Science.gov

Sample records for ruthenium nitrates

  1. Volatilities of ruthenium, iodine, and technetium on calcining fission product nitrate wastes

    SciTech Connect

    Rimshaw, S.J.; Case, F.N.

    1980-01-01

    Various high-level nitrate wastes were subjected to formic acid denitration. Formic acid reacts with the nitrate anion to yield noncondensable, inert gases according to the following equation: 4 HCOOH + 2 HNO/sub 3/ ..-->.. N/sub 2/O + 4 CO/sub 2/ + 5 H/sub 2/O. These gases can be scrubbed free of /sup 106/Ru, /sup 131/I, and /sup 99/Tc radioactivities prior to elimination from the plant by passage through HEPA filters. The formation of deleterious NO/sub x/ is avoided. Moreover, formic acid reduces ruthenium to a lower valence state with a sharp reduction in RuO/sub 4/ volatility during subsequent calcination of the pretreated waste. It is shown that a minimum of 3% of RuO/sub 4/ in an off-gas stream reacts with Davison silica gel (Grade 40) to give a fine RuO/sub 2/ aerosol having a particle size of 0.5 ..mu... This RuO/sub 2/ aerosol passes through water or weak acid scrub solutions but is trapped by a caustic scrub solution. Iodine volatilizes almost completely on calcining an acidic waste, and the iodine volatility increases with increasing calcination temperature. On calcining an alkaline sodium nitrate waste the iodine volatility is about an order of magnitude lower, with a relatively low iodine volatility of 0.39% at a calcination temperature of 250/sup 0/C and a moderate volatility of 9.5% at 600/sup 0/C. Volatilities of /sup 99/Tc were generally <1% on calcining acidic or basic wastes at temperatures of 250 to 600/sup 0/C. Data are presented to indicate that /sup 99/Tc concentrates in the alkaline sodium nitrate supernatant waste, with approx. 10 mg /sup 99/Tc being associated with each curie of /sup 137/Cs present in the waste. It is shown that lutidine (2,4 dimethyl-pyridine) extracts Tc(VII) quantitatively from alkaline supernatant wastes. The distribution coefficient (K/sub D/) for Tc(VII) going into the organic phase in the above system is 102 for a simulated West Valley waste and 191 for a simulated Savannah River Plant (SRP) waste.

  2. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands

    PubMed Central

    Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.

    2014-01-01

    Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484

  3. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  4. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  5. Facile ligand oxidation and ring nitration in ruthenium complexes derived from a ligand with dicarboxamide-N and phosphine-P donors.

    PubMed

    Fry, Nicole L; Rose, Michael J; Nyitray, Crystal; Mascharak, Pradip K

    2008-12-15

    The reaction of the tetradentate dicarboxamide ligand 1,2-bis-N-[2'(diphenylphosphanyl)benzoyl]diaminobenzene (dppbH(2)) with RuCl(3) in DMF or ethanol results in metal-mediated ligand oxidation and formation of the diamagnetic Ru(II) complex [(dppQ)Ru(Cl)(2)] (1) with N(2)P(2) chromophore. The o-phenylenedicarboxamide portion of the dppb(2-) ligand is oxidized to a o-benzoquinonediimine (bqdi) moiety in [(dppQ)Ru(Cl)(2)]. Presence of oxygen accelerates the ligand oxidation process. Unlike other tetradentate dicarboxamide ligands with pyridine-N, phenolato-O, or thiolato-S donors, dppb(2-) provides stability to the +2 oxidation state of ruthenium and facilitates oxidation of the coordinated ligand frame. Results of spectroscopic and redox studies strongly support the +2 oxidation state of Ru in 1. Exposure of 1 to NO(g) does not lead to formation of any metal nitrosyl; instead, the bqdi ring is nitrated to afford [(NO(2)dppQ)Ru(Cl)(2)] (2). PMID:19006289

  6. RECOVERY OF RUTHENIUM VALUES

    DOEpatents

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  7. Radiochemistry of ruthenium

    SciTech Connect

    Schulz, W W; Metcalf, S G; Barney, G S

    1984-06-01

    Information on ruthenium is presented. Topics include the following; isotopes and nuclear properties of ruthenium; review of the chemistry of ruthenium including metal and alloys, compounds of ruthenium, and solution chemistry; separation methods including volatilization of RuO{sub 4}, precipitation and coprecipitation, solvent extraction, chromatographic techniques, and analysis for radioruthenium. 445 refs., 7 figs., 23 tabs.

  8. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  9. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  10. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  11. Ruthenium-coated ruthenium oxide nanorods

    SciTech Connect

    Ducati, Caterina; Dawson, Darryl H.; Saffell, John R.; Midgley, Paul A.

    2004-11-29

    The role of ruthenium and its oxides in catalysis, electrochemistry, and electronics is becoming increasingly important because of the high thermal and chemical stability, low resistivity, and unique redox properties of this metallic system. We report an observation of RuO{sub 2} nanorods decorated with nanometer size Ru metal clusters. We identify precise crystallographic relationships between metal and oxide, and provide a simple model for the synthesis of these structures, based on the theory of columnar growth. The high aspect ratio, high surface area, and quantum size crystalline decorations of these nanostructures make them particularly attractive candidates for further fundamental research and for advanced catalytic and electronic applications.

  12. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  13. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  14. RUTHENIUM DECONTAMINATION METHOD

    DOEpatents

    Gresky, A.T.

    1960-07-19

    A liquid-liquid extraction method of separating uranium from fission products is given. A small amount of a low molecular weight ketone is added to an acidic aqueous solution containing neutron-irradiated uranium and its associated fission products. The resulting solution is digested and then contacted with an organic liquid that extracts uranium values. The purpose of the step of digesting the aqueous solution in the presence of the ketone is to suppress the extractability of ruthenium.

  15. Cytotoxic and genotoxic effects of cis-tetraammine(oxalato)ruthenium(III) dithionate on the root meristem cells of Allium cepa.

    PubMed

    Pereira, Flávia de Castro; Vilanova-Costa, Cesar Augusto Sam Tiago; de Lima, Aliny Pereira; Ribeiro, Alessandra de Santana Braga Barbosa; da Silva, Hugo Delleon; Pavanin, Luiz Alfredo; Silveira-Lacerda, Elisângela de Paula

    2009-06-01

    Ruthenium complexes have attracted much attention as possible building blocks for new transition-metal-based antitumor agents. The present study examines the mitotoxic and clastogenic effects induced in the root tips of Allium cepa by cis-tetraammine(oxalato)ruthenium(III) dithionate {cis-[Ru(C(2)O(2))(NH(3))(4)](2)(S(2)O(6))} at different exposure durations and concentrations. Correlation tests were performed to determine the effects of the time of exposure and concentration of ruthenium complex on mitotic index (MI) and mitotic aberration index. A comparison of MI results of cis-[Ru(C(2)O(2))(NH(3))(4)](2)(S(2)O(6)) to those of lead nitrate reveals that the ruthenium complex demonstrates an average mitotic inhibition eightfold higher than lead, with the frequency of cellular abnormalities almost fourfold lower and mitotic aberration threefold lower. A. cepa root cells exposed to a range of ruthenium complex concentrations did not display significant clastogenic effects. Cis-tetraammine(oxalato)ruthenium(III) dithionate therefore exhibits a remarkable capacity to inhibit mitosis, perhaps by inhibiting DNA synthesis or blocking the cell cycle in the G2 phase. Further investigation of the mechanisms of action of this ruthenium complex will be important to define its clinical potential and to contribute to a novel and rational approach to developing a new metal-based drug with antitumor properties complementary to those exhibited by the drugs already in clinical use. PMID:19020813

  16. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOEpatents

    Abrevaya, Hayim

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  17. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  18. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    PubMed

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  19. Characterization And Dissolution Properties Of Ruthenium Oxides

    EPA Science Inventory

    Ruthenium oxides (RuO2•1.10H2O and RuO2) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation ...

  20. Solventless synthesis of ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    García-Peña, Nidia G.; Redón, Rocío; Herrera-Gomez, Alberto; Fernández-Osorio, Ana Leticia; Bravo-Sanchez, Mariela; Gomez-Sosa, Gustavo

    2015-06-01

    This paper presents a novel solventless method for the synthesis of zero-valent ruthenium nanoparticles Ru(0). The proposed method, although not entirely new in the nanomaterials world, was used for the first time to synthesize zero-valent ruthenium nanoparticles. This new approach has proved to be an environmentally friendly, clean, cheap, fast, and reproducible technique which employs low amounts of solvent. It was optimized through varying amounts of reducing salt on a determined quantity of precursor and measuring the effect of this variation on the average particle size obtained. The resulting products were fully characterized by powder XRD, TEM, HR-TEM, and XPS studies, all of which corroborated the purity of the nanoparticles achieved. In order to verify the advantages of our method over other techniques, we compared our nanoparticles with two common colloidal-synthesized ruthenium nanoparticles.

  1. Ruthenium-106 brachytherapy.

    PubMed

    Pe'er, Jacob

    2012-01-01

    Brachytherapy is the most common method for treating uveal melanoma, and currently the ruthenium-106 (Ru-106) and iodine-125 (I-125) applicators are the most frequently used. Ru-106 applicators were introduced by Prof. Peter Lommatzsch in the 1960s, and since then have been used widely by many ocular oncologists, mainly in Europe. The Ru-106 isotope is a beta ray (electron) emitter, and as such it has a limited depth of penetration. This is the reason why many experts use Ru-106 applicators for tumors with a maximal thickness of up to 7.0 mm, although others use it successfully for thicker tumors. The Ru-106 applicators are manufactured commercially and have a half-life of about 1 year. Ru-106 brachytherapy for uveal melanoma provides excellent local control rates and eye preservation with a relatively low recurrence rate. The main advantage of Ru-106 over other isotopes is the better preservation of vision in the treated eye, and less damage to the healthy parts of the eye due to its limited range of radiation. This can also be achieved by positioning the Ru-106 plaque eccentrically, away from the macula and optic nerve head. Ru-106 brachytherapy can be used in combination with other methods of treatment of uveal melanoma, such as local resection or transpupillary thermotherapy, and is sporadically combined with other isotopes, such as gamma-emitting cobalt-60 and I-125. PMID:22042011

  2. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium.

    PubMed

    Sharma, Shikha; Ghosh, Sunil K; Sharma, Joti N

    2015-09-15

    A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L(+)I(-) and Ru(NO)(NO3)3. Ruthenium formed an adduct of structure LRu(NO)(NO3)3 I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste. PMID:25863580

  3. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  4. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  5. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  6. Ruthenium Sesquisilicide: A Promising Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.

    1993-01-01

    Report describes experimental investigation of thermoelectric properties of ruthenium sesquisilicide (RU2Si3). Suggests suitably doped Ru2Si3 could have thermoelectric figures of merit two or more times as large as SiGe.

  7. Lead-ruthenium pyrochlores as oxygen electrocatalysts

    NASA Technical Reports Server (NTRS)

    Anderson, E. B.; Taylor, E. J.; Moniz, G. A.

    1990-01-01

    An investigation of lead-ruthenium pyrochlores of the structure Pb2(Ru/2-x/Pb/x/) O7-y for use as oxygen electrocatalysts in alkaline media is discussed. Lead-ruthenium pyrochlore mixed metal oxides were prepared and characterized by X-ray diffraction, BET surface area, dry powder conductivity, and chemical stability. Gas diffusion electrodes were developed specifically for the lead-ruthenium pyrochlore materials. Also investigated were the effects of varying electrode fabrication parameters on the oxygen reduction performance of the lead-ruthenium pyrochlore electrocatalyst. Long-term stability performance was also evaluated. The oxygen reduction performance of the pyrochlore electrocatalyst is considerably higher than that of the state-of-the-art gold-platinum alloy electrocatalyst currently used by NASA. Furthermore, the pyrochlore electrocatalysts are attractive candidates for high-performance pressurized alkaline fuel cells.

  8. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  9. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  10. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  11. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  12. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  13. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  14. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  15. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  16. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  17. Field determination of nitrate using nitrate reductase

    SciTech Connect

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H.

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  18. Thermodynamic properties of gaseous ruthenium species.

    PubMed

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points. PMID:25905631

  19. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  20. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  1. Ruthenium indenylidene complexes containing dichalcogenoimidodiphosphinate ligands

    NASA Astrophysics Data System (ADS)

    Jia, Ai-Quan; Xin, Zhi-Feng; Chen, Qun; Leung, Wa-Hung; Zhang, Qian-Feng

    2012-07-01

    Reactions of ruthenium indenylidene starting material [Ru(PPh3)2(Ind)Cl2] (Ind = 3-phenylinden-1-ylidene) with potassium dichalcogenoimidodiphosphinates K[R2P(E)NP(E')R2] afforded a series of complexes [Ru(PPh3)(Ind){кE,кE'-R2P(E)NP(E')R2}Cl] [R = Ph, E = E' = S (1a); R = Ph, E = E' = Se (1b); R = iPr, E = E' = S (1c); R = iPr, E = E' = Se (1d); R = Ph, E = S, E' = Se (1e); R = iPr, E = S, E' = Se (1f)] which were characterized by microanalyses, IR and NMR spectroscopies. The molecular structure of 1a has been confirmed by single-crystal X-ray diffraction. The catalytic reactivity of the ruthenium indenylidene complexes in the ring closing metathesis of diethyl 1,2-diallylmalonate has also been investigated.

  2. Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2016-10-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia. PMID:27262216

  3. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    PubMed Central

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methylidene species, and provide good yields and turnover numbers (TONs) at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability, and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady-state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products. PMID:21510645

  4. The biokinetics of ruthenium in the human body

    SciTech Connect

    Leggett, Richard Wayne

    2011-01-01

    The biokinetics of ruthenium (Ru) in the human body is of interest due mainly to the potential for occupational or environmental exposure to 106Ru (T1/2 = 373.6 d) and 103Ru (T1/2 = 39.3 d), which typically represent a significant portion of the fission products in a reactor inventory. During reactor operations or nuclear fuel reprocessing these ruthenium isotopes may be present as ruthenium tetroxide (RuO4) vapor, a highly mobile form of ruthenium that has been involved in a number of cases of accidental exposure to 106Ru or 103Ru. This paper summarizes the biokinetic database for ruthenium and proposes a new respiratory model for inhaled RuO4 vapor, a new biokinetic for systemic (absorbed) ruthenium, and material-specific gastrointestinal absorption fractions for ruthenium. The proposed respiratory model for RuO4 differs from the current ICRP model mainly in that it depicts slower clearance of deposited activity from the respiratory tract and lower absorption to blood than depicted in the current ICRP model. The proposed systemic biokinetic model depicts more realistic paths of movement of absorbed ruthenium in the body than the current ICRP model and, in contrast to the present model, a less uniform distribution of systemic activity. Implications of the proposed models with regard to inhalation and ingestion dose coefficients for 106Ru are examined.

  5. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOEpatents

    Abrevaya, Hayim

    1990-01-01

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  6. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOEpatents

    Abrevaya, H.

    1990-07-31

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation. 1 fig.

  7. Electrolytic determination of ruthenium(VI) with 8-mercaptoquinoline

    SciTech Connect

    Avdienko, T.N.; Fedorova, N.G.; Sinkevich, V.V.; Suprunovich, V.I.

    1986-08-01

    The authors studied the possibility of using 8-mercaptoquinoline for the potentiometric and amperometric determination of ruthenium(VI). Previously, this reagent was recommended for the amperometric titration of ruthenium(IV) in the form of (RuCl/sub 6/)/sup 2/-; pd(II), Ir(IV), Cu(III), Au(III), and certain other metals interfere with the determination. A differential analysis of the following two-component systems was carried out: ruthenium(VI)-palladium(II); ruthenium(VI)-osmium(VI). Methods were developed for the potentiometric titration and amperometric (with the polarized electrodes) determination of ruthenium(VI) with 8-mercaptoquinoline in the presence of certain metals of the platinum group. Model mixtures, close in composition to the natural ones, and an industrial sample were analyzed.

  8. Characterization and dissolution properties of ruthenium oxides.

    PubMed

    Luxton, Todd P; Eick, Matthew J; Scheckel, Kirk G

    2011-07-01

    Ruthenium oxides (RuO(2)·1·10H(2)O and RuO(2)) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation state. Surface charging experiments indicate a large quantity of reactive functional groups for both materials and a decrease in the acidity of the surface functional groups with crystallization of the hydrous oxide. Dissolution studies conducted in acidic and basic pH environments indicate Ru-oxides are insoluble in 0.1 M HCl and slightly soluble in 0.1 M NaOH. Oxalate and ascorbate (5 mM) promoted dissolution of RuO(2)·1·10H(2)O demonstrated an increase in dissolution rates with decreasing pH and increasing ligand surface coverage. XPS analysis of the RuO(2)·1·10H(2)O surface after ligand promoted dissolution revealed the reduction of Ru(IV) to Ru(III) indicating that both ascorbate and oxalate reductively dissolve RuO(2)·1·10H(2)O. Dissolution experiments with RuO(2) resulted in dissolution only for 5 mM oxalate at pH 3. Dissolution rates calculated for RuO(2)·1·10H(2)O and RuO(2) are compared with previously published dissolution rates for iron oxides, demonstrating an order of magnitude decrease in the oxalate and ascorbate promoted dissolution. PMID:21511266

  9. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    PubMed Central

    Diver, Steven T.

    2009-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in enyne metathesis that trace back to vinyl carbene reactivity. Hopefully this review will stimulate further investigation into vinyl carbene reactivity which should further refine our understanding of catalytic enyne metathesis. PMID:19590747

  10. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  11. Preparation and characterization of positively charged ruthenium nanoparticles.

    PubMed

    Yang, Jun; Lee, Jim Yang; Deivaraj, T C; Too, Heng-Phon

    2004-03-15

    Positively charged ruthenium nanoparticles were prepared by NaBH(4) reduction at room temperature and at pH values lower than 4.9. The ruthenium nanoparticles were characterized by zeta potential measurement, TEM, XPS, and XRD. Particles with a mean diameter of 1.8 nm and a standard deviation of 0.40 nm could be obtained under the experimental conditions. The surface charge on the particles is believed to originate from hydrated proton adsorption. The positively charged ruthenium nanoparticles could be used as the starting material for further functionalization by PVP, ethylenediamine, and dodecylamine. PMID:14972606

  12. Biological activity of ruthenium nitrosyl complexes.

    PubMed

    Tfouni, Elia; Truzzi, Daniela Ramos; Tavares, Aline; Gomes, Anderson Jesus; Figueiredo, Leonardo Elias; Franco, Douglas Wagner

    2012-01-01

    Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [Ru(II)NO(+)](3+)/[Ru(II)NO(0)](2+) reduction potential, the specific rate constant for NO liberation from the [RuNO](2+) moiety, and the quantum yield of NO release. PMID:22178685

  13. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  14. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  15. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  16. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  17. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  18. Ruthenium-containing bond coats for thermal barrier coating systems

    NASA Astrophysics Data System (ADS)

    Tryon, B.; Cao, F.; Murphy, K. S.; Levi, C. G.; Pollock, T. M.

    2006-01-01

    Bond coats for zirconia-based thermal barrier coating systems applied to nickel-based superalloys are typically composed of the B2 NiAl phase. Since RuAl has the same B2 crystal structure but a melting point 400°C higher than NiAl, ruthenium-modified aluminide bond coats could provide improved system temperature capability. Creep experiments on ternary Al-Ni-Ru alloys demonstrate greatly improved creep properties with increasing ruthenium content. Processing paths for ruthenium-modified NiAl-based bond coatings have been established within the bounds of commercially available coating systems. The oxidation resistance of ruthenium-modified bond coats during thermal cycling has been examined, and potential thermal barrier coating system implications are discussed.

  19. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  20. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  1. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  2. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  3. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  4. Nonproductive Events in Ring-Closing Metathesis using Ruthenium Catalysts

    PubMed Central

    Stewart, Ian C.; Keitz, Benjamin K.; Kuhn, Kevin M.; Thomas, Renee M.

    2010-01-01

    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends. PMID:20518557

  5. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  6. Structural evolution of small ruthenium cluster anions

    SciTech Connect

    Waldt, Eugen; Hehn, Anna-Sophia; Ahlrichs, Reinhart; Kappes, Manfred M.; Schooss, Detlef

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  7. A promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.

    1991-01-01

    Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.

  8. Nitrate biosensors and biological methods for nitrate determination.

    PubMed

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. PMID:27130094

  9. Nitrate therapy in the elderly.

    PubMed

    Alpert, J S

    1990-06-01

    Changes in the heart and blood vessels with age alter the response of the cardiovascular system to pharmacologic agents. Nitrate plasma half-life is longer and volume of distribution is larger in older persons. Apparently, these pharmacokinetic differences in older persons lead to increased venous smooth muscle responsivity to nitrates which, in turn, leads to greater reductions in central venous and pulmonary arterial pressures after nitrate administration. This is probably the explanation for the greater frequency of nitrate-induced severe hypotension and bradycardia in elderly patients with myocardial infarction compared with younger patients. Clinicians should be cognizant of the changes in the cardiovascular system which occur with age that sensitize the elderly patient to the action of organic nitrates. Initial dosages of nitrates should accordingly be less than in younger patients. PMID:2112335

  10. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACYL NITRATES

    EPA Science Inventory

    Salmonella typhimurium strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chlororoxyacetyl nitrate (CPAN). as phase concentrations for the individ...

  11. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACL NITRATES

    EPA Science Inventory

    Salmonella typhimurium, strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chloroperoxyacetyl nitrate (CPAN). as-phase concentrations for t...

  12. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  13. Nanoscale electron beam-induced deposition and purification of ruthenium for extreme ultraviolet lithography mask repair

    NASA Astrophysics Data System (ADS)

    Noh, J. H.; Stanford, M. G.; Lewis, B. B.; Fowlkes, J. D.; Plank, H.; Rack, P. D.

    2014-12-01

    One critical area for the adoption of extreme ultraviolet (EUV) lithography is the development of appropriate mask repair strategies. To this end, we have explored focused electron beam-induced deposition of the ruthenium capping or protective layer. Electron beam-induced deposition (EBID) was used to deposit a ruthenium capping/protective film using the liquid bis(ethylcyclopentyldienyl)ruthenium(II) precursor. The carbon to ruthenium atomic ratio in the as-deposited material was estimated to be ~9/1. Subsequent to deposition, we demonstrate an electron stimulated purification process to remove carbon by-products from the deposit. Results indicate that high-fidelity nanoscale ruthenium repairs can be realized.

  14. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  15. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  16. Mortality of nitrate fertiliser workers.

    PubMed

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-08-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  17. Single Molecule Electron Transfer Process of Ruthenium Complexes.

    SciTech Connect

    Hu, Dehong; Lu, H PETER.

    2006-03-01

    Transition metal complexes such as ruthenium complexes, having metal-to-ligand charge transfer states, are extensively used in solar energy conversion and electron transfer in biological systems and at interfaces. The dynamics of metal-to-ligand charge transfer and subsequent intermolecular, intramolecular, and interfacial electron transfer processes can be highly complex and inhomogeneous, especially when molecules are involved in interactions and perturbations from heterogeneous local environments and gated by conformation fluctuations. We have employed the single-molecule spectroscopy, a powerful approach for inhomogeneous systems to study the electron transfer dynamics of ruthenium complexes. We have applied a range of statistical analysis methods to reveal nonclassical photon emission behavior of the single ruthenium complex, i.e., photon antibunching, and photophysical ground-state recovering dynamics on a microsecond time scale. The use of photon antibunching to measure phosphorescence lifetimes and single-molecule electron transfer dynamics at room temperature is demonstrated.

  18. Optimize syngas to naphtha over ruthenium catalysts

    SciTech Connect

    Stowe, R.A.; Murchison, C.B.

    1984-06-01

    In this work the authors undertake the design of a catalyst system which would efficiently utilize a stream of CO--H/sub 2/, available as a byproduct of partial combustion cracking. The H/sub 2//CO ratio of this stream was fixed by the conditions of the ethylene production process, making it desirable to reject the oxygen in CO as water rather than CO/sub 2/. A second important goal was to maximize the C/sub 2/+ selectivity in order to obtain the highest possible yield of feedstock crackable to ethylene in conventional LPG and naphtha crackers. Using an optimized potassium-promoted, aluminasupported ruthenium catalyst of practical concentration (1% Ru, 0.5% K) on a commercially available support, campaigns of over 1,000 hours on stream were achieved. Impregnation techniques which are readily scaled up were used. During these campaigns the C/sub 2/+ selectivity averaged about 90%. Of the C/sub 2/+ product, about onethird was C/sub 2/-C/sub 5/ while the C/sub 6/+ represents two-thirds.

  19. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  20. Hydrohalogenative aromatization of multiynes promoted by ruthenium alkylidene complexes.

    PubMed

    Karmakar, Rajdip; Wang, Kung-Pern; Yun, Sang Young; Mamidipalli, Phani; Lee, Daesung

    2016-06-01

    A new functionalization method of arynes promoted by a novel catalytic role of the Grubbs-type ruthenium alkylidene complex is described. Through a sequence of aryne formation followed by their halo-functionalization, various bis-1,3-diynes were directly converted to functionalized aryl chlorides, bromides and iodides in good yields in the presence of a catalytic amount of a ruthenium alkylidene complex and halogenated hydrocarbons such as CH2Cl2, CHCl3, CH2Br2, and CH2I2. The utility of this novel transformation is demonstrated by a formal synthesis of herbindole B. PMID:27145857

  1. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  2. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  3. Thermal decomposition of isooctyl nitrate

    SciTech Connect

    Pritchard, H.O.

    1989-03-01

    The diesel ignition improver DII-3, made by Ethyl Corporation, also known as isooctyl nitrate, is a mixture whose principal constituent (about 95%) is 2-ethyl hexyl nitrate. This note describes an investigation of the thermal decomposition that is not exhaustive, but that is intended to provide sufficient information on the rate and the mechanism so as to make possible the educated guesses needed for modeling the effect of isooctyl nitrate on the diesel ignition process. As is the case with other alkyl nitrates, the decomposition of the neat material is a complex one giving a complicated pressure versus time curve, unsuitable for a quick derivation of the rate constant. However, in the presence of toluene, whose intended purpose is to trap reactive free radicals and thereby simplify the overall mechanism, the pressure rises approximately exponentially to a limit; thus, on the assumption that the reaction is homogeneous and of first order, the rate constants can be determined from the half-life.

  4. Nitrates in Wisconsin ground water.

    PubMed

    Schuknecht, B; Lawton, G W; Steinka, P; Delfino, J J

    1975-01-01

    Nitrate analyses were performed on ground water well samples originating from sources throughout Wisconsin. The data ranged from below the analytical detection limit up to 140 mg NO3-N/1. Over nine percent of all wells sampled has nitrate concentrations in excess of 10 mg NO3-N/1. Six individual counties had more than 10 mg NO3-N/1 in at least twenty percent of the wells covered in this survey. However, data reported for over eight thousand new wells driven in 1971-1972 showed only slightly more than two percent with nitrate levels above 10 mg NO3-N/1. This reflected the trend toward drilling deeper wells which are influenced less by nitrate seepage as well as adherence to new and stricter well construction codes. PMID:1183417

  5. Adsorption of ruthenium red to phospholipid membranes.

    PubMed Central

    Voelker, D; Smejtek, P

    1996-01-01

    We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylinositol (PI), or L-alpha-phosphatidylglycerol (PG). Lipid composition of PC:PX membranes was 1:0, 19:1, 9:1, and 4:1. Liposomes were processed using freeze-and-thaw treatment, and their size distribution was characterized by light scattering and electron microscopy. Experimental distribution isotherms of RuR obtained by ultracentrifugation and spectrophotometry can be reproduced with the Langmuir-Stern-Grahame model, assuming that RuR behaves in the diffuse double layer as an ion with effective valency < 6. In terms of this model, PC-PS, PC-PI, and PC-PG membranes were found to be electrostatically equivalent and the intrinsic association constants of RuR were obtained. RuR has highest affinity to PS-containing membranes; its association constant for PC-PI and PC-PG membranes is about 5 times smaller than that for PC-PS membranes. From the comparison of RuR binding to mixed negatively charged phospholipid membranes and RuR binding to sarcoplasmic reticulum (SR), we conclude that the low-affinity RuR binding sites may indeed be associated with the lipid bilayer of SR. PMID:8789099

  6. Encapsulation of ruthenium nitrosylnitrate and DNA purines in nanostructured sol-gel silica matrices.

    PubMed

    Lopes, Luís M F; Garcia, Ana R; Fidalgo, Alexandra; Ilharco, Laura M

    2009-09-01

    The interactions between DNA purines (guanine and adenine) and the ruthenium complex Ru(NO)(NO(3))(3) were studied within nanostructured silica matrices prepared by a two-step sol-gel process. By infrared analysis in diffuse reflectance mode, it was proved that encapsulation induces a profound modification on the complex, whereas guanine and adenine preserve their structural integrity. The complex undergoes nitrate ligand exchange and co-condenses with the silica oligomers, but the nitrosyl groups remain stable, which is an unusual behavior in Ru nitrosyl complexes. In turn, the doping molecules affect the sol-gel reactions and eventually the silica structure as it forms: the complex yields a microporous structure, and the purine bases are responsible for the creation of macropores due to hydrogen bonding with the silanol groups of the matrix. In a confined environment, the interactions are much stronger for the coencapsulated pair guanine complex. While adenine only establishes hydrogen bonds or van der Waals interactions with the complex, guanine bonds covalently to Ru by one N atom of the imidazole ring, which becomes strongly perturbed, resulting in a deformation of the complex geometry. PMID:19499946

  7. Improvement of ruthenium based decarboxylation of carboxylic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  8. Molecular dinitrogen complexes of ruthenium(II) porphyrins

    SciTech Connect

    Camenzind, M.J.; James, B.R.; Dolphin, D.; Sparapany, J.W.; Ibers, J.A.

    1988-08-24

    The existence of both mono- and bis(nitrogen) complexes of ruthenium have been previously established. Details on a series of complexes are presented herein, and results of an x-ray crystallographic study of Ru(TMP) (THF) (N/sub 2/) are reported. 30 references, 4 tables.

  9. Photodissociation Spectroscopy of Ruthenium Polypyridyl Complexes in Vacuo

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Smith, James; Weber, J. Mathias

    Photoelectrochemical water oxidation is a direct way to produce solar fuels from renewable sources. Since this reaction has a high reaction barrier, a cost-effective catalyst is necessary. Ruthenium polypyridyl complexes are promising catalysts for water oxidation. However, the mechanism of catalytic action is not well understood. One major difficulty of a mechanistic understanding is the complexity of reactive solutions under turnover conditions. To circumvent this problem, we applied electronic photodissociation spectroscopy in the UV and visible spectral range to a series of mass selected ruthenium polypyridyl complex ions in vacuo. The ions in this work are of the form [RuII-L]2+, where RuII represents ruthenium(II)-bipyridine-terpyridine, a prototype catalyst belonging to the ruthenium-polypyridyl family. By varying the ligand L, we were able to study the ligand influence on the photophysical properties of the complex. The cases where L = (H2O)1 , 2 , 3 are of particular interest because they are directly related to an intermediate in the catalytic cycle for water oxidation. Our experiment in vacuo is an essential complement to experiments in solution and provides unique information for understanding the photophysics and photochemistry of these complexes on a molecular level.

  10. Tailoring NO donors metallopharmaceuticals: ruthenium nitrosyl ammines and aliphatic tetraazamacrocycles.

    PubMed

    Tfouni, E; Doro, F G; Figueiredo, L E; Pereira, J C M; Metzker, G; Franco, D W

    2010-01-01

    The discovery of the involvement of nitric oxide (NO) in several physiological and pathophysiological processes launched a spectacular increase in studies in areas such as chemistry, biochemistry, and pharmacology. As a consequence, the development of NO donors or scavengers for regulation of its concentration and bioavailability in vivo is required. In this sense, ruthenium nitrosyl ammines and aliphatic tetraazamacrocyles have attracted a lot of attention due to their unique chemical properties. These complexes are water soluble and stable in solution, not to mention that they can deliver NO when photochemically or chemically activated by the reduction of the coordinated nitrosonium (NO+). The tuning of the energies of the charge transfer bands, the redox potential, and the specific rate constants of NO liberation, in both solution and matrices, is desirable for the achievement of selective NO delivery to biological targets, hence making the ruthenium ammines and aliphatic tetraazamacrocyles a quite versatile platform for biological application purposes. These ruthenium nitrosyls have shown to be active in firing neurons in mouse hippocampus, performing redox reactions in mitochondria, acting in blood pressure control, exhibiting cytotoxic activities against trypanosomatids (T.cruzi and L.major) and tumor cells. This tailoring approach is explored here, being heavily supported by the accumulated knowledge on the chemistry and photochemistry of ruthenium complexes, which allows NO donors/scavengers systems to be custom made designed. PMID:20846113

  11. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  12. Ruthenium-catalyzed C–H activation of thioxanthones

    PubMed Central

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  13. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  14. PRECIPITATION OF ZIRCONIUM, NIOBIUM, AND RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Wilson, A.S.

    1958-08-12

    An improvement on the"head end process" for decontaminating dissolver solutions of their Zr, Ni. and Ru values. The process consists in adding a water soluble symmetrical dialkyl ketone. e.g. acetone, before the formation of the manganese dioxide precipitate. The effect is that upon digestion, the ruthenium oxide does not volatilize, but is carried on the manganese dioxide precipitate.

  15. Meta-Selective CAr-H Nitration of Arenes through a Ru3(CO)12-Catalyzed Ortho-Metalation Strategy.

    PubMed

    Fan, Zhoulong; Ni, Jiabin; Zhang, Ao

    2016-07-13

    The first example of transition metal-catalyzed meta-selective CAr-H nitration of arenes is described. With the use of Ru3(CO)12 as the catalyst and Cu(NO3)2·3H2O as the nitro source, a wide spectrum of arenes bearing diversified N-heterocycles or oximido as the directing groups were nitrated with meta-selectivity exclusively. Mechanism studies have demonstrated the formation of a new 18e-octahedral ruthenium species as a key ortho-CAr-H metalated intermediate, which may be responsible for the subsequent meta-selective electrophilic aromatic substitution (SEAr). Moreover, this approach provides a fast-track strategy for atom/step economical synthesis of many useful pharmaceutical molecules. PMID:27181121

  16. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  17. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  18. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  19. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  20. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  1. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

    PubMed Central

    1993-01-01

    The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potentials that favored the movement of ruthenium red into the channel conduction pore produced stronger block. The half dissociation constants (Kd) for ruthenium red block of the 500 pS channel were 0.22, 0.38, and 0.62 microM, at +100, +80, and +60 mV, respectively. Multiple ruthenium red molecules seemed to be involved in the inhibition, because a Hill coefficient of close to 2 was obtained from the dose response curve. The half dissociation constant of ruthenium red block of the lower conductance state of the ryanodine activated channel (250 pS) was higher (Kd = 0.82 microM at +100 mV), while the Hill coefficient remained approximately the same (nH = 2.7). Ruthenium red block of the channel was highly asymmetric, as trans ruthenium red produced a different blocking effect. The blocking and unblocking events (induced by cis ruthenium red) can be resolved at the single channel level at a cutoff frequency of 2 kHz. The closing rate of the channel in the presence of ruthenium red increased linearly with ruthenium red concentration, and the unblocking rate of the channel was independent of ruthenium red concentrations. This suggests that ruthenium red block of the channel occurred via a simple blocking mechanism. The on-rate of ruthenium red binding to the channel was 1.32 x 10(9) M-1 s-1, and the off-rate of ruthenium red binding was 0.75 x 10(3) s-1 at +60 mV, in the presence of 200 nM ryanodine. The two related compounds, 4APd and 4APt, blocked the channel in a similar way to that

  2. Syntheses, structures and properties of ruthenium complexes of tridentate ligands: isolation and characterization of a rare example of ruthenium nitrosyl complex containing {RuNO}5 moiety.

    PubMed

    Ghosh, Kaushik; Kumar, Rajan; Kumar, Sushil; Meena, Jay Singh

    2013-10-01

    Novel ruthenium complexes [Ru(L(1))(NO)Cl2] (1), [Ru(L(2))(PPh3)Cl2] (2), [Ru(L(2))(PPh3)(NO2)Cl] (3) and [Ru(L(2))(PPh3)(NO)Cl](ClO4)2 (4) (where L(1)H = N'-phenyl-N'-(pyridin-2-yl)picolinohydrazide and L(2) = (1-phenyl-1-(pyridin-2-yl)-2-(pyridin-2-ylmethylene)hydrazine) were synthesized. These complexes were characterized by using IR, UV-Vis, elemental analysis, electrochemical and NMR spectral studies. The molecular structures of nitrosyl complexes 1 and 4 were determined by X-ray crystallographic studies. Complexes 1 and 4 readily released NO under visible and ultraviolet light and free NO was transferred to reduced myoglobin. The amount of photoreleased NO was estimated using Griess reagent assay. During photolysis of NO, the generation of reactive nitrogen or/and reactive oxygen species was determined by DPPH (2,2-diphenyl-1-picrylhydrazine) radical quenching studies under aerobic conditions. A paramagnetic complex [Ru(L(2))(PPh3)(NO)Cl](NO3)3 (5) was synthesized via chemical oxidation of 4 with an excess of ceric ammonium nitrate (CAN) in acetonitrile. Complex 5 was characterized by UV-Vis, IR, elemental analysis and EPR spectral studies which authenticated the presence of the {RuNO}(5) moiety in 5. Theoretical investigation by DFT calculation supported the oxidation of complex 4 having {RuNO}(6) species and the formation of 5 containing {RuNO}(5). PMID:23893046

  3. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  4. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-25

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics. PMID:25306128

  5. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    PubMed

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD. PMID:17568601

  6. Determination of ruthenium and iridium in anode coatings by atomic-absorption spectroscopy.

    PubMed

    Harrington, D E; Bramstedt, W R

    A method is described for the determination of ruthenium and iridium coated on an electrode surface. The coating is chemically removed from the electrode by fusion with alkali, and the resulting solution prepared for analysis. Interelement interferences are eliminated by using a titanium-potassium matrix solution as a releasing agent. Recovery and precision data are given for ruthenium and iridium. The AAS determination of ruthenium compares favourably with a standard colorimetric method. PMID:18961657

  7. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-01

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2‧,3‧-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2‧,3‧-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 105 M-1, which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  8. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  9. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  10. Thermodynamic data bases for multivalent elements: An example for ruthenium

    SciTech Connect

    Rard, J.A.

    1987-11-01

    A careful consideration and understanding of fundamental chemistry, thermodynamics, and kinetics is absolutely essential when modeling predominance regions and solubility behavior of elements that exhibit a wide range of valence states. Examples of this are given using the ruthenium-water system at 298.15 K, for which a critically assessed thermochemical data base is available. Ruthenium exhibits the widest range of known aqueous solution valence states. Known solid anhydrous binary oxides of ruthenium are crystalline RuO/sub 2/, RuO/sub 4/, and possibly RuO/sub 3/ (thin film), and known hydroxides/hydrated oxides (all amorphous) are Ru(OH)/sub 3/ . H/sub 2/O, RuO/sub 2/ . 2H/sub 2/O, RuO/sub 2/ . H/sub 2/O, and a poorly characterized Ru(V) hydrous oxide. Although the other oxides, hydroxides, and hydrous oxides are generally obtained as precipitates from aqueous solutions, they are thermodynamically unstable with regard to RuO/sub 2/(cr) formation. Characterized aqueous species of ruthenium include RuO/sub 4/ (which slowly oxidizes water and which dissociates as a weak acid), RuO/sub 4//sup -/ and RuO/sub 4//sup 2 -/ (which probably contain lesser amounts of RuO/sub 3/(OH)/sub 2//sup -/ and RuO/sub 3/(OH)/sub 2//sup 2 -/, respectively, and other species), Ru(OH)/sub 2//sup 2 +/, Ru/sub 4/(OH)/sub 12//sup 4 +/, Ru(OH)/sub 4/, Ru/sup 3 +/, Ru(OH)/sup 2 +/, Ru(OH)/sub 2//sup +/, Ru/sup 2 +/, and some hydroxytetramers with formal ruthenium valences of 3.75 greater than or equal to Z greater than or equal to 2.0. Potential pH diagrams of the predominance regions change significantly with concentration due to polymerization/depolymerization reactions. Failure to consider the known chemistry of ruthenium can yield large differences in predicted solubilities.

  11. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    SciTech Connect

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  12. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes?

    PubMed

    van Rixel, Vincent H S; Busemann, Anja; Göttle, Adrien J; Bonnet, Sylvestre

    2015-09-01

    Ruthenium polypyridyl complexes may act as light-activatable anticancer prodrugs provided that they are protected by well-coordinated ligands that i) prevent coordination of other biomolecules to the metal center in the dark and ii) can be removed by visible light irradiation. In this paper, the use of monodentate thiol ligands RSH as light-cleavable protecting groups for the ruthenium complex [Ru(tpy)(bpy)(OH2)](PF6)2 ([1](PF6)2; tpy=2,2';6',2″-terpyridine, bpy=2,2'-bypyridine), is investigated. The reaction of [1](2+) with RSH=H2Cys (L-cysteine), H2Acys (N-acetyl-L-cysteine), and HAcysMe (N-acetyl-L-cysteine methyl ester), is studied by UV-visible spectroscopy, NMR spectroscopy, and mass spectrometry. Coordination of the monodentate thiol ligands to the ruthenium complex takes place upon heating to 353 K, but full conversion to the protected complex [Ru(tpy)(bpy)(SR)]PF6 is only possible when a large excess of ligand is used. Isolation and characterization of the two new thiolato complexes [Ru(tpy)(bpy)(κS-HCys)]PF6 ([2]PF6) and [Ru(tpy)(bpy)(κS-HAcys)]PF6 ([3]PF6) is reported. [3]PF6 shows a metal-to-ligand charge-transfer absorption band that is red shifted (λmax=492 nm in water) compared to its methionine analogue [Ru(tpy)(bpy)(κS-HAmet)](Cl)2 ([5](Cl)2, λmax=452 nm; HAmet=N-acetyl-methionine). In the dark the thiolate ligand coordinated to ruthenium is oxidized even by traces of oxygen, which first leads to the sulfenato, sulfinato, and disulfide ruthenium complexes, and finally to the formation of the aqua complex [1](2+). [3]PF6 showed slow photosubstitution of the thiolate ligand by water under blue light irradiation, together with faster photooxidation of the thiolate ligand compared to dark conditions. The use of thiol vs. thioether monodentate ligands is discussed for the protection of anticancer ruthenium-based prodrugs. PMID:26187140

  13. A biological source of oceanic alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Lewis, C. B.; Velasco, F. L.; Escobar, C.; Kellogg, D.; Velcamp, M.

    2013-12-01

    Alkyl nitrates are an important component of reactive nitrogen in the troposphere. The oceans are a source of alkyl nitrates to the atmosphere, however the source of alkyl nitrates in the oceans is unknown. It has been demonstrated that the reaction of alkyl peroxy radicals (ROO) with nitric oxide (NO) produces alkyl nitrates in the aqueous phase. We hypothesize that alkyl nitrates may be formed by organisms through the same reaction and therefore biological production could be a source of alkyl nitrates to the troposphere. This work focuses on the production of alkyl nitrates by the diatoms Chaetoceros muelleri and Thalassiosira weisfloggi. Using chemostats, we measure alkyl nitrates formed under nitrate limited conditions. We also use triggers and inhibitors of nitric oxide formation to determine if alkyl nitrate formation is affected by changes in NO production. To date, the rates of production of alkyl nitrates in our cultures, lead us to estimate a production rate on the order of femtomolar/day for C1-C3 alkyl nitrates by diatom species in the equatorial Pacific Ocean. This suggests that diatoms may contribute to the overall ocean source of alkyl nitrates; however, it is possible that other types of phytoplankton, such as cyanobacteria, that are more abundant in the open ocean, may contribute to a greater extent.

  14. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1984-05-15

    A novel ruthenium-transferrin complex is disclosed which is prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40 C for about 2 hours. The complex is purified by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex. No Drawings

  15. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, Powell; Srivastava, Suresh C.; Meinken, George E.

    1984-05-15

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40.degree. C. for about 2 hours, and purifying said complex by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  16. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles

    SciTech Connect

    Berthoud, Romain; Delichere, Pierre; Gajan, David; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2008-12-01

    Treatment under H{sub 2} at 300 C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru{sub p}/SiO{sub 2}], according to EXAFS, HRTEM and XPS. H{sub 2} adsorption measurements on [Ru{sub p}/SiO{sub 2}] in the absence of O{sub 2} show that Ru particles adsorb up to ca. 2 H per surface ruthenium atoms (2H/Ru{sub s}) on various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O{sub 2} adsorption on [Ru{sub p}/SiO{sub 2}] leads to a partial oxidation of the bulk at 25 C, to RuO{sub 2} at 200 C and to sintering upon further reduction under H{sub 2}, showing that O{sub 2} adsorption cannot be used to measure the dispersion of Ru particles.

  17. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  18. Alkyne Hydroacylation: Switching Regioselectivity by Tandem Ruthenium Catalysis

    PubMed Central

    Chen, Qing-An; Cruz, Faben A.; Dong, Vy M.

    2015-01-01

    By using tandem ruthenium-catalysis, internal alkynes can be coupled with aldehydes for the synthesis of β,γ-unsaturated ketones. The catalyst promotes alkyne transformations with high regioselectivity, with examples that include the differentiation of a methyl versus ethyl substituent on the alkyne. Mechanistic studies suggest that the regioselectivity results from a selective allene formation that is governed by allylic strain. PMID:25608143

  19. Characteristics of a promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.

    1991-01-01

    A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.

  20. Ruthenium catalyzed hydrogenation of aldehyde with synthesis gas.

    PubMed

    Takahashi, Kohei; Nozaki, Kyoko

    2014-11-21

    The hydrogenation of aldehyde utilizing synthesis gas as a dihydrogen source was examined with various ruthenium catalysts, among which Ru-cyclopentadienone complexes (Shvo-type catalysts) exhibited higher activity than others. DFT calculations proved that the exchange of coordinated carbon monoxide by dihydrogen is relatively preferable in Shvo-type catalysts compared to others, which is a pre-equilibrium for the generation of the hydrogenation-active species. PMID:25372182

  1. Hydrogenation of Aldehydes Catalyzed by an Available Ruthenium Complex.

    PubMed

    Tan, Xuefeng; Wang, Guozhen; Zhu, Ziyue; Ren, Conghui; Zhou, Jinping; Lv, Hui; Zhang, Xiaoyong; Chung, Lung Wa; Zhang, Lina; Zhang, Xumu

    2016-04-01

    A readily available ruthenium(II) catalyst was developed for the catalytic hydrogenation of aldehydes with a TON (turnover number) up to 340000. It can be performed without base and solvent, showing highly industrial potential. High chemoselectivity can be achieved in the presence of alkenyl and ketone groups. Further application of this protocol in glucose reduction showed good efficiency. Theoretical studies revealed that the rate-determining step is the hydrogenation step, not the carboxylate-assisted H2 activation step. PMID:26974348

  2. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  3. The development of a selective ruthenium Fischer-Tropsch catalyst

    SciTech Connect

    Abrevaya, H.

    1989-01-01

    A new stable Fischer-Tropsch catalyst with very high selectivity to distillate fuels and with low light ends production was developed. This catalyst, which was made by a reverse micelle technique, contains 2.8% (by weight) ruthenium in the form of 4--6 nm particles on alumina and a proprietary modifier. The new modified ruthenium catalyst did not noticeably deactivate during 814 hours at about 80% CO conversion, 2H{sub 2}:1 CO feed ratio, 208{degree}C at inlet, 62 atm and 150 gas hourly space velocity. In order to determine the catalyst's tolerance, the operational severity was increased between 814 hours and 1700 hours by increasing the temperature and space velocity to 225{degree}C at inlet and to 205 hr{sup {minus}1}, respectively. A deactivation rate of about 0.016%/hour was measured under these more severe conditions at about 70% conversion level. These results with the new modified ruthenium catalyst compare favorably with those reported for the two commercial Sasol processes. The Arge process makes approximately 38% distillate fuel with 14--18% light ends, while the Synthol process makes about 48% distillate with 38% light ends. 82 refs., 360 figs., 66 tabs.

  4. Behaviour of ruthenium dioxide particles in borosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Pflieger, Rachel; Lefebvre, Leila; Malki, Mohammed; Allix, Mathieu; Grandjean, Agnès

    2009-06-01

    Ruthenium-glass systems are formed during the vitrification of nuclear waste. They are also widely used in micro-electronics because of their unique electrical properties. However, the interaction of this element with the glass matrix remains poorly understood. This work focuses on a RuO 2 particles-nuclear alumino-borosilicate glass system in which the electrical conductivity is known to vary considerably with the RuO 2 content and to become electronic above about 0.5-0.7 vol.% RuO 2 [R. Pflieger, M. Malki, Y. Guari, J. Larionova, A. Grandjean, J. Am. Ceram. Soc., accepted for publication]. Some RuO 2 segregation was observed in SEM/TEM investigations but no continuous chain of RuO 2 particles could be seen. Electron relays between the particles are then necessary for a low-rate percolation, such as the nanoclusters suggested by Adachi et al. [K. Adachi, S. Iida, K. Hayashi, J. Mater. Res. 9 (7) (1994) 1866; K. Adachi, H. Kuno, J. Am. Ceram. Soc. 83 (10) (2000) 2441], which could consist in dissolved ruthenium. Indeed, several observations made here clearly indicate the presence of dissolved ruthenium in the glass matrix, like the modification of the glass density in presence of RuO 2 particles or the diffusion-limited growth of RuO 2 particles in the melt.

  5. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  6. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  7. Factors determining the consumption of ruthenium during electrosynthesis of sodium hypochlorite with the use of ruthenium oxide-titanium anodes

    SciTech Connect

    Klement'eva, V.S.; Kubasov, V.L.; Lambrev, V.G.; Uzbekov, A.A.

    1985-09-01

    The authors studied the rate of destruction of the active coating as a function of the electrolysis conditions during electrochemical production of sodium hypochlorite. Corrosion tests were carried out on specimens made by the thermochemical method, in an electrochemical cell without a diaphragm; the method used was based on neutron activation analysis. It was shown that losses of ruthenium can be lowered by conducting the electrolysis at low temperatures, higher current densities, and moderately low hypochlorite concentrations. However, the increase of current density may raise the ROTA potential above the critical value, when rapid anode failure is possible. It was also shown that under conditions such that the critical ROTA potential is not reached sodium hypochlorite solutions of fairly high concentrations can be obtained with a low comsumption of ruthenium, which is not possible with the use of many other anode materials.

  8. Nitrate reduction in sulfate-reducing bacteria.

    PubMed

    Marietou, Angeliki

    2016-08-01

    Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates. PMID:27364687

  9. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  10. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  11. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals

    NASA Astrophysics Data System (ADS)

    Kuo, Yenting; Klabunde, Kenneth J.

    2012-07-01

    Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.

  12. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  13. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  14. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  15. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  16. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  17. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  18. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  19. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  20. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  1. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  2. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  3. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  4. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  5. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  7. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  8. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  9. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  10. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  11. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  12. Ruthenium on chitosan: A recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides

    EPA Science Inventory

    Ruthenium has been immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with ruthenium chloride and has been utilized for the oxidation of nitriles to amides; the hydration of nitriles occurs in high yield and excellent selectivity, which procee...

  13. Ruthenium(II)-Catalyzed Decarboxylative C-H Activation: Versatile Routes to meta-Alkenylated Arenes.

    PubMed

    Kumar, N Y Phani; Bechtoldt, Alexander; Raghuvanshi, Keshav; Ackermann, Lutz

    2016-06-01

    Ruthenium(II) bis(carboxylate)s proved highly effective for two decarboxylative C-H alkenylation strategies. The decarboxylation proceeded efficiently at rather low temperatures. The unique versatility of the decarboxylative ruthenium(II) catalysis is reflected in the oxidative olefinations with alkenes as well as the redox-neutral hydroarylations of alkynes. PMID:26996920

  14. Ruthenium-Catalyzed C-H Alkynylation of Aromatic Amides with Hypervalent Iodine-Alkyne Reagents.

    PubMed

    Boobalan, Ramadoss; Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2016-07-15

    An efficient C-H activation method for the ortho alkynylation of aromatic N-methoxyamides with hypervalent iodine-alkyne reagent using a ruthenium catalyst is described. The reaction proceeds under mild reaction conditions with broad substrate scope. A possible catalytic cycle involving a ruthenium carboxylate assisted C-H bond cleavage is proposed from the preliminary mechanistic evidence. PMID:27357724

  15. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  16. Investigation of Ruthenium Electrodes for (Ba,Sr)TiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Joo, Jae-Hyun; Seon, Jeong-Min; Jeon, Yoo-Chan; Oh, Ki-Young; Roh, Jae-Sung; Kim, Jae-Jeong; Choi, Jin-Tae

    1998-06-01

    Ru/(Ba, Sr)TiO3(BST)/Ru capacitors were fabricated on TiN/Ti/Poly-Si/SiO2/Si substrate by sputtering technique. The effects of the bottom ruthenium electrode, deposited at various temperatures, on the characteristics of Ru/BST/Ru capacitor were intensively studied. Sputtered ruthenium films were grown in a columnar structure with a grain size ˜30 nm. With an increasing deposition temperature of ruthenium films, the (002) preferred orientation and grain size of ruthenium films gradually increased while the residual compressive stress in the ruthenium films was reduced. The surface of ruthenium films was oxidized to form RuOx on its surface during the deposition of BST films, which dramatically changed the surface morphology of ruthenium films and affected the characteristics of Ru/BST/Ru capacitor. In this work, the electrical properties of Ru/BST/Ru capacitors are explained with an emphasis on the surface morphology and residual stress of ruthenium films.

  17. Thermochemistry of Ruthenium Oxyhydroxide Species and Their Impact on Volatile Speciations in Severe Nuclear Accident Conditions.

    PubMed

    Miradji, Faoulat; Virot, François; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2016-02-01

    Literature thermodynamic data of ruthenium oxyhydroxides reveal large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. Reaction energies leading to the formation of all possible oxyhydroxide species RuOx(OH)y(H2O)z have been calculated for a series of reactions combining DFT (TPSSh-5%HF) geometries and partition functions, CCSD(T) energies extrapolated to the complete basis set limits. The highly accurate ab initio thermodynamic data were used as input data of thermodynamic equilibrium computations to derive the speciation of gaseous ruthenium species in the temperature, pressure and concentration conditions of severe nuclear accidents occurring in pressurized water reactors. At temperatures lower than 1000 K, gaseous ruthenium tetraoxide is the dominating species, between 1000 and 2000 K ruthenium trioxide becomes preponderant, whereas at higher temperatures gaseous ruthenium oxide, dioxide and even Ru in gaseous phase are formed. Although earlier studies predicted the formation of oxyhydroxides in significant quantities, the use of highly accurate ab initio thermodynamic data for ruthenium gaseous species leads to a more reliable inventory of gaseous ruthenium species in which gaseous oxyhydroxide ruthenium molecules are formed only in negligible amounts. PMID:26789932

  18. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries.

    PubMed

    Doel, J J; Hector, M P; Amirtham, C V; Al-Anzan, L A; Benjamin, N; Allaker, R P

    2004-10-01

    To test the hypothesis that a combination of high salivary nitrate and high nitrate-reducing capacity are protective against dental caries, 209 children attending the Dental Institute, Barts and The London NHS Trust were examined. Salivary nitrate and nitrite levels, counts of Streptococcus mutans and Lactobacillus spp., and caries experience were recorded. Compared with control subjects, a significant reduction in caries experience was found in patients with high salivary nitrate and high nitrate-reducing ability. Production of nitrite from salivary nitrate by commensal nitrate-reducing bacteria may limit the growth of cariogenic bacteria as a result of the production of antimicrobial oxides of nitrogen, including nitric oxide. PMID:15458501

  19. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  20. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  1. Chemical state of ruthenium submonolayers on a Pt(1 1 1) electrode

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rabelo de Moraes, I.; Tremiliosi-Filho, G.; Haasch, R.; Wieckowski, A.

    2001-03-01

    Oxidation states of ruthenium on a Pt(1 1 1)/Ru electrode were investigated by X-ray photoelectron spectroscopy. Ruthenium was added to platinum by electrochemical deposition methods: spontaneous deposition and electrolysis. Depending on the electrode potential, deposition conditions, and presence/absence of methanol in solution, metallic ruthenium (3d 5/2 core-level binding energy of 280.3 eV), RuO 2 (280.9 eV), and RuO 3 (282.8 eV) were found on the surface. After correlating ruthenium valence states to methanol oxidation reactivity, we concluded that the presence of a Ru metallic phase - covered by a weakly bonded Ru oxidation precursor - was a prerequisite for effective methanol oxidation electrocatalysis. This precursor was most likely "activated" water supplying the oxygen needed for transformation of surface CO to CO 2 at the edge of ruthenium islands on the Pt substrate.

  2. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  3. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  4. Deconstructing nitrate isotope dynamics in aquifers

    NASA Astrophysics Data System (ADS)

    Granger, J.

    2012-12-01

    The natural abundance N and O stable isotope ratios of nitrate provide an invaluable tool to differentiate N sources to the environment, track their dispersal, and monitor their attenuation by biological transformations. The interpretation of patterns in isotope abundances relies on knowledge of the isotope ratios of the source end-members, as well as on constraints on the isotope discrimination imposed on nitrate by respective biological processes. Emergent observations from mono-culture experiments of denitrifying bacteria reveal nitrate fractionation trends that appear at odds with trends ascribed to denitrification in soils and aquifers. This discrepancy raises the possibility that additional biological N transformations may be acting in tandem with denitrification. Here, the N and O isotope enrichments associated with nitrate removal by denitrification in aquifers are posited to bear evidence of coincident biological nitrate production - from nitrification and/or from anammox. Simulations are presented from a simple time-dependent one-box model of a groundwater mass ageing that is subject to net nitrate loss by denitrification with coincident nitrate production by nitrification or anammox. Within boundary conditions characteristic of freshwater aquifers, the apparent slope of the parallel enrichments in nitrate N and O isotopes associated with net N loss to denitrification can vary in proportion to the nitrate added simultaneous by oxidative processes. Pertinent observations from nitrate plumes in suboxic to anoxic aquifers are examined to validate this premise. In this perspective, nitrate isotope distributions suggest that we may be missing important N fluxes inherent to most aquifers.

  5. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  6. Dietary nitrate supplementation and exercise performance.

    PubMed

    Jones, Andrew M

    2014-05-01

    Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. PMID:24791915

  7. Nitration of sym-trichlorobenzene

    SciTech Connect

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group.

  8. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  9. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  10. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  11. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  12. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  13. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  14. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  15. Photochemical reduction of uranyl nitrate

    SciTech Connect

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  16. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  17. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  18. Effect of nitrate on microbial perchlorate reduction

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  19. Antiparasitic activities of novel ruthenium/lapachol complexes.

    PubMed

    Barbosa, Marília I F; Corrêa, Rodrigo S; de Oliveira, Katia Mara; Rodrigues, Claudia; Ellena, Javier; Nascimento, Otaciro R; Rocha, Vinícius P C; Nonato, Fabiana R; Macedo, Taís S; Barbosa-Filho, José Maria; Soares, Milena B P; Batista, Alzir A

    2014-07-01

    The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs. PMID:24727183

  20. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  1. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  2. Ruthenium Behavior at Phase Separation of Borosilicate Glass-12259

    SciTech Connect

    Enokida, Youichi; Sawada, Kayo

    2012-07-01

    The Rokkasho reprocessing plant (RRP) located in Aomori, Japan, vitrifies high level waste (HLW) into a borosilicate glass. The HLW is generated from the reprocessing of spent fuel and contains ruthenium (Ru) and other platinum group metals (PGMs). Based on the recent consequences after a huge earthquake that occurred in Japan, a hypothetical blackout was postulated for the RRP to address additional safety analysis requirements. During a prolonged blackout, the borosilicate glass could phase separate due to cooling of the glass in the melter. The Ru present in the glass matrix could migrate into separate phases and impact the durability of the borosilicate glass. The durability of the glass is important for quality assurance and performance assessment of the vitrified HLW. A fundamental study was performed at an independent university to understand the impact of a prolonged blackout. Simulated HLW glasses were prepared for the RRP, and the Ru behavior in phase separated glasses was studied. The simulated HLW glasses contained nonradioactive elements and PGMs. The glass compositions were then altered to enhance the formation of the phase-separated glasses when subjected to thermal treatment at 700 deg. C for 24 hours. The synthesized simulated glasses contained 1.1 % Ru by weight as ruthenium dioxide (RuO{sub 2}). A portion of the RuO{sub 2} formed needle-shaped crystals in the glass specimens. After the thermal treatment, the glass specimen had separated into two phases. One of the two phases was a B{sub 2}O{sub 3} rich phase, and the other phase was a SiO{sub 2} rich phase. The majority of the chemical species in the B{sub 2}O{sub 3} rich phase was leached away with the Material Characterization Center-3 (MCC-3) protocol standardized by the Pacific Northwest National Laboratory using an aqueous low-concentrated nitric acid solution, but the leaching of the Ru fraction was very limited; less than 1% of the original Ru content. The Ru leaching was much less than

  3. Jahn-Teller driven perpendicular magnetocrystalline anisotropy in metastable ruthenium

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj; Rhim, S. H.; Park, Noejung; Nakamura, Kohji; Hong, Soon Cheol

    2015-01-01

    A metastable phase of body-centered-tetragonal ruthenium (bct Ru) is identified to exhibit a large perpendicular magnetocrystalline anisotropy (PMCA), whose energy EMCA is as large as 150 μ eV /atom , which is two orders of magnitude greater than those of 3 d magnetic metals. Further investigation over the range of tetragonal distortion suggests that the appearance of magnetism in the bct Ru is governed by the Jahn-Teller spit eg orbitals. Moreover, from band analysis, MCA is mainly determined by an interplay between two eg states, dx2-y2 and dz2 states, as a result of level reversal associated with tetragonal distortion.

  4. Binuclear ruthenium(II) complexes for amyloid fibrils recognition

    NASA Astrophysics Data System (ADS)

    Hanczyc, Piotr

    2014-12-01

    Metal-organic compounds represent a unique class of biomarkers with promising photophysical properties useful for imaging. Here interactions of insulin fibrils with two binuclear complexes [μ-(11,11‧-bidppz)(phen)4Ru2]4+ (1) and [μ-C4(cpdppz)(phen)4Ru2]4+ (2) are studied by linear dichroism (LD) and fluorescence. These ruthenium(II) compounds could provide a new generation of amyloid binding chromophores with long lived lifetimes, good luminescence quantum yields for the bound molecules and photo-stability useful in multiphoton luminescence imaging.

  5. Progress in doping of ruthenium silicide (Ru2Si3)

    NASA Technical Reports Server (NTRS)

    Vining, C. B.; Allevato, C. E.

    1992-01-01

    Ruthenium silicide is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels.

  6. Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene

    PubMed Central

    Vidavsky, Yuval; Navon, Yotam; Ginzburg, Yakov; Gottlieb, Moshe

    2015-01-01

    Summary Differential scanning calorimetry (DSC) analysis of ring opening methatesis polymerization (ROMP) derived polydicyclopentadiene (PDCPD) revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon. PMID:26425203

  7. Sensitization of NO-Releasing Ruthenium Complexes to Visible Light.

    PubMed

    Becker, Tobias; Kupfer, Stephan; Wolfram, Martin; Görls, Helmar; Schubert, Ulrich S; Anslyn, Eric V; Dietzek, Benjamin; Gräfe, Stefanie; Schiller, Alexander

    2015-10-26

    We report a combined spectroscopical-theoretical investigation on the photosensitization of transition metal nitrosyl complexes. For this purpose, ruthenium nitrosyl complexes based on tetradentate biscarboxamide ligands were synthesized. A crystal structure analysis of a lithium-based ligand intermediate is described. The Ru complexes have been characterized regarding their photophysical and nitric oxide (NO) releasing properties. Quantum chemical calculations have been performed to unravel the influence of the biscarboxamide ligand frame with respect to the molecular electronic properties of the NO-releasing pathway. A quantitative measure for the ligand design within photosensitized Ru complexes is introduced and evaluated spectroscopically and theoretically by using time-dependent density functional theory. PMID:26394612

  8. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  9. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  10. Effect of ionic strength on ruthenium CMP in H2O2-based slurries

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; He, Yongyong; Li, Yuzhuo; Luo, Jianbin

    2014-10-01

    With the development of ultra-large scale integrated circuits, ruthenium has been selected as one of the most promising barrier metals for copper interconnects to replace traditional Ta/TaN bilayer. This paper mainly investigated the effect of ionic strength on the chemical mechanical polishing performance of ruthenium in H2O2-based slurries. The results show that, the ruthenium removal rate (RR) increases with the increasing concentration of H2O2 due to the formation of ruthenium oxides like Ru(OH)3, RuO2·2H2O and even RuO42-; additionally, the ruthenium RR can be further enhanced with the increase of K+ ionic strength. It is revealed that the added K+ can intensify the electrochemical reactions between H2O2 and the ruthenium surface by increasing the conductivity, meanwhile can also result in the neutralization of the zeta potentials of both silica particles and the ruthenium surface, and thus can lead to the decrease of the electrostatic repulsive force and the increase of the mechanical abrasion intensity between silica particles and the ruthenium surface. Therefore, the ruthenium RR increases with the increase of K+ ionic strength. Furthermore, the effects of K+ ionic strength on the material removal rate (MRR) selectivity of Ru vs. Cu and the galvanic corrosion of Cu/Ru couple are studied. It is found that, in order to achieve higher MRR selectivity than 1.0, KNO3 is preferred for the K+ source; and with H2O2 as the oxidizer, copper galvanic corrosion problem can be effectively suppressed.

  11. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    PubMed

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex. PMID:27186790

  12. Nitrates

    MedlinePlus

    ... or interactions with other medicines and vitamin or herbal supplements. This information should not be used as medical ... your doctor about every medicine and vitamin or herbal supplement that you are taking, so he or she ...

  13. Dynamics of the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    de Oliveira, Alan Barros; Fortini, Andrea; Buldyrev, Sergey V.; Srolovitz, David

    2011-04-01

    We study the dynamics of the contact between a pair of surfaces (with properties designed to mimic ruthenium) via molecular dynamics simulations. In particular, we study the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface. The results of such simulations suggest that contact behavior is highly variable. The goal of this study is to investigate the source and degree of this variability. We find that during compression, the behavior of the contact force displacement curves is reproducible, while during contact separation, the behavior is highly variable. Examination of the contact surfaces suggests that two separation mechanisms are in operation and give rise to this variability. One mechanism corresponds to the formation of a bridge between the two surfaces that plastically stretches as the surfaces are drawn apart and eventually separate in shear. This leads to a morphology after separation in which there are opposing asperities on the two surfaces. This plastic separation/bridge formation mechanism leads to a large work of separation. The other mechanism is a more brittle-like mode in which a crack propagates across the base of the asperity (slightly below the asperity/substrate junction) leading to most of the asperity on one surface or the other after separation and a slight depression facing this asperity on the opposing surface. This failure mode corresponds to a smaller work of separation. This failure mode corresponds to a smaller work of separation. Furthermore, contacts made from materials that exhibit predominantly brittle-like behavior will tend to require lower work of separation than those made from ductile-like contact materials.

  14. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  15. The appearance of the outflow apparatus of the eye after staining with ruthenium red.

    PubMed

    Grierson, I; Lee, W R; Abraham, S

    1977-10-01

    The outflow apparatus from adult baboon and rabbit eyes was stained with the inorganic dye ruthenium red. The ruthenium reaction product coated the surface of the trabecular meshwork cells and the canalicular endothelial cells. Deposits also impregnated the various connective tissue elements within the trabeculae and the extracellular spaces of the endothelial meshwork. A fine fibrillar network could also be identified with ruthenium red and this was present in the trabecular cores and the extracellular spaces of the endothelial meshwork. It was considered that the fibrillar network may represent a matrix of glycosaminoglycans and glycoproteins. The significance of these materials in relation to aqueous outflow was discussed. PMID:71846

  16. Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides

    NASA Astrophysics Data System (ADS)

    Fang, Wei-Chuan; Huang, Jin-Hua; Chen, Li-Chyong; Su, Yuh-Long Oliver; Chen, Kuei-Hsien

    The structure-property relationships of hydrous ruthenium oxides, fabricated by electro deposition on Ti foil, were investigated with different annealing conditions. The annealing temperature was found to play an important role in affecting the electrochemical performance of the annealed hydrous ruthenium oxides. The results indicate that annealing hydrous ruthenium oxide at its crystallization threshold temperature, ∼200 °C, may help to create suitable nanostructure in the oxide that supports the establishment of interpenetrating percolation paths for balanced electron and proton conduction, thereby improving the capacitive response of the oxide dramatically. This finding is useful for fabrication of electrodes with enhanced electrochemical performance for application in microsupercapacitor.

  17. Internal stresses and structure of electrolytic films of ruthenium, rhodium, and palladium

    SciTech Connect

    Medyanik, V.N.

    1986-01-01

    Films of ruthenium, rhodium, and palladium are used as targets in nuclear physics experiments in the form of metal foils. The authors investigate how the current density and the concentration of metal in the electrolyte influence the internal stresses, the grain size, and the texture of electrolytic films of ruthenium, rhodium, and palladium. The grain size of rhodium and palladium films increases with the current density, but for ruthenium there is no exact relationship. The increase in grain size in films of rhodium and palladium leads to a reduction in the internal stresses.

  18. Dinuclear Ruthenium(III)-Ruthenium(IV) Complexes, Having a Doubly Oxido-Bridged and Acetato- or Nitrato-Capped Framework.

    PubMed

    Suzuki, Tomoyo; Suzuki, Yutaka; Kawamoto, Tatsuya; Miyamoto, Ryo; Nanbu, Shinkoh; Nagao, Hirotaka

    2016-07-18

    Dinuclear ruthenium complexes in a mixed-valence state of Ru(III)-Ru(IV), having a doubly oxido-bridged and acetato- or nitrato-capped framework, [{Ru(III,IV)(ebpma)}2(μ-O)2(μ-L)](PF6)2 [ebpma = ethylbis(2-pyridylmethyl)amine; L = CH3COO(-) (1), NO3(-) (2)], were synthesized. In aqueous solutions, the diruthenium complex 1 showed multiple redox processes accompanied by proton transfers depending on the pH. The protonated complex of 1, which is described as 1H+, was obtained. PMID:27341408

  19. Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage.

    PubMed

    Furrer, Mona Anca; Schmitt, Frédéric; Wiederkehr, Michaël; Juillerat-Jeanneret, Lucienne; Therrien, Bruno

    2012-06-28

    Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+). PMID:22506276

  20. Photochemistry of nitrate ion in acetonitrile

    NASA Astrophysics Data System (ADS)

    Meera, N.; Ramamurthy, P.

    1988-12-01

    The photochemistry of cobalt(II) nitrate in acetonitrile is investigated using steady-state and flash photolysis techniques. Formation of NO 3• radical has been observed as an intermediate by direct photolysis of nitrate ion and the reaction of the nitrate radical with the solvent is observed as a transient absorption around 600 nm in air-equilibrated acetonitrile. Nitrite ion forms as a product through a collision electron transfer complex intermediate.

  1. Sampling of nitrates in ambient air

    NASA Astrophysics Data System (ADS)

    Appel, B. R.; Tokiwa, Y.; Haik, M.

    Methods for the measurement of nitric acid, particulate nitrate and total inorganic nitrate (i.e. HNO 3 plus particulate nitrate) are compared using atmospheric samples from the Los Angeles Basin. Nitric acid was measured by (1) the nitrate collected on nylon or NaCl-impregnated cellulose filters after removal of particulate matter with Teflon prefilters, (2) long-path Fourier transform infrared spectroscopy (FTIR) performed by a collaborating investigator, and (3) the difference between total inorganic nitrate (TIN) and particulate nitrate (PN). TIN was measured by the sum of the nitrate collected with a Teflon prefilter and nylon or NaCl-impregnated after-filter. PN was measured by the nitrate able to penetrate a diffusion dénuder coated to remove acidic gases (e.g. HNO 3). Losses of nitrate from Teflon prefilters were determined by comparing the nitrate retained by these filters to the nitrate penetrating the acid gas denuder. TIN and the nitrate collected with glass fiber filters were compared to assess the origin of the artifact particulate nitrate on the latter. Nitric acid measurements using nylon or NaCl-impregnated after-filters were substantially higher than those by the difference technique. This correlated with losses of nitrate from the Teflon prefilters, which exceeded 50 % at high ambient temperature and low relative humidity. Nitric acid by the difference method exceeded that by FTIR by, on average, 20 %. Thus errors inferred in HNO 3 measurements by comparison to the difference measurements are considered minimum values. The high values for HNO 3 by the difference method are consistent with the partial loss of PN in the acid gas denuder. However, no loss of 0.1 μm to 3 μm diameter NH 4NO 3 particles was observed. Thus, if significant, such loss is restricted to coarse particulate nitrate. Heating the filter samplers was shown to increase sampling errors. Nitrate results obtained in short-term, low volume sampling with Gelman A glass fiber

  2. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  3. Trend Analyses of Nitrate in Danish Groundwater

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  4. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  5. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  6. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2013-11-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  7. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Moreno-Armenta, M. G.; Diaz, J.; Martinez-Ruiz, A.; Soto, G.

    2007-10-01

    The recent synthesis of platinum nitride opens the possibility of novel platinum-group metal nitrides to exist. In this work we report the synthesis of ruthenium nitride by reactive pulsed laser ablation. Several plausible structures have been evaluated by ab initio calculations using the full potential linearized augmented plane wave method, in order to investigate the ruthenium nitride structural and electronic properties. In fact, the predicted symmetry of stoichiometric RuN matches the experimental diffraction data. RuN crystallizes with NaCl-type structure at room temperature with cell-parameter somewhat larger than predicted by calculations. However we found a marginal chemical strength in these nitrides. The material is destroyed by mild acid and basic solutions. Under annealing RuN decomposes abruptly for temperatures beyond 100 °C. Since the thermal stability correlates directly with the mechanical properties our finding cast doubts than the latter transition metal nitrides can be ultra-hard materials at ambient conditions.

  8. Fischer-Tropsch reaction studies with supported ruthenium catalysts

    SciTech Connect

    Everson, R.C.; Mulder, H. )

    1993-09-01

    An investigation was undertaken to examine the production of low molecular weight alkenes (C[sub 2][sup =] to C[sup =][sub 4]) and high molecular weight hydrocarbons (C[sub 5]+) from synthesis gas in a fixed bed reactor with supported ruthenium catalyst. The catalyst used consisted of 0.5% ruthenium on gamma-alumina with a 43% metal dispersion. An experimental reactor consisting of a single 12.5-mm-diameter stainless-steel tube with catalyst packings up to 1 m long, surrounded by an aluminium block with heating elements and an outer insulating ceramic block was used. The effect of temperature, synthesis gas composition (CO/H[sub 2]), weight hourly space velocity (WHSV), and bed length on carbon monoxide conversion and selectivity was examined and results are reported. The presence of secondary reactions consisting of hydrogenation and chain growth involving alkenes along the reactor bed was observed. These reactions favour the formation of alkanes and high molecular weight hydrocarbons. The alkene to alkane ratio in the product can be increased by restricting the hydrogenation reaction with the use of a synthesis gas mixture with a high carbon monoxide to hydrogen ratio.

  9. Multistate Switches: Ruthenium Alkynyl-Dihydroazulene/Vinylheptafulvene Conjugates.

    PubMed

    Vlasceanu, Alexandru; Andersen, Cecilie L; Parker, Christian R; Hammerich, Ole; Morsing, Thorbjørn J; Jevric, Martyn; Lindbaek Broman, Søren; Kadziola, Anders; Nielsen, Mogens Brøndsted

    2016-05-23

    Multimode molecular switches incorporating distinct and independently addressable functional components have potential applications as advanced switches and logic gates for molecular electronics and memory storage devices. Herein, we describe the synthesis and characterization of four switches based on the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermoswitch pair functionalized with the ruthenium-based Cp*(dppe)Ru ([Ru*]) metal complex (dppe=1,2-bis(diphenylphosphino)ethane; Cp*=pentamethylcyclopentadienyl). The [Ru*]-DHA conjugates can potentially exist in six different states accessible by alternation between DHA/VHF, Ru(II) /Ru(III) , and alkynyl/vinylidene, which can be individually stimulated by using light/heat, oxidation/reduction, and acid/base. Access to the full range of states was found to be strongly dependent on the electronic communication between the metal center and the organic photoswitch in these [Ru*]-DHA conjugates. Detailed electrochemical, spectroscopic (UV/Vis, IR, NMR), and X-ray crystallographic studies indeed reveal significant electronic interactions between the two moieties. When in direct conjugation, the ruthenium metal center was found to quench the photochemical ring-opening of DHA, which in one case could be restored by protonation or oxidation, allowing conversion to the VHF state. PMID:27114110

  10. Photoreactivity of a quantum dot-ruthenium nitrosyl conjugate.

    PubMed

    Franco, Lilian Pereira; Cicillini, Simone Aparecida; Biazzotto, Juliana Cristina; Schiavon, Marco A; Mikhailovsky, Alexander; Burks, Peter; Garcia, John; Ford, Peter C; da Silva, Roberto Santana

    2014-12-26

    We describe the use of cadmium telluride quantum dots (CdTe QDs) as antennas for the photosensitization of nitric oxide release from a ruthenium nitrosyl complex with visible light excitation. The CdTe QDs were capped with mercaptopropionic acid to make them water-soluble, and the ruthenium nitrosyl complex was cis-[Ru(NO)(4-ampy)(bpy)2](3+) (Ru-NO; bpy is 2,2'-bipyridine, and 4-ampy is 4-aminopyridine). Solutions of these two components demonstrated concentration-dependent quenching of the QD photoluminescence (PL) as well as photoinduced release of NO from Ru-NO when irradiated by 530 nm light. A NO release enhancement of ∼8 times resulting from this association was observed under longer wavelength excitation in visible light range. The dynamics of the quenching determined by both PL and transient absorption measurements were probed by ultrafast flash photolysis. A charge transfer mechanism is proposed to explain the quenching of the QD excited states as well as the photosensitized release of NO from Ru-NO. PMID:25405612

  11. New nitric oxide donors based on ruthenium complexes.

    PubMed

    Lunardi, C N; da Silva, R S; Bendhack, L M

    2009-01-01

    Nitric oxide (NO) donors produce NO-related activity when applied to biological systems. Among its diverse functions, NO has been implicated in vascular smooth muscle relaxation. Despite the great importance of NO in biological systems, its pharmacological and physiological studies have been limited due to its high reactivity and short half-life. In this review we will focus on our recent investigations of nitrosyl ruthenium complexes as NO-delivery agents and their effects on vascular smooth muscle cell relaxation. The high affinity of ruthenium for NO is a marked feature of its chemistry. The main signaling pathway responsible for the vascular relaxation induced by NO involves the activation of soluble guanylyl-cyclase, with subsequent accumulation of cGMP and activation of cGMP-dependent protein kinase. This in turn can activate several proteins such as K+ channels as well as induce vasodilatation by a decrease in cytosolic Ca2+. Oxidative stress and associated oxidative damage are mediators of vascular damage in several cardiovascular diseases, including hypertension. The increased production of the superoxide anion (O2-) by the vascular wall has been observed in different animal models of hypertension. Vascular relaxation to the endogenous NO-related response or to NO released from NO deliverers is impaired in vessels from renal hypertensive (2K-1C) rats. A growing amount of evidence supports the possibility that increased NO inactivation by excess O2- may account for the decreased NO bioavailability and vascular dysfunction in hypertension. PMID:19219301

  12. Thiocyanate linkage isomerism in a ruthenium polypyridyl complex.

    PubMed

    Brewster, Timothy P; Ding, Wendu; Schley, Nathan D; Hazari, Nilay; Batista, Victor S; Crabtree, Robert H

    2011-12-01

    Ruthenium polypyridyl complexes have seen extensive use in solar energy applications. One of the most efficient dye-sensitized solar cells produced to date employs the dye-sensitizer N719, a ruthenium polypyridyl thiocyanate complex. Thiocyanate complexes are typically present as an inseparable mixture of N-bound and S-bound linkage isomers. Here we report the synthesis of a new complex, [Ru(terpy)(tbbpy)SCN][SbF(6)] (terpy = 2,2';6',2''-terpyridine, tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), as a mixture of N-bound and S-bound thiocyanate linkage isomers that can be separated based on their relative solubility in ethanol. Both isomers have been characterized spectroscopically and by X-ray crystallography. At elevated temperatures the isomers equilibrate, the product being significantly enriched in the more thermodynamically stable N-bound form. Density functional theory analysis supports our experimental observation that the N-bound isomer is thermodynamically preferred, and provides insight into the isomerization mechanism. PMID:22066656

  13. Evolutionary algorithm based structure search for hard ruthenium carbides

    NASA Astrophysics Data System (ADS)

    Harikrishnan, G.; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.

    2015-12-01

    An exhaustive structure search employing evolutionary algorithm and density functional theory has been carried out for ruthenium carbides, for the three stoichiometries Ru1C1, Ru2C1 and Ru3C1, yielding five lowest energy structures. These include the structures from the two reported syntheses of ruthenium carbides. Their emergence in the present structure search in stoichiometries, unlike the previously reported ones, is plausible in the light of the high temperature required for their synthesis. The mechanical stability and ductile character of all these systems are established by their elastic constants, and the dynamical stability of three of them by the phonon data. Rhombohedral structure ≤ft(R\\bar{3}m\\right) is found to be energetically the most stable one in Ru1C1 stoichiometry and hexagonal structure ≤ft( P\\bar{6}m2\\right) , the most stable in Ru3C1 stoichiometry. RuC-Zinc blende system is a semiconductor with a band gap of 0.618 eV while the other two stable systems are metallic. Employing a semi-empirical model based on the bond strength, the hardness of RuC-Zinc blende is found to be a significantly large value of ~37 GPa while a fairly large value of ~21GPa is obtained for the RuC-Rhombohedral system. The positive formation energies of these systems show that high temperature and possibly high pressure are necessary for their synthesis.

  14. Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by Clostridium thermoaceticum

    PubMed Central

    Arendsen, Alexander F.; Soliman, Mohsin Q.; Ragsdale, Stephen W.

    1999-01-01

    Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Fröstl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597–4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The CO oxidation activity in crude extracts of nitrate (30 mM)–supplemented cultures was fivefold less than that of nitrate-free cultures, while the H2 oxidation activity was six- to sevenfold lower. The decrease in CO oxidation activity paralleled a decrease in CO dehydrogenase (CODH) protein level, as confirmed by Western blot analysis. Protein levels of CODH in nitrate-supplemented cultures were 50% lower than those in nitrate-free cultures. Western blots analyses showed that nitrate also decreased the levels of the corrinoid iron-sulfur protein (60%) and methyltransferase (70%). Surprisingly, the decrease in activity and protein levels upon nitrate supplementation was observed only when cultures were continuously sparged. Northern blot analysis indicates that the regulation of the proteins involved in the Wood-Ljungdahl pathway by nitrate is at the transcriptional level. At least a 10-fold decrease in levels of cytochrome b was observed with nitrate supplementation whether the cultures were sparged or stoppered. We also detected nitrate-inducible nitrate reductase activity (2 to 39 nmol min−1 mg−1) in crude extracts of C. thermoaceticum. Our results indicate that nitrate coordinately represses genes encoding enzymes and electron transport proteins in the Wood-Ljungdahl pathway and activates transcription of nitrate respiratory proteins. CO2 also appears to induce expression of the Wood-Ljungdahl pathway genes and repress nitrate reductase activity. PMID:10049380

  15. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  16. Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil

    NASA Astrophysics Data System (ADS)

    Grosjean, Eric; Grosjean, Daniel; Woodhouse, Luis F.; Yang, Yueh-Jiun

    For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline-MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.105±0.004 ( R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.037±0.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.028±0.015 (ppb/ppb, range 0.005-0.078, n=41). On several days PAN accounted for large fractions of the total ambient NO x in the late morning and afternoon hours, e.g., PAN/NO x⩽0.58 and PAN/(NO x-NO) ⩽0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996-April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc

  17. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    PubMed Central

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the highest nitrate uptake rate, but all species showed rapid removal of nitrate from groundwater. The nitrate uptake rate increased proportionally with increasing light intensity up to 100 μmol of photons m−2 s−1, which parallels photosynthetic activity. The nitrate uptake rate was affected by inoculum size (i.e., cell density), fixed-nitrogen level in the cells in the inoculum, and aeration rate, with vigorously aerated, nitrate-sufficient cells in mid-logarithmic phase having the highest long-term nitrate uptake rate. Average nitrate uptake rates up to 0.05 mM NO3− h−1 could be achieved at a culture optical density at 730 nm of 0.5 to 1.0 over a 2-day culture period. This result compares favorably with those reported for nitrate removal by other cyanobacteria and algae, and therefore effective nitrate removal from groundwater using this organism could be anticipated on large-scale operations. PMID:10618214

  18. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  19. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  20. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE PAGESBeta

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; Wittkopf, Jarrid A.; Zhuang, Zhongbin; Zheng, Whenchao; Chen, Jingguang G.; Yan, Yushan

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  1. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    SciTech Connect

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; Wittkopf, Jarrid A.; Zhuang, Zhongbin; Zheng, Whenchao; Chen, Jingguang G.; Yan, Yushan

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-ray photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.

  2. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  3. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  4. CuAAC click reactions for the design of multifunctional luminescent ruthenium complexes.

    PubMed

    Zabarska, Natalia; Stumper, Anne; Rau, Sven

    2016-02-01

    CuAAC (Cu(i) catalyzed azide-alkyne cycloaddition) click chemistry has emerged as a versatile tool in the development of photoactive ruthenium complexes with multilateral potential applicability. In this contribution we discuss possible synthetic approaches towards CuAAC reactions with ruthenium(ii) polypyridine complexes and their differences with respect to possible applications. We focus on two main application possibilities of the click-coupled ruthenium assemblies. New results within the development of ruthenium based photosensitizers for the field of renewable energy supply, i.e. DSSCs (dye-sensitized solar cells) and artificial photocatalysis for the production of hydrogen, or for anticancer photodynamic therapeutic applications are reviewed. PMID:26758682

  5. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  6. Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand.

    PubMed

    Vieille-Petit, Ludovic; Luan, Xinjun; Gatti, Michele; Blumentritt, Sascha; Linden, Anthony; Clavier, Hervé; Nolan, Steven P; Dorta, Reto

    2009-07-01

    The introduction of N-heterocyclic carbene ligands that incorporate correctly substituted naphthyl side chains leads to increased activity and stability in second generation ruthenium metathesis catalysts. PMID:19557281

  7. Effects of ruthenium seed layer on the microstructure and spin dynamics of thin permalloy films

    NASA Astrophysics Data System (ADS)

    Jin, Lichuan; Zhang, Huaiwu; Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong

    2013-02-01

    The spin dynamics and microstructure properties of a sputtered 12 nm Ni81Fe19 thin film have been enhanced by the use of a ruthenium seed layer. Both the ferromagnetic resonance field and linewidth are enhanced dramatically as the thickness of ruthenium seed layer is increased. The surface anisotropy energy constant can also be largely tailored from 0.06 to 0.96 erg/cm-2 by changing the seed layer thickness. The changes to the dynamics magnetization properties are caused by both ruthenium seed layer induced changes in the Ni81Fe19 structure properties and surface topography properties. Roughness induced inhomogeneous linewidth broadening is also seen. The damping constant is highly tunable via the ruthenium thickness. This approach can be used to tailor both the structure and spin dynamic properties of thin Ni81Fe19 films over a wide range. And it may benefit the applications of spin dynamics and spin current based devices.

  8. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance

    PubMed Central

    Sun, Bing; Munroe, Paul; Wang, Guoxiu

    2013-01-01

    The key factor to improve the electrochemical performance of Li-O2 batteries is to find effective cathode catalysts to promote the oxygen reduction and oxygen evolution reactions. Herein, we report the synthesis of an effective cathode catalyst of ruthenium nanocrystals supported on carbon black substrate by a surfactant assisting method. The as-prepared ruthenium nanocrystals exhibited an excellent catalytic activity as cathodes in Li-O2 batteries with a high reversible capacity of about 9,800 mAh g−1, a low charge-discharge over-potential (about 0.37 V), and an outstanding cycle performance up to 150 cycles (with a curtaining capacity of 1,000 mAh g−1). The electrochemical testing shows that ruthenium nanocrystals can significantly reduce the charge potential comparing to carbon black catalysts, which demonstrated that ruthenium based nanomaterials could be effective cathode catalysts for high performance lithium- O2 batteries. PMID:23873349

  9. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zoufeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2016-06-07

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  10. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  11. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  12. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  13. Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts

    NASA Astrophysics Data System (ADS)

    Giang, Thi Phuong Ly; Tran, Thi Nhu Mai; Le, Xuan Tuan

    2012-03-01

    This work aimed at preparing and characterizing TiO2 nanotube supported hydrated ruthenium oxide catalysts. First of all, we succeeded in preparing TiO2 nanotube arrays by electrochemical anodization of titanium metal at 20 V for 8 h in a 1M H3PO4+0.5 wt% HF solution as evidenced from scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) results. The hydrated ruthenium oxide was then deposited onto TiO2 nanotubes by consecutive exchange of protons by Ru3+ ions, followed by formation of hydrated oxide during the alkali treatment. Further XPS measurements showed that the modified samples contain not only hydrated ruthenium oxide but also hydrated ruthenium species Ru(III)-OH.

  14. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  15. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  16. Characterization of Palladium and Ruthenium after Reaction with Tetraphenylborate and Mercury

    SciTech Connect

    Duff, M.C.

    2001-09-11

    This report documents a second series of X-ray fine structure and chemical analyses to examine the form that Pd - and, to a lesser extent, ruthenium (Ru) - takes in simulated high-level slurries containing TPB salts.

  17. An electrochemical evaluation of ruthenium-based electrocatalysts for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Valdez, Thomas I.

    A study of ruthenium oxide-based oxygen evolution catalysts for use in proton exchange membrane (PEM) electrolyzers was performed. In this work, oxygen evolution catalysts were fabricated via sol-gel, high energy ball milling, and thermal processing techniques. Thermal analysis techniques such as differential scanning calorimetry (DSC), differential thermal analysis (DTA), and thermal gravimetric analysis (TGA) were used to determine the optimum processing temperatures to be used for catalysts fabrication and annealing. The materials properties of the catalysts were studied with scanning electron microscopy, energy dispersive analysis (EDAX), X-ray diffraction, and X-ray photo-electron spectroscopy. Electrodes were fabricated from the oxygen evolution catalysts and tested in electrolysis and three-electrode cells. The catalysts fabricated via sol-gel techniques included a ruthenium oxide and an iridium-ruthenium oxide catalyst. Three families of the thermally processed catalysts were developed: iridium-ruthenium oxide, lead-ruthenium oxide, and tin ruthenium oxide. A lead oxide: ruthenium oxide catalyst was fabricated via high energy ball-milling to be used as a fabrication comparison to the thermally processed catalysts. The electrochemical evaluations for the oxygen evolution catalysts fabricated as electrolysis cells included current-step polarization and constant current electrolysis. The current step polarization experiments were used to determine the relative performance of the catalysts as well as to determine the kinetic parameters for the oxygen evolution reaction. The constant-current electrolysis experiments were used to estimate the degradation of the catalysts during operation. In these studies, it was determined that the thermal processing technique could produce stable and high performing catalysts. The thermally processed iridium ruthenium oxide catalysts with 9 to 12 mole percent iridium had the lowest overpotential for oxygen evolution of the

  18. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.

    PubMed

    Fan, X H; Tang, C; Rengel, Z

    2002-09-01

    Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots. PMID:12234143

  19. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  20. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  1. Intermittent nitrate therapy in angina pectoris.

    PubMed

    Reichek, N

    1989-05-01

    The rationale for intermittent nitrate therapy is based on the pathophysiology of nitroglycerin tolerance and the diurnal pattern of symptoms encountered in patients with chronic stable angina. Nitrate tolerance was first observed as tolerance to headache in industrial toxicology. When long-acting nitrates for chronic stable angina became available, similar tolerance was observed but not thought to indicate tolerance to a haemodynamic or therapeutic effect. Subsequently, Needleman and coworkers (J Pharmacol Exp Ther 1973; 187: 324) defined in vitro the phenomenology of vascular smooth muscle tolerance to nitroglycerin-induced relaxation and reversibility was demonstrated. More recently, a potential molecular explanation for nitrate tolerance has been proposed: sulfhydryl group depletion in smooth muscle cells resulting in reduced formation of S-nitrosothiols on nitrate exposure with resultant reduced activation of cyclic GMP. In vivo, other mechanisms, including fluid retention and neurohumoral responses to vasodilation may also be important. The first demonstration that nitrate tolerance affected the therapeutic efficacy of long-acting nitrates was reported by Parker and coworkers in 1982 (Circulation 1987; 76: 572-6). This landmark study was not given much credence at the time because it appeared to be in conflict with earlier reports. However, in the past 6 years development of tolerance has been demonstrated with a variety of oral nitrates, transdermal nitroglycerin and intravenous nitroglycerin. When plasma concentrations are held constant, tolerance to antianginal effects is demonstrable within 24h, but varies markedly in severity from individual to individual.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2501096

  2. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... FR 64280 (advance notice of proposed rulemaking); 76 FR 46908 (notice of proposed rulemaking... Program Web site in mid-October at http://www.dhs.gov/ files/ ] programs/ammonium-nitrate-security-program...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate...

  3. HEALTH EFFECTS OF NITRATES IN WATER

    EPA Science Inventory

    A multi faceted study of the health effects of nitrate in drinking water using epidemiological and toxicological techniques is reported. The results of the epidemiological studies indicate that infants consuming appreciable amounts of water high in nitrates in the form of powdere...

  4. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...This proposed rule would implement anti-terrorism measures to better secure the homeland. The Department of Homeland Security would regulate the sale and transfer of ammonium nitrate pursuant to section 563 of the Fiscal Year 2008 Department of Homeland Security Appropriations Act with the purpose of preventing the use of ammonium nitrate in an act of terrorism. This proposed rule seeks......

  5. Intravesical silver nitrate for refractory hemorrhagic cystitis

    PubMed Central

    Montgomery, Brian D.; Boorjian, Stephen A.; Ziegelmann, Matthew J.; Joyce, Daniel D.; Linder, Brian J.

    2016-01-01

    Objective Hemorrhagic cystitis is a challenging clinical entity with limited evidence available to guide treatment. The use of intravesical silver nitrate has been reported, though supporting literature is sparse. Here, we sought to assess outcomes of patients treated with intravesical silver nitrate for refractory hemorrhagic cystitis. Material and methods We identified nine patients with refractory hemorrhagic cystitis treated at our institution with intravesical silver nitrate between 2000–2015. All patients had failed previous continuous bladder irrigation with normal saline and clot evacuation. Treatment success was defined as requiring no additional therapy beyond normal saline irrigation after silver nitrate instillation prior to hospital discharge. Results Median patient age was 80 years (IQR 73, 82). Radiation was the most common etiology for hemorrhagic cystitis 89% (8/9). Two patients underwent high dose (0.1%–0.4%) silver nitrate under anesthesia, while the remaining seven were treated with doses from 0.01% to 0.1% via continuous bladder irrigation for a median of 3 days (range 2–4). All nine patients (100%) had persistent hematuria despite intravesical silver nitrate therapy, requiring additional interventions and red blood cell transfusion during the hospitalization. There were no identified complications related to intravesical silver nitrate instillation. Conclusion Although well tolerated, we found that intravesical silver nitrate was ineffective for bleeding control, suggesting a limited role for this agent in the management of patients with hemorrhagic cystitis.

  6. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-01

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate. PMID:25976309

  7. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  8. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15ɛ) for nitrate uptake and nitrate efflux (2.0 ± 0.3‰ and 1.2 ± 0.4‰, respectively). The O isotope effects (18ɛ) for nitrate uptake and nitrate efflux were indistinguishable (2.8 ± 0.6‰), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 ± 0.4 and for efflux of 2.3 ± 0.9. The 15ɛ for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15ɛorg) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5‰ or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18ɛorg:15ɛorg) of ˜1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18ɛorg:15ɛorg to rise appreciably above 1 when 15ɛorg is low (e.g., yielding a ratio of 1.1 when 15ɛorg is 5‰). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in

  9. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-08-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.

  10. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-05-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.