Meldrum, A; Boatner, L A; Ewing, R C

    2002-01-14

    Nanocrystalline composites are finding applications in high-radiation environments due to their excellent mechanical and electronic properties. We show, however, that at the smallest particle sizes, radiation damage effects can be so strongly enhanced that under the right conditions, materials that have never been made amorphous can become highly susceptible to irradiation-induced amorphization. Because light-weight, high-strength nanocomposites are potential materials for spacecraft shielding and sensor systems, these fundamental results have significant implications for the design and selection of materials to be used in environments where a large ion flux will be encountered. PMID:11801024

  8. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo

    NASA Technical Reports Server (NTRS)

    Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann

    1991-01-01

    Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.

  9. Amorphous silicon alloy-based roof integrated photovoltaic systems

    SciTech Connect

    Nath, P.; Vogeli, C.; Singh, A.; Call, J.

    1994-12-31

    A roll-to-roll process is used to deposit tandem amorphous silicon alloy solar cell onto thin (0.005 inch) stainless steel substrate. Using this solar cell material, the authors have designed and fabricated a photovoltaic (PV) module which can be integrated into building roofs. The module is fabricated by laminating the large area amorphous silicon on stainless steel solar cell material onto a 0.03 inch thick coated galvanized steel support plate. The module is then formed in such a way to allow installation as a batten and seam roofing system. This paper describes the fabrication and installation details of such PV systems.

  10. Magnetostriction behavior of Co-Fe-Si-B amorphous alloys

    SciTech Connect

    Gomez-Polo, C.; Pulido, E. ); Rivero, G.; Hernando, A. )

    1990-05-01

    It is well known that the saturation magnetostriction constant of nearly-zero-magnetostriction amorphous alloys exhibits a dependence on both magnetic field and applied stress. Therefore the anisotropy field induced by the applied stress does not depend linearly on the stress strength. Experiments carried out on Co-rich amorphous alloys show a stress dependence of the anisotropy field as that expected by assuming long-range fluctuations of the magnetoelastic anisotropy. In this report the existence of local fluctuations of saturation magnetostriction is shown to be a reasonable cause of the stress dependence of magnetostriction.

  11. Optical multilayer films based on an amorphous fluoropolymer

    SciTech Connect

    Chow, R.; Loomis, G.E.; Ward, R.L.

    1996-01-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, and with other optical materials. A high reflector for 1064 nm light was made with ZnS and AF2400. An all-organic 1064 nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2} and SiO{sub 2}) compatibility with AF2400 was also tested. The multilayer morphologies were influenced by coating stress and unintentional temperature rises from the PVD process. Analysis by liquid nuclear magnetic resonance of the thin films showed slight compositional variations between the coating and starting materials of perfluorinated amorphous polymers.

  12. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  13. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  14. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  15. Dynamic defect annealing in wurtzite MgZnO implanted with Ar ions

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Wendler, E.; Du, X. L.; Kuznetsov, A. Yu.; Svensson, B. G.

    2015-09-01

    Successful implementation of ion beams for modification of ternary ZnO-based oxides requires understanding and control of radiation-induced defects. Here, we study structural disorder in wurtzite ZnO and MgxZn1-xO (x ⩽ 0.3) samples implanted at room and 15 K temperatures with Ar ions in a wide fluence range (5 × 1012-3 × 1016 cm-2). The samples were characterized by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The results show that all the samples exhibit high radiation resistance and cannot be rendered amorphous even for high ion fluences. Increasing the Mg content leads to some damage enhancement near the surface region; however, irrespective of the Mg content, the fluence dependence of bulk damage in the samples displays the so-called IV-stage evolution with a reverse temperature effect for high ion fluences.

  16. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase.

    PubMed

    Mahamid, Julia; Sharir, Amnon; Addadi, Lia; Weiner, Steve

    2008-09-01

    A fundamental question in biomineralization is the nature of the first-formed mineral phase. In vertebrate bone formation, this issue has been the subject of a long-standing controversy. We address this key issue using the continuously growing fin bony rays of the Tuebingen long-fin zebrafish as a model for bone mineralization. Employing high-resolution scanning and transmission electron microscopy imaging, electron diffraction, and elemental analysis, we demonstrate the presence of an abundant amorphous calcium phosphate phase in the newly formed fin bones. The extracted amorphous mineral particles crystallize with time, and mineral crystallinity increases during bone maturation. Based on these findings, we propose that this amorphous calcium phosphate phase may be a precursor phase that later transforms into the mature crystalline mineral. PMID:18753619

  17. A Facile Approach Using MgCl2 to Formulate High Performance Mg2+ Electrolytes for Rechargeable Mg Batteries

    SciTech Connect

    Liu, Tianbiao L.; Shao, Yuyan; Li, Guosheng; Gu, Meng; Hu, Jian Z.; Xu, Suochang; Nie, Zimin; Chen, Xilin; Wang, Chong M.; Liu, Jun

    2014-01-01

    Rechargeable Mg batteries have been regarded as a viable battery technology for grid scale energy storage and transportation applications. However, the limited performance of Mg2+ electrolytes has been a primary technical hurdle to develop high energy density rechargeable Mg batteries. In this study, MgCl2 is demonstrated as a non-nucleophilic and cheap Mg2+ source in combining with Al Lewis acids (AlCl3, AlPh3 and AlEtCl2) to formulate a series of Mg2+ electrolytes characteristic of high oxidation stability (up to 3.4 V vs Mg), sulfur compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Three electrolyte systems (MgCl2-AlCl3, MgCl2-AlPh3, and MgCl2-AlEtCl2) were prepared free of purification and fully characterized by multinuclear NMR (27Al{1H} and 25Mg{1H}) spectroscopies, single crystal X-ray diffraction, and electrochemical analysis. The reaction mechanism of MgCl2 and the Al Lewis acids in THF is discussed to highlight the formation of the electrochemically active [(µ-Cl)3Mg2(THF)6]+ monocation in these electrolytes. We are grateful for the financial support from the Pacific Northwest National Laboratory (PNNL)-Laboratory Directed Research and Development (LDRD) program for developing magnesium battery technology. The XRD and SEM data were collected at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830.

  18. The atomic and electronic structure of the FeCoB/MgO interface

    NASA Astrophysics Data System (ADS)

    Burton, J. D.; Jaswal, S. S.; Tsymbal, E. Y.; Mryasov, O. N.; Heinonen, O. G.

    2006-03-01

    Magnetic tunnel junctions (MTJs) have recently aroused much interest due to their potential applications as random access memories and magnetic field sensors. MTJs consist of a thin insulating layer separating two ferromagnetic electrodes. Very recently FeCoB/MgO/FeCoB MTJs have shown promising results. Upon annealing, the amorphous FeCoB electrodes crystallize in a bcc structure epitaxial to the MgO(001) surface. Many groups have observed a significant increase in TMR ratios (higher than 300% at room temperature [1]) after annealing. It is clear that the crystallization of the electrodes plays an important role in this increase. It is not clear, however, what happens to B after annealing and what role it plays in enhancing TMR. We present results of first-principles total energy calculations that suggest that it is energetically favorable for B to reside at the crystalline FeCoB/MgO interface rather than remain in the bulk of the FeCoB electrode. We also find that the presence of B at the interface significantly weakens bonding between the FeCoB electrode and the MgO barrier. We are investigating the presence of resonant states[2] at the FeCoB/MgO interface and will discuss the effects of interfacial B on them. [1] J. Hayakawa et al., 2005 MMM Conference. [2] Belashchenko et al., Phys. Rev. B 72, R140404 (2005).

  19. Interstellar fossil Mg-26 and its possible relationship to excess meteoritic Mg-26

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1986-01-01

    A plausible scenario is advanced for explainig a linear correlation found in some solar system solids between their Mg-26/Mg-24 isotopic ratios and their Al/Mg elemental abundance ratios. This scenario involves three stages: (1) the mechanical aggregation of an average ensemble of Al-bearing dust particles that is postulated to be modestly enriched in the Al/Mg abundance ratio because the aggregated particles themselves are; (2) the extraction, perhaps but not necessarily by hot distillation, of almost all Mg, leaving an aggregate with a large Al/Mg ratio and a large Mg-26 excess; and (3) the uptake of normal ambient Mg by the resulting hot Al-rich solid as it cools in Mg-rich vapor. A linear correlation in solids between their Mg-26/Mg-24 isotopic ratio and their aluminum enrichment may be a fossil correlation inherited from interstellar dust.

  20. First-principles computation of mantle materials in crystalline and amorphous phases

    NASA Astrophysics Data System (ADS)

    Karki, Bijaya B.

    2015-03-01

    First-principles methods based on density functional theory are used extensively in the investigation of the behavior and properties of mantle materials over broad ranges of pressure, temperature, and composition that are relevant. A review of computational results reported during the last couple of decades shows that essentially all properties including structure, phase transition, equation of state, thermodynamics, elasticity, alloying, conductivity, defects, interfaces, diffusivity, viscosity, and melting have been calculated from first principles. Using MgO, the second most abundant oxide of Earth's mantle, as a primary example and considering many other mantle materials in their crystalline and amorphous phases, we have found that most properties are strongly pressure dependent, sometimes varying non-monotonically and anomalously, with the effects of temperature being systematically suppressed with compression. The overall agreement with the available experimental data is excellent; it is remarkable that the early-calculated results such as shear wave velocities of two key phases, MgO and MgSiO3 perovskite, were subsequently reproduced by experimentation covering almost the entire mantle pressure regime. As covered in some detail, the defect formation and migration enthalpies of key mantle materials increase with pressure. The predicted trend is that partial MgO Schottky defects are energetically most favorable in Mg-silicates but their formation enthalpies are high. So, the diffusion in the mantle is likely to be in the extrinsic regime. Preliminary results on MgO and forsterite hint that the grain boundaries can accommodate point defects (including impurities) and enhance diffusion rates at all pressures. The structures are highly distorted in the close vicinity of the defects and at the interface with excess space. Recent simulations of MgO-SiO2 binary and other silicate melts have found that the melt self-diffusion and viscosity vary by several orders of