Science.gov

Sample records for ruii sintez strukturnaya

  1. Diastereomerization Dynamics of a Bistridentate Ru(II) Complex.

    PubMed

    Jarenmark, Martin; Carlström, Göran; Fredin, Lisa A; Hedberg Wallenstein, Joachim; Doverbratt, Isa; Abrahamsson, Maria; Persson, Petter

    2016-03-21

    The unsymmetrical nature of a new tridentate ligand bis(quinolinyl)-1,3-pyrazole (DQPz) is exploited in a bistridentate Ru(II) complex [Ru(DQPz)2](2+) to elucidate an unexpected dynamic diastereomerism. Structural characterization based on a combination of nuclear magnetic resonance spectroscopy and density functional theory calculations reveals the first quantifiable diastereomerization dynamics for Ru complexes with fully conjugated tridentate heteroaromatic ligands. A mechanism that involves a large-scale twisting motion of the ligands is proposed to explain the dynamic interconversion between the observed diastereomers, and the analysis of both experiments and calculations reveals a potential energy landscape with a transition barrier for the diastereomerization of ∼70 kJ mol(-1). The structural flexibility demonstrated around the central transition metal ion has implications for integration of complexes into catalytic and photochemical applications. PMID:26962970

  2. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects.

    PubMed

    Sainuddin, Tariq; McCain, Julia; Pinto, Mitch; Yin, Huimin; Gibson, Jordan; Hetu, Marc; McFarland, Sherri A

    2016-01-01

    The purpose of the present study was to investigate the influence of π-expansive cyclometalating ligands on the photophysical and photobiological properties of organometallic Ru(II) compounds. Four compounds with increasing π conjugation on the cyclometalating ligand were prepared, and their structures were confirmed by HPLC, 1D and 2D (1)H NMR, and mass spectrometry. The properties of these compounds differed substantially from their Ru(II) polypyridyl counterparts. Namely, they were characterized by red-shifted absorption, very weak to no room temperature phosphorescence, extremely short phosphorescence state lifetimes (<10 ns), low singlet oxygen quantum yields (0.5-8%), and efficient ligand-centered fluorescence. Three of the metal complexes were very cytotoxic to cancer cells in the dark (EC50 values = 1-2 μM), in agreement with what has traditionally been observed for Ru(II) compounds derived from small C^N ligands. Surprisingly, the complex derived from the most π-expansive cyclometalating ligand exhibited no cytotoxicity in the dark (EC50 > 300 μM) but was phototoxic to cells in the nanomolar regime. Exceptionally large phototherapeutic margins, exceeding 3 orders of magnitude in some cases, were accompanied by bright ligand-centered intracellular fluorescence in cancer cells. Thus, Ru(II) organometallic systems derived from π-expansive cyclometalating ligands, such 4,9,16-triazadibenzo[a,c]napthacene (pbpn), represent the first class of potent light-responsive Ru(II) cyclometalating agents with theranostic potential. PMID:26672769

  3. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    PubMed

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program. PMID:27107334

  4. Binding of piano-stool Ru(II) complexes to DNA; QM/MM study.

    PubMed

    Futera, Zdeněk; Platts, James A; Burda, Jaroslav V

    2012-10-01

    Ru(II) "piano-stool" complexes belong to group of biologically active metallocomplexes with promising anticancer activity. In this study, we investigate the reaction mechanism of [(η(6)-benzene)Ru(II)(en)(H(2)O)](2+) (en = ethylenediamine) complex binding to DNA by hybrid QM/MM computational techniques. The reaction when the Ru(II) complex is coordinated on N7-guanine from major groove is explored. Two reaction pathways, direct binding to N7 position and two-step mechanism passing through O6 position, are considered. It was found that the reaction is exothermic and the direct binding process is preferred kinetically. In analogy to cisplatin, we also explored the possibility of intrastrand cross-link formation where the Ru(II) complex makes a bridge between two adjacent guanines. Two different pathways were found, leading to a final structure with released benzene ligand. This process is exothermic; however, one pathway is blocked by relatively high initial activation barrier. Geometries, energies, and electronic properties analyzed by atoms in molecules and natural population analysis methods are discussed. PMID:22707416

  5. Ru(0) and Ru(II) nitrosyl pincer complexes: structure, reactivity, and catalytic activity.

    PubMed

    Fogler, Eran; Iron, Mark A; Zhang, Jing; Ben-David, Yehoshoa; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Milstein, David

    2013-10-01

    Despite considerable interest in ruthenium carbonyl pincer complexes and their substantial catalytic activity, there has been relatively little study of the isoelectronic ruthenium nitrosyl complexes. Here we describe the synthesis and reactivity of several complexes of this type as well as the catalytic activity of complex 6. Reaction of the PNP ligand (PNP = 2,6-bis((t)Bu2PCH2)pyridine) with RuCl3(NO)(PPh3)2 yielded the Ru(II) complex 3. Chloride displacement by BAr(F-) (BAr(F-) = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) gave the crystallographicaly characterized, linear NO Ru(II) complex 4, which upon treatment with NaBEt3H yielded the Ru(0) complexes 5. The crystallographically characterized Ru(0) square planar complex 5·BF4 bears a linear NO ligand located trans to the pyridilic nitrogen. Further treatment of 5·BF4 with excess LiOH gave the crystallographicaly characterized Ru(0) square planar, linear NO complex 6. Complex 6 catalyzes the dehydrogenative coupling of alcohols to esters, reaching full conversion under air or under argon. Reaction of the PNN ligand (PNN = 2-((t)Bu2PCH2)-6-(Et2NCH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave an equilibrium mixture of isomers 7a and 7b. Further treatment of 7a + 7b with 2 equivalent of sodium isopropoxide gave the crystallographicaly characterized, bent-nitrosyl, square pyramidal Ru(II) complex 8. Complex 8 was also synthesized by reaction of PNN with RuCl3(NO)(H2O)2 and Et3N in ethanol. Reaction of the "long arm" PN(2)N ligand (PN(2)N = 2-((t)Bu2PCH2-)-6-(Et2NCH2CH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave complex 9, which upon treatment with 2 equiv of sodium isopropoxide gave complex 10. Complex 10 was also synthesized directly by reaction of PN(2)N with RuCl3(NO)(H2O)2 and a base in ethanol. A noteworthy aspect of these nitrosyl complexes is their preference for the Ru(0) oxidization state over Ru(II). This preference is observed with both aromatized and dearomatized pincer ligands, in

  6. Reaction mechanism of Ru(II) piano-stool complexes: umbrella sampling QM/MM MD study.

    PubMed

    Futera, Zdeněk; Burda, Jaroslav V

    2014-07-15

    Biologically relevant interactions of piano-stool ruthenium(II) complexes with ds-DNA are studied in this article by hybrid quantum mechanics-molecular mechanics (QM/MM) computational technique. The whole reaction mechanism is divided into three phases: (i) hydration of the [Ru(II) (η(6) -benzene)(en)Cl](+) complex, (ii) monoadduct formation between the resulting aqua-Ru(II) complex and N7 position of one of the guanines in the ds-DNA oligomer, and (iii) formation of the intrastrand Ru(II) bridge (cross-link) between two adjacent guanines. Free energy profiles of all the reactions are explored by QM/MM MD umbrella sampling approach where the Ru(II) complex and two guanines represent a quantum core, which is described by density functional theory methods. The combined QM/MM scheme is realized by our own software, which was developed to couple several quantum chemical programs (in this study Gaussian 09) and Amber 11 package. Calculated free energy barriers of the both ruthenium hydration and Ru(II)-N7(G) DNA binding process are in good agreement with experimentally measured rate constants. Then, this method was used to study the possibility of cross-link formation. One feasible pathway leading to Ru(II) guanine-guanine cross-link with synchronous releasing of the benzene ligand is predicted. The cross-linking is an exergonic process with the energy barrier lower than for the monoadduct reaction of Ru(II) complex with ds-DNA. PMID:24865949

  7. Chemical consequences of pyrazole orientation in Ru(II) complexes of unsymmetric quinoline-pyrazole ligands.

    PubMed

    Hedberg Wallenstein, Joachim; Fredin, Lisa A; Jarenmark, Martin; Abrahamsson, Maria; Persson, Petter

    2016-08-01

    A series of homoleptic Ru(II) complexes including the tris-bidentate complexes of a new bidentate ligand 8-(1-pyrazol)-quinoline (Q1Pz) and bidentate 8-(3-pyrazol)-quinoline (Q3PzH), as well as the bis-tridentate complex of bis(quinolinyl)-1,3-pyrazole (DQPz) was studied. Together these complexes explore the orientation of the pyrazole relative to the quinoline. By examining the complexes structurally, photophysically, photochemically, electrochemically, and computationally by DFT and TD-DFT, it is shown that the pyrazole orientation has a significant influence on key properties. In particular, its orientation has noticeable effects on oxidation and reduction potentials, photostability and proton sensitivity, indicating that [Ru(Q3PzH)3](2+) is a particularly good local environment acidity-probe candidate. PMID:27240703

  8. Unprecedented Self-Organized Monolayer of a Ru(II) Complex by Diazonium Electroreduction.

    PubMed

    Nguyen, Van Quynh; Sun, Xiaonan; Lafolet, Frédéric; Audibert, Jean-Frédéric; Miomandre, Fabien; Lemercier, Gilles; Loiseau, Frédérique; Lacroix, Jean-Christophe

    2016-08-01

    A new heteroleptic polypyridyle Ru(II) complex was synthesized and deposited on surface by the diazonium electroreduction process. It yields to the covalent grafting of a monolayer. The functionalized surface was characterized by XPS, electrochemistry, AFM, and STM. A precise organization of the molecules within the monolayer is observed with parallel linear stripes separated by a distance of 3.8 nm corresponding to the lateral size of the molecule. Such organization suggests a strong cooperative process in the deposition process. This strategy is an original way to obtain well-controlled and stable functionalized surfaces for potential applications related to the photophysical properties of the grafted chromophore. As an exciting result, it is the first example of a self-organized monolayer (SOM) obtained using diazonium electroreduction. PMID:27430366

  9. Synthesis, characterization, DNA binding and cleavage studies of chiral Ru(II) salen complexes

    NASA Astrophysics Data System (ADS)

    Khan, Noor-ul H.; Pandya, Nirali; Kureshy, Rukhsana I.; Abdi, Sayed H. R.; Agrawal, Santosh; Bajaj, Hari C.; Pandya, Jagruti; Gupte, Akashya

    2009-09-01

    Interaction of chiral Ru(II) salen complexes (S)-1 and (R)-1 with Calf Thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, CD measurements, thermal denaturation study and cleavage studies by agarose gel electrophoresis. The DNA binding affinity of (S)-1 (6.25 × 10 3 M -1) was found to be greater than (R)-1 (3.0 × 10 3 M -1). The antimicrobial studies of these complexes on five different gram (+)/(-) bacteria and three different fungal organisms showed selective inhibition of the growth of gram (+) bacteria and were not affective against gram (-) and fungal organisms. Further, the (S)-1 enantiomer inhibited the growth of organisms to a greater extent as compared to (R)-1 enantiomer.

  10. Synergistic Effects of Metals in a Promising Ru(II) -Pt(II) Assembly for a Combined Anticancer Approach: Theoretical Exploration of the Photophysical Properties.

    PubMed

    Alberto, Marta E; Russo, Nino; Adamo, Carlo

    2016-06-27

    Ru(II) -Pt(II) complexes are a class of bioactive molecules of interest as anticancer agents that combine a light-absorbing chromophore with a cisplatin-like unit. The results of a DFT and TDDFT investigation of a Ru(II) complex and its conjugate with a cis-PtCl2 moiety reveal that a synergistic effect of the metals makes the assembly a promising multitarget anticancer drug. Inspection of type I and type II photoreactions and spin-orbit coupling computations reveals that the cis-PtCl2 moiety improves the photophysical properties of the Ru(II) chromophore, ensuring efficient singlet oxygen generation and making the assembly suitable for photodynamic therapy. At the same time, the Ru(II) chromophore promotes a new alternative activation mechanism of the Pt(II) ligand via a triplet metal-to-ligand charge transfer ((3) MLCT) state, before reaching the biological target. The importance of the supramolecular architecture is accurately derived, opening interesting new perspectives on the use of bimetallic Ru(II) -Pt(II) assemblies in a combined anticancer approach. PMID:27249166

  11. Study of DNA light switch Ru(II) complexes: synthesis, characterization, photocleavage and antimicrobial activity.

    PubMed

    Yata, Praveen Kumar; Shilpa, M; Nagababu, P; Reddy, M Rajender; Kotha, Laxma Reddy; Gabra, Nazar Md; Satyanarayana, S

    2012-05-01

    The three Ru(II) complexes of [Ru(phen)(2)dppca](2+) (1) [Ru(bpy)(2)dppca](2+) (2) and [Ru(dmb)(2)dppca](2+) (3) (where phen = 1,10 phenanthroline, bpy = 2,2-bipyridine, dmb = 2 ,2-dimethyl 2',2'-bipyridine and polypyridyl ligand containing a single carboxylate functionality dppca ligand (dipyridophenazine-11-carboxylic acid) have been synthesized and characterized. These complexes have been shown to act as promising calf thymus DNA intercalators and a new class of DNA light switches, as evidenced by UV-visible and luminescence titrations with Co(2+) and EDTA, steady-state emission quenching by [Fe(CN)(6)](4-) and KI, DNA competitive binding with ethidium bromide, viscosity measurements, and DNA melting experiments. The results suggest that 1, 2, and 3 complexes bind to CT-DNA through intercalation and follows the order 1 > 2 > 3. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR322 DNA. PMID:22194001

  12. Photorelease of Pyridyl Esters in Organometallic Ru(II) Arene Complexes.

    PubMed

    Habtemariam, Abraha; Garino, Claudio; Ruggiero, Emmanuel; Alonso-de Castro, Silvia; Mareque-Rivas, Juan C; Salassa, Luca

    2015-01-01

    New Ru(II) arene complexes of formula [(η6-p-cym)Ru(N-N)(X)]2+ (where p-cym = para-cymene, N-N = 2,2'-bipyrimidine (bpm) or 2,2'-bipyridine (bpy) and X = m/p-COOMe-Py, 1-4) were synthesised and characterized, including the molecular structure of complexes [(η6-p-cym)Ru(bpy)(m-COOMe-Py)]2+ (3) and [(η6-p-cym)Ru(bpy) (p-COOMe-Py)]2+ (4) by single-crystal X-ray diffraction. Complexes 1-4 are stable in the dark in aqueous solution over 48 h and photolysis studies indicate that they can photodissociate the monodentate m/p-COOMe-Py ligands selectively with yields lower than 1%. DFT and TD-DFT calculations (B3LYP/LanL2DZ/6-31G**) performed on singlet and triplet states pinpoint a low-energy triplet state as the reactive state responsible for the selective dissociation of the monodentate pyridyl ligands. PMID:25905605

  13. Two dinuclear Ru(II) polypyridyl complexes with different photophysical and cation recognition properties

    NASA Astrophysics Data System (ADS)

    Cheng, Feixiang; He, Chixian; Ren, Mingli; Wang, Fan; Yang, Yuting

    2015-02-01

    Two dinuclear Ru(II) polypyridyl complexes functionalized with vacant coordination sites have been designed and synthesized. Their photophysical properties and interactions with various metal ions have been investigated at room temperature. The two complexes exhibit different UV/Vis absorption and emission intensities. When titrated with various metal ions, complex [{Ru(bpy)2}2(μ2-L1)]4+ exhibits a notable fluorescence quenching in the presence of Cu2+ in H2O-CH3CN media (1:1, v/v); its analogous complex [{Ru(bpy)2}2(μ2-L2)]4+ exhibits no cation selectivity, the fluorescence intensity of complex [{Ru(bpy)2}2(μ2-L2)]4+ has been enhanced by several transition metal ions due to prevention of the photo-induced electron transfer process. The fluorescence titration spectra and Benesi-Hildebrand expression reveal the formation of a 1:1 bonding mode between [{Ru(bpy)2}2(μ2-L1)]4+ and Cu2+ ion with the association constant of 5.50 × 104 M-1.

  14. Synthesis, characterization, DNA binding and cleavage studies of Ru(II) complexes containing oxime ligands

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Mahalingam, Viswanathan; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2010-12-01

    The Ru(II) precursors, [RuHCl(CO)(EPh 3) 3] (E = P or As) when reacted with some well known monoxime and dioxime ligands in ethanolic solution afforded the new complexes of the types [RuCl(CO)(EPh 3) 2L1], [RuH(CO)(EPh 3) 2L2] and [RuCl(CO)(EPh 3) 2L3] ((H 1L1) = diacetylmonoxime, (H 1L2) = dimethylglyoxime and (H 2L3) = benzoiloxime). The ligands coordinated in a bidentate chelate mode forming a five membered chelate ring. The molecular structures of two of the complexes have been determined by single crystal X-ray diffraction study. The structural determination confirms the deprotonation of the oxime function. Examination of all the complexes by cyclic voltammetry showed the occurrence of some quasi-reversible redox reactions owing to changes in the oxidation state of the central metal atoms. Structural assignments are supported by combination of IR, UV-Vis, 1H NMR and elemental analyses. In addition, the DNA binding properties and cleavage efficiency of new complexes have been tested.

  15. On the viability of cyclometalated Ru(II) complexes for light-harvesting applications.

    PubMed

    Bomben, Paolo G; Robson, Kiyoshi C D; Sedach, Pavel A; Berlinguette, Curtis P

    2009-10-19

    The effects of replacing a single polypyridyl ligand with an analogous anionic cyclometalating ligand were investigated for a set of three structurally related series of Ru(II) compounds formulated as [Ru(bpy)(2)(L)](z), [Ru(tpy)(L)](z), and [Ru(tpy)(L)Cl](z), where z = 0, +1, or +2, and L = polypyridyl (e.g., bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) or cyclometalating ligand (e.g., deprotonated forms of 2-phenylpyridine or 3-(2-pyridinyl)-benzoic acid). Each of the complexes were synthesized and characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and/or elemental analyses (EA). Cyclic voltammetry reveals that cyclometalation causes a shift of the first oxidation and reduction potentials by -0.5 to -0.8 V and -0.2 to -0.4 V, respectively, relative to their polypyridyl congeners. These disparate shifts have the effect of inducing a bathochromic shift of the lowest-energy absorption bands by as much as 90 nm. With the aid of time-dependent density functional theory (DFT), the lowest-energy bands (lambda(max) = 500-575 nm) were assigned as predominantly metal-to-ligand charge-transfer (MLCT) transitions from Ru to the polypyridyl ligands, while Ru-->C(wedge)NN (or C(wedge)N(wedge)N or N(wedge)C(wedge)N) transitions are found within the absorption bands centered at ca. 400 nm. The properties of a series of compounds furnished with carboxylic acid anchoring groups at various positions are also examined for applications involving the sensitization of metal-oxide semiconductors. It is determined that the thermodynamic potentials of many of these compounds are appropriate for conventional photoelectrochemical cells (e.g., dye-sensitized solar cells) that utilize a titania electrode and iodide-based electrolyte. PMID:19775163

  16. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy.

    PubMed

    Mari, Cristina; Pierroz, Vanessa; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Spingler, Bernhard; Oehninger, Luciano; Schur, Julia; Ott, Ingo; Salassa, Luca; Ferrari, Stefano; Gasser, Gilles

    2014-10-27

    Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 μM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action. PMID:25213439

  17. Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells.

    PubMed

    Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja

    2016-08-01

    Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance. PMID:27420188

  18. Ru(II) Tris(3,8-Dibromo-1,10-Phenanthro1ine): A New Versatile Core for the Divergent Synthesis of Hyperbranched Systems

    NASA Technical Reports Server (NTRS)

    Sotiriou-Leventis, Chariklia; Yang, Jinhua; Duan, Penggao; Leventis, Nicholas

    2004-01-01

    We report the first synthesis of Ru(II) tris(3,8-dibromo-1,lO-phenanthroline) bishexafluorophosphate, and we demonstrate its utility as a building core for the divergent synthesis of hyperbranched systems by coupling with phenylacetylene in the preparation of Rum tris(3,8-diphenylethynyl- 1,lO-phenanthroline) dihexafluorophosphate.

  19. Electronic and optical response of functionalized Ru(II) complexes: joint theoretical and experimental study

    SciTech Connect

    Kilina, Svetlana; Tretiak, Sergei; Sykora, Milan; Albert, Victor; Badaeva, Ekaterina; Koposov, Alexey

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the Ru(II) complex to the surface of a semiconductor, a linking bridge -- a carboxyl group -- needs to be added to one or two of the 2,2'-bipyridine (bpy) ligands. Such changes in the ligand structure affect electronic and optical properties and, consequently, the charge transfer reactivity of Ru(II)-systems. In this study, we analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the [Ru(bpy){sub 3}]{sup 2+} complex. First principle calculations based on density functional theory (DFT) and time dependent DFT (TDDFT) are used to simulate the ground and excited-state properties, respectively, of functionalized Ru-complexes in the gas phase and acetonitrile solution. In addition, an effective Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states in all molecules. All theoretical results nicely complement and allow for detailed interpretation of experimental absorption spectra of Ru-complexes that have been done in parallel with our theoretical investigations. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show that deprotonation of the carboxyl group in the Ru-complexes results in a slight blue shift and decrease of oscillator strengths of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotonated complexes demonstrate strong agreement if the theoretical calculations are performed with the addition of a dielectric continuum model. A polar solvent is found to play an

  20. Synthesis and characterization of novel inorganic-organic hybrid Ru(II) complexes and their application in selective hydrogenation.

    PubMed

    Warad, Ismail; Al-Othman, Zeid; Al-Resayes, Saud; Al-Deyab, Salem S; Kenawy, El-Refaie

    2010-02-01

    Novel Ru(II) complex-based hybrid inorganic-organic materials immobilized via a diamine co-ligand site instead of the conventional diphosphine ligand have been prepared. The complexes were prepared by two different methods: sol-gel and surface modification techniques. The structures of the desired materials were deduced by several available physical measurements like elemental analyses, infrared, FAB-MS and (1)H-, (13)C- and (31)P-NMR spectroscopy. Due to a lack of solubility the structures of xerogel 3 and modified 4 were studied by solid state (13)C-, (29)Si- and (31)P-NMR spectroscopy, infrared spectroscopy and EXAFS. These materials were stable enough to serve as hydrogenation catalysts. Selective hydrogenation of functionalized carbonyls in alpha,beta-unsaturated compounds was successfully carried out under mild conditions in a basic medium using these complexes as catalysts. PMID:20335960

  1. Synthesis, photophysical and electrochemical characterization of terpyridine-functionalized dendritic oligothiophenes and their Ru(II) complexes

    PubMed Central

    Mena-Osteritz, Elena

    2013-01-01

    Summary Pd-catalyzed Sonogashira cross-coupling reactions were used to synthesize novel π-conjugated oligothienylene-ethynylene dendrons and their corresponding terpyridine-based ligands. Their complexation with Ru(II) led to interesting novel metallodendrimers with rich spectroscopic properties. All new compounds were fully characterized by 1H and 13C NMR, as well as MALDI–TOF mass spectra. Density functional theory (DFT) calculations performed on these complexes gave more insight into the molecular orbital distributions. Photophysical and electrochemical studies were carried out in order to elucidate structure–property relationships and the effect of the dendritic structure on the metal complexes. Photophysical studies of the complexes revealed broad absorption spectra covering from 250 to 600 nm and high molar extinction coefficients. The MLCT emission of these complexes were significantly red-shifted (up to 115 nm) compared to the parent [Ru(tpy)2]2+ complex. PMID:23766802

  2. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    PubMed

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  3. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    PubMed Central

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3

  4. The electronic structure and spectra of Ru(II) and Ru(III) complexes with imidazole and its derivatives

    NASA Astrophysics Data System (ADS)

    Rogachevsky, I. V.; Baranovski, V. I.

    2000-12-01

    The calculations of the electronic structure and spectra of [Ru(NH 3) 5L] 2+ (L=imidazole, histidine) and [Ru(NH 3) 5L] 3+ (L=imidazole, N-imidazolate anion, 4-methylimidazole, 4-methyl-1 N-imidazolate anion and 1 N-bound histidine) complexes are performed in the framework of the CI method in the INDO/CNDO approximation. The MO diagram is obtained. The assignment of all transitions with energies of 4-5 eV is made and the nature of corresponding excited states is discussed. For the Ru(II) complexes, the lower energy observable transition is assigned to d→π* type, whereas the higher energy one is assigned to π→π* type. In the spectra of the Ru(III) complexes with charged ligands both transitions are of π→d character, while in the case of uncharged ligands, the higher energy transition mostly incorporates π→π* excitations.

  5. Aryl-Decorated Ru(II) Polypyridyl-type Photosensitizer Approaching NIR Emission with Microsecond Excited State Lifetimes.

    PubMed

    Schlotthauer, Tina; Suchland, Benedikt; Görls, Helmar; Parada, Giovanny A; Hammarström, Leif; Schubert, Ulrich S; Jäger, Michael

    2016-06-01

    Bis-tridentate Ru(II) complexes based on the dqp scaffold (dqp is 2,6-di(quinolin-8-yl)pyridine) with multiple aryl substituents were explored to tailor the absorption and emission properties. A synthetic methodology was developed for the facile synthesis and purification of homo- and heteroleptic bis-tridentate Ru complexes. The effect of the aryl substituents in the para positions of the pyridine and quinoline subunits was detailed by X-ray crystallography, steady state and time-resolved spectroscopy, electrochemistry, and computational methods. The attachment of the aryl groups results in enhanced molar extinction coefficients with the largest effect in the pyridine position, whereas the quinoline substituent leads to red-shifted emission tailing into the NIR region (up to 800 nm). Notably, the excited state lifetimes remain in the microsecond time scale even in the presence of O2, whereas the emission quantum yields are slightly increased with respect to the parental complex [Ru(dqp)2](2+). The peripheral functional groups (Br, Me, OMe) have only a minor impact on the optical properties and are attractive to utilize such complexes as functional building blocks. PMID:27228222

  6. Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands.

    PubMed

    Pal, Amlan K; Hanan, Garry S

    2014-09-01

    Artificial photosynthetic systems that contain light-harvesting coordination complexes may one day replace conventional non-renewable sources of energy with renewable solar energy sources. Light-Harvesting Complexes (LHC) are important components of natural photosynthetic systems and are also sought after in artificial systems as well. Polynuclear photoactive complexes are therefore very attractive, and those based on stereogenic [Ru(2,2'-bipyridine)3](2+) are photophysically appealing, but difficult to obtain in a stereochemically pure form. On the other hand, polynuclear complexes based on the achiral [Ru(2,2':6',2''-terpyridine)2](2+) motif are easy to synthesise, however, these complexes are devoid of attractive excited-state properties. Hence strategies to increase the r.t. excited-state lifetime of these complexes would be of practical importance in vectorial electron and/or electron transfer in various optoelectronic applications. This tutorial review will report on the sophisticated synthetic strategies currently in use to enhance the photophysical properties of mononuclear Ru(II) complexes of tridentate ligands at room temperature. PMID:24919706

  7. Steric and Electronic Factors Associated with the Photoinduced Ligand Exchange of Bidentate Ligands Coordinated to Ru(II).

    PubMed

    Albani, Bryan A; Whittemore, Tyler; Durr, Christopher B; Turro, Claudia

    2015-01-01

    In an effort to create a molecule that can absorb low energy visible or near-infrared light for photochemotherapy (PCT), the new complexes [Ru(biq)2 (dpb)](PF6 )2 (1, biq = 2,2'-biquinoline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline) and [(biq)2 Ru(dpb)Re(CO)3 Cl](PF6 )2 (2) were synthesized and characterized. Complexes 1 and 2 were compared to [Ru(bpy)2 (dpb)](PF6 )2 (3, bpy = 2,2'-bipyridine) and [Ru(biq)2 (phen)](PF6 )2 (4, phen = 1,10-phenanthroline). Distortions around the metal and biq ligands were used to explain the exchange of one biq ligand in 4 upon irradiation. Complex 1, however, undergoes photoinduced dissociation of the dpb ligand rather than biq under analogous experimental conditions. Complex 3 is not photoactive, providing evidence that the biq ligands are crucial for ligand photodissociation in 1. The crystal structures of 1 and 4 are compared to explain the difference in photochemistry between the complexes. Complex 2 absorbs lower energy light than 1, but is photochemically inert although its crystal structure displays significant distortions. These results indicate that both the excited state electronic structure and steric bulk play key roles in bidentate photoinduced ligand dissociation. The present work also shows that it is possible to stabilize sterically hindered Ru(II) complexes by the addition of another metal, a property that may be useful for other applications. PMID:25403564

  8. (1)H NMR assignment corrections and (1)H, (13)C, (15)N NMR coordination shifts structural correlations in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2010-06-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) tris-chelated cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline of the general formula [M(LL)(3)](2+) (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature (1)H signal assignments were corrected. Significant shielding of nitrogen-adjacent protons [H(6) in bpy, H(2) in phen] and metal-bonded nitrogens was observed, being enhanced in the series Ru(II) --> Os(II) --> Fe(II) for (1)H, Fe(II) --> Ru(II) --> Os(II) for (15)N and bpy --> phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) --> Os(II) --> Fe(II). PMID:20474023

  9. A Z-scheme photocatalyst constructed with an yttrium-tantalum oxynitride and a binuclear Ru(ii) complex for visible-light CO2 reduction.

    PubMed

    Muraoka, Kanemichi; Kumagai, Hiromu; Eguchi, Miharu; Ishitani, Osamu; Maeda, Kazuhiko

    2016-06-14

    An yttrium-tantalum oxynitride having a band gap of 2.1 eV (absorbing visible light at <580 nm) was applicable as a semiconductor component of a Z-scheme CO2 reduction system operable under visible light, in combination with a binuclear Ru(ii) complex that has strong absorption in the visible region (<600 nm). Excitation of this system with visible light under a CO2 atmosphere induced photocatalytic formation of formic acid with very high selectivity (>99%). PMID:27251369

  10. pH control of photoreactivity of Ru(II) pyridyltriazole complexes: Photoinduced linkage isomerism and photoanation

    SciTech Connect

    Wang, R.; Vos, J.G.; Schmehl, R.H.

    1992-03-11

    The photophysical and photochemical behavior of mixed ligand complexes of Ru(II) with 3-(pyridin-2-yl)-1,2,4-triazole (HPTN) have been examined in solutions of varying acidity. Protonation of both the N-2 bound (HPTN-2) and the N-4 bound (HPTN-4) isomers of [(bpy){sub 2}Ru(HPTN)]{sup +} results in a decrease in the luminescence lifetime in solution and an increase in reactivity upon photolysis in CH{sub 2}Cl{sub 2}. The excited state of the deprotonated form of both complexes decays by a single exponential at pHs above 3; the data were fit to a general expression for excited-state decay involving protonation of the excited complex. Results of temperature-dependent luminescence decays suggest the protonated complexes decay via population of a metal-centered excited state, while the deprotonated complexes do not efficiently populate this state at temperatures at or below room temperature. Photolysis of either protonated isomer in CH{sub 2}Cl{sub 2} results in linkage isomerism; equilibrium is established for photolysis at 4:1 [(bpy){sub 2}Ru(HPTN-4)]{sup 2+} to [(bpy){sub 2}Ru(HPTN-2)]{sup 2+}. In the presence of coordinating counterions photoanation occurs to yield the cis-anion complex with loss of pyridyltriazole. The deprotonated form of both isomers is inert to photosubstitution in CH{sub 2}Cl{sub 2} at room temperature. Thus, the substitutional photolability can be controlled by controlling protonation of the ground state of the complex. 41 refs., 9 figs., 3 tabs.

  11. Synthesis, characterization and biological activities of some Ru(II) complexes with substituted chalcones and their applications as chemotherapeutics against breast cancer

    NASA Astrophysics Data System (ADS)

    Singh, Ashok K.; Saxena, Gunjan; Dixit, Shivani; Hamidullah; Singh, Sachin K.; Singh, Sudheer K.; Arshad, M.; Konwar, Rituraj

    2016-05-01

    Four new Ru(II) DMSO complexes with substituted chalcone ligands viz. (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (HL1), (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HL2), (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (HL3) and (E)-1-(2-hydroxyphenyl)-3-(4-Chlorophenyl)prop-2-en-1-one (HL4) have been synthesized, and characterized by micro-analyses, IR, 1H NMR, UV-Vis and ESI-MS and screened for anti-cancer activity against breast cancer cell lines (MCF-7 and MDA MB-231). Compounds HL4 and [Ru(HL1) (O-DMSO)3(S-DMSO)]Cl (M1R) showed significant anti-breast cancer activity as evident from cytotoxicity, morphological and nuclear changes, DNA fragmentation and cell cycle arrest in breast cancer cells. UV-Vis and CD-spectra analysis showed HL4 and M1R interfered with DNA absorption spectra possibly due to DNA binding whereas these compounds were devoid of DNA topoisomerase inhibiting activity. Thus, these Ru(II) compounds have been established as new leads for future optimization by improving anti-cancer potency and safety.

  12. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  13. Synthesis, structure, and acid-base and redox properties of a family of new Ru(II) isomeric complexes containing the trpy and the dinucleating Hbpp ligands.

    PubMed

    Sens, Cristina; Rodríguez, Montserrat; Romero, Isabel; Llobet, Antoni; Parella, Teodor; Benet-Buchholz, Jordi

    2003-12-15

    Three pairs of mononuclear geometrical isomers containing the ligand 3,5-bis(2-pyridyl)pyrazole (Hbpp) of general formula in- and out-[RuII(Hbpp)(trpy)X](n+) (trpy=2,2':6',2' '-terpyridine; X=Cl, n=1, 2a,b; X=H2O, n=2, 3a,b; X=py (pyridine), n=2, 4a,b) have been prepared through two different synthetic routes, isolated, and structurally characterized. The solid state structural characterization was performed by X-ray diffraction analysis of four complexes: 2a-4a and 4b. The structural characterization in solution was performed by means of 1D and 2D NMR spectroscopy for complexes 2a,b and 4a,b and coincides with the structures found in the solid state. All complexes were also spectroscopically characterized by UV-vis which also allowed us to carry out spectrophotometric acid-base titrations. Thus, a number of species were spectroscopically characterized with the same oxidation state but with a different degree of protonation. As an example, for 3a three pKa values were obtained: pKa1(RuII)=2.13, pKa2(RuII)=6.88, and pKa3(RuII)=11.09. The redox properties were also studied, giving in all cases a number of electron transfers coupled to proton transfers. The pH dependency of the redox potentials allowed us to calculate the pKa of the complexes in the Ru(III) oxidation state. For complex 3a, these were found to be pKa1(RuIII)=0.01, pKa2(RuIII)=2.78, and pKa3(RuIII)=5.43. The oxidation state Ru(IV) was only reached from the Ru-OH2 type of complexes 3a or 3b. It has also been shown that the RuIV=O species derived from 3a is capable of electrocatalytically oxidizing benzyl alcohol with a second-order rate constant of kcat=17.1 M(-1) s(-1). PMID:14658892

  14. A visible-light harvesting system for CO2 reduction using a Ru(II) -Re(I) photocatalyst adsorbed in mesoporous organosilica.

    PubMed

    Ueda, Yutaro; Takeda, Hiroyuki; Yui, Tatsuto; Koike, Kazuhide; Goto, Yasutomo; Inagaki, Shinji; Ishitani, Osamu

    2015-02-01

    A photocatalytic system for CO2 reduction exhibiting visible-light harvesting was developed by preparing a hybrid consisting of a supramolecular metal complex as photocatalyst and periodic mesoporous organosilica (PMO) as light harvester. A Ru(II) Re(I) binuclear complex (RuRe) with methylphosphonic acid anchor groups was adsorbed on acridone or methylacridone embedded in the walls of PMO mesochannels to yield the hybrid structure. The embedded organic groups absorbed visible light, and the excitation energy was funneled to the Ru units. The energy accumulation was followed by electron transfer and catalytic reduction of CO2 to CO on the Re unit. The light harvesting of these hybrids enhanced the photocatalytic CO evolution rate by a factor of up to ten compared with that of RuRe adsorbed on mesoporous silica without a light harvester. PMID:25524162

  15. Exploitation and application of a highly sensitive Ru(II) complex-based phosphorescent chemodosimeter for Hg2+ in aqueous solutions and living cells.

    PubMed

    Ru, Jiaxi; Tang, Xiaoliang; Ju, Zhenghua; Zhang, Guolin; Dou, Wei; Mi, Xiangquan; Wang, Chunming; Liu, Weisheng

    2015-02-25

    A novel Ru(II) complex-based phosphorescent probe Rubpy-1 was designed and synthesized conveniently by incorporating of chemodosimeter into the luminophor, which exhibits good water solubility, longer excitation wavelength, and rapid turn-on phosphorescent response only toward Hg(2+) in aqueous system under physiological pH. The spectral response mechanism and Hg(2+)-promoted structure change of the chemodosimeter were analyzed in detail by theoretical calculations and electrospray ionization mass spectrometry. When time-resolved photoluminescence techniques were used, the Rubpy-1 could eliminate effectively the signal interference from the short-lived background fluorescence in complicated media, accompanied by the significant improvement of the signal-to-noise ratio and the accuracy of the detection. Furthermore, Rubpy-1 showed low cytotoxicity and excellent membrane permeability toward living cells, which was successfully applied to monitor intracellular Hg(2+) effectively by confocal luminescence imaging. PMID:25668419

  16. Cationic half-sandwich Ru(II) complexes containing (N,N)-bound Schiff-base ligands: Synthesis, crystal structure analysis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Tao, Li; Miao, Qian; Tehrani, Alireza Azhdari; Hajiashrafi, Taraneh; Hu, Mao-Lin; Morsali, Ali

    2016-08-01

    Three Ru(II) half-sandwich complexes containing (N,N)-bound Schiff-base ligands, [(η6-C6H6) RuCl(L1)]PF6 (1) L1 = (E)-1-(6-methylpyridin-2-yl)-N-(p-tolyl)methanimine, [(η6-p-cymene)RuCl(L1)]PF6 (2) and [(η6-p-cymene)RuCl(L2)]PF6(3) L2 = (E)-1-(6-bromopyridin-2-yl)-N-(p-tolyl)methanimine, were synthesized, characterized and their supramolecular structures were analyzed. The crystal packing of these compounds was studied using geometrical analysis and Hirshfeld surface analysis. The fluorescence behavior of these compounds was also studied. TD-DFT calculations were carried out to better understand the fluorescence properties of complexes 1-3. These compounds could be promising for the design of organometallic dye systems.

  17. New RuII (arene) complexes with halogen-substituted bis- and tris(pyrazol-1-yl)borate ligands.

    PubMed

    Orbisaglia, Serena; Di Nicola, Corrado; Marchetti, Fabio; Pettinari, Claudio; Pettinari, Riccardo; Martins, Luísa M D R S; Alegria, Elisabete C B A; da Silva, M Fátima C Guedes; Rocha, Bruno G M; Kuznetsov, Maxim L; Pombeiro, Armando J L; Skelton, Brian W; Sobolev, Alexandre N; White, Allan H

    2014-03-24

    [RuCl(arene)(μ-Cl)]2 dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis- and tris(pyrazolyl)borate ligands [Na(Bp(Br3))], [Tl(Tp(Br3))], and [Tl(Tp(iPr, 4Br))]. Mononuclear neutral complexes [RuCl(arene)(κ(2)-Bp(Br3))] (1: arene=p-cymene (cym); 2: arene=hexamethylbenzene (hmb); 3: arene=benzene (bz)), [RuCl(arene)(κ(2)-Tp(Br3))] (4: arene=cym; 6: arene=bz), and [RuCl(arene)(κ(2)-Tp(iPr, 4Br))] (7: arene=cym, 8: arene=hmb, 9: arene=bz) have been always obtained with the exception of the ionic [Ru2 (hmb)2-(μ-Cl)3][Tp(Br3)] (5'), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru-(CH3OH)(cym)(κ(2)-Bp(Br3))][X] (10: X=PF6, 12: X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)(κ(2)-Bp(Br3))] (11) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1-12 have been characterized by analytical and spectroscopic data (IR, ESI-MS, (1)H and (13)C NMR spectroscopy). The structures of the thallium and calcium derivatives of ligand Tp(Br3), [Tl(Tp(Br3))] and [Ca(dmso)6][Tp(Br3)]2 ⋅2 DMSO, of the complexes 1, 4, 5', 6, 11, and of the decomposition product [RuCl(cym)(Hpz(iPr, 4Br))2][Cl] (7') have been confirmed by using single-crystal X-ray diffraction. Electrochemical studies showed that 1-9 and 11 undergo a single-electron Ru(II) →Ru(III) oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron-donor characters of the bis- and tris(pyrazol-1-yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever EL ligand parameter for Bp(Br3), Tp(Br3), and Tp(iPr, 4Br). Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal-centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the μ(3)-binuclear complex 5' (instead of the mononuclear 5

  18. Pyrene and imidazole functionalized luminescent bimetallic Ru(II) terpyridine complexes as efficient optical chemosensors for cyanide in aqueous, organic and solid media.

    PubMed

    Karmakar, Srikanta; Maity, Dinesh; Mardanya, Sourav; Baitalik, Sujoy

    2015-11-14

    We report in this work the anion recognition and sensing aspect of a new family of bimetallic Ru(ii) complexes derived from a symmetrical bridging 5,11-bis(4-([2,2':6',2''-terpyridine]-4'-yl)phenyl)-4,12-dihydropyreno[4,5-d:9,10-d']diimidazole (tpy-H2PhImzPy-tpy) terpyridine ligand in solution as well as in the solid sate through different channels such as absorption, steady state and time-resolved emission, and (1)H NMR spectroscopic techniques. Interestingly, the complexes exhibit luminescence in the red region with moderately long lifetimes compared with the related terpyridine complexes of Ru(ii). In DMSO, complexes 1 and 2 act as sensors for F(-) and to a lesser extent for AcO(-), CN(-) and H2PO4(-), whereas 3 acts as a sensor for F(-), AcO(-), CN(-) and to some extent for H2PO4(-). In contrast to DMSO, all the complexes exhibit very high selectivity towards cyanide ions in the presence of an excess of other anions in aqueous medium. The complexes display visual detection of cyanide with the detection limit lying in the range of 1.01 × 10(-7) to 9.79 × 10(-8) M. Equilibrium constants for the interaction of the complexes with the anions were evaluated from absorption and emission titration profiles and were found to lie in six orders of magnitude. It is observed that the excited-state lifetimes of the complexes were modulated to a significant extent by the selected anions in all the three media proving the utility of such complexes to act as lifetime-based sensors for anions. The fact that all the complexes can selectively sense cyanide in the presence of other anions with their detection limits lying in the range of 10(-7) M-10(-8) M in aqueous solution is particularly important for their practical applicability. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) studies were performed to understand the nature of the ground and excited states of the complexes with detailed assignments of the orbitals involved in absorption

  19. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  20. Synthesis, characterization, antiproliferative and molecular docking study of new half sandwich Ir(III), Rh(III) and Ru(II) complexes.

    PubMed

    Thangavel, Saravanan; Paulpandi, Manickam; Friedrich, Holger B; Murugan, Kadarkarai; Kalva, Sukesh; Skelton, Adam A

    2016-06-01

    The new carbazole N,N' ligand containing [(η(5)-C5Me5)MCl(L)]PF6, (M=Ir (1) and Rh (2)) and [(η(6)-C6H6)RuCl(L)]PF6 (3) (C5Me5=pentamethylcyclopentadienyl, L=9-ethyl-N-(pyridine-2-yl methylene)-9H-carbazole-3-amine) complexes has been synthesized and characterized by (1)H NMR, (13)C NMR, 2D NMR, melting point analysis, electronic absorption, infrared spectroscopy, HR-Mass spectroscopy and elemental analyses. The crystal structure of the [(η(5)-C5Me5)RhCl(L)]PF6 has been confirmed by single crystal XRD. The anticancer study of the synthesized complexes 1-3 clearly showed a potent inhibitor of human breast cancer cells (MCF-7) under in vitro conditions. The inhibitory concentrations (IC50) of the complexes 1-3 were determined at low (5, 6 and 8μM) concentration against the MCF-7 human breast cancer cell line. Further cytotoxic, cell cycle and nuclear studies confirmed that the novel half sandwich Ir(III), Rh(III) and Ru(II) complexes could be effective against MCF-7 human breast cancer cell proliferation. Moreover the results indicate that anticancer in vitro activity of complexes 1-3 falls in the order of 1>2>3. A molecular docking study of the complexes 1-3 showed the nature of binding energy, H-bond and hydrophobic interactions with the cyclooxygenase-2 (COX-2) receptor. PMID:26918899

  1. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  2. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    PubMed

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  3. 'Click' generated 1,2,3-triazole based organosulfur/selenium ligands and their Pd(ii) and Ru(ii) complexes: their synthesis, structure and catalytic applications.

    PubMed

    Kumar, Satyendra; Saleem, Fariha; Singh, Ajai K

    2016-07-28

    1-(2,6-Diisopropylphenyl)-4-(phenylthio/selenomethyl)-1H-1,2,3-triazole (L1/L2) was synthesized by a 'Click' reaction and treated with [Pd(CH3CN)2Cl2] for 5 h or [(η(6)-C6H6)RuCl(μ-Cl)]2 for 8 h (followed by reaction with NH4PF6) at room temperature, resulting in complexes [Pd(L)Cl2] (1 and 2) or [(η(6)-C6H6)Ru(L)Cl]PF6 (3 and 4) (L = L1 or L2), respectively. The four complexes (1-4) and ligands (L1 and L2) were characterized with (1)H, (13)C{(1)H} and (77)Se{(1)H} NMR spectroscopy and high resolution mass spectrometry. The single crystal structures of 1-4 were solved. The geometry of Pd in 1 and 2 is distorted square planar. The Pd-S and Pd-Se bond distances in 1 and 2 are 2.277(3) and 2.384(6) Å respectively. In 3 and 4, there is a pseudo-octahedral "piano-stool" type disposition of donor atoms around Ru. The Ru-S and Ru-Se bond lengths in 3 and 4 are 2.3728(12) and 2.4741(6) Å respectively. The catalytic activity of complexes 1 and 2 was explored for Suzuki-Miyaura coupling (SMC) in water and the Sonogashira coupling reaction. For various aryl bromides, including deactivated ones, complexes 1 and 2 were found to be efficient catalysts for both couplings. The optimum loading of 1 and 2 required to catalyze both coupling reactions is of the order of 0.001-2 mol% of Pd. For SMC, no additive or phase transfer catalyst was added. For catalysis of the transfer hydrogenation (TH) of aldehydes and ketones, the half-sandwich Ru(ii) complexes 3 and 4 were explored. Their optimum catalytic loading was found to be 0.1-0.4 mol% of Ru. For TH, both the water solvent and the glycerol hydrogen source are environmentally friendly. The catalytic efficiencies of 3 and 4 are comparable with those reported for other catalysts for TH carried out with 2-propanol or glycerol as a H-source. 1, with a sulfur ligand, is more efficient than 2 (Se analog) for both SMC and the Sonogashira coupling. The activities of 3 and 4 for TH are in the order Se > S. PMID:27338234

  4. Synthesis, structure, and substitution mechanism of new Ru(II) complexes containing 1,4,7-trithiacyclononane and 1,10-phenanthroline ligands.

    PubMed

    Sala, Xavier; Romero, Isabel; Rodríguez, Montserrat; Llobet, Antoni; González, Gabriel; Martínez, Manuel; Benet-Buchholz, Jordi

    2004-08-23

    Two new Ru complexes containing the 1,10-phenanthroline (phen) and 1,4,7-trithiacyclononane ([9]aneS3, SCH2CH2SCH2CH2SCH2CH2) ligands of general formula [Ru(phen)(L)([9]aneS3)]2+ (L = MeCN, 3; L = pyridine (py), 4) have been prepared and thoroughly characterized. Structural characterization in the solid state has been performed by means of X-ray diffraction analyses, which show a distorted octahedral environment for a diamagnetic d6 Ru(II), as expected. 1H NMR spectroscopy provides evidence that the same structural arrangement is maintained in solution. Further spectroscopic characterization has been carried out by UV-vis spectroscopy where the higher acceptor capability of MeCN versus the py ligand is manifested in a 9-15-nm blue shift in its MLCT bands. The E1/2 redox potential of the Ru(III)/Ru(II) couple for 3 is anodically shifted with respect to its Ru-py analogue, 4, by 60 mV, which is also in agreement with a higher electron-withdrawing capacity of the former. The mechanism for the reaction Ru-py + MeCN--> Ru-MeCN + py has also been investigated at different temperatures with and without irradiation. In the absence of irradiation at 326 K, the thermal process gives kinetic constants of k2 = 1.4 x 10(-5) s(-1) (DeltaH(++) = 108 +/- 3 kJ mol(-1), DeltaS(++) = -8 +/- 9 J K(-1) mol(-1)) and k-2 = 2.9 x 10(-6) s(-1) (DeltaH(++) = 121 +/- 1 kJ mol(-1), DeltaS(++) = 18 +/- 3 J K(-1) mol(-1)). The phototriggered process is faster and consists of preequilibrium formation of an intermediate that thermally decays to the final Ru-MeCN complex with an apparent rate constant of (k1Khnu)app = 1.8 x 10(-4) s(-1) at 304 K, under the continuous irradiation experimental conditions used. PMID:15310220

  5. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe(II) and Ru(II) Incorporated in Mesoporous Silica-Alumina.

    PubMed

    Aratani, Yusuke; Oyama, Kohei; Suenobu, Tomoyoshi; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-06-20

    Photocatalytic hydroxylation of benzene to phenol was achieved by using O2 as an oxidant as well as an oxygen source with a cyano-bridged polynuclear metal complex containing Fe(II) and Ru(II) incorporated in mesoporous silica-alumina ([Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41). An apparent turnover number (TON) of phenol production per the monomer unit of [Fe(H2O)3]2[Ru(CN)6] was 41 for 59 h. The cyano-bridged polynuclear metal complex, [Fe(H2O)3]2[Ru(CN)6], exhibited catalytic activity for thermal hydroxylation of benzene by H2O2 in acetonitrile (MeCN), where the apparent TON of phenol production reached 393 for 60 h. The apparent TON increased to 2500 for 114 h by incorporating [Fe(H2O)3]2[Ru(CN)6] in sAl-MCM-41. Additionally, [Fe(H2O)3]2[Ru(CN)6] acts as a water oxidation catalyst by using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) and Na2S2O8 as a photosensitizer and a sacrificial electron acceptor as evidenced by (18)O-isotope labeling experiments. Photoirradiation of an O2-saturated MeCN solution containing [Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41 and scandium ion provided H2O2 formation, where photoexcited [Ru(CN)6](4-) moiety reduces O2 as indicated by laser flash photolysis measurements. Thus, hydroxylation of benzene to phenol using molecular oxygen photocatalyzed by [Fe(H2O)3]2[Ru(CN)6] occurred via a two-step route; (1) molecular oxygen was photocatalytically reduced to peroxide by using water as an electron donor, and then (2) peroxide thus formed is used as an oxidant for hydroxylation of benzene. PMID:27265780

  6. 1H, 13C, 15N NMR coordination shifts in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2':6',2″-terpyridine.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szlyk, Edward

    2011-05-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) bis-chelated cationic complexes with 2,2':6',2″-terpyridine ([M(terpy)(2) ](2+) ; M = Fe, Ru, Os) were performed. Significant shielding of nitrogen-adjacent H(6) and deshielding of H(3'), H(4') protons were observed, both effects being mostly expressed for Fe(II) compounds. The metal-bonded nitrogens were shielded, this effect being much larger for the outer N(1), N(1″) than the inner N(1') atoms, and enhanced in the Fe(II) → Ru(II) → Os(II) series. PMID:21491480

  7. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    PubMed

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  8. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Sathiya Kamatchi, Thangavel; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-01

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H 2L) with [RuHCl(CO)(EPh 3) 3] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex ( 1) crystallizes in the monoclinic space group P2(1)/ c with unit cell dimensions a = 18.6236(17) Å, b = 12.8627(12) Å, c = 21.683(2) Å, α = 90.00, β = 114.626(2), γ = 90.00 V = 4721.8(8) Å, Z = 4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O—H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  9. A novel and generalized approach to the synthesis of ML sub 3 sup n+ (M = Ru(II), Rh(III); L = 2,2 prime -bipyridine, 1,10-phenanthroline, 2-(arylazo)pyridine; n = 2, 3)

    SciTech Connect

    Kakoti, Maushumi; Deb, A.K.; Goswami, S. )

    1992-04-01

    The chemistry of tris(2,2{prime}-bipyridine)ruthenium(II) and -rhodium(III) complexes and complexes of related ligands has had an extensive literature in recent years. The reason for this is primarily the relevance of this chemistry to photophysical, photochemical, and redox phenomena. But until now, no simple and general synthetic route has been available for the synthesis of such compounds. For example, the tris complex of 2,2{prime}-bipyridine (L{sup 1}) is commonly synthesized by fusion of MCl{sub 3} with the ligand at a very high temperature, whereas the syntheses of the tris complexes of 1,10-phenanthroline (L{sup 2}) and 2-(m-tolyazo)pyridine (L{sup 3}) involve several steps which need extra purification at every stage to eliminate contaminated products. The standard reported synthetic routes are not only lengthy but also cumbersome, and in most of the cases the routes are inefficient. Therefore, there is an obvious need to develop new and direct procedures, of general application, for the synthesis of the important title compounds. In the present report, the authors describe high-yield, single-pot, and general synthetic routes to ML{sub 3}{sup n+} from either hydrated MCl{sub 3} or MCl{sub 2}L{sub 2} (M = Ru(II), Rh(III); L = L{sup 1}-L{sup 3}) and the silver bis complex of the corresponding ligand.

  10. A theoretical study of Ru(II) polypyridyl DNA intercalators structure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine-cytosine base pairs.

    PubMed

    Ambrosek, David; Loos, Pierre-François; Assfeld, Xavier; Daniel, Chantal

    2010-09-01

    The structural and spectroscopic properties of [Ru(phen)(2)(dppz)](2+) and [Ru(tap)(2)(dppz)](2+) (phen=1,10-phenanthroline; tap=1,4,5,8-tetraazaphenanthrene; dppz=dipyridophenazine ) have been investigated by means of density functional theory (DFT), time-dependent DFT (TD-DFT) within the polarized continuum model (IEF-PCM) and quantum mechanics/molecular mechanics (QM/MM) calculations. The model of the Delta and Lambda enantiomers of Ru(II) intercalated in DNA in the minor and major grooves is limited to the metal complexes intercalated in two guanine-cytosine base pairs. The main experimental spectral features of these complexes reported in DNA or synthetic polynucleotides are better reproduced by the theoretical absorption spectra of the Delta enantiomers regardless of intercalation mode (major or minor groove). This is especially true for [Ru(phen)(2)(dppz)](2+). The visible absorption of [Ru(tap)(2)(dppz)](2+) is governed by the MLCT(tap) transitions regardless of the environment (water, acetonitrile or bases pair), the visible absorption of [Ru(phen)(2)(dppz)](2+) is characterized by transitions to metal-to-ligand-charge-transfer MLCT(dppz) in water and acetonitrile and to MLCT(phen) when intercalated in DNA. The response of the IL(dppz) state to the environment is very sensitive. In vacuum, water and acetonitrile these transitions are characterized by significant oscillator strengths and their positions depend significantly on the medium with blue shifts of about 80 nm when going from vacuum to solvent. When the complex is intercalated in the guanine-cytosine base pairs the (1)IL(dppz) transition contributes mainly to the band at 370 nm observed in the spectrum of [Ru(phen)(2)(dppz)](2+) and to the band at 362 nm observed in the spectrum of [Ru(tap)(2)(dppz)](2+). PMID:20554006

  11. Charge injection into nanostructured TiO2 electrodes from the photogenerated reduced form of a new Ru(ii) polypyridine compound: the "anti-biomimetic" mechanism at work.

    PubMed

    Ronconi, Federico; Santoni, Marie-Pierre; Nastasi, Francesco; Bruno, Giuseppe; Argazzi, Roberto; Berardi, Serena; Caramori, Stefano; Bignozzi, Carlo A; Campagna, Sebastiano

    2016-09-28

    The charge transfer dynamics involving a new Ru(ii) polypyridine complex (1), developed to generate highly oxidizing photoholes for water oxidation, was studied by electrochemical, photoelectrochemical and spectroscopic means. Mesoporous TiO2 electrodes sensitized with complex 1, under 1 sun illumination (420 nm cut-off filter) and a moderate applied bias (0.3 V vs. SCE), in ACN/0.1 M LiI as a sacrificial electron donor reach an anodic photocurrent of ∼0.2 mA cm(-2) with 3% photon-to-current conversion efficiency. When 0.1 M aqueous sodium ascorbate (pH 3) is used instead of iodide, the photocurrent increases to ∼0.7 mA cm(-2) and up to 1 mA cm(-2) if the concentration of ascorbate is increased to 0.5 M, explainable with a modification of the charge injection mechanism. This is the photoelectrochemical evidence, in the heterogeneous phase, of the so-called "anti-biomimetic" pathway, confirmed in transient absorption spectroscopy by a long lived sharp bleaching at 480 nm and a narrow absorption between 500 and 550 nm, characteristic fingerprints of the photogenerated reduced state (1(-)). After the formation of *1/TiO2, reductive quenching by ascorbate occurs, not observed in LiI where the classic oxidative quenching takes place. Due to the modest excited state oxidation potential, electron transfer to TiO2 is thermodynamically more favorable from 1(-) than *1. Lastly, experiments performed with sensitized SnO2 photoanodes, where *1 undergoes the usual oxidative quenching, by charge transfer to the conduction band of the metal oxide allowed us to verify the interaction between 1(+) and IrO2 nanoparticles, grafted onto the surface in order to drive photoinduced water oxidation. PMID:27537828

  12. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction.

    PubMed

    Chowdhury, Bijit; Dutta, Ranjan; Khatua, Snehadrinarayan; Ghosh, Pradyut

    2016-01-01

    A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions. PMID:26653882

  13. Micellar Effects on Photoinduced Electron Transfer in Aqueous Solutions Revisited: Dramatic Enhancement of Cage Escape Yields in Surfactant Ru(II) Diimine Complex/[Ru(NH3)6](2+) Systems.

    PubMed

    Adams, Rebecca E; Schmehl, Russell H

    2016-08-30

    The effect of cationic micelle incorporation on light induced electron transfer, charge separation and back electron transfer between an aqueous electron donor, [Ru(NH3)6](2+), and a series of Ru(II) diimine complex chromophores/acceptors, is presented. The chromophores have the general formula [(bpy)2Ru(LL)](2+) (LL = bpy; 4-R-4'-methyl-2,2'-bpy, R = pentyl (MC5), terdecyl (MC13), heptadecyl (MC17); 4,4'-di(heptadecyl)-2,2'-bpy (DC17)). Of the five chromophores, the MC13, MC17, and DC17 complexes associate with the added micelle forming surfactant, cetyltrimethylammonium bromide (CTAB). Quenching of the luminescence of the bpy and MC5 complexes by [Ru(NH3)6](2+) is unaffected by addition of surfactant, while rate constants for quenching of the MC13 and MC17 complexes are decreased. Cage escape yields following photoinduced electron transfer to generate [(bpy)2Ru(LL)](+) and [Ru(NH3)6](3+) are approximately 0.1 for all the water-soluble chromophores (excluding DC17) in the absence of added CTAB. In the presence of surfactant, the cage escape yields dramatically increase for the MC13 (0.4) and MC17 (0.6) complexes, while remaining unchanged for [Ru(bpy)3](2+) and the MC5 complex. Back electron transfer of the solvent separated ions is also strongly influenced by the presence of surfactant. For the MC13 and MC17 complexes, back electron transfer rate constants decrease by factors of 270 and 190, respectively. The MC5 complex exhibits two component back electron transfer, with the fast component having a rate constant close to that in the absence of surfactant and a slow component nearly 200 times smaller. Results are interpreted in terms of the partitioning of the 2+ and 1+ forms of the chromophores between aqueous and micellar phases. The extended lifetimes of the radical ions may prove useful in coupling the strong reductants formed to kinetically facile catalysts for reduction of water to hydrogen. PMID:27486891

  14. Tetranuclear polybipyridyl complexes of Ru(II) and Mn(II), their electro- and photo-induced transformation into di-mu-oxo Mn(III)Mn(IV) hexanuclear complexes.

    PubMed

    Romain, Sophie; Baffert, Carole; Dumas, Stéphane; Chauvin, Jérôme; Leprêtre, Jean-Claude; Daveloose, Denis; Deronzier, Alain; Collomb, Marie-Noëlle

    2006-12-28

    affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation. PMID:17146534

  15. Synthesis of Monomeric Fe(II) and Ru(II) Complexes of Tetradentate Phosphines

    SciTech Connect

    Jana, Barun; Ellern, Arkady; Pestovsky, Oleg; Sadow, Aaron; Bakac, Andreja

    2011-03-07

    rac-Bis[{l_brace}(diphenylphosphino)ethyl{r_brace}-phenylphosphino]methane (DPPEPM) reacts with iron(II) and ruthenium(II) halides to generate complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl{sub 2} (1) in CD{sub 2}Cl{sub 2} features a tridentate binding mode as established by {sup 31}P{l_brace}{sup 1}H{r_brace} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br{sub 2} (2) revealed a pseudo-octahedral, cis-{alpha} geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD{sub 2}Cl{sub 2} solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru({kappa}{sup 4}-DPPEPM)Cl{sub 2} (3) is obtained from rac-DPPEPM and either [RuCl{sub 2}(COD)]{sub 2} [COD = 1,5-cyclooctadiene] or RuCl{sub 2}(PPh{sub 3}){sub 4}. The structure of 3 in both the solid state and in CD{sub 2}Cl{sub 2} solution features a folded {kappa}{sup 4}-DPPEPM. This binding mode was also observed in cis-[Fe({kappa}{sup 4}-DPPEPM)(CH{sub 3}CN){sub 2}](CF{sub 3}SO{sub 3}){sub 2} (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe({kappa}{sup 4}-DPPEPM)Cl(CO)](Cl) (5). The same reaction in CH{sub 2}Cl{sub 2} produces a mixture of 5 and [Fe({kappa}{sup 3}-DPPEPM)Cl{sub 2}(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of {kappa}{sup 4}-DPPEPM.

  16. Fine control on the photochemical and photobiological properties of Ru(II) arene complexes.

    PubMed

    Chen, Yongjie; Lei, Wanhua; Hou, Yuanjun; Li, Chao; Jiang, Guoyu; Zhang, Baowen; Zhou, Qianxiong; Wang, Xuesong

    2015-04-28

    A series of six Ru(arene) complexes, [(η(6)-p-cymene)Ru(dpb)(py-R)](2+) (1-6, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline, py-R = 4-substituted pyridine, R = N(CH3)2, NH2, OCH3, H, COOCH3 and NO2), were synthesized and their photochemical and photobiological properties were compared in detail. The electron push/pull character of the R groups has a significant impact on both ligand photodissociation and (1)O2 generation of the complexes. The photoinduced DNA covalent binding capabilities increase from 1 to 6 under both aerobic and anaerobic conditions, and DNA photocleavage occurs simultaneously in aerobic environments. 4 has the most potent phototoxicity against human lung carcinoma A549 cells among the examined complexes. The substituent effect may be ascribed to the influences of the R groups on the energy levels of (3)MC and (3)MLCT states as well as the energy gaps between (3)MC, (3)MLCT and dpb-based (3)IL states. Similar chemical modification on bidentate and arene ligands or other sites of the pyridine ligand may lead to more efficient agents with PDT and/or PACT activities. PMID:25797273

  17. Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

    PubMed

    La Ganga, Giuseppina; Nastasi, Francesco; Campagna, Sebastiano; Puntoriero, Fausto

    2009-12-01

    A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum. PMID:19904425

  18. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    PubMed Central

    Song, Na; Concepcion, Javier J.; Binstead, Robert A.; Rudd, Jennifer A.; Vannucci, Aaron K.; Dares, Christopher J.; Coggins, Michael K.; Meyer, Thomas J.

    2015-01-01

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2′-bipyridine-6,6′-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2−)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ∼7 μs. The key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways. PMID:25848035

  19. Unusually Efficient Pyridine Photodissociation from Ru(II) Complexes with Sterically Bulky Bidentate Ancillary Ligands

    PubMed Central

    2015-01-01

    The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)]2+ (1; tpy = 2,2′:2′,6″-terpyridine; bpy = 2,2′-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)]2+ (2; Me2bpy = 6,6′-dimethyl-2,2′-bipyridine) and [Ru(tpy)(biq)(py)]2+ (3; biq = 2,2′-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)]2+ (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2–3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)]2+ (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1–3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups. PMID:25027458

  20. Photostability of phosphonate-derivatized, Ru(II) polypyridyl complexes on metal oxide surfaces.

    PubMed

    Hanson, Kenneth; Brennaman, M Kyle; Luo, Hanlin; Glasson, Christopher R K; Concepcion, Javier J; Song, Wenjing; Meyer, Thomas J

    2012-03-01

    The photostability of [Ru(II)(bpy)(2)(4,4'-(PO(3)H(2))(2)bpy)]Cl(2) (bpy = 4,4'-bipyridine) on nanocrystalline TiO(2) and ZrO(2) films was investigated using a standard measurement protocol. Stability was evaluated by monitoring visible light absorbance spectral changes, in real time, during 455 nm photolysis (30 nm fwhm, 475 mW/cm(2)) in a variety of conditions relevant to dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells. Desorption (k(des)) and photochemical (k(chem)) processes were observed and found to be dependent upon solvent, anion, semiconductor, and presence of oxygen. Both processes are affected by oxygen with k(des) and k(photo) noticeably smaller in argon saturated solution. Desorption was strongly solvent and pH dependent with desorption rates increasing in the order: methanol (MeOH) ≈ acetonitrile (MeCN) < propylene carbonate (PC) < pH 1 ≪ pH 7. Photochemistry occurred in MeOH and PC but not in aqueous, 0.1 M HClO(4) and MeCN. The anion and solvent dependence of k(photo) strongly suggests the photoreaction involves ligand substitution initiated by population of metal centered d-d states. The relative stability of -PO(3)H(2)- versus -COOH-substituted [Ru(II)(bpy)(3)](2+) was also quantitatively established. PMID:22316053

  1. A Family of Potent Ru(II) Photosensitizers with Enhanced DNA Intercalation: Bimodal Photokillers.

    PubMed

    Pefkianakis, Eleftherios K; Theodossiou, Theodossis A; Toubanaki, Dimitra K; Karagouni, Evdokia; Falaras, Polycarpos; Papadopoulos, Kyriakos; Vougioukalakis, Georgios C

    2015-01-01

    A new family of Ru(II)-based photosensitizers was synthesized and systematically characterized. The ligands employed to coordinate the ruthenium metal center were the commercially available 2,2'-bipyridine and a pyridine-quinoline hybrid bearing an anthracene moiety. The complexes obtained carry either PF6- or Cl(-) counterions. These counterions determine the complexes' hydrophobic or hydrophilic character, respectively, therefore dictating their solubility in biologically related media. All photosensitizers exhibit characteristic, relatively strong and wide UV-Vis absorption spectral profiles. Their high efficiency in generating cytotoxic singlet oxygen was established (up to ΦΔ ~0.8). Moreover, the interaction of these photosensitizers with double-stranded DNA was studied fluoro- and photospectroscopically and their binding affinities were found to be of the order of 3 × 10(7)  M(-1) . All complexes are photocytotoxic to DU145 human prostate cancer cells. The highest light-induced toxicity was conferred by the photosensitizers bearing Cl(-) counterions, probably due to the looser ionic "chaperoning" of Cl(-) , in comparison to PF6-, leading to higher cell internalization. PMID:26118404

  2. Long-lifetime Ru(II) complexes for the measurement of high molecular weight protein hydrodynamics.

    PubMed

    Szmacinski, H; Castellano, F N; Terpetschnig, E; Dattelbaum, J D; Lakowicz, J R; Meyer, G J

    1998-03-01

    We describe the synthesis and characterization of two asymmetrical ruthenium(II) complexes, [Ru(dpp)2(dcbpy)]2+ and [Ru(dpp)2(mcbpy)]2+, as well as the water soluble sulfonated derivatives [Ru(dpp(SO3Na)2)2(dcbpy)]2+ and [Ru(dpp(SO3Na)2)2(mcbpy)]2+ (dpp is 4,7-diphenyl-1,10-phenanthroline, dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine, mcbpy is 4-methyl,4'-carboxylic acid-2,2'-bipyridine, and dpp(SO3Na)2 is the disulfonated derivative of dpp) as probes for the measurement of the rotational motions of proteins. The spectral (absorption, emission, and anisotropy) and photophysical (time-resolved intensity and anisotropy decays) properties of these metal-ligand complexes were determined in solution, in both the presence and absence of human serum albumin (HSA). These complexes display lifetimes ranging from 345 ns to 3.8 microseconds in deoxygenated aqueous solutions under a variety of conditions. The carboxylic acid groups on these complexes were activated to form N-hydroxysuccinimide (NHS) esters which were used to covalently lable HSA, and were characterized spectroscopically in the same manner as above. Time-resolved anisotropy measurements were performed to demonstrate the utility of these complexes in measuring long rotational correlation times of bioconjugates between HSA and antibody to HSA. The potential usefulness of these probes in fluorescence polarization immunoassays was demonstrated by an association assay of the Ru(II)-labeled HSA with polyclonal antibody. PMID:9546056

  3. Biological investigation of 131I-labeled new water soluble Ru(II) polypyridyl complex.

    PubMed

    Ocakoglu, Kasim; Yildirim, Yeliz; Yurt Lambrecht, Fatma; Ocal, Jale; Icli, Siddik

    2008-02-01

    New [Ru(L1)(dcbpy)(NCS)2] complex was synthesized in a one-pot reaction starting from [RuCl2(p-cymene)]2, where the ligands (dcbpy=4,4'-dicarboxy-2,2'-bipyridine, L1=dipyrido[3,2-a:2',3'-c]phenazine-11-ylcarbonyl)-sodium) are introduced sequentially. The resulting complex was characterized by IR, NMR, and elemental analysis. The complex was labeled with I-131. Biodistribution study of the complex was carried out using 131I-labeled [Ru(L1)(dcbpy)(NCS)2] complex. The biodistribution study performed with albino Wistar male rats has shown that the complex has high uptake in the lung, small intestine, fat, and spleen. PMID:17913501

  4. New RuII Complex for Dual Activity: Photoinduced Ligand Release and 1O2 Production

    PubMed Central

    Loftus, Lauren M.; White, Jessica K.; Albani, Bryan A.; Kohler, Lars; Kodanko, Jeremy J.; Thummel, Randolph P.

    2016-01-01

    The new complex [Ru(pydppn)(biq)(py)]2+ (1) undergoes both py photodissociation in CH3CN with Φ500=0.0070(4) and 1O2 production with ΦΔ=0.75(7) in CH3OH from a long-lived 3ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine; biq = 2,2′-biquinoline; py= pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)]2+ (3) (tpy=2,2′:6′,2″-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying 3ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter 3MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)]2+ (2) (bpy=2,2′-bipyridine) are attributed to a competitive excited state population between the 3LF states involved in ligand dissociation and the long-lived 3ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy. PMID:26715085

  5. Role of electronic structure on DNA light-switch behavior of Ru(II) intercalators.

    PubMed

    Sun, Yujie; Lutterman, Daniel A; Turro, Claudia

    2008-07-21

    A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments. PMID:18572884

  6. Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes.

    PubMed

    Rudd, Jennifer A; Brennaman, M Kyle; Michaux, Katherine E; Ashford, Dennis L; Murray, Royce W; Meyer, Thomas J

    2016-03-24

    The complexes [Ru(qpy)LL'](2+) (qpy = 2,2':6',2″:6″,2‴-quaterpyridine), with 1: L = acetonitrile, L'= chloride; 2: L = L'= acetonitrile; and 3: L = L'= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping (1)A1 → (1)MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected Ru(III/II) redox couples. In 0.1 M trifluoroacetic acid (TFA), 1 and 2 undergo aquation to give [Ru(II)(qpy)(OH2)2](2+), as evidenced by the appearance of waves for the couples [Ru(III)(qpy)(OH2)2](3+)/[Ru(II)(qpy)(OH2)2](2+), [Ru(IV)(qpy)(O)(OH2)](2+)/[Ru(III)(qpy)(OH2)2](3+), and [Ru(VI)(qpy)(O)2](2+)/[Ru(IV)(qpy)(O)(OH2)](2+) in cyclic voltammograms. PMID:26891090

  7. Homochiral D4-symmetric metal–organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules

    PubMed Central

    Wu, Kai; Li, Kang; Hou, Ya-Jun; Pan, Mei; Zhang, Lu-Yin; Chen, Ling; Su, Cheng-Yong

    2016-01-01

    Absolute chiral environments are rare in regular polyhedral and prismatic architectures, but are achievable from self-assembly of metal–organic cages/containers (MOCs), which endow us with a promising ability to imitate natural organization systems to accomplish stereochemical recognition, catalysis and separation. Here we report a general assembly approach to homochiral MOCs with robust chemical viability suitable for various practical applications. A stepwise process for assembly of enantiopure ΔΔΔΔΔΔΔΔ- and ΛΛΛΛΛΛΛΛ-Pd6(RuL3)8 MOCs is accomplished by pre-resolution of the Δ/Λ-Ru-metalloligand precursors. The obtained Pd–Ru bimetallic MOCs feature in large D4-symmetric chiral space imposed by the predetermined Ru(II)-octahedral stereoconfigurations, which are substitutionally inert, stable, water-soluble and are capable of encapsulating a dozen guests per cage. Chiral resolution tests reveal diverse host–guest stereoselectivity towards different chiral molecules, which demonstrate enantioseparation ability for atropisomeric compounds with C2 symmetry. NMR studies indicate a distinctive resolution process depending on guest exchange dynamics, which is differentiable between host–guest diastereomers. PMID:26839048

  8. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines

    NASA Astrophysics Data System (ADS)

    Sivagamasundari, M.; Ramesh, R.

    2007-02-01

    The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P; B = PPh 3, py or pip: E = As; B = AsPh 3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh 3)(B)(L)] (L = anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine- N-oxide (NMO) as the source of oxygen. The formation of high valent Ru IV = O species as a catalytic intermediate is proposed for the catalytic process.

  9. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines

    NASA Astrophysics Data System (ADS)

    Sivagamasundari, M.; Ramesh, R.

    2007-05-01

    The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P; B = PPh 3, py or pip: E = As; B = AsPh 3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh 3)(B)(L)] (L = anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine- N-oxide (NMO) as the source of oxygen. The formation of high valent Ru IVdbnd O species as a catalytic intermediate is proposed for the catalytic process.

  10. Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobial and docking studies of Ru(II) polypyridyl complexes.

    PubMed

    Srishailam, A; Kumar, Yata Praveen; Gabra, Nazar M D; Reddy, P Venkat; Deepika, N; Veerababu, Nageti; Satyanarayana, S

    2013-09-01

    Three Ruthenium(II) polypyridine complexes, [Ru(phen)2(mipc)](2+)(1), [Ru(bpy)2(mipc)](2+) (2) and [Ru(dmb)2(mipc)](2+)(3) [mipc = 2-(6-methyl-3-(1H-imidazo[4, 5-f][1,10]-phenanthroline-2-yl)-4H-chromene-4-one, phen = 1,10-phenanthroline,bpy = 2, 2'bipyridine,dmb = 4, 4'-dimethyl-2, 2'-bipyridine] have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H& (13)C NMR and mass spectra. The DNA-binding properties of the Ruthenium(II) complexes were investigated by spectrophotometric methods, viscosity measurements and light switch studies. These three complexes have been focused on photo activated cleavage studies with pBR-322 and antimicrobial studies. Experimental results indicate that the three complexes intercalate into DNA base pairs and follows the order of 1 > 2 > 3 respectively. Molecular docking studies also support the DNA interactions with complexes through hydrogen bonding and vander Waal's interactions. Cytotoxicity studies with Hela cell lines has been revealing about anti tumor activity of these complexes. PMID:23553642

  11. Study on DNA binding behavior and light switch effect of new coumarin-derived Ru(II) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Shen, You-Ming; Li, Zhi-Xin; Zhong, Xiao; Chen, Yuan-Dao; Zhang, Song-Bai

    2015-10-01

    A new ligand mhcip (mhcip = 2-(4-methyl-7-hydroxyl-8-coumarinyl)imidazo[4,5-f]-[1,10]phenanthroline) and its ruthenium complexes, [Ru(L)2mhcip]2+ (L = bpy (2,2‧-bipyridine), phen (1,10-phenanthroline)), have been synthesized and characterized. The introduction of coumarin ring may play an important role in the strong fluorescence of the complexes. Intercalative binding mode between both complexes and CT-DNA was determined by UV-visible spectroscopy, fluorescence spectroscopy and viscosity measurements. The two complexes show efficient DNA photocleavage under irradiation at 365 nm. The cycling of light switch off and on has been achieved for both complexes through the introduction of Cu2+ and EDTA in the absence or presence of DNA.

  12. Efficient, long-range energy migration in Ru(II) polypyridyl derivatized polystyrenes in rigid media. Antennae for artificial photosynthesis.

    PubMed

    Fleming, Cavan N; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2009-05-28

    Results of CW and lifetime emission studies have been used to demonstrate facile intra-strand energy transfer in the derivatized polystyrene polymer [PS-4-CH(2)CH(2)NHC(O)-(Ru(II)(4,4'-(CONEt(2))(2)bpy)(2))(17)(Os(II)(bpy)(2)))(3)](PF(6))(40) in four rigid media: frozen 5:4 (v:v) propionitrile:butyronitrile solutions at 77 K, polymethyl-methacrylate (PMMA) and polyethylene glycol-dimethacrylate (PEG-DMA) films, and silica xerogel monoliths at room temperature. Continued rapid energy transfer in rigid media is in contrast to electron transfer which is inhibited. This can be explained by energy transfer theory and is due to a decrease in the energy transfer barrier because of the frozen nature of the medium. The abbreviation used for the polymer defines the chemical link to the polystyrene backbone and gives the extent of loading out of 20 available sites. PMID:19440588

  13. Synthetic design of MLCT excited states. Ligand-substituted, mono-2,2'-bipyridine complexes of Ru(II)

    SciTech Connect

    Barqawi, K.R.; Llobet, A.; Meyer, T.J.

    1988-11-09

    The role of the 2,2'-bipyridine ligand in metal to ligand charge transfer (MLCT) excited states and of the effect of substituent changes on that role has been investigated by spectroscopic and photochemical measurements on the series ((tpm)Ru(4,4'-(X){sub 2}-2,2'-bipyridine)(py)){sup 2+} (X = C(O)OC{sub 2}H{sub 5}, C{sub 6}H{sub 5}, CH{sub 3}, NH{sub 2}, H; tpm is tris(1-pyrazolyl)methane). 65 refs., 8 figs., 4 tabs.

  14. Acetylene dithiolate linking up the [Tp'W(CO)(CN)] moiety with Ru(II) or Pd(II.).

    PubMed

    Seidel, Wolfram W; Dachtler, Woldemar; Semmler, Julia; Tänzler, Marco; Folk, Manuel; Villinger, Alexander

    2013-10-18

    A series of heterodinuclear complexes with acetylene dithiolate (acdt(2-) ) as the bridging moiety were synthesised by a facile one-pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W-Ru complex [Tp'W(CN)(CO)(C2 S2 )Ru(η(5) -C5 H5 )(PPh3 )] (Tp'=hydrotris(3,5-dimethylpyrazolyl)borate) and the W-Pd complexes [Tp'W(CN)(CO)(C2 S2 )Pd(dppe)] and [Tp'W(CO)2 (C2 S2 )Pd(dppe)][PF6 ] (dppe=1,2-bis(diphenylphoshino)ethane), which exhibit a [W(η(2) -κ(2) -C2 S2 )M] core (M=Ru, Pd), was accomplished by using a transition-metal-assisted solvolytical removal of the Me3 Si-ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W-Ru complex [Tp'W(CN)(CO)(C2 S2 )Ru(η(5) -C5 H5 )(PPh3 )] shows reversible redox chemistry, as does the prototype complex [Tp'W(CO)2 (C2 S2 )Ru(η(5) -C5 H5 )(PPh3 )][PF6 ]. Single crystal X-ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt(2-) linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt(2-) in [Tp'W(CN)(CO)(C2 S2 )Ru(η(5) -C5 H5 )(PPh3 )] relative to [Tp'W(CO)2 (C2 S2 )Ru(η(5) -C5 H5 )(PPh3 )](+) . In addition, the influence of the overall complex charge on the metric parameters was investigated by single-crystal X-ray diffraction studies with the W-Pd complexes [Tp'WL2 (C2 S2 )Pd(dppe)] (L=(CN(-) )(CO) or (CO)2 ). The central [W(C2 S2 )Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals. PMID:24026953

  15. Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

    SciTech Connect

    Britton, Andrew J.; Weston, Matthew; O'Shea, James N.; Taylor, J. Ben; Rienzo, Anna; Mayor, Louise C.

    2011-10-28

    The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2{sup '}-bipyridyl-4,4{sup '}-dicarboxylato) -ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the {pi}*-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.

  16. Excited State Investigation of a New Ru(II) Complex for Dual Reactivity with Low Energy Light

    PubMed Central

    Knoll, J. D.; Albani, B. A.; Turro, C.

    2015-01-01

    The new complex [Ru(tpy)(Me2dppn)(py)]2+ efficiently photodissociates py in CH3CN with Φ500 = 0.053(1) induced by steric bulk from methyl substituents and produces 1O2 with ΦΔ = 0.69(9) from its long-lived 3ππ* excited state. The unique excited state processes that result in dual reactivity were investigated using ultrafast transient absorption spectroscopy. PMID:25912170

  17. Luminescent sensing of dissolved oxygen based on Ru(II) complex embedded in sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Bi, Yubing; Tao, Wei; Hu, Yanli; Mao, Yimei; Zhao, Hui

    2015-11-01

    In biological cells and tissues environment, real-time monitoring and controlling dissolved oxygen (DO) provides critical information for studying cellular metabolism process, health status and pathological features. This paper developed an optical DO sensor based on fluorescence quenching principle, prepared tris(4,7-diphenyl-1,10- phenanthroline)ruthenium(II) dichloride complex sol-gel sensing film, and studied its sensing performance. The principle of this sensor is that dissolved oxygen has quenching effect towards the fluorescence emitted by ruthenium complex. So the fluorescence intensity is reduced due to the existence of DO. The measurement limit of DO was 10- 100%, the response time was 20s, and the resolution was 0.02. Compared to traditional dissolved oxygen electrode probe, this luminescent fiber had many advantages, such as smaller size, shorter response time and higher stability.

  18. Azadipyrromethene cyclometalation in neutral Ru(II) complexes: photosensitizers with extended near-infrared absorption for solar energy conversion applications.

    PubMed

    Bessette, André; Cibian, Mihaela; Ferreira, Janaina G; DiMarco, Brian N; Bélanger, Francis; Désilets, Denis; Meyer, Gerald J; Hanan, Garry S

    2016-06-28

    In the on-going quest to harvest near-infrared (NIR) photons for energy conversion applications, a novel family of neutral ruthenium(ii) sensitizers has been developed by cyclometalation of an azadipyrromethene chromophore. These rare examples of neutral ruthenium complexes based on polypyridine ligands exhibit an impressive panchromaticity achieved by the cyclometalation strategy, with strong light absorption in the 600-800 nm range that tails beyond 1100 nm in the terpyridine-based adducts. Evaluation of the potential for Dye-Sensitized Solar Cells (DSSC) and Organic Photovoltaic (OPV) applications is made through rationalization of the structure-property relationship by spectroscopic, electrochemical, X-ray structural and computational modelization investigations. Spectroscopic evidence for photo-induced charge injection into the conduction band of TiO2 is also provided. PMID:27264670

  19. Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad.

    PubMed

    Reichardt, Christian; Sainuddin, Tariq; Wächtler, Maria; Monro, Susan; Kupfer, Stephan; Guthmuller, Julien; Gräfe, Stefanie; McFarland, Sherri; Dietzek, Benjamin

    2016-08-18

    The influence of ligand protonation on the photophysics of a ruthenium (Ru) dyad bearing the 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]-phenanthroline (ippy) ligand was investigated by time-resolved transient absorption spectroscopy. It was found that changes in the protonation state of the imidazole group led to changes in the electronic configuration of the lowest lying excited state. Formation of the fully deprotonated imidazole anion resulted in excited state signatures that were consistent with a low-lying intraligand (IL) triplet state. This assignment was supported by time-dependent density functional theory (TDDFT) calculations. IL triplet states have been suggested to be potent mediators of photodynamic effects. Thus, these results are of interest in the design of Ru metal complexes as photosensitizers (PSs) for photodynamic therapy (PDT). PMID:27459188

  20. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.

    PubMed

    Kilina, Svetlana; Cui, Peng; Fischer, Sean A; Tretiak, Sergei

    2014-10-16

    Thermodynamic conditions governing the charge transfer direction in CdSe quantum dots (QD) functionalized by either Ru(II)-trisbipyridine or black dye are studied using density functional theory (DFT) and time-dependent DFT (TDDFT). Compared to the energy offsets of the isolated QD and the dye, QD-dye interactions strongly stabilize dye orbitals with respect to the QD states, while the surface chemistry of the QD has a minor effect on the energy offsets. In all considered QD/dye composites, the dyes always introduce unoccupied states close to the edge of the conduction band and control the electron transfer. Negatively charged ligands and less polar solvents significantly destabilize the dye's occupied orbitals shifting them toward the very edge of the valence band, thus, providing favorite conditions for the hole transfer. Overall, variations in the dye's ligands and solvent polarity can progressively adjust the electronic structure of QD/dye composites to modify conditions for the directed charge transfer. PMID:26278611

  1. New ru(II) complexes containing oxazoline ligands as epoxidation catalysts. Influence of the substituents on the catalytic performance.

    PubMed

    Serrano, Isabel; López, M Isabel; Ferrer, Íngrid; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Solà, Miquel; Llobet, Antoni; Rodríguez, Montserrat; Romero, Isabel

    2011-07-01

    The synthesis of a family of new Ru complexes containing the facial tridentate ligand with general formula [Ru(II)(T)(D)(X)](n+) (T = trispyrazolylmethane (tpm); D = ((4S,4'S)-(-)-4,4',5,5'-tetrahydro-4,4'-bis(1-methylethyl)-2,2'-bioxazole) (iPr-box-C) or N-(1-hydroxy-3-methylbutan-(2S)-(-)-2-yl)-(4S)-(-)-4-isopropyl-4,5-dihydrooxazole-2-carbimidate (iPr-box-O); X = Cl, H(2)O) has been described. All complexes have been spectroscopically characterized in solution through (1)H NMR and UV-vis techniques, and the redox properties of complexes have also been studied by means of cyclic voltammetry (CV). Furthermore, the chloro complexes presented here have been characterized in the solid state through monocrystal X-ray diffraction analysis. The oxazolinic iPr-box-C ligand undergoes a Ru-assisted hydrolysis reaction generating the corresponding amidate anionic ligand iPr-box-O, that keeps coordinated to the Ru metal center and that produces a strong σ-donation effect over it. The reactivity of the Ru-OH(2) complexes described in this paper together with other similar ones, previously synthesized by us, has been tested with regard to the epoxidation of different olefins. Complexes [Ru(II)(R-box-C)(tpm)OH(2)](BF(4))(2), R = Bz, 3'c/iPr, 3c, show high stereoselectivity in the epoxidation of cis-β-methylstyrene, with the exclusive formation of the cis-epoxide. However, there is a significant difference in regioselectivity between the two catalysts in the epoxidation of 4-vinylcyclohexene; complex 3'c leads to the regioselective oxidation at the ring alkene position, whereas complex 3c leads to the oxidation at the terminal position. Computational calculations indicate only small energy differences between the two possible products of 4-vinylcyclohexene epoxidation, but the energy barriers for the interaction of the catalytic systems with the alkene groups of 4-vinylcyclohexene agree with the reactivity differences found for the two catalysts having isopropyl or benzyl as substituent of the oxazole ligand. Computed local Fukui functions help to explain the observed reactivity trends. PMID:21650155

  2. Hydrogen bonding and anticancer properties of water-soluble chiral p-cymene Ru(II) compounds with amino-oxime ligands

    PubMed Central

    Benabdelouahab, Yosra; Muñoz-Moreno, Laura; Frik, Malgorzata; de la Cueva-Alique, Isabel; El Amrani, Mohammed Amin; Contel, María; Bajo, Ana M.; Cuenca, Tomás

    2016-01-01

    The investigation of the hydrogen-bonding effect on the aggregation tendency of ruthenium compounds [(η6-p-cymene)Ru(κNHR,κNOH)Cl]Cl (R = Ph (1a), Bn (1b)) and [(η6-p-cymene)Ru(κ2NH(2-pic),κNOH)][PF6]2 (1c), [(η6-p-cymene)Ru(κNHBn,κNO)Cl] (2b) and [(η6-p-cymene)Ru(κNBn,κ2NO)] (3b), has been performed by means of concentration dependence 1H NMR chemical shifts and DOSY experiments. The synthesis and full characterization of new compounds 1c, [(η6-p-cymene)Ru(κNPh,κ2NO)] (3a) and 3b are also reported. The effect of the water soluble ruthenium complexes 1a-1c on cytotoxicity, cell adhesion and cell migration of the androgen-independent prostate cancer PC3 cells have been assessed by MTT, adhesion to type-I-collagen and recovery of monolayer wounds assays, respectively. Interactions of 1a-1c with DNA and human serum albumin have also been studied. Altogether, the properties reported herein suggest that ruthenium compounds 1a-1c have considerable potential as anticancer agents against advanced prostate cancer. PMID:27175101

  3. Synthesis, spectral, catalytic and antimicrobial studies of PPh 3/AsPh 3 complexes of Ru(II) with dibasic tridentate O, N, S donor ligands

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K. P.; Karvembu, R.; Prabhakaran, R.; Chinnusamy, V.; Natarajan, K.

    2007-09-01

    Complexes of the type [Ru(CO)(EPh 3)(B)(L)] (E = P or As; B = PPh 3, AsPh 3, py or pip; L = dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet- o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh 3) 2(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh 3 groups around ruthenium metal was determined from 31P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine- N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.

  4. RGD labeled Ru(II) polypyridyl conjugates for platelet integrin αIIbβ3 recognition and as reporters of integrin conformation.

    PubMed

    Adamson, Kellie; Dolan, Ciaran; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2014-05-21

    The ability of two novel ruthenium(II) polypyridyl-Arg-Gly-Asp (RGD) peptide conjugates to act as molecular probes for reporting on the presence and conformation of integrin αIIbβ3 in solution and in live cells was described. The compounds are [Ru(bpy)2PIC-RGD](2+), bpy-RGD, and [Ru(dpp)2PIC-RGD](2+), dpp-RGD, where dpp is 4,7-diphenyl-1,10-phenanthroline, bpy is 2,2'-bipyridine, and PIC is 2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline. Bpy-RGD is hydrophilic, whereas dpp-RGD is comparatively hydrophobic. Both probes exhibited good affinity and high specificity for purified αIIbβ3 in solution. Binding of either complex to the resting integrin resulted in an approximately 8-fold increase of emission intensity from the metal center with dissociation constants (Kd) in the micromolar range for each complex. The Kd for each conjugate/αIIbβ3 assembly were compared following treatment of the integrin with the activating agents, Mn(2+) and dithiothreitol (DTT), which are commonly used to induce active-like conformational changes in the integrin. For bpy-RGD/αIIbβ3 Kd showed relatively little variation with integrin activation, presenting the following trend: denatured αIIbβ3 > resting αIIbβ3 = pretreated DTT = pretreated Mn(2+). Kd for dpp-RGD/ αIIbβ3 showed greater variation with integrin activation and the following trend was followed: denatured αIIbβ3 > resting αIIbβ3 > pretreated Mn(2+) = pretreated DTT. Time resolved luminescence anisotropy was carried out to obtain the rotational correlation time of bpy-RGD and dpp-RGD bound to resting or nominally activated integrin. The rotational correlation times of bpy-RGD and dpp-RGD, too fast to measure unbound, decreased to 1.50 ± 0.03 μs and 2.58 ± 0.04 μs, respectively, when the complexes were bound to resting integrin. Addition of Mn(2+) to bpy-RGD/αIIbβ3 or dpp-RGD/αIIbβ3 reduced the rotational correlation time of the ruthenium center to 1.29 ± 0.03 μs and to 1.72 ± 0.03 μs, respectively. Following treatment, the rotational correlation time decreased to 1.04 ± 0.01 μs and 1.29 ± 0.03 μs for bpy-RGD/αIIbβ3, and dpp-RGD/αIIbβ3, respectively. The large relative changes in rotational correlation times observed for Mn(2+) or DTT activated integrin indicates significant change in protein conformation compared with the resting integrin. The results also indicated that the metal complex itself affects the final conformational and/or aggregation status of the protein obtained. Furthermore, the extent of conformational change was influenced by whether the probe was bound to the integrin before or after activator treatment. Finally, in vitro studies indicated that both probes selectively bind to CHO cells expressing the resting form of αIIbβ3. In each case the probe colocalized with αIIb specific SZ22 antibody. Overall, this work indicates that bpy-RGD and dpp-RGD may be useful peptide-probes for rapid assessment of integrin structural status and localization in solution and cells. PMID:24720819

  5. Molecular Engineering, Photophysical and Electrochemical Characterizations of Novel Ru(II) and BODIPY Sensitizers for Mesoporous TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Cheema, Hammad Arshad

    To realize the dream of a low carbon society and ensure the wide spread application of renewable energy sources such as solar energy, photovoltaic devices should be highly efficient, cost-effective and stable for at least 20 years. Dye sensitized solar cells (DSCs) are photovoltaic cells that mimic the natural photosynthesis. In a DSC, the dye absorbs photons from incident light and converts those photons to electric charges, which are then extracted to the outer circuit through semiconductor TiO2, whereas the mediator regenerates the oxidized dye. A sensitizer is the pivotal component in the device in terms of determining the spectral response, color, photocurrent density, long term stability, and thickness of a DSC. The breakthrough report by O'Regan and Gratzel in 1991 has garnered more than 18,673 citations (as of October 9, 2014), which indicates the immense scientific interest to better understand and improve the fundamental science of this technology. With the aforementioned in mind, this study has focused on the molecular engineering of novel sensitizers to provide a better understanding of structure-property relationships of novel sensitizers for DSCs. The characterization of sensitizers (HD-1-mono, HD-2-mono and HD-2) for photovoltaic applications showed that the photocurrent response of DSCs can be increased by using mono-ancillary ligand instead of bis-ancillary ligands, which is of great commercial value considering the difference in the molecular weights of both dyes. The results of this work were published in Journal of Materials Chemistry A (doi:10.1039/c4ta01942c) and ACS Applied Materials and Interfaces (doi: 10.1021/am502400b). Furthermore, structure-property relationships were investigated in Ru (II) sensitizers HL-41 and HL-42 in order to elucidate the steric effects of electron donating ancillary ligands on photocurrent and photovoltage, as discussed in Chapter 4. It was found that the electron donating group (ethoxy) ortho to the CH=CH spacer precludes coplanarity of the naphthalene moiety, thus decreasing the extracted photocurrent response from solar device. The findings were published in Dyes and Pigments (doi:10.1016/j.dyepig.2014.08.005). For HD-7 and HD-8, intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands, respectively in Ru (II) sensitizers was investigated using femtosecond transient absorption spectroscopy. It was found that the excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than that in HD-8 and those triplet electrons are not being injected in TiO2 efficiently as discussed in Chapter 5. To achieve long term stability, we combined the strong electron donor characteristics of carbazole and the hydrophobic nature of long alkyl chains, C7 (HD-14 ), C18 (HD-15) and C2 (NCSU-10), tethered to N-carbazole. HD-15 showed strikingly good long term light soaking stability and maintained up to 98% of initial efficiency value compared to 92% for HD-14 and 78% for NCSU-10, as discussed in Chapter 6. Boron dipyromethene (BODIPY) dyes HB-1, HB-2 and HB-3 were synthesized and fully characterized for dye solar cells. It was found that having long alkyl chains tethered to the donor groups alone are not sufficient for achieving highly efficient photovoltaic response from BODIPY dyes (Chapter 7). Thus, replacement of fluorines from BODIPY core with long alkoxy chains has been suggested for future work.

  6. Thermochromic organometallic complexes: experimental and theoretical studies of 16- to 18-electron interconversions of adducts of arene Ru(II) carboranes with aromatic amine ligands.

    PubMed

    Barry, Nicolas P E; Deeth, Robert J; Clarkson, Guy J; Prokes, Ivan; Sadler, Peter J

    2013-02-21

    A series of 18-electron complexes of general formula [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)(L)] (p-cym = para-cymene; L = 4-dimethylaminopyridine (2), nicotinamide (3), 3-ethynylpyridine (4), N-methylimidazole (5), 4-cyanopyridine (6), and pyridine (7)) were synthesised by reactions between the 16-electron precursor [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)] (1) and corresponding heterocyclic bases. X-ray crystal structures of complexes 2 and 5 were determined. In dichloromethane and chloroform solutions at ambient temperature, the 18-electron complexes 2-7 are in equilibrium with the 16-electron precursor 1. Each equilibrium is displaced towards the formation of the blue 16-electron or yellow 18-electron complex by increasing or decreasing the temperature of the solution, respectively, which results in controlled and reversible thermochromism. Binding constants (K) and Gibbs free energies (ΔG°) of the six equilibria have been determined by a combination of experiments (Job plots, UV-visible titrations, NMR studies) and also by computation (time-dependent density functional theory, TD-DFT). A linear free energy relationship for log K versus pK(a) for the pyridine and imidazole ligands was established. The predicted strong interactions of 1 with other aromatic amine ligands, such as amphetamine derivatives, were verified experimentally. This appears to be the first report of reversible 16/18-electron interconversions with associated thermochromic properties for a well-known family of complexes. PMID:23223796

  7. Luminescent Behavior of Ru(II) Polypyridyl Morpholine Complexes, Synthesis, Characterization, DNA, Protein Binding, Sensor Effect of Ions/Solvents and Docking Studies.

    PubMed

    Vuradi, Ravi Kumar; Putta, Venkat Reddy; Nancherla, Deepika; Sirasani, Satyanarayana

    2016-03-01

    New three ruthenium (II) polypyridyl complexes [Ru(phen)2mpip](2+)(1) {mpip = 2-(4-morpholinophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}, (phen = 1,10-Phenanthrolene), [Ru(bpy)2mpip](2+)(2) (bpy = 2,2'bipyridyl), [Ru(dmb)2mpip](2+)(3) (dmb = 4, 4-dimethyl 2, 2'-bipyridine) have been synthesized and characterized by spectral studies IR, UV-vis, (1)H, (13)C-NMR, mass and elemental analysis. The binding properties of these three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-Vis spectroscopy, different fluorescence methods and viscosity measurements, indicating that all the complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Sensor effect of ions/solvents and BSA (Bovine Serum Albumin) binding studies of these complexes were also studied. Docking studies also reveals that complexes will bind in between base pairs (Intercalate) of DNA and gives information about the binding strength. PMID:26708008

  8. Heteroleptic arene Ru(ii) dipyrrinato complexes: DNA, protein binding and anti-cancer activity against the ACHN cancer cell line.

    PubMed

    Gupta, Rakesh Kumar; Kumar, Amit; Paitandi, Rajendra Prasad; Singh, Roop Shikha; Mukhopadhyay, Sujay; Verma, Shiv Prakash; Das, Parimal; Pandey, Daya Shankar

    2016-04-19

    Four organometallic complexes [(η(6)-C6H6)RuCl(pmpzdpm)], ; [(η(6)-C6H6)RuCl(pypzdpm)], ; [(η(6)-C10H14)RuCl(pmpzdpm)], and [(η(6)-C10H14)RuCl(pypzdpm)], containing 5-(2-pyrimidyl-piperazine)phenyldipyrromethene (pmpzdpm) and 5-(2-pyridylpiperazine)phenyldipyrromethene (pypzdpm) have been designed and synthesized. The complexes have been fully characterized by elemental analyses and spectroscopic studies (ESI-MS, IR, (1)H, (13)C NMR, UV-vis). Their electrostatic/intercalative interaction with CT DNA has been investigated by UV-vis and competitive ethidium bromide displacement studies while their protein binding affinity toward bovine serum albumin (BSA) was realized by UV-vis, fluorescence, synchronous and three dimensional (3D) fluorescence studies. The interaction with DNA and protein has further been validated by in silico studies. Cellular uptake, in vitro cytotoxicity and flow cytometric analyses have been performed to determine the mode of cell death against the kidney cancer cell line ACHN. Cell cycle analysis suggested that the complexes cause cell cycle arrest in the subG1 phase and overall results indicated that the in vitro antitumor activity of lies in the order of > > > (IC50, 7.0 ; 8.0 ; 2.0 ; 4.0 μM, ). PMID:27009608

  9. Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts

    NASA Astrophysics Data System (ADS)

    Poater, Albert; Falivene, Laura; Cavallo, Luigi; Llobet, Antoni; Rodríguez, Montserrat; Romero, Isabel; Solà, Miquel

    2013-07-01

    The reactivity of a new family of complexes with general formula [RuIV(T)(R-D)(O)]2+ (T = trispyrazolylmethane (tpm); D = N-(1-hydroxy-3-methylbutan-(2S)-(-)-2-yl)-(4S)-(-)-4-isopropyl-4,5-dihydrooxazole-2-carbimidate, R = Bz (1); iPr (2)) has been analyzed. There is a significant difference in regioselectivity between the two catalysts in the epoxidation of 4-vinylcyclohexene; 1 leads to the regioselective oxidation at the ring alkene position, whereas 2 leads to the oxidation at the terminal position. Although computational calculations indicate small energy differences, both the geometry through steric maps and the electronic parameters of the reactants via conceptual DFT, or charges via NPA, explain the reactivity differences found for the catalysts depending on the substituents of the oxazoline ligands.

  10. Two star-shaped tetranuclear Ru(II) complexes containing uncoordinated imidazole groups: synthesis, characterization, photophysical and pH sensing properties.

    PubMed

    Cheng, Feixiang; Yu, Shiwen; He, Chixian; Ren, Mingli; Yin, Hongju

    2016-05-01

    Tetrapodal ligands H4 L(1) and H4 L(2) containing imidazole groups have been synthesized by the reaction of 1,10-phenanthroline-5,6-dione with 1,2,4,5-tetrakis[(4-formylphenoxy)methyl]benzene and 1,2,4,5-tetrakis[(3-formylphenoxy)methyl]benzene, respectively, in presence of NH4 OAc. Two star-shaped complexes [{Ru(bpy)2 }4 (μ4 -H4 L(1) )](PF6 )8 and [{Ru(bpy)2 }4 (μ4 -H4 L(2) )](PF6 )8 (bpy = 2,2'-bipyridine) have been prepared by refluxing Ru(bpy)2 Cl2 ·2H2 O and each ligand in ethylene glycol. The deprotonated complexes [{Ru(bpy)2 }4 (μ4 -L(1) )](PF6 )4 and [{Ru(bpy)2 }4 (μ4 -L(2) )](PF6 )4 have been obtained by the reaction of sodium methoxide with [{Ru(bpy)2 }4 (μ4 -H4 L(1) )](PF6 )8 and [{Ru(bpy)2 }4 (μ4 -H4 L(2) )](PF6 )8 , respectively, in methanol. The pH effects on the UV-vis light absorption and emission spectra of both complexes have been studied, and ground- and excited-state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as proton-induced off-on-off luminescent sensors through two successive deprotonation processes of imidazole groups, with a maximum on-off ratio of 8 in buffer solution at room temperature. Theoretical calculations for the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LOMO) orbitals of bridging ligand are also presented for plausible explanations of the fluorescence changes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26346924

  11. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA=1,3,5-triaza-7-phosphaadamantane): Chemical and biological properties.

    PubMed

    Battistin, F; Scaletti, F; Balducci, G; Pillozzi, S; Arcangeli, A; Messori, L; Alessio, E

    2016-07-01

    Four structurally related Ru(II)-halide-PTA complexes, of general formula trans- or cis-[Ru(PTA)4X2] (PTA=1,3,5-triaza-7-phosphaadamantane, X=Cl (1, 2), Br (3, 4), were prepared and characterized. Whereas compounds 1 and 2 are known, the corresponding bromo derivatives 3 and 4 are new. The Ru(III)-PTA compound trans-[RuCl4(PTAH)2]Cl (5, PTAH=PTA protonated at one N atom), structurally similar to the well-known Ru(III) anticancer drug candidates (Na)trans-[RuCl4(ind)2] (NKP-1339, ind=indazole) and (Him)trans-[RuCl4(dmso-S)(im)] (NAMI-A, im=imidazole), was also prepared and similarly investigated. Notably, the presence of PTA confers to all complexes an appreciable solubility in aqueous solutions at physiological pH. The chemical behavior of compounds 1-5 in water and in physiological buffer, their interactions with two model proteins - cytochrome c and ribonuclease A - as well as with a single strand oligonucleotide (5'-CGCGCG-3'), and their in vitro cytotoxicity against a human colon cancer cell line (HCT-116) and a myeloid leukemia (FLG 29.1) were investigated. Upon dissolution in the buffer, sequential halide replacement by water molecules was observed for complexes 1-4, with relatively slow kinetics, whereas the Ru(III) complex 5 is more inert. All tested compounds manifested moderate antiproliferative properties, the cis compounds 2 and 4 being slightly more active than the trans ones (1 and 3). Mass spectrometry experiments evidenced that all complexes exhibit a far higher reactivity towards the reference oligonucleotide than towards model proteins. The chemical and biological profiles of compounds 1-5 are compared to those of established ruthenium drug candidates in clinical development. PMID:26920229

  12. Synthesis and evaluation of new polynuclear organometallic Ru(II), Rh(III) and Ir(III) pyridyl ester complexes as in vitro antiparasitic and antitumor agents.

    PubMed

    Chellan, Prinessa; Land, Kirkwood M; Shokar, Ajit; Au, Aaron; An, Seung Hwan; Taylor, Dale; Smith, Peter J; Riedel, Tina; Dyson, Paul J; Chibale, Kelly; Smith, Gregory S

    2014-01-14

    New polynuclear organometallic Platinum Group Metal (PGM) complexes containing di- and tripyridyl ester ligands have been synthesised and characterised using analytical and spectroscopic techniques including (1)H, (13)C NMR and infrared spectroscopy. Reaction of these polypyridyl ester ligands with either [Ru(p-cymene)Cl2]2, [Rh(C5Me5)Cl2]2 or [Ir(C5Me5)Cl2]2 dimers yielded the corresponding di- or trinuclear organometallic complexes. The polyaromatic ester ligands act as monodentate donors to each metal centre and this coordination mode was confirmed upon elucidation of the molecular structures for two of the dinuclear complexes. The di- and trinuclear PGM complexes synthesized were evaluated for inhibitory effects on the human protozoal parasites Plasmodium falciparum strain NF54 (chloroquine sensitive), Trichomonas vaginalis strain G3 and the human ovarian cancer cell lines, A2780 (cisplatin-sensitive) and A2780cisR (cisplatin-resistant) cell lines. All of the complexes were observed to have moderate to high antiplasmodial activities and the compounds with the best activities were evaluated for their ability to inhibit formation of synthetic hemozoin in a cell free medium. The in vitro antitumor evaluation of these complexes revealed that the trinuclear pyridyl ester complexes demonstrated moderate activities against the two tumor cell lines and were also less toxic to model non-tumorous cells. PMID:24121555

  13. Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA.

    PubMed

    Colina-Vegas, Legna; Villarreal, Wilmer; Navarro, Maribel; de Oliveira, Clayton Rodrigues; Graminha, Angélica E; Maia, Pedro Ivo da S; Deflon, Victor M; Ferreira, Antonio G; Cominetti, Marcia Regina; Batista, Alzir A

    2015-12-01

    The synthesis and spectroscopic characterization of nine π-arene piano-stool ruthenium (II) complexes with aromatic dinitrogen chelating ligands or containing chloroquine (CQ), are described in this study: [Ru(η(6)-C10H14)(phen)Cl]PF6 (1), [Ru(η(6)-C10H14)(dphphen)Cl]PF6 (2), [Ru(η(6)-C10H14)(bipy)Cl]PF6 (3), [Ru(η(6)-C10H14)(dmebipy)Cl]PF6 (4) and [Ru(η(6)-C10H14)(bdutbipy)Cl]PF6 (5), [Ru(η(6)-C10H14)(phen)CQ](PF6)2 (6), [Ru(η(6)-C10H14)(dphphen)CQ](PF6)2 (7), [Ru(η(6)-C10H14)(bipy)CQ](PF6)2 (8), [Ru(η(6)-C10H14)(dmebipy)CQ](PF6)2 (9): [1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (dphphen), 2,2'-bipyridine (bipy), 5,5'-dimethyl-2,2'-bipyridine (dmebipy), and 4,4'-di-t-butyl-2,2'-bipyridine (dbutbipy)]. The solid state structures of five ruthenium complexes (1-5) were determined by X-ray crystallography. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple in each case. Their interactions with DNA and BSA, and activity against four cell lines (L929, A549, MDA-MB-231 and MCF-7) were evaluated. Compounds 2, 6 through 9, interact with DNA which was comparable to the one observed for free chloroquine. The results of fluorescence titration revealed that these complexes strongly quenched the intrinsic fluorescence of BSA following a static quenching procedure. Binding constants (Kb) and the number of binding sites (n~1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters ΔG at different temperatures were calculated and subsequently the values of ΔH and ΔS were also calculated, which revealed that hydrophobic and electrostatic interactions play a major role in the BSA-complex association. The MTT assay results indicated that complexes 2, 5 and 7 showed cytostatic effects at appreciably lower concentrations than those needed for cisplatin, chloroquine and doxorubicin. PMID:26277415

  14. Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO2.

    PubMed

    Zigler, David F; Morseth, Zachary A; Wang, Li; Ashford, Dennis L; Brennaman, M Kyle; Grumstrup, Erik M; Brigham, Erinn C; Gish, Melissa K; Dillon, Robert J; Alibabaei, Leila; Meyer, Gerald J; Meyer, Thomas J; Papanikolas, John M

    2016-04-01

    Interfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.1 M perchloric acid (HClO4(aq)) to be tuned from -0.69 to -1.03 V vs NHE. Each dye is excited by a 200 fs pulse of light in the visible region of the spectrum and probed with a time-delayed supercontiuum pulse (350-800 nm). Decay of the MLCT excited-state absorption at 376 nm is observed without loss of the ground-state bleach, which is a clear signature of electron injection and formation of the oxidized dye. The dye-dependent decays are biphasic with time constants in the 3-30 and 30-500 ps range. The slower injection rate constant for each dye is exponentially distributed relative to E(+/)*. The correlation between the exponentially diminishing density of TiO2 sub-band acceptor levels and injection rate is well described using Marcus-Gerischer theory, with the slower decay components being assigned to injection from the thermally equilibrated state and the faster components corresponding to injection from higher energy states within the (3)MLCT manifold. These results and detailed analyses incorporating molecular photophysics and semiconductor density of states measurements indicate that the multiexponential behavior that is often observed in interfacial injection studies is not due to sample heterogeneity. Rather, this work shows that the kinetic heterogeneity results from competition between excited-state relaxation and injection as the photoexcited dye relaxes through the (3)MLCT manifold to the thermally equilibrated state, underscoring the potential for a simple kinetic model to reproduce the complex kinetic behavior often observed at the interface of mesoporous metal oxide materials. PMID:26974040

  15. Intriguing I2 Reduction in the Iodide for Chloride Ligand Substitution at a Ru(II) Complex: Role of Mixed Trihalides in the Redox Mechanism.

    PubMed

    Mosquera, Marta E G; Gomez-Sal, Pilar; Diaz, Isabel; Aguirre, Lina M; Ienco, A; Manca, Gabriele; Mealli, Carlo

    2016-01-01

    The compound [Ru(CN(t)Bu)4(Cl)2], 1, reacts with I2, yielding the halogen-bonded (XB) 1D species {[Ru(CN(t)Bu)4(I)2]·I2}n, (2·I2)n, whose building block contains I(-) ligands in place of Cl(-) ligands, even though no suitable redox agent is present in solution. Some isolated solid-state intermediates, such as {[Ru(CN(t)Bu)4(Cl)2]·2I2}n, (1·2I2)n, and {[Ru(CN(t)Bu)4(Cl)(I)]·3I2}n, (3·3I2)n, indicate the stepwise substitution of the two trans-halide ligands in 1, showing that end-on-coordinated trihalides play a key role in the process. In particular, the formation of ClI2(-) triggers electron transfer, possibly followed by an inverted coordination of the triatomic species through the external iodine atom. This allows I-Cl separation, as corroborated by Raman spectra. The process through XB intermediates corresponds to reduction of one iodine atom combined with the oxidation of one coordinated chloride ligand to give the corresponding zerovalent atom of I-Cl. This redox process, explored by density functional theory calculations (B97D/6-31+G(d,p)/SDD (for I and Ru atoms)), is apparently counterintuitive with respect to the known behavior of the corresponding free halogen systems, which favor iodide oxidation by Cl2. On the other hand, similar energy barriers are found for the metal-assisted process and require a supply of energy to be passed. In this respect, the control of the temperature is fundamental in combination with the favorable crystallizations of the various solid-state products. As an important conclusion, trihalogens, as XB adducts, are not static in nature but are able to undergo dynamic inner electron transfers consistently with implicit redox chemistry. PMID:26675208

  16. Differences of pH-Dependent Mechanisms on Generation of Hydride Donors using Ru(II) Complexes Containing Geometric Isomers of NAD+ Model Ligands: NMR and Radiolysis Studies in Aqueous Solution

    SciTech Connect

    Fujita, E.; Cohen, B.W.; Polyansky, D.E.; Zong, R.; Zhou, H.; Ouk, T.; Cabelli, D.; Thummel, R.P.

    2010-09-06

    The pH-dependent mechanism of the reduction of the nicotinamide adenine dinucleotide (NADH) model complex [Ru(bpy)(2)(5)](2+) (5 = 3-(pyrid-2{prime}-yl)-4-azaacridine) was compared to the mechanism of the previously studied geometric isomer [Ru(bpy)(2)(pbn)](2+) (pbn = 2-(pyrid-2{prime}-yl)-1-azaacridine, previously referred to as 2-(pyrid-2{prime}-yl)-benzo[b]-1,5-naphthyridine) in aqueous media. The exposure of [Ru(bpy)(2)(5)](2+) to CO(2)(*-) leads to the formation of the one-electron reduced species (k = 4.4 x 10(9) M(-1) s(-1)). At pH < 11.2, the one-electron reduced species can be protonated, k = 2.6 x 10(4) s(-1) in D(2)O. Formation of a C-C bonded dimer is observed across the pH range of 5-13 (k = 4.5 x 10(8) M(-1) s(-1)). At pH < 11, two protonated radical species react to form a stable C-C bonded dimer. At pH > 11, dimerization of two one-electron reduced species is followed by disproportionation to one equivalent starting complex [Ru(bpy)(2)(5)](2+) and one equivalent [Ru(bpy)(2)(5HH)](2+). The structural difference between [Ru(bpy)(2)(pbn)](2+) and [Ru(bpy)(2)(5)](2+) dictates the mechanism and product formation in aqueous medium. The exchange of the nitrogen and carbon atoms on the azaacridine ligands alters the accessibility of the dimerization reactive site, thereby changing the mechanism and the product formation for the reduction of the [Ru(bpy)(2)(5)](2+) compound.

  17. Synthesis, characterization, DNA-binding and cytotoxic properties of Ru(II) complexes: [Ru(MeIm)4L]2+ (MeIm = 1-methylimidazole, L = phen, ip and pip)

    NASA Astrophysics Data System (ADS)

    Zeng, Leli; Xiao, Yue; Liu, Jing; Tan, Lifeng

    2012-07-01

    Three new ruthenium(II) complexes, [Ru(MeIm)4phen]2+ (1), [Ru(MeIm)4ip]2+ (2) and [Ru(MeIm)4pip]2+ (3), have been synthesized and characterized. The binding properties of the three complexes towards calf-thymus DNA were investigated by different spectrophotometric methods and viscosity measurements. In addition, the cytotoxicity of these complexes has been evaluated by MTT method and Giemsa staining experiment. The main results reveal that the plane area and hydrophobicity of intercalative ligands have a significant effect on the DNA-binding behaviors and the IC50 value of complex 2 against MCF-7 cells is close to that of cis-Pt(NH3)2Cl2.

  18. Unsymmetric Ru(II) complexes with N-heterocyclic carbene and/or terpyridine ligands: synthesis, characterization, ground- and excited-state electronic structures and their application for DSSC sensitizers.

    PubMed

    Park, Hee-Jun; Kim, Kyeong Ha; Choi, Soo Young; Kim, Hyeong-Mook; Lee, Wan In; Kang, Youn K; Chung, Young Keun

    2010-08-16

    Three ruthenium(II) complexes with N-heterocyclic carbene (NHC) or NHC/2,2':6',2''-terpyridine (tpy) hybrid ligands, bis[2,6-bis(3-methylimidazol-3-ium-1-yl)pyridine-4-carboxylic acid]ruthenium(II) (BCN), [2,6-bis(3-methylimidazolium-1-yl)pyridine-4-carboxylic acid](2,2';6'2''-terpyridine)ruthenium(II) (TCN), and [2,6-bis(3-methylimidazol-3-ium-1-yl)pyridine](2,2';6'2''-terpyridine-4'-carboxylic acid)ruthenium(II) (CTN), have been synthesized and characterized by (1)H and (13)C NMR, high-resolution mass spectrometry, and elemental analysis. The molecular geometry of the TCN complex was determined by X-ray crystallography. Electronic absorption spectra of these complexes exhibit typical pi-pi* and metal-to-ligand charge transfer bands in the UV and visible regions, respectively. The lowest energy absorption maxima were 430, 448, and 463 nm with molar extinction coefficients of 28,100, 15,400, and 7400 M(-1)cm(-1) for BCN, TCN, and CTN, respectively. Voltammetric data suggest that energy levels of the highest occupied molecular orbitals (HOMOs) of the three complexes reside within a 10 meV window despite the varying degrees of electronic effect of the constituent ligands. The electronic structures of these complexes calculated via density functional theory (DFT) indicate that the three HOMOs and the three lowest unoccupied MOs (LUMOs) are metal and ligand centered in character, for the former and the latter, respectively. Time-dependent DFT (TD-DFT) calculation predicts that the lowest energy absorption bands of each complex are comprised of multiple one-electron excitations. TD-DFT calculation also suggests that the background of spectral red shift stems most likely from the stabilization of unoccupied MOs rather than the destabilization of occupied MOs. The overall efficiencies of the dye-sensitized solar cell systems of these complexes were found to be 0.48, 0.14, and 0.10% for BCN, TCN, and CTN, respectively, while that of a commercial bis(4,4'-dicarboxylato-2,2'-bipyridine)-bis(isothiocyanoto)ruthenium(II) (N719) system was 6.34%. PMID:20690744

  19. Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents.

    PubMed

    Palepu, Narasinga Rao; Nongbri, S L; Premkumar, J Richard; Verma, Akalesh Kumar; Bhattacharjee, Kaushik; Joshi, S R; Forbes, Scott; Mozharivskyj, Yurij; Thounaojam, Romita; Aguan, K; Kollipara, Mohan Rao

    2015-06-01

    Reaction of salicylaldehyde-2-picolinylhydrazone (HL) Schiff base ligand with precursor compounds [{(p-cymene)RuCl2}2] 1, [{(C6H6)RuCl2}2] 2, [{Cp*RhCl2}2] 3 and [{Cp*IrCl2}2] 4 yielded the corresponding neutral mononuclear compounds 5-8, respectively. The in vitro antitumor evaluation of the compounds 1-8 against Dalton's ascites lymphoma (DL) cells by fluorescence-based apoptosis study and by their half-maximal inhibitory concentration (IC50) values revealed the high antitumor activity of compounds 3, 4, 5 and 6. Compounds 1-8 render comparatively lower apoptotic effect than that of cisplatin on model non-tumor cells, i.e., peripheral blood mononuclear cells (PBMC). The antibacterial evaluation of compounds 5-8 by agar well-diffusion method revealed that compound 6 is significantly effective against all the eight bacterial species considered with zone of inhibition up to 35 mm. Fluorescence imaging study of compounds 5-8 with plasmid circular DNA (pcDNA) and HeLa RNA demonstrated their fluorescence imaging property upon binding with nucleic acids. The docking study with some key enzymes associated with the propagation of cancer such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II revealed strong interactions between proteins and compounds 5-8. Conformational analysis by density functional theory (DFT) study has corroborated our experimental observation of the N, N binding mode of ligand. Compounds 5-8 exhibited a HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap 2.99-3.04 eV. Half-sandwich ruthenium, rhodium and iridium compounds were obtained by treatment of metal precursors with salicylaldehyde-2-picolinylhydrazone (HL) by in situ metal-mediated deprotonation of the ligand. Compounds under investigation have shown potential antitumor, antibacterial and fluorescence imaging properties. Arene ruthenium compounds exhibited higher activity compared to that of Cp*Rh/Cp*Ir in inhibiting the cancer cells growth and pathogenic bacteria. At a concentration 100 µg/mL, the apoptosis activity of arene ruthenium compounds, 5 and 6 (~30 %) is double to that of Cp*Rh/Cp*Ir compounds, 7 and 8 (~12 %). Among the four new compounds 5-8, the benzene ruthenium compound, i.e., compound 6 is significantly effective against the pathogenic bacteria under investigation. PMID:25712889

  20. DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene.

    PubMed

    Gupta, Rakesh Kumar; Pandey, Rampal; Sharma, Gunjan; Prasad, Ritika; Koch, Biplob; Srikrishna, Saripella; Li, Pei-Zhou; Xu, Qiang; Pandey, Daya Shankar

    2013-04-01

    The synthesis of four novel heteroleptic dipyrrinato complexes [(η(6)-arene)RuCl(2-pcdpm)] (η(6)-arene = C6H6, 1; C10H14, 2) and [(η(5)-C5Me5)MCl(2-pcdpm)] (M = Rh, 3; Ir, 4) containing a new chelating ligand 4-(2-methoxypyridyl)-phenyldipyrromethene (2-pcdpm) have been described. The complexes 1-4 have been fully characterized by various physicochemical techniques, namely, elemental analyses, spectral (ESI-MS, IR, (1)H, (13)C NMR, UV/vis) and electrochemical studies (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). Structures of 3 and 4 have been determined crystallographically. In vitro antiproliferative and cytotoxic activity of these complexes has been evaluated by trypan blue exclusion assay, cell morphology, apoptosis, acridine orange/ethidium bromide (AO/EtBr) fluorescence staining, and DNA fragmentation assay in Dalton lymphoma (DL) cell lines. Interaction of 1-4 with calf thymus DNA (CT DNA) has also been supported by absorption titration and electrochemical studies. Our results suggest that in vitro antitumor activity of 1-4 lies in the order 2 > 1 > 4 > 3. PMID:23477351

  1. Synthesis of Amphiphilic Ru(II) Heteroleptic Complexes Based on Benzo[1,2-b:4,5-b']dithiophene: Relevance of the Half-Sandwich Complex Intermediate and Solvent Compatibility.

    PubMed

    Urbani, Maxence; Medel, María; Kumar, Sangeeta Amit; Ince, Mine; Bhaskarwar, Ashok N; González-Rodríguez, David; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Torres, Tomás

    2015-11-01

    The detailed synthesis and characterization of four ruthenium(II) complexes [RuLL'(NCS)2 ] is reported, in which L represents a 2,2'-bipyridine ligand functionalized at the 4,4' positions with benzo[1,2-b:4,5-b']dithiophene derivatives (BDT) and L' is 2,2'-bipyridine-4,4'-dicarboxylic acid unit (dcbpy) (NCS=isothiocyanate). The reaction conditions were adapted and optimized for the preparation of these amphiphilic complexes with a strong lipophilic character. The photovoltaic performances of these complexes were tested in TiO2 dye-sensitized solar cell (DSSC) achieving efficiencies in the range of 3-4.5 % under simulated one sun illumination (AM1.5G). PMID:26359935

  2. Mechanism and Selectivity of Ru(II) - and Rh(III) -Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C-H Activation/Dearomatization Strategy.

    PubMed

    Zhang, Mei; Huang, Genping

    2016-06-27

    The ruthenium- and rhodium-catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O-H deprotonation/C(sp(2) )-H bond cleavage through a concerted metalation-deprotonation mechanism/migratory insertion of the alkyne into the M-C bond to deliver the eight-membered metallacycle. However, the dearomatization through the originally proposed enol-keto tautomerization/C-C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight-membered metallacycle through rotation of the C-C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C-C coupling between the carbene carbon atom and the carbon atom of the 2-naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium-catalyzed oxidative annulation of 2-vinylphenols with alkynes. The calculations show that compared with the case of 2-alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition. PMID:27225930

  3. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step.

    PubMed

    Ogo, Seiji; Kabe, Ryota; Hayashi, Hideki; Harada, Ryosuke; Fukuzumi, Shunichi

    2006-10-21

    Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies. PMID:17028673

  4. Study of intermediates from transition metal excited-state electron- transfer reactions. Progress report, January 1, 1992--March 31, 1993

    SciTech Connect

    Hoffman, M.Z.

    1993-03-31

    Progress on 6 projects is reported: excited state absorption spectrum of Ru(bpy){sub 3}{sup 2+}, solvent cage model for electron transfer quenching, reductive quenching of {sup *}Cr(III) complexes, solution medium effects in oxidative quenching of {sup *}Ru(II) complexes, photosensitized oxidation of phenol in aqueous solution, and quenching of Ru(II) complexes by oxygen.

  5. Study of intermediates from transition metal excited-state electron- transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1993-03-31

    Progress on 6 projects is reported: excited state absorption spectrum of Ru(bpy)[sub 3][sup 2+], solvent cage model for electron transfer quenching, reductive quenching of [sup *]Cr(III) complexes, solution medium effects in oxidative quenching of [sup *]Ru(II) complexes, photosensitized oxidation of phenol in aqueous solution, and quenching of Ru(II) complexes by oxygen.

  6. Dichlorido(η6-p-cymene)(eth­oxy­diphenyl­phosphane)ruthenium(II)

    PubMed Central

    Knapp, Spring M. M.; Zakharov, Lev N.; Tyler, David R.

    2012-01-01

    The title compound, [RuCl2(C10H14)(C14H15OP)], is an RuII complex in which an η6-p-cymene ligand, two chloride anions and the P atom of an ethoxydiphenylphosphane ligand form a piano-stool coordination environment about the central RuII atom. PMID:23468692

  7. An ethylene-glycol decorated ruthenium(ii) complex for two-photon photodynamic therapy.

    PubMed

    Boca, Sanda C; Four, Mickaël; Bonne, Adeline; van der Sanden, Boudewijn; Astilean, Simion; Baldeck, Patrice L; Lemercier, Gilles

    2009-08-14

    A novel water-soluble Ru(ii) complex has been prepared, which represents a promising new class of selective two-photon sensitizers for use in photodynamic therapy within a confined space. PMID:19617993

  8. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  9. Photochemistry of RuII 4,4′-Bi-1,2,3-triazolyl (btz) Complexes: Crystallographic Characterization of the Photoreactive Ligand-Loss Intermediate trans-[Ru(bpy)(κ2-btz)(κ1-btz)(NCMe)]2+

    PubMed Central

    Welby, Christine E; Armitage, Georgina K; Bartley, Harry; Wilkinson, Aaron; Sinopoli, Alessandro; Uppal, Baljinder S; Rice, Craig R; Elliott, Paul I P

    2014-01-01

    We report the unprecedented observation and unequivocal crystallographic characterization of the meta-stable ligand loss intermediate solvento complex trans-[Ru(bpy)(κ2-btz)(κ1-btz)(NCMe)]2+ (1 a) that contains a monodentate chelate ligand. This and analogous complexes can be observed during the photolysis reactions of a family of complexes of the form [Ru()(btz)2]2+ (1 a–d: btz=1,1′-dibenzyl-4,4′-bi-1,2,3-triazolyl; =a) 2,2′-bipyridyl (bpy), b) 4,4′-dimethyl-2,2′-bipyridyl (dmbpy), c) 4,4′-dimethoxy-2,2′-bipyridyl (dmeobpy), d) 1,10-phenanthroline (phen)). In acetonitrile solutions, 1 a–d eventually convert to the bis-solvento complexes trans-[Ru()(btz)(NCMe)2]2+ (3 a–d) along with one equivalent of free btz, in a process in which the remaining coordinated bidentate ligands undergo a new rearrangement such that they become coplanar. X-ray crystal structure of 3 a and 3 d confirmed the co-planar arrangement of the and btz ligands and the trans coordination of two solvent molecules. These conversions proceed via the observed intermediate complexes 2 a–d, which are formed quantitatively from 1 a–d in a matter of minutes and to which they slowly revert back on being left to stand in the dark over several days. The remarkably long lifetime of the intermediate complexes (>12 h at 40 °C) allowed the isolation of 2 a in the solid state, and the complex to be crystallographically characterized. Similarly to the structures adopted by complexes 3 a and d, the bpy and κ2-btz ligands in 2 a coordinate in a square-planar fashion with the second monodentate btz ligand coordinated trans to an acetonitrile ligand. PMID:24889966

  10. Highly selective acetate optical sensing of a ruthenium(II) complex carrying imidazole and indole groups.

    PubMed

    Yang, Huai-Xia; Liu, Yan-Ju; Zhao, Lin; Wang, Ke-Zhi

    2010-07-01

    The effects of addition of F(-), Cl(-), Br(-), I(-), NO(3)(-), H(2)PO(4)(-), and OAc(-) on the UV-vis and emission spectra of Ru(II) complex [Ru(bpy)(2)(H(2)iip)](ClO(4))(2) {bpy=2,2'-bipyridyl, H(2)iip=2-indole-3-yl-imidazole[4,5-f][1,10]-phenanthroline} in dimethyl sulfone were studied. The Ru(II) complex was evidenced to be a highly selective optical sensor for OAc(-). Addition of OAc(-) elicited a distinct change in color from yellow to light orange which can be detected by naked-eye, and an almost vanished emission of the Ru(II) complex at a much lower concentration of OAc(-) than those of the other anions. PMID:20378395

  11. Oligomer and mixed-metal compounds, potential multielectron transfer catalysts. Progress report, January 1, 1990--January 1, 1993

    SciTech Connect

    Rillema, D.P.

    1993-08-01

    Physical, photophysical, and photochemical properties of Ru(II), Re(I), Pt(II), and Cu(II) monometallic complexes and of Ru(II)-Ru(II), Ru(II)-Co(III), Ru(II)-Re(I) bimetallic complexes were investigated. In an application, Pt and Au working electrodes were modified with the hydrogel kappa-carrageenan (anionic polysaccharide from seaweed), which was cured on the electrode surface with Ru(II) trisbipyridine and methyl viologen. Max photocurrent obtained was 12 {mu}A.cm{sup 2}.

  12. Easy To Synthesize, Robust Organo‐osmium Asymmetric Transfer Hydrogenation Catalysts

    PubMed Central

    Coverdale, James P. C.; Sanchez‐Cano, Carlos; Clarkson, Guy J.; Soni, Rina

    2015-01-01

    Abstract Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones. PMID:25853228

  13. Self-assembly of highly luminescent heteronuclear coordination cages.

    PubMed

    Schmidt, Andrea; Hollering, Manuela; Han, Jiaying; Casini, Angela; Kühn, Fritz E

    2016-08-01

    Exo-functionalized Pd2L4 cage compounds with attached Ru(ii) pyridine complexes were prepared via coordination-driven self-assembly. Unlike most of the previously reported palladium(ii) cages, one of these metallocages exhibits an exceptionally high quantum yield of 66%. The presented approach is promising to obtain luminescent coordination complexes for various applications. PMID:27436541

  14. Versatile ruthenium complexes based on 2,2'-bipyridine modified peptoids.

    PubMed

    Baskin, Maria; Panz, Larisa; Maayan, Galia

    2016-08-16

    Helical peptoids bearing 2,2'-bipyridine form ruthenium complexes via intermolecular binding to linear peptoid strands or intramolecular binding to a cyclic scaffold. Ru(ii) binding promoted changes in the conformational order of the peptoids, and chiral induction from the peptoids to their metal center was observed. PMID:27349289

  15. Neutral and anionic tetrazole-based ligands in designing novel ruthenium dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kaneko, Ryuji; Zhang, Yaohong; Shinozaki, Yoshinao; Sugawa, Kosuke; Islam, Ashraful; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Shen, Qing; Otsuki, Joe

    2016-03-01

    Two novel thiocyanate-free Ru(II) complexes have been synthesized, characterized and evaluated as dyes for dye-sensitized solar cells. Both complexes have two tridentate ligands: one is the tricarboxyterpyridine as an anchoring ligand and the other is one of the two bis(tetrazolyl)pyridine derivatives. One of the bis(tetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a doubly deprotonated tetrazolate anion with a formal charge of -2 to form a neutral complex, which is coded as BTP dye, while the other bis(methyltetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a neutral ligand forming a divalent cationic complex, coded as BMTP dye. Unexpectedly, the oxidation potentials for these two compounds are similar, implying similar electron-donating effects of the anionic tetrazolate ligand and the neutral methyltetrazole ligand to the Ru(II) ion. Despite similar HOMO/LUMO levels, BTP dye performs much better, recording 6.10% efficiency, than BMTP dye for DSSCs. Electrochemical impedance spectroscopy as well as nanosecond transient absorption spectroscopy indicates that the differences in the electron injection and electron recombination processes, which may be the consequences of the difference in the localization of LUMO as suggested by DFT calculations, are the main causes for the differences in performance.

  16. Controlling the Direction of the Molecular Axis of Rod-Shaped Binuclear Ruthenium Complexes on Single-Walled Carbon Nanotubes.

    PubMed

    Ozawa, Hiroaki; Kosaka, Kazuma; Kita, Tomomi; Yoshikawa, Kai; Haga, Masa-aki

    2016-05-01

    We report the synthesis of a mixed-valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed-valence ruthenium complexes and SWNTs were prepared by noncovalent π-π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT-IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox ) = 0.86 and 1.08 V versus Fc(+) /Fc, which were assigned to the Ru(II) -Ru(II) /Ru(II) -Ru(III) and the Ru(II) -Ru(III) /Ru(III) -Ru(III) oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed-valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface. PMID:27010865

  17. Crystal structure of (μ-4-hy­droxy­benzene­thiol­ato-κ2 S:S)bis­(μ-phenyl­methane­thiol­ato-κ2 S:S)bis­[(η6-1-isopropyl-4-methyl­benzene)­ruthenium(II)] tetra­fluorido­borate

    PubMed Central

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-01-01

    The crystal structure of the dinuclear arene ruthenium title complex, [Ru2(C6H5OS)(C7H7S)2(C10H14)2]BF4, shows the two RuII atoms to be bridged by two benzyl­thio­pheno­late units and one 4-hy­droxy­thio­pheno­late unit, with the remaining three coordination sites of each RuII atom being occupied by p-cymene ligands, completing the typical piano-stool coordination geometry. The BF4 − counter-anion is surrounded by four cationic dinuclear complexes, showing an O—H⋯F hydrogen bond and several weak C—H⋯F inter­actions. This is the first example of an X-ray analysis of a mixed dinuclear tri­thiol­ate arene ruthenium(II) complex. PMID:26594399

  18. DNA-binding, photocleavage studies of ruthenium(II) complexes with 2-(2-quinolinyl) imidazo[4,5-f][1,10]phenanthroline

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Chen, Zhen-gan; Li, Lin; Chen, Yuan-Dao; Lu, Ji-Lin; Zhang, Da-Shun

    2013-02-01

    Two new ruthenium complexes with [Ru(L)2(qip)]2+ (L = bpy (2,2'- bipyridine), phen (1,10-phenanthroline); qip = 2-(2-quinolinyl)imidazo[4,5-f][1,10]phenanthroline), have been synthesized and characterized by elemental analysis, ES-MS, 1H NMR. The binding properties of two complexes towards CT-DNA were investigated by various optical methods and viscosity measurements. The experiment results suggested that both Ru(II) complexes can intercalate into DNA base pairs. Strong quenching in emission intensity of two Ru(II) complexes were observed upon addition of Ag+ in the absence and presence of CT-DNA. Furthermore, the two complexes can promote cleavage of pBR322 DNA under irradiation at 365 nm, and complex 2 exhibits a stronger DNA-photocleavage efficiency than complex 1. The mechanism of DNA cleavage suggests that singlet oxygen (1O2) is likely to be the cleaving agent.

  19. Ru(bpy)[sub 2][sup 2+] and Os(bpy)[sub 2][sup 2+] complexes of large polyaza cavity-shaped ligands

    SciTech Connect

    Thummel, R.P.; Williamson, D.; Hery, C. )

    1993-04-28

    The Friedlaender condensation of cyclic 1,2-diketones with 2-amino-5,6-dihydro-1,10-phenanthroline-3-carboxaldehyde provides a series of hexaaza cavity-shaped molecules 2a-c. Reaction with Ru(bpy)[sub 2]Cl[sub 2] (where bpy = 2,2[prime]-bipyridine) incorporates Ru(II) into a distal bidentate site. For ligands which are significantly nonplanar, a second Ru(II) or Os(II) nucleus can similarly be incorporated into the remaining distal site. The use of bpy-d[sub 8] as an auxilliary ligand simplifies the NMR spectra of the complexes and permits a detailed conformational analysis which is reinforced by an X-ray determination of the dinuclear complex [(bpy)[sub 2]Ru(2c)Ru(bpy)[sub 2

  20. Generation of long-lived methylviologen radical cation in the triplet-state mediated electron transfer in a β-cyclodextrin based supramolecular triad

    NASA Astrophysics Data System (ADS)

    Rakhi, Arikkottira M.; Gopidas, Karical R.

    2015-01-01

    A novel tris(bipyridyl)ruthenium-pyrene-methylviologen supramolecular triad was assembled through inclusion complexation of adamantane-linked Ru(II)-Py dyad in MV2+-linked β-cyclodextrin. Excitation of the Ru(II) chromophore populated its 3MLCT which upon energy transfer gave 3Py, which donates an electron to MV2+ to give Ru(II)-Pyrad +-MVrad +. A second electron transfer then occurs from Ru(II) to Pyrad + to give the supramolecular Ru(III)-Py-MVrad + charge separated state. Laser flash photolysis experiments confirmed formation of MVrad + which exhibited 100 μs lifetime. Steady state irradiation of the self-assembled system in the presence of sacrificial donor also led to formation of long-lived MVrad +.

  1. Hemicarceplexes modify the solubility and reduction potentials of C60.

    PubMed

    Wong, Tzu-Huan; Chang, Jia-Cheng; Lai, Chien-Chen; Liu, Yi-Hung; Peng, Shie-Ming; Chiu, Sheng-Hsien

    2014-04-18

    A highly stable C60-incarcerated hemicarceplex, which retains its molecular integrity after heating at 523 K in air for at least 3 h, significantly increases the solubility of C60 in nonpolar solvents and increases the reduction potentials of the entrapped fullerene. Modification with [(η(5)-C5Me5)Ru(II)](+) dramatically increases the solubility of this hemicarceplex in polar, protic solvents (e.g., MeOH). PMID:24665822

  2. Chemical Interference with Iron Transport Systems to Suppress Bacterial Growth of Streptococcus pneumoniae

    PubMed Central

    Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics. PMID:25170896

  3. A functional ruthenium(ii) complex for imaging biothiols in living bodies.

    PubMed

    Ye, Zhiqiang; Gao, Quankun; An, Xin; Song, Bo; Yuan, Jingli

    2015-05-01

    A unique ruthenium(ii) complex, [Ru(bpy)2(DNS-bpy)](PF6)2 [bpy: 2,2'-bipyridine, DNS-bpy: 4-(2,4-dinitrophenylthio)-2,2'-bipyridine], that can act as a probe for the recognition and luminescence sensing of biothiols has been designed and synthesized. Due to the presence of effective photo-induced electron transfer (PET) from the potent electron donor (Ru-bpy centre) to the strong electron acceptor (2,4-dinitrophenyl moiety), the Ru(ii) complex itself is weakly luminescent. Reaction of [Ru(bpy)2(DNS-bpy)](PF6)2 with biothiols leads to the replacement of the 2,4-dinitrophenyl moiety by biothiols, which results in the loss of PET within the complex, to allow recovery of the MLCT-based emission of the Ru(ii) complex with an 80-fold increase in luminescence intensity. Taking advantage of the high specificity and sensitivity, and the excellent photophysical properties of Ru(ii) complexes, [Ru(bpy)2(DNS-bpy)](PF6)2 was successfully applied to the luminescence imaging of biothiols in living Daphnia magna. The results demonstrated the practical applicability of [Ru(bpy)2(DNS-bpy)](PF6)2 as a luminescent probe for the monitoring of biothiols in living bodies. PMID:25851565

  4. Ruthenium(ii) complexes of hemilabile pincer ligands: synthesis and catalysing the transfer hydrogenation of ketones.

    PubMed

    Nair, Ashwin G; McBurney, Roy T; Walker, D Barney; Page, Michael J; Gatus, Mark R D; Bhadbhade, Mohan; Messerle, Barbara A

    2016-09-28

    A series of Ru(ii) complexes were synthesised based on a hemilabile pyrazole-N-heterocyclic carbene (NHC)-pyrazole (C3N2H3)CH2(C3N2H2)CH2(C3N2H3) NCN pincer ligand 1. All complexes were fully characterised using single crystal X-ray crystallography and multinuclear NMR spectroscopy. Hemilabile ligands provide flexible coordination modes for the coordinating metal ion which can play a significant effect on the efficiency and mechanism of catalysis by the resulting complex. Here we observed and isolated mono-, bi- and tri-dentate complexes of both Ag(i) and Ru(ii) with 1 in which the resultant coordination mode was controlled by careful reagent selection. The catalytic activity of the Ru(ii) complexes for the transfer hydrogenation reaction of acetophenone with isopropanol was investigated. The unexpected formation of the pentaborate anion, [B5O6(OH)4](-), during the synthesis of complex 6a was found to have an unexpected positive effect by enhancing the catalysis rate. This work provides insights into the roles that different coordination modes, counterions and ligand hemilability play on the catalytic activity in transfer hydrogenations. PMID:27539740

  5. Energy conversion based on molecular excited states: Redox splitting in soluble polymers. Final report

    SciTech Connect

    Meyer, T.J.

    1995-12-31

    A general method was developed for preparing complexes of Ru(II) with three different bidentate ligands; it is being extended to monodentate ligands for more synthetic versatility. This method was used to prepare a series of complexes with pre-designed absorption properties, with the goal of ``black absorbers`` for use as antenna chromophores in a light-to-chemical energy conversion array. The energy gap law for nonradiative decay was studied for preparing near-IR luminophores with long excited state lifetimes. The problem of destructive dd excited states in Ru(II) polypyridyl complexes was focused on, with success in preparing an extremely photo-inert complex with monodentate pyridine ligands. Time-resolved resonance Raman and infrared spectroscopy were used to study subtle excited state properties of complexes of Ru(II), Os(II), and Re(I). Success was achieved in controlled immobilization of d{sup 6} chromophores and quenchers on styrenic polymers. Having perfected our synthetic technique, we have begun to optimize the ground and excited state properties such as chromophore density, dipole orientation, and lifetime.

  6. Energy transfer and formation of long-lived (3)MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands.

    PubMed

    Wächtler, Maria; Kübel, Joachim; Barthelmes, Kevin; Winter, Andreas; Schmiedel, Alexander; Pascher, Torbjörn; Lambert, Christoph; Schubert, Ulrich S; Dietzek, Benjamin

    2016-01-28

    Multimetallic complexes with extended and highly conjugated bis-2,2':6',2''-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the (3)MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the (3)MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) (3)MLCT state. While partial energy (>80%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation. PMID:26387529

  7. Photocatalitic Properties of Tio2 and ZnO Nanopowders / Tio2 un Zno Nanopulveru Fotokatalitiskās Īpašības

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Rikveilis, J.; Grabis, J.; Jankovica, Dz.; Monty, C.; Millers, D.; Smits, K.

    2013-08-01

    Photocatalytic activity of TiO2 and ZnO nanopowders is studied depending on the morphology, grain sizes and method of synthesizing. Photocatalysis of the prepared powders was evaluated by degradation of the methylene blue aqueous solution. Absorbance spectra (190-100 nm) were measured during exposure of the solution to UV light. The relationships between the photocatalytic activity and the particle size, crystal polymorph phases and grain morphology were analyzed. The photocatalytic activity of prepared TiO2 nanopowders has been found to depend of the anatase-to-rutile phase ratio. Comparison is given for the photocatalytic activity of ZnO nanopowders prepared by sol-gel and solar physical vapour deposition (SPVD) methods Darbā pētīta fotokatalīzes efektivitāte ar dažādām metodēm sintezētiem TiO2 and ZnO nanopulveriem, kuriem ir atšķirīga morfoloģija un grauda izmērs. Foto katalīzes process raksturots ar metilenzilā sagraušanu ūdens šķīdumā, to apstarojot ar UV gaismu. Analizēta fotokatalīzes efektivitātes atkarība no grauda izmēra, nanokristālu graudu morfoloģijas, TiO2 nanopulveru anatasa-rutīla fāžu svara attiecībām. Parādīts, ka fotokatalītiskā efektivitāte ir atšķirīga TiO2 nanopulveriem sintezētiem ar dažādām metodēm: sola-gēla un tvaicēšanu-kondensēšanu saules reaktorā. Salīdzināta fotokatalīzes efektivitāte ZnO un TiO2 nanopulveriem un secināts, ka ZnO nanopulveri ar tetrapodu morfoloģiju ir labs fotokatalizators

  8. Synthesis of Core/Shell CuO-Zno Nanoparticles and Their Second-Harmonic Generation Performance / Kodols/Čaula Cuo-Zno Nanodaļiņu Sintēze Un To Spēja Ģenerēt Otrās Harmonikas Signālu

    NASA Astrophysics Data System (ADS)

    Tamanis, E.; Sledevskis, E.; Ogurcovs, A.; Gerbreders, V.; Paskevics, V.

    2015-10-01

    The present paper presents the method for obtaining core/shell CuO-ZnO nanoparticles and nanocoatings by using a commercially available vacuum coating system. Initially generated Cu-Zn core/shell nanoparticles have been oxidised with a highly reactive atomic oxygen beam. Second-harmonic generation has been observed in the obtained samples. The dependence of second- harmonic intensity on the wavelength of the exciting radiation is shown in the paper. Darbā tiek demonstrēta metode kodols/čaula CuO-ZnO nanodaļiņu un nanopārklājumu sintēzei, izmantojot komerciāli pieejamu vakuuma pārklājumu sistēmu. Sākotnēji sintezētās Cu-Zn kodolš/čaula nanodaļiņas tika oksidētas ar aktīva skābekļa plūsmu. Iegūtajos paraugos tika novērota otrās harmonikas signāla ģenerēšanās. Ir parādīta otrās harmonikas signāla intensitātes atkarība no ierosinošā starojuma viļņa garuma.

  9. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution.

    PubMed

    Nakada, Akinobu; Koike, Kazuhide; Nakashima, Takuya; Morimoto, Tatsuki; Ishitani, Osamu

    2015-02-16

    In an aqueous solution, photophysical, photochemical, and photocatalytic abilities of a Ru(II)-Re(I) binuclear complex (RuReCl), of which Ru(II) photosensitizer and Re(I) catalyst units were connected with a bridging ligand, have been investigated in details. RuReCl could photocatalyze CO2 reduction using ascorbate as an electron donor, even in an aqueous solution. The main product of the photocatalytic reaction was formic acid in the aqueous solution; this is very different in product distribution from that in a dimethylformamide (DMF) and triethanolamine (TEOA) mixed solution in which the main product was CO. A (13)CO2 labeling experiment clearly showed that formic acid was produced from CO2. The turnover number and selectivity of the formic acid production were 25 and 83%, respectively. The quantum yield of the formic acid formation was 0.2%, which was much lower, compared to that in the DMF-TEOA mixed solution. Detail studies of the photochemical electron-transfer process showed back-electron transfer from the one-electron-reduced species (OERS) of the photosensitizer unit to an oxidized ascorbate efficiently proceeded, and this should be one of the main reasons why the photocatalytic efficiency was lower in the aqueous solution. In the aqueous solution, ligand substitution of the Ru(II) photosensitizer unit proceeded during the photocatalytic reaction, which was a main deactivation process of the photocatalytic reaction. The product of the ligand substitution was a Ru(II) bisdiimine complex or complexes with ascorbate as a ligand or ligands. PMID:25654586

  10. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-01

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes. PMID:27011117

  11. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid.

    PubMed

    Cao, Liyan; Zhang, Run; Zhang, Wenzhu; Du, Zhongbo; Liu, Chunjun; Ye, Zhiqiang; Song, Bo; Yuan, Jingli

    2015-11-01

    Although considerable efforts have been made for the development of ruthenium(II) complex-based chemosensors and bioimaging reagents, the multisignal chemosensor using ruthenium(II) complexes as the reporter is scarce. In addition, the mechanisms of cellular uptake of ruthenium(II)-based chemosensors and their intracellular distribution are ill-defined. Herein, a new ruthenium(II) complex-based multisignal chemosensor, Ru-Fc, is reported for the highly sensitive and selective detection of lysosomal hypochlorous acid (HOCl). Ru-Fc is weakly luminescent because the MLCT (metal-to-ligand charge transfer) state is corrupted by the efficient PET (photoinduced electron transfer) process from Fc (ferrocene) moiety to Ru(II) center. The cleavage of Fc moiety by a HOCl-induced specific reaction leads to elimination of PET, which re-establishes the MLCT state of the Ru(II) complex, accompanied by remarkable photoluminescence (PL) and electrochemiluminescence (ECL) enhancements. The result of MTT assay showed that the proposed chemosensor, Ru-Fc, was low cytotoxicity. The applicability of Ru-Fc for the quantitative detection of HOCl in live cells was demonstrated by the confocal microscopy imaging and flow cytometry analysis. Dye colocalization studies confirmed very precise distribution of the Ru(II) complex in lysosomes, and inhibition studies revealed that the caveolae-mediated endocytosis played an important role during the cellular internalization of Ru-Fc. By using Ru-Fc as a chemosensor, the imaging of the endogenous HOCl generated in live macrophage cells during the stimulation was achieved. Furthermore, the practical applicability of Ru-Fc was demonstrated by the visualizing of HOCl in laboratory model animals, Daphnia magna and zebrafish. PMID:26256295

  12. The direct synthesis of organic and organometallic-containing MICA-type aluminosilicates

    SciTech Connect

    Carrado, K.A.; Awaluddin, A.

    1993-08-01

    Layer-silicate clay structures can provide supramolecular organization for catalysis, chiral reactions, colloid science, and electron transfer. The authors have successfully modified the experimental preparations of several different layer silicates in order to incorporate a wide variety of organic and organometallic molecules in the clay galleries. Synthesis and physical characterization of these materials are described and compared to ion-exchanged natural clay analogs. In addition, the photophysical properties of organometallic Ru(II) complexes incorporated by direct hydrothermal crystallization into synthetic clays were measured. 3 tabs, 21 refs.

  13. Unique properties of C,C'-linked nido-biscarborane tetraanions. Synthesis, structure and bonding of ruthenium monocarbollide via unprecedented cage carbon extrusion.

    PubMed

    Zhao, Da; Zhang, Jiji; Lin, Zhenyang; Xie, Zuowei

    2016-08-21

    Four reaction pathways have been found in the reaction of a C,C'-linked nido-biscarborane tetraanionic salt with [Ru(p-cymene)Cl2]2, leading to the isolation and structural characterization of redox, triple cage B-H oxidative addition, cage expansion and cage carbon extrusion products. Among these, the unprecedented cage carbon extrusion results in the formation of a new 6π-electron carboranyl ligand [C2B10H10](2-). The bonding interactions between this ligand and the Ru(ii) center have also been discussed on the basis of DFT calculations. PMID:27405999

  14. Temperature-controlled redox-neutral ruthenium(ii)-catalyzed regioselective allylation of benzamides with allylic acetates.

    PubMed

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2016-08-10

    Substituted aromatic amides reacted efficiently with allylic acetates in the presence of a cationic ruthenium complex in ClCH2CH2Cl at room temperature providing ortho allylated benzamides in a highly regioselective manner without any oxidant and base. The whole catalytic reaction occurred in a Ru(ii) oxidation state and thus the oxidation step is avoided. By tuning the reaction temperature, ortho allyl and vinyl benzamides were prepared exclusively. Later, ortho allyl and vinylated benzamides were converted into biologically useful six- and five-membered benzolactones in the presence of HCl. PMID:27456467

  15. Effects of Electrode-Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2,2':6',2″-Terpyridine-based Complexes.

    PubMed

    Davidson, Ross; Al-Owaedi, Oday A; Milan, David C; Zeng, Qiang; Tory, Joanne; Hartl, František; Higgins, Simon J; Nichols, Richard J; Lambert, Colin J; Low, Paul J

    2016-03-21

    The single molecule conductances of a series of bis-2,2':6',2″-terpyridine complexes featuring Ru(II), Fe(II), and Co(II) metal ions and trimethylsilylethynyl (Me3SiC≡C-) or thiomethyl (MeS-) surface contact groups have been determined. In the absence of electrochemical gating, these complexes behave as tunneling barriers, with conductance properties determined more by the strength of the electrode-molecule contact and the structure of the "linker" than the nature of the metal-ion or redox properties of the complex. PMID:26909823

  16. Generation of a stable supramolecular hydrogen evolving photocatalyst by alteration of the catalytic center.

    PubMed

    Mengele, Alexander K; Kaufhold, Simon; Streb, Carsten; Rau, Sven

    2016-04-12

    A new dyad consisting of a Ru(II) chromophore, a tetrapyridophenazine bridging ligand and a Rh(Cp*)Cl catalytic center, [Ru(tbbpy)2(tpphz)Rh(Cp*)Cl]Cl(PF6)2, acts as durable photocatalyst for hydrogen production from water. Catalytic activity is observed for more than 650 hours. Electrochemical investigations reveal that up to two electrons can be transferred to the catalytic center by a thermodynamically favorable intramolecular process, which has so far not been reported for similar tpphz based supramolecular photocatalysts. Additionally, mercury poisoning tests indicate that the new dyad works as a homogeneous photocatalyst. PMID:26965197

  17. Selective Formic Acid Production via CO2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex.

    PubMed

    Yoshitomi, Fumiaki; Sekizawa, Keita; Maeda, Kazuhiko; Ishitani, Osamu

    2015-06-17

    A hybrid material consisting of CaTaO2N (a perovskite oxynitride semiconductor having a band gap of 2.5 eV) and a binuclear Ru(II) complex photocatalytically produced HCOOH via CO2 reduction with high selectivity (>99%) under visible light (λ>400 nm). Results of photocatalytic reactions, spectroscopic measurements, and electron microscopy observations indicated that the reaction was driven according to a two-step photoexcitation of CaTaO2N and the Ru photosensitizer unit, where Ag nanoparticles loaded on CaTaO2N with optimal distribution mediated interfacial electron transfer due to reductive quenching. PMID:26024470

  18. Routes to metallodendrimers: synthesis of isomeric neutral metallomacromolecules based on bis(2,2':6',2"-terpyridine)ruthenium(II) connectivity.

    PubMed

    Newkome, George R; Yoo, Kyung Soo; Kim, Hyung Jin; Moorefield, Charles N

    2003-07-21

    Routes for the syntheses of isomeric, zwitterionic, bisterpyridine-Ru(II)-based macromolecules are described. Access to these novel architectures is facilitated by the construction of terpyridine-modified, 1-->3 C-branched, ester-terminated building blocks. Constitutional isomers result from the interchangable placement of methyl and tert-butyl ester groups on both the branched framework near the Ru(II) centers and the termini of the branched construct. Water solubility is imparted to each isomer through selective transformation of the tert-butyl esters to their corresponding carboxylates. Along with the standard characterization techniques, electrochemical and spectroscopic data also support the structural formation. PMID:12866080

  19. Studies on electro-optical properties of conjugated polymers and novel metal complexes for nanocrystalline titanium oxide photovoltaic cells and sensors

    NASA Astrophysics Data System (ADS)

    Kim, Young-Gi

    Several new approaches towards the development of dye and polymer sensitized photovoltaic cells and fluorescence sensors are the focus of this thesis. A new Ru(II) complex has been designed and synthesized introducing two types of ligands, 5-amino-1,10-phenanthroline and 4,4'-dicarboxylic acid-2,2'-bipyridine. This Ru(II) complex is capable of grafting onto nanocrystalline titanium dioxide and can be incorporated into solid polymer electrolytes. A series of analogous ruthenium complexes have also been synthesized and investigated to compare the effects of functional groups on various ligands by measuring spectroscopic and photovoltaic properties. A mononuclear Ru(II) complex using terpyridine and bipyridine ligands has been synthesized and compared to analogous homometallic dinuclear Ru(II) complex. The photophysical and photovoltaic (PV) properties have been investigated. Carboxylated polythiophenes have also been investigated as photosensitizers and charge transfer mediators for nanocrystalline TiO2 PV cells and show potential as a new class of light harvesting photosensitizers. In the present study, by introducing a chelating group such as a carboxylic acid into the side chain of polythiophenes, enhancements in photovoltaic properties are observed. We believe the carboxylic groups in the side chains enhance the adsorptions of these polythiophenes giving higher solar energy conversion efficiencies. The effects of the chelating group in the side chain of polythiophene have been investigated using a variety of analytical techniques. Cationic nanocrystalline TiO2 particles have been synthesized for which the size and composition of the nanoparticles were analyzed by TEM and EDXS. Multilayered films have been fabricated by sequential adsorption of TiO2 nanoparticles and poly (3-thiophene acetic acid). Each layer of the nanoparticles and PTAA in the thin film has also been characterized by XPS, AFM, and UV-vis spectroscopy. It is believed that these types of

  20. [(R)-2,2-Bis(diphenyl­phosphan­yl)-1,1′-binaphthyl-κ2 P,P′]{2-[(2R)-1,2-diamino-1-(4-meth­oxy­phen­yl)-3-methyl­but­yl]-5-meth­oxy­phenyl-κC 1}hydrido­ruthenium(II) benzene monosolvate

    PubMed Central

    Abdur-Rashid, Kamaluddin; Lough, Alan J.

    2012-01-01

    In the title complex, [Ru(C19H25N2O2)H(C44H32P2)]·C6H6, the RuII ion is in a distorted octa­hedral coordination environment with the hydride H atom trans to the tertiary carbinamine N atom, giving an H—Ru—N angle of 160.8 (12)°. The equatorial sites are occupied by two P atoms, the secondary carbinamine N atom and a coordinated C atom. PMID:23468708

  1. Study of intermediates from transition metal excited-state electron-transfer reactions. [Annual] progress report, August 1, 1989--July 31, 1992

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  2. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  3. Polymer-Based Ruthenium(II) Polypyridyl Chromophores on TiO2 for Solar Energy Conversion.

    PubMed

    Leem, Gyu; Morseth, Zachary A; Wee, Kyung-Ryang; Jiang, Junlin; Brennaman, M Kyle; Papanikolas, John M; Schanze, Kirk S

    2016-04-20

    A polychromophoric light-harvesting assembly featuring a polystyrene (PS) backbone with ionic carboxylate-functionalized Ru(II) polypyridyl complexes as pendant groups (PS-Ru-A) was synthesized and successfully anchored onto mesoporous structured TiO2 films (TiO2 //PS-Ru-A). Studies of the resulting TiO2 //PS-Ru-A films carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) confirmed that the ionic carboxylated Ru(II) complexes from PS-Ru-A led to the surface immobilization on the TiO2 film. Monochromatic light photocurrent spectroscopy (IPCE) and white light (AM1.5G) current-voltage studies of dye-sensitized solar cells using the TiO2 //PS-Ru-A photoanode give rise to modest photocurrent and white light efficiency (24 % peak IPCE and 0.33 % PCE, respectively). The photostability of surface-bound TiO2 //PS-Ru-A films was tested and compared to a monomeric Ru(II) complex (TiO2 //Ru-A), showing an enhancement of ∼14 % in the photostability of PS-Ru-A. Transient absorption measurements reveal that electron injection from surface-bound pendants occurs on the picosecond time scale, similar to TiO2 //Ru-A, while time-resolved emission measurements reveal delayed electron injection occurring in TiO2 //PS-Ru-A on the nanosecond time scale, underscoring energy transport from unbound to surface-bound complexes. Additionally, charge recombination is delayed in PS-Ru-A, pointing towards intra-assembly hole transport to complexes away from the surface. Molecular dynamics simulations of PS-Ru-A in fluid solution indicate that a majority of the pendant Ru(II) complexes lie within 10-20 Å of each other, facilitating efficient energy- and charge transport among the pendant complexes. PMID:26854269

  4. Theoretical investigation on dye sensitizer solar cell: Spin-forbidden transition

    SciTech Connect

    Imamura, Yutaka

    2015-12-31

    We studied spin-forbidden transitions of metal polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The singlet-to-triplet transition, which is assigned to a metal-to-ligand charge-transfer type excitation, appears for a phosphine-coordinated Ru(II), DX1. Absorption spectra of the modified DX1 molecules, whose Ru is replaced with Fe and Os, were also calculated for examining the effects of metals on the spin-orbit interaction.

  5. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-01

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics. PMID:24428791

  6. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    PubMed

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity. PMID:27104739

  7. Uniting Ruthenium(II) and Platinum(II) Polypyridine Centers in Heteropolymetallic Complexes Giving Strong Two-Photon Absorption.

    PubMed

    Shi, Pengfei; Coe, Benjamin J; Sánchez, Sergio; Wang, Daqi; Tian, Yupeng; Nyk, Marcin; Samoc, Marek

    2015-12-01

    New trinuclear RuPt2 and heptanuclear RuPt6 complex salts are prepared by attaching Pt(II) 2,2':6',2"-terpyridine (tpy) moieties to Ru(II) 4,4':2',2":4",4"'-quaterpyridine (qpy) complexes. Characterization includes single crystal X-ray structures for both polymetallic species. The visible absorption bands are primarily due to Ru(II) → qpy metal-to-ligand charge-transfer (MLCT) transitions, according to time-dependent density functional theory (TD-DFT) calculations. These spectra change only slightly on Pt coordination, while the orange-red emission from the complexes shows corresponding small red-shifts, accompanied by decreases in intensity. Cubic molecular nonlinear optical behavior has been assessed by using Z-scan measurements. These reveal relatively high two-photon absorption (2PA) cross sections σ2, with maximal values of 301 GM at 834 nm (RuPt2) and 523 GM at 850 nm (RuPt6) when dissolved in methanol or acetone, respectively. Attaching Pt(II)(tpy) moieties triples or quadruples the 2PA activities when compared with the Ru(II)-based cores. PMID:26562721

  8. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    PubMed

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. PMID:26139327

  9. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  10. Topoisomerase IIα poisoning and DNA double-strand breaking by chiral ruthenium(ii) complexes containing 2-furanyl-imidazo[4,5-f][1,10]phenanthroline derivatives.

    PubMed

    Qian, Chen; Wu, Jingheng; Ji, Liangnian; Chao, Hui

    2016-06-28

    Four chiral Ru(ii) complexes bearing furan ligands, Δ/Λ-[Ru(bpy)2(pocl)](2+) () and Δ/Λ-[Ru(bpy)2(poi)](2+) () (bpy = 2,2'-bipyridine, pocl = 2-(5-chlorofuran-2-yl)imidazo[4,5-f][1,10]phenanthroline, poi = 2-(5-5-iodofuran-2-yl)imidazo[4,5-f][1,10]phenanthroline), were synthesized and characterized. These Ru(ii) complexes showed antitumor activities against HeLa, A549, HepG2, HL-60 and K562 tumor cell lines, especially the HL-60 tumor cell line. Moreover, was more active than other complexes accounting for the different cellular uptakes. In addition, could accumulate in the nucleus of HL-60 cells, suggesting that nucleic acids were the cellular target of . Topoisomerase inhibition tests in vitro and in living cells confirmed that the four complexes acted as efficient topoisomerase IIα poisons, DNA double-strand breaks had also been observed from neutral single cell gel electrophoresis (comet assay). inhibited the growth of HL-60 cells through the induction of apoptotic cell death, as evidenced by the Alexa Fluor® 488 annexin V staining assays. The results demonstrated that acted as a topoisomerase IIα poison and caused DNA double-strand damage that could lead to apoptosis. PMID:27226117

  11. Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells.

    PubMed

    Urbani, Maxence; Sánchez Carballo, María; Kumar, Sangeeta Amit; Vázquez, Purificación; Grätzel, Michael; Khaja Nazeeruddin, Mohammad; Langa, Fernando; Torres, Tomás

    2016-04-28

    A series of eight Ru(ii) heteroleptic complexes incorporating an ancillary [2,2']bipyridine functionalised at the [4,4'] positions with one (-type) or two (-type) thienylenevinylenes (nTVs, n = 2 or 4) is reported. Three types of substitutions have been used for nTVs: hexylthioether, hexyloxy and hexyl. The characterisation of the half-sandwich intermediates and final complexes is provided. In particular, the half-sandwich complexes in the -type series are obtained as a racemate, whereas the heteroleptic complexes consist of two regioisomers. Finally, these complexes have been tested as dyes in dye-sensitized solar cells (DSSCs). Counterintuitively, better performances were obtained for -type complexes with shorter 2TV moieties. The best performing dye was the Ru(ii) complex mono-functionalized with a 2TV moiety having an hexylthioether substitution (), which achieved a maximum power efficiency of 2.77% under full sun illumination (AM1.5G standard conditions). The structure-performance relationship in DSSCs is discussed based on photovoltaic and electrochemical data and DFT-calculations. PMID:26935911

  12. Crystal structure of cis,fac-{N,N-bis-[(pyridin-2-yl)meth-yl]methyl-amine-κ(3) N,N',N''}di-chlorido-(dimethyl sulfoxide-κS)ruthenium(II).

    PubMed

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-09-01

    The reaction of di-chlorido-tetra-kis-(dimethyl sulfoxide)-ruthen-ium(II) with N,N-bis[(pyridin-2-yl)meth-yl]methyl-amine aff-ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol-ecule. The N,N-bis-[(pyridin-2-yl)meth-yl]methyl-amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d (6) Ru(II) is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N-Ru-N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa-hedral coordination geometry of the Ru(II) cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  13. Crystal structure of bis­(2,2′-bi­pyridine)[N′-(quino­lin-2-ylmethylidene)pyridine-2-carbohydrazide]ruthenium(II) bis(tetra­fluorido­borate) di­chloro­methane tris­olvate

    PubMed Central

    Mori, Asami; Suzuki, Takayoshi; Nakajima, Kiyohiko

    2015-01-01

    The title compound, [Ru(C10H8N2)2(C16H12N4O)](BF4)2·3CH2Cl2, crystallizes with one complex dication, two BF4 − counter-anions and three di­chloro­methane solvent mol­ecules in the asymmetric unit. The central RuII atom adopts a distorted octa­hedral coordination sphere with two 2,2′-bi­pyridine (bpy) and one quinoline-2-carbaldehyde (pyridine-2-carbon­yl)hydrazone (HL) ligand. The hydrazone ligand has a Z form and coordinates to the RuII atom via the amide-O and imine-N atoms, affording a planar five-membered chelate ring, while its pyridine-N and quinoline-N donor atoms in the substituents are non-coordinating. The hydrazone N—H group forms an intra­molecular hydrogen bond with the quinoline-N atom. In the crystal, the quinoline moiety of HL shows the shortest π–π stacking inter­action with the pyridine substituent of HL in a neighbouring complex, the centroid-to-centroid distance being 3.793 (3) Å. PMID:25878803

  14. Crystal structure of bis­[μ-(4-meth­oxy­phen­yl)methane­thiol­ato-κ2 S:S]bis­[chlorido­(η6-1-isopropyl-4-methyl­benzene)­ruthenium(II)] chloro­form disolvate

    PubMed Central

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-01-01

    The mol­ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related RuII atoms are bridged by two 4-meth­oxy-α-toluene­thiol­ato [(4-meth­oxy­phen­yl)methane­thiol­ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the RuII atom. In the crystal, the CH moiety of the chloro­form mol­ecule inter­acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter­acts more weakly with the methyl group of the bridging 4-meth­oxy-α-toluene­thiol­ato unit. This assembly leads to the formation of supra­molecular chains extending parallel to [021]. PMID:26594410

  15. A ruthenium-grafted triazine functionalized mesoporous polymer: a highly efficient and multifunctional catalyst for transfer hydrogenation and the Suzuki-Miyaura cross-coupling reactions.

    PubMed

    Salam, Noor; Kundu, Sudipta K; Roy, Anupam Singha; Mondal, Paramita; Ghosh, Kajari; Bhaumik, Asim; Islam, S M

    2014-05-21

    A new ruthenium-grafted mesoporous organic polymer Ru-MPTAT-1 has been synthesized via simple and facile in situ radical polymerization of 2,4,6-triallyloxy-1,3,5-triazine (TAT) in aqueous medium in the presence of an anionic surfactant (sodium dodecyl sulfate) as a template, followed by grafting of Ru(II) onto its surface. Ru-MPTAT-1 has been characterized by elemental analysis, powder XRD, HRTEM, FT-IR, UV-vis DRS, TG-DTA, FESEM and XPS characterization tools. The Ru-MPTAT-1 material showed very good catalytic activity in the Suzuki-Miyaura cross-coupling reaction for aryl halides and transfer hydrogenation reaction for a series of carbonyl compounds. The catalyst is easily recoverable from the reaction mixture and can be reused several times without appreciable loss of catalytic activity in the above reactions. Highly dispersed and strongly bound Ru(II) sites at the mesoporous polymer surface could be responsible for the observed high activity of the Ru-MPTAT-1 catalyst in these reactions. PMID:24667768

  16. Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation.

    PubMed

    Yu, You; Zhang, Hui; Cui, Shuxun

    2011-09-01

    We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to catalyze the C-C, C-O and C-N coupling structures, which is useful to prepare polymers, capsules and bulk hydrogels. We also tried to prepare the x-linked films by the catalysis of HRP. The comparison of the two methods suggests that the Ru(ii) complex method is more ideal for fabricating x-linked films. In addition, the photo-triggered chemical reaction within the films was confirmed by the solid-state (13)C NMR, XPS and FT-IR measurements. Without UV light irradiation or thermal treatment, this strategy brings many advantages. It is anticipated that this approach can be easily extended to the applications of the biological related fields in the future. PMID:21837325

  17. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  18. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  19. Two-photon absorption properties of iron(II) and ruthenium(II) trischelate complexes of 2,2':4,4' ':4',4' ''-quaterpyridinium ligands.

    PubMed

    Coe, Benjamin J; Samoc, Marek; Samoc, Anna; Zhu, Lingyun; Yi, Yuanping; Shuai, Zhigang

    2007-01-25

    A series of RuII or FeII trischelate complex salts containing N-methyl/aryl-2,2':4,4' ':4',4' ''-quaterpyridinium ligands that has previously been subjected to quadratic nonlinear optical studies (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 13399) has now been investigated for two-photon absorbing behavior. Z-scan measurements using a 750 nm laser afford reasonably large two-photon absorption (2PA) cross-sections sigma2 of ca. 62-180 GM for the RuII complexes, but only very weak 2PA is observed for the FeII compounds. The excited-state and 2PA properties of the representative chromophore [RuII(Me2Qpy2+)3]8+ (Me2Qpy2+=N' ',N' ''-dimethyl-2,2':4,4' ':4',4' ''-quaterpyridinium) have also been investigated by using semiempirical intermediate neglect of differential overlap/multireference-determinant single and double configuration interaction computations with the optimized geometry obtained via density functional theory. The calculated sigma2 value of ca. 624 GM at 1.70 eV for this metal-to-ligand charge-transfer chromophore is about 10 times larger than that obtained from the Z-scan studies. PMID:17228896

  20. A dinuclear ruthenium(II) complex as a one- and two-photon luminescent probe for biological Cu(2+) detection.

    PubMed

    Zhang, Pingyu; Pei, Lingmin; Chen, Yu; Xu, Wenchao; Lin, Qitian; Wang, Jinquan; Wu, Jingheng; Shen, Yong; Ji, Liangnian; Chao, Hui

    2013-11-11

    A new dinuclear Ru(II) polypyridyl complex, [(bpy)2 Ru(H2 bpip)Ru(bpy)2 ](4+) (RuH2 bpip, bpy=2,2-bipyridine, H2 bpip=2,6-pyridyl(imidazo[4,5-f][1,10]phenanthroline), was developed to act as a one- and two-photon luminescent probe for biological Cu(2+) detection. This Ru(II) complex shows a significant two-photon absorption cross section (400 GM) and displays a remarkable one- and two-photon luminescence switch in the presence of Cu(2+) ions. Importantly, RuH2 bpip can selectively recognise Cu(2+) in aqueous media in the presence of other abundant cellular cations (such as Na(+) , K(+) , Mg(2+) , and Ca(2+) ), trace metal ions in organisms (such as Zn(2+) , Ag(+) , Fe(3+) , Fe(2+) , Ni(2+) , Mn(2+) , and Co(2+) ), prevalent toxic metal ions in the environment (such as Cd(2+) , Hg(2+) , and Cr(3+) ), and amino acids, with high sensitivity (detection limit≤3.33×10(-8)  M) and a rapid response time (≤15 s). The biological applications of RuH2 bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2 bpip was, therefore, employed as a sensing probe for the detection of Cu(2+) in living cells and zebrafish. PMID:24166837

  1. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    PubMed

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. PMID:27071858

  2. Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: A way towards cancer therapy?

    PubMed

    Zhang, Pingyu; Wang, Jinquan; Huang, Huaiyi; Yu, Bole; Qiu, Kangqiang; Huang, Juanjuan; Wang, Shutao; Jiang, Lei; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-09-01

    The design and development of functional hybrid nanomaterials is currently a topic of great interest in biomedicine. Herein we investigated the grafting of Ru(II) polypyridyl complexes onto gold nanospheres (Ru@AuNPs) to improve the particles' near infrared (NIR) absorption, and ultimately allow for application in photothermal cancer therapy. As demonstrated in this article, these ruthenium(II) complexes could indeed significantly enhance gold nanospheres' two-photon luminescence (PTL) intensity and photothermal therapy (PTT) efficiency. The best dual functional nanoparticles of this study were successfully used for real-time luminescent imaging-guided PTT in live cancer cells. Furthermore, in vivo tumor ablation was achieved with excellent treatment efficacy under a diode laser (808 nm) irradiation at the power density of 0.8 W/cm(2) for 5 min. This study demonstrates that the coupling of inert Ru(II) polypyridyl complexes to gold nanospheres allows for the enhancement of two-photon luminescence and for efficient photothermal effect. PMID:26093791

  3. Four-electron oxidative dehydrogenation induced by proton-coupled electron transfer in ruthenium(III) complex with 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate.

    PubMed

    Mitsuhashi, Ryoji; Suzuki, Takayoshi; Sunatsuki, Yukinari

    2013-09-01

    New ruthenium(II or III) complexes with general formula [Ru(O-N)(bpy)2](n+) (O-N = unsymmetrical bidentate phenolate ligand; bpy = 2,2'-bipyridine) were synthesized, and their crystal structures and electrochemical properties were characterized. Ru(II) complexes with 2-(2-imidazolinyl)phenolate (Himn(-)) or 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate (Hthp(-)) could be deprotonated by addition of excess KO(t)Bu, although the deprotonated species were easily reprotonated by exposure to air. Unlike these Ru(II) complexes, their Ru(III) analogs showed interesting ligand oxidation reactions upon addition of bases. With [Ru(III)(Himn)(bpy)2](2+), two-electron oxidation of Himn(-) and reduction of the Ru(III) center resulted in conversion of the 2-imidazolinyl group to a 2-imidazolyl group. On the other hand, the corresponding Hthp(-) complex exhibited four-electron oxidation of the ligand to form 2-(2-pyrimidyl)phenolate (pym(-)). These aromatization reactions of imidazolinyl and 1,4,5,6-tetrahydropyrimidyl groups were also achieved by the electrochemically generated Ru(III) complexes. PMID:23967872

  4. Photochemical Reduction of Low Concentrations of CO2 in a Porous Coordination Polymer with a Ruthenium(II)-CO Complex.

    PubMed

    Kajiwara, Takashi; Fujii, Machiko; Tsujimoto, Masahiko; Kobayashi, Katsuaki; Higuchi, Masakazu; Tanaka, Koji; Kitagawa, Susumu

    2016-02-18

    Direct use of low pressures of CO2 as a C1 source without concentration from gas mixtures is of great interest from an energy-saving viewpoint. Porous heterogeneous catalysts containing both adsorption and catalytically active sites are promising candidates for such applications. Here, we report a porous coordination polymer (PCP)-based catalyst, PCP-Ru(II) composite, bearing a Ru(II) -CO complex active for CO2 reduction. The PCP-Ru(II) composite showed improved CO2 adsorption behavior at ambient temperature. In the photochemical reduction of CO2 the PCP-Ru(II) composite produced CO, HCOOH, and H2 . Catalytic activity was comparable with the corresponding homogeneous Ru(II) catalyst and ranks among the highest of known PCP-based catalysts. Furthermore, catalytic activity was maintained even under a 5 % CO2 /Ar gas mixture, revealing a synergistic effect between the adsorption and catalytically active sites within the PCP-Ru(II) composite. PMID:26800222

  5. Metamodels for New Designs of Outer-Rotor Brushless Synchronous Electric Motors

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.

    2014-04-01

    The authors consider the possibilities to synthesise metamodels for the analysis and optimisation of brushless synchronous motors. The metamodels are presented for new designs of the outer-rotor permanent magnet synchronous motor and the outer-rotor reluctance motor. The metamodels are synthesised based on the results obtained by the numerical calculations of magnetic field taking into account magnetic saturation. Analysis of the results for the motor magnetic field and tests of the metamodels at the selected and intermediate points shows that these can be synthesised with acceptable accuracy using numerical calculations instead of expensive real experiments. Rakstā ir apskatītas metamodeļu iegūšanas iespējas to izmantošanai bezkontaktu sinhrono dzinēju analīzē un optimizācijā. Ir iegūti metamodeļi sinhronam dzinējam ar pastāvīgajiem magnētiem un reaktīvam dzinējam ar ārējo rotoru. Sintezēto metamodeļu iegūšanai izmantoti elektrisko dzinēju magnētiskā lauka skaitlisko aprēķinu rezultāti, ievērojot magnētiskās ķēdes piesātinājumu. Metamodeļu pārbaude aprēķinu un starppunktos parādīja, ka to iegūšanai dārgo reālo eksperimentu vietā var izmantot magnētiskā lauka aprēķinu rezultātus.

  6. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex.

    PubMed

    Magennis, Steven W; Habtemariam, Abraha; Novakova, Olga; Henry, John B; Meier, Samuel; Parsons, Simon; Oswald, Iain D H; Brabec, Viktor; Sadler, Peter J

    2007-06-11

    The dinuclear RuII arene complexes [{(eta6-arene)RuCl}2(mu-2,3-dpp)](PF6)2, arene=indan (1), benzene (2), p-cymene (3), or hexamethylbenzene (4) and 2,3-dpp=2,3-bis(2-pyridyl)pyrazine, have been synthesized and characterized. Upon irradiation with UVA light, complexes 1 and 2 readily underwent arene loss, while complexes 3 and 4 did not. The photochemistry of 1 was studied in detail. In the X-ray structure of [{(eta6-indan)RuCl}2(mu-2,3-dpp)](PF6)2 (1), 2,3-dpp bridges two RuII centers 6.8529(6) A apart. In water, aquation of 1 in the dark occurs with replacement of chloride with biexponential kinetics and decay constants of 100+/-1 min-1 and 580+/-11 min-1. This aquation was suppressed by 0.1 M NaCl. UV or visible irradiation of 1 in aqueous or methanolic solution led to arene loss. The fluorescence of the unbound arene is approximately 40 times greater than when it is complexed. Irradiation of 1 also had a significant effect on its interactions with DNA. The DNA binding of 1 is increased after irradiation. The non-irradiated form of 1 preferentially formed DNA adducts that only weakly blocked RNA polymerase, while irradiation of 1 transformed the adducts into stronger blocks for RNA polymerase. The efficiency of irradiated 1 to form DNA interstrand cross-links was slightly greater than that of cisplatin in both 10 mM NaClO4 and 0.1 M NaCl. In contrast, the interstrand cross-linking efficiency of non-irradiated 1 in 10 mM NaClO4 was relatively low. An intermediate amount of cross-linking was observed when the sample of DNA already modified by non-irradiated 1 was irradiated. DNA unwinding measurements supported the conclusion that both mono- and bifunctional adducts with DNA can form. These results show that photoactivation of dinuclear RuII arene complexes can simultaneously produce a highly reactive ruthenium species that can bind to DNA and a fluorescent marker (the free arene). Importantly, the mechanism of photoreactivity is also independent of oxygen. These

  7. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts.

    PubMed

    Kuriki, Ryo; Ishitani, Osamu; Maeda, Kazuhiko

    2016-03-01

    Photocatalytic CO2 reduction using hybrids of carbon nitride (C3N4) and a Ru(II) complex under visible light was studied with respect to reaction solvent. Three different Ru(II) complexes, trans(Cl)-[Ru(X2bpy) (CO)2Cl2] (X2bpy = 2,2'-bipyridine with substituents X in the 4-positions, X = COOH, PO3H2, or CH2PO3H2), were employed as promoters and will be abbreviated as RuC (X = COOH), RuP (X = PO3H2), and RuCP (X = CH2PO3H2). When C3N4 modified with a larger amount of RuCP (>7.8 μmol g(-1)) was employed as a photocatalyst in a solvent having a relatively high donor number (e.g., N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)) with the aid of triethanolamine (TEOA) as an electron donor, the hybrid photocatalyst exhibited high performance for CO2 reduction, producing CO and HCOOH with relatively high CO selectivity (40-70%). On the other hand, HCOOH was the major product when RuC/C3N4 or RuP/C3N4 was employed regardless of the loading amount of the Ru(II) complex and the reaction solvent. Results of photocatalytic reactions and UV-visible diffuse reflectance spectroscopy indicated that polymeric Ru species, which were formed in situ from RuCP on C3N4 under irradiation in a solvent having a high donor number, were active catalysts for CO formation. Nonsacrificial CO2 reduction using RuP/C3N4 was accomplished in a DMA solution containing methanol as an electron donor, which means that visible light energy was stored as chemical energy in the form of CO and formaldehyde (ΔG° = +67.6 kJ mol(-1)). This study demonstrated the first successful example of an energy conversion scheme using carbon nitride through photocatalytic CO2 reduction. PMID:26891142

  8. Cyclometalated ruthenium(II) complexes as efficient redox mediators in peroxidase catalysis.

    PubMed

    Alpeeva, Inna S; Soukharev, Valentin S; Alexandrova, Larissa; Shilova, Nadezhda V; Bovin, Nicolai V; Csöregi, Elisabeth; Ryabov, Alexander D; Sakharov, Ivan Yu

    2003-07-01

    Cyclometalated ruthenium(II) complexes, [Ru(II)(C~N)(N~N)(2)]PF(6) [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H(2)O(2) catalyzed by plant peroxidases to the corresponding Ru(III) species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H(2)O(2) concentrations and the apparent second-order rate constants ( k(app)) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k(app) are identical to those known for the best substrates of HRP-C (10(6)-10(7) M(-1) s(-1)). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru(II) complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru(II)(phpy)(bpy)(2)]PF(6) and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k(c) for the oxidation of catechol by the Ru(III) complex generated enzymatically from [Ru(II)(phpy)(bpy)(2)](+) is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru(II) concentration at different concentrations of catechol. The calculated k(c) value of 0.75 M(-1) s(-1) shows that the cyclometalated Ru(II) complexes are efficient mediators in peroxidase catalysis. PMID:12774217

  9. Optimum Thickness Conditions of TiO2 Nanotubes Layer for Efficient Electrochemical Luminescence Cells Application.

    PubMed

    Choi, Min-Ki; Sung, Youl-Moon; Park, Min-Woo

    2015-02-01

    We report a TiO2 nanotubes (NTs)-based Electrochemical luminescence (ECL) cell. The ECL cell was fabricated using the electrode of TiO2 NTs and Ru(II) complex (Ru(bpy)2+(3)) as a luminescence materials. The fabricated ECL cell is composed of F-doped SnO2 (FTO) glass/Ru(II)/TiO2 NTs/Ti plate. At a bias voltage of 3 V, the measured ECL efficiencies were 0 Im/W for cell without NTs, 0.03 Im/W for NTs-6.5 µm, 0.07 Im/W for NTs-8 µm and 0.1 Im/W for NTs-10 µm, respectively. The use of Ti02 NTs increases ECL intensities by about 2 times compared to the typical ECL cell without the use of TiO2 NTs. PMID:26353679

  10. Visible-Light-Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex.

    PubMed

    Wezenberg, Sander J; Chen, Kuang-Yen; Feringa, Ben L

    2015-09-21

    Toward the development of visible-light-driven molecular rotary motors, an overcrowded alkene-based ligand and the corresponding ruthenium(II) complex is presented. In our design, a 4,5-diazafluorenyl coordination motif is directly integrated into the motor function. The photochemical and thermal isomerization behavior has been studied by UV/Vis and NMR spectroscopy. Upon coordination to a Ru(II) bipyridine complex, the photoisomerization process can be driven by visible (λmax = 450 nm) instead of UV light and furthermore, a large increase of the speed of rotation is noted. DFT calculations point to a contraction of the diazafluorenyl lower half upon metal-coordination resulting in reduced steric hindrance in the "fjord region" of the molecule. Consequently, it is shown that metal-ligand interactions can play an important role in the adjustment of both photophysical and thermodynamic properties of molecular motors. PMID:26271465

  11. Chromogenic nitrophenolate-based substrates for light-driven hybrid P450 BM3 enzyme assay.

    PubMed

    Lam, Quan; Cortez, Alejandro; Nguyen, Thanh Truc; Kato, Mallory; Cheruzel, Lionel

    2016-05-01

    The incorporation of a p-nitrophenoxy moiety in substrates has enabled the development of colorimetric assays to rapidly screen for O-demethylation activity of P450 enzymes. For the light-driven hybrid P450 BM3 enzymes, where a Ru(II) photosensitizer powers the enzyme upon visible light irradiation, we have investigated a family of p-nitrophenoxy derivatives as useful chromogenic substrates compatible with the light-driven approach. The validation of this assay and its adaptability to a 96-well plate format will enable the screening of the next generation of hybrid P450 BM3 enzymes towards C-H bond functionalization of non-natural substrates. PMID:26712653

  12. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  13. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium(II)–Cobalt(III) Bimetallic Complex

    PubMed Central

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; Weiss, Emily A.; Meade, Thomas J.

    2015-01-01

    We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers. PMID:25671465

  14. Ruthenium(0)-catalyzed hydroarylation of alkynes via ketone-directed C-H functionalization using in situ-generated ruthenium complexes.

    PubMed

    Hu, Feng; Szostak, Michal

    2016-08-11

    A versatile method for the Ru(0)-catalyzed hydroarylation of alkynes using weakly-coordinating ketones enabled by the in situ generation of a Ru(0) catalyst from an air-stable, inexpensive and user-friendly Ru(ii) precatalyst is reported for the first time. The method provides straightforward access to a wide range of functionalized ketone building blocks that would be difficult to access by conventional methods. Most crucially, this report demonstrates for the first time that the in situ generated Ru(0) catalysts advance the classic Ru(0)-catalyzed C-H functionalization platform to substrates that would otherwise be unreactive. Product manipulation and mechanistic studies are reported. PMID:27411592

  15. Excited‐State Dynamics of a Two‐Photon‐Activatable Ruthenium Prodrug

    PubMed Central

    Greenough, Simon E.; Horbury, Michael D.; Smith, Nichola A.; Sadler, Peter J.; Paterson, Martin J.

    2016-01-01

    Abstract We present a new approach to investigate how the photodynamics of an octahedral ruthenium(II) complex activated through two‐photon absorption (TPA) differ from the equivalent complex activated through one‐photon absorption (OPA). We photoactivated a RuII polypyridyl complex containing bioactive monodentate ligands in the photodynamic therapy window (620–1000 nm) by using TPA and used transient UV/Vis absorption spectroscopy to elucidate its reaction pathways. Density functional calculations allowed us to identify the nature of the initially populated states and kinetic analysis recovers a photoactivation lifetime of approximately 100 ps. The dynamics displayed following TPA or OPA are identical, showing that TPA prodrug design may use knowledge gathered from the more numerous and easily conducted OPA studies. PMID:26632426

  16. Crystal structure of [3-amino-2-(phenyl­diazenyl)­pyridine]chlorido­(η6-p-cymene)­ruthenium(II) chloride

    PubMed Central

    Hansongnern, Kanidtha; Sansook, Supojjanee; Romin, Thassani; Nimthong Roldan, Arunpatcha; Pakawatchai, Chaveng

    2015-01-01

    The title compound, [RuCl(C10H14)(C11H10N4)]Cl is an RuII complex in which an η6-p-cymene ligand, two N atoms of 3-amino-2-(phenyl­azo)pyridine and one Cl ion form a piano-stool coordination environment around the metal ion. In the crystal structure, N—H⋯Cl hydrogen bonds play an important role in the formation of the supramolecular zigzag chain along the a-axis direction. Disorder is observed for the isopropyl group with site-occupancy factors refined to 0.78 (5) and 0.22 (5). PMID:26594428

  17. Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, You; Zhang, Hui; Cui, Shuxun

    2011-09-01

    We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to catalyze the C-C, C-O and C-N coupling structures, which is useful to prepare polymers, capsules and bulk hydrogels. We also tried to prepare the x-linked films by the catalysis of HRP. The comparison of the two methods suggests that the Ru(ii) complex method is more ideal for fabricating x-linked films. In addition, the photo-triggered chemical reaction within the films was confirmed by the solid-state 13C NMR, XPS and FT-IR measurements. Without UV light irradiation or thermal treatment, this strategy brings many advantages. It is anticipated that this approach can be easily extended to the applications of the biological related fields in the future.We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to

  18. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  19. Study of intermediates from transition metal excited-state electron-transfer reactions. Progress report, August 1, 1989--December 31, 1991

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  20. Light-driven biocatalytic reduction of α,β-unsaturated compounds by ene reductases employing transition metal complexes as photosensitizers† †Electronic supplementary information (ESI) available: Additional experimental sections, tables, figures and discussion. See DOI: 10.1039/c5cy01642h Click here for additional data file.

    PubMed Central

    Peers, Martyn K.; Toogood, Helen S.; Heyes, Derren J.; Mansell, David; Coe, Benjamin J.

    2016-01-01

    Efficient and cost effective nicotinamide cofactor regeneration is essential for industrial-scale bio-hydrogenations employing flavin-containing biocatalysts such as the Old Yellow Enzymes. A direct flavin regeneration system using visible light to initiate a photoredox cycle and drive biocatalysis is described, and shown to be effective in driving biocatalytic activated alkene reduction. Using Ru(ii) or Ir(iii) complexes as photosensitizers, coupled with an electron transfer mediator (methyl viologen) and sacrificial electron donor (triethanolamine) drives catalytic turnover of two Old Yellow Enzymes with multiple oxidative substrates. Therefore, there is great potential in the development of light-driven biocatalytic systems, providing an alternative to the reliance on enzyme-based cofactor regeneration systems. PMID:27019691

  1. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  2. A magnetic mesoporous nanocomposite modified with a ruthenium complex for site-specific molecular oxygen sensing: Construction and characterization

    NASA Astrophysics Data System (ADS)

    Yu-qing, Zhao; Xi, Chen; De-jun, Wan

    2015-08-01

    In this paper, we constructed a core-shell structured organic-inorganic hybrid composite, where superparamagnetic ferroferric oxide and silica molecular sieve MCM-41 were used as the inner core and the outer shell, respectively. A Ru(II) complex was covalently grafted into these MCM-41 tunnels. Electron microscopy images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis were applied to confirm this Ru(II)-functionalized hybrid composite. Emission of this composite decreased with increasing O2 concentrations, which made itself an O2 sensing system. High selectivity (12.2), linear working curve (linearity = 0.99) and short response time (12 s) were obtained from this composite.

  3. Iodide Recognition and Sensing in Water by a Halogen-Bonding Ruthenium(II)-Based Rotaxane.

    PubMed

    Langton, Matthew J; Marques, Igor; Robinson, Sean W; Félix, Vítor; Beer, Paul D

    2016-01-01

    The synthesis and anion-recognition properties of the first halogen-bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen-bonding axle component, which is stoppered with water-solubilizing permethylated β-cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)-based macrocycle component. (1) H NMR anion-binding titrations in D2 O reveal the halogen-bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free-energy calculations. Photo-physical investigations demonstrate the ability of the interlocked halogen-bonding host to sense iodide in water, through enhancement of the macrocycle component's Ru(II) metal-ligand charge transfer (MLCT) emission. PMID:26626866

  4. Diversity and distribution of sandflies (Diptera: Psychodidae: Phlebotominae) in a military area in the state of Amazonas, Brazil

    PubMed Central

    Gomes, Luís Henrique Monteiro; Albuquerque, Maria Ivonei Carvalho; da Rocha, Liliane Coelho; Pinheiro, Francimeire Gomes; Franco, Antonia Maria Ramos

    2013-01-01

    This study reports the distribution, ecotopes and fauna diversity of sandflies captured in five training bases on a military reserve in Manaus, state of Amazonas (AM). A total of 10,762 specimens were collected, which were distributed among 58 species, with the highest number recorded at Base Instruction 1 (BI1). A higher rate of species richness was found at the Base Instruction Boina Rajada and low levels of diversity associated with a high abundance index with the clear dominance of Lutzomyia umbratilis, Lutzomyia ruii and Lutzomyia anduzei were found at BI1. The abundance of Lu. umbratilis raises the possibility of outbreaks of American cutaneous leishmaniasis by the main vector of the disease in AM. PMID:23903983

  5. Identification of Novel Proteasome Inhibitors from an Enaminone Library.

    PubMed

    Elliott, Megan L; Thomas, Kevin; Kennedy, Steven; Koduri, Naga D; Hussaini, R Syed; Sheaff, Robert J

    2015-09-01

    A library of structurally distinct enaminones was synthesized using sonication or Ru(II) catalysis to couple primary, secondary, and tertiary thioamides with α-halocarbonyls or α-diazocarbonyls. Screening the library for proteasome inhibition using a luciferase-based assay identified seven structurally diverse compounds. Two of these molecules targeted luciferase, while the remaining five exhibited varying potency and specificity for the trypsin-like, chymotrypsin-like, or caspase-like protease activities of the proteasome. Physiological relevance was confirmed by showing these molecules inhibited proteasomal degradation of the full-length protein substrate p21cip1 expressed in tissue culture cells. A cell viability analysis revealed that the proteasome inhibitors differentially affected cell survival. Results indicate a subset of enaminones and precursor molecules identified in this study are good candidates for further development into novel proteasome inhibitors with potential therapeutic value. PMID:25494709

  6. The influence of arene-ring size on stacking interaction with canonical base pairs

    NASA Astrophysics Data System (ADS)

    Formánek, Martin; Burda, Jaroslav V.

    2014-04-01

    Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.

  7. Antiproliferative activity of ruthenium(ii) arene complexes with mono- and bidentate pyridine-based ligands.

    PubMed

    Richter, Stefan; Singh, Sushma; Draca, Dijana; Kate, Anup; Kumbhar, Anupa; Kumbhar, Avinash S; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Lönnecke, Peter; Hey-Hawkins, Evamarie

    2016-08-16

    A series of Ru(II) arene complexes of mono- and bidentate N-donor ligands with carboxyl or ester groups and chlorido ancillary ligands were synthesised and structurally characterised. The complexes have a distorted tetrahedral piano-stool geometry. The binding interaction was studied with calf thymus DNA (CT-DNA) by absorption titration, viscosity measurement, thermal melting, circular dichroism, ethidium bromide displacement assay and DNA cleavage of plasmid DNA (pBR322), investigated by gel electrophoresis. The dichlorido complexes bind covalently to DNA in the dark, similar to cisplatin, while the monochlorido complexes bind covalently on irradiation, similar to cisplatin analogues. The compounds are selectively cytotoxic against several tumour cell lines and show specific nonlinear correlation between dose and activity. This phenomenon is closely related to their potential to act preferentially as inhibitors of cell division. PMID:27264161

  8. Synthesis of Bis(hydroxylmethylfurfuryl)amine Monomers from 5-Hydroxymethylfurfural.

    PubMed

    Xu, Zhanwei; Yan, Peifang; Liu, Kairui; Wan, Lu; Xu, Wenjuan; Li, Huixiang; Liu, Xiumei; Zhang, Z Conrad

    2016-06-01

    We report the synthesis of bis(hydroxylmethylfurfuryl)amine (BHMFA) from 5-hydroxymethylfurfural (5-HMF) by reacting 5-HMF with primary amines in the presence of homogeneous Ru(II) catalysts having sterically strained ligands. BHMFA is a group of furan-based monomers that offer great potential to form functional biopolymers with tunable properties. A range of primary amines, such as aliphatic and benzyl amines, are readily converted with 5-HMF to form the corresponding BHMFA in good yields. The reaction proceeds through reductive amination of 5-HMF with primary amine to form secondary amine, followed by reductive amination of 5-HMF with in situ generated secondary amine to produce BHMFA. PMID:27151257

  9. Fundamental Differences between Group 8 Metals: Unexpected Oxidation State Preferences and Mechanisms in Ruthenium Borylene Complex Formation.

    PubMed

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Radacki, Krzysztof; Weißenberger, Felix; Wennemann, Benedikt; Ye, Qing

    2016-06-13

    The reaction of the salts K[Ru(CO)3 (PMe3 )(SiR3 )] (R=Me, Et) with Br2 BDur or Cl2 BDur (Dur=2,3,5,6-Me4 C6 H) leads to both boryl and borylene complexes of divalent ruthenium, the former through simple salt elimination and the latter through subsequent CO loss and 1,2-halide shift. The balance of products can be altered by varying the reaction conditions; boryl complexes can be favored by the addition of CO, and borylene complexes by removal of CO under vacuum. All of these products are in competition with the corresponding (aryl)(halo)(trialkylsilyl)borane, a reductive elimination product. The Ru(II) borylene products and the mechanisms that form them are distinctly different from the analogous reactions with iron, which lead to low-valent borylene complexes, highlighting fundamental differences in oxidation state preferences between iron and ruthenium. PMID:27124888

  10. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.

    PubMed

    Paul, Bhaskar; Chakrabarti, Kaushik; Kundu, Sabuj

    2016-07-01

    Considerable differences in reactivity and selectivity for 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation are described. Bifunctional Ru(ii)-(phenpy-OH) [phenpy-OH: 2-(2-pyridyl-2-ol)-1,10-phenanthroline] complex () exhibited excellent catalytic activity in transfer hydrogenation (TH) of ketones and nitriles. Notably, in comparison with all the reported 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation, complex displayed significantly higher activity. Additionally, exploiting the metal-ligand cooperativity in complex , chemoselective TH of ketones was achieved and sterically demanding ketones were readily reduced. An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of this reaction. This is a rare example of a highly active bifunctional Ru(ii) catalyst bearing only one 2-HP unit. PMID:27328031

  11. 2,2',5,5'-tetramethyl-4,4'-bis(diphenylphoshino)-3,3'-bithiophene: a new, very efficient, easily accessible, chiral biheteroaromatic ligand for homogeneous stereoselective catalysis

    PubMed

    Benincori; Cesarotti; Piccolo; Sannicolo

    2000-04-01

    The four-step straightforward synthesis of enantiopure (+)- and (-)-2,2',5,5'-tetramethyl-4,4'-bis-(diphenylphoshino)-3,3'-bithiophene (tetraMe-BITIOP), a new C2-symmetry chelating ligand for transition metals, is described, starting from 2,5-dimethylthiophene. The complexes of this electron-rich diphosphine with Ru(II) and Rh(I) were used as catalysts in some homogeneous hydrogenation reactions of prostereogenic carbonyl functions of alpha- and beta-ketoesters, of prostereogenic carbon-carbon double bonds of substituted acrylic acids, and of N-acetylenamino acids. The enantiomeric excesses were found to be excellent in all the experiments and comparable with the best results reported in the literature for the same reactions, carried out under similar experimental conditions, with the metal complexes of the most popular chiral diphosphine ligands as catalysts. PMID:10774024

  12. Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.

    PubMed

    Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier

    2016-08-01

    Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. PMID:27124095

  13. Novel heterobimetallic radiotheranostic: preparation, activity, and biodistribution.

    PubMed

    Adriaenssens, Louis; Liu, Qiang; Chaux-Picquet, Fanny; Tasan, Semra; Picquet, Michel; Denat, Franck; Le Gendre, Pierre; Marques, Fernanda; Fernandes, Célia; Mendes, Filipa; Gano, Lurdes; Campello, Maria Paula Cabral; Bodio, Ewen

    2014-07-01

    A novel Ru(II) (arene) theranostic complex is presented. It is based on a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid macrocycle bearing a triarylphosphine and can be tracked in vivo by using the γ emission of (153) Sm atoms. Notably, the heteroditopic ligand can be selectively metalated with ruthenium at the phosphorus atom despite the presence of other functionalities that are prone to metal coordination. Subsequent labeling with radionuclides such as (153) Sm can then be performed easily. The resulting heterobimetallic complex exhibits favorable solubility and stability properties in biologically relevant media. It also shows in vitro cytotoxicity in line with that expected for this type of metallodrug, and is nontoxic to the organism as a whole. As a proof of concept, initial studies in healthy mice were performed to obtain information about the uptake, biodistribution, and excretion of the radiolabeled complex. PMID:24449620

  14. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    PubMed

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-01

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes. PMID:25866203

  15. [1,1′-Bis(di­phenyl­phosphan­yl)cobalto­cenium-κ2 P,P′](η5-cyclo­penta­dien­yl){2-[4-(4-ethynylphen­yl)phen­yl]ethynyl-κC}ruthenium(II) hexa­fluorido­phosphate

    PubMed Central

    Zeng, Ling-Zhen; Wu, Yun-Ying; Tian, Guang-Xuan; Li, Zhen

    2013-01-01

    In the title compound, [CoRu(C5H5)(C16H9)(C17H14P)2]PF6, the RuII atom is coordinated by a cyclo­penta­dienyl ring in an η5-mode, one C atom from a 4,4′-diethynyl-1,1′-biphenyl ligand and two P atoms from a chelating 1,1′-bis­(di­phenyl­phosphan­yl)cobaltocenium ligand, giving a three-legged piano-stool geometry. In the crystal, weak C—H⋯F hydrogen bonds link the complex cations and hexa­fluorido­phosphate anions into a three-dimensional supra­molecular structure. PMID:24454037

  16. Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging.

    PubMed

    Connell, Timothy U; James, Janine L; White, Anthony R; Donnelly, Paul S

    2015-09-28

    To take advantage of the luminescent properties of d(6) transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3-triazole heterocycle were synthesised using Cu(I) catalysed azide-alkyne cycloaddition "click" chemistry and were used to form phosphorescent Ir(III) and Ru(II) complexes. Their emission properties were readily tuned, by changing either the metal ion or the co-ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The Ir(III)/Ru(II)-protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein-labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications. PMID:26264214

  17. Dipyrido[4,3-b;5,6-b]acridine derivatives and their ruthenium(II) complexes

    SciTech Connect

    Hung, Chi-Ying; Wang, Tie-Lin; Jang, Youngchan

    1996-09-25

    Two of the most common bidentate chelating ligands employed in coordination chemistry are 2,2{prime}-bipyridine (bpy) and 1,10-phenanthroline (phen). The latter may be considered as a 3,3{prime}-etheno-bridged derivative of the former. The steric requirements of both ligands are very similar, and differences in the properties of their metal complexes may be mostly attributed to electronic differences arising from the greater electronegativity of phen. The next higher homologue of bpy is 2,2{prime};6,2{double_prime}-terpyridine (tpy), which behave as a tridentate chelator but enjoys many of the same coordination properties as bpy. The coordination chemistry of the analogous 3,3{prime}-etheno-bridged derivatives of tpy has not yet been explored. This report will present the preparation and properties of these derivatives and their complexation with Ru(II).

  18. Redox-Active-Ligand-Mediated Formation of an Acyclic Trinuclear Ruthenium Complex with Bridging Nitrido Ligands.

    PubMed

    Bagh, Bidraha; Broere, Daniël L J; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-07-11

    Coordination of a redox-active pyridine aminophenol ligand to Ru(II) followed by aerobic oxidation generates two diamagnetic Ru(III) species [1 a (cis) and 1 b (trans)] with ligand-centered radicals. The reaction of 1 a/1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)-bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru-N-Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a/1 b supports the oxidation of a nitride (N(3-) ) to half an equivalent of N2 . The trinuclear omplex is reactive toward TEMPO-H, tin hydrides, thiols, and dihydrogen. PMID:27321547

  19. Model study of CO inhibition of [NiFe]hydrogenase.

    PubMed

    Matsumoto, Takahiro; Kabe, Ryota; Nonaka, Kyoshiro; Ando, Tatsuya; Yoon, Ki-Seok; Nakai, Hidetaka; Ogo, Seiji

    2011-09-19

    We propose a modified mechanism for the inhibition of [NiFe]hydrogenase ([NiFe]H(2)ase) by CO. We present a model study, using a NiRu H(2)ase mimic, that demonstrates that (i) CO completely inhibits the catalytic cycle of the model compound, (ii) CO prefers to coordinate to the Ru(II) center rather than taking an axial position on the Ni(II) center, and (iii) CO is unable to displace a hydrido ligand from the NiRu center. We combine these studies with a reevaluation of previous studies to propose that, under normal circumstances, CO inhibits [NiFe]H(2)ase by complexing to the Fe(II) center. PMID:21853978

  20. Selective Synthesis of Molecular Borromean Rings: Engineering of Supramolecular Topology via Coordination-Driven Self-Assembly.

    PubMed

    Kim, Taegeun; Singh, Nem; Oh, Jihun; Kim, Eun-Hee; Jung, Jaehoon; Kim, Hyunuk; Chi, Ki-Whan

    2016-07-13

    Molecular Borromean rings (BRs) is one of the rare topology among interlocked molecules. Template-free synthesis of BRs via coordination-driven self-assembly of tetracene-based Ru(II) acceptor and ditopic pyridyl donors is reported. NMR and single-crystal XRD analysis observed sequential transformation of a fully characterized monomeric rectangle to molecular BRs and vice versa. Crystal structure of BRs revealed that the particular topology was enforced by the appropriate geometry of the metallacycle and multiple parallel-displaced π-π interactions between the donor and tetracene moiety of the acceptor. Computational studies based on density functional theory also supported the formation of BRs through dispersive intermolecular interactions in solution. PMID:27336181

  1. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands.

    PubMed

    Chelopo, Madichaba P; Pawar, Sachin A; Sokhela, Mxolisi K; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M

    2013-08-01

    Ruthenium complexes offer potential reduced toxicity compared to current platinum anticancer drugs. 1,2,3,4-tetrahydrisoquinoline amino alcohol ligands were synthesised, characterised and coordinated to an organometallic Ru(II) centre. These complexes were evaluated for activity against the cancer cell lines MCF-7, A549 and MDA-MB-231 as well as for toxicity in the normal cell line MDBK. They were observed to be moderately active against only the MCF-7 cells with the best IC₅₀ value of 34 μM for the cis-diastereomeric complex C4. They also displayed excellent selectivity by being relatively inactive against the normal MDBK cell line with SI values ranging from 2.3 to 7.4. PMID:23827181

  2. New probe of solvent accessibility of bound photosensitizers. Part 2. Ruthenium(II) and Osmium(II) photosensitizers in triton X-100 micelles

    SciTech Connect

    Dressick, W.J.; Hauenstein, B.L. Jr.; Gilbert, T.B.; Demas, J.N.

    1984-07-19

    We report here an extension of our deuterium isotope method for determining F, the degree of solvent accessibility of bound photosensitizers, to nonionic micelle systems. In particular we examine the nonionic surfactant Triton X-100 with Ru(II) and Os(II) photosensitizers. A four-class system based on emission spectral shifts and F values is proposed for categorizing sensitizer-micelle interactions. A model based on competition between water and Triton for solvation of the complexes explains our results. Our present data, when combined with earlier sodium lauryl sulfate (NaLS) results, provide a clearer picture of the relative importance of solvation as well as hydrophobic and electrostatic interactions in photosensitizer binding. 18 references, 1 figure, 1 table.

  3. Energy degradation pathways and binding sites environment of micelle bound ruthenium(II) photosensitizers

    SciTech Connect

    Dressick, W.J.; Cline, J. III; Demas, J.N.; DeGraff, B.A.

    1986-11-26

    A series of ..cap alpha..-diimine Ru(II) sensitizers were studied in aqueous, alcohol, and sodium lauryl sulfate (NaLS) micellar solutions. The emission efficiency, lifetime, and spectra change dramatically on micellization. From the temperature dependence of the excited-state lifetime and luminescence quantum efficiencies, coupled with spectral fitting, they interpret these changes and elucidate the environment of the micellized sensitizer. The increased efficiencies and lifetimes on micellization arise from decreased rates of deactivation via the photoactive d-d state and by a decrease in other intramolecular nonradiative paths. Radiationless decay theory permits semiquantitative calculation of nonradiative rate constants. A model describing the binding site and local solvent environment for the sensitizers is proposed. Implications of the results for solar energy conversion schemes are described.

  4. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2'-bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects.

    PubMed

    De, Prinaka; Maji, Somnath; Chowdhury, Abhishek Dutta; Mobin, Shaikh M; Mondal, Tapan Kumar; Paretzki, Alexa; Lahiri, Goutam Kumar

    2011-12-14

    The present article describes ruthenium nitrosyl complexes with the {RuNO}(6) and {RuNO}(7) notations in the selective molecular frameworks of [Ru(II)([9]aneS(3))(bpy)(NO(+))](3+) (4(3+)), [Ru(II)([9]aneS(3))(pap) (NO(+))](3+) (8(3+)) and [Ru(II)([9]aneS(3))(bpy)(NO˙)](2+) (4(2+)), [Ru(II)([9]aneS(3))(pap)(NO˙)](2+) (8(2+)) ([9]aneS(3) = 1,4,7-trithiacyclononane, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine), respectively. The nitrosyl complexes have been synthesized by following a stepwise synthetic procedure: {Ru(II)-Cl} → {Ru(II)-CH(3)CN} → {Ru(II)-NO(2)} → {Ru(II)-NO(+)} → {Ru(II)-NO˙}. The single-crystal X-ray structure of 4(3+) and DFT optimised structures of 4(3+), 8(3+) and 4(2+), 8(2+) establish the localised linear and bent geometries for {Ru-NO(+)} and {Ru-NO˙} complexes, respectively. The crystal structures and (1)H/(13)C NMR suggest the [333] conformation of the coordinated macrocyclic ligand ([9]aneS(3)) in the complexes. The difference in π-accepting strength of the co-ligands, bpy in 4(3+) and pap in 8(3+) (bpy < pap) has been reflected in the ν(NO) frequencies of 1945 cm(-1) (DFT: 1943 cm(-1)) and 1964 cm(-1) (DFT: 1966 cm(-1)) and E°({Ru(II)-NO(+)}/{Ru(II)-NO˙}) of 0.49 and 0.67 V versus SCE, respectively. The ν(NO) frequency of the reduced {Ru-NO˙} state in 4(2+) or 8(2+) however decreases to 1632 cm(-1) (DFT: 1637 cm(-1)) or 1634 cm(-1) (DFT: 1632 cm(-1)), respectively, with the change of the linear {Ru(II)-NO(+)} geometry in 4(3+), 8(3+) to bent {Ru(II)-NO˙} geometry in 4(2+), 8(2+). The preferential stabilisation of the eclipsed conformation of the bent NO in 4(2+) and 8(2+) has been supported by the DFT calculations. The reduced {Ru(II)-NO˙} exhibits free-radical EPR with partial metal contribution revealing the resonance formulation of {Ru(II)-NO˙}(major)↔{Ru(I)-NO(+)}(minor). The electronic transitions of the complexes have been assigned based on the TD-DFT calculations on their DFT optimised structures. The

  5. Tracking reactive intermediates by FTIR monitoring of reactions in low-temperature sublimed solids: nitric oxide disproportionation mediated by ruthenium(II) carbonyl porphyrin Ru(TPP)(CO).

    PubMed

    Azizyan, Arsen S; Kurtikyan, Tigran S; Martirosyan, Garik G; Ford, Peter C

    2013-05-01

    Interaction of NO ((15)NO) with amorphous layers of Ru(II) carbonyl porphyrin (Ru(TPP)(CO), TPP(2-) = meso-tetraphenylporphyrinato dianion) was monitored by FTIR spectroscopy from 80 K to room temperature. An intermediate spectrally characterized at very low temperatures (110 K) with ν(CO) at 2001 cm(-1) and ν(NO) at 1810 cm(-1) (1777 cm(-1) for (15)NO isotopomer) was readily assigned to the mixed carbonyl-nitrosyl complex Ru(TPP)(CO)(NO), which is the logical precursor to CO labilization. Remarkably, Ru(TPP)-mediated disproportionation of NO is seen even at 110 K, an indication of how facile this reaction is. By varying the quantity of supplied NO, it was also demonstrated that the key intermediate responsible for NO disproportionation is the dinitrosyl complex Ru(TPP)(NO)2, supporting the conclusion previously made from solution experiments. PMID:23573997

  6. On a magnetic-luminescent nanocomposite for oxygen sensing application: Construction, characterization and sensing performance.

    PubMed

    Chen, Tieyu; Dai, Henry; Peng, Xing

    2015-11-01

    This paper was devoted to the construction of a magnetic-luminescence nanocomposite for oxygen sensing application, where superparamagnetic Fe3O4 and silica molecular sieve MCM-41 were chosen as the inner core and the outer shell, respectively. A Ru(II) complex was grafted into MCM-41 shell through a coupling ligand N1-(5H-cyclopenta[1,2-b:5,4-b']dipyridin-5-ylidene)benzene-1,4-diamine (denoted as Dafo-Ph-NH2). The final composite was analyzed by electron microscope images, XRD, IR spectra, thermogravimetry and N2 adsorption/desorption. Oxygen sensing performance of this composite was evaluated. Sensitivity of 5.8 (the ratio of emission intensity in pure N2 to that in pure O2) and response time of 16s were obtained with good photostability. PMID:26099825

  7. A comparative DFT study on aquation and nucleobase binding of ruthenium (II) and osmium (II) arene complexes.

    PubMed

    Wang, Hanlu; Zeng, Xingye; Zhou, Rujin; Zhao, Cunyuan

    2013-11-01

    The potential energy surfaces of the reactions of organometallic arene complexes of the type [(η (6)-arene)M(II)(pic)Cl] (where pic = 2-picolinic acid, M = Ru or Os) were examined by a DFT computational study. Among the seven density functional methods, hybrid exchange functional B3LYP outperforms the others to explain the aquation of the complexes. The reactions and binding energies of Ru(II) and Os(II) arene complexes with both 9EtG and 9EtA were studied to gain insight into the reactivity of these types of organometallic complexes with DNA. The obtained data rationalize experimental observation, contributing to partly understanding the potential biological and medical applications of organometallic complexes. PMID:24037457

  8. Synthesis of N4 donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Ravi krishna, E.; Muralidhar Reddy, P.; Sarangapani, M.; Hanmanthu, G.; Geeta, B.; Shoba Rani, K.; Ravinder, V.

    2012-11-01

    A series of tetraaza (N4 donor) macrocyclic ligands (L1-L4) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, 1H &13C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant.

  9. Iodide Recognition and Sensing in Water by a Halogen‐Bonding Ruthenium(II)‐Based Rotaxane

    PubMed Central

    Langton, Matthew J.; Marques, Igor; Robinson, Sean W.; Félix, Vítor

    2015-01-01

    Abstract The synthesis and anion‐recognition properties of the first halogen‐bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen‐bonding axle component, which is stoppered with water‐solubilizing permethylated β‐cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)‐based macrocycle component. 1H NMR anion‐binding titrations in D2O reveal the halogen‐bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free‐energy calculations. Photo‐physical investigations demonstrate the ability of the interlocked halogen‐bonding host to sense iodide in water, through enhancement of the macrocycle component’s RuII metal–ligand charge transfer (MLCT) emission. PMID:26626866

  10. A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector

    PubMed Central

    Qiu, Kangqiang; Yu, Bole; Huang, Huaiyi; Zhang, Pingyu; Huang, Juanjuan; Zou, Shanshan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2015-01-01

    Fluorescent tracking gene delivery could provide us with a better understanding of the critical steps in the transfection process. However, for in vivo tracking applications, a small diameter (<10 nm) is one of the rigorous requirements for tracking vectors. Herein, we have demonstrated a new paradigm for two-photon tracking gene delivery based on a dendritic nano-sized hexanuclear ruthenium(II) polypyridyl complex. Because this metallodendrimer has a multivalent periphery, the complex, which is 6.1 nm, showed high stability and excellent dispersibility and could stepwise condense DNA in vitro. With the outstanding photochemical properties of Ru(II) polypyridyl, this complex could track gene delivery in vivo using one- and two-photon imaging. PMID:26185052

  11. Ruthenium(II) complexes of 1,3-thiazolidine-2-thione: Cytotoxicity against tumor cells and anti-Trypanosoma cruzi activity enhanced upon combination with benznidazole.

    PubMed

    Corrêa, Rodrigo S; da Silva, Monize M; Graminha, Angelica E; Meira, Cássio S; Santos, Jamyle A F Dos; Moreira, Diogo R M; Soares, Milena B P; Von Poelhsitz, Gustavo; Castellano, Eduardo E; Bloch, Carlos; Cominetti, Marcia R; Batista, Alzir A

    2016-03-01

    Three new mixed and mononuclear Ru(II) complexes containing 1,3-thiazolidine-2-thione (tzdtH) were synthesized and characterized by spectroscopic analysis, molar conductivity, cyclic voltammetry, high-resolution electrospray ionization mass spectra and X-ray diffraction. The complexes presented unique stereochemistry and the proposed formulae are: [Ru(tzdt)(bipy)(dppb)]PF6 (1), cis-[Ru(tzdt)2(PPh3)2] (2) and trans-[Ru(tzdt)(PPh3)2(bipy)]PF6 (3), where dppb=1,4-bis(diphenylphosphino)butane and bipy=2,2'-bipyridine. These complexes demonstrated strong cytotoxicity against cancer cell lines when compared to cisplatin. Specifically, complex 2 was the most potent cytotoxic agent against MCF-7 breast cells, while complexes 1 and 3 were more active in DU-145 prostate cells. Binding of complexes to ctDNA was determined by UV-vis titration and viscosity measurements and revealed binding constant (Kb) values in range of 1.0-4.9×10(3)M(-1), which are characteristic of compounds possessing weak affinity to ctDNA. In addition, these complexes presented antiparasitic activity against Trypanosoma cruzi. Specifically, complex 3 demonstrated strong potency, moderate selectivity index and acted in synergism with the approved antiparasitic drug, benznidazole. Additionally, complex 3 caused parasite cell death through a necrotic process. In conclusion, we demonstrated that Ru(II) complexes have powerful pharmacological activity, while the metal-free tzdtH does not provoke the same outcome. PMID:26795676

  12. Cyanide anion binding by a triarylborane at the outer rim of a cyclometalated ruthenium(II) cationic complex.

    PubMed

    Wade, Casey R; Gabbaï, François P

    2010-01-18

    As part of our ongoing interest in the design of boron-based cyanide anion receptors, we have synthesized a triaryl borane decorated by a cationic Ru(II) complex and have investigated its anion binding properties. This new borane, [(2,2'-bpy)Ru(kappa-C,N-2-(dimesitylborylphenyl)pyridinato)]OTf ([2]OTf), binds both fluoride and cyanide anions in organic solvents to afford 2-F and 2-CN whose crystal structures have been determined. UV-vis titrations in 9/1 CHCl(3)/DMF (vol.) afforded K((F(-))) = 1.1(+/-0.1) x 10(4) M(-1) and K((CN(-))) = 3.0(+/-1.0) x 10(6) M(-1) indicating that [2](+) has a higher affinity for cyanide than for fluoride in this solvent mixture. These elevated binding constants show that the cationic Ru(II) complex increases the anion affinity of these complexes via Coulombic and inductive effects. The UV-vis spectral changes which accompany either fluoride or cyanide binding to the boron center are similar and include a 30 nm bathochromic shift of the metal-to-ligand charge transfer band. This shift is attributed to an increase in the donor ability of the boron-substituted phenylpyridine ligand upon anion binding to the boron center. Accordingly, cyclic voltammetry revealed that the Ru(II/III) redox couple of [2]OTf (E(1/2) = +0.051 V vs Fc/Fc(+)) undergoes a cathodic shift upon F(-) (DeltaE(1/2) = -0.242 V vs Fc/Fc(+)) or CN(-) (DeltaE(1/2) = -0.198 V vs Fc/Fc(+)) binding. PMID:20000628

  13. A dinuclear [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+) complex bridged by a radical anion: synthesis, spectroelectrochemical, EPR and theoretical investigation (bpytz = 3,6-bis(3,5-dimethylpyrazolyl)1,2,4,5-tetrazine; p-cym = p-cymene).

    PubMed

    Tripathy, Suman Kumar; van der Meer, Margarethe; Sahoo, Anupam; Laha, Paltan; Dehury, Niranjan; Plebst, Sebastian; Sarkar, Biprajit; Samanta, Kousik; Patra, Srikanta

    2016-08-01

    The reaction of the chloro-bridged dimeric precursor [{(p-cym)Ru(II)Cl}(μ-Cl)]2 (p-cym = p-cymene) with the bridging ligand 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine (bpytz) in ethanol results in the formation of the dinuclear complex [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+), [1](+). The bridging tetrazine ligand is reduced to the anion radical (bpytz˙(-)) which connects the two Ru(II) centres. Compound [1](PF6) has been characterised by an array of spectroscopic and electrochemical techniques. The radical anion character has been confirmed by magnetic moment (corresponding to one electron paramagnetism) measurement, EPR spectroscopic investigation (tetrazine radical anion based EPR spectrum) as well as density functional theory based calculations. Complex [1](+) displays two successive one electron oxidation processes at 0.66 and 1.56 V versus Ag/AgCl which can be attributed to [{(p-cym)Ru(II)C}2(μ-bpytz˙(-))](+)/[{(p-cym)Ru(II)Cl}2(μ-bpytz)](2+) and [{(p-cym)Ru(II)Cl}2(μ-bpytz)](+)/[{(p-cym)Ru(III)Cl}2(μ-bpytz)](2+) processes (couples I and II), respectively. The reduction processes (couple III-couple V), which are irreversible, likely involve the successive reduction of the bridging ligand and the metal centres together with loss of the coordinated chloride ligands. UV-Vis-NIR spectroelectrochemical investigation reveals typical tetrazine radical anion containing bands for [1](+) and a strong absorption in the visible region for the oxidized form [1](2+), which can be assigned to a Ru(II) → π* (tetrazine) MLCT transition. The assignment of spectroscopic bands was confirmed by theoretical calculations. PMID:27435992

  14. Organometallic cis-Dichlorido Ruthenium(II) Ammine Complexes

    PubMed Central

    Betanzos-Lara, Soledad; Habtemariam, Abraha; Clarkson, Guy J; Sadler, Peter J

    2011-01-01

    Bifunctional neutral half-sandwich RuII complexes of the type [(η6-arene)Ru(NH3)Cl2] where arene is p-cym (1) or bip (2) were synthesised by the reaction of N,N-dimethylbenzylamine (dmba), NH4PF6 and the corresponding RuII arene dimer, and were fully characterised. X-ray crystallographic studies of [(η6-p-cym)Ru(NH3)Cl2]·{(dmba–H)(PF6)} (1a) and [(η6-bip)Ru(NH3)Cl2] (2) show extensive H-bond interactions in the solid state, mainly involving the NH3 and the Cl ligands, as well as weak aromatic stacking interactions. The half-lives for the sequential hydrolysis of 1 and 2 determined by UV/Vis spectroscopy at 310 K ranged from a few minutes for the first aquation to ca. 45 min for the second aquation; the diaqua adducts were the predominant species at equilibrium. Arene loss during the aquation of complex 2 was observed. Upon hydrolysis, both complexes readily formed mono- and di-9-ethylguanine (9-EtG) adducts in aqueous solution at 310 K. The reaction reached equilibrium after ca. 1.8 h in the case of complex 1 and was slower but more complete for complex 2 (before the onset of arene loss at ca. 2.7 h). Complexes 1 and 2 were not cytotoxic towards A2780 human ovarian cancer cells up to the maximum concentration tested (100 μM). PMID:23956682

  15. Molecular and cellular characterization of the biological effects of ruthenium(II) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid.

    PubMed

    Pierroz, Vanessa; Joshi, Tanmaya; Leonidova, Anna; Mari, Cristina; Schur, Julia; Ott, Ingo; Spiccia, Leone; Ferrari, Stefano; Gasser, Gilles

    2012-12-19

    A great majority of the Ru complexes currently studied in anticancer research exert their antiproliferative activity, at least partially, through ligand exchange. In recent years, however, coordinatively saturated and substitutionally inert polypyridyl Ru(II) compounds have emerged as potential anticancer drug candidates. In this work, we present the synthesis and detailed characterization of two novel inert Ru(II) complexes, namely, [Ru(bipy)(2)(Cpp-NH-Hex-COOH)](2+) (2) and [Ru(dppz)(2)(CppH)](2+) (3) (bipy = 2,2'-bipyridine; CppH = 2-(2'-pyridyl)pyrimidine-4-carboxylic acid; Cpp-NH-Hex-COOH = 6-(2-(pyridin-2-yl)pyrimidine-4-carboxamido)hexanoic acid; dppz = dipyrido[3,2-a:2',3'-c]phenazine). 3 is of particular interest as it was found to have IC(50) values comparable to cisplatin, a benchmark standard in the field, on three cancer cell lines and a better activity on one cisplatin-resistant cell line than cisplatin itself. The mechanism of action of 3 was then investigated in detail and it could be demonstrated that, although 3 binds to calf-thymus DNA by intercalation, the biological effects that it induces did not involve a nuclear DNA related mode of action. On the contrary, confocal microscopy colocalization studies in HeLa cells showed that 3 specifically targeted mitochondria. This was further correlated by ruthenium quantification using High-resolution atomic absorption spectrometry. Furthermore, as determined by two independent assays, 3 induced apoptosis at a relatively late stage of treatment. The generation of reactive oxygen species could be excluded as the cause of the observed cytotoxicity. It was demonstrated that the mitochondrial membrane potential in HeLa was impaired by 3 as early as 2 h after its introduction and even more with increasing time. PMID:23181418

  16. Crystal structure of cis,fac-{N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine-κ3 N,N′,N′′}di­chlorido­(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-01-01

    The reaction of di­chlorido­tetra­kis­(dimethyl sulfoxide)­ruthen­ium(II) with N,N-bis[(pyridin-2-yl)meth­yl]methyl­amine aff­ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol­ecule. The N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d 6 RuII is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa­hedral coordination geometry of the RuII cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  17. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    PubMed Central

    Lu, Yiyu; Shen, Ting; Yang, Hua; Gu, Weiguang

    2016-01-01

    Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation. PMID:27213353

  18. Excited states of M(II,d sup 6 )-4 prime -Phenylterpyridine complexes: Electron localization

    SciTech Connect

    Amouyal, E.; Mouallem-Bahout, M. ); Calzaferri, G. )

    1991-10-03

    The authors spectroscopic and photophysical data of para-substituted phenylterpyridine (ptpy) Ru(II) complexes and molecular orbital studies of the Fe(II), Ru(II), and Os(II) compounds (M(R-ptpy){sub 2}){sup 2+}, R=H, CH{sub 3}, OH, OCH{sub 3}, and Cl. The visible charge-transfer absorption of the (Ru(R-ptpy){sub 2}){sup 2+} is almost twice as intense as observed for the corresponding 2,2{prime}-bipyridine (bpy) complex (Ru(bpy){sub 3}){sup 2+}, and it is red shifted by about 50 nm. The luminescence in solution and in membranes (Nafion, cellophane) is very weak at room temperature, and the luminescence decay time is on the order of a few nanoseconds. In a glass at 77K, however, the luminescence quantum yield is 0.4 and the decay time 13 {mu}s. Excited-state absorption spectra measured at room temperature by laser flash spectroscopy support the interpretation that the first excited state is of the MLCT type. The similarity of the excited-state absorptions to those of the ligand radical anions strengthens the idea that the excited electron is localized on a single ligand. The low luminescence quantum yield at room temperature is though to be due to low-energy intramolecular vibrations of the nonrigid complex and not to the coupling with d states. Lowering the temperature results in freezing these intramolecular movements and hence in significantly increasing the luminescence quantum yield. The molecular orbital studies indicate that it is reasonable to describe the MLCT state as ((L)Ru{sup III}(L{sm bullet}{sup {minus}})){sup 2+} because the perpendicular conformation of the two ligands causes all {pi} orbitals to be accidentally 2-fold degenerate and therefore a small asymmetric distortion is sufficient to favor the localized situation.

  19. Nearest- and next-nearest-neighbor Ru(II)/Ru(III) electronic coupling in cyanide-bridged tetra-ruthenium square complexes.

    PubMed

    Lin, Ju-Ling; Tsai, Chia-Nung; Huang, Sheng-Yi; Endicott, John F; Chen, Yuan-Jang; Chen, Hsing-Yin

    2011-09-01

    Electrochemical properties of cyanide-bridged metal squares, [Ru(4)](4+) and [Rh(2)-Ru(2)](6+), clearly demonstrate the role of the nearest (NN) metal moiety in mediating the next-nearest neighbor (NNN) metal-to-metal electronic coupling. The differences in electrochemical potentials for successive oxidations of equivalent Ru(II) centers in [Ru(4)](4+) are ΔE(1/2) = 217 mV and 256 mV and are related to intense, dual metal-to-metal-charge-transfer (MMCT) absorption bands. This contrasts with a small value of ΔE(1/2) = 77 mV and no MMCT absorption bands observed to accompany the oxidations of [Rh(2)-Ru(2)](6+). These observations demonstrate NN-mediated superexchange mixing by the linker Ru of NNN Ru(II) and Ru(III) moieties and that this mixing results in a NNN contribution to the ground state stabilization energy of about 90 ± 20 meV. In contrast, the classical Hush model for mixed valence complexes with the observed MMCT absorption parameters predicts a NNN stabilization energy of about 6 meV. The observations also indicate that the amount of charge delocalization per Ru(II)/Ru(III) pair is about 4 times greater for the NN than the NNN couples in these CN-bridged complexes, which is consistent with DFT modeling. A simple fourth-order secular determinant model is used to describe the effects of donor/acceptor mixing in these complexes. PMID:21809814

  20. Synthesis, characterization, and reactivity of ruthenium diene/diamine complexes including catalytic hydrogenation of ketones.

    PubMed

    Morilla, M Esther; Rodríguez, Pilar; Belderrain, Tomas R; Graiff, Claudia; Tiripicchio, Antonio; Nicasio, M Carmen; Pérez, Pedro J

    2007-10-29

    Thermal reactions between [RuCl2(diene)]n (diene = 2,5-norbornadiene, nbd; 1,5-cyclooctadiene, cod) with an excess of N,N,N',N'-tetramethylethylene diamine (tmeda) afforded derivatives [RuCl2(diene)(tmeda)] (diene = nbd, 1; cod, 2) as a mixture of cis and trans isomers. When thermolysis was performed under H2 mixtures of hydride species [RuCl(H)(diene)(tmeda)] (diene = nbd, 3; cod, 4) and the bis-tmeda adduct trans-[RuCl2(tmeda)2] (5) were obtained in different ratios depending upon the reaction conditions and reaction times. Heating polymeric Ru(II) precursors in toluene in the presence of a 5-fold excess of the bulkier N,N,N',N'-tetraethylethylene diamine (teeda) resulted in a rare diamine dealkylation process with formation of trans-[RuCl2(nbd)(Et2NCH2CH2NHEt)] (6) and trans-[RuCl2(cod)(EtHNCH2CH2NHEt)] (7) in high yields. The presence of N-H functionalities in the coordinated diamine ligands of 6 and 7 was unambiguously established by single-crystal X-ray diffraction studies. The dealkylation process of the teeda ligand seems to proceed intramolecularly as shown by solution NMR studies performed with the soluble Ru(II) precursors trans-[RuCl2(amine)2(diene)] (diene = nbd, amine = morpholine, 9; diene = cod, amine = Et2NH, 10). The above complexes [RuCl2(diene)(diamine)] have been tested as precatalysts in the hydrogenation of ketones both for transfer as well as direct hydrogenation, the latter route being the most effective. PMID:17900107

  1. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts.

    PubMed

    Fu, Ying; Sanchez-Cano, Carlos; Soni, Rina; Romero-Canelon, Isolda; Hearn, Jessica M; Liu, Zhe; Wills, Martin; Sadler, Peter J

    2016-05-28

    The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts. PMID:27109147

  2. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study.

    PubMed

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V

    2011-01-14

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl(2) (from the RAPTA family) and [Ru(arene)(en)Cl](+) (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP∕6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt∕Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal∕mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation. PMID:21241133

  3. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    NASA Astrophysics Data System (ADS)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  4. Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light.

    PubMed

    Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya; Wada, Keisuke; Yamakata, Akira; Ishitani, Osamu; Maeda, Kazuhiko

    2016-04-20

    A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date. The results of photocatalytic reactions, emission decay measurements, and time-resolved infrared spectroscopy indicated that Ag nanoparticles on C3N4 collected electrons having lifetimes of several milliseconds from the conduction band of C3N4, which were transferred to the excited state of RuRu', thereby promoting photocatalytic CO2 reduction driven by two-step photoexcitation of C3N4 and RuRu'. This study also revealed that the RuRu'/Ag/C3N4 hybrid photocatalyst worked efficiently in water containing a proper electron donor, despite the intrinsic hydrophobic nature of C3N4 and low solubility of CO2 in an aqueous environment. PMID:27027822

  5. Ru(ii)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents

    NASA Astrophysics Data System (ADS)

    Martínez-Calvo, Miguel; Orange, Kim N.; Elmes, Robert B. P.; La Cour Poulsen, Bjørn; Williams, D. Clive; Gunnlaugsson, Thorfinnur

    2015-12-01

    The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05598a

  6. Luminescence characteristics of Ru complexes immobilized on porous glass

    NASA Astrophysics Data System (ADS)

    Zemskii, Vladimir I.; Kolesnikov, Yuri L.; Veresov, A. V.

    1995-05-01

    Probes using luminescent transition metal complexes for determination of contents and conditions of environment are very promising. This work deals with the investigation of spectral properties of highly luminescent Ru(II) polypyridil complexes with such ligands as 2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1, 10-phenanthroline and their substitution analogues immobilized on porous glass surface. The object under investigation possesses a number of desirable features, since it combines luminescence properties of metal-ligand complexes with mechanical and technological advantages associated with employment of porous glass matrix. Emission of Ru(II) polypyridil complexes is typically dominated by a series of lowlying metal to ligand charge-transfer excited states. Luminescence spectra reveal wide structureless band with maxima ranging from 605 nm for Ru-tris-1,10-phenanthroline to 645 nm for Ru-4,7-diphenyl-1, 10-phenanthroline. The luminescence band shape and placement are practically independent of excitation wavelength. The radiative transition from the excited states is strongly influenced by external factors, such as presence of a quencher or temperature variations. The experiments revealed nonmonotonous character of temperature dependence of luminescence intensity. While the compositions are heated, the original luminescence quantum yield downfall in a temperature range up to 110 K is reversed and there appear to be an interval (110 - 200 K for Ru-4,7-diphenyl-1, 10-phenanthroline), where quantum yield rises, reaching maximum at 200 K. Subsequent heating up to 370 K is followed by renewal of quenching. This phenomena could be explained taking into account porous matrix inhomogeneity, leading to the existence of complexes with different orientation as to the matrix surface.

  7. Proton-induced reversible modulation of the luminescent output of rhenium(I), iridium(III), and ruthenium(II) tetrazolate complexes.

    PubMed

    Werrett, Melissa V; Muzzioli, Sara; Wright, Phillip J; Palazzi, Antonio; Raiteri, Paolo; Zacchini, Stefano; Massi, Massimiliano; Stagni, Stefano

    2014-01-01

    One of the distinct features of metal-tetrazolate complexes is the possibility of performing electrophilic additions onto the imine-type nitrogens of the coordinated five-membered ring. These reactions, in particular, provide a useful tool for varying the main structural and electronic properties of the starting tetrazolate complexes. In this paper, we demonstrate how the use of a simple protonation-deprotonation protocol enables us to reversibly change, to a significant extent, the light-emission output and performance of a series of Re(I)-tetrazolate-based phosphors of the general formulation fac-[Re(N(∧)N)(CO)3L], where N(∧)N denotes diimine-type ligands such as 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and L represents a series of different 5-aryl tetrazolates. Indeed, upon addition of triflic acid to these neutral Re(I) complexes, a consistent blue shift (Δλmax ca. 50 nm) of the emission maximum is observed and the protonated species also display increased quantum yield values (4-13 times greater than the starting compounds) and longer decay lifetimes. This alteration can be reversed to the initial condition by further treating the protonated Re(I) complex with a base such as triethylamine. Interestingly, the reversible modulation of luminescent features by the same protonation-deprotonation mechanism appears as a quite general characteristic of photoactive metal tetrazolate complexes, even for compounds in which the 2-pyridyl tetrazolate ligands coordinate the metal center with a bidentate mode, such as the corresponding Ir(III) cyclometalates [Ir(C(∧)N)2L] and the Ru(II) polypyridyl derivatives [Ru(bpy)2L](+). In these cases, the protonation of the starting materials leads to red-shifted and more intense emissions for the Ir(III) complexes, while almost complete quenching is observed in the case of the Ru(II) analogues. PMID:24354312

  8. Half-sandwich RuCl2(η(6)-p-cymene) core complexes containing sulfur donor aroylthiourea ligands: DNA and protein binding, DNA cleavage and cytotoxic studies.

    PubMed

    Jeyalakshmi, Kumaramangalam; Haribabu, Jebiti; Bhuvanesh, Nattamai S P; Karvembu, Ramasamy

    2016-08-01

    A series of Ru(ii)(η(6)-p-cymene) complexes (1-4) bearing the general formula [RuCl2(η(6)-p-cymene)L] (L = monodentate aroylthiourea ligand) has been synthesized and characterized by analytical and various spectroscopic techniques. The neutral monodentate coordination of aroylthiourea with Ru via an S atom was confirmed by single crystal X-ray diffraction study. The complexes were tested for their ability to interact with DNA and protein. The complexes bound with calf thymus DNA (CT DNA) with the intrinsic binding constant value in the order of 10(4) M(-1). The intercalative mode of binding was confirmed by the ethidium bromide (EB) displacement study. The interaction of the complexes with CT DNA was further supported by viscosity measurements and circular dichroic (CD) spectra. The Ru(ii) complexes cleaved the supercoiled DNA without the need of any external agent. The spectroscopic evidence showed good binding efficacy of the complexes with BSA (Bovine Serum Albumin). The alterations in the secondary structure of BSA by the Ru(ii) complexes were confirmed by synchronous fluorescence spectra. Cytotoxicity examination by MTT assay was carried out in two cancer cell lines (MCF7 and A549) and one non-cancerous cell line (L929). Complex 4 showed significant activity [IC50 = 52.3 (MCF7) and 54.6 (A549) μM] which was comparable with that of similar known complexes. The morphological changes assessed by Hoechst staining revealed that the cell death occurred by apoptosis. PMID:27435011

  9. Developing Carrier Complexes for “Caged NO”: RuCl3(NO)(H2O)2 Complexes of Dipyridylamine, (dpaH), N,N,N'N'-Tetrakis (2-Pyridyl) Adipamide, (tpada), and (2-Pyridylmethyl) Iminodiacetate, (pida2-)

    PubMed Central

    Slocik, Joseph M.; Kortes, Richard A.

    2000-01-01

    Delivery agents which can carry the {Ru(NO)}6 chromophore (“caged NO”) are desired for vasodilation and for photodynamic therapy of tumors. Toward these goals, complexes derived from [RuCl3(NO)(H2O)2]= (1) have been prepared using dipyridylamine (dpaH) as mono and bis adducts, [Ru(NO)Cl3(dpaH)] = (2) and [Ru(NO)Cl(dpaH)2]Cl2 = (3). The dpaH ligands coordinate cis to the Ru(NO) axis.The mono derivative is a model for a potential DNA groove-spanning binuclear complex {[RuNO)Cl3]2(tpada)} = (4) which has two DNA-coordinating RuII centers, photo-labile {Ru(NO)}6 sites, and a groove-spanning tether moiety.The binuclear assembly is prepared from the tethered dipyridylamine ligand N,N,N',N'-tetrakis(2-pyridylmethyl)adipamide (tpada) which has recently been shown to provide a binuclear carrier complex suited to transporting RuII and PdII agents. A related complex, [Ru(NO)Cl(pida)] = (5) with the {Ru(NO)}6 moiety bound to (2-pyridylmethyl) iminodiacetate (pida2-) is also characterized as a potential “caged NO” carrier. Structural information concerning the placement of the pyridyl donor groups relative to the {Ru(NO)}6 unit has been obtained from 1H and 13C NMR and infrared methods, noting that a pyridyl donor trans to NO+ causes “trans strengthening” of this ligand for [Ru(NO)Cl(pida)], whereas placement of pyridyl groups cis to NO+ causes a weakening of the N-O bond and a lower NO stretching frequency in the dpa-based complexes. PMID:18475928

  10. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  11. Ruthenium(II) dendrimers containing carbazole-based chromophores as branches.

    PubMed

    McClenaghan, Nathan D; Passalacqua, Rosalba; Loiseau, Frédérique; Campagna, Sebastiano; Verheyde, Bert; Hameurlaine, Ahmed; Dehaen, Wim

    2003-05-01

    Three new luminescent and redox-active Ru(II) complexes containing novel dendritic polypyridine ligands have been synthesized, and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox behavior have been investigated. The dendritic ligands are made of 1,10-phenanthroline coordinating subunits and of carbazole groups as branching sites. The first and second generation species of this novel class of dendritic ligands (L1 and L2, respectively; see Figure 1 for their structural formulas) have been prepared and employed. The metal dendrimers investigated are [Ru(bpy)(2)(L1)](2+) (1; bpy = 2,2'-bipyridine), [Ru(bpy)(2)(L2)](2+) (2), and [Ru(L1)(3)](2+) (3; see Figure 2). For the sake of completeness and comparison purposes, also the absorption spectra, redox behavior, and luminescence properties of L1 and L2 have been studied, together with the properties of 3,6-di(tert-butyl)carbazole (L0) and [Ru(bpy)(2)(phen)](2+) (4, phen = 1,10-phenanthroline). The absorption spectra of the free dendritic ligands show features which can be assigned to the various subunits (i.e., carbazole and phenanthroline groups) and additional bands at lower energies (at lambda > 300 nm) which are assigned to carbazole-to-phenanthroline charge-transfer (CT) transitions. These latter bands are significantly red-shifted upon acid and/or zinc acetate addition. Both L1 and L2 exhibit relatively intense luminescence at room temperature in fluid solution (lifetimes in the nanosecond time scale, quantum yields of the order of 10(-2)-10(-1)) and at 77 K in rigid matrix (lifetimes in the millisecond time scale). Such a luminescence is assigned to CT states at room temperature and to phenanthroline-centered pi-pi triplet levels at 77 K. The room-temperature luminescence of L1 and L2 is totally quenched by acid or zinc acetate. The metal dendrimers exhibit the typical absorption and luminescence properties of Ru(II) polypyridine

  12. Fabrication of Three-Layer-Component Organoclay Hybrid Films with Reverse Deposition Orders by a Modified Langmuir-Schaefer Technique and Their Pyroelectric Currents Measured by a Noncontact Method.

    PubMed

    Hirahara, Masanari; Umemura, Yasushi

    2015-08-01

    In an aqueous clay mineral (montmorillonite) dispersion at a low concentration, isolated clay nanosheets with negative charges were suspended. When a solution of amphiphilic octadecylammonium chloride (ODAH(+)Cl(-)) was spread on an air-dispersion interface, the clay nanosheets were adsorbed on the ODAH(+) cations at the interface to form a stable ultrathin floating film. The floating film was transferred onto a substrate by the Schaefer method, and then the film was immersed in a [Ru(dpp)3]Cl2 (dpp = 4,7-diphenyl-1,10-phenanthroline) solution. The Ru(II) complex cations were adsorbed on the film surface because the film surface possessed a cation-exchange ability. The layers of ODAH(+), clay nanosheets, and [Ru(dpp)3](2+) were deposited in this order. By repeating these procedures, three-layer-component films were fabricated (OCR films). In a similar way, three-layer-component films in which the layers of [Ru(dpp)3](2+), clay nanosheets, and ODAH(+) were deposited in the reverse order (RCO films) were prepared by spreading a [Ru(dpp)3](ClO4)2 solution and immersing the films in an ODAH(+)Cl(-) solution. Both OCR and RCO films were characterized by surface pressure-molecular area (π-A) curve measurements, IR and visible spectroscopy, and the XRD method. The OCR and RCO film systems possessed nearly the same properties in the densities of ODAH(+) and [Ru(dpp)3](2+) and the tilt angle of the Ru(II) complex cation, although the layer distance for the RCO film was a little longer than that for the OCR film and the layered structure for the RCO film was less ordered than that for the OCR film. Pyroelectric currents for the films were measured by a noncontact method using an (241)Am radioactive electrode. When the films were heated, the pyroelectric currents were observed and the current directions for the OCR and RCO films were different. This was clear evidence that the layer order in the OCR film was reverse of that in the RCO film. PMID:26196531

  13. Ultrafast dynamics in multifunctional Ru(II)-loaded polymers for solar energy conversion.

    PubMed

    Morseth, Zachary A; Wang, Li; Puodziukynaite, Egle; Leem, Gyu; Gilligan, Alexander T; Meyer, Thomas J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2015-03-17

    The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2

  14. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite

  15. Spectroscopic properties and electronic structure of pentammineruthenium(II) dinitrogen oxide and corresponding nitrosyl complexes: binding mode of N(2)O and reactivity.

    PubMed

    Paulat, Florian; Kuschel, Torben; Näther, Christian; Praneeth, V K K; Sander, Ole; Lehnert, Nicolai

    2004-11-01

    The spectroscopic properties and the electronic structure of the only nitrous oxide complex existing in isolated form, [Ru(NH(3))(5)(N(2)O)]X(2) (1, X = Br(-), BF(4)(-)), are investigated in detail in comparison to the nitric oxide precursor, [Ru(NH(3))(5)(NO)]X(3) (2). IR and Raman spectra of 1 and of the corresponding (15)NNO labeled complex are presented and assigned with the help of normal coordinate analysis (NCA) and density functional (DFT) calculations. This allows for the identification of the Ru-N(2)O stretch at approximately 300 cm(-)(1) and for the unambiguous definition of the binding mode of the N(2)O ligand as N-terminal. Obtained force constants are 17.3, 9.6, and 1.4 mdyn/A for N-N, N-O, and Ru-N(2)O, respectively. The Ru(II)-N(2)O bond is dominated by pi back-donation, which, however, is weak compared to the NO complex. This bond is further weakened by Coulomb repulsion between the fully occupied t(2g) shell of Ru(II) and the HOMO of N(2)O. Hence, nitrous oxide is an extremely weak ligand to Ru(II). Calculated free energies and formation constants for [Ru(NH(3))(5)(L)](2+) (L = NNO, N(2), OH(2)) are in good agreement with experiment. The observed intense absorption at 238 nm of 1 is assigned to the t(2g) --> pi(*) charge transfer transition. These data are compared in detail to the spectroscopic and electronic structural properties of NO complex 2. Finally, the transition metal centered reaction of nitrous oxide to N(2) and H(2)O is investigated. Nitrous oxide is activated by back-donation. Initial protonation leads to a weakening of the N-O bond and triggers electron transfer from the metal to the NN-OH ligand through the pi system. The implications of this mechanism for biological nitrous oxide reduction are discussed. PMID:15500336

  16. Luminescent Nafion membranes dyed with ruthenium(II) complexes as sensing materials for dissolved oxygen

    SciTech Connect

    Garcia-Fresnadillo, D.; Orellana, G.; Marazuela, M.D.; Moreno-Bondi, M.C.

    1999-09-14

    The absorption spectroscopy, photophysics, and dioxygen quenching of [RuL{sub 3}]{sup 2+} luminescent probes, where L stands for 2,2{prime}-bipyridine, 1,10-phenanthroline, 5-octadecanamide-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline (dip), electrostatically loaded onto Nafion ionomer membrane have been investigated in air and in organic solvents and water, with the aim of developing rugged materials for optical sensing of molecular oxygen. The significant differences in size and hydrophobicity of the Ru(II) dyes have been used to probe their location within the perfluorinated ionomer pore network, as well as to gain insight into the oxygen accessibility to its microcrystalline and interfacial domains. While the absorption maximums of the probes (444--458nm) remain relative unchanged, their emission wavelengths (578--622 nm) are extremely sensitive to the degree of Nafion swelling by the solvent. This feature has been characterized by measuring the density (1.19--2.04 g cm{sup {minus}3}) of the solvent-saturated ionomer and the mass and volume fractions of solvents (0.0--0.7) uptake by the original acidic Nafion and Li{sup +}-, Na{sup +}-, or K{sup +}-exchanged films. The excited-state lifetimes of the [RuL{sub 3}]{sup 2+} complexes (0.03--4.9{micro}s) reflect important variations of the microenvironment around the luminescent probes, which are rationalized in terms of their location and oxygen accessibility when loaded onto the polysulfonated material. Emission quenching rate constants of 1.7 {+-} 0.3 M{sup {minus}1}s{sup {minus}1} have been measured for the [Ru(dip){sub 3}]{sup 2+}-dyed films dipped in methanol; their oxygen sensitivity turns out to be independent of the Ru(II) loading and counterion of Nafion. Highly oxygen-sensitive luminescent membranes, suitable for continuous monitoring in organic solvents, water, or gas phase, have been prepared by immobilization of [Ru(dip){sub 3}]{sup 2+} indicator in 178-{micro}m thick Nafion, with response

  17. Evaluation of Binding Selectivities and Affinities of Platinum-Based Quadruplex Interactive Complexes by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Pierce, Sarah E.; Kieltyka, Roxanne; Sleiman, Hanadi F.; Brodbelt, Jennifer S.

    2009-01-01

    The quadruplex binding affinities and selectivities of two large π-surface PtII phenanthroimidazole complexes, as well as a smaller π-surface platinum bipyridine complex and a larger RuII complex, were evaluated by electrospray ionization mass spectrometry. Circular dichroism (CD) spectroscopy was used to determine the structures of various quadruplexes and to study the thermal denaturation of the quadruplexes in the absence and presence of the metal complexes. In addition, chemical probe reactions with glyoxal were used to monitor the changes in the quadruplex conformation because of association with the complexes. The platinum phenanthroimidazole complexes show increased affinity for several of the quadruplexes with elongated loops between guanine repeats. Quadruplexes with shorter loops exhibited insubstantial binding to the transition metal complexes. Similarly binding to duplex and single strand oligonucleotides was low overall. Although the ruthenium-based metal complex showed somewhat enhanced quadruplex binding, the PtII complexes had higher quadruplex affinities and selectivities that are attributed to their square planar geometries. The chemical probe reactions using glyoxal indicated increased reactivity when the platinum phenanthroimidazole complexes were bound to the quadruplexes, thus suggesting a conformational change that alters guanine accessibility. PMID:19117031

  18. Application of Hectorite-Coated Silica Gel Particles as a Packing Material for Chromatographic Resolution.

    PubMed

    Okada, Tomohiko; Kumasaki, Aisaku; Shimizu, Kei; Yamagishi, Akihiko; Sato, Hisako

    2016-08-01

    A new type of clay column particles was prepared, in which a hectorite layer (∼0.1 µm thickness) covered uniformly the surface of amorphous silica particles with an average radius of 5 µm (ref. Okada et al., The Journal of Physical Chemistry C, 116, 21864-21869 (2012)). The hectorite layer was fully ion-exchanged with Δ-[Ru(phen)3](2+) (phen = 1,10-phenanthroline) ions by being immersed in a methanol solution of Δ-[Ru(phen)3](ClO4)2 (1 mM). The modified silica gel particles thus prepared were packed into a stainless steel tube (4 mm (i.d.) × 25 cm) as a high-performance liquid chromatography column. Optical resolution was achieved when the racemic mixtures of several metal complexes or organic molecules were eluted with methanol. In the case of tris(acetylacetonato)ruthenium(III) ([Ru(acac)3]), for example, the Λ- and Δ-enantiomers gave an elution volume of 2.6 and 3.0 mL, respectively, with the separation factor of 1.2. The total elution volume (5 mL) was nearly one-tenth for the previously reported column of the same size (RU-1 (Shiseido Co., Ltd.)) packed with the spray-dried particles of synthetic hectorite (average radius 5 µm) ion-exchanged by the same Ru(II) complexes. PMID:27130880

  19. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.

    PubMed

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally

    2015-10-01

    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature. PMID:26327298

  20. Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy

    SciTech Connect

    Kuiken, Benjamin E. Van; Huse, Nils; Cho, Hana; Strader, Matthew L.; Lynch, Michael S.; Schoenlein, Robert W.; Khalil, Munira

    2012-05-01

    This study uses transient X-ray absorption (XA) spectroscopy and timedependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used RuII solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground (1A1) and the transient triplet (3MLCT) excited state of N34 and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient 3MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.

  1. Sequential Energy and Electron Transfer in Polynuclear Complex Sensitized TiO2 Nanoparticles.

    PubMed

    Verma, Sandeep; Kar, Prasenjit; Banerjee, Tanmay; Das, Amitava; Ghosh, Hirendra N

    2012-06-01

    Polynuclear-polypyridyl complexes exhibit a directional energy-transfer property that can improve their photosensitization activity. In the present work, the energy-transfer process is explored in a trinuclear Ru2(∧)Os1 complex using transient absorption spectroscopy. This study reveals an efficient excitation energy transfer from the terminal (Ru(II) complex) to the core (Os(II) complex) region in the ultrafast time domain (400 fs-40 ps). The excitation energy funnel is useful in improving the functionalized core activity. This is evidenced in an interfacial electron-transfer study of Ru2(∧)Os1, Ru2(∧)Ru1, and Os1 complex sensitized TiO2 nanoparticle (TiO2 NP) systems. The intramolecular energy transfer causes sequential excitation of the core part of the Ru2(∧)Os1 complex, which leads to multiexponential electron injection into TiO2 NP. Besides this, the electronic coupling between the metal ion centers stabilizes the positive charge within the trinuclear complex, which results in a slow charge recombination reaction. This study shows that polynuclear complexes can be very useful for their panchromatic effects, unidirectional energy- and electron-transfer properties. PMID:26285635

  2. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes. PMID:26673552

  3. Photoelectric Properties Based on Electric Field Modulation of Photoinduced Electron Transfer Processes in Flavin-Porphyrin Hetero-type Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Isoda, Satoru; Hanazato, Yoshio; Ueyama, Satoshi; Nishikawa, Satoshi; Akiyama, Kouich

    2004-05-01

    Metal-insulator-meal devices composed of flavin-porphyrin hetero-type Langmuir-Blodgett films showed highly efficient photoelectric properties mainly attributable to the fast charge separation process at a molecular heterojunction (MHJ) between flavin and porphyrin. The photoelectric properties of the MHJ devices showed different characteristics depending on the redox state of the central metal of porphyrin, i.e., Ru(III) or Ru(II). The rectifying behavior of the photocurrent was observed for the Ru(III)-MHJ device, whereas the Ru(II)-MHJ device did not show the rectifying behavior. We concluded that the rectifying behavior was mainly controlled by the electric field dependence of the charge recombination process. Furthermore, a bell-shaped photocurrent-voltage curve was observed for the Ru(II)-MHJ device. The mechanism underlying the negative resistance might be based on the electric field dependence of the charge shift process in flavin monolayers controlled by the inverted region mechanism of the Marcus electron transfer theory.

  4. Photodissociation Spectroscopy of Ruthenium Polypyridyl Complexes in Vacuo

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Smith, James; Weber, J. Mathias

    Photoelectrochemical water oxidation is a direct way to produce solar fuels from renewable sources. Since this reaction has a high reaction barrier, a cost-effective catalyst is necessary. Ruthenium polypyridyl complexes are promising catalysts for water oxidation. However, the mechanism of catalytic action is not well understood. One major difficulty of a mechanistic understanding is the complexity of reactive solutions under turnover conditions. To circumvent this problem, we applied electronic photodissociation spectroscopy in the UV and visible spectral range to a series of mass selected ruthenium polypyridyl complex ions in vacuo. The ions in this work are of the form [RuII-L]2+, where RuII represents ruthenium(II)-bipyridine-terpyridine, a prototype catalyst belonging to the ruthenium-polypyridyl family. By varying the ligand L, we were able to study the ligand influence on the photophysical properties of the complex. The cases where L = (H2O)1 , 2 , 3 are of particular interest because they are directly related to an intermediate in the catalytic cycle for water oxidation. Our experiment in vacuo is an essential complement to experiments in solution and provides unique information for understanding the photophysics and photochemistry of these complexes on a molecular level.

  5. Ru-Catalyzed C–H Arylation of Fluoroarenes with Aryl Halides

    PubMed Central

    2016-01-01

    Although the ruthenium-catalyzed C–H arylation of arenes bearing directing groups with haloarenes is well-known, this process has never been achieved in the absence of directing groups. We report the first example of such a process and show that unexpectedly the reaction only takes place in the presence of catalytic amounts of a benzoic acid. Furthermore, contrary to other transition metals, the arylation site selectivity is governed by both electronic and steric factors. Stoichiometric and NMR mechanistic studies support a catalytic cycle that involves a well-defined η6-arene-ligand-free Ru(II) catalyst. Indeed, upon initial pivalate-assisted C–H activation, the aryl-Ru(II) intermediate generated is able to react with an aryl bromide coupling partner only in the presence of a benzoate additive. In contrast, directing-group-containing substrates (such as 2-phenylpyridine) do not require a benzoate additive. Deuterium labeling and kinetic isotope effect experiments indicate that C–H activation is both reversible and kinetically significant. Computational studies support a concerted metalation–deprotonation (CMD)-type ruthenation mode and shed light on the unusual arylation regioselectivity. PMID:26942551

  6. Aqua­carbon­yl(ferrocenyldi­thio­phos­phon­ato-κ2 S,S′)bis­(tri­phenyl­phosphane-κP)ruthenium(II) dichloromethane mono­solvate

    PubMed Central

    Zhu, Hang; Ma, Qing; Shi, Hua-Tian; Chen, Qun; Zhang, Qian-Feng

    2013-01-01

    The structure of the title complex, [FeRu(C5H5)(C5H4OPS2)(CO)(C18H15P)2(H2O)]·CH2Cl2, consists of one neutral [{FcP(O)S2}Ru(CO)(H2O)(PPh3)2] complex [Fc = Fe(η5-C5H4)(η5-C5H5)] and one CH2Cl2 solvent mol­ecule. The geometry around the RuII atom is pseudo-octa­hedral, with two cis-binding PPh3 ligands and one chelating bidentate [Fc(O)PS2]2− ligand via two S atoms. The average Ru—S and Ru—P bond lengths are 2.434 (1) and 2.398 (1) Å, and the Ru—O and Ru—C bond lengths are 2.157 (3) and 1.826 (4) Å, respectively. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into dimers. PMID:23795003

  7. Theoretical and experimental studies of phenol oxidation by ruthenium complex with N,N,N-tris(benzimidazol-2yl-methyl)amine.

    PubMed

    Hernandez, J Guadalupe; Silva, Antonio Romero; Thangarasu, Pandiyan; Najera, Rafael Herrera; Moreno, Alfonso Duran; Ledesma, M Teresa Orta; Cruz-Borbolla, Julian; Singh, Narinder

    2015-09-01

    The ruthenium complex with (N,N,N-tris(benzimidazol-2yl-methyl)amine, L(1)) was prepared, and characterized. Fukui data were used to localize the reactive sites on the ligand. The structural and electronic properties of the complex were analyzed by DFT in different oxidation states in order to evaluate its oxidant properties for phenol oxidation. The results show that the hard Ru(IV) cation bonds preferentially with a hard base (Namine = amine nitrogen, or axial chloride ion), and soft Ru(II) with a soft base (Nbzim = benzimidazole nitrogen or axial triphenyl phosphine). Furthermore, the Jahn-Teller effect causes an elongation of the axial bond in the octahedral structure. The bonding nature and the orbital contribution to the electronic transitions of the complex were studied. The experimental UV-visible bands were interpreted by using TD-DFT studies. The complex oxidizes phenol to benzoquinone in the presence of H2O2 and the intermediate was detected by HPLC and (13)C NMR. A possible mechanism and rate law are proposed for the oxidation. The adduct formation of phenol with [Ru(O)L(1)](2+) or [Ru(OH)L(1)](+) is theoretically analyzed to show that [Ru(OH)L(1)-OPh](+) could produce the phenol radical. PMID:26252971

  8. Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer's Disease Using Ultralow Irradiance.

    PubMed

    Yin, Tiantian; Xie, Wenjie; Sun, Jing; Yang, Licong; Liu, Jie

    2016-08-01

    The structural changes of amyloid-beta (Aβ) from nontoxic monomers into neurotoxic aggregates are implicated with pathogenesis of Alzheimer's disease (AD). Over the past decades, weak disaggregation ability and low permeability to the blood-brain barrier (BBB) may be the main obstacles for major Aβ aggregation blockers. Here, we synthesized penetratin (Pen) peptide loaded poly(ethylene glycol) (PEG)-stabilized gold nanostars (AuNS) modified with ruthenium complex (Ru@Pen@PEG-AuNS), and Ru(II) complex as luminescent probes for tracking drug delivery. We revealed that Ru@Pen@PEG-AuNS could obviously inhibit the formation of Aβ fibrils as well as dissociate preformed fibrous Aβ under the irradiation of near-infrared (NIR) due to the NIR absorption characteristic of AuNS. More importantly, this novel design could be applied in medicine as an appropriate nanovehicle, being highly biocompatible and hemocompatible. In addition, Ru@Pen@PEG-AuNS had excellent neuroprotective effect on the Aβ-induced cellular toxicity by applying NIR irradiation. Meanwhile, Pen peptide could effectively improve the delivery of nanoparticles to the brain in vitro and in vivo, which overcame the major limitation of Aβ aggregation blockers. These consequences illustrated that the enhanced BBB permeability and efficient photothermolysis of Ru@Pen@PEG-AuNS are promising agents in AD therapy. PMID:27411476

  9. Anticancer Activity Studies of Ruthenium(II) Complex Toward Human Osteosarcoma HOS Cells.

    PubMed

    Zhu, Jian-Wei; Liu, Si-Hong; Zhang, Gui-Qiang; Xu, Hui-Hua; Wang, Yu-Xuan; Wu, Yong; Liu, Ya-Min; Wang, Yan; Liang, Jun-Bo; Guo, Qi-Feng

    2016-08-01

    A new Ru(II) complex [Ru(dmp)2(NMIP)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, NMIP = 2'-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4',5'-f][1,10]-phenanthroline) was synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxic activity of the complex against MG-63, U2OS, HOS, and MC3T3-e1 cell lines was investigated by MTT method. The complex shows moderate cytotoxicity toward HOS (IC50 = 35.6 ± 2.6 µM) and MC3T3-e1 (IC50 = 41.6 ± 2.8 µM) cell lines. The morphological studies show that the complex can induce apoptosis in HOS cells and cause an increase of reactive oxygen species levels and a decrease in the mitochondrial membrane potential. The cell cycle distribution demonstrates that the complex inhibits the cell growth at S phase. Additionally, the antitumor activity in vivo reveals that the complex can induce a decrease in tumor weight. PMID:27007877

  10. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells

    PubMed Central

    Zeng, Leli; Chen, Yu; Liu, Jiangping; Huang, Huaiyi; Guan, Ruilin; Ji, Liangnian; Chao, Hui

    2016-01-01

    Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)]2+ (1) to develop three Ru(II) complexes (2–4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance. PMID:26763798

  11. (η6-Benzene)(carbonato-κ2 O,O′)[di­cyclohex­yl(naphthalen-1-ylmeth­yl)phosphane-κP]ruthenium(II) chloro­form tris­olvate

    PubMed Central

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-01-01

    The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155]. PMID:25161531

  12. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy.

    PubMed

    Silva Sousa, Eduardo Henrique; Ridnour, Lisa A; Gouveia, Florêncio S; Silva da Silva, Carlos Daniel; Wink, David A; de França Lopes, Luiz Gonzaga; Sadler, Peter J

    2016-07-15

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO(-) (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the Ru(II) complex [Ru(bpy)2(SO3)(NO)](+) (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  13. Binding properties of ruthenium(II) complexes [Ru(bpy)2(ppn)](2+) and [Ru(phen)2(ppn)](2+) with triplex RNA: As molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U) triplex.

    PubMed

    Li, Jia; Sun, Yanmei; Zhu, Zhiyuan; Zhao, Hong; Tan, Lifeng

    2016-08-01

    Stable RNA triplexes play key roles in many biological processes, while triplexes are thermodynamically less stable than the corresponding duplexes due to the Hoogsteen base pairing. To understand the factors affecting the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the binding of [Ru(bpy)2(ppn)](2+) (1, bpy=2,2'-bipyridine, ppn=2,4-diaminopyrimido[5,6-b]dipyrido[2,3-f:2',3'-h]quinoxaline) and [Ru(phen)2(ppn)](2+) (2, phen=1,10-phenanthroline) to poly(U)·poly(A)*poly(U) (· denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) has been investigated. The main results obtained here suggest that complexes 1 and 2 can serve as molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U), while the effectiveness of complex 2 are more marked, suggesting that the hydrophobicity of ancillary ligands has a significant effect on the two Ru(II) complexes binding to poly(U)·poly(A)*poly(U). This study further advances our knowledge on the binding of RNA triplexes with metal complexes, particularly with octahedral ruthenium polypyridyl complexes. PMID:27287059

  14. Synthesis and structures of ruthenium–NHC complexes and their catalysis in hydrogen transfer reaction

    PubMed Central

    Chen, Chao; Lu, Chunxin; Zheng, Qing; Zhang, Min

    2015-01-01

    Summary Ruthenium complexes [Ru(L1)2(CH3CN)2](PF6)2 (1), [RuL1(CH3CN)4](PF6)2 (2) and [RuL2(CH3CN)3](PF6)2 (3) (L1= 3-methyl-1-(pyrimidine-2-yl)imidazolylidene, L2 = 1,3-bis(pyridin-2-ylmethyl)benzimidazolylidene) were obtained through a transmetallation reaction of the corresponding nickel–NHC complexes with [Ru(p-cymene)2Cl2]2 in refluxing acetonitrile solution. The crystal structures of three complexes determined by X-ray analyses show that the central Ru(II) atoms are coordinated by pyrimidine- or pyridine-functionalized N-heterocyclic carbene and acetonitrile ligands displaying the typical octahedral geometry. The reaction of [RuL1(CH3CN)4](PF6)2 with triphenylphosphine and 1,10-phenanthroline resulted in the substitution of one and two coordinated acetonitrile ligands and afforded [RuL1(PPh3)(CH3CN)3](PF6)2 (4) and [RuL1(phen)(CH3CN)2](PF6)2 (5), respectively. The molecular structures of the complexes 4 and 5 were also studied by X-ray diffraction analysis. These ruthenium complexes have proven to be efficient catalysts for transfer hydrogenation of various ketones. PMID:26664598

  15. Orbital entanglement and CASSCF analysis of the Ru–NO bond in a Ruthenium nitrosyl complex

    PubMed Central

    Freitag, Leon; Knecht, Stefan; Keller, Sebastian F.; Delcey, Mickaël G.; Aquilante, Francesco; Bondo Pedersen, Thomas; Lindh, Roland

    2015-01-01

    Complete active space self-consistent field (CASSCF) wavefunctions and an orbital entanglement analysis obtained from a density-matrix renormalisation group (DMRG) calculation are used to understand the electronic structure, and, in particular, the Ru–NO bond of a Ru nitrosyl complex. Based on the configurations and orbital occupation numbers obtained for the CASSCF wavefunction and on the orbital entropy measurements evaluated for the DMRG wavefunction, we unravel electron correlation effects in the Ru coordination sphere of the complex. It is shown that Ru–NO π bonds show static and dynamic correlation, while other Ru–ligand bonds feature predominantly dynamic correlation. The presence of static correlation requires the use of multiconfigurational methods to describe the Ru–NO bond. Subsequently, the CASSCF wavefunction is analysed in terms of configuration state functions based on localised orbitals. The analysis of the wavefunctions in the electronic singlet ground state and the first triplet state provides a picture of the Ru–NO moiety beyond the standard representation based on formal oxidation states. A distinct description of the Ru and NO fragments is advocated. The electron configuration of Ru is an equally weighted superposition of RuII and RuIII configurations, with the RuIII configuration originating from charge donation mostly from Cl ligands. However, and contrary to what is typically assumed, the electronic configuration of the NO ligand is best described as electroneutral. PMID:25767830

  16. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    PubMed

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  17. Crystal structure of trans-bis­{4-bromo-N-[(pyridin-2-yl)­methyl­idene]aniline-κ2 N,N′}di­chlorido­ruthenium(II)

    PubMed Central

    Chainok, Kittipong; Kielar, Filip

    2015-01-01

    In the title complex, [RuCl2(C12H9BrN2)2] or [RuCl2(PM-BrA)2] (PM-BrA = 4-bromo-N-(2′-pyridyl­methyl­ene)aniline), the RuII cation is located on a centre of inversion and is surrounded by four N atoms of two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement, displaying a distorted octa­hedral coordination environment. Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The benzene and pyridine rings of the PM-BrA ligand are oriented at dihedral angles of 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring. In the crystal, the complex mol­ecules are connected via C—H⋯Cl hydrogen-bonding inter­actions into a layered arrangement parallel (100). C—H⋯Br hydrogen bonding and weak aromatic π–π stacking inter­actions complete a three-dimensional supra­molecular network. PMID:26396850

  18. Surface immobilization of a tetra-ruthenium substituted polyoxometalate water oxidation catalyst through the employment of conducting polypyrrole and the layer-by-layer (LBL) technique.

    PubMed

    Anwar, Nargis; Sartorel, Andrea; Yaqub, Mustansara; Wearen, Kevin; Laffir, Fathima; Armstrong, Gordon; Dickinson, Calum; Bonchio, Marcella; McCormac, Timothy

    2014-06-11

    A tetra Ru-substituted polyoxometalate Na10[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2] (Ru4POM) has been successfully immobilised onto glassy carbon electrodes and indium tin oxide (ITO) coated glass slides through the employment of a conducting polypyrrole matrix and the layer-by-layer (LBL) technique. The resulting Ru4POM doped polypyrrole films showed stable redox behavior associated with the Ru centres within the Ru4POM, whereas, the POM's tungsten-oxo redox centres were not accessible. The films showed pH dependent redox behavior within the pH range 2-5 whilst exhibiting excellent stability towards redox cycling. The layer-by-layer assembly was constructed onto poly(diallyldimethylammonium chloride) (PDDA) modified carbon electrodes by alternate depositions of Ru4POM and a Ru(II) metallodendrimer. The resulting Ru4POM assemblies showed stable redox behavior for the redox processes associated with Ru4POM in the pH range 2-5. The charge transfer resistance of the LBL films was calculated through AC-Impedance. Surface characterization of both the polymer and LBL Ru4POM films was carried out using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Initial investigations into the ability of the Ru4POM LBL films to electrocatalytically oxidise water at pH 7 have also been conducted. PMID:24758586

  19. Targeting Human Telomeric G-Quadruplex DNA and Inhibition of Telomerase Activity With [(dmb)2Ru(obip)Ru(dmb)2]4+

    PubMed Central

    Cao, Tongcheng; Liu, Jie; Gao, Xing; Hao, Jian; Lv, Chunyan; Huang, Hailiang; Xu, Jun; Yao, Tianming

    2013-01-01

    Inhibition of telomerase by inducing/stabilizing G-quadruplex formation is a promising strategy to design new anticancer drugs. We synthesized and characterized a new dinuclear complex [(dmb)2Ru(obip)Ru(dmb)2]4+ (dmb = 4,4’-dimethyl-2,2’-bipyridine, obip = (2-(2-pyridyl)imidazo[4,5-f][1,10]phenanthroline) with high affinity for both antiparallel and mixed parallel / antiparallel G-quadruplex DNA. This complex can promote the formation and stabilize G-quadruplex DNA. Dialysis and TRAP experiments indicated that [(dmb)2Ru(obip)Ru(dmb)2]4+ acted as an excellent telomerase inhibitor due to its obvious selectivity for G-quadruplex DNA rather than double stranded DNA. In vitro co-culture experiments implied that [(dmb)2Ru(obip)Ru(dmb)2]4+ inhibited telomerase activity and hindered cancer cell proliferation without side effects to normal fibroblast cells. TUNEL assay indicated that inhibition of telomerase activity induced DNA cleavage further apoptosis in cancer cells. Therefore, RuII complex represents an exciting opportunity for anticancer drug design by specifically targeting cancer cell G-quadruplexes DNA. PMID:24386376

  20. A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT).

    PubMed

    Boreham, Elizabeth M; Jones, Lucy; Swinburne, Adam N; Blanchard-Desce, Mireille; Hugues, Vincent; Terryn, Christine; Miomandre, Fabien; Lemercier, Gilles; Natrajan, Louise S

    2015-09-28

    A new Ir(iii) cyclometallated complex bearing a fluorenyl 5-substituted-1,10-phenanthroline ligand ([Ir(ppy)2()][PF6], ppy = 2-phenylpyridine) is presented which exhibits enhanced triplet oxygen sensing properties. The efficacy of this complex to act as a photosensitiser for altering the morphology of C6 Glioma cells that represent malignant nervous tumours has been evaluated. The increased heavy metal effect and related spin-orbit coupling parameters on the photophysical properties of this complex are evidenced by comparison with Ru(ii) analogues. The complex [Ir(ppy)2()][PF6] is shown to exhibit relatively high two-photon absorption efficiencies for the lowest energy MLCT electronic transitions with two-photon absorption cross sections that range from 50 to 80 Goeppert-Mayer units between 750 to 800 nm. Quantum yields for the complex were measured up to 23% and the Stern-Volmer quenching constant, KSV was determined to be 40 bar(-1) in acetonitrile solution, confirming the high efficiency of the complex as a triplet oxygen sensitiser. Preliminary in vitro experiments with C6 Glioma cells treated with [Ir(ppy)2()][PF6], show that the complex is an efficient sensitizer for triplet oxygen, producing cytotoxic singlet oxygen ((1)O2) by two-photon excitation at 740 nm resulting in photodynamic effects that lead to localised cell damage and death. PMID:26289593

  1. Photophysical properties of amphiphilic ruthenium(II) complexes in micelles.

    PubMed

    Rajkumar, Eswaran; Mareeswaran, Paulpandian Muthu; Rajagopal, Seenivasan

    2014-09-01

    Amphiphilic ruthenium(II) complexes II–IV were synthesized and their photophysical properties were investigated in the presence of anionic (SDS), cationic (CTAB) and neutral (Triton X-100) micelles. The absorption and emission spectral data in the presence of micelles show that these Ru(II) complexes are incorporated in the micelles. There are two types of interaction between complexes I–IV and the micelles: hydrophobic and electrostatic. In the case of cationic micelles (CTAB), the hydrophobic interactions are predominant over electrostatic repulsion for the binding of cationic complexes II–IV with CTAB. In the case of anionic micelles (SDS), electrostatic interactions seem to be important in the binding of II–IV to SDS. Hydrophobic interactions play a dominant role in the binding of II–IV to the neutral micelles, Triton X-100. Based on the steady state and luminescence experiments, the enhancement of luminescence intensity and lifetime in the presence of micelles is due to the protection of the complexes from exposure to water in this environment. PMID:24976590

  2. Ru-Catalyzed C-H Arylation of Fluoroarenes with Aryl Halides.

    PubMed

    Simonetti, Marco; Perry, Gregory J P; Cambeiro, Xacobe C; Juliá-Hernández, Francisco; Arokianathar, Jude N; Larrosa, Igor

    2016-03-16

    Although the ruthenium-catalyzed C-H arylation of arenes bearing directing groups with haloarenes is well-known, this process has never been achieved in the absence of directing groups. We report the first example of such a process and show that unexpectedly the reaction only takes place in the presence of catalytic amounts of a benzoic acid. Furthermore, contrary to other transition metals, the arylation site selectivity is governed by both electronic and steric factors. Stoichiometric and NMR mechanistic studies support a catalytic cycle that involves a well-defined η(6)-arene-ligand-free Ru(II) catalyst. Indeed, upon initial pivalate-assisted C-H activation, the aryl-Ru(II) intermediate generated is able to react with an aryl bromide coupling partner only in the presence of a benzoate additive. In contrast, directing-group-containing substrates (such as 2-phenylpyridine) do not require a benzoate additive. Deuterium labeling and kinetic isotope effect experiments indicate that C-H activation is both reversible and kinetically significant. Computational studies support a concerted metalation-deprotonation (CMD)-type ruthenation mode and shed light on the unusual arylation regioselectivity. PMID:26942551

  3. A Simple and Versatile Amide Directing Group for C-H Functionalizations.

    PubMed

    Zhu, Ru-Yi; Farmer, Marcus E; Chen, Yan-Qiao; Yu, Jin-Quan

    2016-08-26

    Achieving selective C-H activation at a single and strategic site in the presence of multiple C-H bonds can provide a powerful and generally useful retrosynthetic disconnection. In this context, a directing group serves as a compass to guide the transition metal to C-H bonds by using distance and geometry as powerful recognition parameters to distinguish between proximal and distal C-H bonds. However, the installation and removal of directing groups is a practical drawback. To improve the utility of this approach, one can seek solutions in three directions: 1) Simplifying the directing group, 2) using common functional groups or protecting groups as directing groups, and 3) attaching the directing group to substrates via a transient covalent bond to render the directing group catalytic. This Review describes the rational development of an extremely simple and yet broadly applicable directing group for Pd(II) , Rh(III) , and Ru(II) catalysts, namely the N-methoxy amide (CONHOMe) moiety. Through collective efforts in the community, a wide range of C-H activation transformations using this type of simple directing group have been developed. PMID:27479708

  4. Synthesis, Characterization and in vitro Antimalarial and Antitumor Activity of New Ruthenium(II) Complexes of Chloroquine

    PubMed Central

    Rajapakse, Chandima S. K.; Martínez, Alberto; Naoulou, Becky; Jarzecki, Andrzej A.; Suárez, Liliana; Deregnaucourt, Christiane; Sinou, Véronique; Schrével, Joseph; Musi, Elgilda; Ambrosini, Grazia; Schwartz, Gary K.; Sánchez-Delgado, Roberto A.

    2009-01-01

    The new RuII chloroquine complexes [Ru(η6-arene)(CQ)Cl2] (CQ = chloroquine; arene = p-cymene 1, benzene 2), [Ru(η6-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(η6-p-cymene)(CQ)(en)][PF6]2 (en = ethylenediamine) (4), and [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5, CQDP = chloroquine diphosphate) have been synthesized and characterized by use of a combination of NMR and FTIR spectroscopy with DFT calculations. Each complex is formed as a single coordination isomer: in compounds 1–4 chloroquine binds to ruthenium in the η1-N mode through the quinoline nitrogen atom whereas in complex 5 an unprecedented η6 bonding through the carbocyclic ring is observed. Compounds 1, 2, 3, and 5 are active against CQ-resistant (Dd2, K1 and W2) and CQ-sensitive (FcB1, PFB, F32 and 3D7) malaria parasites (Plasmodium falciparum); importantly, the potency of these complexes against resistant parasites is consistently higher than that of the standard drug chloroquine diphosphate. Complexes 1 and 5 also inhibit the growth of colon cancer cells, independently of the p53 status and of liposarcoma tumor cell lines with the latter showing increased sensitivity, especially to complex 1 (IC50 8 µM); this is significant because this type of tumor does not respond to currently employed chemotherapies. PMID:19119867

  5. Subtle Changes to Peripheral Ligands Enable High Turnover Numbers for Photocatalytic Hydrogen Generation with Supramolecular Photocatalysts.

    PubMed

    Kowacs, Tanja; O'Reilly, Laura; Pan, Qing; Huijser, Annemarie; Lang, Philipp; Rau, Sven; Browne, Wesley R; Pryce, Mary T; Vos, Johannes G

    2016-03-21

    The photocatalytic generation of hydrogen (H2) from protons by two cyclometalated ruthenium-platinum polypyridyl complexes, [Ru(bpy)2(2,5-bpp)PtIS](2+) (1) and [Ru(dceb)2(2,5-bpp)PtIS](2+) (2) [where bpy = 2,2'-bipyridine, 2,5-bpp = 2,2',5',2″-terpyridine, dceb = 4,4'-di(carboxyethyl)bipyridine, and S = solvent], is reported. Turnover numbers (TONs) for H2 generation were increased by nearly an order of magnitude by the introduction of carboxyethyl ester units, i.e., from 80 for 1P to 650 for 2P after 6 h of irradiation, with an early turnover frequency (TOF) increasing from 15 to 200 h(-1). The TON and TOF values for 2P are among the highest reported to date for supramolecular photocatalysts. The increase correlates with stabilization of the excited states localized on the peripheral ligands of the light-harvesting Ru(II) center. PMID:26925834

  6. Acetylcholine-like and trimethylglycine-like PTA (1,3,5-triaza-7-phosphaadamantane) derivatives for the development of innovative Ru- and Pt-based therapeutic agents.

    PubMed

    Ferretti, Valeria; Fogagnolo, Marco; Marchi, Andrea; Marvelli, Lorenza; Sforza, Fabio; Bergamini, Paola

    2014-05-19

    The PTA N-alkyl derivatives (PTAC2H4OCOMe)X (1X: 1a, X = Br; 1b, X = I; 1c, X = PF6; 1d, X = BPh4), (PTACH2COOEt)X (2X: 2a, X = Br; 2b, X = Cl; 2c, X = PF6), and (PTACH2CH2COOEt)X (3X: 3a, X = Br; 3c, X = PF6), presenting all the functional groups of the natural cationic compounds acetylcholine or trimethylglycine combined with a P-donor site suitable for metal ion coordination, were prepared and characterized by NMR, ESI-MS, and elemental analysis. The X-ray crystal structures of 1d and 2c were determined. Ligands 1c, 2b, and 3c were coordinated to Pt(II) and Ru(II) to give the cationic complexes cis-[PtCl2(L)2]X2 and [RuCpCl(PPh3)(L)]X (L = 1, 2, 3, X = Cl or PF6) designed with a structure targeted for anticancer activity. The X-ray crystal structure of [CpRu(PPh3)(PTAC2H4OCOMe)Cl]PF6 (1cRu) was determined. The antiproliferative activity of the ligands and the complexes was evaluated on three human cancer cell lines. PMID:24801393

  7. Multistate Switches: Ruthenium Alkynyl-Dihydroazulene/Vinylheptafulvene Conjugates.

    PubMed

    Vlasceanu, Alexandru; Andersen, Cecilie L; Parker, Christian R; Hammerich, Ole; Morsing, Thorbjørn J; Jevric, Martyn; Lindbaek Broman, Søren; Kadziola, Anders; Nielsen, Mogens Brøndsted

    2016-05-23

    Multimode molecular switches incorporating distinct and independently addressable functional components have potential applications as advanced switches and logic gates for molecular electronics and memory storage devices. Herein, we describe the synthesis and characterization of four switches based on the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermoswitch pair functionalized with the ruthenium-based Cp*(dppe)Ru ([Ru*]) metal complex (dppe=1,2-bis(diphenylphosphino)ethane; Cp*=pentamethylcyclopentadienyl). The [Ru*]-DHA conjugates can potentially exist in six different states accessible by alternation between DHA/VHF, Ru(II) /Ru(III) , and alkynyl/vinylidene, which can be individually stimulated by using light/heat, oxidation/reduction, and acid/base. Access to the full range of states was found to be strongly dependent on the electronic communication between the metal center and the organic photoswitch in these [Ru*]-DHA conjugates. Detailed electrochemical, spectroscopic (UV/Vis, IR, NMR), and X-ray crystallographic studies indeed reveal significant electronic interactions between the two moieties. When in direct conjugation, the ruthenium metal center was found to quench the photochemical ring-opening of DHA, which in one case could be restored by protonation or oxidation, allowing conversion to the VHF state. PMID:27114110

  8. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.

    PubMed

    Pannwitz, Andrea; Wenger, Oliver S

    2016-04-28

    Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion. PMID:27094541

  9. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates. PMID:27056571

  10. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy = 2,2-bipyridine, Hbcpip = 2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5 ± 1.4) × 105 M-1 in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.

  11. Interactions of the "piano-stool" [ruthenium(II)(η(6) -arene)(quinolone)Cl](+) complexes with water; DFT computational study.

    PubMed

    Zábojníková, Tereza; Cajzl, Radim; Kljun, Jakob; Chval, Zdeněk; Turel, Iztok; Burda, Jaroslav V

    2016-07-15

    Full optimizations of stationary points along the reaction coordinate for the hydration of several quinolone Ru(II) half-sandwich complexes were performed in water environment using the B3PW91/6-31+G(d)/PCM/UAKS method. The role of diffuse functions (especially on oxygen) was found crucial for correct geometries along the reaction coordinate. Single-point (SP) calculations were performed at the B3LYP/6-311++G(2df,2pd)/DPCM/saled-UAKS level. In the first part, two possible reaction mechanisms-associative and dissociative were compared. It was found that the dissociative mechanism of the hydration process is kinetically slightly preferred. Another important conclusion concerns the reaction channels. It was found that substitution of chloride ligand (abbreviated in the text as dechlorination reaction) represents energetically and kinetically the most feasible pathway. In the second part the same hydration reaction was explored for reactivity comparison of the Ru(II)-complexes with several derivatives of nalidixic acid: cinoxacin, ofloxacin, and (thio)nalidixic acid. The hydration process is about four orders of magnitude faster in a basic solution compared to neutral/acidic environment with cinoxacin and nalidixic acid as the most reactive complexes in the former and latter environments, respectively. The explored hydration reaction is in all cases endergonic; nevertheless the endergonicity is substantially lower (by ∼6 kcal/mol) in basic environment. © 2016 Wiley Periodicals, Inc. PMID:27185047

  12. Variable Temperature FTIR Spectroscopy Of Transition Metal Complexes Using The SCN Reporter Ligand.

    NASA Astrophysics Data System (ADS)

    Herber, Rolfe H...

    1989-12-01

    Due to its large oscillator strength, as well as its position in the IR spectrum (ca. 2100 cm-1) which is relatively free of interferences, the CN stretch absorption in transition metal thiocyanate and iso-thiocyanate complexes has long been used as a diagnostic measure of both the ligand binding mode, as well as an indication of molecular point-group symmetry. In bis-SCN complexes of the first-row transition metals having (distorted) D, symmetry, cis complexes are expected to show two absorbances, corresponding to the sym and asym stretching modes, while for trans complexes (D,) having inversion symmetry, the sym stretch should be IR forbidden and Raman allowed, while the asym stretch is IR allowed and Raman forbidden. Similar considerations apply to square planar complexes (Cav and D). In this study, a number of octahedral and square planar transition metal bis-thiocyanate (isothiocyanate) complexes of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Ru(II) and Pt(II) have been synthesized, and characterized. by variable temperature IR spectroscopy both in KBr and Kel-F grease mull matrices. Depending on the steric requirements of the other ligands, the characteristic signature of the pseudohalide stretching mode is found to depend critically on the (near) degeneracy of the sym and asym CN stretching modes. Low temperature IR data, as well as supporting nmr and Raman spectroscopic results are required to completely characterize the geometry of these inorganic and metal organic complexes.

  13. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. PMID:26119519

  14. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO

    NASA Astrophysics Data System (ADS)

    Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing; Shimon, Linda J. W.; Milstein, David

    2011-08-01

    Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate ‘green’ reactions. A possible mechanism involves metal-ligand cooperation by aromatization-dearomatization of the heteroaromatic pincer core.

  15. Rationalization of the inhibition activity of structurally related organometallic compounds against the drug target cathepsin B by DFT.

    PubMed

    Casini, Angela; Edafe, Fabio; Erlandsson, Mikael; Gonsalvi, Luca; Ciancetta, Antonella; Re, Nazzareno; Ienco, Andrea; Messori, Luigi; Peruzzini, Maurizio; Dyson, Paul J

    2010-06-21

    A series of organometallic compounds of general formula [(arene)M(PTA)(n)X(m)]Y (arene = eta(6)-C(10)H(14), eta-C(5)Me(5)); M = Ru(ii), Os(ii), Rh(iii) and Ir(iii); X = Cl, mPTA; Y = OTf, PF(6)) have been screened for their cytotoxicity and ability to inhibit cathepsin B in vitro, in comparison to the antimetastatic compound NAMI-A. The Ru and Os analogues and NAMI-A showed similar enzyme inhibition properties (with IC(50) values in the low muM range), whereas the Rh(iii) and Ir(iii) compounds were inactive. In order to build up a rational for the observed differences, DFT calculations of the metal complexes adducts with N-acetyl-l-cysteine-N'-methylamide, a mimic for the Cys residue in the cathepsin B active site, were performed to provide insights into binding thermodynamics in solution. Initial structure-activity relationships have been defined with the calculated binding energies of the M-S bonds correlating well with the observed inhibition properties of the compounds. PMID:20467693

  16. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy

    PubMed Central

    2016-01-01

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the RuII complex [Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  17. Luminescent ruthenium(II) bipyridyl-phosphonic acid complexes: pH dependent photophysical behavior and quenching with divalent metal ions

    SciTech Connect

    Montalti, M.; Wadhwa, S.; Kim, W.Y.; Kipp, R.A.; Schmehl, R.H.

    2000-01-10

    The synthesis, redox behavior, and photophysical properties of a series of Ru(II) bipyridyl complexes having diimine ligands with phosphonate and phosphonic acid substituents are presented. The phosphonate-containing ligands examined include diethyl 4-(2,2{prime}-bipyrid-4-yl)benzylphosphonate (bpbzp), diethyl 4(2,2{prime}-bipyrid-4-yl)-phenylphosphonate (bppp), and 4,4{prime}-(diethyl phosphonato)-2,2{prime}bipyridine (bpdp), and the [(bpy){sub 2}Ru(L)](PF{sub 6}){sub 2} complexes of both the diethyl phosphonate and the phosphonic acid were prepared. The Ru(III/II) potentials are more positive for the phosphonate complexes than for the phosphonic acids, and the first reduction is localized on the phosphonate-containing ligand for the bppp and bpdp complexes. The first reduction of the phosphonic acid complexes is at more negative potentials and cannot be distinguished from bpy reduction. For the bppp and bpdp complexes luminescence arises from a Ru(d{pi}) {r{underscore}arrow} bpy-phosphonate ({pi}*) MLCT state; the phosphonic acid complexes luminesce at higher energies from a MLCT state not clearly isolated on one ligand. Iron(III) and copper(II) complex with and very efficiently quench the luminescence of all the phosphonic acid complexes in nonaqueous solvents. The quenching mechanism is discussed on the basis of luminescence decay and picosecond transient absorption measurements.

  18. Three-dimensional nonlinear optical chromophores based on metal-to-ligand charge-transfer from ruthenium(II) or iron(II) centers.

    PubMed

    Coe, Benjamin J; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Garín, Javier; Orduna, Jesús

    2005-09-28

    In this article, we describe a series of new complex salts in which electron-rich transition-metal centers are coordinated to three electron-accepting N-methyl/aryl-2,2':4,4' ':4',4' ''-quaterpyridinium ligands. These complexes contain either Ru(II) or Fe(II) ions and have been characterized by using various techniques, including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer bands. The latter experiments reveal that these putatively octupolar D(3) chromophores exhibit two substantial components of the beta tensor which are associated with transitions to dipolar excited states. Computations involving time-dependent density-functional theory and the finite field method serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts. PMID:16173774

  19. A water-soluble ruthenium glycosylated porphyrin catalyst for carbenoid transfer reactions in aqueous media with applications in bioconjugation reactions.

    PubMed

    Ho, Chi-Ming; Zhang, Jun-Long; Zhou, Cong-Ying; Chan, On-Yee; Yan, Jessie Jing; Zhang, Fu-Yi; Huang, Jie-Sheng; Che, Chi-Ming

    2010-02-17

    Water-soluble [Ru(II)(4-Glc-TPP)(CO)] (1, 4-Glc-TPP = meso-tetrakis(4-(beta-D-glucosyl)phenyl)porphyrinato dianion) is an active catalyst for the following carbenoid transfer reactions in aqueous media with good selectivities and up to 100% conversions: intermolecular cyclopropanation of styrenes (up to 76% yield), intramolecular cyclopropanation of an allylic diazoacetate (68% yield), intramolecular ammonium/sulfonium ylide formation/[2,3]-sigmatroptic rearrangement reactions (up to 91% yield), and intermolecular carbenoid insertion into N-H bonds of primary arylamines (up to 83% yield). This ruthenium glycosylated porphyrin complex can selectively catalyze alkylation of the N-terminus of peptides (8 examples) and mediate N-terminal modification of proteins (four examples) using a fluorescent-tethered diazo compound (15). A fluorescent group was conjugated to ubiquitin via 1-catalyzed alkene cyclopropanation with 15 in aqueous solution in two steps: (1) incorporation of an alkenic group by the reaction of N-hydroxysuccinimide ester 19 with ubiquitin and (2) cyclopropanation of the alkene-tethered Lys(6) ubiquitin (23) with the fluorescent-labeled diazoacetate 15 in the presence of a catalytic amount of 1. The corresponding cyclopropanation product (24) was obtained with approximately 55% conversion based on MALDI-TOF mass spectrometry. The products 23, 24, and the N-terminal modified peptides and proteins were characterized by LC-MS/MS and/or SDS-PAGE analyses. PMID:20088517

  20. Mass spectrometry and UV-VIS spectrophotometry of ruthenium(II) [RuClCp(mPTA)2](OSO2CF3)2 complex in solution.

    PubMed

    Peña-Méndez, Eladia María; González, Beatriz; Lorenzo, Pablo; Romerosa, Antonio; Havel, Josef

    2009-12-01

    Ruthenium(II) complexes are of great interest as a new class of cancerostatics with advantages over classical platinum compounds including lower toxicity. The stability of the [RuClCp(mPTA)2](OSO2CF3)2 complex (I) (Cp cyclopentadienyl, mPTA N-methyl 1,3,5-triaza-7-phosphaadamantane) in aqueous solution was studied using spectrophotometry, matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) time-of-flight (TOF) mass spectrometry (MS). Spectrophotometry proves that at least three different reactions take place in water. Dissolution of I leads to fast coordination of water molecules to the Ru(II) cation and then slow hydrolysis and ligand exchange of chloride and mPTA with water, hydroxide or with trifluoromethane sulfonate itself. Via MALDI and LDI of the hydrolyzed solutions the formation of singly positively charged ions of general formula RuCl(p)(Cp)(q)(mPTA)(r)(H2O)(s)(OH)(t) (p = 0-1, q = 0-1, r = 0-2, s = 0-5, t = 0-2) and of some fragment ions was shown. The stoichiometry was determined by analyzing the isotopic envelopes and computer modelling. The [RuClCp(mPTA)2](OSO2CF3)2 complex can be stabilized in dilute hydrochloric acid or in neutral 0.15 M isotonic sodium chloride solution. PMID:19902414

  1. DNA-binding, topoisomerases I and II inhibition and in vitro cytotoxicity of ruthenium(II) polypyridyl complexes: [Ru(dppz)2L]2+ (L = dppz-11-CO2Me and dppz)

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Jin, Lianhe; Tan, Lifeng

    2015-01-01

    Two ruthenium(II) polypyridyl complexes, [Ru(dppz)2dppz-11-CO2Me](ClO4)2 (Ru1) and [Ru(dppz)3](ClO4)2 (Ru2), have been synthesized and characterized. The spectral characteristics of Ru1 and Ru2 were investigated by fluorescence spectroscopy and revealed that both complexes were sensitive to solvent polarity. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) have been investigated by different spectrophotometric methods and viscosity measurements, indicating that both complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Topoisomerase inhibition and DNA strand passage assay demonstrates that the two complexes are dual inhibitors of topoisomerases I and IIa. On the other hand, the cytotoxicity of both complexes has been evaluated by MTT assays and Giemsa staining experiments. The main results reveal that the ester functional group has a significant effect on the DNA-binding affinities and topoisomerases inhibition effects of Ru1 and Ru2, and further advance our knowledge on the DNA-binding and topoisomerase inhibition by Ru(II) complexes.

  2. Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells.

    PubMed

    Zhang, Run; Ye, Zhiqiang; Wang, Guilan; Zhang, Wenzhu; Yuan, Jingli

    2010-06-18

    A unique ruthenium(II) complex, bis(2,2'-bipyridine)(4-(3,4-diaminophenoxy)-2,2'-bipyridine)ruthenium(II) hexafluorophosphate ([(Ru(bpy)(2)(dabpy)][PF(6)](2)), has been designed and synthesized as a highly sensitive and selective luminescence probe for the imaging of nitric oxide (NO) production in living cells. The complex can specifically react with NO in aqueous buffers under aerobic conditions to yield its triazole derivative with a high reaction rate constant at the 10(10) M(-1) s(-1) level; this reaction is accompanied by a remarkable increase of the luminescence quantum yield from 0.13 to 2.2 %. Compared with organic probes, the new Ru(II) complex probe shows the advantages of a large Stokes shift (>150 nm), water solubility, and a wide pH-availability range (pH independent at pH>5). In addition, it was found that the new probe could be easily transferred into both living animal cells and plant cells by the coincubation method, whereas the triazole derivative was cell-membrane impermeable. The probe was successfully used for luminescence-imaging detection of the exogenous NO in mouse macrophage cells and endogenous NO in gardenia cells. The results demonstrated the efficacy and advantages of the new probe for NO detection in living cells. PMID:20458707

  3. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)-ruthenium(II) DNA imaging probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; Turton, David; Adams, Harry; Roseveare, Thomas M; Smythe, Carl; Su, Xiaodi; Thomas, Jim A

    2014-10-20

    The synthesis of two new luminescent dinuclear Ir(III)-Ru(II) complexes containing tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated Ir(III) moieties, these complexes display good water solubility, allowing the first cell-based study on Ir(III)-Ru(II) bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a Ru(II) excited state and both complexes display significant in vitro DNA-binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA-imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2-(4-fluorophenyl)pyridine ligands around its Ir(III) centre is enhanced in comparison to the non-fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition-metal bioprobes. PMID:25208528

  4. Ruthenium− and Osmium−Arene Complexes of 2-Substituted Indolo[3,2-c]quinolines: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity

    PubMed Central

    2010-01-01

    The synthesis of new modified indolo[3,2-c]quinoline ligands L1−L8 with metal-binding sites is reported. By coordination to ruthenium− and osmium−arene moieties 16 complexes of the type [(η6-p-cymene)M(L)Cl]Cl (1a,b−8a,b), where M is RuII or OsII and L is L1−L8, have been prepared. All compounds were comprehensively characterized by elemental analysis, electrospray ionization mass spectrometry, IR, UV−vis, and NMR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction (2a, 4a, 4b, 5a, 7a, and 7b). The complexes were tested for antiproliferative activity in vitro in three human cancer cell lines, namely, CH1 (ovarian carcinoma), SW480 (colon adenocarcinoma), and A549 (non-small-cell lung cancer), yielding IC50 values in the submicromolar or low micromolar range. PMID:21253447

  5. Crystal structures of cis-[Ru(bpy){sub 2}(PPh{sub 2}(o-tol))Cl][ClO{sub 4}]. 1.5 (CH{sub 2}Cl{sub 2}), a structure containing both ordered and disordered dichloromethane molecules of crystallization

    SciTech Connect

    Churchill, M.R.; Krajkowski, L.M.; Huynh, M.H.V.; Takeuchi, K.J.

    1996-02-01

    The complex cis-[Ru(bpy){sub 2}(PPh{sub 2}(o-tol))Cl][ClO{sub 4}]{center_dot}1.5 (CH{sub 2}Cl){sub 2} crystallizes from dichloromethane as the sesqui-dischloromethane solvate. The complex crystallizes in the monoclinic space group P2{sub 1}/n with Z=4. The structure was refined to R-5.50% for those 2552 independent reflections with F{sub o}>6{sigma}(F{sub o}). The octahedral Ru(II) cation is associated with the following bond lengths: Ru-PPh{sub 2}(o-tol)=2.360(3){angstrom}, Ru-Cl=2.433(2){angstrom} and Ru-N(bpy)=2.041(8)-2.095(8){angstrom}. Both the perchlorate anion and the dichloromethane molecules of solvation exhibit large amplitudes of vibration. One dichloromethane molecule lies in general position, the other lies about an inversion center and suffers from disorder.

  6. A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes

    PubMed Central

    Hwang, Ee Taek; Sheikh, Khizar; Orchard, Katherine L; Hojo, Daisuke; Radu, Valentin; Lee, Chong-Yong; Ainsworth, Emma; Lockwood, Colin; Gross, Manuela A; Adschiri, Tadafumi; Reisner, Erwin; Butt, Julea N; Jeuken, Lars J C

    2015-01-01

    In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems. PMID:26180522

  7. Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-H amination using azide compounds as nitrene precursors.

    PubMed

    Uchida, Tatsuya; Katsuki, Tsutomu

    2014-02-01

    Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give nitrene species by releasing nitrogen, are ideal precursors but rather stable. Their decomposition needs UV irradiation, heating in the presence of a metal complex, or Lewis acid treatment. The examples of previous azide decomposition prompted us to examine Lewis acid and low-valent transition-metal complexes as catalysts for azide decomposition. Thus, we designed new ruthenium complexes that are composed of a low-valent Ru(II) ion, apical CO ligand, and an asymmetry-inducing salen ligand. With these ruthenium complexes and azides, we have achieved highly enantioselective nitrene transfer reactions under mild conditions. Recently, iridium-salen complexes were added to our toolbox. PMID:24449500

  8. Synthesis, DNA-binding and spectral properties of novel complexes [RuL 2(idpq)] 2+ (L = bpy, phen) with embedded C dbnd O

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Xu, Lian-Cai; Li, Hong; Chao, Hui; Zheng, Kang-Cheng; Ji, Liang-Nian

    2009-02-01

    A novel ligand idpq with embedded C dbnd O and its two complexes, [Ru(bpy) 2(idpq)] 2+1 and [Ru(phen) 2(idpq)] 2+2 (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; idpq = indeno[1,2- b]dipyrido [3,2- f:2',3'- h]-quinoxaline-6-one), have been synthesized and characterized by elemental analysis, ES-MS, 1H NMR, UV-vis and CV. The DNA-binding behaviors of both complexes were studied by spectroscopic methods and viscosity measurements. The results indicate that the two complexes can all bind to CT-DNA in an intercalative mode, and they have rather high DNA-binding constants, which are (1.7 ± 0.4) × 10 6 M -1 and (4.0 ± 0.6) × 10 6 M -1, respectively. The results also show that these two Ru(II) complexes can promote photocleavage of pBR322 DNA. Their DNA-binding and electronic absorption-spectral properties were further studied by the DFT/TDDFT methods. The DNA-binding behaviors and difference of these complexes were reasonably explained, and the simulated absorption spectra were in good agreement with the experimental ones.

  9. Hydrido carbonyl complexes of osmium(II) and ruthenium(II) containing polypyridyl ligands

    SciTech Connect

    Sullivan, B.P.; Caspar, J.V.; Johnson, S.R.; Meyer, T.J.

    1984-01-01

    Several different synthetic routes have been explored to produce hydrido complexes of Os(II) and Ru(II) containing polypyridyl ligands. The resulting complexes, the majority of which contain coordinated CO, are of three types: cis-(M(chelate)/sub 2/(CO)H)/sup +/, trans-(Os(chelate)(PPh/sub 3/)/sub 2/(CO)H)/sup +/, and (Os(chelate)(diphos)(PR/sub 2/)H)/sup +/ (where M = Ru or Os and chelate is, for example, 2,2'-bipyridine or 1,10-phenanthroline or a related ligand). The electronic, infrared, and NMR spectral properties of the complexes are discussed along with the redox properties of their ground and excited states. An important observation is that the hydride ligand endows the metal to ligand charge-transfer (MLCT) excited states of some of the complexes with strong reducing properties. The ground-state chemistry of the complexes is discussed especially with regard to their use as synthetic precursors to new, highly oxidizing, long-lived MLCT excited states of Os(II)< e.g., (Os/sup III/(bpy/sup -/.)(bpy)(CO)(CH/sub 3/CH))/sup 2 +/. 33 references, 7 figures, 2 tables.

  10. A facile and versatile methodology for cysteine specific labeling of proteins with octahedral polypyridyl d6 metal complexes

    PubMed Central

    Dwaraknath, Sudharsan; Tran, Ngoc-Han; Dao, Thanh; Colbert, Alexander; Mullen, Sarah; Nguyen, Angelina; Cortez, Alejandro; Cheruzel, Lionel

    2014-01-01

    We have synthesized and characterized four octahedral polypyridyl d6 metal complexes bearing the 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline ligand (L1) as cysteine specific labeling reagents. The proposed synthetic pathways allow the preparation of the metal complexes containing Re(I), Ru(II), Os(II) and Ir(III) while preserving the epoxide functionality. The complexes were characterized by 1H and 13C NMR, mass spectrometry, UV-visible and luminescence spectroscopies as well as cyclic voltammetry. As proof of concept, a set of non-native single cysteine P450 BM3 heme domain mutants previously developed in our laboratory was used to study the labeling reaction. We demonstrate that the proposed labels can selectively react, often in high yield, with cysteine residues of the protein via the nucleophilic thiol ring opening of the epoxide moiety. In addition, under basic conditions, subsequent loss of a water molecule led to the aromatization of the phenanthroline ring on the protein-bound label compounds, as observed by mass spectrometry and luminescence measurements. PMID:24468675

  11. Modeling the BZ reaction in gels with chemo-responsive crosslinks

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Kuksenok, Olga; Balazs, Anna C.

    2010-03-01

    We model chemo-responsive polymer gels, which expand and contract periodically in response to the ongoing oscillatory Belousov-Zhabotinsky (BZ) reaction. This behavior is due to a ruthenium catalyst, which is grafted to the polymers and affects the polymer-solvent interactions as it undergoes the redox oscillations in the course of the reaction. We consider a permanently crosslinked polymer gel that encompasses Ru(terpy)2 catalytic units having both the terpyridine ligands chemically bonded to the network. It is known that oxidation of the Ru metal-ion from Ru(II) to Ru(III) results in the dissociation of the Ru(terpy)2 complexes since the Ru(III) ions form only mono-complexes with terpyridine. Hence, the grafted Ru(terpy)2 units would effectively create crosslinks that break and re-form in the response to the BZ reaction. We modified the Oregonator model for the BZ reaction and took into account that the re-formation of Ru(terpy)2 complexes is frustrated by the gel network. The time-dependent elastic contribution of the Ru(terpy)2 crosslinks was described by the BKZ-type constitutive equation. We report on the results of simulations in 1D. We show, in particular, that compression of the sample leads to stiffening of the gel due to an increase in the crosslink density.

  12. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN‧N″) tridentate ligands: Synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S.; Fasfous, Ismail I.; El-khateeb, Mohammad; Awwadi, Firas F.; Warad, Ismail

    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [RuII(Lsbnd Y)(bpy)Cl](PF6) {Lsbnd Y = YC6H4Ndbnd NC(COCH3)dbnd NC9H6N, Y = H (1), CH3 (2), Br (3), NO2 (4) and bpy = 2,2‧-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN‧N″ tridentate donors and coordinated to ruthenium via azo-N‧, imine-N‧ and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, 1H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe+. The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT).

  13. Real-Time Imaging of Single HIV-1 Disassembly with Multicolor Viral Particles.

    PubMed

    Ma, Yingxin; He, Zhike; Tan, Tianwei; Li, Wei; Zhang, Zhiping; Song, Shuang; Zhang, Xiaowei; Hu, Qinxue; Zhou, Peng; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2016-06-28

    Viral disassembly is poorly understood and related to the infection mechanism. However, directly observing the process in living cells remains technically challenging. In this study, the genome RNA, capsid, and matrix protein of the HIV-1 virus were labeled with a Ru(II) complex ([Ru(phen)2(dppz)](2+)), the TC-FlAsH/ReAsH system, and EGFP/ECFP, respectively. Using the multicolored virus and single-particle imaging, we were able to track the sequential disassembly process of single HIV-1 virus particles in live host cells. Approximately 0.1% of viral particles were observed to undergo a sequential disassembly process at 60-120 min post infection. The timing and efficiency of the disassembly were influenced by the cellular factor CypA and reverse transcription. The findings facilitate a better understanding of the processes governing the HIV-1 lifecycle. The multicolor labeling protocol developed in this study may find many applications involving virus-host-cell interactions. PMID:27253587

  14. A mixed chloride/trifluoromethanesulfonate ligand species in a ruthenium(II) complex.

    PubMed

    Santiso-Quinones, Gustavo; Rodriguez-Lugo, Rafael E

    2013-08-01

    The compound [2-(aminomethyl)pyridine-κ²N,N'][chlorido/trifluoromethanesulfonato(0.91/0.09)][(10,11-η)-5H-dibenzo[a,d]cyclohepten-5-amine-κN](triphenylphosphane-κP)ruthenium(II) trifluoromethanesulfonate dichloromethane 0.91-solvate, [Ru(CF₃SO₃)0.09Cl0.91(C₆H₈N₂)(C₁₅H₁₃N)(C₁₈H₁₅P)]CF₃SO₃·0.91CH₂Cl₂, belongs to a series of RuII complexes that had been tested for transfer hydrogenation, hydrogenation of polar bonds and catalytic transfer hydrogenation. The crystal structure determination of this complex revealed disorder in the form of two different anionic ligands sharing the same coordination site, which other spectroscopic methods failed to characterize. The reduced catalytic activity of the title compound was not fully understood until the crystallographic data provided evidence for the mixed ligand species. The crystal structure clearly shows that the majority of the synthesized material has a chloride ligand present. Only a small portion of the material is the expected complex [RuII(OTf)(ampy)(η²-tropNH₂)(PPh₃)]OTf, where OTf is triflate or trifluoromethanesulfonate, ampy is 2-(aminomethyl)pyridine and tropNH₂ is 5H-dibenzo[a,d]cyclohepten-5-amine. PMID:23907876

  15. Pyridinium quenchers of Ru(bpy)/sub 3//sup 2 +/ charge effects of the yield of electron transfer

    SciTech Connect

    Jones, G. II.; Malba, V.

    1985-12-27

    The quenching of the luminescent state of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)/sub 3//sup 2 +/) by a series of pyridinium ions has been studied. 4-Acetyl-, 4-cyano-, 4-carbomethoxy-, or 4-carboxy-1-methylpyridinium, along with the well-known electron-transfer agent methyl viologen (MV/sup 2 +/), were employed as electron-acceptor quenchers in order to reveal the effects of charge type on the yield of photoinduced electron transfer involving the Ru(II) luminescent state as electron donor. Rates of quenching by the pyridinium ions were measured by using steady irradiation techniques and compared with expectations based on the calculated energetics of electron transfer. Electron transfer yields were obtained by measurement of the transient absorbances of photogenerated radicals (e.g., pyridinyls) using conventional flash photolysis (broad band visible excitation, pH 5, ..mu.. = 0.5). The transient photoleaching of Ru(bpy)/sub 3//sup 2 +/ by 4-carboxy-1-methylpyridinium was studied by using a Nd:YAG laser with results showing pH control of the charge type and yield of net electron transfer due to in-cage protonation of photogenerated geminate radical pairs. The electrochemical properties of the pyridinium ions were also examined by cyclic voltammetry and a Hammett correlation was made of the reduction potentials.

  16. Orbital entanglement and CASSCF analysis of the Ru-NO bond in a Ruthenium nitrosyl complex.

    PubMed

    Freitag, Leon; Knecht, Stefan; Keller, Sebastian F; Delcey, Mickaël G; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland; Reiher, Markus; González, Leticia

    2015-06-14

    Complete active space self-consistent field (CASSCF) wavefunctions and an orbital entanglement analysis obtained from a density-matrix renormalisation group (DMRG) calculation are used to understand the electronic structure, and, in particular, the Ru-NO bond of a Ru nitrosyl complex. Based on the configurations and orbital occupation numbers obtained for the CASSCF wavefunction and on the orbital entropy measurements evaluated for the DMRG wavefunction, we unravel electron correlation effects in the Ru coordination sphere of the complex. It is shown that Ru-NO π bonds show static and dynamic correlation, while other Ru-ligand bonds feature predominantly dynamic correlation. The presence of static correlation requires the use of multiconfigurational methods to describe the Ru-NO bond. Subsequently, the CASSCF wavefunction is analysed in terms of configuration state functions based on localised orbitals. The analysis of the wavefunctions in the electronic singlet ground state and the first triplet state provides a picture of the Ru-NO moiety beyond the standard representation based on formal oxidation states. A distinct description of the Ru and NO fragments is advocated. The electron configuration of Ru is an equally weighted superposition of Ru(II) and Ru(III) configurations, with the Ru(III) configuration originating from charge donation mostly from Cl ligands. However, and contrary to what is typically assumed, the electronic configuration of the NO ligand is best described as electroneutral. PMID:25767830

  17. Structure and spectroscopic properties of ruthenium(II) bipyridyl N-benzoyl-N'-(1,10-phenanthrolin-5-Yl)-thiourea

    NASA Astrophysics Data System (ADS)

    Tan, Siew San; Kassim, Mohammad B.

    2015-09-01

    Ruthenium bipyridyl incorporating phenanthroline with thiourea molecules, [Ru(bpy)2(Phen-BT)](PF6)2], has been synthesized and characterized by spectroscopic and electrochemical techniques. The infrared spectra of the complex shows the characteristics stretching frequencies for N-H at 3646 and 3585 cm-1, ν(C-N)phen 1426 cm-1, ν(C=O) 1675 cm-1, ν(C=S) 1246 cm-1, ν(C-H)aromatic 3353-3086 cm-1, ν(C-N)aliphatic 1169-1026 cm-1, ν(C-H)bend 764 cm-1 and ν(PF6-)free 842 cm-1. The complex reveals two π→π* absorption bands at 237 (ɛ=26,302) and 286 nm (ɛ=36,848), which were assigned to the phenanthroline and bipyridyl moieties, respectively. A slightly broad and low energy band in the UV-vis spectrum at 450 nm (ɛ=7,209) of the complex was assigned to a MLCT transition. Besides, the complex also exhibits an emission band at 615 nm that arises from an excitation with a 440 nm light energy. The cyclic voltammetry of the complex shows an oxidation potential at +1.305 V vs. SCE that corresponds to the formal oxidation of Ru(II) to Ru(III).

  18. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru)

    NASA Astrophysics Data System (ADS)

    Goodenough, John B.; Zhou, Jianshi

    2015-06-01

    Different structural chemistries resulting from the Pb2+ lone-pair electrons in the PbMO3 perovskites are reviewed. The Pb2+ lone-pair electrons enhance the ferroelectric transition temperature in PbTiO3, stabilize vanadyl formation in PbVO3, and induce a disproportionation reaction of CrIV in PbCrO3. A Pb2+ + NiIV = Pb4+ + NiII reaction in PbNiO3 stabilizes the LiNbO3 structure at ambient pressure, but an A-site Pb4+ in an orthorhombic perovskite PbNiO3 is stabilized at modest pressures at room temperature. In PbMnO3, a ferroelectric displacement due to the lone pair electron effect is minimized by the spin-spin exchange interaction and the strong octahedral site preference of the MnIV/III cation. PbRuO3 is converted under pressure from the defective pyrochlore to the orthorhombic (Pbnm) perovskite structure where Pb-Ru interactions via a common O -2p orbital stabilize at low temperature a metallic Imma phase at ambient pressure. Above Pc ≃ ~32 GPa, a covalent Pb-Ru bond is formed by Pb2+ + RuIV = Pb4+ + RuII electron sharing.

  19. Facile ligand oxidation and ring nitration in ruthenium complexes derived from a ligand with dicarboxamide-N and phosphine-P donors.

    PubMed

    Fry, Nicole L; Rose, Michael J; Nyitray, Crystal; Mascharak, Pradip K

    2008-12-15

    The reaction of the tetradentate dicarboxamide ligand 1,2-bis-N-[2'(diphenylphosphanyl)benzoyl]diaminobenzene (dppbH(2)) with RuCl(3) in DMF or ethanol results in metal-mediated ligand oxidation and formation of the diamagnetic Ru(II) complex [(dppQ)Ru(Cl)(2)] (1) with N(2)P(2) chromophore. The o-phenylenedicarboxamide portion of the dppb(2-) ligand is oxidized to a o-benzoquinonediimine (bqdi) moiety in [(dppQ)Ru(Cl)(2)]. Presence of oxygen accelerates the ligand oxidation process. Unlike other tetradentate dicarboxamide ligands with pyridine-N, phenolato-O, or thiolato-S donors, dppb(2-) provides stability to the +2 oxidation state of ruthenium and facilitates oxidation of the coordinated ligand frame. Results of spectroscopic and redox studies strongly support the +2 oxidation state of Ru in 1. Exposure of 1 to NO(g) does not lead to formation of any metal nitrosyl; instead, the bqdi ring is nitrated to afford [(NO(2)dppQ)Ru(Cl)(2)] (2). PMID:19006289

  20. Ruthenium (II) complexes of thiosemicarbazone: synthesis, biosensor applications and evaluation as antimicrobial agents.

    PubMed

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η(6)-p-cymene)RuClTSC(N-S)]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSC(N-S)] (2) have been synthesized from the reaction of [{(η(6)-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at -0.9V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01-0.5mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. PMID:25280673

  1. Time-resolved resonance raman spectra of polypyridyl complexes of ruthenium(II)

    SciTech Connect

    Kumar, C.V.; Barton, J.K.; Turro, N.J.; Gould, I.R.

    1987-05-06

    Time-resolved resonance Raman (TR/sup 3/) spectroscopy has recently evolved as a powerful tool for the investigation of the dynamics and structures of a variety of reactive intermediates, electronic excited states, biological systems, and enzyme-substrate complexes. In this communication, the authors report the TR/sup 3/ spectra of three ruthenium complexes of special importance because of three ruthenium complexes of special importance because of their binding ability to nucleic acids, because of their success as chiral probes that recognize the conformations and helicity of nucleic acids, and because of their potential to serve as models for the interaction of metal ions with nucleic acids. They report here the results of TR/sup 3/ and transient absorption experiments which demonstrate that the excited states of three Ru(II) complexes, tris(2,2'-bipyridyl)ruthenium(II) dichloride (I), tris(1,20-phenanthroline)-ruthenium(II) dichloride (II), and tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (III), are indeed localized on the ligand.

  2. Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer.

    PubMed

    Salpage, Sahan R; Paul, Avishek; Som, Bozumeh; Banerjee, Tanmay; Hanson, Kenneth; Smith, Mark D; Vannucci, Aaron K; Shimizu, Linda S

    2016-06-21

    The reaction of cis-bis(2,2'-bipyridine)dichlororuthenium(ii) hydrate with a conformationally mobile bipyridyl macrocycle afforded [(bpy)2Ru(μ-L)Ru(bpy)2]Cl4·6H2O, a bridged di-Ru complex. Single crystal X-ray diffraction showed the macrocyclic ligand adopting a bowl-like structure with the exo-coordinated Ru(ii) centers separated by 7.29 Å. Photophysical characterization showed that the complex absorbs in the visible region (λmax = 451 nm) with an emission maximum at 610 nm (τ = 706 ns, ΦPL = 0.021). Electrochemical studies indicate the di-Ru complex undergoes three one-electron reversible reductions and a reversible one-electron oxidation process. This electrochemical reversibility is a key characteristic for its use as an electron transfer agents. The complex was evaluated as a photocatalyst for the electronically mismatched Diels-Alder reaction of isoprene and trans-anethole using visible light. It afforded the expected product in good conversion (69%) and selectivity (dr > 10 : 1) at low loadings (0.5-5.0 mol%) and the sensitizer/catalyst was readily recycled. These results suggest that the bipyridyl macrocycle could be widely applied as a bridging ligand for the generation of chromophore-catalyst assemblies. PMID:27216541

  3. DNA Binding and Photocleavage Properties, Cellular Uptake and Localization, and in-Vitro Cytotoxicity of Dinuclear Ruthenium(II) Complexes with Varying Lengths in Bridging Alkyl Linkers.

    PubMed

    Liu, Ping; Wu, Bao-Yan; Liu, Jin; Dai, Yong-Cheng; Wang, You-Jun; Wang, Ke-Zhi

    2016-02-15

    Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents. PMID:26811966

  4. Electron exchange involving a sulfur-stabilized ruthenium radical cation.

    PubMed

    Shaw, Anthony P; Ryland, Bradford L; Norton, Jack R; Buccella, Daniela; Moscatelli, Alberto

    2007-07-01

    Half-sandwich Ru(II) amine, thiol, and thiolate complexes were prepared and characterized by X-ray crystallography. The thiol and amine complexes react slowly with acetonitrile to give free thiol or amine and the acetonitrile complex. With the thiol complex, the reaction is dissociative. The thiolate complex has been oxidized to its Ru(III) radical cation and the solution EPR spectrum of that radical cation recorded. Cobaltocene reduces the thiol complex to the thiolate complex. The 1H and 31P NMR signals of the thiolate complex in acetonitrile become very broad whenever the thiolate and thiol complexes are present simultaneously. The line broadening is primarily due to electron exchange between the thiolate complex and its radical cation; the latter is generated by an unfavorable redox equilibrium between the thiol and thiolate complexes. Pyramidal inversion of sulfur in the thiol complex is fast at room temperature but slow at lower temperatures; major and minor conformers of the thiol complex were observed by 31P NMR at -98 degrees C in CD2Cl2. PMID:17569530

  5. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  6. Intramolecular energy transfer in ruthenium(II)-chromium(III) chromophore-luminophore complexes. Ru(bpy) sub 2 (Cr(cyclam)(CN) sub 2 ) sub 2 sup 4+

    SciTech Connect

    Bignozzi, C.A.; Bortolini, O.; Chiorboli, C.; Indelli, M.T.; Rampi, M.A.; Scandola, F. )

    1992-01-22

    A new trinuclear Ru(II)-Cr(III) chromophore-luminophore complex, Ru(bpy){sub 2}(Cr(cyclam)(CN){sub 2}){sub 2}{sup 4+}, has been synthesized and characterized. Visible light absorption by the Ru(bpy){sub 2}{sup 2+} chromophore leads to emission from the Cr(cyclam)(CN){sub 2}{sup +} luminophore, as a consequence of very efficient ({ge} 99%) and fast (subnanosecond time scale) chromophore-luminophore exchange energy-transfer process. The emission is intense ({Phi} = 5.3 {times} 10{sup {minus}3} in H{sub 2}O) and long-lived ({tau} = 260 {mu}s in H{sub 2}O). The photophysical properties of the luminophore are slightly perturbed by interaction with the chromophore, resulting in a sharper emission band shape and shorter radiative and radiationless lifetimes. The presence of a Ru(II) {yields} Cr(III) intervalence transfer state, hardly detectable in the ground-state spectrum, is clearly revealed by the excited-state absorption spectrum of the chromophore-luminophore complex.

  7. Electronic and Photophysical Properties of [Re (L)(CO)3(phen)](+) and [Ru(L)2(bpy)2](2+) (L = imidazole), Building Units for Long-Range Electron Transfer in Modified Blue Copper Proteins.

    PubMed

    Fumanal, Maria; Daniel, Chantal

    2016-09-01

    The electronic, optical, and photophysical properties of [Re(im)(CO)3(phen)](+) and [Ru(bpy)2(im)2](2+) (im = imidazole; phen = 1,10-phenanthroline; bpy = 2,2'-bipyridine) in water, including spin-orbit coupling (SOC) effects, were studied by means of density functional theory (DFT) and time-dependent DFT. The main features of the visible experimental absorption spectra of both molecules are well-reproduced. Whereas the theoretical spectrum of the Re(I) complex is characterized by one metal-to-ligand charge transfer (MLCTphen) state of low intensity at 394 nm and a strongly absorbing MLCTphen state calculated at 370 nm, the spectrum of the Ru(II) complex presents a high density of singlet MLCTbpy excited states with significant oscillator strengths that contribute to the two broad bands centered at 490 and 340 nm. The absorption spectrum of [Re(im) (CO)3(phen)](+) is perturbed by SOC with non-negligible mixing between the low-lying triplet and singlet absorbing states, while SOC has no effect on the absorption spectrum of [Ru(bpy)2(im)2](2+). A detailed structural investigation of the two lowest singlet and four lowest triplet excited states of the Re(I) complex point to MLCTphen (S1, S2, T1, T2) and intra-ligand ILphen (T3) localized spin-densities characterized by small contractions from both Re-N and phen CC central bonds in the MLCT states and nearly no deformation in the IL state. A mechanism of luminescent decay of [Re(im) (CO)3(phen)](+) is proposed on the basis of the calculated energy minima and wavelengths of emission for the interpretation of the three frequency/time-scale signals put in evidence by ultrafast experiments. The long-lived emissive properties of [Ru(bpy)2(im)2](2+) are analyzed on the basis of the relative energies of the two lowest (3)MLCTbpy and metal-centered (3)MC excited states. The minimum corresponding to the (3)MC spin density shows a significant structural rearrangement with an increase of the Ru-N bond distance of 0.33 Å and a

  8. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  9. Luminescent osmium(ii) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in light-emitting electrochemical cells.

    PubMed

    Ross, Daniel A W; Scattergood, Paul A; Babaei, Azin; Pertegás, Antonio; Bolink, Henk J; Elliott, Paul I P

    2016-05-01

    The series of osmium(ii) complexes [Os(bpy)3-n(btz)n][PF6]2 (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 0, n = 1, n = 2, n = 3), have been prepared and characterised. The progressive replacement of bpy by btz leads to blue-shifted UV-visible electronic absorption spectra, indicative of btz perturbation of the successively destabilised bpy-centred LUMO. For , a dramatic blue-shift relative to the absorption profile for is observed, indicative of the much higher energy LUMO of the btz ligand over that of bpy, mirroring previously reported data on analogous ruthenium(ii) complexes. Unlike the previously reported ruthenium systems, heteroleptic complexes and display intense emission in the far-red/near-infrared (λmax = 724 and 713 nm respectively in aerated acetonitrile at RT) as a consequence of higher lying, and hence less thermally accessible, (3)MC states. This assertion is supported by ground state DFT calculations which show that the dσ* orbitals of to are destabilised by between 0.60 and 0.79 eV relative to their Ru(ii) analogues. The homoleptic complex appears to display extremely weak room temperature emission, but on cooling to 77 K the complex exhibits highly intense blue emission with λmax 444 nm. As complexes to display room temperature luminescent emission and readily reversible Os(ii)/(iii) redox couples, light-emitting electrochemical cell (LEC) devices were fabricated. All LECs display electroluminescent emission in the deep-red/near-IR (λmax = 695 to 730 nm). Whilst devices based on and show inferior current density and luminance than LECs based on , the device utilising shows the highest external quantum efficiency at 0.3%. PMID:27055067

  10. Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst

    PubMed Central

    2013-01-01

    The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2R′N2R″)2]2+ core (P2R′N2R″ = bis(1,5-R′-diphospha-3,7-R″-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 (“on particle” system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 (“through particle” system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h–1 with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system. PMID:24320740

  11. Beating polymer gels coupled with a nonlinear chemical reaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryo; Kokufuta, Etsuo; Yamaguchi, Tomohiko

    1999-06-01

    We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2'-bipyridine) [Ru(bpy)3], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain. The poly[NIPAAm-co-Ru(bpy)3] gel provides an open system where the BZ reaction proceeds, when immersed in an aqueous solution containing the reactants of the BZ reaction (with the exception of a catalyst). The chemical oscillation in the BZ reaction generates the periodical changes of the charge of Ru(bpy)3 in the gel network between reduced [Ru(II)] and oxidized [Ru(III)] states. The gel swells at the oxidized state because the hydrophilicity of the polymer chains increases, while at the reduced state the gel deswells. Thus, the chemical energy is transduced into the mechanical energy to drive the polymer gel oscillation with a period of about 5 min, depending on the composition of the surrounding solution. The oscillation mode of the gel depends on its size scaled by the wavelength of the BZ pattern. Sufficiently small bead-like gels demonstrate isotropic beating. A large rectangular gel shows mechanical oscillation with a peristaltic motion coupled with the propagating chemical waves. The dynamic behavior of the chemical and mechanical oscillations have been analyzed with a model simulation.

  12. Design of Os(II) -based sensitizers for dye-sensitized solar cells: influence of heterocyclic ancillaries.

    PubMed

    Hu, Fa-Chun; Wang, Sheng-Wei; Planells, Miquel; Robertson, Neil; Padhy, Harihara; Du, Bo-Sian; Chi, Yun; Yang, Po-Fan; Lin, Hao-Wu; Lee, Gene-Hsiang; Chou, Pi-Tai

    2013-08-01

    A series of Os(II) sensitizers (TFOS-x, in which x=1, 2, or 3) with a single 4,4'-dicarboxy-2,2'-dipyridine (H2 dcbpy) anchor and two chelating 2-pyridyl (or 2-pyrimidyl) triazolate ancillaries was successfully prepared. Single-crystal X-ray structural analysis showed that the core geometry of the Os(II) -based sensitizers consisted of one H2 dcbpy unit and two eclipsed cis-triazolate fragments; this was notably different from the Ru(II) -based counterparts, in which the azolate (both pyrazolate and triazolate) fragments are located at the mutual trans-positions. The basic properties were extensively probed by using spectroscopic and electrochemical methods as well as time-dependent density functional theory (TD-DFT) calculations. Fabrication of dye-sensitized solar cells (DSCs) was then attempted by using the I(-) /I3 (-) -based electrolyte solution. One such DSC device, which utilized TFOS-2 as the sensitizer, showed promising performance characteristics with a short-circuit current density (JSC ) of 15.7 mA cm(-2) , an open-circuit voltage of 610 mV, a fill factor of 0.63, and a power conversion efficiency of 6.08 % under AM 1.5G simulated one-sun irradiation. Importantly, adequate incident photon-to-current conversion efficiency performances were observed for all TFOS derivatives over the wide spectral region of 450 to 950 nm, showing a panchromatic light harvesting capability that extended into the near-infrared regime. Our results underlined a feasible strategy for maximizing JSC and increasing the efficiency of DSCs. PMID:23843354

  13. Mechanistic Insights into C-H Oxidations by Ruthenium(III)-Pterin Complexes: Impact of Basicity of the Pterin Ligand and Electron Acceptability of the Metal Center on the Transition States.

    PubMed

    Mitome, Hiroumi; Ishizuka, Tomoya; Kotani, Hiroaki; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2016-08-01

    A ruthenium(II) complex, [Ru(dmdmp)Cl(MeBPA)] (2) (Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, MeBPA = N-methyl-N,N-bis(pyridylmethyl)amine), having a pterin derivative as a proton-accepting ligand, was synthesized and characterized. Complex 2 shows higher basicity than that of a previously reported Ru(II)-pterin complex, [Ru(dmdmp) (TPA)](+) (1) (TPA = tris(2-pyridylmethyl)amine). On the other hand, 1e(-)-oxidized species of 1 (1OX) exhibits higher electron-acceptability than that of 1e(-)-oxidized 2 (2OX). Bond dissociation enthalpies (BDE) of the two Ru(II) complexes having Hdmdmp as a ligand in proton-coupled electron transfer (PCET) to generate 1OX and 2OX were calculated to be 85 kcal mol(-1) for 1OX and 78 kcal mol(-1) for 2OX. The BDE values are large enough to perform H atom transfer from C-H bonds of organic molecules to the 1e(-)-oxidized complexes through PCET. The second-order rate constants (k) of PCET oxidation reactions were determined for 1OX and 2OX. The logarithms of normalized k values were proportional to the BDE values of C-H bonds of the substrates with slopes of -0.27 for 1OX and -0.44 for 2OX. The difference between 1OX and 2OX in the slopes suggests that the transition states in PCET oxidations of substrates by the two complexes bear different polarization, as reflection of difference in the electron acceptability and basicity of 1OX and 2OX. The more basic 2OX attracts a proton from a C-H bond via a more polarized transition state than that of 1OX; on the contrary, the more electron-deficient 1OX forms less polarized transition states in PCET oxidation reactions of C-H bonds. PMID:27403587

  14. Crystal structure of azido­(η5-cyclo­penta­dien­yl)bis­(tri­phenyl­phosphane-κP)ruthenium(II) di­chloro­methane hemisolvate

    PubMed Central

    Hernández-Calva, Adriana; Meléndez-Balbuena, Lidia; Arroyo, Maribel; Ramírez-Monroy, Armando

    2014-01-01

    The title solvated complex, [Ru(η5-C5H5)(N3){P(C6H5)3}2]·0.5CH2Cl2, displays a typical piano-stool geometry about the RuII atom. The bond lengths and angles of the cyclo­penta­dienyl and phosphane ligands are very similar to that of the unsolvated complex [Taqui Khan et al. (1994 ▶). Acta Cryst. C50, 502–504]. The azide anion displays similar N—N distances of 1.173 (3) and 1.156 (3) Å and has an N—N—Ru angle of 119.20 (15)°, indicating a greater contribution of the canonical form Ru—N=N(+)=N(-) for the bonding situation. An intra­molecular C—H⋯N hydrogen-bonding inter­action between one ortho H atom of a phosphane ligand and the N atom coordinating to the metal is observed. A similar inter­molecular inter­action is observed between a meta H atom of a phosphane ligand and the terminal azide N atom of a neighbouring complex. Finally, two C—H⋯N inter­actions exists between the H atoms of the di­chloro­methane solvent mol­ecule and the terminal N atom of two azide anions. The solvent mol­ecule is located about a twofold rotation axis and shows disorder of the Cl atoms with an occupancy ratio of 0.62 (3):0.38 (3). PMID:25484673

  15. Syntheses, characterization and electrochemical and spectroscopic properties of ruthenium-iron complexes of 2,3,5,6-tetrakis(2-pyridyl)pyrazine and ferrocene-acetylide ligands.

    PubMed

    Wen, Hui-Min; Wang, Jin-Yun; Zhang, Li-Yi; Shi, Lin-Xi; Chen, Zhong-Ning

    2016-06-28

    Heterodimetallic Ru-Fe complexes [(tppz)(PPh3)2RuL](ClO4) (L = C[triple bond, length as m-dash]CFc, [](ClO4); C[triple bond, length as m-dash]C-C6H4-C[triple bond, length as m-dash]CFc), [](ClO4); C[triple bond, length as m-dash]C-C6H4-C6H4-C[triple bond, length as m-dash]CFc, [](ClO4)) were synthesized by the reactions of [(tppz)(PPh3)2RuCl](ClO4) (tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) with ferrocence-acetylide ligands and characterized by ESI-MS, and (1)H and (31)P NMR spectroscopies. The structure of [](PF6) was determined by X-ray crystallography. The electrochemical studies show that compounds [](ClO4)-[](ClO4) possess two widely separated anodic peaks, ascribable to one-electron oxidation of Fc and Ru(II), respectively. This assignment is further corroborated by the results of UV-vis-NIR, XPS, and theoretical calculation studies. Compound [](ClO4) exhibits significant RuFe metal-metal interactions across the Ru-C[triple bond, length as m-dash]C-Fc backbone. As revealed by electrochemical, spectroscopic and theoretical computational studies, one-electron oxidized species [](ClO4)2 is between the electronically delocalized and valence-trapped state and shows a typical Robin-Day class II mixed-valence behavior. PMID:27273611

  16. Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies.

    PubMed

    Bowman, David N; Blew, James H; Tsuchiya, Takashi; Jakubikova, Elena

    2013-08-01

    Iron(II) polypyridines represent a cheaper and nontoxic alternative to analogous Ru(II) polypyridine dyes successfully used as photosensitizers in dye-sensitized solar cells (DSSCs). We employ density functional theory (DFT) and time-dependent DFT (TD-DFT) to study ground and excited state properties of [Fe(bpy)(CN)4](2-), [Fe(bpy-dca)(CN)4](2-), and [Fe(bpy-dca)2(CN)2] complexes, where bpy = 2,2'-bipyridine and dca = 4,4'-dicarboxylic acid. Quantum dynamics simulations are further used to investigate the interfacial electron transfer (IET) between the excited Fe(II) dyes and a TiO2 nanoparticle. All three dyes investigated display two bands in the visible region of the absorption spectrum, with the major transitions corresponding to the metal-to-ligand charge transfer states. The calculated IET rates from the particle states created by the excitation of the lower-energy absorption band are comparable to or slower than the rate of the excited state decay into the nonemissive, metal-centered states of the Fe(II) dyes (∼100 fs), indicating that the IET upon the excitation of this band is unlikely. Several particle states in the higher-energy absorption band display IET rates at or below 100 fs, suggesting the possibility of the IET between the Fe(II)-sensitizer and TiO2 nanoparticle upon excitation with visible light. Our results are consistent with the previous experimental work on Fe(II) sensitizers (Ferrere, S. Chem. Mater. 2000, 12, 1083) and elucidate the band-selective nature of the IET in these compounds. PMID:23837840

  17. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell

    PubMed Central

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; Brennaman, M. Kyle; Meyer, Thomas J.

    2015-01-01

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ∼5. Systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ∼90-mW/cm2 illumination in a phosphate buffer at pH 7. PMID:25918426

  18. Syntheses and evaluation of drug-like properties of CO-releasing molecules containing ruthenium and group 6 metal.

    PubMed

    Wang, Pengpeng; Liu, Huapeng; Zhao, Quanyi; Chen, Yonglin; Liu, Bin; Zhang, Baoping; Zheng, Qian

    2014-03-01

    In this paper, drug-like properties of two series of carbonyl metal CO-releasing molecules, Ru(CO)₃Cl(n)L (n=1, L=amino acid or its derivatives 1-7, L=acetylacetone 8 or 2,2'-bipyridyl 9; n=2, L=aminopyridine derivatives 10-13; n=0, L=salicylaldehyde Schiff base 14-15) and M(CO)₅L(M=Cr, Mo, W; L=glycine methyl ester 16-18; L=N-methyl imidazole 19-21), were preliminarily evaluated from four aspects involving in cytotoxicity, in vivo toxicity, bio-distribution and metabolism. Cytotoxic effects of all complexes were assayed by MTT. IC₅₀ values of complexes 1-15 were 39.55-240.16mg/l, and those of complexes 16 and 18 were 21.36-22.21 mg/l. Toxicity tests of mice used oral acute toxic class method and got LD₅₀ values of some complexes; among them, LD₅₀ of complex 1 was in 800-1000 mg/kg, complex 7 in 1100-1500 mg/kg and complex 18 in 75-125 mg/kg. After several consecutive administrations, tested complexes severely damaged liver and kidney in both functional and morphological aspects. And by metal ions measurements using ICP-AES, we found that the tested complexes were unevenly distributed in tissues and organs. In vivo, Ru(II) in complexes was oxidized to Ru(III) by P450 enzymes, and for Mo(0) and W(0) in complexes, part of them transformed into higher oxidation state, the others kept original state. PMID:24463436

  19. Upconverting Nanoparticles Prompt Remote Near-Infrared Photoactivation of Ru(II)-Arene Complexes.

    PubMed

    Ruggiero, Emmanuel; Garino, Claudio; Mareque-Rivas, Juan C; Habtemariam, Abraha; Salassa, Luca

    2016-02-18

    The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate. PMID:26785101

  20. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.

    PubMed

    Alibabaei, Leila; Sherman, Benjamin D; Norris, Michael R; Brennaman, M Kyle; Meyer, Thomas J

    2015-05-12

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore-catalyst assembly. The assembly, [(4,4'-(PO3H2)2bpy)2Ru(4-Mebpy-4'-bimpy)Ru(tpy)(OH2)](4+) ([Ru(a) (II)-Ru(b) (II)-OH2](4+), combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[Ru(a) (II)-Ru(b) (II)-OH2](4+)(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ∼ 5. Systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm(2) with 445-nm, ∼ 90-mW/cm(2) illumination in a phosphate buffer at pH 7. PMID:25918426

  1. Combining very large quadratic and cubic nonlinear optical responses in extended, tris-chelate metallochromophores with six pi-conjugated pyridinium substituents.

    PubMed

    Coe, Benjamin J; Fielden, John; Foxon, Simon P; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Samoc, Anna; Samoc, Marek

    2010-03-17

    We describe a series of nine new complex salts in which electron-rich Ru(II) or Fe(II) centers are connected via pi-conjugated bridges to six electron-accepting N-methyl-/N-arylpyridinium groups. This work builds upon our previous preliminary studies (Coe , B. J. J. Am. Chem. Soc. 2005, 127, 13399-13410; J. Phys. Chem. A 2007, 111, 472-478), with the aims of achieving greatly enhanced NLO properties and also combining large quadratic and cubic effects in potentially redox-switchable molecules. Characterization has involved various techniques, including electronic absorption spectroscopy and cyclic voltammetry. The complexes display intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands, and their pi --> pi* intraligand charge-transfer (ILCT) absorptions in the near-UV region show molar extinction coefficients as high as ca. 3.5 x 10(5) M(-1) cm(-1). Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 and 1064 nm and also via Stark (electroabsorption) spectroscopic studies. The directly and indirectly derived beta values are very large, with the Stark-based static first hyperpolarizabilities beta(0) reaching as high as ca. 10(-27) esu, and generally increase on extending the pi-conjugation and enhancing the electron-accepting strength of the ligands. Cubic NLO properties have also been measured by using the Z-scan technique, revealing relatively high two-photon absorption cross sections of up to 2500 GM at 750 nm. PMID:20166735

  2. Experimental and theoretical studies on the DNA-binding and spectral properties of water-soluble complex [Ru(MeIm) 4(dpq)] 2+

    NASA Astrophysics Data System (ADS)

    Chen, Lan-Mei; Liu, Jie; Chen, Jin-Can; Shi, Shuo; Tan, Cai-Ping; Zheng, Kang-Cheng; Ji, Liang-Nian

    2008-06-01

    A new water-soluble Ru(II) complex [Ru(MeIm) 4(dpq)] 2+1, has been synthesized and characterized by elemental analysis, 1H NMR, ESI-MS and UV-Vis. The interaction of the complex with CT-DNA has been explored by using electronic absorption titration, competitive binding experiment, circular dichroic (CD) spectra, thermal denaturation and viscosity measurements. The experimental results show that: the title complex can bind to DNA in an intercalative mode and its DNA-binding affinity is weaker ( Kb = 1.2 × 10 4 M -1) than that of the complex [Ru(bpy) 2(dpq)] 2+2 with bidentate co-ligands ( Kb = 4.7 × 10 4 M -1). Here a very interesting finding is that the hypochromism of the title complex is not linear relation to its DNA-binding affinity. In addition, some significant thermodynamic parameters of the binding of the title complex to DNA, e.g., the changes of free energy at melting temperature, standard enthalpy, and standard entropy ( ΔGT0, Δ H0, and Δ S0), were determined and calculated. In order to deeply explain the experimental findings, the DFT/TDDFT computations were carried out. On the basis of the DFT/TDDFT results and the frontier molecular orbital theory, the trend in DNA-binding affinities and the spectral properties as well as the interesting phenomena of larger extent of hypochromism but relatively smaller Kb value for the title complex 1 compared with complex 2 were reasonably explained.

  3. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: Synthesis, structure, electrochemistry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Mansi, Ahmad; Abdel-Rahman, Obadah S.; Hammoudeh, Ayman; Warad, Ismail

    2015-01-01

    The novel azoimine ligand, Phsbnd NHsbnd Ndbnd C(COCH3)sbnd NHPh(Ctbnd CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd Ph(COCH3) and an enol (L2 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd PhC(OH)dbnd CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y = L1 (1) and Y = L2 (2), bpy is 2.2‧-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D 1H NMR, 13C NMR, (DEPT-135), (DEPT-90), 2D 1H-1H and 13C-1H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe0/+) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT).

  4. Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation

    PubMed Central

    Chatenet, D; Létourneau, M; Nguyen, QT; Doan, ND; Dupuis, J; Fournier, A

    2013-01-01

    Background and Purpose Recent evidence suggested that urotensin II (UII) and its paralog peptide UII-related peptide (URP) might exert common but also divergent physiological actions. Unfortunately, none of the existing antagonists were designed to discriminate specific UII- or URP-associated actions, and our understanding, on how these two endogenous peptides can trigger different, but also common responses, is limited. Experimental Approach Ex vivo rat and monkey aortic ring contraction as well as dissociation kinetics studies using transfected CHO cells expressing the human urotensin (UT) receptors were used in this study. Key Results Ex vivo rat and monkey aortic ring contraction studies revealed the propensity of [Pep4]URP to decrease the maximal response of human UII (hUII) without any significant change in potency, whereas no effect was noticeable on the URP-induced vasoconstriction. Dissociation experiments demonstrated the ability of [Pep4]URP to increase the dissociation rate of hUII, but not URP. Surprisingly, URP, an equipotent UII paralog, was also able to accelerate the dissociation rate of membrane-bound 125I-hUII, whereas hUII had no noticeable effect on URP dissociation kinetics. Further experiments suggested that an interaction between the glutamic residue at position 1 of hUII and the UT receptor seems to be critical to induce conformational changes associated with agonistic activation. Finally, we demonstrated that the N-terminal domain of the rat UII isoform was able to act as a specific antagonist of the URP-associated actions. Conclusion Such compounds, that is [Pep4]URP and rUII(1–7), should prove to be useful as new pharmacological tools to decipher the specific role of UII and URP in vitro but also in vivo. PMID:22994258

  5. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design.

    PubMed

    Chatenet, David; Nguyen, Thi-Tuyet M; Létourneau, Myriam; Fournier, Alain

    2012-01-01

    The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1-7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs. PMID

  6. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design

    PubMed Central

    Chatenet, David; Nguyen, Thi-Tuyet M.; Létourneau, Myriam; Fournier, Alain

    2012-01-01

    The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1–7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs

  7. Photoexcited states of biruthenium(II) compounds bridged by 2,2 prime -bis(2-pyridyl)bibenzimidazole or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane

    SciTech Connect

    Ohno, Takeshi; Nozaki, Koichi ); Haga, Masaaki )

    1992-02-19

    Charge-transfer (CT) excited states of RuL{sub 2}(L{prime}-L{prime}){sup 2+} and RuL{sub 2}(L{prime}-L{prime}){sup 4+} have been studied by means of emission and transient absorption (TA) spectroscopy at 77-300 K. The bridging ligand (L{prime}-L{prime}) is either 2,2{prime}-bis(2-pyridyl)benzimidazole (bpbimH{sub 2}) or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane (dpbime) and L is 2,2{prime}-bipyridine (bpy), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (dmbpy), or 1,10-phenanthroline (phen). Transient absorption (TA) spectra of the ruthenium(II) compounds subjected to laser excitation, whose molar extinction coefficients were determined, are deconvoluted to {pi}-{pi}* bands of L and L{prime}-L{prime} coordinating to Ru(III), L (or L{prime}-L{prime})-to-Ru(III) CT bands, and a {pi}-{pi}* band of (L{prime}-L{prime}){sup {center dot}-} (or L{sup {center dot}-}) by comparison with the absorption spectra of the oxidized compounds (RuL{sub 2}(L{prime}-L{prime}){sup 3+}). The degree of electron population on the ligand decreases in the order bpbimH{sub 2} > bpy {approximately} phen > dpbime > dmbpy in the excited CT states, while there is no discernible difference in the reduction potential between bpbimH{sub 2} (or dpbime) and bpy coordinating to Ru(II). The excitation efficiency of the metal sites in (Ru(bpy){sub 2}){sub 2}(dpbime){sup 4+} is lower than 50% when the laser power was large enough to excite more than 80% of the mononuclear compounds. The low excitation efficiency of the former is ascribed to rapid intramolecular annihilation of the excited states.

  8. Filamentation of Escherichia coli K12 elicited by some monomeric, dimeric and trimeric complexes of ruthenium in various oxidation states.

    PubMed

    Gibson, J F; Hughes, M N; Poole, R K; Rees, J F

    1985-05-01

    A number of ruthenium complexes were tested for their ability to induce filamentation in Escherichia coli. These included monomeric and dimeric complexes with ruthenium in the II or III oxidation states, as well as mixed-valence complexes with ruthenium in the (II,III) oxidation states. In general, dimeric mixed-valence Ru(II,III) complexes were the most active class of compound, although some complexes of this type were relatively inactive. These were pyrazine- or bipyridyl-bridged complexes which are known to involve strong metal-ligand interaction, which stabilizes the Ru(II) oxidation state. Some Ru(III) complexes were also significantly active in induction of filamentous growth in E. coli. One of these was [Ru(NH3)5Cl]Cl2, which did not inhibit electron transport, Mg2+-ATPase activity or DNA synthesis in E. coli, but like [Ru2(NH3)6Br3]Br2 X H2O was a potent inhibitor of respiration-driven calcium transport in the organism. Filament-inducing activity of the complex was reduced in the presence of NaCl, but not in the presence of added Ca2+, ethanol, calcium pantothenate, or E. coli 'division promoting extract'. This behaviour is also similar to that of [Ru2(NH3)6Br3]Br2 X H2O. It is suggested that both complexes may induce filamentation in E. coli by a common mechanism, which may involve interference with calcium metabolism, or a wall or membrane target, rather than interaction with DNA. PMID:3159489

  9. Efficient photodynamic therapy against Staphylococcus aureus using [Ru(bpy)2(dppn)]2+: a novel cationic photosensitizer

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Wang, Ying; Gu, Ying

    2012-12-01

    [Ru(bpy)2(dppn)]2+, one of Ru(II) polypyridyl complexes, present inner dicationic charge and high 1O2 quantum yield. In this study, the synthetic compound was used as photosensitizer (PS) to photoinactivate a reference strain of Staphylococcus aureus ATCC 25923. Bacterial suspensions consisting of 108 colony-forming units (CFU) per milliliter were incubated with PS of different concentrations (0.025μM ~ 25μM). After a 30 minutes period, the suspensions were exposed to 457nm laser light, determined by the absorption spectra of the PS in phosphate buffered saline (PBS), with a power density of 40 mW/cm2 for 10 minutes (energy density of 24 J/cm2). PS group, light group and the blank control were also concerned. Viability of bacteria was determined by pour plates. The Log10 reductions were calculated and killing effects in photodynamic inactivation (PDI) group were analysed contrast to the blank control. We observed that neither the laser light nor the PS per se had any inhibitory effect on the viability of the bacteria. PS at low dose (0.025μM) followed by illumination yielded no significant decrease in the viable number. PS at 0.25μM and 2.5μM with irradiation induced reductions of 1.69 Log10 and 5.97 Log10, respectively. PS at 10μM and 25μM combined with light brought viable bacterial cells down to undetectable levels (reductions < 7 Log10). We concluded that with the PS of appropriate doses, [Ru(bpy)2(dppn)]2+ mediated PDI inactivated S.aureus efficiently. At the concentration of 2.5μM, bactericidal activity was reached where the viability of bacteria fell more than 3 Log10 based on previous researches.

  10. Mononuclear and dinuclear osmium(II) compounds containing 2,2 prime -bipyridine and 3,5-bis(pyridin-2-yl)-1,2,4-triazole: Synthesis, electrochemistry, absorption spectra, and luminescence properties

    SciTech Connect

    Barigelletti, F.; De Cola, L. ); Balzani, V. )); Hage, R.; Haasnoot, J.G.; Reedijk, J. ); Vos, J.G. )

    1991-02-20

    The synthesis, structure, electrochemical behavior, absorption spectra, luminescence spectra (from 90 to 298 K), luminescence lifetimes (from 90 to 298 K), and photoreactivity of the complexes Os(bpy){sub 2}(bpt){sup +} (1) and (Os(bpy){sub 2}){sub 2}(bpt){sup 3+} (2), where by = 2,2{prime}-bipyridine and Hbpt = 3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. The properties exhibited by 1 and 2 are compared with those of Os(bpy){sub 3}{sup 2+} and of the analogous Ru(II) complexes. For both 1 and 2, the lowest energy absorption band and the luminescence band are attributed to Os {yields} bpy metal-to-ligand charge-transfer (MLCT) singlet and triplet excited states, respectively. Electrochemical oxidation is centered on the metal(s), and electrochemical reduction is centered on the ligands, with bpy being reduced at less negative potentials than bpt{sup {minus}}. Because of the stronger {sigma}-donor ability of bpt{sup {minus}} compared with bpy, the Os {yields} bpy CT absorption and emission bands of 1 are red-shifted compared with those of the parent Os(bpy){sub 3}{sup 2+} complex. In nitrile rigid matrix at 90 K, the emission lifetimes are 250 and 340 ns for 1 and 2, respectively. For both complexes, increasing temperature causes a decrease of the emission lifetime but the ln (1/{tau}) vs 1/T plots between 90 and 298 K do not exhibit the highly activated decay processes characteristic of the {sup 3}MLCT {yields} {sup 3}MC crossover. In agreement with this result, no photodecomposition was observed in CH{sub 2}Cl{sub 2} solutions containing Cl{sup {minus}} ions.

  11. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  12. A regenerable ruthenium tetraammine nitrosyl complex immobilized on a modified silica gel surface: preparation and studies of nitric oxide release and nitrite-to-NO conversion.

    PubMed

    Doro, Fabio Gorzoni; Rodrigues-Filho, Ubirajara P; Tfouni, E

    2007-03-15

    Silica gel bearing isonicotinamide groups was prepared by further modification of 3-aminopropyl-functionalized silica by a reaction with isonicotinic acid and 1,3-dicyclohexylcarbodiimide to yield 3-isonicotinamidepropyl-functionalized silica gel (ISNPS). This support was characterized by means of infrared spectroscopy, elemental analysis, and specific surface area. The ISNPS was used to immobilize the [Ru(NH(3))(4)SO(3)] moiety by reaction with trans-[Ru(NH(3))(4)(SO(2))Cl]Cl, yielding [Si(CH(2))(3)(isn)Ru(NH(3))(4)(SO(3))]. The related immobilized [Si(CH(2))(3)(isn)Ru(NH(3))(4)(L)](3+/2+) (L=SO(2), SO(2-)(4), OH(2), and NO) complexes were prepared and characterized by means of UV-vis and IR spectroscopy, as well as by cyclic voltammetry. Syntheses of the nitrosyl complex were performed by reaction of the immobilized ruthenium ammine [Si(CH(2))(3)(isn)Ru(NH(3))(4)(OH(2))](2+) with nitrite in acid or neutral (pH 7.4) solution. The similar results obtained in both ways indicate that the aqua complex was able to convert nitrite into coordinated nitrosyl. The reactivity of [Si(CH(2))(3)(isn)Ru(NH(3))(4)(NO)](3+) was investigated in order to evaluate the nitric oxide (NO) release. It was found that, upon light irradiation or chemical reduction, the immobilized nitrosyl complex was able to release NO, generating the corresponding Ru(III) or Ru(II) aqua complexes, respectively. The NO material could be regenerated from these NO-depleted materials obtained photochemically or by reduction. Regeneration was done by reaction with nitrite in aqueous solution (pH 7.4). Reduction-regeneration cycles were performed up to three times with no significant leaching of the ruthenium complex. PMID:17196216

  13. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites.

    PubMed

    Fernández, Mariana; Arce, Esteban Rodríguez; Sarniguet, Cynthia; Morais, Tânia S; Tomaz, Ana Isabel; Azar, Claudio Olea; Figueroa, Roberto; Diego Maya, J; Medeiros, Andrea; Comini, Marcelo; Helena Garcia, M; Otero, Lucía; Gambino, Dinorah

    2015-12-01

    Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule. PMID:26275470

  14. Effects of electrical and optical properties of thickness condition of ZnO nanorod array layer for efficient electrochemical luminescence cell device

    NASA Astrophysics Data System (ADS)

    Choi, Hye Su; Chansri, Pakpoom; Sung, Youl Moon

    2016-02-01

    In this paper, we report on electrochemical luminescence (ECL) cells with a ZnO nanorod (ZNR) layer. The investigated ECL cells were composed of F-doped SnO2 (FTO) glass/Ru(II)/ZNRs/FTO glass, which used a ZNR layer as an electrode and the Ru(II) complex [Ru(bpy)32+] as a light-emitting material. The ECL cells were fabricated by changing the thickness of ZNRs from 5 to 12.5 µm. The luminescence property of the ECL cells was strongly affected by the variation in the thickness of the ZNR layer. The threshold voltage for the light emission from the ECL cells was 2 V for 10 µm thick ZNRs, which was lower than that of the thickness of the ECL cells without a ZNR layer. Also, the intensity of luminance from the ECL cells with ZNRs was much higher than that from the ECL cells without ZNRs at the same operating voltage. The efficiency of the ECL cells without ZNRs measured at 3 V was 0.0049 lm/W, while those of the ECL cells with ZNRs were 0.0121, 0.0157, 0.0354, and 0.024 lm/W for the ZNRs layer thicknesses 5, 7.5, 10, and 12.5 µm, respectively. However, the peak light intensity at the wavelength was 623 nm which had not affected the all ZNRs thicknesses. The best lifetime of the ECL cells with these thicknesses was 40 min for ZNRs 10 µm. The use of the ZNR layer in the ECL cells significantly improves the luminescence performance.

  15. The first scorpionate ligand based on diazaphosphole.

    PubMed

    Mlateček, Martin; Dostál, Libor; Růžičková, Zdeňka; Honzíček, Jan; Holubová, Jana; Erben, Milan

    2015-12-14

    The reaction of PhBCl2 with 1H-1,2,4-λ(3)-diazaphosphole in the presence of NEt3 gives a new scorpionate ligand, phenyl-tris(1,2,4-diazaphospholyl)borate (PhTdap). The coordination behaviour of this ligand toward transition and non-transition metals has been comprehensively studied. In the thallium(I) complex, Tl(PhTdap), κ(2)-N,N bonding supported with intramolecular η(3)-phenyl coordination has been observed in the solid state. Tl(PhTdap) also shows unusual intermolecular π-interactions between five-membered diazaphosphole rings and the thallium atom giving infinite molecular chains in the crystal. In the square planar complex [Pd(C,N-C6H4CH2NMe2)(PhTdap)], κ(2)-bonded scorpionate has been detected in both solution and in the solid state. For other studied compounds with the central metal ion Ti(IV), Mo(II), Mn(I), Fe(II), Ru(II), Co(II), Co(III), Ni(II) and Cd(II), the κ(3)-N,N,N coordination pattern was observed. Electronic properties of PhTdap and its ligand-field strength were elucidated from UV-Vis spectra of transition-metal species. The CH/P replacement on going from tris(pyrazolyl)borate to the ligand PhTdap causes a slight increase in electronic density rendered to the central metal atom. The following order of ligand-field strength has been established: HB(3,5-Me2pz)3 < PhB(pz)3 < HB(1,2,4-triazolyl) < HB(pz)3 < PhB(1,2,4-triazolyl) < PhTdap. The crystal structures of ten metal complexes bearing the new ligand are reported. The possibility of PhTdap coordination through the phosphorus atom is also briefly discussed. PMID:26537349

  16. Structure and spectroscopic properties of ruthenium(II) bipyridyl N-benzoyl-N'-(1,10-phenanthrolin-5-Yl)-thiourea

    SciTech Connect

    Tan, Siew San; Kassim, Mohammad B.

    2015-09-25

    Ruthenium bipyridyl incorporating phenanthroline with thiourea molecules, [Ru(bpy){sub 2}(Phen-BT)](PF{sub 6}){sub 2}], has been synthesized and characterized by spectroscopic and electrochemical techniques. The infrared spectra of the complex shows the characteristics stretching frequencies for N-H at 3646 and 3585 cm{sup −1}, ν(C-N){sub phen} 1426 cm{sup −1}, ν(C=O) 1675 cm{sup −1}, ν(C=S) 1246 cm{sup −1}, ν(C-H){sub aromatic} 3353-3086 cm{sup −1}, ν(C-N){sub aliphatic} 1169-1026 cm{sup −1}, ν(C-H){sub bend} 764 cm{sup −1} and ν(PF{sub 6}{sup −}){sub free} 842 cm{sup −1}. The complex reveals two π→π* absorption bands at 237 (ε=26,302) and 286 nm (ε=36,848), which were assigned to the phenanthroline and bipyridyl moieties, respectively. A slightly broad and low energy band in the UV-vis spectrum at 450 nm (ε=7,209) of the complex was assigned to a MLCT transition. Besides, the complex also exhibits an emission band at 615 nm that arises from an excitation with a 440 nm light energy. The cyclic voltammetry of the complex shows an oxidation potential at +1.305 V vs. SCE that corresponds to the formal oxidation of Ru(II) to Ru(III)

  17. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    PubMed

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics. PMID:26993079

  18. Electron Transfer Reactivity of the Aqueous Iron(IV)-Oxo Complex. Outer-Sphere vs Proton-Coupled Electron Transfer.

    PubMed

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-07-01

    The kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, Fe(IV)(H2O)5O(2+) (hereafter Fe(IV)aqO(2+)), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)3(2+) (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS(-)/ABTS(2-), phenothiazines, Co(II)(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. Fe(IV)aqO(2+) oxidizes even Ce(III) (E(0) in 1 M HClO4 = 1.7 V) with a rate constant greater than 10(4) M(-1) s(-1). In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)3(2+) (k = 2.5 × 10(5) M(-1) s(-1)), IrCl6(3-) (1.6 × 10(6)), ABTS(2-) (4.7 × 10(7)), and Fe(cp)(C5H4CH2OH) (6.4 × 10(7)) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)3(2+) and of ferrocenes remained unchanged in the acidity range 0.05 < [H(+)] < 0.10 M, ruling out prior protonation of Fe(IV)aqO(2+) and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E(0)Fe/0.059) = 17.2 ± 0.8, where k22 and E(0)Fe are the self-exchange rate constant and reduction potential, respectively, for the Fe(IV)aqO(2+)/Fe(III)aqO(+) couple. Comparison with literature work suggests k22 < 10(-5) M(-1) s(-1) and thus E(0)(Fe(IV)aqO(2+)/Fe(III)aqO(+)) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E(0) (Fe(IV)aqO(2+), H(+)/Fe(III)aqOH(2+)) ≥ 1.95 V. PMID:27320290

  19. Comparisons of phosphorus ligation properties in P(CH2NR)3P.

    PubMed

    Thirupathi, Natesan; Stricklen, Phillip M; Liu, Xiaodong; Oshel, Reed; Guzei, Ilia; Ellern, Arkady; Verkade, John G

    2007-10-29

    Bicyclic P(CH2NMe)3P was synthesized, and its reactions with MnO2, elemental sulfur, p-toluenesulfonyl azide, BH3.THF, and W(CO)5(THF) were shown to furnish a variety of products in which the PC3 and/or the PN3 phosphorus are oxidized/coordinated. In contrast, reactions of the previously known P(CH2NPh)3P with Mo(0) and Ru(II) precursors were shown to afford products in which only the PC3 phosphorus is coordinated. The contrast in reactivity of P(CH2NR)3P (R = Me, Ph) with the aforementioned reagents is discussed in terms of steric and electronic factors. The new compounds are characterized by analytical and spectroscopic (IR, 1H, 31P, and 13C NMR) methods. The results of crystal and molecular structure X-ray analyses of the previously known compounds P(CH2O)3P and P(CH2NPh)3P and 6 of the 14 new compounds obtained in this investigation are presented. Salient features of these structures and the analysis of the Tolman cone angles calculated from their structural parameters are discussed in terms of the effects of constraint in the bicyclic moieties. Evidence is presented for greater M-P sigma bonding effects on coordination of the PC3 phosphorus of P(CH2NR)3P (R = Me, Ph) than are present in PMe3 analogues of group 6B metal carbonyls. From 1JBP data on the BH3 adducts of P(CH2NMe)3P, it is suggested that the free bases MeC(CH2NMe)3P < P(CH2NMe)3P < (Me2N)3P < P(MeNCH2CH2)3N increase in Lewis basicity at the PN3 phosphorus in the order shown. Substantial differences in 31P chemical shifts in the bicyclic compounds discussed herein relative to their acyclic analogues do not seem to be associated with the relatively small bond angle changes that occur around either the PN3 or the PC3 trivalent phosphorus atoms. PMID:17892282

  20. Photoinduced energy transfer across non-covalent bonds in the nanoscale: cyclodextrin hosts with enhanced luminescent properties for guest communication.

    PubMed

    Faiz, Jonathan A; Kyllonen, Lasse E P; Contreras-Carballada, Pablo; Williams, René M; De Cola, Luisa; Pikramenou, Zoe

    2009-05-28

    Two photoactive cyclodextrin hosts have been prepared and studied in participation on photophysical processes, one with a ruthenium tris(bipyridyl) core which forms a trimeric host and the other with an appended anthracene unit. An acetylide functionalized bipyridyl cyclodextrin, , was prepared by palladium coupling of mono-6-propargyl permethylated beta-CD and 4-bromo-2,2'-bipyridine. The ruthenium complex, [Ru(3)]Cl(2), shows luminescence from the (3)MLCT centered at 650 nm with a quantum yield of 0.044 and a lifetime at room temperature of 1.1 micros in aerated aqueous solution. The enhanced luminescence properties have been attributed to extra delocalisation afforded by the three propargyl units appended to the complex and the stabilization of the MLCT state. An anthracene functionalised cyclodextrin was prepared from mono-6-O-p-toluenesulfonyl permethylated beta-cyclodextrin and 9-anthracene methanol. It shows fluorescence at room temperature with a maximum at 400 nm with a lifetime of 7 ns. Transient absorption spectroscopy has been used to elucidate the excited state properties of [Ru(3)]Cl(2) and hosts. A broad band centered around 600 nm in the [Ru(3)]Cl(2) transient spectrum corresponds to the absorption of the pi-radical anion of the ethynyl fragment of ligand and in a signal at 595 nm was observed, corresponding to the absorption of the anthracene excited singlet state. We used a bisadamantyl guest to assemble the two hosts and studied the energy transfer from the ruthenium core to the anthracene unit by steady state emission spectroscopy. The photoinduced energy transfer process in assemblies of host with ruthenium or osmium metalloguests, [Ru(biptpy)(tpy)](NO(3))(2) and [Os(biptpy)(tpy)](NO(3))(2), was studied by femtosecond transient spectroscopy and steady state emission spectroscopy. The singlet state of the anthracene pendant unit acted as a donor to the MLCT of the Ru(II) or Os(II) metalloguests. An energy transfer rate from the singlet

  1. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  2. Crystal structure of (2,11-di­aza­[3.3](2,6)pyridino­phane-κ 4 N,N′,N′′,N′′′)(1,6,7,12-tetra­aza­perylene-κ 2 N 1,N 12)ruthenium(II) bis­(hexa­fluorido­phosphate) aceto­nitrile 1.422-solvate

    PubMed Central

    Brietzke, Thomas; Rottke, Falko Otto; Kelling, Alexandra; Schilde, Uwe; Holdt, Hans-Jürgen

    2014-01-01

    In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L–N4H2)tape]2+ are formed {L–N4H2 = 2,11-di­aza­[3.3](2,6)pyridino­phane; tape = 1,6,7,12-tetra­aza­perylene}, held together by π–π stacking inter­actions via the tape ligand moieties with a centroid–centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α′-di­imine unit and the amine proton of a 2,11-di­aza­[3.3](2,6)-pyridino­phane ligand of the opposite complex cation. The combination of these inter­actions leads to an unusual nearly face-to-face π–π stacking mode. Additional weak C—H⋯N, C—H⋯F, N—H⋯F and P—F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925–3.984 Å) inter­actions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octa­hedral geometry, particularly manifested by the Namine—Ru—Namine angle of 153.79 (10)°. The counter-charge is provided by two hexa­fluorido­phosphate anions and the asymmetric unit is completed by aceto­nitrile solvent mol­ecules of crystallization. Disorder was observed for both the hexa­fluorido­phosphate anions as well as the aceto­nitrile solvate mol­ecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied aceto­nitrile mol­ecule. A second CH3CN mol­ecule is fully occupied, but 1:1 disordered across a crystallographic inversion center. PMID:25484670

  3. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  4. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    spectroscopy can be employed to monitor lateral self-exchange energy- and hole-transfer reactions across the sensitized TiO2 surface. Under conditions of poor excited-state injection, support for Ru*/II self exchange was obtained, while subsequent to electron injection, the resulting RuIII state of the sensitizer was often capable of RuIII/II self-exchange reactions. The kinetics for many processes associated with mesoporous, nanocrystalline TiO2 thin films can be modeled by a stretched-exponential function, which possesses an underlying distribution of rate constants. In Chapter 5, we provide the first implementation of an Arrhenius analysis for the temperature dependence of these distributions.

  5. New bipyridyl/phenanthroline ruthenium(II) and ruthenium(III) complexes possessing acetate appended thioether. Evidence for oxidative linkage isomerization

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Kumar, Ajay; Kumar, Rajeev

    2006-03-01

    The acetate bearing dithioether, sodium di(2-carboxymethylsufanyl)maleonitrile, L 1 upon reaction with [Ru II(bpy) 2Cl 2]·2H 2O, [Ru II(phen) 2Cl 2]·2H 2O, [Ru III(bpy) 2Cl 2] + or [Ru III(phen) 2Cl 2] + in methanol formed complexes of the type [(bpy) 2Ru{S 2(CH 2COO) 2C 2(CN) 2}], ( 1), [(phen) 2Ru{S 2(CH 2COO) 2C 2(CN) 2}], ( 2), [(bpy) 2Ru{(OOCCH 2) 2S 2C 2(CN) 2}] +, ( 5) and [(phen) 2Ru{(OOCCH 2) 2S 2C 2(CN) 2}] +, ( 6) respectively. Four other Ru(III) complexes with di(benzylsulfanyl)maleonitrile, L 2, [(bpy) 2Ru{S 2(PhCH 2)C 2(CN) 2}] 3+, ( 7) and [(phen) 2Ru{S 2(PhCH 2) 2C 2(CN) 2}] 3+, ( 8), and with acetate, [(bpy) 2Ru(OOCCH 3) 2] +, ( 9) and [(phen) 2Ru(OOCCH 3) 2] +, ( 10) were also synthesized. In the cyclic voltammetry, complexes ( 1) and ( 2) exhibited quasireversible oxidation waves at 1.01 and 1.02 V vs. Ag/AgCl over GC electrode in DMF, while the corresponding Ru(III) L 1 complexes ( 5) and ( 6) exhibit reversible oxidation at E1/2 0.59 and 0.58 V, respectively, under identical conditions. This is unlike the voltammetric behavior of the Ru(II) and Ru(III) L 2 complexes, wherein the complex pairs ( 3), ( 7) and ( 4), ( 8) exhibited identical voltammograms with single reversible one electron waves at E1/2 0.98 and 0.92 V, respectively under identical conditions. The voltammograms of Ru(II)-L 2 complexes (3) and (4) also became irreversible in presence of nearly four molar equivalent of sodium acetate. Hence, the irreversible redox behavior of complexes (1) and (2) has been interpreted in terms of rapid linkage isomerization, i.e. shift in κ 2-S,S' to κ 2-O,O' coordination, following the Ru(II)/Ru(III) electrode process. The electronic spectra of Ru(III)-L 1 complexes ( 5) and ( 6) resemble closely with that of ( 9) and ( 10) instead of Ru(III)-L 2 complexes ( 7) and ( 8), further supports proposed linkage isomerization. The cationic complexes were obtained as [PF 6] - salts and all compounds were characterized using analytical and spectral (IR

  6. Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents.

    PubMed

    Bencini, Andrea; Failli, Paola; Valtancoli, Barbara; Bani, Daniele

    2010-07-01

    Molecules able to modulate the levels of endogenous free radicals, such as reactive oxygen species (ROS) and nitric oxide (NO), are of pivotal interest for pharmacological and pharmaceutical sciences because of their potential therapeutic relevance. In fact, ROS and NO, which are normal products of cell metabolism, may play a dual beneficial/deleterious role, depending on local concentration and mode of generation. As such, they have been identified as key pathogenic factors for many inflammatory, vascular dysfunctional and degenerative disorders, including atherosclerosis, hypertension, cardiovascular and neurodegenerative diseases, cancer, diabetes mellitus, and ageing. Therefore, the identification and characterization of novel antioxidant/free radical scavenger molecules may expand the current therapeutic implements for the treatment and prevention of the above diseases. In this perspective, low molecular weight complexes of transition metals with organic scaffolds are viewed and investigated as promising pharmaceutical agents. These complexes take advantage of the known principles of inorganic chemistry, i.e. the ability of transition metals, Fe(II), Co(II), Mn(II) and Ru(II), to bind to and react with NO and/or ROS, to counterbalance excessive endogenous free radical generation in biological systems. Among NO scavengers, representative examples are iron complexes with dithiocarbamates or ruthenium compounds with polyamine-polycarboxylate scaffolds; on the other hand, manganese-based molecules appear effective as ROS scavengers. Of note, Mn(II)-containing molecules, currently under study as ROS scavengers, have major functional similarities to Mn-superoxide dismutase (SOD), a Mn-containing enzyme acting as potent endogenous anti-oxidant. In this article, we briefly summarize the state-of-the-art concerning the chemical and biological properties of transition metal ion complexes with low molecular weight synthetic ligands as ROS/NO scavengers provided with

  7. Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes.

    PubMed

    Hazari, Arijit Singha; Das, Ankita; Ray, Ritwika; Agarwala, Hemlata; Maji, Somnath; Mobin, Shaikh M; Lahiri, Goutam Kumar

    2015-05-18

    This article deals with a class of ruthenium-BIAN-derived complexes, [Ru(II)(tpm)(R-BIAN)Cl]ClO4 (tpm = tris(1-pyrazolyl)methane, R-BIAN = bis(arylimino)acenaphthene, R = 4-OMe ([1a]ClO4), 4-F ([1b]ClO4), 4-Cl ([1c]ClO4), 4-NO2 ([1d]ClO4)) and [Ru(II)(tpm)(OMe-BIAN)H2O](2+) ([3a](ClO4)2). The R-BIAN framework with R = H, however, leads to the selective formation of partially hydrolyzed BIAO ([N-(phenyl)imino]acenapthenone)-derived complex [Ru(II)(tpm)(BIAO)Cl]ClO4 ([2]ClO4). The redox-sensitive bond parameters involving -N═C-C═N- or -N═C-C═O of BIAN or BIAO in the crystals of representative [1a]ClO4, [3a](PF6)2, or [2]ClO4 establish its unreduced form. The chloro derivatives 1a(+)-1d(+) and 2(+) exhibit one oxidation and successive reduction processes in CH3CN within the potential limit of ±2.0 V versus SCE, and the redox potentials follow the order 1a(+) < 1b(+) < 1c(+) < 1d(+) ≈ 2(+). The electronic structural aspects of 1a(n)-1d(n) and 2(n) (n = +2, +1, 0, -1, -2, -3) have been assessed by UV-vis and EPR spectroelectrochemistry, DFT-calculated MO compositions, and Mulliken spin density distributions in paramagnetic intermediate states which reveal metal-based (Ru(II) → Ru(III)) oxidation and primarily BIAN- or BIAO-based successive reduction processes. The aqua complex 3a(2+) undergoes two proton-coupled redox processes at 0.56 and 0.85 V versus SCE in phosphate buffer (pH 7) corresponding to {Ru(II)-H2O}/{Ru(III)-OH} and {Ru(III)-OH}/{Ru(IV)═O}, respectively. The chloro (1a(+)-1d(+)) and aqua (3a(2+)) derivatives are found to be equally active in functioning as efficient precatalysts toward the epoxidation of a wide variety of alkenes in the presence of PhI(OAc)2 as oxidant in CH2Cl2 at 298 K, though the analogous 2(+) remains virtually inactive. The detailed experimental analysis with the representative precatalyst 1a(+) suggests the involvement of the active {Ru(IV)═O} species in the catalytic cycle, and the reaction proceeds through the

  8. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    NASA Astrophysics Data System (ADS)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-01

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the

  9. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  10. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-M(III) (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: kinetic vs. thermodynamic isomers.

    PubMed

    Cánaves, María M; Cabra, María I; Bauzá, Antonio; Cañellas, Pablo; Sánchez, Kika; Orvay, Francisca; García-Raso, Angel; Fiol, Juan J; Terrón, Angel; Barceló-Oliver, Miquel; Ballester, Pablo; Mata, Ignasi; Molins, Elies; Hussain, Firasat; Frontera, Antonio

    2014-05-01

    New chlorido-dimethylsulfoxide-iridium(III), ruthenium(III) and rhodium(III) complexes with the 2-(1H-pyrazol-1-yl)-pyrimidine (pyrapyr) ligand (OC-6-N1)-[Rh(III)Cl3(DMSO-κS)(pyrapyr)] (1a, N = 3 and 1b, N = 4); (OC-6-N1)-[Ru(III)Cl3(DMSO-κS)(pyrapyr)] (2a, N = 3 and 2b, N = 4) and (OC-6-N1)-[Ir(III)Cl3(DMSO-κS)(pyrapyr)] (3a, N = 3 and 3b, N = 4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction studies (1a, 1b, 2a, 2b, a disordered crystal 3a/3b and a cocrystal 3a·3b). In all cases, the metal centers show octahedral geometry coordinated to three chloride ligands and one S coordinated dimethylsulfoxide (DMSO-κS). The coordination sphere of the metal is completed by the pyrapyr molecule. Two different coordination modes are observed: (i) the DMSO-κS is opposite to the pyrimidinic N atom (IUPAC nomenclature is OC-6-31 denoted herein as trans); (ii) DMSO-κS is opposite to the pyrazolic N atom (IUPAC nomenclature is OC-6-41 denoted as cis). For Rh(III) the kinetic product (cis) yields the thermodynamic (trans) upon heating a solution of the kinetic product and both isomers have been X-ray characterized. Conversely for Ru(III), both kinetic and thermodynamic complexes have been obtained by using different procedures. Both isomers have been characterized by X-ray crystallography and the kinetic product does not yield the thermodynamic upon heating a solution of the former. Furthermore, the Ir(III) behaves differently, since both isomers are energetically equivalent and both isomers co-crystallize in the solid state. The kinetic/thermodynamic mechanism that yields the different isomers has been studied by using theoretical DFT calculations for each metal. Finally, two Ru(II) complexes (OC-6-N1)-[Ru(II)Cl2(DMSO-κS)2(pyrapyr)] (1a, N = 3 and 4b, N = 4) are also described and X-ray characterized. They were obtained as minor products during the synthesis of 2a. PMID:24599509

  11. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    DOE PAGESBeta

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, FeIV(H2O)5O2+ (hereafter FeIVaqO2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)32+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS2–, phenothiazines, CoII(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. FeIVaqO2+ oxidizes even Ce(III) (E0 in 1 M HClO4 = 1.7more » V) with a rate constant greater than 104 M–1 s–1. In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)32+ (k = 2.5 × 105 M–1 s–1), IrCl63– (1.6 × 106), ABTS2– (4.7 × 107), and Fe(cp)(C5H4CH2OH) (6.4 × 107) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)32+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of FeIVaqO2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E0Fe/0.059) = 17.2 ± 0.8, where k22 and E0Fe are the self-exchange rate constant and reduction potential, respectively, for the FeIVaqO2+/FeIIIaqO+ couple. Comparison with literature work suggests k22 < 10–5 M–1 s–1 and thus E0(FeIVaqO2+/FeIIIaqO+) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E0 (FeIVaqO2+, H+/FeIIIaqOH2+) ≥ 1.95 V.« less

  12. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    SciTech Connect

    Tsukerblat, Boris E-mail: andrew.palii@uv.es; Palii, Andrew E-mail: andrew.palii@uv.es; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(II) + 2Ru(III)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  13. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  14. Out of the Blue! Azuliporphyrins and Related Carbaporphyrinoid Systems.

    PubMed

    Lash, Timothy D

    2016-03-15

    First reported in 1997, azuliporphyrins have proven to be a truly remarkable family of porphyrin analogues. In this system, although the porphyrin framework is retained, one of the pyrrolic moieties has been replaced by an azulene unit. Azulene favors electrophilic substitution at the 1,3-positions, which are structurally analogous to the α-positions in pyrrole, and this property facilitates the construction of azulene-containing porphyrinoid systems. Azuliporphyrins were first prepared from tripyrranes and 1,3-azulenedicarbaldehyde using a "3 + 1" variant on the MacDonald reaction. Subsequently, azulenes were shown to react with acetoxymethylpyrroles under acidic conditions to generate azulitripyrranes that could be utilized in a back-to-front "3 + 1" methodology to form azuliporphyrins and related heteroporphyrinoids. In addition, the favorability of azulenes toward 1,3-substitution was applied to one-pot syntheses of tetraarylazuliporphyrins and calix[4]azulenes. Azuliporphyrins have significant diatropic character that is greatly enhanced upon protonation. They have been shown to form organometallic complexes with Ni(II), Pd(II), Pt(II), Ir(III), Rh(III), and Ru(II) and undergo selective oxidations at the internal carbon with copper(II) or silver(I) salts to afford 21-oxyazuliporphyrins. In addition, oxidative ring contractions readily occur under basic conditions in the presence of peroxides to give benzocarbaporphyrins, and this reactivity provides access to tetraarylbenzocarbaporphyrins and their organometallic derivatives. A diazulenylmethane dialdehyde has been shown to react with dipyrrylmethanes in the presence of HCl or HBr to give diazuliporphyrins that were isolated in a monoprotonated form, and metalation with palladium(II) acetate afforded a stable zwitterionic palladium(II) complex. Equally intriguing dicarbaporphyrinoids incorporating indene and azulene rings have been reported, and these systems exhibit significant aromatic character. Recent

  15. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru(V) (O)(Py2 (Me) tacn)] Intermediate.

    PubMed

    Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio

    2016-07-11

    A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions. PMID:27324949

  16. New ruthenium nitrosyl pincer complexes bearing an O2 ligand. Mono-oxygen transfer.

    PubMed

    Fogler, Eran; Efremenko, Irena; Gargir, Moti; Leitus, Gregory; Diskin-Posner, Yael; Ben-David, Yehoshoa; Martin, Jan M L; Milstein, David

    2015-03-01

    We report on Ru((II))(μ(2)-O2) nitrosyl pincer complexes that can return to their original Ru(0) state by reaction with mono-oxygen scavengers. Potential intermediates were calculated by density functional theory (DFT) and a mechanism is proposed, revealing a new type of metal-ligand cooperation consisting of activation of the O2 moiety by both the metal center and the NO ligand. Reaction of the Ru(0) nitrosyl complex 1 with O2 quantitatively yielded the crystallographically characterized Ru((II)) (μ(2)-O2) nitrosyl complex 2. Reaction of 2 with the mono-oxygen scavengers phosphines or CO gave the Ru(0) complex 1 and phosphine oxides, or the carbonyl complex 3 (1 trapped by CO) and CO2, respectively. Reaction of 2 with 1 equiv of phosphine at room temperature or -40 °C resulted in immediate formation of half an equivalent of 1 and 1 equiv of phosphine oxide, while half an equivalent of 2 remained unchanged. Overnight reaction at room temperature of 2 with excess CO (≥3 equiv) resulted in 3 and CO2 gas as the only products. Reaction of 1 with 1 equiv of mono-oxygen source (dioxirane) at -78 °C yielded the Ru((II))(μ(2)-O2) complex 2. Similarly, reaction of the Ru(0) dearomatized complex 4 with O2 led to the crystallographicaly characterized Ru((II))(μ(2)-O2) complex 5. Further reaction of 5 with mono-oxygen scavengers (phosphines or CO) led to the Ru(0) complex 4 and phosphine oxides or complex 6 (4 trapped by CO) and CO2. When instead only 1 equiv of 5 was reacted with 1 equiv of phosphine at room temperature, immediate formation of half an equivalent of 4 and 1 equiv of phosphine oxide took place, while half an equivalent of 5 remained unchanged. When 5 reacted with an excess of CO (≥3 equiv), complex 6 and CO2 gas were the only products obtained. DFT studies indicate a new mode of metal-ligand cooperation involving the nitrosyl ligand in the oxygen transfer process. PMID:25695626

  17. Synthesis, spectroscopic analysis and photolabilization of water-soluble ruthenium(III)-nitrosyl complexes.

    PubMed

    Merkle, Anna C; McQuarters, Ashley B; Lehnert, Nicolai

    2012-07-14

    In this paper, the synthesis, structural and spectroscopic characterization of a series of new Ru(III)-nitrosyls of {RuNO}(6) type with the coligand TPA (tris(2-pyridylmethyl)amine) are presented. The complex [Ru(TPA)Cl(2)(NO)]ClO(4) (2) was prepared from the Ru(III) precursor [Ru(TPA)Cl(2)]ClO(4) (1) by simple reaction with NO gas. This led to the surprising displacement of one of the pyridine (py) arms of TPA by NO (instead of the substitution of a chloride anion by NO), as confirmed by X-ray crystallography. NO complexes where TPA serves as a tetradentate ligand were obtained by reacting the new Ru(II) precursor [Ru(TPA)(NO(2))(2)] (3) with a strong acid. This leads to the dehydration of nitrite to NO(+), and the formation of the {RuNO}(6) complex [Ru(TPA)(ONO)(NO)](PF(6))(2) (4), which was also structurally characterized. Derivatives of 4 where nitrite is replaced by urea (5) or water (6) were also obtained. The nitrosyl complexes obtained this way were then further investigated using IR and FT-Raman spectroscopy. Complex 2 with the two anionic chloride coligands shows the lowest N-O and highest Ru-NO stretching frequencies of 1903 and 619 cm(-1) of all the complexes investigated here. Complexes 5 and 6 where TPA serves as a tetradentate ligand show ν(N-O) at higher energy, 1930 and 1917 cm(-1), respectively, and ν(Ru-NO) at lower energy, 577 and 579 cm(-1), respectively, compared to 2. These vibrational energies, as well as the inverse correlation of ν(N-O) and ν(Ru-NO) observed along this series of complexes, again support the Ru(II)-NO(+) type electronic structure previously proposed for {RuNO}(6) complexes. Finally, we investigated the photolability of the Ru-NO bond upon irradiation with UV light to determine the quantum yields (φ) for NO photorelease in complexes 2, 4, 5, and additional water-soluble complexes [Ru(H(2)edta)(Cl)(NO)] (7) and [Ru(Hedta)(NO)] (8). Although {RuNO}(6) complexes are frequently proposed as NO delivery agents in vivo

  18. Ruthenium nitrosyls derived from polypyridine ligands with carboxamide or imine nitrogen donor(s): isoelectronic complexes with different NO photolability.

    PubMed

    Rose, Michael J; Patra, Apurba K; Alcid, Eric A; Olmstead, Marylin M; Mascharak, Pradip K

    2007-03-19

    As part of our search for photoactive ruthenium nitrosyls, a set of {RuNO}6 nitrosyls has been synthesized and structurally characterized. In this set, the first nitrosyl [(SBPy3)Ru(NO)](BF4)3 (1) is derived from a polypyridine Schiff base ligand SBPy3, while the remaining three nitrosyls are derived from analogous polypyridine ligands containing either one ([(PaPy3)Ru(NO)](BF4)2 (2)) or two ([(Py3P)Ru(NO)]BF4 (3) and [(Py3P)Ru(NO)(Cl)] (4)) carboxamide group(s). The coordination structures of 1 and 2 are very similar except that in 2, a carboxamido nitrogen is coordinated to the ruthenium center in place of an imine nitrogen in case of 1. In 3 and 4, the ruthenium center is coordinated to two carboxamido nitrogens in the equatorial plane and the bound NO is trans to a pyridine nitrogen (in 3) and chloride (in 4), respectively. Complexes 1-3 contain N6 donor set, and the NO stretching frequencies (nuNO) correlate well with the N-O bond distances. All four diamagnetic {RuNO}(6) nitrosyls are photoactive and release NO rapidly upon illumination with low-intensity (5-10 mW) UV light. Interestingly, photolysis of 1 generates the diamagnetic Ru(II) photoproduct [(SBPy3)Ru(MeCN)](2+) while 2-4 afford paramagnetic Ru(III) species in MeCN solution. The quantum yield values of NO release under UV illumination (lambda(max) = 302 nm) lie in the range 0.06-0.17. Complexes 3 and 4 also exhibit considerable photoactivity under visible light. The efficiency of NO release increases in the order 2 < 3 < 4, indicating that photorelease of NO is facilitated by (a) the increase in the number of coordinated carboxamido nitrogen(s) and (b) the presence of negatively charged ligands (like chloride) trans to the bound NO. PMID:17315866

  19. Nitroxyl as a ligand in ruthenium tetraammine systems: a density functional theory study.

    PubMed

    Da Silva, Augusto C H; Da Silva, Juarez L F; Franco, Douglas W

    2016-03-21

    The properties of the free nitroxyl molecule and the nitroxyl ligand in Ru(ii) tetraammines (trans-[Ru(NH3)4(nitroxyl)(n)(L)](2+n) (n = nitroxyl charge; L = NH3, py, P(OEt)3, H2O, Cl(-) and Br(-))) were studied using density functional theory. According to the calculated conformational energies, HNO complexes are more stable than their deprotonated analogues, and the singlet configuration (trans-(1)[Ru(NH3)4(L)HNO](2+)) is lower in energy than the corresponding triplet (trans-(3)[Ru(NH3)4(L)HNO](2+)). An evaluation of the σ and π components of the L-Ru-HNO bond suggest that the increased stability of these orbitals and the enhanced contributions from the HNO orbitals correlate to shorter Ru-N(H)O distances and higher νRu-HNO stretching frequencies. The stability of the Ru-HNO bond was also evaluated through a theoretical kinetic study of HNO dissociation from trans-(1)[Ru(NH3)4(L)HNO](2+). The order of the Ru-HNO bonding stability in trans-(1)[Ru(NH3)4(L)HNO](2+) as a function of L was found to be as follows: H2O > Cl(-)∼ Br(-) > NH3 > py > P(OEt)3. This order parallels the order of the trans-effect and trans-influence series experimentally measured for L in octahedral complexes. The same trend was also observed using an explicit solvent model, considering the presence of both HNO and H2O molecules in the transition state. For this series, the calculated bond dissociation enthalpies for the Ru-HNO bonds are in the range 23.8 to 45.7 kcal mol(-1). A good agreement was observed between the calculated ΔG(‡) values for the displacement of HNO by H2O in trans-(1)[Ru(NH3)4(P(OEt)3HNO](2+) (23.4 kcal mol(-1)) and the available experimental data for the substitution reactions of trans[Ru(NH3)4(POEt)3(Lx)](2+) (19.4 to 24.0 kcal mol(-1) for Lx = isn and P(OET)3, respectively). PMID:26879818

  20. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  1. Electronic and optical properties of dye-sensitized TiO₂ interfaces.

    PubMed

    Pastore, Mariachiara; Selloni, Annabella; Fantacci, Simona; De Angelis, Filippo

    2014-01-01

    Dye-sensitized solar cells (DSCs) represent a promising approach to the direct conversion of sunlight to electrical energy at low cost and high efficiency. DSCs are based on a film of anatase TiO₂ nanoparticles covered by adsorbed molecular dyes and immersed in a liquid redox electrolyte. Upon photoexcitation of the chemisorbed dye, electrons are injected into the TiO₂ conduction band and can travel across the nanostructured film to reach the counter-electrode, while the oxidized dye is regenerated by the redox electrolyte. In this review we present a summary of recent computational studies of the electronic and optical properties of dye-sensitized TiO2 interfaces, with the aim of providing the basic understanding of the operation principles of DSCs and establishing the conceptual basis for their design and optimization.We start with a discussion of isolated dyes in solution, focusing on the dye's atomic structure, ground and excited state oxidation potentials, and optical absorption spectra. We examine both Ru(II)-polypyridyl complexes and organic "push-pull" dyes with a D-π-A structure, where the donor group (D) is an electron-rich unit, linked through a conjugated linker (π) to the electron-acceptor group (A). We show that a properly calibrated computational approach based on Density Functional Theory (DFT) combined with Time Dependent DFT (TD-DFT) can provide a good description of both the absorption spectra and ground and excited state oxidation potential values of the Ru(II) complexes. On the other hand, organic push-pull dyes are not well described by the standard DFT/TD-DFT approach. For these dyes, an excellent description of the electronic structure in gas phase can be obtained by the many body perturbation theory GW method, which has, however, a much higher computational cost.We next consider interacting dye/semiconductor systems. Key properties are the dye adsorption structure onto the semiconductor, the nature and localization of the dye

  2. Photocatalytic water splitting: Materials design and high-throughput screening of molecular compositions

    NASA Astrophysics Data System (ADS)

    Khnayzer, Rony S.

    , photons of low energy are converted into higher energy light using a process termed photon upconversion. Using this technique, low energy photons supplied by the sun can be converted into light of appropriate energy to trigger electronic transitions in high energy absorbing photoactive materials without any chemical modification of the latter. We have shown, that this technology is capable of upconverting visible sunlight to sensitize wide-bandgap semiconductors such as WO3, subsequently extending the photoaction of these materials to cover a larger portion of the solar spectrum. Besides the engineering of different compositions that serve as either sensitizers or catalysts in these solar energy conversion schemes, we have designed an apparatus for parallel high-throughput screening of these photocatalytic compositions. This combinatorial approach to solar fuels photocatalysis has already led to unprecedented fundamental understanding of the generation of hydrogen gas from pure water. The activity of a series of new Ru(II) sensitizers along with Co(II) molecular WRCs were optimized under visible light excitation utilizing different experimental conditions. The multi-step mechanism of activity of selected compositions was further elucidated by pump-probe transient absorption spectroscopy.

  3. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  4. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  5. Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system

    PubMed Central

    Creutz, Carol; Sutin, Norman

    1975-01-01

    Irradiation of Ru(bipy)32+ (bipy = 2,2′-bipyridine) with light below 560 nm results in the formation of a charge-transfer excited state potentially capable of reducing water to dihydrogen with concomitant production of Ru(bipy)33+. The latter may be reduced by hydroxide [Formula: see text] to form dioxygen and regenerate the starting complex. The use of these reactions in a cell designed to bring about the photochemical decomposition of water is proposed. The stoichiometry, kinetics, and mechanism of the Ru(bipy)33+-hydroxide reaction have been investigated by conventional and stopped-flow spectrophotometry. The dioxygen yield is a sharp function of pH, attaining its maximum value (about 80%) at pH 9. At low pH (3 and 4.8) the production of ruthenium(II) is first order with kobsd = (1.41 ± 0.04) × 10-4 sec-1 (25°, ionic strength μ = 1.00 M with sodium sulfate). In the intermediate pH range (7.9-10.0) complex kinetics are observed. In the hydroxide range 0.01-0.50 M, ruthenium(II) production is predominantly first order with kobsd = ka[OH-] + kb[OH-]2 sec-1; ka = 148 M-1 sec-1 and kb = 138 M-2 sec-1 (25°, μ = 1.00 M, sodium sulfate). For the ka term, the activation parameters are ΔH‡ = 15.3 ± 1.0 kcal mol-1 and ΔS‡ = 7 ± 3 cal deg-1 mol-1 (1 cal = 4.184 J). An intermediate species (λmax 800 nm) forms at the same rate as ruthenium(II) in this hydroxide range. It disappears with kobsd = 1.2 + 1.1 × 102 [OH-] sec-1 at 25°. Similarly absorbing (λmax 750 to 800 nm) species are generated by the addition of hydroxyl radical to M(bipy)32+/3+ [M = Fe(II), Os(II), Ru(II), Cr(III), Ru(III)] in pulse radiolysis experiments. The kinetics above pH 7 are described in terms of rate-determining nucleophilic attack by hydroxide on the bound bipyridine ring. The hydroxide adduct so generated is tentatively identified with that observed in the pulse radiolysis experiments with Ru(bipy)32+. For reduction of Ru(bipy)33+ by hydrogen peroxide ruthenium(II) production is