Sample records for ruthenium-based olefin metathesis

  1. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  2. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  3. Nonproductive events in ring-closing metathesis using ruthenium catalysts.

    PubMed

    Stewart, Ian C; Keitz, Benjamin K; Kuhn, Kevin M; Thomas, Renee M; Grubbs, Robert H

    2010-06-30

    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends.

  4. An electronic rationale for observed initiation rates in ruthenium-mediated olefin metathesis: charge donation in phosphine and N-heterocyclic carbene ligands.

    PubMed

    Getty, Kendra; Delgado-Jaime, Mario Ulises; Kennepohl, Pierre

    2007-12-26

    Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.

  5. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  6. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  7. Methods for suppressing isomerization of olefin metathesis products

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  8. Methods for suppressing isomerization of olefin metathesis products

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  9. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  10. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  11. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  12. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  13. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  14. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  15. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  16. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-04

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis**

    PubMed Central

    Herbert, Myles B.; Marx, Vanessa M.; Pederson, Richard L.; Grubbs, Robert H.

    2013-01-01

    The shortest synthetic routes to nine cis-pheromones containing a variety of functionality, including an unconjugated (E,Z) diene, are reported. These lepidopteran pheromones are used extensively for pest control, and were easily prepared using ruthenium-based Z-selective cross metathesis, highlighting the advantages of this method over less efficient ways to form Z-olefins. Important insight into the mechanism of Z-selective metathesis was uncovered during experimentation and subsequently explored. PMID:23055437

  19. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  20. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Zhibin; Lu, Yixuan

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact withmore » a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.« less

  1. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    NASA Astrophysics Data System (ADS)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  2. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    DOE PAGES

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less

  3. Refining of plant oils to chemicals by olefin metathesis.

    PubMed

    Chikkali, Samir; Mecking, Stefan

    2012-06-11

    Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    USDA-ARS?s Scientific Manuscript database

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  5. Z-Selective Catalytic Olefin Cross-Metathesis

    PubMed Central

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  6. Entrapped Single Tungstate Site in Zeolite for Cooperative Catalysis of Olefin Metathesis with Brønsted Acid Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pu; Ye, Lin; Sun, Zhenyu

    Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MAS) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MAS is immobilized inside zeolite pores by Bronsted acid sites (BAS) on the inner surface. It is demonstrated for the first time that unoccupied BAS in atomic proximity to MAS enhance olefin adsorption and greatly facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes placemore » over the BAS-MAS pair. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under the same mild reaction conditions, the propene production rate over WOx/USY is ca. 7,300 times that over the industrial WO3/SiO2 based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WOx/USY for a wide range of reaction conditions.« less

  7. Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.

    PubMed

    Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S; Day, Craig S; Jensen, Vidar R; Fogg, Deryn E

    2018-06-06

    The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl 2 (L)(═CHC 6 H 4 - o-O i Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O i Pr); the Piers catalyst PII, [RuCl 2 (L)(═CHPCy 3 )]OTf; the third-generation Grubbs catalyst GIII, RuCl 2 (L)(py) 2 (═CHPh); and dianiline catalyst DA, RuCl 2 (L)( o-dianiline)(═CHPh), in all of which L = H 2 IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl 2 (H 2 IMes)(κ 2 -C 3 H 6 ), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl 2 (H 2 IMes)(═CH 2 ), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl 2 (H 2 IMes)L n (═CH 2 ) (L n = py n' ; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl 2 (H 2 IMes)L n . A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.

  8. Assessment of density functional methods for the study of olefin metathesis catalysed by ruthenium alkylidene complexes

    NASA Astrophysics Data System (ADS)

    Śliwa, Paweł; Handzlik, Jarosław

    2010-06-01

    Performance of 31 DFT methods in thermochemistry of olefin metathesis involving the model catalyst (PH 3) 2(Cl) 2Ru dbnd CH 2 is studied using the CCSD(T) reference energies. The best methods are M06, ωB97X-D and PBE0, followed by MPW1B95, LC-ωPBE, M05-2X and B1B95. Among 20 functionals tested in reproduction of experimental PCy 3 dissociation energy for the Grubbs catalyst (H 2IMes)(PCy 3)(Cl) 2Ru dbnd CHPh, the M06-class and M05-2X methods are most accurate. ωB97X-D overestimates the dissociation energy, whereas MPW1B95, LC-ωPBE, PBE0 and B1B95 underestimate it, similarly to other methods, which give larger errors. LC-ωPBE, B1B95, MPW1B95 and PBE0 provide the best geometries.

  9. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating.

    PubMed

    Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei

    2018-01-01

    The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a

  10. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    PubMed Central

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  11. A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction

    NASA Astrophysics Data System (ADS)

    Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor

    2015-12-01

    We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.

  12. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  13. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    PubMed Central

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-01-01

    Olefin metathesis has made a significant impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This method can be used to easily synthesize biologically active compounds and to perform the site- and stereoselective fluorination of other organic compounds. PMID:27008965

  14. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  15. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  16. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  17. Formation of polycyclic lactones through a ruthenium-catalyzed ring-closing metathesis/hetero-Pauson-Khand reaction sequence.

    PubMed

    Finnegan, David F; Snapper, Marc L

    2011-05-20

    Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.

  18. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  19. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  20. Development of a ruthenium/phosphite catalyst system for domino hydroformylation-reduction of olefins with carbon dioxide.

    PubMed

    Liu, Qiang; Wu, Lipeng; Fleischer, Ivana; Selent, Detlef; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2014-06-02

    An efficient domino ruthenium-catalyzed reverse water-gas-shift (RWGS)-hydroformylation-reduction reaction of olefins to alcohols is reported. Key to success is the use of specific bulky phosphite ligands and triruthenium dodecacarbonyl as the catalyst. Compared to the known ruthenium/chloride system, the new catalyst allows for a more efficient hydrohydroxymethylation of terminal and internal olefins with carbon dioxide at lower temperature. Unwanted hydrogenation of the substrate is prevented. Preliminary mechanism investigations uncovered the homogeneous nature of the active catalyst and the influence of the ligand and additive in individual steps of the reaction sequence. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cross enyne metathesis of para-substituted styrenes: a kinetic study of enyne metathesis.

    PubMed

    Giessert, Anthony J; Diver, Steven T

    2005-01-20

    [Reaction: see text] The intermolecular enyne metathesis between alkynes and styrene derivatives was developed to study electronic effects in enyne metathesis. A Hammett plot for the overall reaction, catalyst initiation and vinyl carbene turnover was determined with the second generation Grubbs ruthenium carbene catalyst.

  2. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  3. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis.

    PubMed

    Kim, Young-Woo; Grossmann, Tom N; Verdine, Gregory L

    2011-06-01

    This protocol provides a detailed procedure for the preparation of stapled α-helical peptides, which have proven their potential as useful molecular probes and as next-generation therapeutics. Two crucial features of this protocol are (i) the construction of peptide substrates containing hindered α-methyl, α-alkenyl amino acids and (ii) the ring-closing olefin metathesis (RCM) of the resulting resin-bound peptide substrates. The stapling systems described in this protocol, namely bridging one or two turns of an α-helix, are highly adaptable to most peptide sequences, resulting in favorable RCM kinetics, helix stabilization and promotion of cellular uptake.

  4. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.

    PubMed

    Ishikawa, Atsushi; Sakaki, Shigeyoshi

    2011-05-12

    Epoxidation of olefin by [Ru(TMP)(CO)(O)](-) (TMP = tetramesitylporphine), which is a key step of the photocatalyzed epoxidation of olefin by [Ru(TMP)(CO)], is studied mainly with the density functional theory (DFT) method, where [Ru(Por)(CO)] is employed as a model complex (Por = unsubstituted porphyrin). The CASSCF method was also used to investigate the electronic structure of important species in the catalytic cycle. In all of the ruthenium porphyrin species involved in the catalytic cycle, the weight of the main configuration of the CASSCF wave function is larger than 85%, suggesting that the static correlation is not very large. Also, unrestricted-DFT-calculated natural orbitals are essentially the same as CASSCF-calculated ones, here. On the basis of these results, we employed the DFT method in this work. Present computational results show characteristic features of this reaction, as follows: (i) The epoxidation reaction occurs via carboradical-type transition state. Neither carbocation-type nor concerted oxene-insertion-type character is observed in the transition state. (ii) Electron and spin populations transfer from the olefin moiety to the porphyrin ring in the step of the C-O bond formation. (iii) Electron and spin populations of the olefin and porphyrin moieties considerably change around the transition state. (iv) The atomic and spin populations of Ru change little in the reaction, indicating that the Ru center keeps the +II oxidation state in the whole catalytic cycle. (v) The stability of the olefin adduct [Ru(Por)(CO)(O)(olefin)](-) considerably depends on the kind of olefin, such as ethylene, n-hexene, and styrene. In particular, styrene forms a stable olefin adduct. And, (vi) interestingly, the difference in the activation barrier among these olefins is small in the quantitative level (within 5 kcal/mol), indicating that this catalyst can be applied to various substrates. This is because the stabilities and electronic structures of both the

  5. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. Yu; Bubnov, Yu N.

    2015-07-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.

  6. Alkene metathesis: the search for better catalysts.

    PubMed

    Deshmukh, Prashant H; Blechert, Siegfried

    2007-06-28

    Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.

  7. Kinetically E-selective macrocyclic ring-closing metathesis

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a

  8. Increased functionality of methyl oleate using alkene metathesis

    USDA-ARS?s Scientific Manuscript database

    A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...

  9. Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.

    PubMed

    Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier

    2004-03-19

    Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.

  10. Ruthenium-catalyzed metathesis reactions of ortho- and meta-dialkenyl-carboranes: efficient ring-closing and acyclic diene polymerization reactions.

    PubMed

    Guron, Marta; Wei, Xiaolan; Carroll, Patrick J; Sneddon, Larry G

    2010-07-05

    The ruthenium-catalyzed metathesis reactions of dialkenyl-substituted ortho- and meta-carboranes provide excellent routes to both cyclic-substituted o-carboranes and new types of main-chain m-carborane polymers. The adjacent positions of the two olefins in the 1,2-(alkenyl)(2)-o-carboranes strongly favor the formation of ring-closed (RCM) products with the reactions of 1,2-(CH(2)=CHCH(2))(2)-1,2-C(2)B(10)H(10) (1), 1,2-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,2-C(2)B(10)H(10) (2), 1,2-(CH(2)=CHSiMe(2))(2)-1,2-C(2)B(10)H(10) (3), 1,2-(CH(2)=CHCH(2)SiMe(2))(2)-1,2-C(2)B(10)H(10) (4), and 1,2-[CH(2)=CH(CH(2))(4)SiMe(2)](2)-1,2-C(2)B(10)H(10) (5) affording 1,2-(-CH(2)CH=CHCH(2)-)-C(2)B(10)H(10) (10), 1,2-[-CH(2)(CH(2))(3)CH=CH(CH(2))(3)CH(2)-]-1,2-C(2)B(10)H(10) (11), 1,2-[-SiMe(2)CH=CHSiMe(2)-]-1,2-C(2)B(10)H(10) (12), 1,2-[-SiMe(2)CH(2)CH=CHCH(2)SMe(2)-]-C(2)B(10)H(10) (13), and 1,2-[-SiMe(2)(CH(2))(4)CH=CH(CH(2))(4)SiMe(2)-]-C(2)B(10)H(10) (14), respectively, in 72-97% yields. On the other hand, the reaction of 1,2-(CH(2)-CHCH(2)OC(=O))(2)-1,2-C(2)B(10)H(10) (6) gave cyclo-[1,2-(1',8'-C(=O)OCH(2)CH=CHCH(2)OC(=O))-1,2-C(2)B(10)H(10)](2) (15a) and polymer 15b resulting from intermolecular metathesis reactions. The nonadjacent positions of the alkenyl groups in the 1,7-(alkenyl)(2)-m-carboranes, 1,7-(CH(2)=CHCH(2))(2)-1,7-C(2)B(10)H(10) (7), 1,7-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,7-C(2)B(10)H(10) (8), and 1,7-(CH(2)=CHCH(2)SiMe(2))(2)-1,7-C(2)B(10)H(10) (9), disfavor the formation of RCM products, and in these cases, acyclic diene metathesis polymerizations (ADMET) produced new types of main chain m-carborane polymers. The structures of 3, 9, 11, 12, 13, and 15a were crystallographically confirmed.

  11. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  12. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands.

    PubMed

    Pribisko, Melanie A; Ahmed, Tonia S; Grubbs, Robert H

    2014-12-14

    Two new Ru-based metathesis catalysts, 3 and 4 , have been synthesized for the purpose of comparing their catalytic properties to those of their cis -selective nitrate analogues, 1 and 2 . Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2 , they maintained high cis -selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis -selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer.

  13. From a Decomposition Product to an Efficient and Versatile Catalyst: The [Ru(η5-indenyl)(PPh3)2Cl] Story

    PubMed Central

    2014-01-01

    Conspectus One of the most important challenges in catalyst design is the synthesis of stable promoters without compromising their activity. For this reason, it is important to understand the factors leading to decomposition of such catalysts, especially if side-products negatively affect the activity and selectivity of the starting complex. In this context, the understanding of termination and decomposition processes in olefin metathesis is receiving significant attention from the scientific community. For example, the decomposition of ruthenium olefin metathesis precatalysts in alcohol solutions can occur during either the catalyst synthesis or the metathesis process, and such decomposition has been found to be common for Grubbs-type precatalysts. These decomposition products are usually hydridocarbonyl complexes, which are well-known to be active in several transformations such as hydrogenation, terminal alkene isomerization, and C–H activation chemistry. The reactivity of these side products can be unwanted, and it is therefore important to understand how to avoid them and maybe also important to keep an open mind and think of ways to use these in other catalytic reactions. A showcase of these decomposition studies is reported in this Account. These reports analyze the stability of ruthenium phenylindenylidene complexes, highly active olefin metathesis precatalysts, in basic alcohol solutions. Several different decomposition processes can occur under these conditions depending on the starting complex and the alcohol used. These indenylidene-bearing metathesis complexes display a completely different behavior compared with that of other metathesis precatalysts and show an alternative competitive alcoholysis pathway, where rather than forming the expected hydrido carbonyl complexes, the indenylidene fragment is transformed into a η1-indenyl, which then rearranges to its η5-indenyl form. In particular, [RuCl(η5-(3-phenylindenylidene)(PPh3)2] has been found to

  14. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands

    PubMed Central

    Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.

    2014-01-01

    Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484

  15. Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes

    DTIC Science & Technology

    1988-07-29

    weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble

  16. Parameters governing ruthenium sawhorse-based decarboxylation of oleic acid

    USDA-ARS?s Scientific Manuscript database

    Ruthenium-catalyzed decarboxylation of 9-cisoctadecenoic is a path to produce biobased olefins. Here, a mechanistic study of this reaction was undertaken utilizing a closed reaction system and a pressure reactor. The proposed mechanism of an isomerization followed by a decarboxylation reaction was c...

  17. Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors

    PubMed Central

    2017-01-01

    Metallacyclobutanes are an important class of organometallic intermediates, due to their role in olefin metathesis. They can have either planar or puckered rings associated with characteristic chemical and physical properties. Metathesis active metallacyclobutanes have short M–Cα/α′ and M···Cβ distances, long Cα/α′–Cβ bond length, and isotropic 13C chemical shifts for both early d0 and late d4 transition metal compounds for the α- and β-carbons appearing at ca. 100 and 0 ppm, respectively. Metallacyclobutanes that do not show metathesis activity have 13C chemical shifts of the α- and β-carbons at typically 40 and 30 ppm, respectively, for d0 systems, with upfield shifts to ca. −30 ppm for the α-carbon of metallacycles with higher dn electron counts (n = 2 and 6). Measurements of the chemical shift tensor by solid-state NMR combined with an orbital (natural chemical shift, NCS) analysis of its principal components (δ11 ≥ δ22 ≥ δ33) with two-component calculations show that the specific chemical shift of metathesis active metallacyclobutanes originates from a low-lying empty orbital lying in the plane of the metallacyclobutane with local π*(M–Cα/α′) character. Thus, in the metathesis active metallacyclobutanes, the α-carbons retain some residual alkylidene character, while their β-carbon is shielded, especially in the direction perpendicular to the ring. Overall, the chemical shift tensors directly provide information on the predictive value about the ability of metallacyclobutanes to be olefin metathesis intermediates. PMID:28776018

  18. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C 2-symmetric building block: a strategy for the synthesis of decanolide natural products.

    PubMed

    Schmidt, Bernd; Kunz, Oliver

    2013-01-01

    Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  19. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  20. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  1. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  2. Metathesis-mediated synthesis of (R)-10-methyl-2-tridecanone, the southern corn rootworm pheromone.

    PubMed

    Shikichi, Yasumasa; Mori, Kenji

    2012-01-01

    (R)-10-Methyl-2-tridecanone, the female sex pheromone of the southern corn rootworm (Diabrotica undecimpunctata howardi Barber), was synthesized in 9 steps from methyl (S)-3-hydroxy-2-methylpropanoate in a 15.7% overall yield. Olefin cross metathesis between (R)-6-methyl-1-nonene and 5-hexen-2-one employing Grubbs' first-generation catalyst was the key step of the synthesis.

  3. Ring-rearrangement metathesis of nitroso Diels-Alder cycloadducts.

    PubMed

    Vincent, Guillaume; Kouklovsky, Cyrille

    2011-03-01

    Strained nitroso Diels-Alder bicyclo[2.2.1] or [2.2.2] adducts functionalized with alkene side chains of diverse length undergo a ring-rearrangement metathesis process with external alkenes and Grubbs II or Hoveyda-Grubbs II ruthenium catalysts, under microwave irradiation or classical heating, to deliver cis-fused bicycles of various ring sizes, which contain a N-O bond. These scaffolds are of synthetic relevance for the generation of molecular diversity and to the total synthesis of alkaloids. The observation of unexpected reactions, such as epimerization or one-carbon homologation of the alkene side chain, is also reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.

    PubMed

    Fabry, David C; Ronge, Meria A; Zoller, Jochen; Rueping, Magnus

    2015-02-23

    A combination of ruthenium and photoredox catalysis allowed the ortho olefination of phenols. Using visible light, the direct C-H functionalization of o-(2-pyridyl)phenols occurred, and diverse phenol ethers were obtained in good yields. The regeneration of the ruthenium catalyst was accomplished by a photoredox-catalyzed oxidative process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts. M.S. Thesis. Final Report, Jan. 1981 - Jul. 1982

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.; Sophonpanich, C.

    1982-01-01

    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.

  6. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    PubMed

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  7. Experimental evidence of {alpha}-olefin readsorption in Fischer-Tropsch synthesis on ruthenium-supported ETS-10 titanium silicate catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchi, C.L.; Ragaini, V.

    1997-05-01

    Fischer-Tropsch synthesis seems to develop the following two consecutive paths: a primary process that involves the formation of {alpha}-olefin products and a secondary process leading to the production of branched isomers and paraffins and requiring the readsorption of primary {alpha}-olefin products. It was already shown by Iglesia et al. that such readsorption steps are of fundamental importance for Ru catalysts and that they occur due to the slow diffusive removal of {alpha}-olefins when the molecular size increases, this resulting in a long intraparticle residence time. In the present paper {alpha}-olefins readsorption was enhanced by changing the metal distribution inside themore » pores of a titanium silicate (ETS-10), modified by ion exchange with alkali metal ions, used as a support for Ru-based catalysts. 24 refs., 5 figs., 3 tabs.« less

  8. Molecular Diversity by Olefin Cross-Metathesis on Solid Support. Generation of Libraries of Biologically Promising β-Lactam Derivatives.

    PubMed

    Méndez, Luciana; Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2018-05-16

    The application of the reagent-based diversification strategy for generation of libraries of biologically promising β-lactam derivatives is described. Key features are the versatility of the linker used and the cross-metathesis functionalization at the cleavage step. From an immobilized primary library, diversity was expanded by applying different cleavage conditions, leading to a series of cholesterol absorption inhibitor analogues together with interesting hybrid compounds through incorporation of a chalcone moiety.

  9. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    PubMed

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly Z- and Enantioselective Ring-Opening/Cross-Metathesis Reactions Catalyzed by Stereogenic-at-Mo Adamantylimido Complexes

    PubMed Central

    Ibrahem, Ismail; Yu, Miao; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    The first highly Z- and enantioselective class of ring-opening/cross-metathesis (ROCM) reactions is presented. Transformations are promoted in the presence of <2 mol % of chiral stereogenic-at-Mo monoaryloxide complexes, which bear an adamantylimido ligand and are prepared and used in situ. Reactions involve meso oxabicyclic substrates and afford the desired pyrans in 50–85% yield and in up to >98:<2 enantiomer ratio (er). Importantly, the desired chiral pyrans are thus obtained bearing a Z olefin either exclusively (>98:<2 Z:E) or predominantly (≥87:13 Z:E). PMID:19249833

  11. Methods of refining natural oils, and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  12. Methods of refining natural oils and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  13. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    PubMed

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  14. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane.

    PubMed

    Samantaray, Manoja K; Kavitake, Santosh; Morlanés, Natalia; Abou-Hamad, Edy; Hamieh, Ali; Dey, Raju; Basset, Jean-Marie

    2017-03-08

    Two compatible organometallic complexes, W(Me) 6 (1) and TiNp 4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO 2-700 ) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me) 5 (≡Si-O-)Ti(Np) 3 ] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in 1 H- 1 H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me) 5 ] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.

  15. Precision Aliphatic Polyesters with Alternating Microstructures via Cross-Metathesis Polymerization: An Event of Sequence Control.

    PubMed

    Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong

    2017-06-01

    Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  17. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  19. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  20. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines

    PubMed Central

    Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.

    2017-01-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908

  1. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    PubMed

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  2. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    PubMed Central

    Mutlu, Hatice; Montero de Espinosa, Lucas; Türünç, Oĝuz

    2010-01-01

    Summary We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET) polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS. PMID:21160555

  3. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  4. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  5. Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2018-02-05

    Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Prosodically Driven Metathesis in Mutsun

    ERIC Educational Resources Information Center

    Butler, Lynnika

    2013-01-01

    Among the many ways in which sounds alternate in the world's languages, changes in the order of sounds (metathesis) are relatively rare. Mutsun, a Southern Costanoan language of California which was documented extensively before the death of its last speaker in 1930, displays three patterns of synchronic consonant-vowel (CV) metathesis. Two of…

  7. Directed evolution of artificial metalloenzymes for in vivo metathesis

    NASA Astrophysics Data System (ADS)

    Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.

    2016-09-01

    The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in

  8. Reaction of a (Salen)ruthenium(VI) nitrido complex with thiols. C-H bond activation by (Salen)ruthenium(IV) sulfilamido species.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Peng, Shie-Ming; Wong, Wing-Tak; Lau, Tai-Chu

    2010-01-04

    The reaction of [Ru(VI)(N)(L)(MeOH)](PF(6)) [1; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion] with a stoichiometric amount of RSH in CH(3)CN gives the corresponding (salen)ruthenium(IV) sulfilamido species [Ru(IV){N(H)SR}(L)(NCCH(3))](PF(6)) (2a, R = (t)Bu; 2b, R = Ph). Metathesis of 2a with NaN(3) in methanol affords [Ru(IV){N(H)S(t)Bu}(L)(N(3))] (2c). 2a undergoes further reaction with 1 equiv of RSH to afford a (salen)ruthenium(III) sulfilamine species, [Ru(III){N(H)(2)S(t)Bu}(L)(NCCH(3))](PF(6)) (3). On the other hand, 2b reacts with 2 equiv of PhSH to give a (salen)ruthenium(III) ammine species [Ru(III)(NH(3))(L)(NCCH(3))](PF(6)) (4); this species can also be prepared by treatment of 1 with 3 equiv of PhSH. The X-ray structures of 2c and 4 have been determined. Kinetic studies of the reaction of 1 with excess RSH indicate the following schemes: 1 --> 2a --> 3 (R = (t)Bu), 1 --> 2b --> 4 (R = Ph). The conversion of 1 to 2 probably involves nucleophilic attack of RSH at the nitrido ligand, followed by a proton shift. The conversions of 2a to 3 and 2b to 4 are proposed to involve rate-limiting H-atom abstraction from RSH by 2a or 2b. 2a and 2b are also able to abstract H atoms from hydrocarbons with weak C-H bonds. These reactions occur with large deuterium isotope effects; the kinetic isotope effect values for the oxidation of 9,10-dihydroanthracene, 1,4-cyclohexadiene, and fluorene by 2a are 51, 56, and 11, respectively.

  9. Learning metathesis: Evidence for syllable structure constraints.

    PubMed

    Finley, Sara

    2017-02-01

    One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns - systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., ca st pronounced as ca ts ). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints.

  10. A tandem cross-metathesis/semipinacol rearrangement reaction.

    PubMed

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  11. Learning metathesis: Evidence for syllable structure constraints

    PubMed Central

    Finley, Sara

    2016-01-01

    One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns – systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., cast pronounced as cats). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints. PMID:28082764

  12. Key product development based on cyclo olefin polymer for LCD-TV

    NASA Astrophysics Data System (ADS)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  13. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    USDA-ARS?s Scientific Manuscript database

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  14. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.

    PubMed

    Xue, Long-Xin; Meng, Ting-Ting; Yang, Wei; Wang, Ke-Zhi

    2015-11-01

    The light driven splitting of water is one of the most attractive approaches for direct conversion of solar energy into chemical energy in the future. Ruthenium complexes as the water oxidation catalysts (WOCs) and light sensitizers have attracted increasing attention, and have made a great progress. This mini-review highlights recent progress on ruthenium complex-based photochemical and photoelectrochemical water oxidation catalysts. The recent representative examples of these ruthenium complexes that are in homogeneous solution or immobilized on solid electrodes, are surveyed. In particular, special attention has been paid on the supramolecular dyads with photosensitizer and WOC being covalently hold together, and grafted onto the solid electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Functionalized linear and cyclic polyolefins

    DOEpatents

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  16. Myoglobin-Catalyzed Olefination of Aldehydes.

    PubMed

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Footprint, weathering, and persistence of synthetic-base drilling mud olefins in deep-sea sediments following the Deepwater Horizon disaster.

    PubMed

    Stout, Scott A; Payne, James R

    2017-05-15

    Olefin-based synthetic-based drilling mud (SBM) was released into the Gulf of Mexico as a result of the Deepwater Horizon (DWH) disaster in 2010. We studied the composition of neat SBM and, using conventional GC-FID, the extent, concentration, and chemical character of SBM-derived olefins in >3600 seafloor sediments collected in 2010/2011 and 2014. SBM-derived (C 14 -C 20 ) olefins occurred (up to 10cm deep) within a 6.5km 2 "footprint" around the well. The olefin concentration in most sediments decreased an order of magnitude between 2010/2011 and 2014, at least in part due to biodegradation, evidenced by the preferential loss C 16 and C 18 linear (α- and internal) versus branched olefins. Based on their persistence for 4-years in sediments around the Macondo well, and 13-years near a former unrelated drill site (~62km away), weathered SBM-derived olefins released during the DWH disaster are anticipated to persist in deep-sea sediment for (at least) a comparable duration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method.

    PubMed

    Burakiewicz, Jedrzej; Hooijmans, Melissa T; Webb, Andrew G; Verschuuren, Jan J G M; Niks, Erik H; Kan, Hermien E

    2018-01-01

    To develop a method of suppressing the multi-resonance fat signal in diffusion-weighted imaging of skeletal muscle. This is particularly important when imaging patients with muscular dystrophies, a group of diseases which cause gradual replacement of muscle tissue by fat. The signal from the olefinic fat peak at 5.3 ppm can significantly confound diffusion-tensor imaging measurements. Dixon olefinic fat suppression (DOFS), a magnitude-based chemical-shift-based method of suppressing the olefinic peak, is proposed. It is verified in vivo by performing diffusion tensor imaging (DTI)-based quantification in the lower leg of seven healthy volunteers, and compared to two previously described fat-suppression techniques in regions with and without fat contamination. In the region without fat contamination, DOFS produces similar results to existing techniques, whereas in muscle contaminated by subcutaneous fat signal moved due to the chemical shift artefact, it consistently showed significantly higher (P = 0.018) mean diffusivity (MD). Because fat presence lowers MD, this suggests improved fat suppression. DOFS offers superior fat suppression and enhances quantitative measurements in the muscle in the presence of fat. DOFS is an alternative to spectral olefinic fat suppression. Magn Reson Med 79:152-159, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Fe-Catalyzed C–C Bond Construction from Olefins via Radicals

    PubMed Central

    2017-01-01

    This Article details the development of the iron-catalyzed conversion of olefins to radicals and their subsequent use in the construction of C–C bonds. Optimization of a reductive diene cyclization led to the development of an intermolecular cross-coupling of electronically-differentiated donor and acceptor olefins. Although the substitution on the donor olefins was initially limited to alkyl and aryl groups, additional efforts culminated in the expansion of the scope of the substitution to various heteroatom-based functionalities, providing a unified olefin reactivity. A vinyl sulfone acceptor olefin was developed, which allowed for the efficient synthesis of sulfone adducts that could be used as branch points for further diversification. Moreover, this reactivity was extended into an olefin-based Minisci reaction to functionalize heterocyclic scaffolds. Finally, mechanistic studies resulted in a more thorough understanding of the reaction, giving rise to the development of a more efficient second-generation set of olefin cross-coupling conditions. PMID:28094980

  20. Computational Elucidation of Selectivities and Mechanisms Performed by Organometallic and Bioinorganic Catalysts

    NASA Astrophysics Data System (ADS)

    Grandner, Jessica Marie

    Computational methods were used to determine the mechanisms and selectivities of organometallic-catalyzed reactions. The first half of the dissertation focuses on the study of metathesis catalysts in collaboration with the Grubbs group at CalTech. Chapter 1 describes the studies of the decomposition modes of several ruthenium-based metathesis catalysts. These studies were performed to better understand the decomposition of such catalysts in order to prevent decomposition (Chapter 1.2) or utilize decomposed catalysts for alternative reactions (Chapter 1.1). Chapter 2.1 describes the computational investigation of the origins of stereoretentive metathesis with ruthenium-based metathesis catalysts. These findings were then used to computationally design E-selective metathesis catalysts (Chapter 2.2). While the first half of the dissertation was centered around ruthenium catalysts, the second half of the dissertation pertains to iron-catalyzed reaction, in particular, iron-catalyzed reactions by P450 enzymes. The elements of Chapter 3 concentrate on the stereo- and chemo-selectivity of P450-catalyzed C-H hydroxylations. By combining multiple computational methods, the inherent activity of the iron-oxo catalyst and the influence of the active site on such reactions were illuminated. These discoveries allow for the engineering of new substrates and mutant enzymes for tailored C-H hydroxylation. While the mechanism of C-H hydroxylations catalyzed by P450 enzymes has been well studied, there are several P450-catalyzed transformations for which the mechanism is unknown. The components of Chapter 4 describe the use of computations to determine the mechanisms of complex, multi-step reactions catalyzed by P450s. The determination of these mechanisms elucidates how these enzymes react with various functional groups and substrate architectures and allows for a better understanding of how drug-like compounds may be broken down by human P450s.

  1. 1. Medicinal chemistry of a small molecule drug lead: Tamoxilog 2. Electronic communication through ruthenium nanoparticles: Synthesis of custom ligands and nanoparticles

    NASA Astrophysics Data System (ADS)

    Zuckerman, Nathaniel Benjamin

    1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.

  2. Computational study of productive and non-productive cycles in fluoroalkene metathesis.

    PubMed

    Rybáčková, Markéta; Hošek, Jan; Šimůnek, Ondřej; Kolaříková, Viola; Kvíčala, Jaroslav

    2015-01-01

    A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda-Grubbs 2(nd) generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.

  3. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.

    PubMed

    Wu, Lipeng; Liu, Qiang; Fleischer, Ivana; Jackstell, Ralf; Beller, Matthias

    2014-01-01

    Alkene carbonylations represent a major technology for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. Here we show the application of abundantly available carbon dioxide as C1 building block for the alkoxycarbonylations of industrially important olefins in the presence of a convenient and inexpensive ruthenium catalyst system. In our system, carbon dioxide works much better than the traditional combination of carbon monoxide and alcohols. The unprecedented in situ formation of carbon monoxide from carbon dioxide and alcohols permits an efficient synthesis of carboxylic acid esters, which can be used as detergents and polymer-building blocks. Notably, this transformation allows the catalytic formation of C-C bonds with carbon dioxide as C1 source and avoids the use of sensitive and/or expensive reducing agents (for example, Grignard reagents, diethylzinc or triethylaluminum).

  4. Thermoplastic Adhesives based on polyolefin and olefinic copolymers

    NASA Astrophysics Data System (ADS)

    Paul, Rituparna

    2014-03-01

    H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.

  5. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    NASA Astrophysics Data System (ADS)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis

  6. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2016-01-01

    Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm. PMID:28360819

  7. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.

    PubMed

    Zhu, Tao; Scalvenzi, Thibault; Sassoon, Nathalie; Lu, Xuefeng; Gugger, Muriel

    2018-07-01

    Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C 15 , C 17 , and C 19 ). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, in silico analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins. IMPORTANCE Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by in vivo fatty acid feeding assays that

  8. Understanding the desensitizing mechanism of olefin in explosives: shear slide of mixed HMX-olefin systems.

    PubMed

    Zhang, Chaoyang; Cao, Xia; Xiang, Bin

    2012-04-01

    We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.

  9. Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Michael; Yu, Chao; Jin, Yinghua

    2017-06-26

    Functional polymeric materials have seen their way into every facet of materials chemistry and engineering. In this review article, we focus on a promising class of polymers, poly(aryleneethynylene)s, by covering several of the numerous applications found thus far for these materials. Additionally, we survey the current synthetic strategies used to create these polymers, with a focus on the emerging technique of alkyne metathesis. An overview is presented of the most recent catalytic systems that support alkyne metathesis as well as the more useful alkyne metathesis reaction capable of synthesizing poly(aryleneethynylene)s.

  10. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alkyne–Aldehyde Reductive C–C Coupling through Ruthenium-Catalyzed Transfer Hydrogenation: Direct Regio- and Stereoselective Carbonyl Vinylation to Form Trisubstituted Allylic Alcohols in the Absence of Premetallated Reagents

    PubMed Central

    Leung, Joyce C.; Patman, Ryan L.; Sam, Brannon

    2011-01-01

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C–C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C–H oxidative addition in advance of the C–C coupling, and demonstrate that the C–C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  12. Stereoselectivity of supported alkene metathesis catalysts: a goal and a tool to characterize active sites.

    PubMed

    Copéret, Christophe

    2011-01-05

    Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues), the use of (E/Z) ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.

  13. Methods for treating a metathesis feedstock with metal alkoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  14. Richard Schrock, Robert Grubbs, and Metathesis Method in Organic Synthesis

    Science.gov Websites

    Organic Synthesis Resources with Additional Information Richard R. Schrock of the Massachusetts Institute Nobel Prize in Chemistry "for the development of the metathesis method in organic synthesis" ] Chauvin, Grubbs and Schrock "for the development of the metathesis method in organic synthesis,"

  15. RECOVERY OF RUTHENIUM VALUES

    DOEpatents

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  16. ADMET Polymerization Activities of Electrochemically Reduced W-Based Active Species for Ge- and Sn-Containing Dienes

    NASA Astrophysics Data System (ADS)

    Imamoglu, Yavuz; Aydogdu, Cemil; Karabulut, Solmaz; Düz, Bülent

    In the last 20 years metal atom-containing polymers have become important classes of polymers [1]. Properties like high thermic stability, electric, and photo conductometry make them very interesting for producing films, fibers, and coating [2]. Many of these compounds can be synthesized by conventional methods [3]. For producing metal-containing polymers anionic, cationic, and radicalic polymerizations were used [4-6]. Metal-containing polymers were also synthesized via acyclic diene metathesis (ADMET) polymerization that is facilitated by Schrock’s molybdenum alkylidene, or Grubbs’ ruthenium carbene catalyst [7-9]. In 1979, Gilet and coworkers succeeded in synthesizing metathetically active species from electrochemical reduction of WCl6 and MoCl5 [10,11]. In the light of these works, we have showed that electrochemically generated tungsten-based active species (WCl6-e--Al-CH2Cl2) catalyzes various metathesis-related reactions [12-16].

  17. Methods for synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  18. Formation of vinyl halides via a ruthenium-catalyzed three-component coupling.

    PubMed

    Trost, Barry M; Pinkerton, Anthony B

    2002-06-26

    The ruthenium-catalyzed three-component coupling of an alkyne, an enone, and halide ion to form E- or Z-vinyl halides has been investigated. Through systematic optimization experiments, the conditions effecting the olefin selectivity were examined. In general, more polar solvents such as DMF favored the formation of the E-isomer, and less polar solvents such as acetone favored formation of the Z-isomer. The optimized conditions for the formation of E-vinyl chlorides were found to be the use of cyclopentadienyl ruthenium (II) cyclooctadiene chloride, stannic chloride pentahydrate as a cocatalyst, and for a chloride source, either ammonium chloride in DMF/water mixtures or tetramethylammonium chloride in DMF. A range of several other ruthenium (II) catalysts was also shown to be effective. A wide variety of vinyl chlorides could be formed under these conditions. Substrates with tethered alcohols or ketones either five or six carbons from the alkyne portion gave instead diketone or cyclohexenone products. For formation of vinyl bromides, a catalyst system involving the use of cyclopentadienylruthenium (II) tris(acetonitrile) hexafluorophosphate with stannic bromide as a cocatalyst was found to be most effective. The use of ammonium bromide in DMF/acetone mixtures was optimal for the synthesis of E-vinyl bromides, and the use of lithium bromide in acetone was optimal for formation of the corresponding Z-isomer. Under either set of conditions, a wide range of vinyl bromides could be formed. When alkynes with propargylic substituents are used, enhanced selectivity for formation of the Z-isomer is observed. When aryl acetylenes are used as the coupling partners, complete selectivity for the Z-isomer is obtained. A mechanism involving a cis or trans halometalation is invoked to explain formation of the observed products. The vinyl halides have been shown to be precursors to alpha-hydroxy ketones and cyclopentenones, and as coupling partners in Suzuki-type reactions.

  19. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  20. Dithia[3.3]paracyclophane-based monometal ruthenium acetylide complexes: synthesis, characterization and substituent effects.

    PubMed

    Zhu, Xingxun; Ou, Yaping; Zhang, Jing; Xia, Jian-Long; Yin, Jun; Yu, Guang-Ao; Liu, Sheng Hua

    2013-05-21

    A series of dithia[3.3]metaparacyclophane-based monometal ruthenium acetylide complexes have been synthesized. All of the complexes have been fully characterised by NMR spectrometry, X-ray crystallography and elemental analyses. At the same time, their basic optical properties, such as UV/Vis absorption spectra, and electrochemical properties have been determined. (1)H NMR and X-ray crystal structure studies reveal that there are intramolecular C-H···π interactions in these ruthenium complexes, in both solution and solid states. Electrochemical studies reveal that the substituted groups on the dithia[3.3]paracyclophane ring can clearly affect the oxidation activities of the ruthenium center by way of the intramolecular C-H···π interaction. In addition, electron-donating groups facilitate the oxidation of the ruthenium center compared with electron-deficient groups. UV/Vis absorption and IR spectra of some complexes in neutral and oxidized states also have been studied. IR spectra studies indicated that the substituents in the cyclophane have some effects on the ν(C≡C) bands of these complexes in the neutral state and little effect on ν(C≡C) of these complexes in the oxidized state.

  1. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  2. Iron-catalyzed stereospecific activation of olefinic C-H bonds with Grignard reagent for synthesis of substituted olefins.

    PubMed

    Ilies, Laurean; Asako, Sobi; Nakamura, Eiichi

    2011-05-25

    The reaction of an aryl Grignard reagent with a cyclic or acyclic olefin possessing a directing group such as pyridine or imine results in the stereospecific substitution of the olefinic C-H bond syn to the directing group. The reaction takes place smoothly and without isomerization of the product olefin in the presence of a mild oxidant (1,2-dichloro-2-methylpropane) and an aromatic cosolvent. Several lines of evidence suggest that the reaction proceeds via iron-catalyzed olefinic C-H bond activation rather than an oxidative Mizoroki-Heck-type reaction.

  3. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H

    2013-06-04

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  4. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J [San Diego, CA; Pharkya, Priti [San Diego, CA; Van Dien, Stephen J [Encinitas, CA; Burgard, Anthony P [Bellefonte, PA; Schilling, Christophe H [San Diego, CA

    2011-09-27

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  5. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Brent Gunnoe

    2011-02-17

    3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.« less

  6. Activating catalysts with mechanical force.

    PubMed

    Piermattei, Alessio; Karthikeyan, S; Sijbesma, Rint P

    2009-05-01

    Homogeneously catalysed reactions can be 'switched on' by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(I) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.

  7. Using ruthenium sawhorse based decarboxylation to produce industrial materials from oleic acid

    USDA-ARS?s Scientific Manuscript database

    Ruthenium catalyzed isomerization and decarboxylation of 9-cis-octadecenoic acid are reported as part of the effort to produce valuable industrial materials from biobased sources. Initial studies have demonstrated the efficacy of ruthenium sawhorse materials and further mechanistic studies uncovered...

  8. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  9. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    NASA Astrophysics Data System (ADS)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  10. Thermal cracking of poly α-olefin aviation lubricating base oil

    NASA Astrophysics Data System (ADS)

    Fei, Yiwei; Wu, Nan; Ma, Jun; Hao, Jingtuan

    2018-02-01

    Thermal cracking of poly α-olefin (PAO) was conducted under different temperatures among 190 °C to 300 °C. The reacted mixtures were sequentially detected by gas chromatography-mass spectrometer (GC/MS). A series of small molecular normal alkanes, branched alkanes and olefins were identified. PAO perfect structure of aligned comb-likely side-chains has been seriously cracked under high temperatures. Property changes about kinematic viscosity and pour point of PAO samples reacted under high temperatures were also investigated. The appearance of small molecular compounds weakened the thermal stability, viscosity temperature performance and low temperature fluidity of PAO samples. Property of PAO samples was deteriorated due to thermal cracking under high temperatures.

  11. Antiproliferative effects of ruthenium-based nucleolipidic nanoaggregates in human models of breast cancer in vitro: insights into their mode of action

    PubMed Central

    Irace, Carlo; Misso, Gabriella; Capuozzo, Antonella; Piccolo, Marialuisa; Riccardi, Claudia; Luchini, Alessandra; Caraglia, Michele; Paduano, Luigi; Montesarchio, Daniela; Santamaria, Rita

    2017-01-01

    Looking for new metal-based anticancer treatments, in recent years many ruthenium complexes have been proposed as effective and safe potential drugs. In this context we have recently developed a novel approach for the in vivo delivery of Ru(III) complexes, preparing stable ruthenium-based nucleolipidic nanoaggregates endowed with significant antiproliferative activity. Herein we describe the cellular response to our ruthenium-containing formulations in selected models of human breast cancer. By in vitro bioscreens in the context of preclinical studies, we have focused on their ability to inhibit breast cancer cell proliferation by the activation of the intrinsic apoptotic pathway, possibly via mitochondrial perturbations involving Bcl-2 family members and predisposing to programmed cell death. In addition, the most efficient ruthenium-containing cationic nanoaggregates we have hitherto developed are able to elicit both extrinsic and intrinsic apoptosis, as well as autophagy. To limit chemoresistance and counteract uncontrolled proliferation, multiple cell death pathways activation by metal-based chemotherapeutics is a challenging, yet very promising strategy for targeted therapy development in aggressive cancer diseases, such as triple-negative breast cancer with limited treatment options. These outcomes provide valuable, original knowledge on ruthenium-based candidate drugs and new insights for future optimized cancer treatment protocols. PMID:28349991

  12. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent

    2010-04-06

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with themore » starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.« less

  13. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, T.C.; Blanc, R.; Zeid, J.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in themore » presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A

  14. Decarboxylative alkenylation

    NASA Astrophysics Data System (ADS)

    Edwards, Jacob T.; Merchant, Rohan R.; McClymont, Kyle S.; Knouse, Kyle W.; Qin, Tian; Malins, Lara R.; Vokits, Benjamin; Shaw, Scott A.; Bao, Deng-Hui; Wei, Fu-Liang; Zhou, Ting; Eastgate, Martin D.; Baran, Phil S.

    2017-04-01

    Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.

  15. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  16. Producing alpha-olefins using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  17. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  18. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-06

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.

  19. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  20. Improvement of ruthenium based decarboxylation of carboxylic acids

    USDA-ARS?s Scientific Manuscript database

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  1. Recovery of olefin monomers

    DOEpatents

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry

    2004-03-16

    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  2. Toward chemical propulsion: synthesis of ROMP-propelled nanocars.

    PubMed

    Godoy, Jazmin; Vives, Guillaume; Tour, James M

    2011-01-25

    The synthesis and ring-opening metathesis polymerization (ROMP) activity of two nanocars functionalized with an olefin metathesis catalyst is reported. The nanocars were attached to a Hoveyda-Grubbs first- or second-generation metathesis catalyst via a benzylidene moiety. The catalytic activity of these nanocars toward ROMP of 1,5-cyclooctadiene was similar to that of their parent catalysts. The activity of the Hoveyda-Grubbs first-generation catalyst-functionalized nanocar was further tested with polymerization of norbornene. Hence, the prospect is heightened for a ROMP process to propel nanocars across a surface by providing the translational force.

  3. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  4. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  5. New high boron content polyborane precursors to advanced ceramic materials: New syntheses, new applications

    NASA Astrophysics Data System (ADS)

    Guron, Marta

    There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly

  6. Reactivity of Silanes with ( tBuPONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition

    DOE PAGES

    Anderson, Nickolas H.; Boncella, James M.; Tondreau, Aaron M.

    2017-08-15

    The coordination of tBuPONOP ( tBuPONOP=2,6-bis(ditert-butylphosphinito)pyridine) to different ruthenium starting materials, to generate ( tBuPONOP)RuCl 2, was investigated in this paper. The resultant ( tBuPONOP)RuCl 2 reactivity with three different silanes was then investigated and contrasted dramatically with the reactivity of ( iPrPONOP)RuCl 2(DMSO) ( iPrPONOP=2,6-bis(diisopropylphosphinito)pyridine) with the same silanes. The 16-electron species ( tBuPONOP)Ru(H)Cl was produced from the reaction of triethylsilane with ( tBuPONOP)RuCl 2. Reactions of ( tBuPONOP)RuCl 2 with both phenylsilane or diphenylsilane afforded the 16-electron hydrido-silyl species ( tBuPONOP)Ru(H)(PhSiCl 2) and ( tBuPONOP)Ru(H)(Ph 2SiCl), respectively. Reactions of all three of these complexes with silver triflate affordedmore » the simple salt metathesis products of ( tBuPONOP)Ru(H)(OTf), ( tBuPONOP)Ru(H)(PhSiCl(OTf)), and ( tBuPONOP)Ru(H)(Ph 2Si(OTf)). Formic acid dehydrogenation was performed in the presence of triethylamine (TEA), and each species proved competent for gas-pressure generation of CO 2 and H 2. Finally, the hydride species ( tBuPONOP)Ru(H)Cl, ( tBuPONOP)Ru(H)(OTf), and ( tBuPONOP)Ru(H)(PhSiCl 2) exhibited faster catalytic activity than the other compounds tested.« less

  7. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  8. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...

  9. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...

  10. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...

  11. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...

  12. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...

  13. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...

  14. Activation of olefins via asymmetric Bronsted acid catalysis

    DOE PAGES

    Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas; ...

    2018-03-30

    The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less

  15. Activation of olefins via asymmetric Bronsted acid catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas

    The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less

  16. 21 CFR 177.1520 - Olefin polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Olefin polymers. 177.1520 Section 177.1520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1520 Olefin polymers. The olefi...

  17. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  18. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    NASA Astrophysics Data System (ADS)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  19. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Mann, Tyler J; Schrock, Richard R; Hoveyda, Amir H

    2017-12-20

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity-namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products-and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  20. Characterization And Dissolution Properties Of Ruthenium Oxides

    EPA Science Inventory

    Ruthenium oxides (RuO2•1.10H2O and RuO2) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation ...

  1. A general approach to medium ring alkynes by using metathesis of cobalt hexacarbonyl containing dienes.

    PubMed

    Young, David G J; Burlison, Joseph A; Peters, Ulf

    2003-05-02

    The assembly of medium sized rings (7-9) was achieved by using the metathesis of dienes linked by a cobalt hexacarbonyl complexed alkyne with either Grubbs' or Schrock's catalysts. The products of metathesis were subjected to transformations involving the dicobalt hexacarbonyl complexes, for example, decomplexation to liberate cyclic alkynes or Pauson-Khand reaction.

  2. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  3. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  4. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  5. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  6. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  7. Ruthenium Grubbs' catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nechache, R.; Haddad, E.; Jamroz, W.; Merle, P. G.; Rosei, F.

    2012-10-01

    A self healing composite material consisting of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) was prepared. First, the kinetics of the 5E2N ring opening metathesis polymerization (ROMP) reaction RGC was studied as a function of temperature. We show that the polymerization reaction is still effective in a large temperature range (-15 to 45 °C), occurring at short time scales (less than 1 min at 40 °C). Second, the amount of RGC required for ROMP reaction significantly decreased through its nanostructuration by means of a UV-excimer laser ablation process. RGC nanostructures of few nanometers in size where successfully obtained directly on silicon substrates. The X-ray photoelectron spectroscopy data strongly suggest that the RGC still keep its original stoichiometry after nanostructuration. More importantly, the associated ROMP reaction was successfully achieved at an extreme low RGC concentration equivalent to (11.16 ± 1.28) × 10-4 Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per unit mass.

  8. New ROMP Synthesis of Ferrocenyl Dendronized Polymers.

    PubMed

    Liu, Xiong; Ling, Qiangjun; Zhao, Li; Qiu, Guirong; Wang, Yinghong; Song, Lianxiang; Zhang, Ying; Ruiz, Jaime; Astruc, Didier; Gu, Haibin

    2017-10-01

    First- and second-generation Percec-type dendronized ferrocenyl norbornene macromonomers containing, respectively, three and nine ferrocenyl termini are synthesized and polymerized by ring-opening metathesis polymerization using Grubbs' third-generation olefin metathesis catalyst with several monomer/catalyst feed ratios between 10 and 50. The rate of polymerization is highly dependent on the generation of the dendronized macromonomers, but all these ring-opening metathesis polymerization reactions are controlled, and near-quantitative monomer conversions are achieved. The numbers of ferrocenyl groups obtained are in agreement with the theoretical ones according to the cyclic voltammetry studies as determined using the Bard-Anson method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Process for the synthesis of unsaturated alcohols

    DOEpatents

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  10. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  11. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  12. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  13. Synthesis of (+)-Didemniserinolipid B: Application of a 2-Allyl-4-fluorophenyl Auxiliary for Relay Ring-Closing Metathesis

    PubMed Central

    Marvin, Christopher C.; Voight, Eric A.; Suh, Judy M.; Paradise, Christopher L.; Burke, Steven D.

    2009-01-01

    The synthesis of didemniserinolipid B utilizing a ketalization/ring-closing metathesis (K/RCM) strategy is described. In the course of this work, a novel 2-allyl-4-fluorophenyl auxiliary for relay ring-closing metathesis (RRCM) was developed which increased the yield of the RCM. The resulting 6,8-dioxabicyclo[3.2.1]octene core was selectively functionalized by complimentary dihydroxylation and epoxidation routes to install the C10 axial alcohol. This bicyclic ketal core was further functionalized by etherification and an alkene cross metathesis with an unsaturated α-phenylselenyl ester en route to completing the total synthesis. PMID:18811201

  14. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  15. A chameleon catalyst for nonheme iron-promoted olefin oxidation.

    PubMed

    Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence

    2014-11-18

    We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.

  16. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins.

    PubMed

    dos Santos, Tatiane R; Harnisch, Falk; Nilges, Peter; Schröder, Uwe

    2015-03-01

    Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development.

    PubMed

    Hirahara, Masanari; Yagi, Masayuki

    2017-03-21

    Ruthenium(ii) complexes with polypyridyl ligands have been extensively studied as promising functional molecules due to their unique photochemical and photophysical properties as well as redox properties. In this context, we report the photoisomerization of distal-[Ru(tpy)(pynp)OH 2 ] 2+ (d-1) (tpy = 2,2';6',2''-terpyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) to proximal-[Ru(tpy)(pynp)OH 2 ] 2+ (p-1), which has not been previously characterized for polypyridyl ruthenium(ii) aquo complexes. Herein, we review recent progress made by our group on the mechanistic insights and application developments related to the photoisomerization of polypyridyl ruthenium(ii) aquo complexes. We report a new strategic synthesis of dinuclear ruthenium(ii) complexes that can act as an active water oxidation catalyst, as well as the development of unique visible-light-responsive giant vesicles, both of which were achieved based on photoisomerization.

  18. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  20. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes.

    PubMed

    Qian, Qingyun; Ruiz-Martínez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M; Al-Thabaiti, Shaeel A; Basahel, Suliman N; van der Bij, Hendrik E; Kornatowski, Jan; Weckhuysen, Bert M

    2013-08-19

    The formation of hydrocarbon pool (HCP) species during methanol-to-olefin (MTO) and ethanol-to-olefin (ETO) processes have been studied on individual micron-sized SAPO-34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron-based IR microspectroscopic techniques. With in situ UV/Vis microspectroscopy, the intensity changes of the λ=400 nm absorption band, ascribed to polyalkylated benzene (PAB) carbocations, have been monitored and fitted with a first-order kinetics at low reaction temperatures. The calculated activation energy (Ea ) for MTO, approximately 98 kJ mol(-1) , shows a strong correlation with the theoretical values for the methylation of aromatics. This provides evidence that methylation reactions are the rate-determining steps for the formation of PAB. In contrast for ETO, the Ea value is approximately 60 kJ mol(-1) , which is comparable to the Ea values for the condensation of light olefins into aromatics. Confocal fluorescence microscopy demonstrates that during MTO the formation of the initial HCP species are concentrated in the outer rim of the SAPO-34 crystal when the reaction temperature is at 600 K or lower, whereas larger HCP species are gradually formed inwards the crystal at higher temperatures. In the case of ETO, the observed egg-white distribution of HCP at 509 K suggests that the ETO process is kinetically controlled, whereas the square-shaped HCP distribution at 650 K is indicative of a diffusion-controlled process. Finally, synchrotron-based IR microspectroscopy revealed a higher degree of alkylation for aromatics for MTO as compared to ETO, whereas high reaction temperatures favor dealkylation processes for both the MTO and ETO processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization

    PubMed Central

    Meah, Younus; Massey, Vincent

    2000-01-01

    The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477

  2. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  3. Ruthenium red-induced bundling of bacterial cell division protein, FtsZ.

    PubMed

    Santra, Manas Kumar; Beuria, Tushar K; Banerjee, Abhijit; Panda, Dulal

    2004-06-18

    The assembly of FtsZ plays a major role in bacterial cell division, and it is thought that the assembly dynamics of FtsZ is a finely regulated process. Here, we show that ruthenium red is able to modulate FtsZ assembly in vitro. In contrast to the inhibitory effects of ruthenium red on microtubule polymerization, we found that a substoichiometric concentration of ruthenium red strongly increased the light-scattering signal of FtsZ assembly. Further, sedimentable polymer mass was increased by 1.5- and 2-fold in the presence of 2 and 10 microm ruthenium red, respectively. In addition, ruthenium red strongly reduced the GTPase activity and prevented dilution-induced disassembly of FtsZ polymers. Electron microscopic analysis showed that 4-10 microm of ruthenium red produced thick bundles of FtsZ polymers. The significant increase in the light-scattering signal and pelletable polymer mass in the presence of ruthenium red seemed to be due to the bundling of FtsZ protofilaments into larger polymers rather than the actual increase in the level of polymeric FtsZ. Furthermore, ruthenium red was found to copolymerize with FtsZ, and the copolymerization of substoichiometric amounts of ruthenium red with FtsZ polymers promoted cooperative assembly of FtsZ that produced large bundles. Calcium inhibited the binding of ruthenium red to FtsZ. However, a concentration of calcium 1000-fold higher than that of ruthenium red was required to produce similar effects on FtsZ assembly. Ruthenium red strongly modulated FtsZ polymerization, suggesting the presence of an important regulatory site on FtsZ and suggesting that a natural ligand, which mimics the action of ruthenium red, may regulate the assembly of FtsZ in bacteria.

  4. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  5. Recent advances in the development of alkyne metathesis catalysts

    PubMed Central

    Wu, Xian

    2011-01-01

    Summary The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review. PMID:21286398

  6. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  7. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  8. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  9. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  10. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    PubMed

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  11. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    PubMed

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    NASA Astrophysics Data System (ADS)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  13. Recommendation of ruthenium source for sludge batch flowsheet studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodham, W.

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate,more » conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.« less

  14. Direct observation of OH production from the ozonolysis of olefins

    NASA Astrophysics Data System (ADS)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  15. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  16. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  17. Isonitrile-functionalized ruthenium nanoparticles: intraparticle charge delocalization through Ru=C=N interfacial bonds

    NASA Astrophysics Data System (ADS)

    Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei

    2017-09-01

    Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.

  18. Ruthenium-Catalyzed Cascade C—H Functionalization of Phenylacetophenones**

    PubMed Central

    Mehta, Vaibhav P; García-López, José-Antonio; Greaney, Michael F

    2014-01-01

    Three orthogonal cascade C—H functionalization processes are described, based on ruthenium-catalyzed C—H alkenylation. 1-Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p-cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C—H functionalization methods to form C—C bonds sequentially, with the indeno furanone synthesis featuring a C—O bond formation as the terminating step. This work demonstrates the power of ruthenium-catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C—H functionalization steps taking place in a single operation to access novel carbocyclic structures. PMID:24453063

  19. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  20. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  1. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  2. Catalytic metathesis of carbon dioxide with heterocumulenes mediated by titanium isopropoxide.

    PubMed

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2005-04-21

    The insertion of an isopropoxide ligand of titanium isopropoxide into heterocumulenes gives a product that carries out metathesis at elevated temperatures by undergoing insertion of a second heterocumulene in a head to head fashion, followed by an extrusion reaction.

  3. METABOLISM OF RUTHENIUM IN THE RAT. Technical Documentary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, J.E.; Leeper, S.W.

    1961-12-01

    Seventeen Sprague-Dawley rats were injected intramuscularly and intraperitoneally with ruthenium-106. The amount of this isotope was determined daily for 5 weeks in the urine and feces. Animals were sacrificed at intervals and the various organs were analyzed for ruthenium. It was noted from this experiment that the pathways of absorption, metabolism, and excretion are dependent on the route of administration of ruthenium. (auth)

  4. Synthesis of alkyl-substituted six-membered lactones through ring-closing metathesis of homoallyl acrylates. An easy route to pyran-2-ones, constituents of tobacco flavor.

    PubMed

    D'Annibale, Andrea; Ciaralli, Laura; Bassetti, Mauro; Pasquini, Chiara

    2007-08-03

    The ring-closing metathesis (RCM) reactions of homoallylic acrylates bearing alkyl substituents on various positions of their skeleton afford the corresponding pentenolides in the presence of carbene ruthenium catalysts. For R3 = R4 = H, or R3 = Me, R4 = H, the reactions are catalyzed by complex [RuCl2(PCy3)2(=CHPh)], while a second-generation Grubbs catalyst is required when R3 = H and R4 = Me, R3 = R4 = Me, or R3 = i-Pr and R4 = H. Alkyl substitution at the homoallylic carbon (R1, R2) increases the yield of the reaction when both the acrylic and/or homoallylic double bonds are methyl-substituted. The interaction of the catalyst with the substrate in the initiation stage involves the homoallylic double bond rather than the acrylic moiety, and the resulting alkylidene species from the first-generation Grubbs catalyst can be observed by 1H and 31P NMR. The racemic tobacco constituents 4-isopropyl-5,6-dihydropyran-2-one and 4-isopropyltetrahydropyran-2-one are prepared via a short reaction sequence, involving the RCM reaction as the key transformation.

  5. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  6. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  7. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  8. Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium(III) Complex.

    PubMed

    Inaba, Iku; Kuramitz, Hideki; Sugawara, Kazuharu

    2016-01-01

    A reaction to casein, along with β-lactoglobulin, is a main cause of milk allergies, and also is a useful indicator of protein in allergic analyses. In the present study, a simple casein sensor was developed based on the interaction between a phosphate group of casein and electroactive [Ru(NH3)6](3+). We evaluated the voltammetric behavior of a casein-[Ru(NH3)6](3+) complex using a glassy carbon electrode. When the ruthenium(III) complex was combined with the phosphate groups of casein, the structure of the casein was changed. Since the hydrophobicity of casein was increased due to the binding, the casein was adsorbed onto the electrode. Furthermore, we modified an electrode with a ruthenium(III) ions/collagen film. When the sensor was applied to the detection of the casein contained in milk, the values coincided with those indicated by the manufacturer. Accordingly, this electrode could be a powerful sensor for the determination of casein in several foods.

  9. Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite

    NASA Astrophysics Data System (ADS)

    Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.

    2013-11-01

    The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.

  10. The Mystery of the Electronic Spectrum of Ruthenium Monophosphide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Christensen, Ryan M.; Dore, Jacob M.; Konder, Ricarda M.; Tokaryk, Dennis W.

    2016-06-01

    Using PH3 as a reactant gas and ruthenium as the target metal in the UNB laser ablation spectrometer, the ruthenium monophosphide molecule (RuP) has been detected. Dispersed fluorescence experiments have been performed to determine ground state vibrational frequencies and the presence of any low-lying electronic states. Rotationally resolved spectra of two vibrational bands at 577nm and 592nm have been taken; the bands have been identified as 1-0 and 0-0 bands based on isotopic shifts. Ruthenium has seven stable isotopes and rotational transitions have been observed for six of the RuP isotopologues. RuP is isoelectronic to RuN so it is expected that RuP will have a 2Σ+ ground state and low resolution spectra indicated a likely 2Σ+ - 2Σ+ electronic transition. Further investigation has led us to believe we are observing a 2Π - 2Σ+ transition but mysteriously some important rotational branches are missing. It is hoped that new data to be recorded on a second electronic system we have observed at 535nm will help shed light on this mystery.

  11. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  12. Gum formation tendencies of olefinic structures in gasoline and synergistic effect of sulphur compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagpal, J.M.; Joshi, G.C.; Aswal, D.S.

    1995-04-01

    The high octane gasoline pool contains varying amounts of cracked naphthas as an important ingredient in formulating high octane lead free gasoline. The cracked naphthas are largely from Fluidized Catalytic Cracking (FCC) units and to lesser extend from thermal cracking units. While the role of olefinic unsaturation in gum formation during storage of gasoline has been extensively studied, there is little published work on contribution of individual olefin types in storage stability and gum formation tendency of gasoline containing these compound types. In the present work we report our results on storage stability and gum formation tendency of different olefinmore » types present in cracked naphthas through model compound matrix. It is found that cyclic olefins and cyclic diolefins are the most prolific gum formers. We have also studied the role of sulfur compounds present in the gasolines on gum formation tendency of olefins. While thiols enhance gum formation from all olefinic types, sulfides and disulfides interact depending on the structure of olefins. These can have either an accelerating, or inhibiting effect on gum formation.« less

  13. Synthesis of 5/7-, 5/8- and 5/9-bicyclic lactam templates as constraints for external beta-turns.

    PubMed

    Duggan, Heather M E; Hitchcock, Peter B; Young, Douglas W

    2005-06-21

    The 5/7-, 5/8- and 5/9-bicyclic lactams 3, 17, 5 and 6 have been synthesised as single diastereoisomers by a route involving ring closing olefin metathesis. The X-ray crystal structure of the amino acid hydrochloride has been carried out and compared to that of the saturated external beta-turn constraint 18.

  14. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    PubMed

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  15. Thermodynamic properties of gaseous ruthenium species.

    PubMed

    Miradji, Faoulat; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2015-05-21

    The review of thermodynamic data of ruthenium oxides reveals large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. The reaction energies leading to the formation of ruthenium oxides RuO, RuO2, RuO3, and RuO4 have been calculated for a series of reactions. The combination of different quantum chemical methods has been investigated [DFT, CASSCF, MRCI, CASPT2, CCSD(T)] in order to predict the geometrical parameters, the energetics including electronic correlation and spin-orbit coupling. The most suitable method for ruthenium compounds is the use of TPSSh-5%HF for geometry optimization, followed by CCSD(T) with complete basis set (CBS) extrapolations for the calculation of the total electronic energies. SO-CASSCF seems to be accurate enough to estimate spin-orbit coupling contributions to the ground-state electronic energies. This methodology yields very accurate standard enthalpies of formations of all species, which are either in excellent agreement with the most reliable experimental data or provide an improved estimate for the others. These new data will be implemented in the thermodynamical databases that are used by the ASTEC code (accident source term evaluation code) to build models of ruthenium chemistry behavior in severe nuclear accident conditions. The paper also discusses the nature of the chemical bonds both from molecular orbital and topological view points.

  16. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    PubMed

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.

  17. Copper(II) acetate promoted intramolecular diamination of unactivated olefins.

    PubMed

    Zabawa, Thomas P; Kasi, Dhanalakshmi; Chemler, Sherry R

    2005-08-17

    A concise method for the synthesis of cyclic sulfamides and vicinal diamines is presented. This method is enabled by Cu(OAc)2 and demonstrates a new transformation for this metal. Both five- and six-membered vicinal diamine-containing heterocycles have been synthesized in good to excellent yields, and substrate-based asymmetric induction has been achieved. This is the first reported example of intramolecular diamination of olefins.

  18. Mononuclear ruthenium polypyridine complexes that catalyze water oxidation

    DOE PAGES

    Tong, Lianpeng; Thummel, Randolph P.

    2016-08-05

    Over the past decade, significant advances have been made in the development of molecular water oxidation catalysts (WOCs) in the context of developing a system that would accomplish artificial photosynthesis. Mononuclear ruthenium complexes with polypyridine ligands have drawn considerable attention in this regard, due to their high catalytic activity and relatively simple structure. In this perspective review, we will discuss mononuclear Ru polypyridine WOCs by organizing them into four groups according to their ligand environments. Each group will be discussed with regard to three fundamental questions: first, how does the catalyst initiate O–O bond formation? Second, which step in themore » catalytic cycle is rate-determining? Third, how efficient is the catalyst according to the specific descriptors such as turnover frequency? All discussion is based on the high-valent ruthenium intermediates that are proposed in the catalytic cycle according to experimental observation and theoretical simulation. Two fundamental mechanisms are set forth. An acid–base mechanism that involves the attack of a water molecule on the oxo of a high valent Ru=O species to form the O–O bond. Subsequent steps lead to dissociation of O 2 and rehydration of the metal center. A second mechanism involves the formation of a Ru–O˙ radical species, two of which then couple to form a Ru–O–O–Ru species that can release O 2 afterwards. The acid–base mechanism appears to be more common and mechanistic differences could result from variation directly related to polypyridine ligand structures. Thus, understanding how electronic, steric, and conformational properties can effect catalyst performance will lead to the rational design of more effective WOCs with not only ruthenium but also other transition metals.« less

  19. Synthesis of the carbocyclic core of the cornexistins by ring-closing metathesis.

    PubMed

    Clark, J Stephen; Marlin, Frederic; Nay, Bastien; Wilson, Claire

    2003-01-09

    An advanced intermediate in the synthesis of the phytotoxins cornexistin and hydroxycornexistin has been synthesized. Sequential palladium-mediated sp(2)-sp(3) fragment coupling and ring-closing diene metathesis have been used to construct the nine-membered carbocyclic core found in the natural products. [reaction--see text

  20. Iron-catalyzed, directed oxidative arylation of olefins with organozinc and Grignard reagents.

    PubMed

    Ilies, Laurean; Okabe, Jun; Yoshikai, Naohiko; Nakamura, Eiichi

    2010-06-18

    Chelation-controlled arylation of olefins with organozinc or Grignard reagents proceeds in the presence of an iron catalyst, under mild conditions and typically without the need of external ligands, to afford substituted olefins in high yield and with complete regio- and stereocontrol.

  1. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less

  2. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  3. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  4. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    DOEpatents

    Bazan, Guillermo C [Goleta, CA; Chen, Yaofeng [Shanghai, CN

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  5. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    PubMed

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  6. In Situ FTIR and NMR Spectroscopic Investigations on Ruthenium-Based Catalysts for Alkene Hydroformylation.

    PubMed

    Kubis, Christoph; Profir, Irina; Fleischer, Ivana; Baumann, Wolfgang; Selent, Detlef; Fischer, Christine; Spannenberg, Anke; Ludwig, Ralf; Hess, Dieter; Franke, Robert; Börner, Armin

    2016-02-18

    Homogeneous ruthenium complexes modified by imidazole-substituted monophosphines as catalysts for various highly efficient hydroformylation reactions were characterized by in situ IR spectroscopy under reaction conditions and NMR spectroscopy. A proper protocol for the preformation reaction from [Ru3 (CO)12] is decisive to prevent the formation of inactive ligand-modified polynuclear complexes. During catalysis, ligand-modified mononuclear ruthenium(0) carbonyls were detected as resting states. Changes in the ligand structure have a crucial impact on the coordination behavior of the ligand and consequently on the catalytic performance. The substitution of CO by a nitrogen atom of the imidazolyl moiety in the ligand is not a general feature, but it takes place when structural prerequisites of the ligand are fulfilled. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conversion of olefins to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  9. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  10. Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.

    PubMed

    Kikuchi, Haruhisa; Nishimura, Takehiro; Kwon, Eunsang; Kawai, Junya; Oshima, Yoshiteru

    2016-10-24

    Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp 3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano

    2016-08-11

    This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness andmore » friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.« less

  12. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  13. Determination of aromatics and olefins in wide-boiling petroleum fractions

    NASA Technical Reports Server (NTRS)

    Spakowski, A E; Evans, A; Hibbard, R R

    1950-01-01

    A chromatographic method is described herein for the analysis of aromatics and olefins in wide boiling petroleum fractions. The fuel is split into four fractions: nonaromatic, intermediate, pure aromatic, and wash. The analysis, which need be run only on the intermediate cut to determine aromatics in the fuel, is based on specific dispersion. With analysis times of less than 8 hours, accuracies of 1 percent were attained.

  14. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  15. Alternative Test Method for Olefins in Gasoline

    EPA Pesticide Factsheets

    This action proposes to allow for an additional alternative test method for olefins in gasoline, ASTM D6550-05. The allowance of this additional alternative test method will provide more flexibility to the regulated industry.

  16. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  17. Survival of aerosolized bacteriophage phi X174 in air containing ozone--olefin mixtures.

    PubMed Central

    Mik, G.; de Groot, I.; Gerbrandy, J. L.

    1977-01-01

    The effects of ozone and ozonized olefins on aerosol survival of bacteriophage phiX174 were studied. The ozone concentrations used were between 0 and 110 parts/10(9), giving decay rates up to 0-03 min-1. The olefins used were trans-2-butene and cyclohexene in concentrations of 500 parts/10(9) and 2-4 parts/10(6), respectively. Olefins alone have no effect, whereas in combination with ozone, decay rates of 0-1 min-1 and higher were obtained. The results are discussed in relation to the viricidal effect of open air. PMID:265341

  18. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications

    PubMed Central

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-01-01

    Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s−1 is 238 F g−1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications. PMID:29301192

  19. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.

    PubMed

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-12-30

    Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

  20. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  1. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  2. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  3. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  4. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  5. Toxicology and pharmacology of some ruthenium compounds: Vascular smooth muscle relaxation by nitrosyl derivatives of ruthenium and iridium.

    PubMed

    Kruszyna, H; Kruszyna, R; Hurst, J; Smith, R P

    1980-07-01

    A series of compounds were synthesized from ruthenium trichloride, and their ip LD50s were determined in mice: pentamminenitrosylruthenium(II) chloride, 8.9; chloronitrobis(2,2'-dipyridyl)ruthenium(II), 55;dichlorobis(2,2'-dipyridyl)ruthenium(II), 63; ruthenium trichloride, 108; and potassium pentachloronitrosylruthenate(II), 127 mg/kg. The two bis-bipyridyl complexes produced death in convulsions within minutes, whereas the remaining compounds resulted in long, debilitating courses with death occurring in 4-7d. When given in massive overdoses, however, the compounds with inorganic ligands also produced rapid convulsive death in mice, and when given iv to anesthetized cats, they produced respiratory arrest. The major toxic effects of all the complexes appeared to be due to the metal and not to its associated ligands. Only complexes having nitrosyl ligand specifically relaxed vascular smooth muscle. Potassium pentabromoiridate(III) also relaxed rabbit aortic strips that had been contracted by adrenergic agonists, but potassium pentachloroiridate(III) did not. None of the complexes was as active as nitroprusside in relaxing aortic strips or in decreasing arterial blood pressure in cats. No compound tested was as potent as cisplatin in antitumor activity. The pentamminenitrosylruthenium(II) complex also relaxed guinea pig ileum and frog rectus abdominus when these isolated muscles had been contracted by acetylcho line. It appears that these organoruthenium compounds may produce death in central respiratory arrest, as do the inorganic complexes when given iv or ip in massive overdoses. In minimally lethal doses, the complexes with inorganic ligands may affect a variety of contractile tissues, perhaps by a general mechanism involving Ca. These complexes are apt to be generally cytotoxic as well.

  6. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters.

    PubMed

    Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping

    2018-07-01

    Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism

    DOE PAGES

    Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi; ...

    2016-09-09

    In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less

  8. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  9. The inhibition of mitochondrial calcium transport by lanthanides and Ruthenium Red

    PubMed Central

    Reed, Ken C.; Bygrave, Fyfe L.

    1974-01-01

    An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of 45Ca2+ transport by rat liver mitochondria. This method was used in conjunction with studies of Ca2+-stimulated respiration to examine the mechanisms of inhibition of Ca2+ transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca2+ transport non-competitively with Ki 3×10−8m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La3+ is competitive (Ki=2×10−8m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the `low-affinity' Ca2+-binding sites). La3+ competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La3+. The results are discussed briefly in relation to possible models for a Ca2+ carrier. PMID:4375957

  10. Dynamic Covalent Synthesis of Aryleneethynylene Cages through Alkyne Metathesis: Dimer, Tetramer, or Interlocked Complex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Zhang, Chenxi

    A dynamic covalent approach towards rigid aryleneethynylene covalent organic polyhedrons (COPs) was explored. Our study on the relationship of the COP structures and the geometry of their building blocks reveals that the topology of aryleneethynylene COPs strongly depends on the size of the building blocks. A tetramer (D2h symmetric), dimer, or interlocked complex can be formed from monomers with the same face-to-edge angle but in different sizes. As alkyne metathesis is a self-exchange reaction and non-directional, the cyclooligomerization of multi-alkyne monomers involves both intramolecular cyclization and intermolecular metathesis reaction, resulting in complicated thermodynamic process disturbed by kinetic competition. Although amore » tetrahedron-shaped tetramer (Td symmetric) has comparable thermodynamic stability to a D2h symmetric tetramer, its formation is kinetically disfavored and was not observed experimentally. Aryleneethynylene COPs consist of purely unsaturated carbon backbones and exhibit large internal cavities, which would have interesting applications in host-guest chemistry and development of porous materials.« less

  11. Ruthenium-Catalyzed Aerobic Oxidation of Amines.

    PubMed

    Ray, Ritwika; Hazari, Arijit Singha; Lahiri, Goutam Kumar; Maiti, Debabrata

    2018-01-18

    Amine oxidation is one of the fundamental reactions in organic synthesis as it leads to a variety of value-added products such as oximes, nitriles, imines, and amides among many others. These products comprise the key N-containing building blocks in the modern chemical industry, and such transformations, when achieved in the presence of molecular oxygen without using stoichiometric oxidants, are much preferred as they circumvent the production of unwanted wastes. In parallel, the versatility of ruthenium catalysts in various oxidative transformations is well-documented. Herein, this review focuses on aerobic oxidation of amines specifically by using ruthenium catalysts and highlights the major achievements in this direction and challenges that still need to be addressed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    PubMed

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  13. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In Vitro Effects of Novel Ruthenium Complexes in Neospora caninum and Toxoplasma gondii Tachyzoites

    PubMed Central

    Barna, Fabienne; Debache, Karim; Küster, Tatiana

    2013-01-01

    Upon the screening of 16 antiproliferative compounds against Toxoplasma gondii and Neospora caninum, two hydrolytically stable ruthenium complexes (compounds 16 and 18) exhibited 50% inhibitory concentrations of 18.7 and 41.1 nM (T. gondii) and 6.7 and 11.3 nM (N. caninum). To achieve parasiticidal activity with compound 16, long-term treatment (22 to 27 days at 80 to 160 nM) was required. Transmission electron microscopy demonstrated the rapid impact on and ultrastructural alterations in both parasites. These preliminary findings suggest that the potential of ruthenium-based compounds should thus be further exploited. PMID:23979747

  15. Structure-reactivity relationships in the hydrogenation of carbon dioxide with ruthenium complexes bearing pyridinylazolato ligands.

    PubMed

    Muller, Keven; Sun, Yu; Heimermann, Andreas; Menges, Fabian; Niedner-Schatteburg, Gereon; van Wüllen, Christoph; Thiel, Werner R

    2013-06-10

    Pyridinylazolato (N-N') ruthenium(II) complexes of the type [(N-N')RuCl(PMe3)3] have been obtained in high yields by treating the corresponding functionalised azolylpyridines with [RuCl2 (PMe3)4] in the presence of a base. (15)N NMR spectroscopy was used to elucidate the electronic influence of the substituents attached to the azolyl ring. The findings are in agreement with slight differences in the bond lengths of the ruthenium complexes. Furthermore, the electronic nature of the azolate moiety modulates the catalytic activity of the ruthenium complexes in the hydrogenation of carbon dioxide under supercritical conditions and in the transfer hydrogenation of acetophenone. DFT calculations were performed to shed light on the mechanism of the hydrogenation of carbon dioxide and to clarify the impact of the electronic nature of the pyridinylazolate ligands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells.

    PubMed

    Babak, Maria V; Plażuk, Damian; Meier, Samuel M; Arabshahi, Homayon John; Reynisson, Jóhannes; Rychlik, Błażej; Błauż, Andrzej; Szulc, Katarzyna; Hanif, Muhammad; Strobl, Sebastian; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G

    2015-03-23

    Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    PubMed

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-07

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.

  18. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  19. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.

    PubMed

    Kumar, Akshai; Zhou, Tian; Emge, Thomas J; Mironov, Oleg; Saxton, Robert J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2015-08-12

    We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

  20. Photosensitized cleavage of some olefins as potential linkers to be used in drug delivery

    NASA Astrophysics Data System (ADS)

    Dinache, Andra; Smarandache, Adriana; Simon, Agota; Nastasa, Viorel; Tozar, Tatiana; Pascu, Alexandru; Enescu, Mironel; Khatyr, Abderrahim; Sima, Felix; Pascu, Mihail-Lucian; Staicu, Angela

    2017-09-01

    A study of photosensitized cleavage of different olefins as potential linkers for drug carrier complexes is reported. The role of singlet oxygen and the kinetic rates for light induced reactions were estimated by time-resolved measurements of singlet oxygen phosphorescence (at 1270 nm) obtained via 532 nm pulse laser excitation of a photosensitizer. The mixture of each studied olefin with verteporfin (used as photosensitizer) were exposed to low energy visible radiation. The rate constants for singlet oxygen quenching by studied olefins were determined. The irradiated solutions were investigated by FTIR spectroscopy and potential photoproducts were suggested. The experimental results were compared with simulations made by DFT method.

  1. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  2. The Acquisition of Consonant Feature Sequences: Harmony, Metathesis, and Deletion Patterns in Phonological Development

    ERIC Educational Resources Information Center

    Gerlach, Sharon Ruth

    2010-01-01

    This dissertation examines three processes affecting consonants in child speech: harmony (long-distance assimilation) involving major place features as in "coat" [kouk]; long-distance metathesis as in "cup" [p[wedge]k]; and initial consonant deletion as in "fish" [is]. These processes are unattested in adult phonology, leading to proposals for…

  3. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  4. Photochemical preparation of olefin addition catalysts

    NASA Technical Reports Server (NTRS)

    Gray, Harry B. (Inventor); Rembaum, Alan (Inventor); Gupta, Amitava (Inventor)

    1978-01-01

    Novel polymer supported catalysts are prepared by photo-irradiation of low valent transition metal compounds such as Co.sub.2 (CO).sub.8, Rh.sub.4 (CO).sub.12 or Ru.sub.3 (CO).sub.12 in the presence of solid polymers containing amine ligands such as polyvinyl pyridine. Hydroformylation of olefins to aldehydes at ambient conditions has been demonstrated.

  5. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  6. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  7. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    PubMed

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  8. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium–arene complexes

    PubMed Central

    Borguet, Yannick; Sauvage, Xavier; Zaragoza, Guillermo; Demonceau, Albert

    2010-01-01

    Summary The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymene)Ru(μ-Cl)3RuCl(3-phenyl-1-indenylidene)(PCy3)] (1) to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II)–Ru(III) mixed-valence compound [(p-cymene)Ru(μ-Cl)3RuCl2(PCy3)], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions. PMID:21160564

  9. Co-Aromatization of Methane with Olefins: The Role of Inner Pore and External Surface Catalytic Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M; He, Peng; Jarvis, Jack

    The co-aromatization of methane with olefins is investigated using Ag-Ga/HZSM-5 as the catalyst at 400 degrees C. The presence of methane has a pronounced effect on the product distribution in terms of increased average carbon number and substitution index and decreased aromatic carbon fraction compared with its N2 environment counterpart. The participation of methane during the co-aromatization over the Ag-Ga/HZSM-5 catalyst diminishes as the co-fed olefin feedstock molecule becomes larger, from 1-hexene to 1-octene and 1-decene, in diameter. The effect of suppressed methane participation with larger olefinic molecules is not as significant when Ag-Ga/HY is employed as the catalyst, whichmore » might be attributed to the larger pore size of HY that gives more room to hold olefin and methane molecules within the inner pores and reduces the diffusion limitation of olefin molecules. The effect of olefin feedstock on the methane participation during the co-aromatization over Ag-Ga/HZSM-5 is experimentally evidenced by 13C and 2D NMR. The incorporation of the methane carbon atoms into the phenyl ring of product molecules is reduced significantly with larger co-fed olefins, whereas its incorporation into the substitution groups of the formed aromatic molecules is not notably affected, suggesting that the methane participation in the phenyl ring formation might preferably occur within inner pores, while its incorporation into substitution groups may mainly take place on external catalytic sites. This hypothesis is well supported by the product selectivity obtained over Ag-Ga/HZSM-5 catalysts prepared using conventional ZSM-5, ZSM-5 with the external catalytic sites deactivated, nanosize ZSM-5, ZSM-5 with a micro/meso pore structure and ZSM-5 with the inner pores blocked, and further confirmed by the isotopic labeling studies.« less

  10. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  11. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  12. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  13. Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction

    NASA Astrophysics Data System (ADS)

    Bonnefille, Eric; Novio, Fernando; Gutmann, Torsten; Poteau, Romuald; Lecante, Pierre; Jumas, Jean-Claude; Philippot, Karine; Chaudret, Bruno

    2014-07-01

    Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity.Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00791c

  14. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant.

    PubMed

    Mas-Ballesté, Rubén; Que, Lawrence

    2007-12-26

    The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.

  15. NNP-Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Base-Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions.

    PubMed

    Adam, Rosa; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Jackstell, Ralf; Junge, Henrik; Beller, Matthias

    2016-03-24

    A series of seven novel N(Im)N(H)P-type pincer imidazolylphosphine ruthenium complexes has been synthesized and fully characterized. The use of hydrogenation of benzonitrile as a benchmark test identified [RuHCl(CO)(N(Im)N(H) P(tBu))] as the most active catalyst. With its stable Ru-BH4 analogue, in which chloride is replaced by BH4, a broad range of (hetero)aromatic and aliphatic nitriles, including industrially interesting adiponitrile, has been hydrogenated under mild and base-free conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, Powell; Srivastava, Suresh C.; Meinken, George E.

    1984-05-15

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40.degree. C. for about 2 hours, and purifying said complex by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  17. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    PubMed

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    PubMed

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the

  19. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... proposing to allow refiners and laboratories to use an alternative test method for olefin content in... test method for compliance measurement while maintaining environmental benefits achieved from our fuels...

  20. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...

  1. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Yang, Yang; Xia, Guoliang; Chen, Jitang; Jiang, Peng; Chen, Qianwang

    2017-04-01

    The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graphene layers. The catalysts display remarkable performance with low overpotentials of only 28 and 218 mV at 10 and 100 mA cm-2, respectively, and excellent stability of 10,000 cycles. Ruthenium is the cheapest platinum-group metal and its amount in the catalyst is only 3.58 wt.%, showing the catalyst high activity at a very competitive price. Density functional theory calculations reveal that the introduction of ruthenium atoms into cobalt core can improve the efficiency of electron transfer from alloy core to graphene shell, beneficial for enhancing carbon-hydrogen bond, thereby lowing ΔGH* of HER.

  2. Asymmetric Synthesis of Apratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  3. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingfang; Key Laboratory of Advanced Energy Materials Chemistry; Wang, Zhiqiang

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molarmore » ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.« less

  4. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  5. Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.

    PubMed

    Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille

    2011-08-14

    Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

  6. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1984-05-15

    A novel ruthenium-transferrin complex is disclosed which is prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40 C for about 2 hours. The complex is purified by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex. No Drawings

  7. Ruthenium-Catalyzed Cascade Annulation of Indole with Propargyl Alcohols.

    PubMed

    Kaufmann, Julia; Jäckel, Elisabeth; Haak, Edgar

    2018-05-14

    Cascade transformations forming multiple bonds and one-pot procedures provide rapid access to natural-product-like scaffolds from simple precursors. These atom-economic processes are valuable tools in organic synthesis and drug discovery. Herein, we report on ruthenium-catalyzed cascade annulations of indole with readily available propargyl alcohols. These provide rapid access to diverse carbazoles, cyclohepta[b]indoles, and further fused polycycles with high selectivity. A bifunctional ruthenium complex featuring a redox-coupled cyclopentadienone ligand acts as a common catalyst for the different cascade processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Request for Symposia Support: Advances in Olefin Polymerization Catalysis

    DTIC Science & Technology

    2014-11-24

    States Polyolefins, including polyethylene ( HDPE and LLDPE) ad polypropylene (PP), represent half of commercial polymers produced in the world...i.e. HDPE vs. UHMWPE) by simply changing the catalyst. Despite this success, the development of novel transition metal olefin polymerization

  9. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    EPA Science Inventory

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin Epoxidation

    Unnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis Enriquez
    U.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268
    Phone: 513-569-773...

  10. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  11. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  12. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE PAGES

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  13. Shale Gas Implications for C2-C3 Olefin Production: Incumbent and Future Technology.

    PubMed

    Stangland, Eric E

    2018-06-07

    Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.

  14. Ruthenium on chitosan: A recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides

    EPA Science Inventory

    Ruthenium has been immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with ruthenium chloride and has been utilized for the oxidation of nitriles to amides; the hydration of nitriles occurs in high yield and excellent selectivity, which procee...

  15. Static and Wind-on Performance of Polymer-Based Pressure-Sensitive Paints Using Platinum and Ruthenium as the Luminophore

    PubMed Central

    Lo, Kin Hing; Kontis, Konstantinos

    2016-01-01

    An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913

  16. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    NASA Astrophysics Data System (ADS)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.

  17. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure and Magnetic Properties in Ruthenium-Based Full-Heusler Alloys: AB INITIO Calculations

    NASA Astrophysics Data System (ADS)

    Bahlouli, S.; Aarizou, Z.; Elchikh, M.

    2013-12-01

    In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru2CrZ (Z = Si, Ge and Sn) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru2CrSi and Ru2CrGe exhibit a semiconducting behavior whereas Ru2CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (TN) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated TN are somewhat overestimated to the available experimental ones.

  19. Enantioselective syntheses of cryptocarya triacetate, cryptocaryolone, and cryptocaryolone diacetate.

    PubMed

    Smith, Catherine M; O'Doherty, George A

    2003-05-29

    [reaction: see text] The enantioselective syntheses of three natural products from Cryptocarya latifolia have been achieved in 13-15 steps from ethyl sorbate. The route relies upon an enantio- and regioselective Sharpless dihydroxylation and a palladium-catalyzed reduction to establish the absolute stereochemistry. The route also relies upon a highly (E)-selective olefin cross-metathesis reaction to form trans-delta-hydroxy-1-enoates. The resulting delta-hydroxy-1-enoates were subsequently converted into cryptocarya triacetate, cryptocaryolone, and cryptocaryolone diacetate.

  20. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  1. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  2. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  3. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  4. Catalytic water oxidation by ruthenium(II) quaterpyridine (qpy) complexes: evidence for ruthenium(III) qpy-N,N'''-dioxide as the real catalysts.

    PubMed

    Liu, Yingying; Ng, Siu-Mui; Yiu, Shek-Man; Lam, William W Y; Wei, Xi-Guang; Lau, Kai-Chung; Lau, Tai-Chu

    2014-12-22

    Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation-resistant and can stabilize high-oxidation-state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2 ](2+) (qpy=2,2':6',2'':6'',2'''-quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze Ce(IV) -driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy-N,N'''-dioxide (ONNO) complexes [Ru(ONNO)(L)2 ](3+) which are the real catalysts for water oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Metallomics for drug development: a further insight into intracellular activation chemistry of a ruthenium(III)-based anticancer drug gained using a multidimensional analytical approach.

    PubMed

    Matczuk, Magdalena; Prządka, Monika; Aleksenko, Svetlana S; Czarnocki, Zbigniew; Pawlak, Katarzyna; Timerbaev, Andrei R; Jarosz, Maciej

    2014-01-01

    The mechanism by which the most relevant ruthenium anticancer drugs are activated in tumors to commence their tumor-inhibiting action remains one of the challenging research tasks of present-day metallomics. This contribution aims to capture and identify eventually more reactive species of one of two bis-indazole tetrachloridoruthenate(III) compounds that are progressing in clinical trials. In view of the fact that the transport of ruthenium into cancer cells is governed by transferrin receptors, the susceptibility of the Ru drug adduct with holo-transferrin to exposure by glutathione and ascorbic acid (at their cancer cytosol concentrations) was studied by inductively coupled plasma mass spectrometry (ICP-MS), following isolation of the reaction products by ultrafiltration. Next, capillary electrophoresis coupled to ICP-MS was applied to monitor changes in the Ru speciation both under simulated cancer cytosol conditions and in real cytosol and to assign the charge state of novel metal species. The latter were identified by using tandem electrospray ionization MS in the respective ion mode. The formation of ruthenium(II) species was for the first time revealed, in which the central metal is coordinated by the reduced (GSH) or the oxidized (GSSG) form of glutathione, i.e. [Ru(II)HindCl4(GSH)](2-) and [Ru(II)HindCl4(GSSG)](2-), respectively (Hind = indazole). Ascorbic acid released the ruthenium functionality from the protein-bound form in a different way, the products of adduct cleavage containing aqua ligands. Distribution of low-molecular mass species of Ru in human cytosol was found to have very much in common with the ruthenium speciation assayed under simulated cytosol conditions.

  6. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Yin, Yajiang; Li, Xiangyu; You, Zheng

    2014-04-01

    A micro-supercapacitor with a three-dimensional configuration has been fabricated using an ICP etching technique. Hydrous ruthenium oxide with a tubular morphology is successfully synthesized using a cathodic deposition technique with a Si micro prominence as a template. The desired tubular RuO2·xH2O architecture facilitates electrolyte penetration and proton exchange/diffusion. A single MEMS electrode is studied using cyclic voltammetry, and a specific capacitance of 99.3 mF cm-2 and 70 F g-1 is presented at 5 mV s-1 in neutral Na2SO4 solution. The accelerated cycle life is tested at 80 mV s-1, and satisfactory cyclability is observed. When placed on a chip, the symmetric cell exhibits good supercapacitor properties, and a specific capacitance as high as 23 mF cm-2 is achieved at 10 mA cm-2. Therefore, 3D MEMS microelectrode arrays with electrochemically deposited ruthenium oxide films are promising candidates for on-chip electrochemical micro-capacitor applications.

  7. Coke formation and carbon atom economy of methanol-to-olefins reaction.

    PubMed

    Wei, Yingxu; Yuan, Cuiyu; Li, Jinzhe; Xu, Shutao; Zhou, You; Chen, Jingrun; Wang, Quanyi; Xu, Lei; Qi, Yue; Zhang, Qing; Liu, Zhongmin

    2012-05-01

    The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, characterization, redox behavior, DNA and protein binding and antibacterial activity studies of ruthenium(II) complexes of bidentate schiff bases.

    PubMed

    Paul, Hena; Sen, Buddhadeb; Mondal, Tapan Kumar; Chattopadhyay, Pabitra

    2017-08-03

    Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy) 2 ](ClO 4 ) 2 , where L 1 = N,N'-bis(4-nitrocinnamald-ehyde)ethylenediamine and L 2 = N,N'-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, K b and the linear Stern-Volmer quenching constant, K SV . The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy) 2 ](ClO 4 ) 2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.

  9. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  10. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    PubMed

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  11. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    NASA Astrophysics Data System (ADS)

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  12. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy.

    PubMed

    Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra

    2006-04-11

    A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.

  13. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    NASA Astrophysics Data System (ADS)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  14. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  15. Pentamethylcyclopentadienyl-ruthenium catalysts for regio- and enantioselective allylation of nucleophiles.

    PubMed

    Bruneau, Christian; Renaud, Jean-Luc; Demerseman, Bernard

    2006-07-05

    Ruthenium(II) complexes containing the pentamethylcyclopentadienyl ligand efficiently perform the activation of allylic carbonates and halides to generate cationic and dicationic ruthenium(IV) complexes. This activation has been transferred as a key step to the catalytic allylation of nucleophiles. The structural and electronic properties of the allylic moieties lead to the regioselective formation of chiral products resulting from nucleophilic addition to their most substituted terminus. The catalytic activity of various Ru(Cp*) precatalysts in several allylic substitutions by C and O nucleophiles will be presented. The enantioselective version that has been demonstrated by using optically pure bisoxazoline ligands will also be discussed.

  16. Reactivity of nitrido complexes of ruthenium(VI), osmium(VI), and manganese(V) bearing Schiff base and simple anionic ligands.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-02-18

    Nitrido complexes (M≡N) may be key intermediates in chemical and biological nitrogen fixation and serve as useful reagents for nitrogenation of organic compounds. Osmium(VI) nitrido complexes bearing 2,2':6',2″-terpyridine (terpy), 2,2'-bipyridine (bpy), or hydrotris(1-pyrazolyl)borate anion (Tp) ligands are highly electrophilic: they can react with a variety of nucleophiles to generate novel osmium(IV)/(V) complexes. This Account describes our recent results studying the reactivity of nitridocomplexes of ruthenium(VI), osmium(VI), and manganese(V) that bear Schiff bases and other simple anionic ligands. We demonstrate that these nitrido complexes exhibit rich chemical reactivity. They react with various nucleophiles, activate C-H bonds, undergo N···N coupling, catalyze the oxidation of organic compounds, and show anticancer activities. Ruthenium(VI) nitrido complexes bearing Schiff base ligands, such as [Ru(VI)(N)(salchda)(CH3OH)](+) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion), are highly electrophilic. This complex reacts readily at ambient conditions with a variety of nucleophiles at rates that are much faster than similar reactions using Os(VI)≡N. This complex also carries out unique reactions, including the direct aziridination of alkenes, C-H bond activation of alkanes and C-N bond cleavage of anilines. The addition of ligands such as pyridine can enhance the reactivity of [Ru(VI)(N)(salchda)(CH3OH)](+). Therefore researchers can tune the reactivity of Ru≡N by adding a ligand L trans to nitride: L-Ru≡N. Moreover, the addition of various nucleophiles (Nu) to Ru(VI)≡N initially generate the ruthenium(IV) imido species Ru(IV)-N(Nu), a new class of hydrogen-atom transfer (HAT) reagents. Nucleophiles also readily add to coordinated Schiff base ligands in Os(VI)≡N and Ru(VI)≡N complexes. These additions are often stereospecific, suggesting that the nitrido ligand has a directing effect on the incoming nucleophile. M≡N is also

  17. Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study

    DOE PAGES

    Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon

    2018-01-17

    A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less

  18. Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon

    A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less

  19. Ruthenium-based, inert oxide electrodes for impregnating active materials in nickel plaques

    NASA Astrophysics Data System (ADS)

    Manoharan, R.; Uma, M.

    Titanium electrodes coated with mixed ruthenium-iridium-titanium oxides are tested as inert counter electrodes for impregnating active materials in porous nickel plaques. The latter are to be used as the positive electrodes in nickel/cadmium cells. Weight losses and variations in bath voltage have been monitored while using these electrodes in the impregnation bath. A 2.85 Ah nickel/cadmium cell has been constructed using nickel electrodes developed by employing the coated electrodes of this study. The performances of these coated electrodes are compared with those of platinum electrodes that are currently employed by nickel/cadmium battery manufacturers. The results are found to be satisfactory.

  20. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    PubMed

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Characterization of Self-Assembled Monolayers on a Ruthenium Surface

    PubMed Central

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on piranha-cleaned and piranha + H2SO4 cleaned substrates were compared to monolayers formed on H-radical-cleaned Ru surfaces. We found that alkanethiols on H-radical-cleaned Ru formed densely packed monolayers that remained stable when kept in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) shows a distinct sulfur peak (BE = 162.3 eV), corresponding to metal–sulfur bonding. When exposed to ambient conditions, the SAM decayed over a period of hours. PMID:28585831

  2. Catalytic pyrolysis of model compounds and waste cooking oil for production of light olefins over La/ZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.

    2016-08-01

    Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.

  3. A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin

    PubMed Central

    Capuozzo, Antonelle; Ali, Moussa; Santamaria, Rita; Armant, Olivier; Delalande, Francois; Dorsselaer, Alain Van; Cianferani, Sarah; Spencer, John; Pfeffer, Michel; Mellitzer, Georg; Gaiddon, Christian

    2017-01-01

    Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we confirmed an interaction between the ruthenium complex and histones that impacted on histone complex formation. A comparative study of the ruthenium complex versus cisplatin showed differential epigenetic modifications on histone H3 that correlated with differential expression of histone deacetylase (HDAC) genes. We then characterized the impact of these epigenetic modifications on signaling pathways employing a transcriptomic approach. Clustering analyses showed gene expression signatures specific for cisplatin (42%) and for the ruthenium complex (30%). Signaling pathway analyses pointed to specificities distinguishing the ruthenium complex from cisplatin. For instance, cisplatin triggered preferentially p53 and folate biosynthesis while the ruthenium complex induced endoplasmic reticulum stress and trans-sulfuration pathways. To further understand the role of HDACs in these regulations, we used suberanilohydroxamic acid (SAHA) and showed that it synergized with cisplatin cytotoxicity while antagonizing the ruthenium complex activity. This study provides critical information for the characterization of signaling pathways differentiating both compounds, in particular, by the identification of a non-DNA direct target for an organoruthenium complex. PMID:27935863

  4. Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles

    PubMed Central

    Frasconi, Marco; Liu, Zhichang; Lei, Juying; Wu, Yilei; Strekalova, Elena; Malin, Dmitry; Ambrogio, Michael W.; Chen, Xinqi; Botros, Youssry Y.; Cryns, Vincent L.; Sauvage, Jean-Pierre; Stoddart, J. Fraser

    2014-01-01

    Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions. PMID:23815127

  5. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles.

    PubMed

    Frasconi, Marco; Liu, Zhichang; Lei, Juying; Wu, Yilei; Strekalova, Elena; Malin, Dmitry; Ambrogio, Michael W; Chen, Xinqi; Botros, Youssry Y; Cryns, Vincent L; Sauvage, Jean-Pierre; Stoddart, J Fraser

    2013-08-07

    Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions.

  6. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  7. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  8. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  9. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis

    NASA Astrophysics Data System (ADS)

    Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik

    2017-04-01

    Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.

  10. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    NASA Astrophysics Data System (ADS)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  11. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  12. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.

    PubMed

    Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand

    2005-07-19

    Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.

  13. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    PubMed

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  14. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenesmore » therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.« less

  15. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOEpatents

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  16. Comparison of iridium- and ruthenium-based, Pt-surface-enriched, nanosize catalysts for the oxygen-reduction reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.

    2016-02-01

    Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.

  17. Plasma-assisted oxide removal from ruthenium-coated EUV optics

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Lee, C. J.; Bijkerk, F.; Abrikosov, A.; Krivtsun, V. M.; Lopaev, D.; Yakushev, O.; van Kampen, M.

    2018-04-01

    An experimental study of oxide reduction at the surface of ruthenium layers on top of multilayer mirrors and thin Ru/Si films is presented. Oxidation and reduction processes were observed under conditions close to those relevant for extreme ultraviolet lithography. The oxidized ruthenium surface was exposed to a low-temperature hydrogen plasma, similar to the plasma induced by extreme ultraviolet radiation. The experiments show that hydrogen ions are the main reducing agent. Furthermore, the addition of hydrogen radicals increases the reduction rate beyond that expected from simple flux calculations. We show that low-temperature hydrogen plasmas can be effective for reducing oxidized top surfaces. Our proof-of-concept experiments show that an in situ, EUV-generated plasma cleaning technology is feasible.

  18. Rapid solid-state metathesis route to transition-metal doped titanias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less

  19. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    PubMed Central

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-01-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons. PMID:29064486

  20. Catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable OsO(4)2- in ionic liquid [bmim][PF6].

    PubMed

    Branco, Luís C; Afonso, Carlos A M

    2002-12-21

    The use of the solvent systems water/ionic liquid or water/ionic liquid/tert-butanol provides a recoverable, reusable, robust and simple system for the asymmetric dihydroxylation of olefins, based on the immobilization of the osmium-ligand catalyst in the ionic liquid phase.

  1. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  2. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers.

    PubMed

    Kilbinger, Andreas F M

    2012-01-01

    In this article we present a review of our recent results in one area of research we are involved in. All research efforts in our group focus on functional polymers and new ways of gaining higher levels of control with regard to the placement of functional groups within these polymers. Here, the living ring opening metathesis polymerization (ROMP) will be reviewed for which end-functionalization methods had been rare until very recently. Polymers carrying particular functional groups only at the chain-ends are, however, very interesting for a variety of industrial and academic applications. Polymeric surfactants and polymer-protein conjugates are two examples for the former and polymer-β-sheet-peptide conjugates one example for the latter. The functionalization of macroscopic or nanoscopic surfaces often relies on mono-end functional polymers. Complex macromolecular architectures are often constructed from macromolecules carrying exactly one functional group at their chain- end. The ring opening metathesis polymerization is particularly interesting in this context as it is one of the most functional group tolerant polymerization methods known. Additionally, high molecular weight polymers are readily accessible with this technique, a feature that living radical polymerizations often struggle to achieve. Finding new ways of functionalizing the polymer chain-end of ROMP polymers has therefore been a task long overdue. Here, we present our contribution to this area of research.

  3. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.

    PubMed

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N

    2016-06-13

    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  4. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  5. Synthesis of Side-Chain Oxysterols and their Enantiomers through Cross-Metathesis Reactions of Δ22 Steroids

    PubMed Central

    Brownholland, David P.

    2017-01-01

    A synthetic route that utilizes a cross-metathesis reaction with Δ22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. PMID:28300584

  6. Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins

    PubMed Central

    Strambeanu, Iulia I.; White, M. Christina

    2014-01-01

    The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956

  7. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-04-07

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: and for olefinic hydrocarbons: where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  8. Fourier-transform i.r. gas chromatography—mass spectrometry study of varying light olefin reactivity on dealuminated ZSM-5

    NASA Astrophysics Data System (ADS)

    Sayed, Moein B.

    Olefin oligomerization and alkylation (by methanol) of ethene, propene, and isobutene on HZSM-5 have been studied in typical conditions of the catalytic Mobil methanol to gasoline (MTG) process. This has been to identify the most likely light olefin involved as a key intermediate and the most likely mechanism by which such a light olefin propagates to gasoline in the MTG process. Reactions involving bulky intermediates are restricted within the narrow channels of ZSM-5. The oligomerization of ethene and isobutene appears to be an example of such restricted reactions. Zeolite dealumination seems to assist in overcoming the steric barrier by increasing both the zeolite pore volume and the population of the site (silanol) hosting the adsorbate. Spectral i.r. evidence reveals a role of zeolite Lewis acidity as a precursor in initiating olefin protonation by the zeolite Brønsted acidity. Both i.r. and GC—MS data consistently reveal a product distribution similar to that obtained in the MTG process, which suggests a dominant oligomerization and/or alkylation to be the mechanism leading to gasoline in the MTG process. However, the higher reactivity detected for olefin alkylation indicates alkylation to be the favoured mechanism. Propene is more likely to be a key intermediate, whereas isobutene contributes with a role being increasingly dominant over the more dealuminated ZSM-5 surfaces. Ethene, in contrast, shows poor reactivity, which can be enhanced by the zeolite dealumination.

  9. Synthesis gas and olefins from the catalytic autothermal reforming of volatile and non-volatile liquids

    NASA Astrophysics Data System (ADS)

    Dreyer, Bradon Justin

    2007-12-01

    The research presented in this thesis develops an understanding of a clean energy process technology, catalytic partial oxidation (CPO). CPO is a process in which a carbon containing fuel, such as a hydrocarbon, is passed over a noble metal catalyst (e.g. rhodium and platinum) to efficiently generate synthesis gas (H2 and CO) and olefins (e.g. ethylene and propylene) in millisecond contact times. Chapter 1 introduces CPO and compares this technology with conventional methods for synthesis gas and olefin production. CPO has several advantages over the traditional synthesis gas and olefin production methods. One advantage includes autothermal operation, requiring no external heat input from furnaces or heat exchangers. Autothermal operation allows these reactors to be built compactly. The short contact-times associated with CPO further enable for high throughput in relatively small reactor systems, and more compact reactors typically translate to faster response times if transient operation is required. Nobel metal based CPO catalysts are also resistant to deactivation, resulting in less catalyst replacement, regeneration, and maintenance, and an increase in operating efficiency. An overview of the many applications of the chemicals produced from CPO is also presented in Chapter 1. The chemicals produced are crucial in generating valuable chemical intermediates that are eventually incorporated in consumer products, medical devices, building structures, and fertilizers. Additionally, H2 can be used as a source of energy in mobile fuel applications. Fuel cells convert H2 and O2 into electricity and water at higher efficiencies than thermal engine generators. Due to the difficulties in H2 storage, these more efficient energy generators are dependent on hydrogen obtained from synthesis gas production in compact, portable fuel reformers, such as CPO reactors. Furthermore, H2 and CO can be used in reducing environmentally harmful emissions. Particularly, the implementation

  10. Decarboxylation of cinnamic acids using a ruthenium sawhorse

    USDA-ARS?s Scientific Manuscript database

    The ruthenium sawhorse has proven effective in the conversion of trans-cinnamic acid, and substituted trans-cinnamic acids, giving an effective source of biobased styrene and styrene analogues. The reaction is especially versatile, as it achieves product without utilising co-reagents. However, the o...

  11. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    DTIC Science & Technology

    2006-08-01

    aryl iodide to the Grignard reagent . Treatment of the magnesium compound with allyl bromide and CuCN·2LiCl afforded benzoate 4-11, which was then...cyclization of a linear peptide by conventional coupling agents to form a new amide bond (Scheme 1-12)36,44 Some common reagents are...dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), and expensive reagents such as HATU or PyBroP, which are more efficient.44 Racemization of the chiral

  12. A new efficient iron catalyst for olefin epoxidation with hydrogen peroxide.

    PubMed

    Mikhalyova, Elena A; Makhlynets, Olga V; Palluccio, Taryn D; Filatov, Alexander S; Rybak-Akimova, Elena V

    2012-01-18

    A new aminopyridine ligand derived from bipiperidine (the product of full reduction of bipyridine, bipy) coordinates to iron(II) in a cis-α fashion, yielding a new selective catalyst for olefin epoxidation with H(2)O(2) under limiting substrate conditions.

  13. Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    James, Carrie Rae

    Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a

  14. Dynamic Modification of Pore Opening of SAPO-34 by Adsorbed Surface Methoxy Species during Induction of Catalytic Methanol-to-Olefins Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Benedict T W.; Ye, Lin; Change, G.G. Z.

    Here, we report that the pore opening of SAPO-34 can be significantly modified by an adsorbed surface methoxy species during induction of the catalytic methanol-to-olefins process, which offers molecular sieving properties due to physical obstacle of the methoxy group and its adsorption modification to other hydrocarbons. X-ray powder diffraction and Rietveld refinement clearly reveal that the adsorbed single carbon atom as the methoxy group is dynamically created from methanol dehydration on a Brønsted acid site in close proximity to the pore windows. As a result, industrial desirable smaller olefins such as ethylene and propylene can be favourably made at themore » expenses of higher olefins. The structures and fundamental understanding in alteration in the olefins selectivity during induction may allow rational optimisation in catalytic performance under the complex fluidisation conditions.« less

  15. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    PubMed

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  16. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  17. Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Bordier, S.; Guéneau, C.; Brackx, E.; Domenger, R.; Rogez, J.

    2018-03-01

    Ruthenium (Ru) and rhodium (Rh) are abundant platinum-group metals formed during burn-up of nuclear fuels. Under normal operating conditions, Rh and Ru accumulate and predominantly form metallic precipitates with other fission products like Mo, Pd and Tc. In the framework of vitrification of high-level nuclear waste, these fission products are poorly soluble in molten glasses. They precipitate as metallic particles and oxide phases. Moreover, these Ru and Rh rich phases strongly depend on temperature and the oxygen fugacity of the glass melt. In case of severe accidental conditions with air ingress, oxidation of the Ru and Rh is possible. At low temperatures (T < 1422 K for rhodium sesquioxide and T < 1815 K for ruthenium dioxide), the formed oxides are relatively stable. On the other hand, at high temperatures (T > 1422 K for rhodium sesquioxide and T > 1815 K for ruthenium dioxide), they may decompose into (Rh)-FCC or (Ru)-HCP metallic phases and radiotoxic volatile gaseous species. A thermodynamic assessment of the Rh-Ru-O system will enable the prediction of: (1) the metallic and oxide phases that form during the vitrification of high-level nuclear wastes and (2) the release of volatile gaseous species during a severe accident. The Calphad method developed herein employs a thermodynamic approach in the investigation of the thermochemistry of rhodium and ruthenium at high temperatures. Current literature on the thermodynamic properties and phase diagram data enables preliminary thermodynamic assessments of the Rh-O and Ru-O systems. Additionally, select compositions in the ternary Rh-Ru-O system underwent experimental tests to complement data found in literature and to establish the phase equilibria in the ternary system.

  18. Synthesis of side-chain oxysterols and their enantiomers through cross-metathesis reactions of Δ22 steroids.

    PubMed

    Brownholland, David P; Covey, Douglas F

    2017-05-01

    A synthetic route that utilizes a cross-metathesis reaction with Δ 22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Chromium-catalysed ethene trimerisation and tetramerisation--breaking the rules in olefin oligomerisation.

    PubMed

    Wass, Duncan F

    2007-02-28

    The discovery of a new generation of highly active and selective ethene trimerisation and tetramerisation catalysts has radically changed the field of olefin oligomerisation. This Frontiers article gives an overview of these recent advances.

  20. Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte

    NASA Astrophysics Data System (ADS)

    Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.; Ketchum, Douglas R.; Ghodssi, Reza

    2015-10-01

    A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 with solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.

  1. Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.

    A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 withmore » solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.« less

  2. A DFT Study of Tungsten-Methylidene Formation on a W/ZSM-5 Zeolite: The Metathesis Active Site.

    PubMed

    Maihom, Thana; Probst, Michael; Limtrakul, Jumras

    2015-10-26

    Tungsten-methylidene formation from ethene on either the W(IV) , W(V) , or W(VI) active sites of a W/ZSM-5 zeolite is investigated by using the M06-L functional. The reaction is assumed to proceed in two steps; the first step is the [2+2] cycloaddition between ethene and the W-O active site to form an oxametallacycle intermediate. The intermediate is then decomposed to produce the W-methylidene active site from the metathesis reaction. The overall activation barrier of the reaction on W(VI) (27.3 kcal mol(-1) ) is considerably lower than the ones for W(IV) and W(V) (69.4 and 37.1 kcal mol(-1) , respectively). Moreover, the reaction involving the W(VI) site also stabilizes intermediates and products to a larger extent than the ones on the W(IV) and W(V) sites. As a result, we have demonstrated that the reaction of the W-methylidene metathesis active site is both kinetically and thermodynamically favored to occur on the W(VI) active site of the zeolite. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    DOE PAGES

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; ...

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for productionmore » in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.« less

  4. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-11-01

    This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  5. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found tomore » produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship

  6. Mononuclear ruthenium(III) complexes containing chelating thiosemicarbazones: Synthesis, characterization and catalytic property

    NASA Astrophysics Data System (ADS)

    Raja, N.; Ramesh, R.

    2010-02-01

    Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.

  7. New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio

    1990-07-01

    Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylatemore » {pi}-bonded through the C{double bond}C double bond to ruthenium.« less

  8. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  9. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  10. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  11. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise.

    PubMed

    Rapp, Teresa L; Phillips, Susan R; Dmochowski, Ivan J

    2016-12-13

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently "caging" biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model "caged" acetonitrile complex, Ru(2,2'-bipyridine) 2 (acetonitrile) 2 , or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV-vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course.

  12. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    PubMed Central

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently “caging” biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model “caged” acetonitrile complex, Ru(2,2′-bipyridine)2(acetonitrile)2, or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV–vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course. PMID:28649139

  13. Ruthenium(II) carbonyl complexes bearing CCC-pincer bis-(carbene) ligands: synthesis, structures and activities toward recycle transfer hydrogenation reactions.

    PubMed

    Naziruddin, Abbas Raja; Huang, Zhao-Jiunn; Lai, Wei-Chih; Lin, Wan-Jung; Hwang, Wen-Shu

    2013-09-28

    A new series of ruthenium(II) carbonyl complexes with benzene-based CCC-pincer bis-(carbene) ligands, [((R)CCC(R))Ru(CO)2(X)](0/+) and [((R)CCC(R))Ru(CO)(NN)](+) ((R)CCC(R) = 2,6-bis-(1-alkylimidazolylidene)benzene, R = Me or (n)Bu; X = I, Br, CH3CN, or 6-(aminomethyl)pyridine (ampy); NN = 2·CH3CN, or chelating ampy or bipyridine), was synthesized and fully characterized. X-Ray structure determinations revealed that these eight complexes have pseudo-octahedral configurations around the ruthenium center with the pincer ligand occupying three meridional sites. These complexes prove to be efficient precatalysts demonstrating very good activity and reusability for the transfer hydrogenation of ketones.

  14. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chao; Long, Hai; Jin, Yinghua

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  15. Syntheses and Characterization of Ruthenium(II) Tetrakis(pyridine)complexes: An Advanced Coordination Chemistry Experiment or Mini-Project

    ERIC Educational Resources Information Center

    Coe, Benjamin J.

    2004-01-01

    An experiment for third-year undergraduate a student is designed which provides synthetic experience and qualitative interpretation of the spectroscopic properties of the ruthenium complexes. It involves the syntheses and characterization of several coordination complexes of ruthenium, the element found directly beneath iron in the middle of the…

  16. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  17. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  18. Application of Ring-Closing Metathesis to Grb2 SH3 Domain-Binding Peptides | Center for Cancer Research

    Cancer.gov

    In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic

  19. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    EPA Science Inventory

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  20. Complex of transferrin with ruthenium for medical applications. [Ru 97, Ru 103

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1980-11-03

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40/sup 0/C for about 2 hours, and purifying said complex by means of gel chromatography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparitive results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  1. Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination.

    PubMed

    Qiu, Youai; Tian, Cong; Massignan, Leonardo; Rogge, Torben; Ackermann, Lutz

    2018-05-14

    Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C-H activation is restricted to strongly N-coordinating directing groups. The first example of electrocatalytic C-H activation by weak O-coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C-H/O-H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C-H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    2017-09-01

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  3. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  4. O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling.

    PubMed

    Shaffer, David W; Xie, Yan; Concepcion, Javier J

    2017-10-16

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.

  5. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  6. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less

  7. Study on volatilization mechanism of ruthenium tetroxide from nitrosyl ruthenium nitrate by using mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Usami, Tsuyoshi; Tsukada, Takeshi; Shibata, Yuki; Kodama, Takashi

    2016-10-01

    In a cooling malfunction accident of a high-level liquid waste (HLLW) tank, behavior of ruthenium (Ru) attracts much attention, since Ru could be oxidized to a volatile chemical form in the boiling and drying of HLLW, and part of radioactive Ru can potentially be released to the environment. In this study, nitrosyl Ru nitrate (Ru(NO)(NO3)3) dissolved in nitric acid (HNO3), which is commonly contained in a simulated HLLW, was dried and heated up to 723 K, and the evolved gas was introduced into a mass spectrometer. The well-known volatile species, ruthenium tetroxide (RuO4) was detected in a temperature range between 390 K and 500 K with the peak top around 440 K. Various gases such as HNO3, nitrogen dioxide (NO2), nitrogen monoxide (NO) also evolved due to evaporation of the nitric acid and decomposition of the nitrate ions. The ion current of RuO4 seems to increase with the increasing decomposition of nitrate, while the evaporation of HNO3 decreases. More volatilization of RuO4 was observed from the HNO3 solution containing not only Ru(NO)(NO3)3 but also cerium nitrate (Ce(NO3)3·6H2O) which was added for extra supply of nitrate ion, compared with that from the HNO3 solution containing only Ru(NO)(NO3)3. These experimental results suggest that Ru could be oxidized to form RuO4 by the nitrate ion as well as HNO3.

  8. New donor-acceptor conjugates based on a trifluorenylporphyrin linked to a redox-switchable ruthenium unit.

    PubMed

    Merhi, Areej; Zhang, Xu; Yao, Dandan; Drouet, Samuel; Mongin, Olivier; Paul, Frédéric; Williams, J A Gareth; Fox, Mark A; Paul-Roth, Christine O

    2015-05-28

    Reactions of the 16-electron ruthenium complex [Ru(dppe)2Cl][PF6] with metal-free and zinc ethynylphenyltrifluorenylporphyrins and respectively, gave the new dyads and with ethynylruthenium group as a potential electron donor and the porphyrin as a potential electron acceptor. The redox properties of the porphyrins were investigated by cyclic voltammetry and UV spectroelectrochemistry (SEC), which reveal that the monocation and monoanion of metal-free porphyrin are stable under these conditions whereas the formation of the corresponding radical cation or anion of the zinc porphyrin was accompanied by partial decomplexation of the zinc ion. Oxidations of the dyads and gave stable radical cations as probed using IR, NIR and UV SEC methods. These cations show similar NIR and IR bands to those reported for the known 17-electron [Ru(dppe)2(C[triple bond, length as m-dash]CPh)Cl](+) radical cation. Remarkably, the dyad has four stable redox states +2/+1/0/-1 where the second oxidation and first reduction processes take place at the porphyrin unit. Simulated absorption spectra on at optimised geometries obtained by TD-DFT computations with the CAM-B3LYP functional are shown to be in very good agreement with the observed UV absorption spectra of . The spectra of and their oxidised and reduced species were interpreted with the aid of the TD-DFT data. Fluorescence measurements reveal that the dyads and are only weakly emitting compared to and , indicative of quenching of the porphyrinic singlet excited state by the ruthenium centre.

  9. COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintsev, O.E.; Starostin, S.M.

    1961-06-01

    The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)

  10. Endoresection with adjuvant ruthenium brachytherapy for selected uveal melanoma patients - the Tuebingen experience.

    PubMed

    Süsskind, Daniela; Dürr, Carina; Paulsen, Frank; Kaulich, Theodor; Bartz-Schmidt, Karl U

    2017-12-01

    To evaluate the treatment of selected patients with uveal melanoma with endoresection and adjuvant ruthenium brachytherapy. Thirty-five patients with uveal melanoma not suitable for ruthenium plaque monotherapy were treated with endoresection and adjuvant ruthenium brachytherapy between January 2001 and October 2013. Recurrence-free survival, globe retention, course of visual acuity (VA), occurrence of therapy-related complications and metastasis-free and overall survival were analysed retrospectively. Eight patients (22.9%) had a tumour recurrence after a median follow-up of 49.5 months (range: 21-134 months). Enucleation was necessary in eight patients. Thirty-two patients (91%) had a loss of VA with a median loss of nine lines (range: 0 to -39 lines); VA was stable in three patients and no patients had a gain in VA. Four patients (11.4%) developed radiation retinopathy. Metastases were detected in seven patients (20.0%) during follow-up. The occurrence of metastasis was significantly associated with monosomy 3 (p < 0.0001). Twenty-four patients (68.6%) were alive at the end of follow-up. Five patients (14.3%) died because of uveal melanoma (UM) metastasis. Endoresection with adjuvant ruthenium brachytherapy is an option for selected patients with UM who cannot be treated with brachytherapy as monotherapy. About two-thirds of eyes can be retained long term without recurrences. Visual acuity cannot be maintained in most cases, and may even decrease considerably. Radiation complications are comparatively rare and not a significant problem. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. The Production and Recovery of C2-C4 Olefins from Syngas.

    ERIC Educational Resources Information Center

    Murchison, C. B.; And Others

    1986-01-01

    Discusses reacting coal-derived hydrogen and carbon monoxide (syngas) at relatively high selectivity to ethylene, propylene, and butenes over novel catalysts. In addition, data are given which illustrate a unique ethylene removal step which is compatible with operating the olefin synthesis at low conversion. (JN)

  12. High temperature behavior of B2-based ruthenium aluminide systems

    NASA Astrophysics Data System (ADS)

    Cao, Fang

    Ru-modified NiAl-based bond coats have the potential to improve the durability of Superalloy-Thermal Barrier Coating systems (TBCs) for advanced gas turbine engines. A fundamental understanding of the high temperature mechanical behavior across the Ni-Al-Ru B2 phase field can provide direction for the development of these new bond coats for TBCs. The purpose of this study has been to describe the fundamental processes of creep deformation in single phase B2 Ru-Al-Ni ternary alloys which would form the basis for the bond coats. To accomplish this, five ternary alloys with compositions located within the B2 field across the NiAl-RuAl phase region were fabricated and investigated. Special emphasis was placed on characterizing creep deformation and describing the operative creep mechanisms in these alloys. At room temperature, brittle failure was observed in the Ni-rich alloys in compression, while improved strength and ductility were displayed in two Ru-rich ternary alloys at temperatures up to 700°C. Exceptional creep strength was observed in these alloys, as compared to other high melting temperature B2 intermetallics. A continuous increase of the melting temperature and creep resistance with the increasing of the Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Ni-rich alloys, while uniformly distributed jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. A transition of the creep mechanism from viscous glide controlled to jogged screw motion in these Ru-Al-Ni ternary B2 alloys with increasing Ru/Ni ratio is demonstrated by the characteristics of the creep deformation process, stress change creep tests, post-creep dislocation analyses, and numerical modeling. Additionally, the knowledge of the cyclic oxidation behavior of ruthenium aluminide-based alloy is essential, as many high-temperature applications for which this intermetallic might be

  13. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  14. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition

    NASA Astrophysics Data System (ADS)

    Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.

    2016-08-01

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  15. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition.

    PubMed

    Gill, Martin R; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A

    2016-08-25

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  16. Design of direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging.

    PubMed

    Wang, Lei; Shao, Zhengzheng; Tang, Wusheng; Liu, Jiying; Nie, Qianwen; Jia, Hui; Dai, Suian; Zhu, Jubo; Li, Xiujian

    2017-10-20

    A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.

  17. Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Wang-Chao; Kong, Fan-Tai; Ghadari, Rahim; Li, Zhao-Qian; Guo, Fu-Ling; Liu, Xue-Peng; Huang, Yang; Yu, Ting; Hayat, Tasawar; Dai, Song-Yuan

    2017-04-01

    We report a systematic research to understand the structural-electronic impact of the arylamine electron-donating antennas on the performances of the ruthenium complexes for dye-sensitized solar cells. Three ruthenium complexes functionalized with different arylamine electron-donating antennas (N,N-diethyl-aniline in RC-31, julolidine in RC-32 and N,N-dibenzyl-aniline in RC-36) are designed and synthesized. The photoelectric properties of RC dyes exhibit apparent discrepancy, which are ascribed to different structural nature and electronic delocalization ability of these arylamine electron-donating system. In conjunction with TiO2 microspheres photoanode and a typical coadsorbent DPA, the devices sensitized by RC-36 achieve the best conversion efficiency of 10.23%. The UV-Vis absorption, electrochemical measurement, incident photon-to-current conversion efficiency and transient absorption spectra confirm that the excellent performance of RC-36 is induced by synergistically structural-electronic impacts from enhanced absorption capacity and well-tuned electronic characteristics. These observations provide valuable insights into the molecular engineering methodology based on fine tuning structural-electronic impact of electron-donating antenna in efficient ruthenium sensitizers.

  18. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulsemore » voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.« less

  19. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  20. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    PubMed Central

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-01-01

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen− (n = 3–12), and their corresponding neutral species. Photoelectron spectra of RuGen− clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen−/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters. PMID:27439955

  1. Flow-injection chemiluminescent determination of estrogen benzoate using the tris(1,10-phenanthroline) ruthenium(II)-permanganate system.

    PubMed

    Ma, Yan; Cao, Wei; Qiao, Shuang; Liu, Wenwen; Yang, Jinghe

    2011-01-01

    Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10-phenanthroline)ruthenium(II)-Na(2)SO(3)-permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10-phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na(2)SO(3) is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05-10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.

  2. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides.

    PubMed

    Baig, R B Nasir; Varma, Rajender S

    2012-06-25

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involves the in situ generation of magnetic silica (Fe(3)O(4)@SiO(2)) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this catalyst which proceeds exclusively in aqueous medium under neutral conditions.

  3. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2

  4. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4.

    PubMed

    Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H

    2010-04-02

    PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).

  5. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes.

    PubMed

    Li, Xiaoe; Nazeeruddin, Mohammad K; Thelakkat, Mukundan; Barnes, Piers R F; Vilar, Ramón; Durrant, James R

    2011-01-28

    We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide

  6. 4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.

    PubMed

    Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H

    2001-03-01

    The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.

  7. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In themore » presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.« less

  8. Strategy Toward the Total Synthesis of Epothilones A and B

    DTIC Science & Technology

    1999-07-01

    2-(iV-morpholino)ethanesulfonic acid ). 1 mM EGTA(1.2-di(2-aminoethoxy)ethane-/V..V..V’.Af’-tetraaceticacid). 0.5 mM MgCl2, 1 mM GTP. and 3 M... acid ), 1 mM EGTA. 0.5 nM MgCU. ImM GTP and 3M glyceropH £6- Tta concentration of tubulin in MTP was estimated to be about 85%. Assembly was...fragment projected for the olefin metathesis step. For this purpose, it would be appropriate to reach a carboxylic acid (cf. 28, Scheme 4) for

  9. Asymmetric Total Synthesis of (-)-(3 R)-Inthomycin C.

    PubMed

    Balcells, Sandra; Haughey, Maxwell B; Walker, Johannes C L; Josa-Culleré, Laia; Towers, Christopher; Donohoe, Timothy J

    2018-06-04

    A short (10 step) and efficient (15% overall yield) synthesis of the natural product (-)-(3 R)-inthomycin C is reported. The key steps comprise three C-C bond-forming reactions: (i) a vinylogous Mukaiyama aldol, (ii) an olefin cross-metathesis reaction, and (iii) an asymmetric Mukaiyama-Kiyooka aldol. This route is notable for its brevity and has the advantage of lacking stoichiometric tin-promoted cross-coupling reactions present in previous approaches. Initial investigations on the biological activity of (-)-(3 R)-inthomycin C and structural analogues on human cancer cell lines are also described for the first time.

  10. Functionalized SBA-15 supported nickel (II)–oxime–imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2016-05-15

    A new oxime–imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH{sub 2}-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO{sub 4}){sub 2} to yield the functionalized nickel catalyst SBA-15-NH{sub 2}-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH{sub 2}-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant. - Graphical abstract: A new well characterized oxime–imine functionalized highlymore » ordered mesoporous SBA-15-NH{sub 2}-DAMO-Ni complex catalyzes the one-pot oxidation of olefins under solvent free mild conditions.« less

  11. An Expedient Procedure for the Oxidative Cleavage of Olefinic Bonds with PhI(OAc)2, NMO, and Catalytic OsO4

    PubMed Central

    Nicolaou, K. C.; Adsool, Vikrant A.; Hale, Christopher R. H.

    2010-01-01

    PhI(OAc)2 in the presence of OsO4 (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with α-hydroxy ketones as by-products. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO4 (cat.), 2,6-lutidine, and PhI(OAc)2. PMID:20192259

  12. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  13. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.

  14. In vitro and in vivo antiproliferative and trypanocidal activities of ruthenium NO donors

    PubMed Central

    Silva, J J N; Osakabe, A L; Pavanelli, W R; Silva, J S; Franco, D W

    2007-01-01

    Background and purpose: Many compounds liberating NO (NO donors) have been used as therapeutic agents. Here we test two ruthenium nitrosyls, which release NO when activated by biological reducing agents, for their effects in vitro and in vivo against Trypanasoma cruzi, the agent responsible for the American trypanosomiasis (Chagas' disease). Experimental approach: Ruthenium NO donors were incubated with a partially drug-resistant strain of T. cruzi and the anti-proliferative and trypanocidal activities evaluated. In a mouse model of acute Chagas' disease, trypanocidal activity was evaluated by measuring parasitemia, survival rate of infected mice and elimination of amastigotes in myocardial tissue. Key results: In vitro, the observed anti-proliferative and trypanocidal activities of trans-[Ru(NO)(NH3)4isn](BF4)3 and trans-[Ru(NO)(NH3)4imN](BF4)3 were due to NO liberated upon reduction of these nitrosyls. Ru(NO)isn had a lower IC50epi (67 μM) than the NO donor, sodium nitroprusside (IC50epi=244 μM) and Ru(NO)imN (IC50try=52 μM) was more potent than gentian violet (IC50try=536 μM), currently used in the treatment of blood. Both ruthenium nitrosyls eliminated, in vivo, extracellular as well as intracellular forms of T. cruzi in the bloodstream and myocardial tissue and allowed survival of up to 80% of infected mice at a dose (100 nmol kg−1 day−1) much lower than the optimal dose for benznidazole (385 μmol kg−1 day−1). Conclusions and implications: Our data strongly suggest that NO liberated is responsible for the anti-proliferative and trypanocidal activities of the ruthenium NO donors and that these compounds are promising leads for novel and effective anti-parasitic drugs. PMID:17603548

  15. Ruthenium-catalyzed regioselective allylic amination of 2,3,3-trifluoroallylic carbonates.

    PubMed

    Isobe, Shin-Ichi; Terasaki, Shou; Hanakawa, Taisyun; Mizuno, Shota; Kawatsura, Motoi

    2017-04-05

    We demonstrated the ruthenium-catalyzed allylic amination of 2,3,3-trifluoroallylic carbonates with several types of amines. The reactions proceeded with several types of amines, and succeeded in obtaining polyfluorinated terminal alkenes possessing branched allylic amines as a single regioisomer.

  16. Flow injection chemiluminescent determination of tetracycline using a tris(2,2'-bipyridine)ruthenium(II)-cerium(IV) sulphate system.

    PubMed

    Guo, Liangqia; Xie, Zenghong; Lin, Xucong; Liu, Xiaohua; Zhang, Weilin; Chen, Guonan

    2004-01-01

    A flow-injection chemiluminescence method for the determination of tetracycline was developed. The method is based on an enhancement by tetracycline of the chemiluminescence light emission of tris(2,2'-bipyridine)ruthenium(II). In sulphuric acid medium, the chemiluminescence is generated by the continuous oxidation of tris(2,2'-bipyridine)ruthenium(II) by cerium (IV) sulphate. The light-emission intensity is greatly enhanced in the presence of tetracycline. Under the optimum conditions, the calibration curve is linear over the range 3.75 x 10(-8) g/mL-1.5 x 10(-5) g/mL for tetracycline with the linear equation: deltaINT = 205.898 x C - 20.442 (R2 = 0.9974). The detection limit is 3.27 x 10(-8) g/mL. The proposed method was also successfully used to determine tetracycline in pharmaceutical formulation (mean recovery of tetracycline, 100.7%). Copyright 2004 John Wiley & Sons, Ltd.

  17. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines.

    PubMed

    Liu, Guan-Sai; Zhang, Yong-Qiang; Yuan, Yong-An; Xu, Hao

    2013-03-06

    A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to > 20:1). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.

  18. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation.

    PubMed Central

    Roberts, E S; Vaz, A D; Coon, M J

    1991-01-01

    As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356

  19. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    PubMed

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  20. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    PubMed

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-05

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.

  1. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOEpatents

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  2. Ring-Opening Metathesis Polymerization in Aqueous Media using a Macroinitiator Approach.

    PubMed

    Foster, Jeffery; Varlas, Spyridon; Blackman, Lewis; Arkinstall, Lucy; O'Reilly, Rachel Kerry

    2018-06-26

    Water-soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring-opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water-soluble polymers has yet to be realized. To address this we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water-insoluble polymer, polymerization-induced self-assembly (PISA) occurs and a variety of self-assembled nano-object morphologies can be accessed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nickel-Catalyzed, Carbonyl-Ene-Type Reactions: Selective for Alpha Olefins and More Efficient with Electron-Rich Aldehydes

    PubMed Central

    Ho, Chun-Yu; Ng, Sze-Sze; Jamison, Timothy F.

    2011-01-01

    Described are several classes of unusual or unprecedented carbonyl-ene-type reactions, including those between alpha olefins and aromatic aldehydes. Catalyzed by nickel, these processes complement existing Lewis acid-catalyzed methods in several respects. Not only are monosubstituted alkenes, aromatic aldehydes, and tert-alkyl aldehydes effective substrates, but monosubstituted olefins also react faster than those that are more substituted, and large or electron-rich aldehydes are more effective than small or electron-poor ones. Conceptually, in the presence of a nickel-phosphine catalyst, the combination of off-the-shelf alkenes, silyl triflates, and triethylamine functions as a replacement for an allylmetal reagent. PMID:16620106

  4. Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, R.G.

    1979-01-01

    Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less

  5. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  6. Role of Mediator and Effects of Temperature on ortho-C-N Bond Fusion Reactions of Aniline Using Ruthenium Templates: Isolation and Characterization of New Ruthenium Complexes of the in-Situ-Generated Ligands.

    PubMed

    Roy, Suman K; Sengupta, Debabrata; Rath, Santi Prasad; Saha, Tanushri; Samanta, Subhas; Goswami, Sreebrata

    2017-05-01

    In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [Ru III (terpy)Cl 3 ] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1] + which upon oxidation with H 2 O 2 produced compound [2] + of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1] + and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [Ru II (N-phenyl-1,2-benzoquinonediimine)(aniline) 2 (Cl) 2 ] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr) 4 N] + [RuO 4 ] - in air produced a ruthenium complex [4] of a N 4 -tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2] + is assigned as [Ru II (terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)] + whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N 4 -tetraamidophenylmacrocyclic ligand. Complex [2] + exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at g av = 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at g av = 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR

  7. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    PubMed

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. PRECIPITATION OF ZIRCONIUM, NIOBIUM, AND RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Wilson, A.S.

    1958-08-12

    An improvement on the"head end process" for decontaminating dissolver solutions of their Zr, Ni. and Ru values. The process consists in adding a water soluble symmetrical dialkyl ketone. e.g. acetone, before the formation of the manganese dioxide precipitate. The effect is that upon digestion, the ruthenium oxide does not volatilize, but is carried on the manganese dioxide precipitate.

  9. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  10. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  11. Olefin polymerization from single site catalysts confined within porous media

    NASA Astrophysics Data System (ADS)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  12. Revealing the Influence of Silver in Ni-Ag Catalysts on the Selectivity of Higher Olefin Synthesis from Stearic Acid

    NASA Astrophysics Data System (ADS)

    Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.

    2018-01-01

    Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.

  13. Homogeneous dihydroxylation of olefins catalyzed by OsO(4)(2-) immobilized on a dendritic backbone with a tertiary nitrogen at its core position.

    PubMed

    Fujita, Ken-Ichi; Inoue, Kensuke; Tsuchimoto, Teruhisa; Yasuda, Hiroyuki

    2012-01-01

    OsO(4)(2-) immobilized on a poly(benzyl ether) dendrimer with a tertiary nitrogen at its core position efficiently catalyzed the homogeneous dihydroxylation of olefins with a low level of osmium leaching. The dendritic osmium catalyst could be applied to the wide range of olefins. Furthermore, the dendritic osmium catalyst was recovered by reprecipitation and then reused up to five times.

  14. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOEpatents

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  15. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    PubMed

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

  16. A new class of cyclometalated ruthenium sensitizers of the type ĈNN for efficient dye-sensitized solar cells.

    PubMed

    Kim, Jeum-Jong; Choi, Hyunbong; Paek, Sanghyun; Kim, Chulwoo; Lim, Kimin; Ju, Myung-Jong; Kang, Hong Seok; Kang, Moon-Sung; Ko, Jaejung

    2011-11-21

    A new class of cyclometalated ruthenium sensitizers incorporating a ĈNN ligand and conjugated 2,2'-bipyridine in the ancillary ligand have been designed and synthesized. The photovoltaic performance of JK-206 using an electrolyte containing 0.6 M 1,2-dimethyl-3-propylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butylpyridine in CH(3)CN gave a short-circuit photocurrent density of 19.63 mA cm(-2), an open-circuit voltage of 0.74 V, and a fill factor of 0.72, affording an overall conversion efficiency of 10.39%. The efficiency is the highest one reported for dye-sensitized solar cells based on the cyclometalated ruthenium sensitizer of the type ĈNN. Moreover, the same device using a polymer gel electrolyte exhibited a remarkable stability under 1000 h of light soaking at 60 °C, retaining 91% of the initial efficiency of 7.14%.

  17. High performance optical materials cyclo olefin polymer ZEONEX

    NASA Astrophysics Data System (ADS)

    Obuchi, Kazuyuki; Komatsu, Masaaki; Minami, Koji

    2007-09-01

    ZEON CORPORATION developed innovative optical plastic Cyclo Olefin Polymer (COP), ZEONEX (R) with own technology in 1990 then started commercial production of ZEONEX (R) for optical applications with its very unique properties such as high light transmission, low birefringence, low water absorption, and high glass-transition temperature etc. ZEONEX (R) exhibits outstanding optical performance even under high humidity and temperature conditions. In order to meet increasing requirements of optical market, ZEON CORPORATION newly developed ZEONEX (R)F52R which has high glass-transition temperature 156 deg. C and shows the feature of very low focal length change after high-temperature and high-humidity test.

  18. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapienza, Richard S.; Slegeir, William A.; Goldberg, Robert I.

    1987-01-01

    A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x ismore » the molar amount of water in the reaction mixture.« less

  19. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu

    2018-03-01

    Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.

  20. Characteristics of a promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.

    1991-01-01

    A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.

  1. Ruthenium(II) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase.

    PubMed

    Liao, Guoliang; Chen, Xiang; Wu, Jingheng; Qian, Chen; Wang, Yi; Ji, Liangnian; Chao, Hui

    2015-09-14

    One novel ruthenium polypyridyl complex, [Ru(bpy)2(icip)](2+) (1), and two previously reported ruthenium polypyridyl complexes, [Ru(bpy)2(pdppz)](2+) ()2 and [Ru(bpy)2(tactp)](2+) (3) (bpy = 2,2'-bipyridine, icip = 2-(indeno[2,1-b]chromen-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, pdppz = phenanthro[4,5-abc]dipyrido[3,2-h:2',3'-j]phenazine, tactp = 4,5,9,18-tetraazachryseno[9,10-b]-triphenylene), have been synthesised. As expected, these complexes show inhibition towards telomerase by inducing and stabilising the G-quadruplex structure, and behave as topoisomerase I/II poisons at the same time. Additionally, the acute and chronic cytotoxicities of the complexes are considered. Furthermore, cell apoptosis experiments are used to briefly study the mechanism. Because studies involving multi-target inhibition towards topoisomerase and telomerase of Ru(II) complexes have not been reported previously, the present research may help to develop innovative chemical strategies and therapies.

  2. Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.

    2016-04-15

    Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles weremore » analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.« less

  3. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  4. Gold-catalysed oxyarylation of styrenes and mono- and gem-disubstituted olefins facilitated by an iodine(III) oxidant.

    PubMed

    Ball, Liam T; Lloyd-Jones, Guy C; Russell, Christopher A

    2012-03-05

    1-Hydroxy-1,2-benziodoxol-3(1H)-one (IBA) is an efficient terminal oxidant for gold-catalysed, three-component oxyarylation reactions. The use of this iodine(III) reagent expands the scope of oxyarylation to include styrenes and gem-disubstituted olefins, substrates that are incompatible with the previously reported Selectfluor-based methodology. Diverse arylsilane coupling partners can be employed, and in benzotrifluoride, homocoupling is substantially reduced. In addition, the IBA-derived co-products can be recovered and recycled. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stereoselective protecting group free synthesis of D,L-gulose ethyl glycoside via multicomponent enyne cross metathesis--hetero Diels-Alder reaction.

    PubMed

    Castagnolo, Daniele; Botta, Lorenzo; Botta, Maurizio

    2009-07-27

    An efficient and stereoselective synthesis of D,L-gulose was described. The key step of the synthetic route is represented by a multicomponent enyne cross metathesis-hetero Diels-Alder reaction which allows the formation of the pyran ring from cheap and commercially available substrates in a single synthetic step. The synthesis of D,L-gulose was accomplished without the use of protecting groups making this approach highly desirable also in terms of atom economy.

  6. Nucleophilic addition of amines to ruthenium carbenes: ortho-(alkynyloxy)benzylamine cyclizations towards 1,3-benzoxazines.

    PubMed

    González-Rodríguez, Carlos; Suárez, José Ramón; Varela, Jesús A; Saá, Carlos

    2015-02-23

    A new ruthenium-catalyzed cyclization of ortho-(alkynyloxy)benzylamines to dihydro-1,3-benzoxazines is reported. The cyclization is thought to take place via the vinyl ruthenium carbene intermediates which are easily formed from [Cp*RuCl(cod)] and N2 CHSiMe3 . The mild reaction conditions and the efficiency of the procedure allow the easy preparation of a broad range of new 2-vinyl-2-substituted 1,3-benzoxazine derivatives. Rearrangement of an internal C(sp) in the starting material into a tetrasubstituted C(sp(3) ) atom in the final 1,3-benzoxazine is highly remarkable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New synthesis of artepillin C, a prenylated phenol, utilizing lipase-catalyzed regioselective deacetylation as the key step.

    PubMed

    Yashiro, Kazuki; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi

    2015-01-01

    We have synthesized artepillin C, a diprenylated p-hydroxycinnamate originally isolated from Brazilian propolis and exhibiting antioxidant and antitumor activities, from 2,6-diallylphenol. Replacement of the terminal vinyl with 2,2-dimethylvinyl group by olefin cross-metathesis and subsequent transformation yielded 2,6-diprenyl-1,4-hydroquinone diacetate. Candida antarctica lipase B-catalyzed deacetylation in 2-propanol regioselectively removed the less hindered acetyl group to give 2,6-diprenyl-1,4-hydroquinone 1-monoacetate. After triflation of the liberated 4-hydroxy group, a three-carbon side chain was introduced by palladium-mediated alkenylation with methyl acrylate. Final hydrolysis of the esters furnished artepillin C.

  8. Prilezhaev dihydroxylation of olefins in a continuous flow process.

    PubMed

    van den Broek, Bas A M W; Becker, René; Kössl, Florian; Delville, Mariëlle M E; Nieuwland, Pieter J; Koch, Kaspar; Rutjes, Floris P J T

    2012-02-13

    Epoxidation of both terminal and non-terminal olefins with peroxy acids is a well-established and powerful tool in a wide variety of chemical processes. In an additional step, the epoxide can be readily converted into the corresponding trans-diol. Batch-wise scale-up, however, is often troublesome because of the thermal instability and explosive character of the peroxy acids involved. This article describes the design and semi-automated optimization of a continuous flow process and subsequent scale-up to preparative production volumes in an intrinsically safe manner. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Olefins and chemical regulation in Europe: REACH.

    PubMed

    Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus

    2015-11-05

    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for

  10. C-Glycosyl Analogs of Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Vauzeilles, Boris; Urban, Dominique; Doisneau, Gilles; Beau, Jean-Marie

    This chapter covers the synthesis of a large collection of "C-oligosaccharides ", synthetic analogs of naturally occurring oligosaccharides in which a carbon atom replaces the anomeric, interglycosidic oxygen atom. These non-natural constructs are stable to chemical and enzymatic degradation, and are primarily devised to probe carbohydrate-based biological processes. These mainly target carbohydrate-protein interactions such as the modulation of glycoenzyme (glycosylhydrolases and transferases) activities or the design of ligands for lectin Carbohydrate Recognition Domains. The discussion is based on the key carbon-carbon bond assembling steps on carbohydrate templates: ionic (anionic and cationic chemistries, sigmatropic rearrangements) or radical assemblage, and olefin metathesis. Synthetic schemes in which at least one of the monosaccharide units is constructed by total synthesis or by cyclization of acyclic chiral chains are presented separately in a "partial de novo synthesis" section. The review also provides comments, when they are known, on the conformational and binding properties of these synthetic analogs, as well as their biological behavior when tested.

  11. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2014-10-06

    A general and highly chemo-, regio-, and stereoselective synthesis of α,β-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β-unsaturated aldehydes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. ULTRASOUND-ASSISTED EPOXIDATION OF OLEFINS AND A,B-UNSATURATED KETONES OVER HYDROTALCITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An efficient ultrasound-assisted epoxidation of olefins and a,B-unsaturated ketones over hydrotacite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substra...

  13. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.

    PubMed

    Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A

    2017-10-21

    ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher

  14. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    PubMed

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Catalyst for converting synthesis gas to light olefins

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  16. Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis.

    PubMed

    Lord, Rianne M; Allison, Simon J; Rafferty, Karen; Ghandhi, Laura; Pask, Christopher M; McGowan, Patrick C

    2016-08-16

    This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)Ru(II)X(N,N)}{H(+)}{(N,N)XRu(II)(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H(+), which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with OO distances of 2.420(4)-2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis.

  17. Chemiluminescence reactions with cationic, neutral, and anionic ruthenium(II) complexes containing 2,2'-bipyridine and bathophenanthroline disulfonate ligands.

    PubMed

    Francis, Paul S; Papettas, Dimitra; Zammit, Elizabeth M; Barnett, Neil W

    2010-07-15

    Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)(3)(4-), Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), were compared to tris(2,2'-bipyridine)ruthenium(II) (Ru(bipy)(3)(2+)), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), these complexes did not provide superior chemiluminescence signals than their homoleptic analogues. Copyright 2010 Elsevier B.V. All rights reserved.

  18. SORPTION OF LEAD ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    EPA Science Inventory

    The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity ruthenium compound with time at pH 6 employing batch methods and X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies. For the spectroscopic studies, Pb so...

  19. SEPARATION OF URANYL AND RUTHENIUM VALUES BY THE TRIBUTYL PHOSPHATE EXTRACTION PROCESS

    DOEpatents

    Wilson, A.S.

    1961-05-01

    A process is given for separating uranyl values from ruthenium values contained in an aqueous 3 to 4 M nitric acid solution. After the addition of hydrogen peroxide to obtain a concentration of 0.3 M, the uranium is selectively extracted with kerosene-diluted tributyl phosphate.

  20. Studies on the synthesis, spectra, catalytic and antibacterial activities of binuclear ruthenium(II) complexes.

    PubMed

    Krishnamoorthy, P; Sathyadevi, P; Deepa, K; Dharmaraj, N

    2010-09-15

    A new series of stable binuclear ruthenium(II) carbonyl complexes of the general formula [{RuX(CO)(EPh(3))(2)}(2)L] (where X=H or Cl; E=P or As and L=dibasic tetradentate diacetyl resorcinol (H(2)-DAR)) have been synthesised by reacting ruthenium(II) starting complexes [RuHX(CO)(EPh(3))(3)] (where X=H or Cl; E=P or As) and 4,6-diacetylresorcinol (H(2)-DAR) ligand in benzene medium. The structure of the new binuclear ruthenium(II) carbonyl complexes was established using elemental analysis, spectra (FT-IR, UV-vis and (1)H NMR), electrochemical and thermal studies. In these reactions, the 4,6-diacetylresorcinol (H(2)-DAR) ligand behaves as a binegative tetradentate chelating ligand coordinating through O,O atoms of both the carbonyl and phenolic C-O groups by replacing a molecule of PPh(3)/AsPh(3) and a hydride ion from the starting complexes. Further, all these complexes were also employed as new catalysts for the oxidation of primary and secondary alcohols in the presence of N-methylmorpholine-N-oxide (NMO) as a more viable co-oxidant. The free ligand and their metal complexes have also been screened for their antibacterial activity against the growth of gram +ve and gram -ve bacterial cultures. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  2. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins.

    PubMed

    Nestola, Marco; Schmidt, Torsten C

    2017-07-07

    The determination of mineral oil aromatic hydrocarbons (MOAH) in foodstuffs gained in importance over the last years as carcinogenicity cannot be excluded for certain MOAH. The existence of olefins in foodstuffs, such as edible oils and fats, can be problematic for the determination of MOAH by LC-GC-FID. Removal of these interfering substances by HPLC based on polarity differences is not possible. During gas chromatographic separation heavily overloaded peaks are observed rendering the detection of small mineral oil contaminations almost impossible. Therefore, removal of these olefins is necessary before subjection of the sample to LC-GC-FID. Epoxidation of olefins to increase their polarity proved to be a valuable tool in the past. Precision and trueness of the results as shown in a collaborative trial, however, are relying on exact reaction conditions. Additionally, it is known that certain MOAH are oxidized during epoxidation and therefore get lost. In the scope of this work, hydroboration, bromohydrin reaction, and epoxidation were examined for their potential for derivatization of unsaturated hydrocarbons with increased robustness and higher recovery of MOAH. Epoxidation by meta-chloroperoxybenzoic acid (mCPBA) delivered the best removal of olefins. Factors influencing this reaction were enlightened. Adaption of the reaction conditions and time-controlled automation increased the recovery of polycyclic MOAH. Good precision (RSD r <1.5%) and recovery (95-102%) for MOAH were also observed for sunflower and olive oils spiked with a lubricating mineral oil (at 24.5mg/kg of MOAH). The trueness of the method was verified by analyzing collaborative trial samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  4. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions.

    PubMed

    Rezaeifard, Abdolreza; Haddad, Reza; Jafarpour, Maasoumeh; Hakimi, Mohammad

    2013-07-10

    Catalytic efficiency of a sphere-shaped nanosized polyoxomolybdate {Mo132} in the aerobic epoxidation of olefins in water at ambient temperature and pressure in the absence of reducing agent is exploited which resulted good-to-high yields and desired selectivity.

  5. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    PubMed

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  6. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    PubMed

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  7. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    PubMed

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.

  9. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    NASA Astrophysics Data System (ADS)

    Mazar, Mark Nickolaus

    With increasing demand for chemicals and fuels, and finite traditional crude oil resources, there is a growing need to invent, establish, or optimize chemical processes that convert gasifiable carbon-based feedstocks (e.g., coal, natural gas, oil sands, or biomass) into the needed final products. Catalysis is central to almost every industrial chemical process, including alkane metathesis (AM) and the methanol-to-hydrocarbons (MTH) process, which represent final steps in a sequence of hydrocarbon conversion reactions. An in depth understanding of AM and MTH is essential to the selective production of the desired end products. In this dissertation, ab initio density functional theory simulations provide unique mechanistic and thermodynamic insight of specific elementary steps involved in AM and MTH as performed on zeolite supports. Zeolites have been employed throughout the petroleum industry because of their ability to perform acid-catalyzed reactions (e.g., cracking or MTH). The crystalline structure of zeolites imparts regular microporous networks and, in turn, the selective passage of molecules based on shape and functionality. Many different elements can be grafted onto or substituted into zeolites, resulting in a broad range of catalytic behavior. However, due to the variety of competing and secondary reactions that occur at experimental conditions, it is often difficult to extract quantitative information regarding individual elementary steps. ab initio calculations can be particularly useful for this purpose. Alkane metathesis (i.e., the molecular redistribution or chain length averaging of alkanes) is typically performed by transition metal hydrides on amorphous alumina or silica supports. In Chapter 3, the feasibility of AM in zeolites is assessed by using a grafted Ta-hydride complex to explore the full catalytic cycle in the self-metathesis of ethane. The decomposition of a Ta-metallacyclobutane reaction intermediate that forms during olefin metathesis

  10. Exploring the boundary between aromatic and olefinic character: Bad news for second-order perturbation theory and density functional schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulzbach, H.M.; Schaefer, H.F. III; Klopper, W.

    1996-04-10

    The question whether [10]annulene prefers olefinic structures with alternate single and double bonds or aromatic structures like all other small to medium sized uncharged (4n + 2){pi} electron homologs (e.g. benzene, [14]annulene) has been controversial for more than 20 years. Our new results suggest that only the high-order correlated methods will be able to correctly predict the [10]annulene potential energy surface. The UNO-CAS results and the strong oscillation of the MP series show that nondynamical electron correlation is important. Consequently, reliable results can only be expected at the highest correlated levels like CCSD(T) method, which predicts the olefinic twist structuremore » to be lower in energy by 3-7 kcal/mol. This prediction that the twist structure is lower in energy is supported by (a) the MP2-R12 method, which shows that large basis sets favor the olefinic structure relative to the aromatic, and (b) the fact that both structures are about equally affected by nondynamical electron correlation. We conclude that [10]annulene is a system which cannot be described adequately by either second-order Moller-Plesset perturbation theory or density functional methods. 13 refs., 3 tabs.« less

  11. Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP

    PubMed Central

    Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.

    2014-01-01

    In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496

  12. Structural and catalytic properties of some azo-rhodanine Ruthenium(III) complexes

    NASA Astrophysics Data System (ADS)

    Shoair, A. F.; El-Bindary, A. A.; Abd El-Kader, M. K.

    2017-09-01

    Novel azo-rhodanine ruthenium(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl (Ln = monobasic bidentate anions of 5-(4‧-methoxyphenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL1), 5-(phenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL2) and 5-(4‧-chlorophenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL3); AsPh3 = triphenylarsine) have been synthesized and characterized by elemental analysis, spectroscopic (IR, 1H NMR and UV-VIS), magnetic, X-ray diffraction, mass spectra and thermal analysis techniques. These techniques confirm the formation of octahedral ruthenium(III) complexes. The Ru(III) complexes were tested as a catalysts for the oxidation of benzyl alcohol to benzaldehyde with N-methylmorpholine-N-oxide as a co-oxidant. The effect of time, temperature, and solvent were also studied and the mechanism of this catalytic oxidation reaction is suggested. Molecular docking was used to predict the binding between azo rhodanine derivatives (HLn) with the receptor of 3qum- immune system receptor of human prostate specific antigen (PSA) in a Fab sandwich with a high affinity and a PCa selective antibody.

  13. Palladium-catalyzed stereoretentive olefination of unactivated C(sp3)-H bonds with vinyl iodides at room temperature: synthesis of β-vinyl α-amino acids.

    PubMed

    Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong

    2014-12-05

    A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.

  14. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOEpatents

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  15. Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Meng; He, Hanwei

    2018-05-01

    A high-performance supercapacitor both considered high power and high energy density is needed for its applications such as portable electronics and electric vehicles. Herein, we construct a high-performance ruthenium oxide/graphene (RuO2-ERG) composite directly grown on Ni foam through cyclic voltammetric deposition process. The RuO2-ERG composite with sandwich structure is achieved effectively from a mixed solution of graphene oxide and ruthenium trichloride in the -1.4 V to 1.0 V potential range at a scan rate of 5 mV s-1. The electrochemical performance is optimized by tuning the concentration of the ruthenium trichloride. This integrative RuO2-ERG composite electrode can effectively maintains the accessible surface for redox reaction and stable channels for electrolyte penetration, leading to an improved electrochemical performance. Symmetrical aqueous supercapacitors based on RuO2-ERG electrodes exhibit a wider operational voltage window of 1.5 V. The optimized RuO2-ERG electrode displays a superior specific capacitance with 89% capacitance retention upon increasing the current density by 50 times. A high energy density of 43.8 W h kg-1 at a power density of 0.75 kW kg-1 is also obtained, and as high as 39.1 W h kg-1 can be retained at a power density of 37.5 kW kg-1. In addition, the capacitance retention is still maintained at 92.8% even after 10,000 cycles. The excellent electrochemical performance, long-term cycle stability, and the ease of preparation demonstrate that this typical RuO2-ERG electrode has great potentialities to develop high-performance supercapacitors.

  16. Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz

    2017-06-01

    The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.

  17. A ruthenium dimer complex with a flexible linker slowly threads between DNA bases in two distinct steps.

    PubMed

    Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C

    2015-10-15

    Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single

  19. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  20. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    PubMed

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  1. Metal- and Reagent-Free Anodic C-C Cross-Coupling of Phenols with Benzofurans leading to a Furan Metathesis.

    PubMed

    Lips, Sebastian; Frontana-Uribe, Bernardo Antonio; Dörr, Maurice; Schollmeyer, Dieter; Franke, Robert; Waldvogel, Siegfried R

    2018-04-20

    Heterobiaryls consisting of a phenol and a benzofuran motif are of significant importance for pharmaceutical applications. An attractive sustainable, metal- and reagent-free, electrosynthetic, and highly efficient method, that allows access to (2-hydroxyphenyl)benzofurans is presented. Upon the electrochemical dehydrogenative C-C cross-coupling reaction, a metathesis of the benzo moiety at the benzofuran occurs. This gives rise to a substitution pattern at the hydroxyphenyl moiety which would not be compatible by a direct coupling process. The single-step protocol is easy to conduct in an undivided electrolysis cell, therefore scalable, and inherently safe. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer ligand.

    PubMed

    Zhang, You-Ming; Shao, Jiang-Yang; Yao, Chang-Jiang; Zhong, Yu-Wu

    2012-08-21

    The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2''-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.

  3. Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine-based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions.

    PubMed

    Cassells, Irwin; Stringer, Tameryn; Hutton, Alan T; Prince, Sharon; Smith, Gregory S

    2018-05-30

    A series of bidentate salicylaldimine ligands was prepared and reacted with either [RuCl(µ-Cl)(p-cymene)] 2 , [RhCl(µ-Cl)(Cp*)] 2 or [IrCl(µ-Cl)(Cp*)] 2 . All of the compounds were characterised using an array of spectroscopic and analytical techniques, namely, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy and mass spectrometry. Single crystal X-ray diffraction (XRD) was used to confirm the bidentate coordination mode of the salicylaldimine ligand to the metal centre. The platinum group metal (PGM) complexes were screened against the MCF7 breast cancer cell line. The ruthenium and iridium salicylaldimine complexes showed comparable or greater cytotoxicity than cisplatin against the MCF7 cancer cells, as well as greater cytotoxicity than their rhodium counterparts. Three of the salicylaldimine complexes showed potent activity in the range 18-21 µM. Two of these complexes had a greater affinity for cancerous cells than for CHO non-cancerous cells (SI > 4). Preliminary mechanistic studies suggest that the ruthenium complexes undergo solvation prior to 5'-GMP binding, whereas the iridium complexes were inert to the solvation process.

  4. Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.

    PubMed

    Gisdakis, Philip; Antonczak, Serge; Köstlmeier, Sibylle; Herrmann, Wolfgang A; Rösch, Notker

    1998-09-04

    A spiro attack on a peroxo group is calculated to be the preferred reaction pathway for olefin epoxidation with the catalytic system CH 3 ReO 3 /H 2 O 2 (see picture). This finding is supported by density functional calculations on more than ten transition states for the most probable mechanisms. Hydration has significant effects on various reaction species: it stabilizes the intermediates and destabilizes, with one exception, the transition states. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  5. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less

  6. A promising new thermoelectric material - Ruthenium silicide

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.

    1991-01-01

    Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.

  7. Kinetic Studies of the Thermal Decomposition of Methylperoxynitrate and of Ozone-Olefin Reactions.

    NASA Astrophysics Data System (ADS)

    Bahta, Abraha

    This research concerns the thermal decomposition kinetics of CH(,3)O(,2)NO(,2) and laboratory kinetic measurements of ozone-olefin reactions. In the first system, the thermal decomposition rate of CH(,3)O(,2)NO(,2) was studied in the temperature range of 256-268 K at (TURN)350 torr total pressure and in the pressure range of 50-720 torr at 263 K by the perturbation of the equilibrium: (UNFORMATTED TABLE FOLLOWS). CH(,3)O(,2) + NO(,2) (+M) (DBLARR) CH(,3)O(,2)NO(,2) (+M) (3,-3). with NO. CH(,3)O(,2) + NO (--->) CH(,3)O + NO(,2) (4). (TABLE ENDS). The CH(,3)O(,2)NO(,2) was generated in situ by the photolysis of Cl(,2) in the presence of O(,2), CH(,4) and NO(,2). The decomposition kinetics were monitored in the presence of NO by the change in ultraviolet absorption at 250 nm. The Arrhenius expression obtained for the thermal decomposition is k(,-3) = 6 x 10('15) exp{-(21,000 (+OR-) 1500)/RT} sec('-1) at (TURNEQ)350 torr total pressure (mostly CH(,4)) where R = 1.987 cal/mole('-) K. The uncertainty in the Arrhenius parameters can be greatly reduced by combining this expression with data for k(,3) and thermodynamics data to give k(,-3) = (6 (+OR-) 3) x 10('15) exp{-(21,300 (+OR-) 300)/RT} sec('-1) at (TURNEQ)350 torr total pressure. Computations based on the pressure dependence of the forward reaction give k(,-3)('(INFIN)) = 2.1 x 10('16) exp{-(21,700 (+OR -) 300)/RT} sec('-1) k(,-3)('(DEGREES)) = 3.3 x 10(' -4) exp{-(20,150 x 300)/RT} cm('3) sec('-1). At 263 K the equilibrium constant K(,3,-3){263 K} is determined to be (2.68 (+OR-) 0.26) x 10('-10) cm('3). In the stratosphere the CH(,3)O(,2)NO(,2) lifetime will be controlled by play a role in the NO(,x) budget of the lower stratosphere. In the second part, the kinetics of the reactions of O(,3) with C(,2)H(,4), C(,3)H(,4), 1,3-C(,4)H(,6), and trans-1,3-C(,5)H(,8) were studied with initial olefin-to -ozone ratios (GREATERTHEQ) 4.9, in the presence of excess O(,2), and over the temperature range 232 to 300 K. The

  8. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2-3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600-900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g-1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0-1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g-1 at a current density of 1 A g-1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

  9. Synthesis of 1,2,4-trioxepanes via application of thiol-olefin co-oxygenation methodology.

    PubMed

    Amewu, Richard; Stachulski, Andrew V; Berry, Neil G; Ward, Stephen A; Davies, Jill; Labat, Gael; Rossignol, Jean-Francois; O'Neill, Paul M

    2006-12-01

    Thiol-olefin co-oxygenation (TOCO) of substituted allylic alcohols generates beta-hydroxy peroxides that can be condensed in situ with various ketones, to afford a series of functionalised 1,2,4-trioxepanes in good yields. Manipulation of the phenylsulfenyl group in 8a-8c allows for convenient modification to the spiro-trioxepane substituents. Surprisingly, and in contrast to the 1,2,4-trioxanes examined, 1,2,4-trioxepanes are inactive as antimalarials up to 1000 nM and we rationalize this observation based on the inherent stability of these systems to ferrous mediated degradation. FMO calculations clearly show that the sigma* orbital of the peroxide moiety of 1,2,4-trioxane derivatives 4a and 14b are lower in energy and more accessible to attack by Fe(II) compared to their trioxepane analogues 8b and 9b.

  10. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  11. Ruthenium(ii)-polypyridyl zirconium(iv) metal–organic frameworks as a new class of sensitized solar cells

    DOE PAGES

    Maza, W. A.; Haring, A. J.; Ahrenholtz, S. R.; ...

    2015-10-16

    Ruthenium(ii) polypyridyl-doped metal–organic framework sensitized films on TiO 2 for photovoltaics reveal that the preparative method of dye doping/incorporation into the MOF is integral to the total solar cell efficiency.

  12. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    PubMed

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  13. Effect of Feedstock and Catalyst Impurities on the Methanol‐to‐Olefin Reaction over H‐SAPO‐34

    PubMed Central

    Vogt, Charlotte; Ruiz‐Martínez, Javier

    2016-01-01

    Abstract Operando UV/Vis spectroscopy with on‐line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H‐SAPO‐34 as a methanol‐to‐olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as “seeds” for coke formation only. PMID:28163792

  14. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors.

    PubMed

    Xiong, Cheng-Yi; Wang, Hai-Jun; Liang, Wen-Bin; Yuan, Ya-Li; Yuan, Ruo; Chai, Ya-Qin

    2015-06-26

    Novel luminescence-functionalized metal-organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3](2+)) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a "signal-on" ECL immunosensor for the detection of N-terminal pro-B-type natriuretic peptide (NT-proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence-functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3](2+), but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL(-1) to 25 ng mL(-1) and a relatively low detection limit of 1.67 pg mL(-1) (signal/noise=3). The results indicated that luminescence-functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  16. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.

    PubMed

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias

    2012-08-16

    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    PubMed

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  18. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    PubMed

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  20. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.