Science.gov

Sample records for rutile a-tio2 experimental

  1. Adsorption of L-aspartate to rutile (α-TiO 2): Experimental and theoretical surface complexation studies

    NASA Astrophysics Data System (ADS)

    Jonsson, Caroline M.; Jonsson, Christopher L.; Estrada, Charlene; Sverjensky, Dimitri A.; Cleaves, H. James, II; Hazen, Robert M.

    2010-04-01

    Interactions between aqueous amino acids and mineral surfaces influence many geochemical processes from biomineralization to the origin of life. However, the specific reactions involved and the attachment mechanisms are mostly unknown. We have studied the adsorption of L-aspartate on the surface of rutile (α-TiO 2, pH PPZC = 5.4) in NaCl(aq) over a wide range of pH, ligand-to-solid ratio and ionic strength, using potentiometric titrations and batch adsorption experiments. The adsorption is favored below pH 6 with a maximum of 1.2 μmol of adsorbed aspartate per m 2 of rutile at pH 4 in our experiments. The adsorption decreases at higher pH because the negatively charged aspartate molecule is repelled by the negatively charged rutile surface above pH PPZC. At pH values of 3-5, aspartate adsorption increases with decreasing ionic strength. The adsorption of aspartate on rutile is very similar to that previously published for glutamate ( Jonsson et al., 2009). An extended triple-layer model was used to provide a quantitative thermodynamic characterization of the aspartate adsorption data. Two reaction stoichiometries identical in reaction stoichiometry to those for glutamate were needed. At low surface coverages, aspartate, like glutamate, may form a bridging-bidentate surface species binding through both carboxyl groups, i.e. "lying down" on the rutile surface. At high surface coverages, the reaction stoichiometry for aspartate was interpreted differently compared to glutamate: it likely involves an outer-sphere or hydrogen bonded aspartate surface species, as opposed to a partly inner-sphere complex for glutamate. Both the proposed aspartate species are qualitatively consistent with previously published ATR-FTIR spectroscopic results for aspartate on amorphous titanium dioxide. The surface complexation model for aspartate was tested against experimental data for the potentiometric titration of aspartate in the presence of rutile. In addition, the model correctly

  2. Experimental investigation and application of the equilibrium rutile + orthopyroxene = quartz + ilmenite

    USGS Publications Warehouse

    Hayob, J.L.; Bohlen, S.R.; Essene, E.J.

    1993-01-01

    Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: {Mathematical expression} have been calibrated in the range 800-1100?? C and 12-26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40-70, using Ag80Pd20 capsules with {Mathematical expression} buffered at or near iron-wu??stite. Ilmenite compositions coexisting with orthopyroxene are {Mathematical expression} of 0.06 to 0.15 and {Mathematical expression} of 0.00 to 0.01, corresponding to KD values of 13.3, 10.2, 9.0 and 8.0 (??0.5) at 800, 900, 1000 and 1100?? C, respectively, where KD=(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models

  3. Multiphoton Effects in Rutile.

    NASA Astrophysics Data System (ADS)

    Royce, Gerald A.

    Multiphoton effects are investigated in crystalline rutile TiO(,2) using Nd:YAG laser photons. The 1.06 micron laser is operated in Q-switched mode with intensities up to 1.4 x 10('6) watts/cm('2) on the rutile crystal. Photoconductivity measurements provide data indicating a mixture of modes for electrons to be photoionized. Assuming aluminum impurity as the contributing sites, the first order photionization cross section is found to be 1.5 x 10('-26) cm('2) and second order cross section is found to be 7.7 x 10('-51) cm('4)-s. No appreciable change in cross section is observed for circular versus linear polarization of the laser. Observations of the photo-emission of the laser illuminated crystal provide radiative relaxation times on the order of 100 nanoseconds with emission peaks at 4500 and 5000 angstroms plus a near infrared continuum out to 1 micron. The thermoluminescence of rutile shows a number of trapping levels between 0.4 and 0.8 eV below the conduction band. These are attributed to an aluminum impurity.

  4. U-Pb rutile thermochronology: a review and status report on a vexing conundrum (Invited)

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Dye, J. H.

    2009-12-01

    Among the available intermediate-temperature thermochronometers utilizing U-Pb isotopic measurements of accessory minerals, rutile stands out as among the least apparently understood in terms of diffusion kinetics and daughter-loss mechanisms. Discrepancies persist between a variety of empirical and experimental estimates of apparent closure temperature for the U-Pb rutile thermochronometer, ranging from as low as 400°C to greater than 600°C. This range in the temperature component of the thermochronometer is particularly vexing given the otherwise attractive chronologic and petrologic characteristics of rutile, and a new Zr-in-rutile thermometric calibration (Watson et al., 2006, Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol. 151:413-433) that could complement U-Pb-based thermochronology. The crux of the U-Pb rutile conundrum lies in apparent discrepancy between nominal closure temperatures inferred on the basis of: a) empirical multiple mineral-isotope relative thermochronology for metamorphic terrains, versus b) the available experimental determination of Pb volume diffusion parameters in rutile (Cherniak et al., 2000, Pb diffusion in rutile, Contrib. Mineral. Petrol. 139:198-207). This contribution will review the state-of-the-art in U-Pb analytical measurements of rutile, and the constraints provided by empirical studies of the relative closure properties of rutile and a variety of other mineral-isotope thermochronometers. A thermochronological case study combining Rb-Sr mica and U-Pb zircon, monazite, titanite and rutile ages and trace element thermometry from Cretaceous-Paleogene amphibolite-facies gneisses of the northern U.S. Cordillera will highlight the problems and potential of this valuable thermochronometer.

  5. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  6. Surface character and membranolytic activity of rutile and anatase: two titanium dioxide polymorphs.

    PubMed Central

    Nolan, R P; Langer, A M; Weisman, I; Herson, G B

    1987-01-01

    Biological studies of two titanium dioxide polymorphs, rutile and anatase, have produced conflicting results. Generally, the in vivo and in vitro methods used to evaluate pneumoconiotic dusts have shown the polymorphs to be inert, but occasionally both minerals have been reported to produce effects consistent with biologically active minerals. Many of these reports failed to specify which polymorph was used experimentally. While this limited the value of the data, the problem was further compounded by the variation in the surface properties of each polymorph depending on whether the specimen was a naturally occurring mineral or was made synthetically. Five naturally occurring and 11 synthetically produced titanium dioxide specimens were studied. The physical characterisation of each specimen entailed the determination of the polymorph type(s) by continuous scan x ray diffraction and the size distribution by transmission electron microscopy. The ability of each specimen to lyse erythrocytes was determined and compared with quartz. Only two, both synthetic rutiles, were found to be active. The hydrogen bonding ability of the surfaces of these rutiles were compared with inert rutile and quartz. The binding properties of the active rutile have been found to be consistent with those properties associated with biologically active quartz. The surface properties of rutile are the determinants of its activity. Because natural and synthetic rutiles possess different surface properties, they display different activities. Images PMID:3676122

  7. Application of rutile thermometry to eclogites

    NASA Astrophysics Data System (ADS)

    Zack, T.; Luvizotto, G. L.

    2005-12-01

    To evaluate how well the rutile thermometer (Zr content in rutile coexisting with zircon and quartz; Zack et al. 2004; CMP 148, 471-488) can be applied to eclogites, we measured 8 samples that cover the whole temperature range of naturally-occurring eclogites (400-900oC). SIMS is the method of choice for such a study as the low concentrations expected at only 400oC can be measured with very high precision (better than 5 percent on a 10 ppm level). We calibrated the Heidelberg SIMS by using relatively homogeneous rutiles that span a range of Zr contents (100, 260 and 770 ppm; determined by high-accuracy isotope dilution MC-ICP-MS). The calibration of the Heidelberg SIMS facility through these three rutiles as well as titanites, MPI-DING glasses and NIST-SRM 610 glass show no matrix effect for Zr determination outside 15 percent (2 sigma), thus SIMS analysis of Zr in rutile is straightforward. For all samples except one calculated temperatures agree with independently determined thermometry. However, even more encouraging is the fact that temperatures calculated from 5-10 rutiles within one sample agrees better than 20oC, hence enforcing the claim that rutile thermometry is a powerful tool for relative temperature determinations, as examplified for two UHP provinces (WGR and Erzgebirge).

  8. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  9. Effect of Chemical Lithium Intercalation into Rutile TiO2 Nanorods

    SciTech Connect

    Vijayakumar, M.; Kerisit, Sebastien N.; Wang, Chong M.; Nie, Zimin; Rosso, Kevin M.; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.

    2009-08-13

    Rutile TiO2 nanorods were synthesized by hydrolysis of TiCl4 followed by a hydrothermal method. Lithium insertion into the rutile nanorods was achieved by a chemical lithium intercalation process. The structural evolution of nano-structured rutile upon lithium intercalation was characterized by several experimental techniques, namely, XRD, TEM and 6Li MAS NMR. The XRD and TEM studies indicate the formation of a new lithium titanate phase (LixTiO2) during lithium intercalation. Additionally, SAED patterns show that the lithium titanate phase has cubic symmetry. Finally, ultra-high magnetic field (21.1T) 6Li MAS NMR reveals that the lithium titanate phase adopts two different structures depending on lithium content. Taken together, the three techniques consistently show that the intercalation of lithium into rutile TiO2 nanorods causes two consecutive structural phase transformations to lithium titanate phases with spinel (Fd m) and rocksalt (Fm m) structures at x=0.46 and 0.88, respectively. In addition, the broad line widths in the 6Li MAS NMR spectrum of the rocksalt phase are indicative of a disordered structure. Density functional theory calculations of the rutile, spinel and rocksalt bulk phases as a function of lithium content corroborate the observed phase transformations. These phase transitions could account for the large irreversible capacity loss of nano-structured rutile anodes observed in electrochemical cycling experiments.

  10. LA-MC-ICPMS Pb Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, Julie K.; Baker, Joel A.

    2006-04-01

    Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ⩽20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/ 204Pb and 207Pb/ 204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb- 206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature ( Tc) for Pb diffusion in rutile that is less than the Tc of monazite ⩽0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than

  11. Study on the catalytic activity of vanadium doped TiO2: Anatase-to-rutile phase transition

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Bian, He; Zhang, Shiguo

    2016-01-01

    The catalytic activity of vanadium doped TiO2 in the ethylbenzene oxidative dehydrogenation with CO2 was studied experimentally and theoretically. The experimental results showed that the reduction of ethylbenzene conversion and the styrene selectivity was caused by the transition of anatase to rutile phase. Theoretical results showed that the transition of the anatase to rutile phase was mainly caused by vanadium ions and oxygen vacancies.

  12. Fluid-inclusion microthermometry and the Zr-in-rutile thermometer for hydrothermal rutile

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Rios, Francisco Javier; de Oliveira, Lucilia Aparecida Ramos; de Abreu, Francisco Robério; Lehmann, Bernd; Zack, Thomas; Laufek, František

    2015-03-01

    The Zr-in-rutile thermometer is well established for the determination of metamorphic temperatures, particularly in high-grade metamorphic terrains, and for sedimentary provenance studies. The robustness of the rutile thermometry has not been tested on hydrothermal systems. Unlike quartz, a common hydrothermal mineral with abundant fluid inclusions, it is difficult to find fluid inclusions in rutile that are suitable for fluid-inclusion microthermometry. Here, we report fluid-inclusion microthermometric measurements in rutile from the auriferous quartz-kaolinite-hematite vein that typifies the gold deposit of Mil Oitavas in the southern Serra do Espinhaço, Minas Gerais, Brazil. Primary fluid inclusions in the rutile record moderately saline (10-12 wt% NaCl equivalent), aqueous-carbonic fluids with a total homogenization temperature of ~250 °C, which were likely trapped at about 300 °C and 2.0 kbar. This temperature is approximately 200 °C lower than that predicted by the Zr-in-rutile thermometer. For hydrothermal conditions of relatively low temperature, direct measurements of homogenization temperatures in rutile-hosted fluid inclusions should be preferred to the Zr-in-rutile thermometer.

  13. Catalytic reduction of CO with hydrogen sulfide. 4. Temperature-programmed desorption of methanethiol on anatase, rutile, and sulfided rutile

    SciTech Connect

    Beck, D.D.; White, J.M.; Ratcliffe, C.T.

    1986-07-03

    The interaction of methanethiol with anatase, rutile, and sulfided rutile was studied by temperature-programmed desorption. Dissociative adsorption occurs on rutile but is insignificant on anatase. Decomposition products are dominated by H/sub 2/ on rutile and by CH/sub 4/ on sulfided rutile. In both cases desorption occurs between 500 and 775 K. The 5- and 4-coordinate sites on the (110) face of rutile are proposed as the active sites for decomposition. The dominance of methane on a sulfided surface is attributed to the relatively large supply of highly mobile surface hydrogen atoms.

  14. Moessbauer spectroscopic studies of iron-doped rutile.

    NASA Technical Reports Server (NTRS)

    Stampfl, P. P.; Travis, J. C.; Bielefeld, M. J.

    1973-01-01

    Moessbauer spectra were obtained of single crystal and powdered samples of rutile (TiO2) doped to about one percent by weight in isotopically enriched iron. It is shown that the oxidation state may be reversibly altered in situ. After reduction, the oxygen neighbors of the dopant ion are apparently shifted to accomodate the larger ferrous ion. The agreement of calculated quadrupole splittings with experimental results suggests that impurities and oxygen vacancies are uniformly distributed in powdered samples, giving the dopant ions an 'ideal lattice' local environment. The differences between the single crystal and powder sample hyperfine parameters are attributed to variations in stoichiometry, charge compensation mechanisms, or other diffusion related parameters.

  15. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  16. Zircon-rutile-ilmenite froth flotation process

    SciTech Connect

    Schmidt, R.; Denham, D.L. Jr.

    1992-04-21

    This patent describes a method for separating a mixture of minerals comprising at least zircon, ilmenite and rutile. It comprises adding an acid solution to the mixture to acidify to a pH of between about 2.0 and 6.0; adding starch to the mixture to depress the ilmenite and the rutile; adding a source of fluoride ions to the mixture to provide a negative surface charge on the zircon surface to activate the zircon; adding an amine cationic collector to the mixture to float the activated zircon; subjecting the mixture containing the added acid solution, the fluoride ions, the starch and the cationic collector, to froth flotation; and withdrawing a float product comprising the zircon and a sink product comprising the ilmenite and rutile.

  17. Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment

    NASA Astrophysics Data System (ADS)

    Jordan, Vanja; Javornik, Uroš; Plavec, Janez; Podgornik, Aleš; Rečnik, Aleksander

    2016-04-01

    Recent breakthrough of novel hierarchic materials, orchestrated through oriented attachment of crystal subunits, opened questions on what is the mechanism of their self-assembly. Using rutile-type TiO2, synthesized by hydrothermal reaction of Ti(IV)-butoxide in highly acidic aqueous medium, we uncovered the key processes controlling this nonclassical crystallization process. Formation of complex branched mesocrystals of rutile is accomplished by oriented assembly of precipitated fibers along the two low-energy planes, i.e. {110} and {101}, resulting in lateral attachment and twinning. Phase analysis of amorphous material enclosed in pockets between imperfectly assembled rutile fibers clearly shows harmonic ordering resembling that of the adjacent rutile structure. To our understanding this may be the first experimental evidence indicating the presence of electromagnetic force-fields that convey critical structural information through which oriented attachment of nanocrystals is made possible.

  18. Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment

    PubMed Central

    Jordan, Vanja; Javornik, Uroš; Plavec, Janez; Podgornik, Aleš; Rečnik, Aleksander

    2016-01-01

    Recent breakthrough of novel hierarchic materials, orchestrated through oriented attachment of crystal subunits, opened questions on what is the mechanism of their self-assembly. Using rutile-type TiO2, synthesized by hydrothermal reaction of Ti(IV)-butoxide in highly acidic aqueous medium, we uncovered the key processes controlling this nonclassical crystallization process. Formation of complex branched mesocrystals of rutile is accomplished by oriented assembly of precipitated fibers along the two low-energy planes, i.e. {110} and {101}, resulting in lateral attachment and twinning. Phase analysis of amorphous material enclosed in pockets between imperfectly assembled rutile fibers clearly shows harmonic ordering resembling that of the adjacent rutile structure. To our understanding this may be the first experimental evidence indicating the presence of electromagnetic force-fields that convey critical structural information through which oriented attachment of nanocrystals is made possible. PMID:27063110

  19. Differential Nb-Ta diffusion in rutile: disequilibrium formation of the continental crust

    NASA Astrophysics Data System (ADS)

    Marschall, H. R.; Dohmen, R.; Ludwig, T.

    2012-12-01

    Models for the differentiation of the crust-mantle system are guided by elemental abundances in these reservoirs. Elements are fractionated between coexisting phases during partial melting, and geochemical models have mostly been based on the assumption that trace-element equilibrium is established between the partial melts and the restitic minerals. Based on this assumption, experimentally determined mineral/melt element partition coefficients have been used to model the effects of crust-mantle differentiation. The element pair niobium and tantalum has been key for the distinction of different melting regimes involved in crustal differentiation, but equilibrium partition models have largely failed to reproduce the observed Nb/Ta patterns. Here we demonstrate that Nb and Ta are significantly fractionated kinetically by diffusion, and that Nb/Ta systematics of partial melts and restites will likely be influenced by kinetic factors. We employed two different experimental setups to determine diffusivities of Nb and Ta in rutile: (1) Thin film diffusion couples prepared by PLD [1] were annealed in gas mixing furnaces between 850 and \\unit{1150}{ȩlsius}. The resulting diffusion profiles were analysed by SIMS in depth profiling mode. (2) Rutile single crystals were placed in rutile-saturated Nb-Ta-doped basaltic melt at \\unit{1250}{ȩlsius} and lateral diffusion profiles were analysed by EPMA. Both sets of experiments demonstrate consistently and unequivocally that diffusion coefficients in rutile of Nb are 3 to 5 (!) times higher than those of Ta for the entire temperature range. The significantly higher mobility of Nb compared to Ta in rutile has direct consequences for their liquid-rock fractionation during partial melting events. We conclude that trace-element equilibrium cannot be expected for the natural range of grain sizes of rutile (the dominant mineral host of Nb and Ta in high-grade rocks) and the temperatures and time scales involved in partial melting of

  20. Rutile geochemistry and its potential use in quantitative provenance studies

    NASA Astrophysics Data System (ADS)

    Zack, T.; von Eynatten, H.; Kronz, A.

    2004-10-01

    Rutile is among the most stable detrital minerals in sedimentary systems. Information contained in rutile is therefore of prime importance, especially in the study of mature sediments, where most diagnostic minerals are no longer stable. In contrast to zircon, rutile provides information about the last metamorphic cycle as rutile is not stable at greenschist facies conditions. Several known geochemical characteristics of rutile can be used to retrace provenance. The lithology of source rocks can be determined using Nb and Cr contents in rutile, because the most important source rocks for rutile, metapelites and metabasites, imprint a distinct Nb and Cr signature in rutiles. Since Zr in rutile, coexisting with zircon and quartz, is extremely temperature dependent, this relationship can be used as a geothermometer. Metapelites always contain zircon and quartz, thus the Nb and Cr signatures of metapelites indicate rutiles that can be used for thermometry. The result is effectively a single-mineral geothermometer, which is to our knowledge the first of its kind in provenance studies. Several other trace elements are variably enriched in rutile, but the processes creating these variations are so far not understood. In a case study, Al, Si, V, Cr, Fe, Zr, Nb and W contents in rutiles were obtained by electron microprobe from three sediment samples from Upstate New York. A Pleistocene glacial sand, whose source was granulite-facies rocks of the southern Adirondacks, has detrital rutile geochemical signatures which are consistent with the local Geology; a predominantly metapelitic source with a minor metabasitic contribution. Calculated temperatures for the metapelitic rutiles from the glacial sand are consistent with a predominantly granulite-facies source. The two other samples are from Paleozoic clastic wedges deposited in the foreland of the Taconian and Acadian orogenies. Here several geochemical patterns of detrital rutiles are comparable to rutiles derived from the

  1. Investigating Alpine fissure rutilated quartz to constrain timing and conditions of post-metamorphic hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.

    2013-12-01

    -metamorphic hydrothermal fluid flow and mineralization. Discrepancies in thermometers are attributed to differences between experimental calibrations of isotopic and trace element thermometers, and the conditions of post-metamorphic hydrothermal fluid flow. Only rutile-quartz oxygen isotope exchange [3] has been calibrated close to natural T conditions for rutilated quartz (500°C). This may help to extend the applicability of the Ti-in-quartz and Zr-in-rutile to T below experimental calibrations (>600°C; [4] and >700°C; [5], resp.). [1] Janots et al., 2012, Chem. Geol., 326-327, 61-71 [2] Mullis, 1996, Schweiz. Mineral. Petrogr. Mitt., 76, 159-164 [3] Matthews, 1994, J. Met. Geol., 12, 211-219 [4] Thomas et al., 2010, Contrib. Mineral. Petrol., 160, 743-759 [5] Ferry and Watson, 2007, Contrib. Mineral. Petrol., 154, 429-437

  2. Nature of Rutile Nuclei in Anatase-to-Rutile Phase Transition.

    PubMed

    Zhu, Sheng-Cai; Xie, Song-Hai; Liu, Zhi-Pan

    2015-09-01

    The solid phase transition of TiO2, in particular anatase to rutile, has been extensively studied in the past 30 years. To seek the nucleation site at the beginning of phase transition is highly challenging, which asks for new theoretical techniques with high spatial and temporal resolution. This work reports the first evidence on the atomic structure of the nucleation sites in the TiO2 anatase-to-rutile phase transition. Novel automated theoretical methods, namely stochastic surface walking based pathway sampling methods, are utilized to resolve the lowest energy pathways at the initial stage of phase transition. We show that among common anatase surfaces, only the (112) ridged surface provides the nucleation site for phase transition, which can lead to the formation of both TiO2-II and brookite thin slabs. The TiO2-II phase is kinetically preferred product; the propagation into the subsurface is still hindered by high barriers that is the origin for the slow kinetics of nuclei formation. The rutile nuclei are thus not rutile phase but nascent metastable TiO2-II phase in an anatase matrix. The phase transition kinetics is found to be sensitive to the compressive strain and the crystallographic directions. The results rationalize the size and morphology dependence of the anisotropic phase transition kinetics of anatase particles and could facilitate the rational design of material via controlled solid phase transition. PMID:26289453

  3. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  4. Quasiparticle and optical properties of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Kang, Wei; Hybertsen, Mark S.

    2010-08-01

    Quasiparticle excitation energies and optical properties of TiO2 in the rutile and anatase structures are calculated using many-body perturbation-theory methods. Calculations are performed for a frozen crystal lattice; electron-phonon coupling is not explicitly considered. In the GW method, several approximations are compared and it is found that inclusion of the full frequency dependence as well as explicit treatment of the Ti semicore states are essential for accurate calculation of the quasiparticle energy-band gap. The calculated quasiparticle energies are in good agreement with available photoemission and inverse photoemission experiments. The results of the GW calculations, together with the calculated static screened Coulomb interaction, are utilized in the Bethe-Salpeter equation to calculate the dielectric function γ2(ω) for both the rutile and anatase structures. The results are in good agreement with experimental observations, particularly the onset of the main absorption features around 4 eV. For comparison to low-temperature optical-absorption measurements that resolve individual excitonic transitions in rutile, the low-lying discrete excitonic energy levels are calculated with electronic screening only. The lowest energy exciton found in the energy gap of rutile has a binding energy of 0.13 eV. In agreement with experiment, it is not dipole allowed but the calculated exciton energy exceeds that measured in absorption experiments by about 0.22 eV and the scale of the exciton binding energy is also too large. The quasiparticle energy alignment of rutile is calculated for nonpolar (110) surfaces. In the GW approximation, the valence-band maximum is 7.8 eV below the vacuum level, showing a small shift from density-functional theory results.

  5. 40 CFR 721.10230 - Rutile, tin zinc, calcium doped.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the substance referred to in 40 CFR 721.10231 (PMN P-06-37; CAS No. 389623-07-8) combined. Persons who... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rutile, tin zinc, calcium doped. 721... Substances § 721.10230 Rutile, tin zinc, calcium doped. (a) Chemical substance and significant new...

  6. 40 CFR 721.10230 - Rutile, tin zinc, calcium doped.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the substance referred to in 40 CFR 721.10231 (PMN P-06-37; CAS No. 389623-07-8) combined. Persons who... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rutile, tin zinc, calcium doped. 721... Substances § 721.10230 Rutile, tin zinc, calcium doped. (a) Chemical substance and significant new...

  7. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    NASA Astrophysics Data System (ADS)

    Vu, Nam H.; Le, Hieu V.; Cao, Thi M.; Pham, Viet V.; Le, Hung M.; Nguyen-Manh, Duc

    2012-10-01

    The anatase-rutile phase transformation of TiO2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  8. Hyperparametric effects in a whispering-gallery mode rutile dielectric resonator at liquid helium temperatures

    SciTech Connect

    Nand, Nitin R.; Goryachev, Maxim; Floch, Jean-Michel le; Creedon, Daniel L.; Tobar, Michael E.

    2014-10-07

    We report the first observation of low power drive level sensitivity, hyperparametric amplification, and single-mode hyperparametric oscillations in a dielectric rutile whispering-gallery mode resonator at 4.2 K. The latter gives rise to a comb of sidebands at 19.756 GHz. Whereas, most frequency combs in the literature have been observed in optical systems using an ensemble of equally spaced modes in microresonators or fibers, the present work represents generation of a frequency comb using only a single-mode. The experimental observations are explained by an additional 1/2 degree-of-freedom originating from an intrinsic material nonlinearity at optical frequencies, which affects the microwave properties due to the extremely low loss of rutile. Using a model based on lumped circuits, we demonstrate that the resonance between the photonic and material 1/2 degree-of-freedom, is responsible for the hyperparametric energy transfer in the system.

  9. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models

  10. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the change distribution model.

    SciTech Connect

    Ridley, Mora K.; Hiemstra, T; Machesky, Michael L.; Wesolowski, David J; Van Riemsdijk, Willem H.

    2012-01-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3 11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (110) rutile surface (Zhang et al., 2004b). TheMDsimulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs

  11. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650 °C

    NASA Astrophysics Data System (ADS)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-03-01

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 °C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at ∼300 °C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 °C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log DZr ∼10-25 m2/s at 650 °C and ∼10-30 m2/s at 250 °C) with diffusion length-scales of <0.2 μm in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change

  12. The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas

    USGS Publications Warehouse

    Kinney, Douglas M.

    1949-01-01

    The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.

  13. Ion implantation induced blistering of rutile single crystals

    NASA Astrophysics Data System (ADS)

    Xiang, Bing-Xi; Jiao, Yang; Guan, Jing; Wang, Lei

    2015-07-01

    The rutile single crystals were implanted by 200 keV He+ ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He+ ion implantation with appropriate fluence and the following thermal annealing.

  14. The Reaction Titanite+Kyanite=Anorthite+Rutile and Titanite-Rutile Barometry in Eclogites

    USGS Publications Warehouse

    Manning, C.F.; Bohlen, S.R.

    1991-01-01

    Titanite and rutile are a common mineral pair in eclogites, and many equilibria involving these phases are potentially useful in estimating pressures of metamorphism. We have reversed one such reaction, {Mathematical expression} using a piston-cylinder apparatus. Titanite+kyanite is the high-pressure assemblage and our results locate the equilibrium between 15.5 15.9, 17.7-17.9, 18.8-19.0, and 20.0-20.2 kb at 900, 1000, 1050, and 1100??C, respectively. The experiments require a positive dP/dT of between 20.5 and 23.5 bars/??C for the reaction. We use the reversed equilibrium and two other reactions, {Mathematical expression} and {Mathematical expression} to calculate metamorphic conditions for three eclogite localities. Using these reactions in conjunction with garnet-clinopyroxene Fe2+-Mg exchange equilibria, conditions of metamorphism were 16 kb and 750??C for kyaniteeclogites from Glenelg, Scotland, 21 kb and 625??C for eclogite-facies mica schists from the Tauern Window, Austria, and 46 kb and 850??C for eclogite-facies biotite gneisses from the Kokchetav Massif, USSR. For the Scottish and Austrian eclogites, the pressures derived from the titanite-rutile reactions provide additional constraints on pressures for these localities, leading to precise estimates of metamorphic conditions. In the case of the Soviet Union eclogites, the results show that the silicate-oxide assemblage is consistent with the remarkable occurrence of diamond inclusions in the garnets. The results of this study suggest that titanite and rutile stably coexist in many eclogites and that titanite solid solutions are ideal or nearly so. ?? 1991 Springer-Verlag.

  15. Mechanisms of impurity diffusion in rutile

    SciTech Connect

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of /sup 46/Sc, /sup 51/Cr, /sup 54/Mn, /sup 59/Fe, /sup 60/Co, /sup 63/Ni, and /sup 95/Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO/sub 2/ and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures.

  16. Hydrogen Impurity Defects in Rutile TiO2.

    PubMed

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  17. Hydrogen Impurity Defects in Rutile TiO2

    PubMed Central

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  18. Hydrogen Impurity Defects in Rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-12-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy.

  19. OH in Rutile: an Oxygen and Water Barometer

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Manning, C. E.; Antignano, A.; Tropper, P.

    2005-12-01

    Dehydration of the subducting lithosphere induces oxidation and partial melting in the mantle wedge above subduction zones, and storage of water in the form of hydroxyl in high-pressure mineral phases may be an important mechanism for transfer of water to the mantle. It is therefore important to quantify water content of fluids and oxygen fugacity in subduction zones, but these variables can be difficult to measure or infer in many rocks. This study investigates the possibility of determining oxygen fugacity or water activity based on OH concentration measurements in rutile. The solubility of OH in pure rutile has been determined using rutile grains from aqueous fluid solubility experiments (Tropper and Manning 2005, Am Min, 90, 502). In pure rutile, H+ is stoichiometrically incorporated into the structure via reduction of Ti4+ to Ti3+, resulting in a change in color from pale yellow to deep blue. Synthetic rutile crystals were equilibrated in pure H2O or a H2O-NaCl solution at 1-2 GPa and 600-1100°C. The runs were unbuffered with respect to oxygen fugacity but were close to the NNO buffer (Newton and Manning 2005, J Petr, 46, 701). Rutile OH concentrations were determined using FTIR spectroscopy and the calibration of Maldener (2001, Min Pet, 71, 21). At a constant pressure of 1 GPa, OH concentrations of rutile in equilibrium with pure H2O increase exponentially from 600 to 1100°C. The data are fit with the equation [OH] = 17.7exp(4.00×10-3T) (R=0.998), where [OH] is in ppm H2O wt. and T is in °C. Increasing pressure from 1 to 2 GPa at 1100°C results in an increase in OH solubility from 1540 to 2220 ppm H2O. OH solubility in rutile decreases from 2220 to 1290 ppm H2O by lowering the water activity of the fluid from 1 to 0.49 at P = 2 GPa and T = 1100°C. Using the solubility data and the exchange reaction, Ti3+O(OH) + O2 = Ti4+O2 + <

  20. Microwave-hydrothermal process for the synthesis of rutile

    SciTech Connect

    Baldassari, Sara; Komarneni, Sridhar . E-mail: komarneni@psu.edu; Mariani, Emilia; Villa, Carla

    2005-11-03

    The synthesis of pure rutile titanium dioxide is not an easy achievement, as the crystallization process generally leads to mixtures of two or even three phases; moreover the synthetic processes normally used by industry require harsh reaction conditions. We carried out the synthesis of titanium dioxide from an aqueous titanium tetrachloride solution under microwave irradiation in the reaction time range of 5-120 min. We mostly obtained mixtures of rutile and anatase, but obtained single-phase rutile after a 2-h treatment at 160 deg. C; transmission electron micrographs revealed well-dispersed spherical nanoparticles. We also investigated the effects of dilution and addition of a dispersant (polyvinylpyrrolidone) on phase crystallization and particle shape.

  1. Mineral intergrowths replaced by "elbow-twinned" rutile in altered rocks

    USGS Publications Warehouse

    Force, E.R.; Richards, R.P.; Scott, K.M.; Valentine, P.C.; Fishman, N.S.

    1996-01-01

    Some aggregates of rutile, classically considered to be "elbow" twinned, instead are topotactic replacements of ilmenite or other hexagonal titaniferous precursors. Twinned rutile can be differentiated from the reticulated rutile of topotactic replacements by the angle of prism intersections, junction morphology, and the overall form of the aggregate. In a special case of topotactic replacement of ilmenite, rutile forms pseudomorphs of "trellis"-textured ilmenite lamellae in {111} of precursor magnetite. We trace the progress of rutile formation through the alteration of fine-grained magnetite-bearing host rocks. The sequential two-step topotaxy from magnetite through ilmenite to rutile requires rutile prisms to parallel the intersections of {111} planes in precursor magnetite. Some coarse reticulated rutile may result from the same paragenetic sequence.

  2. A recipe for the use of rutile in sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Triebold, Silke; von Eynatten, Hilmar; Zack, Thomas

    2012-12-01

    Rutile has received considerable attention in the last decade as a valuable petrogenetic indicator mineral. Based on both new and previously published data, we carve out advantages and pitfalls regarding TiO2-minerals in sedimentary provenance analysis. This results in a recipe for the use of rutile in provenance studies. The main points are: Rutile geochemistry from different grain size fractions does not differ systematically, and hence rutiles should be extracted from the fraction containing the most rutile grains (usually 63-200 μm). Similarly, different magnetic susceptibility of rutile does not systematically imply different trace element composition. Before interpretation of TiO2-mineral data, it is important to determine the polymorph type. Rutile, anatase and brookite appear to differ systematically in trace element composition. As an alternative to Raman spectroscopy, chemical classification according to Nb, Cr, Sn, Fe, V, and Zr concentrations can be applied. For rutile, a new host lithology discrimination scheme based on Cr-Nb systematics is introduced (x = 5 ∗ (Nb [ppm] - 500) - Cr [ppm]), which leads to better classification results than previously published discrimination methods. According to this equation, metamafic rutiles have negative values of x, while metapelitic rutiles have positive values. Evaluation of the growth temperature calculations of metamorphic rutile after different authors shows that the equations given by Tomkins et al. (2007) should be applied to both metamafic and metapelitic rutiles. Although there is a pressure effect on the Zr incorporation in rutile, the pressure range for most rutiles of 5-15 kbar introduces an uncertainty in calculated temperature of no more than ± 35 °C. The distribution of calculated temperatures from detrital rutiles is crucial; only well-defined temperature populations should be used for thermometry interpretation.

  3. Rutile solubility and titanium coordination in silicate melts

    NASA Astrophysics Data System (ADS)

    Dickinson, James E., Jr.; Hess, Paul C.

    1985-11-01

    The solubility of rutile has been determined in a series of compositions in the K 2O-Al 2O 3-SiO 2 system ( K ∗ = K 2O /(K 2O + Al 2O 3) = 0.38-0.90), and the CaO-Al 2O 3-SiO 2 system ( C ∗ = CaO/(CaO + Al 2O 3) = 0.47-0.59 ). Isothermal results in the KAS system at 1325°C, 1400°C, and 1475°C show rutile solubility to be a strong function of the K ∗ ratio. For example, at 1475°C the amount of TiO 2 required for rutile saturation varies from 9.5 wt% ( K ∗ = 0.38 ) to 11.5 wt% ( K ∗ = 0.48 ) to 41.2 wt% ( K ∗ = 0.90 ). In the CAS system at 1475°C, rutile solubility is not a strong function of C ∗. The amount of TiO 2 required for saturation varies from 14 wt% ( C ∗ = 0.48 ) to 16.2 wt% ( C ∗ = 0.59 ). The solubility changes in KAS melts are interpreted to be due to the formation of strong complexes between Ti and K + in excess of that needed to charge balance Al 3+. The suggested stoichiometry of this complex is K 2Ti 2O 5 or K 2Ti 3O 7. In CAS melts, the data suggest that Ca 2+ in excess of A1 3+ is not as effective at complexing with Ti as is K +. The greater solubility of rutile in CAS melts when C ∗ is less than 0.54 compared to KAS melts of equal K ∗ ratio results primarily from competition between Ti and Al for complexing cations (Ca vs. K). TiK β x-ray emission spectra of KAS glasses ( K ∗ = 0.43-0.60 ) with 7 mole% added TiO 2, rutile, and Ba 2TiO 4, demonstrate that the average Ti-O bond length in these glasses is equal to that of rutile rather than Ba 2TiO 4, implying that Ti in these compositions is 6-fold rather than 4-fold coordinated. Re-examination of published spectroscopic data in light of these results and the solubility data, suggests that the 6-fold coordination polyhedron of Ti is highly distorted, with at least one Ti-O bond grossly undersatisfied in terms of Pauling's rules.

  4. Surface complexation of neodymium at the rutile-water interface: A potentiometric and modeling study in NaCl media to 250°C

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Machesky, Michael L.; Wesolowski, David J.; Palmer, Donald A.

    2005-01-01

    The adsorption of Nd 3+ onto rutile surfaces was examined by potentiometric titration from 25 to 250°C, in 0.03 and 0.30 m NaCl background electrolyte. Experimental results show that Nd 3+ sorbs strongly, even at low temperature, with adsorption commencing below the pH znpc of rutile. In addition, there is a systematic increase in Nd 3+ adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexation model, providing a unique geometry for the adsorption of Nd 3+ on rutile. The primary mode of Nd 3+ adsorption was assumed to be the tetradentate configuration found for Y 3+ adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent "terminal" and two adjacent "bridging" surface oxygen atoms. Similarly, the adsorption of Na + counterions was also assumed to be tetradentate, as supported by MD simulations of Na + interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb + adsorption on rutile. Fitting parameters for Nd 3+ adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.

  5. Surface Complexation of Neodymium at the Rutile-Water Interface: A Potentiometric and Modeling Study in NaCl Media to 250°C

    SciTech Connect

    Ridley, Mora K.; Machesky, Michael L.; Wesolowski, David J; Palmer, Donald

    2005-01-01

    The adsorption of Nd{sup 3+} onto rutile surfaces was examined by potentiometric titration from 25 to 250 C, in 0.03 and 0.30m NaCl background electrolyte. Experimental results show that Nd{sup 3+} sorbs strongly, even at low temperature, with adsorption commencing below the pHznpc of rutile. In addition, there is a systematic increase in Nd{sup 3+} adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexation model, providing a unique geometry for the adsorption of Nd{sup 3+} on rutile. The primary mode of Nd{sup 3+} adsorption was assumed to be the tetradentate configuration found for Y{sup 3+} adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent ''terminal'' and two adjacent ''bridging'' surface oxygen atoms. Similarly, the adsorption of Na{sup +} counterions was also assumed to be tetradentate, as supported by MD simulations of Na{sup +} interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb{sup +} adsorption on rutile. Fitting parameters for Nd{sup 3+} adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.

  6. Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra

    NASA Astrophysics Data System (ADS)

    Hu, Z. G.; Li, W. W.; Wu, J. D.; Sun, J.; Shu, Q. W.; Zhong, X. X.; Zhu, Z. Q.; Chu, J. H.

    2008-11-01

    Optical response of rutile TiO2 films grown under different laser energy by pulsed laser deposition has been investigated by Raman scattering and spectral transmittance. Dielectric functions in the photon energy range of 1.24-6.5 eV have been extracted by fitting the experimental data with the Adachi's model [S. Adachi, Phys. Rev. B 35, 7454 (1987)]. The refractive index dispersion in the transparent region is mainly ascribed to the higher A1-A2 electronic transitions for the rutile TiO2 films. Owing to slightly different crystalline structures and film densities, the optical band gap linearly increases with increasing packing density. The phenomena were confirmed by different theoretical evaluation methods.

  7. Distribution of rutile in metamorphic rocks and implications for placer deposits

    USGS Publications Warehouse

    Goldsmith, R.; Force, E.R.

    1978-01-01

    Pelitic units in the eastern Great Smoky Mountains of the North Carolina Blue Ridge contain rutile grains only in kyanite and higher zones. Adjacent non-pelitic rocks do not contain rutile at kyanite grade but commonly contain sphene. Detrital rutile breaks down at metamorphic grades lower than those at which metamorphic rutile forms. Similarly, pelitic rocks in southeastern Connecticut contain rutile grains above, but not below, the sillimanite isograd. Most non-pelitic rocks there contain rutile only in the hypersthene zone. The slight difference in behavior of rutile in the two terranes is attributed primarily to a slight difference in calcium content of the pelites. In both areas, rutile commonly appears first as inclusions in garnet. Geologic maps showing metamorphic and stratigraphic or compositional information should be useful as prospecting tools for placer deposits. A variety of rocks at granulite facies and pelitic rocks of the upper amphibolite facies contain rutile and these could provide an extensive source for rutile in rutile placer deposits. ?? 1978 Springer-Verlag.

  8. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2

    PubMed Central

    Mi, Yang; Weng, Yuxiang

    2015-01-01

    TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699

  9. UV-black rutile TiO{sub 2}: An antireflective photocatalytic nanostructure

    SciTech Connect

    Sanz, Ruy Zimbone, Massimo; Buccheri, Maria Antonietta; Scuderi, Viviana; Impellizzeri, Giuliana; Privitera, Vittorio; Romano, Lucia; Scuderi, Mario; Nicotra, Giuseppe; Jensen, Jens

    2015-02-21

    This work presents an experimental study on the specific quantitative contributions of antireflective and effective surface areas on the photocatalytic and antibacterial properties of rutile TiO{sub 2} nanospikes. They are studied when continuously distributed over the whole surface and when integrated into well-defined microstructures. The nanospikes were produced following MeV ion beam irradiation of bulk rutile TiO{sub 2} single crystals and subsequent chemical etching. The ion beam irradiation generated embedded isolated crystalline nanoparticles inside an etchable amorphous TiO{sub 2} layer, and nanospikes fixed to the not etchable TiO{sub 2} bulk substrate. The produced nanospikes are shown to resist towards aggressive chemical environments and act as an efficient UV antireflective surface. The photocatalytic activity experiments were performed under the ISO 10678:2010 protocol. The photonic and quantum efficiency are reported for the studied samples. The combined micro- and nanostructured surface triples the photonic efficiency compared to the initial flat surface. Results also revealed that the antireflective effect, due to the nanostructuring, is the dominating factor compared to the increase of surface area, for the observed photocatalytic response. The obtained results may be taken as a general strategy to design and precisely evaluate photoactive nanostructures.

  10. A DFT + U study of (Rh, Nb)-codoped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Ghuman, Kulbir Kaur; Singh, Chandra Veer

    2013-02-01

    A systematic study of electronic structure and band gap states is conducted to analyze the monodoping and charge compensated codoping of rutile TiO2 with Rh and Nb, using the DFT + U approach. Doping of rutile TiO2 with Rh atoms induces hybridized O 2p and Rh 4d band gap states leading to a red shift of the optical absorption edge, consistent with previous experimental studies. Since Rh monodoping may induce recombination centers, charge compensated codoping with Rh and Nb is also explored. This codoping induces an electron transfer from Nb induced states to Rh 4d states, which suppresses the formation of Rh4+, thereby leading to a reduction in recombination centers and to the formation of more stable Rh3+. A combination of band gap reduction by 0.5 eV and the elimination of band gap states that account for recombination centers makes (Rh, Nb)-codoped TiO2 a more efficient and stable photocatalyst.

  11. Growth of rectangular hollow tube crystals with rutile-type structure in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Niwa, K.; Ikegaya, H.; Taguchi, T.; Muto, S.; Tokunaga, T.; Hasegawa, M.

    2014-05-01

    Super critical fluids are well known as suitable solvents for dissolution and extraction processes, because it exhibits extreme high solubility and reactivity. However further experimental development using supercritical fluid would offer new insight in material science, especially the synthesis and crystal growth of novel materials. We report the successful growth of single crystals with the rutile-type structure (TiO2, Co-doped TiO2, SiO2, GeO2 and SnO2) in supercritical fluids (water or oxygen) using a laser heated diamond-anvil cell up to a pressure of 7 GPa. The resultant product showed the rectangular hollow tube morphology, a several tens of microns in length and a wall thickness of less than 500 nm. TEM analyses demonstrated that this rectangular hollow tube single crystals were surrounded by the {110} faces and grown along the [001] direction. The preferential growth of {110} faces is consistent with the lowest surface energy of {110} faces of the rutile-type structure. In addition, the rapid cooling rate in LHDAC and high solubility of supercritical fluids also play an important role for the formation of the rectangular hollow tube. The details of the synthesis procedure, characterization and growth mechanism are discussed in this paper.

  12. Hierarchical structures of rutile exposing high-index facets

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Kato, Hideki; Kobayashi, Makoto; Kakihana, Masato

    2015-05-01

    Recently, shape-controlled synthesis of crystals exposing high-index facets has attracted much research interest due to their importance for both fundamental studies and technological applications. Herein, crystals of rutile-type TiO2 with hierarchical structures exposing high-index facets have been synthesized by a facile hydrothermal method using water-soluble titanium complex as a precursor and picolinic acid as structure-directing and shape-controlling agents. The synthesized particles were composed of several branches of pyramidal crystals with relatively smooth surface. On the basis of investigation results, it was speculated that the mutual π-stacking and selective adsorption of picolinic acid on specific {111} facets resulted in the formation of rutile crystals bound by high-index surfaces such as {331}.

  13. Density functional theory study of the mechanism of Li diffusion in rutile RuO{sub 2}

    SciTech Connect

    Jung, Jongboo; Cho, Maenghyo; Zhou, Min

    2014-01-15

    First-principle calculations are carried out to study the diffusion of Li ions in rutile structure RuO{sub 2}, a material for positive electrodes in rechargeable Li ion batteries. The calculations focus on migration pathways and energy barriers for diffusion in Li-poor and Li-rich phases using the Nudged Elastic Band Method. Diffusion coefficients estimated based on calculated energy barriers are in good agreement with experimental values reported in the literature. The results confirm the anisotropic nature of diffusion of Li ions in one-dimensional c channels along the [001] crystalline direction of rutile RuO{sub 2} and show that Li diffusion in the Li-poor phase is faster than in the Li-rich phase. The findings of fast Li diffusion and feasible Li insertion at low temperatures in the host rutile RuO{sub 2} suggest this material is a good ionic conductor for Li transport. The finding also suggests possible means for enhancing the performance of RuO{sub 2}-based electrode materials.

  14. Rutile Solubility in Supercritical Albite-H2O fluids: Implications for Element Mobility in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Antignano, A.; Manning, C. E.

    2006-12-01

    Supercritical fluids with compositions intermediate between H2O and silicate are widely invoked as important transport agents in subduction zones. This proposal is in part motivated by the expectation that such fluids might have greater ability to dissolve and transport key trace elements at high P and T. As a test of this hypothesis, we measured the solubility of rutile (TiO2) in supercritical albite (ab, NaAlSi3O8)-H2O at 900°C, 1.5 GPa, from Xab = 0 to 0.3. At this P and T, rutile has very low solubility in H2O and there is full miscibility between H2O and ab melt. Experiments were conducted in a piston-cylinder apparatus with NaCl-graphite furnaces. In each, a 1.6 mm OD Pt inner capsule with a synthetic rutile crystal was lightly crimped and placed in a 3.5 OD Pt capsule with ultra pure H2O and powdered Amelia albite. Equilibrium was achieved after 4 hrs. Solubility was determined by the weight loss of the rutile grain. Quench textures consistent with supercritical behavior were observed in all runs. Residual corundum is present in the H2O-rich runs, but it decreases with increasing ab concentration. Results show that rutile solubility initially rises sharply with increasing ab concentration from 38 ppm in pure H2O to 739 ppm at Xab =0.05 (44 wt%). With further increase in ab, rutile solubility increases only slightly, to 922 ppm at Xab =0.25 (83 wt%). No significant solubility increase was noted near the critical compositon (~50 wt% ab). Our results show that intermediate fluids do not significantly enhance Ti solubility above dilute silicate-bearing solutions. The presence of residual Al2O3 and the sharp initial rise in rutile solubility at low Xab imply that, by analogy with silicate melts, Ti is present in solution as Na-Ti-O complexes (e.g., Dickenson and Hess, 1985, GCA, 49, 2289). However, the lack of residual corundum at high Xab suggests a transiton to different Ti species, perhaps aqueous NaAlSi3O8-like complexes. Our results give insight into rutile

  15. Mineral inclusions in rutile: A novel recorder of HP-UHP metamorphism

    NASA Astrophysics Data System (ADS)

    Hart, Emma; Storey, Craig; Bruand, Emilie; Schertl, Hans-Peter; Alexander, Bruce D.

    2016-07-01

    The ability to accurately constrain the secular record of high- and ultra-high pressure metamorphism on Earth is potentially hampered as these rocks are metastable and prone to retrogression, particularly during exhumation. Rutile is among the most widespread and best preserved minerals in high- and ultra-high pressure rocks and a hitherto untested approach is to use mineral inclusions within rutile to record such conditions. In this study, rutiles from three different high- and ultrahigh-pressure massifs have been investigated for inclusions. Rutile is shown to contain inclusions of high-pressure minerals such as omphacite, garnet and high silica phengite, as well as diagnostic ultrahigh-pressure minerals, including the first reported occurrence of exceptionally preserved monomineralic coesite in rutile from the Dora-Maira massif. Chemical comparison of inclusion and matrix phases show that inclusions generally represent peak metamorphic assemblages; although rare prograde phases such as titanite, omphacite and corundum have also been identified implying that rutile grows continuously during prograde burial and traps mineralogic evidence of this evolution. Pressure estimates obtained from mineral inclusions, when used in conjunction with Zr-in-rutile thermometry, can provide additional constraints on the metamorphic conditions of the host rock. This study demonstrates that rutile is an excellent repository for high- and ultra-high pressure minerals and that the study of mineral inclusions in rutile may profoundly change the way we investigate and recover evidence of such events in both detrital populations and partially retrogressed samples.

  16. Theoretical analysis of STM experiments at rutile TiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Gülseren, O.; James, R.; Bullett, D. W.

    1997-04-01

    A first-principles atomic orbital-based electronic structure method is used to investigate the low index surfaces of rutile titanium dioxide (TiO 2). The method is relatively cheap in computational terms, making it attractive for the study of oxide surfaces, many of which undergo large reconstructions, and may be governed by the presence of oxygen vacancy defects. Calculated surface charge densities are presented for low-index surfaces of TiO 2, and the relation of these results to experimental scanning tunnelling microscopy images is discussed. Atomic resolution images at these surfaces tend to be produced at positive bias, probing states which largely consist of unoccupied Ti 3d bands, with a small contribution from O 2p. These experiments are particularly interesting since the O atoms tend to sit up to 1 Å above the Ti atoms, so providing a play-off between electronic and geometric structure in image formation.

  17. Mossbauer and spectral (visible and near-IR) data for Fe(3+)-substituted rutile

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.; Vempati, R. K.

    1994-01-01

    Titanohematite and rutile containing some Fe(3+) are possible highly oxidized weathering products of ilmenite and titanomagnetities. We report here Moessbauer and reflectivity data (visible and near-IR) for Fe(3+)-substituted rutile as a part of our continuing studies of ferric-substituted minerals that might have bearing on the interpretation of Martian spectral data.

  18. 40 CFR 721.10231 - Rutile, tin zinc, sodium-doped.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... referred to in 40 CFR 721.10230 (PMN P-06-36; CAS No. 389623-01-2) combined. Persons who wish to pursue... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rutile, tin zinc, sodium-doped. 721... Substances § 721.10231 Rutile, tin zinc, sodium-doped. (a) Chemical substance and significant new...

  19. 40 CFR 721.10231 - Rutile, tin zinc, sodium-doped.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... referred to in 40 CFR 721.10230 (PMN P-06-36; CAS No. 389623-01-2) combined. Persons who wish to pursue... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rutile, tin zinc, sodium-doped. 721... Substances § 721.10231 Rutile, tin zinc, sodium-doped. (a) Chemical substance and significant new...

  20. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  1. Ab initio simulations on rutile-based titania nanowires

    NASA Astrophysics Data System (ADS)

    Zhukovskii, Yu F.; Evarestov, R. A.

    2012-08-01

    The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.

  2. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    SciTech Connect

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  3. Rutile solubility in H2O-NaAlSi3O8 fluids at High T and P: Implications form HFSE mobility in Subduction zones

    NASA Astrophysics Data System (ADS)

    Antignano, A.; Manning, C. E.

    2005-12-01

    The trace element signatures of arc magmas are characterized by HFSE depletion relative to the LILE. Rutile, a common accessory phase in high-pressure assemblages, is an important reservoir for the HFSE and is often invoked to explain the HFSE depletion of arc magmas. This model is in part based on experimental studies, which show that rutile has very low solubility in pure H2O. However, rutile is also a common accessory to eclogite-facies vein assemblages of albite, paragonite and quartz, which likely precipitated from slab-derived fluids. This observation requires either that fluid fluxes were unrealistically high, or that current estimates of Ti solubility are too low. A possible solution to this problem is that dissolved silicate components can enhance Ti solubility via complexing. To test this, we measured the solubility of rutile in H2O-NaAlSi3O8 (albite) bearing fluids at high T and P. Experiments were conducted using a piston-cylinder apparatus with NaCl-graphite furnaces. A single synthetic rutile crystal was loaded into a 1.6 mm OD Pt inner capsule, which was lightly crimped and then placed in a 3.5 OD Pt outer capsule with ultra pure H2O and powdered Amelia albite. Solubility was determined by the weight loss of the rutile grain after 10 hrs. A time series demonstrates that equilibrium is achieved after 8-10 hrs. Preliminary results at 800°C, 1.0 GPa, show that rutile solubility rises with increasing NaAlSi3O8 concentration from 1.15(12) millimolal at 2.18 wt% NaAlSi3O8 to 3.77(13) at 8.80 wt% NaAlSi3O8. Corundum mats + fluid are observed in 3.4-8.80 wt% NaAlSi3O8 and are interpreted to be the result of incongruent dissolution of albite. Quenched melt spheres where observed in an experiment containing ~15 wt% NaAlSi3O8, but not at 8.80 wt%. At 8.80 wt% NaAlSi3O8, rutile solubility is higher by a factor of 6 relative to that in pure H2O. Our results suggest that TiO2 solubility is increased by complexing with Na-Al-Si-bearing fluid components. It has

  4. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.

    PubMed

    Cao, Fengren; Xiong, Jie; Wu, Fangli; Liu, Qiong; Shi, Zhiwei; Yu, Yanhao; Wang, Xudong; Li, Liang

    2016-05-18

    In a photoelectrochemical (PEC) cell for water splitting, the critical issue is charge separation and transport, which is usually completed by designing semiconductor heterojunctions. TiO2 anatase-rutile mixed junctions could largely improve photocatalytic properties, but impairs PEC water splitting performance. We designed and prepared two types of TiO2 heterostructures with the anatase thin film and rutile nanowire phases organized in different sequences. The two types of heterostructures were used as PEC photoanodes for water splitting and demonstrated completely opposite results. Rutile nanowires on anatase film demonstrated enhanced photocurrent density and onset potential, whereas strong negative performance was obtained from anatase film on rutile nanowire structures. The mechanism was investigated by photoresponse, light absorption and reflectance, and electrochemical impedance spectra. This work revealed the significant role of phase sequence in performance gain of anatase-rutile TiO2 heterostructured PEC photoanodes. PMID:27136708

  5. Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia)

    NASA Astrophysics Data System (ADS)

    Rečnik, Aleksander; Stanković, Nadežda; Daneu, Nina

    2015-02-01

    Oriented rutile/hematite intergrowths from Mwinilunga in Zambia were investigated by electron microscopy methods in order to resolve the complex sequence of topotaxial reactions. The specimens are composed of up to several-centimeter-large euhedral hematite crystals covered by epitaxially grown reticulated rutile networks. Following a top-down analytical approach, the samples were studied from their macroscopic crystallographic features down to subnanometer-scale analysis of phase compositions and occurring interfaces. Already, a simple morphological analysis indicates that rutile and hematite are met near the orientation relationship. However, a more detailed structural analysis of rutile/hematite interfaces using electron diffraction and high-resolution transmission electron microscopy (HRTEM) has shown that the actual relationship between the rutile and hosting hematite is in fact . The intergrowth is dictated by the formation of equilibrium interfaces leading to 12 possible directions of rutile exsolution within a hematite matrix and 144 different incidences between the intergrown rutile crystals. Analyzing the potential rutile-rutile interfaces, these could be classified into four classes: (1) non-crystallographic contacts at 60° and 120°, (2) {101} twins with incidence angles of 114.44° and their complementaries at 65.56°, (3) {301} twins at 54.44° with complementaries at 125.56° and (4) low-angle tilt boundaries at 174.44° and 5.56°. Except for non-crystallographic contacts, all other rutile-rutile interfaces were confirmed in Mwinilunga samples. Using a HRTEM and high-angle annular dark-field scanning TEM methods combined with energy-dispersive X-ray spectroscopy, we identified remnants of ilmenite lamellae in the vicinity of rutile exsolutions, which were an important indication of the high-T formation of the primary ferrian-ilmenite crystals. Another type of exsolution process was observed in rutile crystals, where hematite precipitates

  6. Trace element composition of rutile and Zr-in-rutile thermometry in meta-ophiolitic rocks from the Kazdağ Massif, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Zack, Thomas

    2016-08-01

    In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdağ Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-19) and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibit relatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe-Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdağ metamorphic sequence resulting from southerly directed compression during the collision.

  7. Trace element composition of rutile and Zr-in-rutile thermometry in meta-ophiolitic rocks from the Kazdağ Massif, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Zack, Thomas

    2016-02-01

    In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdağ Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-19) and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibit relatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe-Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdağ metamorphic sequence resulting from southerly directed compression during the collision.

  8. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    SciTech Connect

    Kumar, Nitin; Neogi, Sanghamitra; Kent, Paul R; Bandura, Andrei V.; Wesolowski, David J; Cole, David R; Sofo, Jorge O.

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  9. Density functional theory study of rutile VO2 surfaces

    NASA Astrophysics Data System (ADS)

    Mellan, Thomas A.; Grau-Crespo, Ricardo

    2012-10-01

    We present the results of a density functional theory investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.

  10. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    NASA Astrophysics Data System (ADS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-11-01

    Rutile titania (TiO2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO2 coatings. In the study, titania-nanosilver (TiO2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO2 powders containing 1-10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO2/Ag coatings and no crystalline changed happened in the TiO2 structure. The reduction ratios on the TiO2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO2/Ag coatings with 100-1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO2/Ag coatings were discussed with grain size and the content of silver as well as the microstructure of the coatings.

  11. Potentiometric titrations of rutile suspensions to 250 C

    SciTech Connect

    Machesky, M.L.; Wesolowski, D.J.; Palmer, D.A.; Ichiro-Hayashi, Ken

    1998-04-15

    A stirred hydrogen electrode concentration cell was used to conduct potentiometric titrations of rutile suspensions from 25 to 250 C in NaCl and tetramethylammonium chloride media (0.03 to 1.1 m). Hydrothermal pretreatment of the rutile improved titration reproducibility, decreased titration hysteresis, and facilitated determination of the point of zero net proton charge (pHznpc). These pHznpc values are 5.4, 5.1, 4.7, 4.4, 4.3 ({+-} 0.2 pH units), and 4.2 ({+-} 0.3 pH units) at 25, 50, 100, 150, 200, and 250 C, respectively. The difference between these pHznpc values and 1/2 pK{sub w} (the neutral pH of water) is rather constant between 25 and 250 C ({minus} 1.45 {+-} 0.2). This constancy is useful for predictive purposes and, more fundamentally, may reflect similarities between the hydration behavior of surface hydroxyl groups and water. A three-layer, 1pKa surface complexation model with three adjustable parameters (two capacitance values and one counterion binding constant) adequately described all titration data. The most apparent trend in these data for pH values greater than the pHznpc was the increase in proton release (negative surface charge) with increasing temperature. This reflects more efficient screening by Na{sup +} relative to Cl{sup {minus}}. Replacing Na{sup +} with the larger tetramethylammonium cation for some conditions resulted in decreased proton release due to the less efficient screening of negative surface charge by this larger cation.

  12. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kanemitsu, Yoshihiko

    2012-09-01

    The dynamical behavior of photoexcited states of TiO2 governs the activities of TiO2-based solar cells and photocatalysts. We determined the lifetimes of photoexcited electrons and holes in rutile and anatase TiO2 single crystals by combining advantages of time-resolved photoluminescence, photoconductance, and transient absorption spectroscopy. Electrons and holes in rutile show exponential decays with the lifetime of a few tens of nanoseconds, while non-exponential decays are observed in anatase, indicating the presence of multiple carrier trapping processes. We revealed the generic features of the carrier recombination processes in rutile and anatase TiO2.

  13. Secondary Ionization Mass Spectrometry (SIMS) U-Th-Pb Geochronology of Rutile Under O2+ Bombardment

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Zack, T.

    2012-12-01

    In-situ geochronology of rutile can be applied to a large range of geological problems, from exhumation of lower crust to sedimentary provenance. Recent attempts to improve SIMS U-Pb rutile dating were stifled by crystal orientation dependent instrumental fractionation between Pb and U, leading to considerable uncertainty in the calibration [1], [2]. Here, we demonstrate that injection of oxygen into the sputtered target region (O2 flooding) significantly reduces variation in the depth sputter rate for rutile. O2 flooding also correlates with increased homogeneity of the UO2+/U+ vs. Pb/U relative sensitivity calibration, resulting in higher precision for U-Pb ages. We also successfully tested an O2+ beam for rutile analysis. Natural and synthetic rutiles were found to efficiently dissipate local charges from positive ion bombardment, whereas charging largely prohibits the use of an O2+ primary beam for insulating silicates and phosphates that are common targets for in-situ geochronology. The advantage of the O2+ beam for rutile analysis is an ~10-times more intense beam current at a lateral resolution equivalent to conventionally used O- or O2- beams. The intense O2+ beam is also efficient in removing surficial Pb contamination. This leads to highly radiogenic Pb yields and combined with a 208Pb-based correction minimizes bias in the common Pb correction resulting from unresolved interferences on the conventionally used 204Pb. We compared three well-characterized rutiles where high-precision U-Pb ages are available: R10b (Gjerstad, Norway; 1090 Ma), R19 (Blumberg, Australia; 489.5 Ma), and JIMP-1B (Windmill Hills, Australia; 2625 Ma). O2+ -generated SIMS U-Pb and Pb-Pb age averages are accurate within <1% for Paleozoic to Archean rutile, the best accuracy reached so far for any in-situ rutile dating study. This underscores the potential of SIMS U-Th-Pb rutile geochronology at a precision and accuracy commensurate to zircon over a wide range of ages. Other potential

  14. Rutile and topaz in Precambrian gneiss, Jefferson and Clear Creek Counties, Colorado

    USGS Publications Warehouse

    Sheridan, Douglas M.; Taylor, Richard B.; Marsh, Sherman P.

    1968-01-01

    Disseminated rutile and major amounts of topaz have been identified in Precambrian topaz-quartz gneiss northwest of Evergreen, Colo. The rutile occurs in quartz-topaz-sillimanite gneiss that forms a stratigraphic unit which is 11 to 100 feet thick and is identified along strike for more than 7,000 feet. Three composite chip samples taken across this unit contain 2.2 to 4.2 percent of rutile, by weight, in grains averaging from 0.1 to 0.3 millimeter in size. The topaz content, by weight, in the same samples ranges from 23 to 67 percent.

  15. Hydrothermal synthesis of anatase nanoleaves and size dependence of anatase-rutile transformation upon heating

    NASA Astrophysics Data System (ADS)

    Lisnycha, T. V.; Kirillov, S. A.; Potapenko, A. V.; Terikovska, T. E.; Kosilov, V. V.; Vyshnevskiy, O. A.

    2016-01-01

    Amorphous TiO2 obtained by adding TiCl4 to an alkaline medium crystallizes slowly and upon 3 years ageing transforms to nanosized anatase containing an admixture of brookite. The hydrothermal treatment of this sample in solutions of lithium hydroxide leads to anatase nanoleaves, and the more concentrated LiOH solution, the greater the nanoleaves and the smaller their specific surface area. The thermal treatment of nanoleaves leads to the bulk rutile, and the greater the specific surface area of anatase nanoleaves, the lower the anatase-rutile transition temperature. This is in line with conclusions based on the thermodynamic stability of nanosized anatase over the bulk rutile.

  16. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    NASA Astrophysics Data System (ADS)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  17. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    SciTech Connect

    Machesky, Michael L.; Predota, M.; Wesolowski, David J

    2008-11-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic

  18. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.

    PubMed

    Machesky, Michael L; Predota, Milan; Wesolowski, David J; Vlcek, Lukas; Cummings, Peter T; Rosenqvist, Jörgen; Ridley, Moira K; Kubicki, James D; Bandura, Andrei V; Kumar, Nitin; Sofo, Jorge O

    2008-11-01

    The detailed solvation structure at the (110) surface of rutile (alpha-TiO2) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 A of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 degrees C that agrees quantitatively with the experimentally determined value (5.4+/-0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pHznpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 degrees C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pHznpcvalue of the rutile (110) surface at 25 degrees C into quantitative agreement with the experimental value (4.8+/-0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength

  19. Modeling the surface complexation of calcium at the rutile-water interface to 250°C

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Machesky, Michael L.; Wesolowski, David J.; Palmer, Donald A.

    2004-01-01

    The adsorption behavior of metal-(hydr)oxide surfaces can be described and rationalized using a variety of surface complexation models. However, these models do not uniquely describe experimental data unless some additional insight into actual binding mechanisms for a given system is available. This paper presents the results of applying the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three layer description of the electric double layer, to Ca 2+ adsorption data on rutile surfaces from 25 to 250°C in 0.03 and 0.30 m NaCl background electrolyte. Model results reveal that the tetradentate adsorption configuration found for Sr 2+ adsorbed on the rutile (110) surface in the in situ X-ray standing wave experiments of Fenter et al. (2000) provides a good fit to all Ca 2+ adsorption data. Furthermore, it is also shown that equally good fits result from other plausible adsorption complexes, including various monodentate and bidentate adsorption configurations. These results amply demonstrate the utility of in situ spectroscopic data to constrain surface complexation modeling, and the ability of the MUSIC model approach to accommodate this spectroscopic information. Moreover, this is the first use of any surface complexation model to describe multivalent ion adsorption systematically into the hydrothermal regime.

  20. Inclusions of Cr- and Cr-Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia

    NASA Astrophysics Data System (ADS)

    Rezvukhin, D. I.; Malkovets, V. G.; Sharygin, I. S.; Kuzmin, D. V.; Litasov, K. D.; Gibsher, A. A.; Pokhilenko, N. P.; Sobolev, N. V.

    2016-02-01

    The results of study of rutile inclusions in pyrope from the Internatsionalnaya kimberlite pipe are presented. Rutile is characterized by unusually high contents of impurities (up to 25 wt %). The presence of Cr2O3 (up to 9.75 wt %) and Nb2O5 (up to 15.57 wt %) are most typical. Rutile inclusions often occur in assemblage with Ti-rich oxides: picroilmenite and crichtonite group minerals. The Cr-pyropes with inclusions of rutile, picroilmenite, and crichtonite group minerals were formed in the lithospheric mantle beneath the Mirnyi field during their joint crystallization from melts enriched in Fe, Ti, and other incompatible elements as a result of metasomatic enrichment of the depleted lithospheric mantle.

  1. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  2. Zr-doped rutile TiO2: a nuclear quadrupole interaction study

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, S. K.; Das, P.; Thakare, S. V.; Butz, T.

    2010-04-01

    Role of Zr atom on the quadrupole interaction of 181Ta in rutile TiO2 has been investigated by time differential perturbed angular correlation (TDPAC) study. The quadrupole frequency remains same as that in the pure rutile TiO2 but its distribution increases with the amount of Zr. This indicates a metal-metal interaction between probe atom and Zr-atom in the nearest neighbour.

  3. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  4. First-principles GGA+U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Yang, Kesong; Dai, Ying; Huang, Baibiao; Feng, Yuan Ping

    2014-07-01

    The electronic properties of pentavalent-ion (Nb5+, Ta5+, and I5+) doped anatase and rutile TiO2 are studied using spin-polarized GGA + U calculations. Our calculated results indicate that these two phases of TiO2 exhibit different conductive behavior upon doping. For doped anatase TiO2, some up-spin-polarized Ti 3d states lie near the conduction band bottom and cross the Fermi level, showing an n-type half-metallic character. For doped rutile TiO2, the Fermi level is pinned between two up-spin-polarized Ti 3d gap states, showing an insulating character. In addition to the Nb (Ta)-doped anatase TiO2, we propose that the I-doped anatase TiO2 can also be a potential transparent conducting oxide, which is worthy of further experimental verification. These findings clarify the long-standing controversy of whether GGA + U calculation can successfully predict the conducting property in the Nb (Ta)-doped anatase phase and the insulating property in the rutile phase. Moreover, our results show that the symmetry breaking can cause a metal-insulating transition in pentavalent-ion-doped anatase TiO2, though this symmetry breaking may not occur spontaneously because of the relatively high energy barrier.

  5. Novel Nanostructures of Rutile Fabricated by Templating against Yarns of Polystyrene Nanofibrils and Their Catalytic Applications

    PubMed Central

    Lu, Ping; Xia, Younan

    2013-01-01

    This article describes a facile approach to the synthesis of rutile nanostructures in the form of porous fibers or bundles of nanotubes by maneuvering the surface wettability of yarns made of polystyrene nanofibrils. Specifically, hierarchically porous fibers were obtained by hydrolyzing titanium tetraisopropoxide to form TiO2 nanoparticles in the void spaces among hydrophobic nanofibrils in each yarn. After calcination in air at 800 °C, the resultant fibers were comprised of many interconnected rutile nanoparticles whose diameters were in the range of 20–80 nm. After converting the nanofibrils and yarns into hydrophilic surfaces through plasma treatment, however, the TiO2 formed conformal coatings on the surfaces of nanofibrils in each yarn during hydrolysis instead of just filling the void spaces among the nanofibrils. As a result, bundles of rutile nanotubes were obtained after the sample had been calcined in air at 800 °C. The thermodynamically stable rutile nanostructures were then explored as supports for Pt nanoparticles whose catalytic activity was evaluated using the reduction of p-nitrophenol by NaBH4. The Pt supported on porous rutile fibers exhibited a better performance than the Pt on rutile nanotubes in terms of both induction time (tind) and apparent rate constant (kapp). PMID:23763369

  6. Electrochemical chlorine evolution at rutile oxide (110) surfaces.

    PubMed

    Hansen, Heine A; Man, Isabela C; Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas; Rossmeisl, Jan

    2010-01-01

    Based on density functional theory (DFT) calculations we study the electrochemical chlorine evolution reaction on rutile (110) oxide surfaces. First we construct the Pourbaix surface diagram for IrO(2) and RuO(2), and from this we find the chlorine evolution reaction intermediates and identify the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus-sites are established for MO(2) (M being Ir, Ru, Pt, Ti). The linear relations form the basis for constructing a generalized surface phase diagram where two parameters, the potential and the binding energy of oxygen, are needed to determine the surface composition. We calculate the catalytic activity as function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity is high for a wide range of oxygen binding energies. We find that the required overpotential for chlorine evolution is lower than the overpotential necessary for oxygen evolution. PMID:20024470

  7. Surface and interstitial transition barriers in rutile (110) surface growth

    NASA Astrophysics Data System (ADS)

    Sanville, E. J.; Vernon, L. J.; Kenny, S. D.; Smith, R.; Moghaddam, Y.; Browne, C.; Mulheran, P.

    2009-12-01

    We present calculated surface and interstitial transition barriers for Ti, O, O2 , TiO, and TiO2 atoms and clusters at the rutile (110) surface. Defect structures involving these small clusters, including adcluster and interstitial binding sites, were calculated by energy minimization using density-functional theory (DFT). Transition energies between these defect sites were calculated using the NEB method. Additionally, a modified SMB-Q charge equilibration empirical potential and a fixed-charge empirical potential were used for a comparison of the transition energy barriers. Barriers of 1.2-3.5 eV were found for all studied small cluster transitions upon the surface except for transitions involving O2 . By contrast, the O2 diffusion barriers along the [001] direction upon the surface are only 0.13 eV. The QEq charge equilibration model gave mixed agreement with the DFT calculations, with the barriers ranging between 0.8 and 5.8 eV.

  8. Mechanism of multi-defect induced ferromagnetism in undoped rutile TiO{sub 2}

    SciTech Connect

    Wang, Hongxia Zong, Zhaocun; Yan, Yu

    2014-06-21

    Based on first-principles calculations, the coexistence of Ti vacancies (V{sub Ti}) and O vacancies (V{sub O}) is first considered to study the origin of the ferromagnetic ordering in undoped rutile TiO{sub 2}. The calculations show that V{sub O} can induce local magnetic moments in TiO{sub 2}, however, the ferromagnetic (FM) exchange interaction of two V{sub O} is not strong enough to induce room-temperature (RT) ferromagnetism on their own in undoped TiO{sub 2}. The FM coupling between two V{sub Ti} is about four times stronger than that between two V{sub O}. More importantly, the FM coupling between two V{sub Ti} is further enhanced after V{sub O} is introduced. Our results indicate that the electrons induced by V{sub O} mediate the long-range FM exchange interaction between two distant V{sub Ti}. This maybe the ferromagnetism mechanism in undoped TiO{sub 2}: V{sub Ti} produce local moments while the electrons induced by V{sub O} mediated the long-range FM exchange interaction. The results are in excellent agreement with the experimental evidences that V{sub O} alone cannot induce RT ferromagnetism while V{sub O} can promote the ferromagnetic ordering in undoped TiO{sub 2}.

  9. Vanadium and niobium behavior in rutile as a function of oxygen fugacity: evidence from natural samples

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xiao, Yilin; Aulbach, Sonja; Li, Dongyong; Hou, Zhenhui

    2014-06-01

    Vanadium occurs in multiple valence states in nature, whereas Nb is exclusively pentavalent. Both are compatible in rutile, but the relationship of V-Nb partitioning and dependence on oxygen fugacity (expressed as fO2) has not yet been systematically investigated. We acquired trace-element concentrations on rutile grains ( n = 86) in nine eclogitic samples from the Dabie-Sulu orogenic belt by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and combined them with published results in order to assess the direct and indirect effects of oxygen fugacity on the partitioning of V and Nb into rutile. A well-defined negative correlation between Nb (7-1,200 ppm) and V concentrations (50-3,200 ppm) was found, documenting a competitive relationship in the rutile crystal that does not appear to be controlled by bulk rock or mineral compositions. Based on the published relationship of RtDV and V valence with ∆QFM, we suggest that the priority order of V incorporation into rutile is V4+ > V3+ > V5+. The inferred Nb-V competitive relationship in rutile from the Dabie-Sulu orogenic belt could be explained by decreasing fO2 due to dehydration reactions involving loss of oxidizing fluids during continental subduction: The increased proportion of V3+ (expressed as V3+/∑V) and attendant decrease in RtDV is suggested to lead to an increase in rutile lattice sites available for Nb5+. A similar effect may be observed under more oxidizing conditions. When V5+/∑V increases, RtDV shows a dramatic decline and Nb concentration increases considerably. This is possibly documented by rutile in highly metasomatized and oxidized MARID-type (MARID: mica-amphibole-rutile-ilmenite-diopside) mantle xenoliths from the Kaapvaal craton, which also show a negative V-Nb covariation. In addition, their Nb/Ta covaries with V concentrations: For V concentrations <1,250 ppm, Nb/Ta ranges between 35 and 45, whereas for V > 1,250 ppm, Nb/Ta is considerably lower (5-15). This

  10. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO2 nanostructures in functional ionic liquid/water

    NASA Astrophysics Data System (ADS)

    Shahi, Satwant Kaur; Kaur, Navneet; Singh, Vasundhara

    2016-01-01

    In this paper, pure rutile and anatase-rutile TiO2 nanoparticles have been successfully synthesised via a green route by hydrolysis of titanium tetrachloride with room temperature acidic ionic liquid 3-methyl-1-(3-sulfonylpropyl) imidazolium trifluoromethanesulfonate [HO3S(CH2)3MIM][CF3SO3] in aqueous medium. The influence of pH of the solution by varying molar ratio of substrate and ionic liquid has been investigated in both sol-gel and hydrothermal synthesis of TiO2 with significant variation in phase, phase composition (ratio of rutile to anatase) and morphology as indicated by various structural analysis such as XRD, TEM, BET, Raman and UV-vis absorption spectroscopy. The results indicate formation of a bunch of aligned thin flaky nano-rods of TiO2 which look like nano-flowers with a crystal size of 3-5 nm by sol-gel method, while in case of hydrothermal method well-defined rutile solid nanorods of TiO2 were formed with variable length in the range of 120-170 nm and 20-24 nm in width. The photocatalytic activity of the prepared TiO2 samples has been determined by the photodegradation of methyl orange dye (20 ppm) under UV light. Best photocatalytic activity was exhibited by sample S-2 prepared via sol-gel method.

  11. A systematic evaluation of the Zr-in-rutile thermometer in ultra-high temperature (UHT) rocks

    NASA Astrophysics Data System (ADS)

    Pape, Jonas; Mezger, Klaus; Robyr, Martin

    2016-05-01

    The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650-700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the

  12. EPR g factors and defect structures for V4+ and Cr5+ in the rutile-type crystals

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Zhu, Lianxuan

    2016-08-01

    The g-factor formulas for V4+ and Cr5+ ions in the rutile-type crystals are deduced from Jahn-Teller effect and contributions of the charge transfer levels. The tetragonal distortions ΔR = -0.0045, -0.0045 and -0.0067 nm, and Δθ = 0°, -0.001° and 0°, for GeO2:V4+, TiO2:V4+ and TiO2:Cr5+, respectively. The calculations of the g-factors agree well with the experimental values. The contributions of the charge transfer levels to g factors increase with the increasing valence state. It must be taken into account in the precise calculations of g factors for the high valence state d1 ions in crystals.

  13. Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces.

    PubMed

    Godlewski, Szymon; Prauzner-Bechcicki, Jakub S; Glatzel, Thilo; Meyer, Ernst; Szymoński, Marek

    2015-01-01

    Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into differently ordered structures either due to additional energy provided by thermal annealing or when the influence of intermolecular forces is increased by the enlarged amount of deposited molecules. Proper adjustment of molecular coverage and substrate temperature during deposition allows for fabrication of desired assemblies. Differences between PTCDA/TiO2(110) and PTCDA/TiO2(011) systems obtained through identical experimental procedures are discussed. PMID:26199854

  14. Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

    PubMed Central

    Godlewski, Szymon; Glatzel, Thilo; Meyer, Ernst; Szymoński, Marek

    2015-01-01

    Summary Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into differently ordered structures either due to additional energy provided by thermal annealing or when the influence of intermolecular forces is increased by the enlarged amount of deposited molecules. Proper adjustment of molecular coverage and substrate temperature during deposition allows for fabrication of desired assemblies. Differences between PTCDA/TiO2(110) and PTCDA/TiO2(011) systems obtained through identical experimental procedures are discussed. PMID:26199854

  15. Interstitial silicon ions in rutile Ti O2 crystals

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Giles, N. C.; Yang, Shan; Halliburton, L. E.

    2015-04-01

    Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile Ti O2 . The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in Ti O2 . Principal g values of this new S =1 /2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [1 ¯10 ],[001 ] , and [110 ] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon ions are present in the Ti O2 crystals as unintentional impurities. Principal values for the larger of the two Si hyperfine interactions are 91.4, 95.4, and 316.4 MHz with principal axes also along the [1 ¯10 ],[001 ] , and [110 ] directions. The model for the defect consists of two adjacent Si ions, one at a tetrahedral interstitial site and the other occupying a Ti site. Together, they form a neutral nonparamagnetic [Siint-S iTi] 0 complex. When a crystal is illuminated below 40 K with 442-nm laser light, holes are trapped by these silicon complexes and form paramagnetic [Siint-S iTi] + defects, while electrons are trapped at oxygen vacancies. Thermal anneal results show that the [Siint-S iTi] + EPR signal disappears in two steps, coinciding with the release of electrons from neutral oxygen vacancies and singly ionized oxygen vacancies. These released electrons recombine with the holes trapped at the silicon complexes.

  16. Preparation of rutile and anatase phases titanium oxide film by RF sputtering.

    PubMed

    Huang, Hong-Hsin; Huang, Chia-Chen; Huang, Ping-Chih; Yang, Cheng-fu; Hsu, Ching-Yun

    2008-05-01

    Titanium oxide films were prepared by RF magnetron sputtering onto glass substrates. The effects of RF power and deposition temperature on crystalline structure, morphology and energy gap were investigated, which were analyzed by X-ray diffraction, SEM and UV-Vis spectrometer, respectively. Results show that rutile phase is the favored structure during deposition. Applying RF power in the range of 50-250 W, the amorphous, rutile, and both rutile and anatase phases TiO2 films were obtained in sequence, while the content of anatase is similar in the range of 34-37% although the RF power increases. Increasing the deposition temperature, the anatase phase coexists in the rutile phase in the range of 100-200 degrees C, and the content of anatase increases from 20 to 41% with the deposition temperature. In addition, according to the morphology observation, the granulous surface is found in rutile phase while facetted surface in anatase phase when titanium oxide films deposited at various RF powers and substrate temperatures. The band gap energy of titanium oxide evaluated from (alphahv)1/2 versus energy plots show that the energy gap decreases with RF power increasing. PMID:18572703

  17. Structure-property correlation in epitaxial (2 0 0) rutile films on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Bayati, M. R.; Joshi, Sh.; Molaei, R.; Narayan, R. J.; Narayan, J.

    2012-03-01

    We have investigated the influence of the deposition variables on photocatalytic properties of epitaxial rutile films. Despite a large lattice misfit of rutile with sapphire substrate, (2 0 0) epitaxial layers were grown on (0 0 0 1)sapphire by domain matching epitaxy paradigm. Using φ-scan XRD and cross section TEM, the epitaxial relationship was determined to be rutile(1 0 0)||sapphire(0 0 0 1), rutile(0 0 1)||sapphire(1 0 -1 0), and rutile(0 1 0)||sapphire(1 -2 1 0). Based on the XRD patterns, increasing the repetition rate introduced tensile stress along the film normal direction, which may arise as a result of trapped defects. Formation of such defects was studied by UV-VIS, PL, and XPS techniques. AFM studies showed that the film roughness increases with the repetition rate. Finally, photocatalytic performance of the layers was investigated through measuring decomposition rate of 4-chlorophenol on the films surface. The films grown at higher frequencies revealed higher photocatalytic efficiency. This behavior was mainly related to formation of point defects which enhance the charge separation.

  18. Lithium insertion into mesoscopic and single-crystal TiO{sub 2} (rutile) electrodes

    SciTech Connect

    Kavan, L.; Fattakhova, D.; Krtil, P.

    1999-04-01

    Electrochemical behavior of single-crystal and mesoscopic TiO{sub 2} (rutile) was studied in propylene carbonate solutions at potentials negative to the flatband potential. In electrolytic solutions containing sodium or tetrabutylammonium (Bu{sub 4}N{sup +}), the injected charge is compensated by protonization of the surface and/or by adsorption of cations in the double layer. In electrolytic solutions containing Li{sup +}, the insertion into the rutile lattice occurs at potentials below 1.5 V (Li/Li{sup +}). At higher potentials, the charge is compensated mainly by a nonfaradaic process. Lithium insertion into rutile proceeds at a potential ca. 0.4 V more negative than the insertion potential into anatase. The maximum insertion capacity of rutile is also lower than that of anatase. The insertion of lithium into rutile is accompanied by an increase of the electrode mass, while the mass/charge relations show hystereses between anodic and cathodic potential sweeps. This behavior is explained in terms of a free convection in the electrode vicinity.

  19. Thermal stability of sputter deposited nanomosaic rutile TiO{sub 2}

    SciTech Connect

    Aita, Carolyn Rubin

    2009-07-15

    A domain structure based on the rutile lattice with a large density of (1/2)<011>{l_brace}011{r_brace}-type stacking faults is found in sputter deposited TiO{sub 2} films [J. Vac. Sci. Technol. A 24, 2054 (2006)]. The thermal stability of nanomosaic rutile at moderate temperature is reported here. Films are annealed at 973 K for 0.25-15 h, characterized by x-ray diffraction. A Johnson-Mehl-Avrami-Kolmogorov analysis indicates impeded crystallite growth. A dislocation-locking mechanism is proposed for this behavior. Partial dislocations with (1/2)<011> Burgers vectors that bound the stacking faults glide on intersecting {l_brace}011{r_brace} slip planes and react to produce sessile stair rod dislocations. Without the high temperature required for dislocation climb, (1/2)<011>{l_brace}011{r_brace}-type faults inherent to nanomosaic rutile provide thermal stability against massive crystallite growth.

  20. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  1. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  2. Room temperature synthesis of rutile nanorods and their applications on cloth

    NASA Astrophysics Data System (ADS)

    Fei, Bin; Deng, Zhaoxiang; Xin, John H.; Zhang, Yihe; Pang, Geoffrey

    2006-04-01

    In order to achieve better photocatalytic performance, rutile nanorods dispersed in anatase and brookite phases were synthesized from titanium isopropoxide (TIP) in a concentrated HNO3 solution at room temperature (23 °C). X-ray diffraction results indicated that the percentage of rutile increased with increasing peptization time. Scanning electron microscopy and and high-resolution transmission electron microscopy measurements revealed that the nanosized titania particles mainly consisted of granular anatase and brookite, and rod-like rutile. It was interesting that the stability of the colloid increased with increasing nanoparticle concentration, and the tricrystalline titania showed a photocatalytic activity higher than that of pure anatase. These nanocrystals were applied onto cotton fabrics, and achieved a promising bactericidal photocatalytic activity and excellent protection against UV radiation.

  3. The superior lithium storage capabilities of ultra-fine rutile TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jun Song; Lou, Xiong Wen

    The lithium storage capabilities of ultra-fine rutile TiO 2 nanoparticles have been studied. Ultra-fine rutile TiO 2 nanoparticles with only several nanometers in size have been prepared by a modified wet-chemical method with a high yield. Unexpectedly, the rutile TiO 2 nanoparticles with 3 nm in size exhibit superior lithium storage properties. Specifically, they show long term cycling stability upon extended cycling for at least 300 cycles with a capacity loss of only 0.17% per cycle, and good rate capability up to a 30 C rate. The excellent reversible lithium storage capabilities could be attributed to the ultra-fine size giving rise to a very short diffusion path, and the relatively large surface area which provides more sites for lithium insertion.

  4. Failure analysis of rutile sleeves in MC3080 lightning arrestor connectors.

    SciTech Connect

    Kilgo, Alice C.; Monroe, Saundra L.; Watson, Chad Samuel; Ernest, Terry L.

    2006-02-01

    The purpose of this SAND Report is to document efforts in the extraction and failure analyses of sleeve-style Lightning Arrestor Connectors (LACs). Several MC3080 and MC3079 LACs were recovered from the field and tested as part of the Enhanced Surveillance Campaign. A portion of these LACs failed retesting. Terry Ernest (01733), the LAC Component Engineer, provided eleven MC3080 LACs for evaluation where four of the LACs failed IR/DCW and one failed FRB requirements. The extraction of rutile sleeves from failed LACs was required to determine the source of failure. Rutile sleeves associated with connector function failures were examined for cracks, debris as well as any other anomalies which could have caused the LAC to not function properly. Sleeves that failed FRB or that experienced high FRB exhibited high symmetry, smooth surface, long-flow amicon, and slightly over-sized inside diameter. LACs that failed DCW or IR requirements had rutile sleeves that exhibited breakdown tracks.

  5. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  6. Key Role of Rutile Structure for Layered Magnetism in Chromium Compounds

    NASA Astrophysics Data System (ADS)

    Kondo, Yasuhiro; Hotta, Takashi

    CrCl2 and CrF2 with the distorted Rutile-type crystal structure are known to exhibit different antiferromagnetic (AF) structures at low temperatures. CrF2 has a simple N_eel structure in common with other uorides, whereas CrCl2 exhibits a characteristic layered AF structure. We provide a simple scenario to understand the emergence of such layered AF structure on the basis of an orbital degenerate double-exchange model on the Rutile-type structure lattice.

  7. Doping and compensation in Nb-doped anatase and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Yi; Robertson, John

    2013-06-01

    The substitutional Nb donor states in anatase and rutile TiO2 are calculated using the screened exchange hybrid density functional. The calculations find that Nb forms a shallow state in anatase and a deep state in rutile TiO2, as in experiment. Donors in anatase are found to become compensated in O-rich conditions because oxygen interstitial acceptors acquire a negative formation energy for Fermi energies high in the band gap. O-poor conditions permit doping, not by creating O vacancies but by inhibiting the formation of oxygen interstitials which compensate doping.

  8. The effect of electron localization on the electronic structure and migration barrier of oxygen vacancies in rutile.

    PubMed

    Zhu, Linggang; Hu, Qing-Miao; Yang, Rui

    2014-02-01

    By applying the on-site Coulomb interaction (Hubbard term U) to the Ti d orbital, the influence of electron localization on the electronic structure as well as the transport of oxygen vacancies (VO) in rutile was investigated. With U = 4.5 eV, the positions of defect states in the bandgap were correctly reproduced. The unbonded electrons generated by taking out one neutral oxygen atom are spin parallel and mainly localized on the Ti atoms near VO, giving rise to a magnetic moment of 2 μB, in agreement with the experimental finding. With regard to the migration barrier of VO, surprisingly, we found that U = 4.5 eV only changed the value of the energy barrier by ±0.15 eV, depending on the diffusion path. The most probable diffusion path (along [110]) is the same as that calculated by using the traditional GGA functional. To validate the GGA + U method itself, a hybrid functional with a smaller supercell was used, and the trend of the more probable diffusion path was not changed. In this regard, the traditional GGA functional might still be reliable in the study of intrinsic-defect transportation in rutile. Analyzing the atomic distortion and density of states of the transition states for different diffusion paths, we found that the anisotropy of the diffusion could be rationalized according to the various atomic relaxations and the different positions of the valence bands relative to the Fermi level of the transition states. PMID:24441015

  9. Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells. PMID:23331863

  10. Vickers indentation hardness of stoichiometric and reduced single crystal TiO2 (rutile) from 25 to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Deadmore, Daniel L.

    1993-01-01

    The indentation microhardness of stoichiometric and reduced single crystal rutile (TiO2) from 25 to 800 C is presented in this paper. The results serve two main purposes. One is to assess the effect of rutile's stoichiometry on its hardness. The other is to test recently suggested theory on solid lubrication with sub Stoichiometric rutile in an effort to better understand shear controlled phenomenon. Microhardness was measured using a Vickers diamond indentor on both vacuum and hydrogen reduced single crystal rutile from 25 to 800 C. The results indicate that stoichiometry and temperature have a pronounced effect on rutile's hardness. The measured effects lend support to theory on solid lubrication by enhanced crystallographic slip and suggest that solid lubricant materials may be produced by careful atomic level tailoring (stoichiometry control).

  11. Ethanol photo-oxidation on a rutile TiO2(110) single crystal surface.

    PubMed

    Nadeem, A M; Muir, J M R; Connelly, K A; Adamson, B T; Metson, B J; Idriss, H

    2011-05-01

    The reaction of ethanol has been studied on the surface of rutile TiO(2)(110) by Temperature Programmed Desorption (TPD), online mass spectrometry under UV excitation and photoelectron spectroscopy while the adsorption energies of the molecular and dissociative modes of ethanol were computed using the DFT/GGA method. The most stable configuration is the dissociative adsorption in line with experimental results at room temperature. At 0.5 ML coverage the adsorption energy was found equal to 80 kJ mol(-1) for the dissociative mode (ethoxide, CH(3)CH(2)O(a) + H(a)) followed by the molecular mode (67 kJ mol(-1)). The orientation of the ethoxides along the [001] or [110] direction had minor effect on the adsorption energy although affected differently the Ti and O surface atomic positions. TPD after ethanol adsorption at 300 K indicated two main reactions: dehydration to ethylene and dehydrogenation to acetaldehyde. Pre-dosing the surface with ethanol at 300 K followed by exposure to UV resulted in the formation of acetaldehyde and hydrogen. The amount of acetaldehyde could be directly linked to the presence of gas phase O(2) in the vacuum chamber. The order of this photo-catalytic reaction with respect to O(2) was found to be 0.5. Part of acetaldehyde further reacted with O(2) under UV excitation to give surface acetate species. Because the rate of photo-oxidation of acetates (acetic acid) was slower than that of ethoxides (ethanol), the surface ended up by being covered with large amounts of acetates. A reaction mechanism for acetaldehyde, hydrogen and acetate formation under UV excitation is proposed. PMID:21225073

  12. Non-innocent adsorption of Co-pyrphyrin on rutile(110).

    PubMed

    Gurdal, Yeliz; Luber, Sandra; Hutter, Jürg; Iannuzzi, Marcella

    2015-09-21

    Solar-light driven water splitting is a promising way for the sustainable production of molecular hydrogen, the latter representing an efficient carrier for energy storage and conversion into common liquid fuels. In search of novel catalysts for high-performance water splitting devices, Co-pyrphyrin (CoPy) has been recently synthesized and successfully used as a homogeneous water reduction catalyst. We investigate the adsorption of this molecule on the rutile TiO2(110) surface as a possible first step towards the design of a heterogeneous water reduction system. We find that the adsorption of the molecule is stabilized by the interaction of the cyano groups with the under-coordinated Ti centers present at the surface. This interaction induces the rehybridization of the molecular orbitals localized on the cyano groups and the realignment of the lowest unoccupied molecular states. Moreover, the highest occupied molecular orbital of CoPy@rutile(110) is localized on CoPy and the energy gap turns out to be significantly smaller than the gap of pristine rutile(110). This implies that direct or indirect injection of electrons from CoPy to the rutile(110) surface is in principle possible upon the absorption of light in the visible range. On the other hand, the electronic properties of the Co(ii) center are not modified by the adsorption, which suggests that CoPy and its derivatives may be used in water electrolysis for hydrogen production also in the adsorbed state. PMID:26264077

  13. Effective dose in the manufacturing process of rutile covered welding electrodes.

    PubMed

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area. PMID:23324444

  14. Enhanced Photocatalytic H2 Production in Core-Shell Engineered Rutile TiO2.

    PubMed

    Yang, Yongqiang; Liu, Gang; Irvine, John T S; Cheng, Hui-Ming

    2016-07-01

    A rationally designed crystalline Ti(3+) core/amorphous Ti(4+) shell configuration can reverse the population disparity between holes and electrons reaching the surface of microsized rutile TiO2 photocatalyst, thus significantly enhancing its photocatalytic activity by two orders of magnitude in terms of the hydrogen production rate under the irradiation of UV-vis light. PMID:27159036

  15. Preparation of atomically flat rutile TiO2(001) surfaces for oxide film growth

    DOE PAGESBeta

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; Lee, Ho Nyung; Weitering, Hanno; Snijders, Paul C.

    2016-01-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated withmore » the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  16. Atomically flat reconstructed rutile TiO2(001) surfaces for oxide film growth

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lee, S.; Vilmercati, P.; Lee, H. N.; Weitering, H. H.; Snijders, P. C.

    2016-02-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxial growth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructed surface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxial growth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.

  17. Luna 20 - Mineral chemistry of spinel, pleonaste, chromite, ulvospinel, ilmenite and rutile.

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.

    1973-01-01

    Review of some of the results of a reflection microscopy and electron microprobe study performed on a part of the Luna 20 soil sample designated as the East Coast Consortium aliquot. The study is restricted to analyses of the oxides of Fe, Ti, Mg, Mn, Cr, and Al in this sample. The spinel mineral group, ilmenite and rutile only are discussed.

  18. Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT)-TDDFT and Active Space EOMCCSD Calculations

    SciTech Connect

    Govind, Niranjan; Lopata, Kenneth A.; Rousseau, Roger J.; Andersen, Amity; Kowalski, Karol

    2011-11-03

    We have performed detailed ground and excited state calculations of pure and N-doped TiO2 rutile to model and analyze the experimentally observed UV/Vis spectrum. Using our embedding model we have performed both linear-response (LR) and real-time (RT) TDDFT calculations of the excited states of the pure and N-doped systems. We have also studied the lowest excitations using high-level active space equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems and also provide an analysis of the excited-state density using our RT-TDDFT calculations. Our calculations indicate a lowering of the band gap and verify the role of the N3- states on the observed spectrum of N-doped TiO2 rutile as suggested by experimental findings. Both RT-TDDFT and EOMCC calculations show that the excitations in pure TiO2 are more delocalized compared with the N-doped system.

  19. The Hf-Nd Systematics of Rutile-Bearing Eclogites From Koidu, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Tibbetts, N. J.; Bizimis, M.; Salters, V. J.; Rudnick, R. L.

    2008-12-01

    Xenoliths from the Cretaceous Koidu kimberlite complex, Sierra Leone, West Africa, provide a rare opportunity to investigate the origin of rutile-bearing eclogites with variable, but superchondritic Nb/Ta, Nb/La and Ti/Zr ratios (Rudnick et al, 2000). Previous studies of the trace element and δ18O values of mineral separates and reconstructed whole rock compositions of two suites (high and low MgO) of eclogites lead to two inferred origins: as cumulates (high MgO eclogites, Barth et al., 2002) or residues of altered Archean oceanic crust (low MgO eclogites, Barth et al., 2001). We present the first Hf-Nd isotope data on clinopyroxenes (cpx) and garnets (gt) from Koidu eclogites. The reconstructed whole rock (cpx+gt) Hf isotopic compositions are heterogeneous, ranging in ɛHf from 0.2 to + 41 at the time of kimberlite eruption (85 Ma). Nd isotopic compositions are equally variable (ɛNd = 0.1 to +37), placing all eclogites at drastically more radiogenic values than terrestrial basalts. However, a significant part of the Hf- budget can reside in the rutile, which will most likely have a less radiogenic hafnium isotopic composition compared to the silicates. One can construct a limiting case by using mass balance arguments to calculate the hypothetical hafnium isotopic composition of the rutile. The bulk rock hafnium isotopic composition was constrained to be 4Ga old subducted oceanic crust. Even with a high modal abundance of rutile and a high Hf concentration in rutile, the calculated isotopic compositions are unrealistic and calculated rutile ages far exceed the age of the Universe. Using a younger age for the eclogite (2 or 3 Ga) does not significantly affect the calculated result. These first-order approximations show that the addition of rutile does not change the whole rock isotopic composition significantly from the radiogenic Hf-Nd compositions based on cpx and garnet alone. Our findings do not support geochemical models that predict 143Nd/144Nd and 176Hf

  20. Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO2 (110).

    PubMed

    Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Sadeghi, Ali; Saha, Santanu; Goedecker, Stefan; Such, Bartosz; Szymonski, Marek; Meyer, Ernst; Glatzel, Thilo

    2015-09-01

    Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption. PMID:26342363

  1. Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO2 (110)

    NASA Astrophysics Data System (ADS)

    Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Sadeghi, Ali; Saha, Santanu; Goedecker, Stefan; Such, Bartosz; Szymonski, Marek; Meyer, Ernst; Glatzel, Thilo

    2015-09-01

    Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption.

  2. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia.

    PubMed

    Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-09-01

    Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC50 of about 37.04 and 48mg/L, respectively, under visible irradiation. However, lesser LC50 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under UV-A than visible irradiation. In contrast, binary mixture showed a difference in the uptake pattern based on the type of irradiation exposed. PMID:27522033

  3. Properties of hydrogen and hydrogen-vacancy complexes in the rutile phase of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Filippone, F.; Mattioli, G.; Alippi, P.; Amore Bonapasta, A.

    2009-12-01

    The interaction of atomic H with host atoms and oxygen vacancies (VO) in the rutile phase of the TiO2 metal oxide has been investigated by using density-functional theory-local spin density (DFT-LSD) and DFT-LSD+U theoretical methods. The achieved results show that H in rutile presents quite different and peculiar properties with respect to other semiconductors and metal oxides. It behaves indeed neither as an amphoteric impurity, as it does in Si and GaAs, nor as a shallow donor, as it has been proposed in ZnO. Moreover, H in rutile represents a failure of a theoretical model proposing a universal alignment of the H-induced electronic level in the energy gaps of semiconductors, which predicts a shallow donor behavior of H in ZnO and TiO2 . Present results show indeed that H behaves as a deep donor in rutile and always forms an OH+ complex, independent of the position of the Fermi energy. This very unusual behavior of H can be accounted for by a peculiar property of TiO2 regarding its capability of localizing extra electrons at Ti+3 sites. The electron lost by H can be accommodated indeed by a Ti+4 atom which evolves in a Ti+3 defect. This accounts for the deep behavior of H and implies that the electronic level it induces in the TiO2 energy gap has, actually, a Ti+3 character quite similar to that characterizing an O vacancy (VO) , thus distinguishing H in rutile from H in other semiconductors. Finally, H can form stable H-VO complexes where it takes the place of the missing O atom by forming a bond with a prevailing ionic character, at variance with a multicenter bond model proposed for the same complexes in ZnO.

  4. Multi-Timescale Investigation of Radiation Damage near TiO2 Rutile Grain Boundaries

    SciTech Connect

    Xian-Ming Bai; Blas P. Uberuaga

    2012-04-01

    Although grain boundaries (GBs) have been experimentally demonstrated to serve as sinks for absorbing radiation induced defects and improving the radiation tolerance of materials, the detailed atomistic interactions between defects and GBs leading to this enhanced tolerance are not well understood. In oxide ceramics the interactions are further complicated as defects can be charged and grain boundaries may exhibit space charge and charge dipole effects. Here, we use two atomistic modeling methods to examine the role of GBs in a model oxide system, rutile TiO2, in modifying defect production during irradiation events. The GB studied is a symmetric tilt GB with a rotation axis of [100] and a rotation angle of 15.25{sup o}. We use molecular dynamics to investigate defect production near the GB at both 300K and 1000 K and find that the damage production is sensitive to the initial distance of the primary knock-on atom (PKA) from the GB. We find three distinct regimes in which GBs have different effects on modifying defect production. Similar to GBs in metals, the GB absorbs more interstitials than vacancies at certain distances while this behavior of biased loading of interstitials diminishes at other distances. Further, we obtain the statistics of both interstitial and vacancy clusters 2 produced in collision cascades in terms of their compositions at two temperatures. We find that perfectly stoichiometric defect clusters (Schottky and anti-Schottky clusters) represent a small fraction of the total defect clusters produced. Moreover, a significant reduction in the number of interstitial clusters at 1000 K compared to 300 K is thought to be a consequence of enhanced migration of interstitials towards the GB. Finally the kinetic properties of certain defect clusters are investigated with temperature accelerated dynamics, without any priori assumptions of migration mechanisms. We find that small interstitial clusters become mobile at high temperatures while small vacancy

  5. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO 2

    NASA Astrophysics Data System (ADS)

    Li, Yuanzhi; Fan, Yining; Yang, Hanpei; Xu, Bolian; Feng, Lingyun; Yang, Mingfeng; Chen, Yi

    2003-04-01

    In situ EPR investigation by using CO as probe molecules shows that even pre-reduced by H 2 at lower temperature results in SMSI for anatase titania supported palladium catalyst, but not for rutile titania supported palladium catalyst. The reason of the different behavior between rutile and anatase titania supported palladium catalyst is discussed. The very different catalytic properties between anatase and rutile titania supported palladium catalyst pre-reduced at lower temperature, and the rapid change of conversion and selectivity of titania supported palladium catalyst with the elevation of pre-reduction temperature further confirm the above-mentioned results.

  6. Electron Transport at the TiO₂ Surfaces of Rutile, Anatase, and Strontium Titanate: The Influence of Orbital Corrugation.

    PubMed

    Sarkar, Tarapada; Gopinadhan, Kalon; Zhou, Jun; Saha, Surajit; Coey, J M D; Feng, Yuan Ping; Ariando; Venkatesan, T

    2015-11-11

    The two-dimensional electron gas in SrTiO3 created by an overlayer of amorphous LaAlO3 is compared with those at the TiO2-terminated surfaces of rutile and anatase. Differences in conductivity are explained in terms of the limiting Ti-O-Ti bond angles (orbital corrugation), band dispersion, and polaron formation. At 300 K, the sheet conductivity and mobility of anatase exceed those for SrTiO3 or rutile by one or two orders of magnitude, respectively. The electrons in rutile become localized below 25 K. PMID:26509804

  7. Potential Energy Surfaces of Oxygen Vacancies in Rutile TiO2: Configuration Coordinate and Migration Barrier Schemes

    NASA Astrophysics Data System (ADS)

    Kazempour, Ali

    2013-09-01

    Applying the screened hybrid functional Heyd-Scuseria-Ernzerhof (HSE) method, we studied the polaronic degree of freedom of different charged oxygen vacancies Vo in rutile TiO2. The HSE method not only corrects the band gap, but also allows for correct polaron localization. Due to the important role of phonon in oxygen vacancy associated levels in the gap, we calculated configuration coordinate (CC) potential energy surfaces for all charged Vo's. Our calculated CC diagrams with effective impression on host states, show significant improvement of electron-lattice interaction compared to semi(local) DFT methods. The obtained values of stokes shifts for sequential transitions of charged vacancies agree well with experimental evidences which confirm Ti3+ centers are responsible for photoluminescence. In addition, we explored the effect of polaron localization on diffusive mechanism of Vo along most open [001] direction. Calculated values of migration barriers for V o2+ are found to be in quantitative agreement with experimental migration energy [E. Iguchi and K. Yajima, J. Phys. Soc. Jpn.32 (1971) 1415] of 2.4 eV. These results highlight the small polaronic behavior of Vo's and is consistent with studies suggest the polaronic hopping model for electron transport of n-type conductivity in reduced TiO2 [J.-F. Baumard and F. Gervais, Phys. Rev. B15 (1977) 2316-2323].

  8. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-09-01

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in

  9. The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study.

    PubMed

    Wang, Qinggao; Oganov, Artem R; Feya, Oleg D; Zhu, Qiang; Ma, Dongwei

    2016-07-20

    In this paper, we employ state-of-the-art theoretical approaches to elucidate the structures of the (011) surface of rutile (R-)TiO2. An unexpectedly rich chemistry has been uncovered. Titanyl-TiO2 and titanyl-Ti2O3 reconstructions can be used for rationalizing the experimental findings, matching the STM images and the changes in the band gap. From the viewpoint of thermodynamics, the predicted MF(111)-TiO reconstruction is more reasonable than the previously proposed MF(111)-TiO3 model, although there is a structural similarity. The richness of surface phases, the formation of which is driven by thermodynamic conditions and surface stress release, implies the multifunctionality of the R-TiO2(011) surface. After the clarification of TiO2(011) and TiO2(110) surface structures {PRL, 2014, 113, 266101} (the most important surfaces of rutile), the origin of the Brønsted acidity of R-TiO2, which has remained a mystery at the atomic level, can also be addressed in the near future. PMID:27086932

  10. Reduced Step Edges on Rutile TiO2(110) as Competing Defects to Oxygen Vacancies on the Terraces and Reactive Sites for Ethanol Dissociation

    NASA Astrophysics Data System (ADS)

    Martinez, U.; Hansen, J. Ø.; Lira, E.; Kristoffersen, H. H.; Huo, P.; Bechstein, R.; Lægsgaard, E.; Besenbacher, F.; Hammer, B.; Wendt, S.

    2012-10-01

    The rutile TiO2(110) surface is the most studied surface of titania and considered as a prototype of transition metal oxide surfaces. Reactions on flat TiO2(110)-(1×1) surfaces are well studied, but the processes occurring on the step edges have barely been considered. Based on scanning tunneling microscopy studies, we here present experimental evidence for the existence of O vacancies along the ⟨11¯1⟩R step edges (OS vac.’s) on rutile TiO2(110). Both the distribution of bridging O vacancies on the terraces and temperature-programed reaction experiments of ethanol-covered TiO2(110) point to the existence of the OS vac.’s. Based on experiments and density functional theory calculations, we show that OS vac.’s are reactive sites for ethanol dissociation via O-H bond scission. Implications of these findings are discussed.

  11. Fine-grained rutile in the Gulf of Maine - diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  12. Densely-packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1×1) Surface: Adsorption Behavior and Energy Level Alignment

    PubMed Central

    Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert; Martínez, José Ignacio; Flores, Fernando; Ortega, José

    2016-01-01

    The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights. PMID:26998188

  13. Charge compensation in trivalent cation doped bulk rutile TiO2

    NASA Astrophysics Data System (ADS)

    Iwaszuk, Anna; Nolan, Michael

    2011-08-01

    Doping of TiO2 is a very active field, with a particularly large effort expended using density functional theory (DFT) to model doped TiO2; this interest has arisen from the potential for doping to be used in tuning the band gap of TiO2 for photocatalytic applications. Doping is also of importance for modifying the reactivity of an oxide. Finally, dopants can also be unintentionally incorporated into an oxide during processing, giving unexpected electronic properties. To unravel properly how doping impacts on the properties of a metal oxide requires a modelling approach that can describe such systems consistently. Unfortunately, DFT, as used in the majority of studies, is not suitable for application here and in many cases cannot even yield a qualitatively consistent description. In this paper we investigate the doping of bulk rutile TiO2 with trivalent cations, Al, Ga and In, using DFT, DFT corrected for on-site Coulomb interactions (DFT + U, with U on oxygen 2p states) and hybrid DFT (the screened exchange HSE06 exchange correlation functional) in an effort to better understand the performance of DFT in describing such fundamental doping scenarios and to analyse the process of charge compensation with these dopants. With all dopants, DFT delocalizes the oxygen hole polaron that results from substitution of Ti with the lower valence cation. DFT also finds an undistorted geometry and does not produce the characteristic polaron state in the band gap. DFT + U and hybrid DFT both localize the polaron, and this is accompanied by a distortion to the structure around the oxygen hole site. DFT + U and HSE06 both give a polaron state in the band gap. The band gap underestimation present in DFT + U means that the offset of the gap state from both the valence and the conduction band cannot be properly described, while the hybrid DFT offsets should be correct. We have investigated dopant charge compensation by formation of oxygen vacancies. Due to the large number of

  14. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2012-01-01

    The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg{sup 2+}, Ca{sup 2+}, or Sr{sup 2+}) or monovalent (Na{sup +}, K{sup +}, or Rb{sup +}) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na{sup +} > K{sup +} > Rb{sup +} shows a 'reverse' lyotropic trend, while the divalent cations on the same surface exhibit a 'regular' lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr{sup 2+} > Ca{sup 2+} > Mg{sup 2+}). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO{sup -} group and the rutile, helping to 'trap' the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO{sup -} group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

  15. Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition

    SciTech Connect

    Murugesan, S.; Kuppusami, P.; Mohandas, E.

    2010-01-15

    Rietveld powder X-ray diffraction analysis of the rutile films of titanium oxide prepared by pulsed laser deposition was carried out. The crystallite size increased with increase of substrate temperature, while the strain showed a reverse trend. The films synthesized at temperature {>=}573 K showed that the crystal structure was almost close to that of bulk rutile structure. The influence of the substrate temperature on the lattice parameters and oxygen coordinates were also studied in the present work.

  16. Photoconductive detection of hydrogen in ZnO and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.; Mchedlidze, T.; Herklotz, F.

    2016-08-01

    Hydrogen donors in ZnO and rutile TiO2 are probed by means of photoconductivity and IR absorption. It is shown that the O-H bonds giving rise to the local vibrational modes (LVMs) of interstitial hydrogen at 3611 and 3290 cm-1 in the case of ZnO and TiO2, respectively, also occur in the photoconductivity spectra as Fano resonances. The effects of isotope substitution, concentration, sample thickness, influence of other donors present in both oxides are considered. Based on the shape and frequency of these resonances, it is concluded that the apparent ionization energy of interstitial hydrogen in rutile TiO2 is less than 300 meV. By a direct comparison, we also demonstrate that photoconductive detection of LVMs of defects in thin semiconductor films is superior to the standard IR absorption.

  17. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    PubMed

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes. PMID:27460183

  18. Direct View at Excess Electrons in TiO2 Rutile and Anatase

    NASA Astrophysics Data System (ADS)

    Setvin, Martin; Franchini, Cesare; Hao, Xianfeng; Schmid, Michael; Janotti, Anderson; Kaltak, Merzuk; Van de Walle, Chris G.; Kresse, Georg; Diebold, Ulrike

    2014-08-01

    A combination of scanning tunneling microscopy and spectroscopy and density functional theory is used to characterize excess electrons in TiO2 rutile and anatase, two prototypical materials with identical chemical composition but different crystal lattices. In rutile, excess electrons can localize at any lattice Ti atom, forming a small polaron, which can easily hop to neighboring sites. In contrast, electrons in anatase prefer a free-carrier state, and can only be trapped near oxygen vacancies or form shallow donor states bound to Nb dopants. The present study conclusively explains the differences between the two polymorphs and indicates that even small structural variations in the crystal lattice can lead to a very different behavior.

  19. Charge and magnetic states of rutile TiO2 doped with Cr ions.

    PubMed

    Kim, Rokyeon; Cho, Suyeon; Park, Won-Goo; Cho, Deok-Yong; Oh, Se-Jung; Saint-Martin, Romuald; Berthet, Patrick; Park, Je-Geun; Yu, Jaejun

    2014-04-01

    We observe that the electronic and magnetic properties of Cr-doped rutile TiO2 single crystals are highly dependent on growth conditions. The ferromagnetic component of magnetic susceptibility is observed to be enhanced for samples grown under oxygen-rich conditions. To understand the charge state of Cr dopants and their role in response to an external magnetic field, we carry out density functional theory calculations for Cr-doped rutile TiO2. Using the results of formation energy calculations in the presence of oxygen vacancies and Cr atom substitution at the Ti sites, we demonstrate that the Cr3+ state is a source of Curie-Weiss-type magnetic response, whereas the Cr4+ defect states contribute to the ferromagnetic component. We also provide the electronic structures of various defect configurations and attempt to explain the optical and electronic properties of the Cr-doped system. PMID:24651728

  20. Selective scanning tunneling microscope light emission from rutile phase of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-01

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  1. Hydrogen shallow donors in ZnO and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Weber, Jörg; Lavrov, Edward V.; Herklotz, Frank

    2012-05-01

    A combined study of IR absorption, photoconductivity, photoluminescence and Raman measurements in ZnO samples supports the theoretical suggestions of a shallow bond-centered hydrogen donor and a shallow hydrogen donor within the oxygen vacancy. In rutile TiO2 we also identify a shallow hydrogen donor in contrast to recent theoretical predictions. A possible solution to this obvious discrepancy is proposed.

  2. Transformation of rutile to TiO{sub 2}-II in a high pressure hydrothermal environment

    SciTech Connect

    Spektor, Kristina; Tran, Dung Trung; Leinenweber, Kurt; Häussermann, Ulrich

    2013-10-15

    The high pressure transformation of rutile to TiO{sub 2}-II with the α-PbO{sub 2} structure is known to be kinetically hindered. In this study we show that a hydrothermal environment at 6 GPa and 650 °C provides appreciable rates for producing single phase bulk samples of TiO{sub 2}-II. So obtained TiO{sub 2}-II was characterized by scanning electron microscopy, powder X-ray diffraction, Raman and Far-IR spectroscopy. The structural properties are identical to TiO{sub 2}-II from dry transitions. Transmission electron microscopy studies strongly indicate that Ostwald ripening processes play an important role in the hydrothermally assisted transformation and subsequent growth of TiO{sub 2}-II crystals. TiO{sub 2}-II is thermally stable to about 550 °C. At 600 °C the onset of the transformation to rutile is observed. The thermal expansion in the temperature range from room temperature to 500 °C is highly anisotropic, virtually affecting only the c unit cell parameter (α{sub c}=7.1(2)×10{sup −6} °C{sup −1}). The pressure–temperature conditions for the hydrothermally assisted transformation of rutile are viable for industrial production settings, and in light of the large technological significance of TiO{sub 2}, TiO{sub 2}-II may present an interesting target for large-scale synthesis. - Graphical abstract: Highly crystalline TiO{sub 2}-II, which is the high pressure form of titania with the α-PbO{sub 2} structure, can be prepared from rutile at 6 GPa and 650 °C when employing a hydrothermal environment. Display Omitted.

  3. UV to NIR photon conversion in Nd-doped rutile and anatase titanium dioxide films for silicon solar cell application

    NASA Astrophysics Data System (ADS)

    Le Boulbar, E.; Millon, E.; Ntsoenzok, E.; Hakim, B.; Seiler, W.; Boulmer-Leborgne, C.; Perrière, J.

    2012-06-01

    Undoped and Nd-doped titanium dioxide anatase and rutile films have been grown by pulsed-laser deposition at 700 °C under 0.1 mbar O2. By selecting adequate substrates, TiO2 films doped with 1, 2 or 5 at.% Nd were grown and constituted with polycrystalline rutile, highly oriented (2 0 0) rutile film, or oriented (0 0 4) anatase. An UV to NIR photon conversion is evidenced in the films. Indeed, intense and well-resolved emission lines from Nd3+ have been observed upon excitation above the TiO2 bandgap at room temperature. The sensitised emission of Nd3+ is found to be much efficient in rutile than in anatase structure. Low temperature photoluminescence measurements lead to fine resolved peaks corresponding to the Nd3+ 4f transitions with different spectral characteristic according to the host matrix used. Photoluminescence dependence temperature evidences that the light emission from Nd3+ in anatase-based films is probably influenced by the presence of self-trapped excitons or by orbital interaction. Mechanisms of sensitisation host to Nd3+ are proposed for both matrixes. Finally, the Nd dopant concentration and the microstructure of TiO2 rutile films are found to affect the photoluminescence emission intensity. Rutile film (2 0 0) oriented is the most adapted host matrix to sensitise 1 at.% Nd3+ ions for an emission around 1064 nm making such Nd-doped layers interesting for photon conversion by down shifting process.

  4. Pyrocatechol as a surface capping molecule on rutile TiO 2 (110)

    NASA Astrophysics Data System (ADS)

    Syres, K. L.; Thomas, A. G.; Cant, D. J. H.; Hardman, S. J. O.; Preobrajenski, A.

    2012-02-01

    A 'cap and dip' method of adsorbing ruthenium di-2,2‧-bipyridyl-4,4‧-dicarboxylic acid diisocyanate (N3 dye) on a rutile TiO2 (110) surface was investigated using pyrocatechol as a capping molecule. This method involves cleaning the rutile surface in ultra-high vacuum (UHV), depositing pyrocatechol onto the surface to 'cap' the adsorption sites, removing from vacuum, 'dipping' in an N3 dye solution and returning to vacuum. Photoemission measurements following the return of the crystal to vacuum suggest that the pyrocatechol keeps the surface free from contamination on exposure to atmosphere. Photoemission spectra also indicate that the pyrocatechol capping molecules are replaced by the N3 dye in solution and that the N3 dye is adsorbed intact on the rutile TiO2 (110) surface. This technique may allow other large molecules, which are thermally unstable to evaporation in UHV, to be easily deposited onto TiO2 surfaces.

  5. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

    PubMed

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-10-21

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail. PMID:23963545

  6. The Effect of Grain Orientation on Secondary Ion Mass Spectrometry (SIMS) Analysis of Rutile

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Clark, C.; Reddy, S. M.

    2011-12-01

    In situ high precision uranium-lead (U-Pb) analysis of rutile by secondary ion mass spectrometry (SIMS) reveals that instrumental bias for isotope ratios and count rates vary due to crystal orientation. Electron backscatter diffraction (EBSD) techniques have been combined with SIMS data to show consistent and systematic crystal orientation effects, whilst confirming that all analyses are on single crystals and that there is random variation from grain to grain. The result of the orientation effect is to produce an extremely large calibration slope, more than an order of magnitude larger than for other minerals, which can result in highly inaccurate and spurious U-Pb ages from rutile if not taken into account. We present a large standard dataset to highlight this effect and show that by collecting good standard data, from grains in multiple orientations, these effects can be negated and accurate U-Pb SIMS data for rutile can be obtained using a standard calibration slope of ln(Pb/U) vs ln(UO2/UO) = 1.12. Examples from the Anantangiri region, Eastern Ghats, India are used to show the magnitude of these effects on the calibration of unknowns. Evidence is presented to show that the cause of these orientation effects is most likely a combination of channelling of primary ions into the crystal and preferential emission of secondary ions along preferred lattice directions.

  7. Selective electrochemical reactivity of rutile VO2 towards the suppression of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Singh, Sujay; Abtew, Tesfaye A.; Horrocks, Gregory; Kilcoyne, Colin; Marley, Peter M.; Stabile, Adam A.; Banerjee, Sarbajit; Zhang, Peihong; Sambandamurthy, G.

    2016-03-01

    We demonstrate through electrolyte gating measurements of a single nanobeam that the rultile phase of VO2 is electrochemically more reactive than the monoclinic phase. Our results show that the complete suppression of the metal-insulator transition and stabilization of the metallic phase is possible when gate voltage is applied in the rutile metallic phase. The results are discussed based on the formation of oxygen vacancies wherein accommodation of a high concentration of vacancies in the rutile phase selectively stabilizes it by disrupting dimerization of adjacent V-V pairs required for a transition to the monoclinic phase. The creation of oxygen vacancies is proposed to proceed through the oxidation of the electrolyte. Raman spectroscopy data suggest surface metallization upon electrolyte gating with an initial coexistence of insulating monoclinic and metallic domains. The selective electrochemical reactivity of the rutile phase and the resulting defect-induced stabilization of this phase across a vastly expanded temperature window suggest a facile defect engineering route to tune electronic phase transitions.

  8. Domain structures in rutile in ultrahigh-pressure metamorphic rocks from Dabie Mountains, China.

    PubMed

    Meng, D W; Wu, X L; Meng, X; Han, Y J; Li, D X

    2004-01-01

    According to the HRTEM study, the UHP jadeite-quartzite mineral (Rutile, TiO(2)) in Anhui Province, Dabie Mountains, China, has ultrastructures such as 011 two-dimensional commensurable modulated structures or superstructures, [011] twin domain structures, dislocations and crystal deformations. The SAED patterns and HRTEM images indicate the existence of the deformations and stacking faults on the interface of [011] twin crystal of rutile and its two-dimensional commensurate modulated structures with repetition period 0.753 nm (3d(011)) has tetragonal symmetry, cell parameters a = 3a0 = 1.377 nm (a0 = 0.459 nm), c = c0 = 0.3 nm. The modulated structures of rutile were probably caused by the isomorphic replacement of Ti(4+) and position modulation or occupation modulation of oxygen atoms in different degree; the deformation structures reveal that during the process of crystallization and mineralization, this mineral may be affected by the geological environment (such as temperature, pressure and stress), metamorphism and deformation. PMID:15120128

  9. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  10. Comment on "Structure and dynamics of liquid water on rutile TiO2(110)

    SciTech Connect

    Wesolowski, David J; Sofo, Jorge O.; Bandura, Andrei V.; Zhang, Zhan; Mamontov, Eugene; Predota, M.; Kumar, Nitin; Kubicki, James D.; Kent, Paul R; Vlcek, Lukas; Machesky, Michael L.; Fenter, Paul; Cummings, Peter T; Anovitz, Lawrence {Larry} M; Skelton, A A; Rosenqvist, Jorgen K

    2012-01-01

    Liu and co-workers [Phys. Rev. B 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile ( -TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are weak ; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our publishedwork, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  11. Tin-doped rutile titanium dioxide nanowires: luminescence, gas sensor, and field emission properties.

    PubMed

    Wu, Jyh Ming

    2012-02-01

    Sn-doped rutile TiO2 nanowires were synthesized by a thermal reactive evaporation route. Field emission scanning electron microscopy (FESEM) imaging reveals that the Sn-doped TiO2 nanowires exhibited diameters of 80-150 nm and 2-3 microns in length. High-resolution transmission electron microscopy (HRTEM) imaging makes it possible to observe that Sn-doped TiO2 nanowires show a certain lattices fringe of approximately 0.32 nm, which demonstrates that the nanowires are single crystalline with rutile structure and grow along the [110] axis. Cathodoluminescence (CL) reflected that on the surface of Sn-doped TiO2 nanowires, many oxygen vacancies and defect states were formed during the crystal growth. These defect states raised a broad emission peak around the red-orange band. The ethanol sensing properties of Sn-doped rutile TiO2 nanowires at a temperature of 190 degrees C for the ethanol concentrations of 50, 100, 150, 200, 400, 500, and 600 ppm, correspond to the sensor' sensitivity of 7, 12, 18, 19, 23, and 26%, respectively. The sensitivity increased with an increase in the ethanol concentration. As-synthesized TiO2 nanowires revealed a turn-on field, approximately 5.1 V/microm, at a current density of 1 microAcm(-2). PMID:22629973

  12. Microstructure of Co-doped TiO₂ (110) Rutile by Ion Implantation

    SciTech Connect

    Wang, Chong M.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Droubay, Timothy C.; Chambers, Scott A.

    2005-04-01

    Co-doped rutile TiO₂ was synthesized by injecting Co ions into single crystal rutile TiO₂ using high energy ion implantation. Microstructures of the implanted specimens were studied in detail using high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), electron diffraction, and HRTEM image simulations. The spatial distribution and conglomeration behavior of the implanted Co ions, as well as the point defect distributions induced by ion implantation, show strong dependences on implantation conditions. Uniform distribution of Co ions in the rutile TiO₂ lattice was obtained by implanting at 1075 K with a Co ion fluence of 1.25x10¹⁶ Co/cm². Implanting at 875 K leads to the formation of Co metal clusters. The precipitated Co metal clusters and surrounding TiO₂ matrix exhibit the orientation relationships Co<110>//TiO₂[001] and Co{111}//TiO₂(110). A structural model representing the interface between Co metal clusters and TiO₂ is developed based on HRTEM imaging and image simulations.

  13. Microstructure of Co-doped TiO{sub 2}(110) rutile by ion implantation

    SciTech Connect

    Wang, C.M.; Shutthanandan, V.; Thevuthasan, S.; Droubay, T.; Chambers, S.A.

    2005-04-01

    Co-doped rutile TiO{sub 2} was synthesized by injecting Co ions into single crystal rutile TiO{sub 2} using high energy ion implantation. Microstructures of the implanted specimens were studied in detail using high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy, electron diffraction, and HRTEM image simulations. The spatial distribution and conglomeration behavior of the implanted Co ions, as well as the point defect distributions induced by ion implantation, show strong dependences on implantation conditions. Uniform distribution of Co ions in the rutile TiO{sub 2} lattice was obtained by implanting at 1075 K with a Co ion fluence of 1.25x10{sup 16} Co/cm{sup 2}. Implanting at 875 K leads to the formation of Co metal clusters. The precipitated Co metal clusters and surrounding TiO{sub 2} matrix exhibit the orientation relationships Co<110> parallel TiO{sub 2}[001] and Co{l_brace}111{r_brace} parallel TiO{sub 2}(110). A structural model representing the interface between Co metal clusters and TiO{sub 2} is developed based on HRTEM imaging and image simulations.

  14. High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators.

    PubMed

    Tobar, M E; Krupka, J; Hartnett, J G; Ivanov, E N; Woode, R A

    1998-01-01

    A sapphiro-rutile composite resonator was constructed from a cylindrical sapphire monocrystal with two thin disks of monocrystal rutile held tightly against the ends. Because rutile exhibits low loss and an opposite temperature coefficient of permittivity to sapphire, it is an ideal material for compensating the frequency-temperature dependence of a sapphire resonator. Most of the electromagnetic modes in the composite structure exhibited turning points (or compensation points) in the frequency-temperature characteristic. The temperatures of compensation for the WG quasi TM modes were measured to be below 90 K with Q-factors of the order of a few million depending on the mode. For WG quasi TE modes, the temperatures of compensation were measured to be between 100 to 160 K with Q-factors of the order of a few hundreds of thousands, depending on the mode. The second derivatives of the compensation points were measured to be of the order 0.1 ppm/K(2 ), which agreed well with the predicted values. PMID:18244235

  15. Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light

    SciTech Connect

    Caratto, V.; Aliakbarian, B.; Casazza, A.A.; Setti, L.; Bernini, C.; Perego, P.; Ferretti, M.

    2013-06-01

    Highlights: ► Photocatalytic deactivation of Escherichia coli in presence of TiO{sub 2} nanoparticles ► The presence of catalyst is less important when the radiation is in the UV range ► Rutile has an higher efficiency respect to anatase under visible light. - Abstract: The photocatalytic deactivation of Escherichia coli HB101 by two different structures of TiO{sub 2}, rutile and anatase (used separately and in a 1:1 mixture), was examined. The microorganism was deposited on a filter membrane containing 520 mg/m{sup 2} of TiO{sub 2} and then irradiated by a neon lamp. In order to study the rate of deactivation of the microorganism we studied four different exposure times: 20, 40, 60 and 90 min. The results showed that rutile has an antimicrobial activity higher than anatase, while the mixture had values near to the average between them in every condition. The highest difference in the inactivation capacity of the two structures is observable at shorter times. The effect of the different crystal phases was evaluated by Scanning Electron Microscopy.

  16. Competition between ferromagnetism and antiferromagnetism in the rutile C r1 -xVxO2 system

    NASA Astrophysics Data System (ADS)

    Mustonen, Otto; Vasala, Sami; Chou, Ta-Lei; Chen, Jin-Ming; Karppinen, Maarit

    2016-01-01

    We present a comprehensive computational and experimental examination of the C r1 -xVxO2 (0 ≤x ≤0.5 ) system. The entire series crystallizes in the rutile structure, but the compounds exhibit significantly different magnetic properties depending on x . Lattice parameter a increases linearly with x , but the c parameter is slightly reduced due to vanadium-vanadium bonding. The V-for-Cr substitution creates C r3 +-V5 + pairs; this leads to competition between ferromagnetic (C r4 +-C r4 + ) and antiferromagnetic (C r3 +-C r3 + ) interactions such that the materials change from ferromagnetic to antiferromagnetic with increasing x . Weak ferromagnetic interactions arising from C r4 + are observed even in the seemingly antiferromagnetic phases with the exception of x =0.5 , which contains only C r3 + . Density functional theory calculations are performed, but they incorrectly predict the x =0.5 phase to be a half-metal. This is caused by an incorrect prediction of the oxidation states of chromium and vanadium.

  17. Testing the Jacob's ladder of density functionals for electronic structure and magnetism of rutile VO2

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sun, Jianwei; Ruzsinszky, Adrienn; Perdew, John P.

    2014-08-01

    We employ semilocal density functionals [local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and meta-GGAs)], LSDA plus Hubbard U (LSDA+U) theory, a nonlocal range-separated Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), and the random-phase approximation (RPA) to assess their performances for the ground-state magnetism and electronic structure of a strongly correlated metal, rutile VO2. Using recent quantum Monte Carlo results as the benchmark, all tested semilocal and hybrid functionals as well as the RPA (with PBE inputs) predict the correct magnetic ground states for rutile VO2. The observed paramagnetism could arise from temperature-disordered local spin moments or from the thermal destruction of these moments. All semilocal functionals also give the correct ground-state metallicity for rutile VO2. However, in the ferromagnetic (FM) and antiferromagnetic (AFM) phases, LSDA+U and HSE06 incorrectly predict rutile VO2 to be a Mott-Hubbard insulator. For the computed electronic structures of FM and AFM phases, we find that the Tao-Perdew-Staroverov-Scuseria (TPSS) and revised TPSS (revTPSS) meta-GGAs give strong 2p-3d hybridizations, resulting in a depopulation of the 2p bands of O atoms, in comparison with other tested meta-GGAs. The regularized TPSS (regTPSS) and meta-GGAs made simple, i.e., MGGA_MS0 and MGGA_MS2, which are free of the spurious order-of-limits problem of TPSS and revTPSS, give electronic states close to those of the PBE GGA and LSDA. In comparison to experiment, semilocal functionals predict better equilibrium cell volumes for rutile VO2 in FM and AFM states than in the spin-unpolarized state. For meta-GGAs, a monotonic decrease of the exchange enhancement factor Fx(s,α) with α for small s, as in the MGGA_MS functionals, leads to large (probably too large) local magnetic moments in spin-polarized states.

  18. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa)

    NASA Astrophysics Data System (ADS)

    Stendal, Henrik; Toteu, Sadrack Félix; Frei, Robert; Penaye, Joseph; Njel, Urbain Olivier; Bassahak, Jean; Nni, Jean; Kankeu, Boniface; Ngako, Vincent; Hell, Joseph Victor

    2006-04-01

    Rutile, as an important component in alluvial or eluvial heavy mineral deposits, is known in southern Cameroon. These deposits are underlain by the Neoproterozoic low- to high-grade Yaoundé Group. Geochemical, thermometric, fluid inclusion and Pb isotopic studies of the rutile from alluvial and eluvial concentrates and from medium-grade micaschist from the nearby Yaoundé region permit the following conclusions: (1) alluvial and eluvial rutile of the Yaoundé region are derived from the degradation of metapelites, metamafic rocks and pegmatites of the nearby Yaoundé Group; (2) rutile in the Yaoundé Group formed during the Pan-African metamorphism, or was inherited as detrital rutile from a ˜900 Ma source. The study also shows that the rutile can be used to trace the history of the Pan-African belt north of the Congo craton.

  19. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies.

    PubMed

    Matsunaga, Katsuyuki; Chang, Teng-Yuan; Ishikawa, Ryo; Dong, Qian; Toyoura, Kazuaki; Nakamura, Atsutomo; Ikuhara, Yuichi; Shibata, Naoya

    2016-05-01

    Atomic adsorption of Au and Pt on the rutile (1 1 0) surface was investigated by atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) measurements combined with density functional theory calculations. Au single atoms were deposited on the surface in a vacuum condition, and the observed results were compared with Pt single atoms on the same surface prepared by the same experimental manner. It was found that Au single atoms are stably adsorbed only at the bridging oxygen vacancy sites, which is quite different from Pt single atoms exhibiting the most frequently observed adsorption at the basal oxygen vacancy sites. Such a difference in oxygen-vacancy effect between Au and Pt can be explained by electronic structures of the surface vacancies as well as characters of outermost atomic orbitals of Au and Pt. PMID:27033403

  20. Different orientations of large rigid organic chromophores at the rutile TiO2 surface controlled by different binding geometries of specific anchor groups

    NASA Astrophysics Data System (ADS)

    Gundlach, L.; Szarko, J.; Socaciu-Siebert, L. D.; Neubauer, A.; Ernstorfer, R.; Willig, F.

    2007-03-01

    Polarization and angle-resolved two-photon photoelectron spectroscopy was employed to determine the adsorption geometry of di-tert-butyl-perylene when anchored via two different acid groups on rutile TiO2(110) . With the carboxylic acid group as anchor and a rigid bridge group the binding geometry of the chromophore was found with the long molecular axis perpendicular to the surface. In contrast, with the phosphonic acid as anchor group the long axis of perylene showed a tilt angle of around 66° with respect to the surface normal and an alignment in the direction perpendicular to [001]. Our experimental results agree with adsorption geometries recently predicted from DFT calculations by Persson’s group.

  1. First-principles molecular dynamics simulations of uranyl ion interaction at the water/rutile TiO2(110) interface

    NASA Astrophysics Data System (ADS)

    Sebbari, K.; Roques, J.; Simoni, E.; Domain, C.; Perron, H.; Catalette, H.

    2012-08-01

    The effects of temperature and solvation on uranyl ion adsorption at the water/rutile TiO2(110) interface are investigated by Density Functional Theory (DFT) in both static and Born-Oppenheimer molecular dynamics approaches. According to experimental observations, uranyl ion can form two surface complexes in a pH range from 1.5 to 4.5. Based on these observations, the structures of the complexes at 293 K are first calculated in agreement with vacuum static calculations. Then, an increase in temperature (293 to 425 K) induces the reinforcement of uranyl ion adsorption due to the release of water molecules from the solvation shell of uranyl ion. Finally, temperature can modify the nature of the surface species.

  2. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Matsunaga, Katsuyuki; Chang, Teng-Yuan; Ishikawa, Ryo; Dong, Qian; Toyoura, Kazuaki; Nakamura, Atsutomo; Ikuhara, Yuichi; Shibata, Naoya

    2016-05-01

    Atomic adsorption of Au and Pt on the rutile (1 1 0) surface was investigated by atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) measurements combined with density functional theory calculations. Au single atoms were deposited on the surface in a vacuum condition, and the observed results were compared with Pt single atoms on the same surface prepared by the same experimental manner. It was found that Au single atoms are stably adsorbed only at the bridging oxygen vacancy sites, which is quite different from Pt single atoms exhibiting the most frequently observed adsorption at the basal oxygen vacancy sites. Such a difference in oxygen-vacancy effect between Au and Pt can be explained by electronic structures of the surface vacancies as well as characters of outermost atomic orbitals of Au and Pt.

  3. A study on native defects and magnetic properties in undoped rutile TiO2 using LDA and LDA+UO p+UTi d methods

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Wang, Yong Ping

    2016-05-01

    The native defects and magnetic properties in undoped rutile TiO2 are studied using local density approximation (LDA) and LDA adding Hubbard parameters (U) schemes. The band gap is adjusted to experimental value of 3.0 eV by combination of UTi d=4.2 eV and UO p=4.8 eV. This LDA+U methodology overcomes the band-gap problem and renders the approach more predictive. The formation energies of oxygen vacancy (VO), oxygen interstitial (Oi), titanium vacancy (VTi), titanium interstitial (Tii), oxygen anti-sites (OTi), and titanium anti-sites (TiO) are investigated by the LDA and LDA+U methods. In addition, some ground state configurations can be obtained by optimization of total spin. It is found that native defects can induce spin polarization and produce magnetic moment.

  4. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films

    PubMed Central

    Luttrell, Tim; Halpegamage, Sandamali; Tao, Junguang; Kramer, Alan; Sutter, Eli; Batzill, Matthias

    2014-01-01

    The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high –quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5 nm thick, while rutile films reach their maximum activity for ~2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies. PMID:24509651

  5. Nanoparticle Formation in Surface Layer of Oxide Materials and Improvement of Photocatalytic Properties of Rutile Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ishikawa, Junzo; Tsuji, Hiroshi; Sugahara, Hiromitsu; Gotoh, Yasuhito

    2003-08-01

    Negative-ion implantation could be used to create nanoparticles in oxide insulators with finely controlled accuracy for both depth and size. For 50-nm-thick SiO2 film on Si, Ag nanoparticles with 3 nm in diameter were created in the center of the film with distribution thickness of 17 nm. Cu negative-ion implanted silica glass and soda-lime glass showed a high nonlinear susceptance of the 3rd order in nonlinear optical property. Cu and Ag double-implanted silica glass showed an absorption peak between two absorption peaks of surface plasmon resonance (SPR) for Cu and Ag nanoparticles. The optical absorption peak due to SPR of nanoparticle in oxide could be changed by forming nanoparticles with different kinds of elements and alloy. For application of metal nanoparticle to photocatalyst, Ag negative ions were implanted into rutile TiO2. The Ag-implanted rutile samples showed improved photocatalytic efficiency after proper annealing in a decolorization test of methylene blue solution under fluorescent light. The better one was the Ag-implanted rutile TiO2 (Ag: 65 keV, 5×1016 ions/cm2, 500°C annealed), which showed a photocatalytic efficiency higher by 2.2 times than that of unimplanted rutile TiO2. In the evaluation under fluorescent light through UV-cut filter for 19 h, the Ag-implanted rutile showed 6.7 times higher efficiency.

  6. Facile fabrication of rutile monolayer films consisting of well crystalline nanorods by following an IL-assisted hydrothermal route

    SciTech Connect

    Peng Peng; Liu Xiaodi; Sun, Chuansheng; Ma Jianmin; Zheng Wenjun

    2009-05-15

    In this study, rutile films consisting of rectangular nanorods were facilely deposited on glass substrates from strongly acid solution of TiCl{sub 4}. The highly ordered array of nanorods was realized in presence of ionic liquid (IL) of [Bmim]Br by following a hydrothermal process. In this process, Degussa P25 nanoparticles served as seeds that were pre-deposited on the substrates to facilitate the array of rutile nanorods. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectrum were used to characterize the obtained nanorod films. The measurements showed that the nanorods were rectangular with width of 100-200 nm and length of more than 1 {mu}m, and grew up typically along c-axis to form the arrays against the substrate. The presence of IL was found vital for the formation of rutile nanorods, and the suitable molar ratio of [Bmim]Br to TiCl{sub 4} ranged from 500:1 to 1500:1. The excessive [Bmim]Br may hinder the precipitation of rutile particles. - Graphical abstract: The rutile film consisting of rectangular nanorods is successfully deposited on glass substrate in presence of ionic liquid (IL) of [Bmim]Br. The nanorods were rectangular with width of 100-200 nm and length of more than 1 {mu}m, which grew up typically along c-axis to form the arrays against the substrate.

  7. Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile

    NASA Astrophysics Data System (ADS)

    Khomenko, V. M.; Langer, K.; Rager, H.; Fett, A.

    Polarized absorption spectra, σ and π, in the spectral range 30000-400 cm-1 (3.71-0.05 eV) were obtained on crystal slabs // [001] of deep blue rutile at various temperatures from 88 to 773 K. The rutile crystals were grown in Pt-capsules from carefully dried 99.999% TiO2 rutile powder at 50 kbar/1500 °C using graphite heating cells in a belt-type apparatus. Impurities were below the detection limits of the electron microprobe (about 0.005 wt% for elements with Z>=13). The spectra are characterized by an unpolarized absorption edge at 24300 cm-1, two weak and relatively narrow (Δν1/2 3500-4000 cm-1), slightly σ-polarized bands ν1 at 23500 cm-1 and ν2 at 18500 cm-1, and a complex, strong band system in the NIR (near infra red) with sharp weak peaks in the region of the OH stretching fundamentals superimposed on the NIR system in the σ-spectra. The NIR band system and the UV edge produce an absorption minimum in both spectra, σ and π, at 21000 cm-1, i.e. in the blue, which explains the colour of the crystals. Bands ν1 and ν2 are assigned to dd transitions to the Jahn-Teller split upper Eg state of octahedral Ti3+. The NIR band system can be fitted as a sum of three components. Two of them are partly π-polarized, nearly Gaussian bands, both with large half widths 6000-7000 cm-1, ν3 at 12000 cm-1 and the most intense ν4 at 6500 cm-1. The third NIR band ν5 of a mixed Lorentz-Gaussian shape with a maximum at 3000 cm-1 forms a shoulder on the low-energy wing of ν4. Energy positions, half band widths and temperature behaviour of these bands are consistent with a small polaron type of Ti3+Ti4+ charge transfer (CT). Polarization dependence of CT bands can be explained on the basis of the structural model of defect rutile by Bursill and Blanchin (1983) involving interstitial titanium. Two OH bands at 3322 and 3279 cm-1 in σ-spectra show different stability during annealing, indicating two different positions of proton in the rutile structure, one of them

  8. Atomic-scale surface roughness of rutile and implications for organic molecule adsorption.

    PubMed

    Livi, Kenneth J T; Schaffer, Bernhard; Azzolini, David; Seabourne, Che R; Hardcastle, Trevor P; Scott, Andrew J; Hazen, Robert M; Erlebacher, Jonah D; Brydson, Rik; Sverjensky, Dimitri A

    2013-06-11

    Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile. PMID:23675906

  9. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  10. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    PubMed

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-01

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently. PMID:25192018

  11. Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO2 (rutile and anatase) surfaces

    SciTech Connect

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2013-09-17

    Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces and for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity.

  12. Isotropic photo-decomposition of spherical organic polymers on rutile TiO₂(110) surfaces.

    PubMed

    Ishida, Nobuyuki; Iwasaki, Tamaki; Fujita, Daisuke

    2011-04-15

    We observed the photo-decomposition process of polystyrene latex (PSL) spheres on a rutile TiO₂(110) single crystal surface by using atomic force microscopy. During the decomposition process, both the height and width of the PSL spheres linearly decreased with the irradiation time in a similar way from the beginning, suggesting that the PSL spheres are isotropically decomposed. This indicates that the interface between the PSL spheres and the TiO₂ surface is not a dominant reaction site, as expected from normal photocatalytic reactions. PMID:21389569

  13. Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2.

    PubMed

    Lai, Yao-Cheng; Tsai, Hsin-Jung; Hung, Chia-I; Fujishiro, Hiroyuki; Naito, Tomoyuki; Hsu, Wen-Kuang

    2015-03-28

    The Seebeck coefficient, according to Ioffe's approximation, is inversely proportional to carrier density and decreases with doping. Herein, we find that the incorporation of multi-walled carbon nanotubes into rutile TiO2 improves the electrical conductivity and Seebeck coefficient at a low filling fraction of tubes; moreover, the former was due to the lengthening of the mean free path and doping modified carrier mobility for the latter. Tube-oxide mixing also causes significant phonon drag at the interfaces and the reduced thermal conductivity was verified by the promoted figure of merit. PMID:25729788

  14. Tailoring the crystal structure of TiO{sub 2} thin films from the anatase to rutile phase

    SciTech Connect

    Kotake, Haruka; Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo; Okajima, Toshihiro

    2015-07-15

    TiO{sub 2} films with various Sn concentrations were deposited on quartz substrates using rf reactive magnetron sputtering. The crystal structure was investigated by using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and the chemical states of Ti and Sn were analyzed by x-ray absorption near edge structure (XANES) spectroscopy. Without Sn doping, TiO{sub 2} films change the crystal structure from rutile to anatase as the total gas pressure increases in the sputtering deposition. On the other hand, Sn doping induces the transformation of TiO{sub 2} crystalline structure from anatase to rutile phase, where the XANES spectra implied that Sn substitutes into Ti site of rutile TiO{sub 2}. Atomic force microscope analyses revealed that the Sn-doped TiO{sub 2} films exhibited a flat surface with the roughness of approximately 2 nm.

  15. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    SciTech Connect

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  16. Effect of particle size on the phase behavior of Li-intercalated TiO 2-rutile

    NASA Astrophysics Data System (ADS)

    Koudriachova, M. V.

    With the aid of ab initio calculations, we compare the phase behavior upon lithiation of rutile particles of different sizes and morphologies. A rationale for the differences in their structural behavior is provided by combining concepts from Crystal Field Theory and semi-empirical concepts, such as bond length variation, minimal volume expansion, with accounts for the effects of diffusion and the anisotropy of the Li-distribution. It is shown that the phase behavior of spaghetti-like nano-particles differs from bulk rutile as a result of an extended single phase insertion domain and increased disorder of Li-ions. As Li-ions strive to minimize their repulsions by increasing their mutual separation a regular network of Li-ions is formed, being a precursor to the transformation of the rutile host lattice into spinel.

  17. Fabrication of hierarchically structured rutile TiO2 nanorods on mica particles and their superhydrophilic coating without UV irridiation

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Wu, Xiaomei; Fan, Yueming; Zhou, Xiya

    2014-01-01

    In this work, we report a facile strategy to fabricate hierarchical rutile TiO2 thin film on mica substrates through hydrolysis of TiCl4 ethanolic solution in water. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) analysis reveal that the rutile TiO2 film is composed of nanorods and nanoparticles. The nanorod crystals grew along the [1 0 1] direction, forming predominantly exposed {1 1 0} facets. Interestingly, rutile TiO2 coated mica particles can be directly applied as a general kind of building blocks to construct large-area super hydrophilic surfaces without UV irradiation by the simple spin-coating technique. The superhydrophilicity originates from the combination of the special rough structures of hierarchical nanorods and nanoflowers and the increased hydroxyl content caused by calcinations. More importantly, this property is very stable for half a year and could be used in self-cleaning surfaces.

  18. Trace element mobility during rutile replacement by titanite: Open vs. closed system examples from the Franciscan Complex, CA

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Zack, T.; Feineman, M. D.; Barth, M. G.

    2010-12-01

    Rutile has long been regarded as an important reservoir for high field strength elements (HFSE) during subduction zone chemical cycling, whereas titanite can accommodate both HFSE and rare earth elements (REE). The behavior of HFSE, along with the concentration and distribution of REE in titanite replacing rutile, can help elucidate the processes controlling the fate of HFSE and the addition of REE by fluids and/or melts during this transition. Recent work has suggested that diffusion can also play a significant role in the behavior of HFSE during the rutile to titanite transition (Lucassen et al., 2010). Here we present examples of titanite replacement of rutile from both hot (amphibolite) and cold (eclogite-blueschist) subduction settings. Trace element concentrations in rutile rimmed by titanite were determined by LA-ICP-MS for three samples from the Franciscan Complex, CA. Detailed rutile-titanite traverses with 12-15 µm spatial resolution were performed across grains from one migmitized garnet amphibolite from Catalina Island mélange and eclogite samples from Ring Mountain, Tiburon Penninsula, and Junction School, Healdsburg, CA. Nb profiles across large rutile grains (500-700 µm) within melt segregations from Catalina Island amphibolite show clear evidence for Nb back-diffusion into rutile during titanite growth at the grain boundary. These diffusion features are not present in rutile from the eclogite samples, which is consistent with the low temperatures proposed for this reaction in Franciscan eclogites. One of the most remarkable features of the Catalina titanites is the considerable enrichment of U (20-100 ppm) that is not present in the rutile (0.1-1 ppm). This is accompanied by strong enrichment in REE, particularly middle (M)REE, up to 3000 times chondritic values. Significant U and MREE enrichment in the Catalina titanites strongly suggest interaction with a late fluid, possibly associated with pegmatitic restite following the primary melting

  19. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic

  20. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    SciTech Connect

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-01-01

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic

  1. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A

    USGS Publications Warehouse

    Jackson, J.C.; Horton, J.W., Jr.; Chou, I.-Ming; Belkin, H.E.

    2006-01-01

    A shock-induced polymorph (TiO2II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, ??-PbO2 structured polymorph of TiO2 (TiO2II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm-1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.

  2. Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires

    SciTech Connect

    Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO2 nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport (see picture) and a factor four lower defect state density than conventional rutile nanoparticle films.

  3. Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO 2 nanocomposites via a mild solvothermal method

    NASA Astrophysics Data System (ADS)

    Zhang, Qijun; Sun, Chenghua; Yan, Jun; Hu, Xiujie; Zhou, Shuyun; Chen, Ping

    2010-07-01

    A novel hierarchically heterostructured TiO 2 nanocomposite, which consists of rutile nanosheets perpendicular standing on anatase nanofibers, is successfully created through a two-step approach. Firstly, the fibrous anatase TiO 2 framework is fabricated by a facile electrospinning method, then a layer of relative uniform rutile nanosheets grow on the fibers after a mild solvothermal reaction process. This work provides a convenient and effective route for fabricating desired three-dimensional nanocomposite and should be easily extended through to many other materials system.

  4. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Yujie; Ba, Xin; Huang, Lin; Yu, Ying

    2015-08-01

    The thin films for pure TiO2 and that incorporated with Cu ion were deposited by DC magnetron co-sputtering with Ar gas. The crystal texture, surface morphology, energy gap and optical properties of the prepared films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS), UV-vis spectrophotometer, and Raman spectroscopy. The results show that as-deposited TiO2 film mainly possesses anatase structure at room temperature with pure Ar gas, but the introduction of Cu can alter the phase structure of crystallite TiO2. XRD patterns and Raman spectra indicate that the Cu incorporation with high concentration (ACu/ATi + ACu ≈ 20%) favors the formation of rutile phase. Moreover, the Cu incorporation into TiO2 lattice induces band gap narrowing. Band structures and density of states have been analyzed based on density functional theory (DFT) and periodic models in order to investigate the influence of the Cu incorporation on the electronic structure of TiO2. Both experimental data and electronic structure calculations evidence the fact that the change in film structure from the anatase to the rutile phase can be ascribed to the possible incorporation of Cu1+ in the sites previously occupied by Ti4+, and the presence of Cu results in important effect on the electronic states, which is mainly related to the 3d Cu orbitals in the gap and in the vicinity of the valence band edges for TiO2.

  5. Time-resolved shock compression of porous rutile: Wave dispersion in porous solids

    SciTech Connect

    Anderson, M.U.; Graham, R.A.; Holman, G.T.

    1993-08-01

    Rutile (TiO{sub 2}) samples at 60% of solid density have been shock-loaded from 0.21 to 6.1 GPa with sample thickness of 4 mm and studied with the PVDF piezoelectric polymer stress-rate gauge. The technique uses a copper capsule to contain the sample which has PVDF gauge packages in direct contact with front and rear surfaces. A precise measure is made of the compressive stress wave velocity through the sample, as well as the input and propagated shock stress. Initial density is known from sample preparation, and the amount of shock-compression is calculated from the measurement of shock velocity and input stress. Shock states and re-shock states are measured. Observed data are consistent with previously published high pressure data. It is observed that rutile has a ``crush strength`` near 6 GPa. Propagated stress-pulse rise times vary from 234 to 916 nsec. Propagated stress-pulse rise times of shock-compressed HMX, 2Al + Fe{sub 2}O{sub 3}, 3Ni + Al, and 5Ti + 3Si are presented.

  6. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    PubMed

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode. PMID:25757057

  7. Temperature stable low loss PTFE/rutile composites using secondary polymer

    NASA Astrophysics Data System (ADS)

    Rajesh, S.; Murali, K. P.; Ratheesh, R.

    2011-07-01

    Rutile filled PTFE composites have been fabricated through Sigma Mixing, Extrusion, Calendering and Hot pressing (SMECH) process. Dielectric constant (\\varepsilonr') and loss tangent (tan δ) of filled composites at microwave frequency region were measured by waveguide cavity perturbation technique using a Vector Network Analyzer. The temperature coefficient of dielectric constant (tau_{\\varepsilonr'}) was measured in the 0-100°C temperature range. In order to tailor the temperature coefficient of dielectric constant of the composite, thermoplastic Poly (ether ether ketone) (PEEK) has been used as a secondary polymer. Flexible laminate having a dielectric constant, \\varepsilonr'˜10.4, loss tangent tan δ˜0.0045 and tau_{\\varepsilonr'}˜-40 ppm/K was realized in Polytetrafluroethylene (PTFE)/rutile composites with the addition of 8 wt% PEEK. The reduction in tau_{\\varepsilonr'} is mainly attributed to the positive tau_{\\varepsilonr'} of PEEK and increased interface region in the composites as a result of the PEEK addition.

  8. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    PubMed

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials. PMID:26512874

  9. Unique adsorption behaviors of carboxylic acids at rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Yan; Gong, Xue-Qing

    2015-11-01

    The coverage-dependent adsorption behavior of acetic acid (CH3COOH) on rutile TiO2(110) was investigated by means of density functional theory (DFT) calculations, corrected by on-site Coulomb corrections and long-range dispersion interactions. The p(2 × 1) and c(2 × 2) domains of dissociatively adsorbed acetic acid under different coverages have been studied in detail regarding their structural and energetic properties. Adsorptions of formic acid (HCOOH) and carbonic acid (H2CO3) were also considered for better understanding the adsorption behaviors of carboxylic acids. Our calculation results show that carboxylic acids prefer to dissociatively adsorb in bridging bidentate configuration, and it induces significant surface relaxation at the adsorption site, which also affects other surface atoms nearby. Interestingly, we have shown that such adsorption-induced relaxations still maintain bond symmetries for surface Ti cations within the p(2 × 1) domain while they are drastically broken within the c(2 × 2) domain, giving rise to unstable Ti cations at the surface. This work not only explains the long-lasting puzzle of the preferable occurrence of p(2 × 1) domain for the adsorbed carboxylic acids at rutile TiO2(110), it also proposes a novel scheme that metal oxide surfaces may follow when they are involved in the processes like surface functionalization and self-assembly.

  10. Photocatalytic chemistry of methanol on rutile TiO₂(011)-(2 × 1).

    PubMed

    Wang, Zhiqiang; Hao, Qunqing; Mao, Xinchun; Zhou, Chuanyao; Dai, Dongxu; Yang, Xueming

    2016-04-21

    Photocatalytic chemistry of methanol on the reconstructed rutile TiO2(011)-(2 × 1) surface upon 266 nm and 400 nm light excitation has been investigated quantitatively using the post-irradiation temperature-programmed desorption (TPD) method. Photochemical products such as formaldehyde, methyl formate and water, which result from the recombination of surface bridging hydroxyls through the abstraction of lattice oxygen atoms, have been identified under both 266 nm and 400 nm light irradiation. However, ethylene is detected only under 266 nm light irradiation. Through an analogy experiment, ethylene production is attributed to the photochemistry and the following thermochemistry of formaldehyde. The absence of the ethylene signal under 400 nm light is consistent with the significantly lower conversion at this wavelength compared with 266 nm. The photocatalytic reaction rate of methanol is also wavelength dependent. Possible reasons for the photon energy dependent phenomena have been discussed. This work not only provides a detailed characterization of the photochemistry of methanol on the rutile TiO2(011)-(2 × 1) surface, but also indicates the importance of photon energy in the photochemistry on TiO2 surfaces. PMID:27020321

  11. Adsorption properties versus oxidation states of rutile TiO{sub 2}(110)

    SciTech Connect

    Martinez, Umberto; Hammer, Bjoerk

    2011-05-21

    Using density functional theory we have studied the adsorption properties of different atoms and molecules deposited on a stoichiometric, reduced, and oxidized rutile TiO{sub 2}(110) surface. Depending on the oxidation state of the surface, electrons can flow from or to the substrate and, therefore, negatively or positively charged species are expected. In particular, we have found that a charge transfer process from or to the surface always occurs for highly electronegative or highly electropositive species, respectively. For atoms or molecules with intermediate electron affinity, the direction of the charge flow depends on the oxidation state of the rutile surface and on the adsorption site. Generally, the charging effect leads to more stable complexes. However, the increase in the binding energy of the adsorbates is highly dependent on the electronic states of the surface prior to the adsorption event. In this work we have analyzed in details these mechanisms and we have also established a direct correlation between the enhanced binding energy of the adsorbates and the induced gap states.

  12. Molecular dynamics simulations of structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces.

    PubMed

    He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang

    2015-09-01

    Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. PMID:25966457

  13. Calcium adsorption at the rutile-water interface: A potentiometric study in NaCl media to 250 C

    SciTech Connect

    Ridley, M.K.; Machesky, M.L.; Wesolowski, D.J.; Palmer, D.A.

    1999-10-01

    Calcium adsorption by rutile was studied potentiometrically from 25 to 250 C, at ionic strengths of 0.03 and 0.30 m in NaCl media, using two complementary experimental methodologies. In the first, net proton adsorption in the presence and absence of Ca{sup 2+} was monitored, and in the second, samples were periodically withdrawn during the course of a titration to determine Ca{sup 2+} adsorption directly. These experiments revealed that Ca{sup 2+} adsorption systematically increased with temperature relative to the pH of zero net proton charge in NaCl media alone (pH{sub znpc(NaCl)} - pH). That is, as temperature increased, Ca{sup 2+} adsorption commenced at progressively more positive pH{sub znpc(NaCl)} - pH values. Increasing ionic strength from 0.03 to 0.30 m NaCl suppressed Ca{sup 2+} adsorption at all temperatures as a result of either increased competition from Na{sup +} or greater complexation of Ca{sup 2+} by Cl{sup {minus}}. Finally, there was no apparent trend in the proton stoichiometric ratios (moles H{sup +} released/moles Ca{sup 2+} adsorbed) with increasing temperature. This suggests that the electrostatic and/or chemical processes involved in Ca{sup 2+} adsorption do not change greatly with increasing temperature. Favorable entropic effects, related to the increasing ease of releasing Ca{sup 2+} waters of hydration, are believed to be primarily responsible for the increase in adsorption with temperature.

  14. The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C

    SciTech Connect

    Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver; Chow, Paul; Xiao, Yuming; Burnley, Pamela; Cline II, Christopher J.; Hanchar, John M.; Pettke, Thomas; Shen, Guoyin; Zhao, Yusheng

    2015-08-26

    Rutile (TiO₂) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300–500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at ~1 GPa and 700–800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 μg/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 μg/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 μg/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥2 GPa, but there is no observed

  15. Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.

    2016-05-01

    Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.

  16. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Y. Y.; Zhang, Y. Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z. C.; Li, C.

    2016-05-01

    CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO2 (CuS/TiO2) at low temperature. CuS/TiO2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO2 samples. It is found that CuS/TiO2 photocatalyst, which CuS are loaded on the surface of rutile TiO2, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO2 by forming heterojunction between CuS and rutile TiO2, which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant influence on photocatalytic activity and 2 wt% CuS/TiO2 showed the maximum photocatalytic activity for degradation of MB.

  17. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, Mohan; Madhumitha, G.

    2012-12-01

    In the present study, the biosynthesis of rutile TiO2 nanoparticles (TiO2 NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO2 NPs at lower temperature using agricultural waste. Rutile TiO2 NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO2 NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO2 NPs as observed from the XRD spectrum is confirmed to be TiO2 particles in the rutile form as evidenced by the peaks at 2θ = 27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23 ± 2 nm ranges.

  18. The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Zhang, Haifeng; Lu, Shixiang; Xu, Wenguo

    2014-10-01

    The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces have been investigated by means of first-principles density functional theory calculations. For the H adsorption and O vacancy on the rutile TiO2(011)-2 × 1 surface, we investigated three different surface O sites. Based on the adsorption and formation energy calculations, we find that the top O is an energetically preferential site for the adsorption of H atom or the formation of O vacancy. The calculated electronic structures indicate that the energetically preferential O site cannot create a band gap state; only the O vacancy at the side O site gives rise to a Ti-3d like defect level at the edge of the conduction band. It is worth mentioning that all considered configurations of the H adsorption and O vacancy on the rutile TiO2(011)-2 × 1 surface obviously enhance the optical absorptions in the areas of infrared, not just the rutile TiO2(011)-2 × 1 surface only has a good absorption edge in the visible light region.

  19. Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Soon Jin; Im, Hyo Been; Nam, Jung Eun; Kang, Jin Kyu; Hwang, Taek Sung; Yi, Kwang Bok

    2014-11-01

    Rutile-anatase TiO2 nanobranched arrays were prepared in two sequential hydrothermal-synthesis steps. The morphologies and crystalline nanostructures of the samples were investigated by controlling growth time and the concentration of the titanium precursor. All samples were characterized by field-emission scanning electron microscopy and X-ray diffraction analysis. It was found that treating the surfaces of rutile TiO2 nanorods with aqueous TiCl4 solutions allows the anatase TiO2 nanobranches to grow perpendicular to the main rutile TiO2 nanorods attached to the FTO glass. Irregularly shaped, dense TiO2 structures formed in the absence of TiCl4 treatment. A light-to-electricity conversion efficiency of 3.45% was achieved using 2.3 μm tall TiO2 nanobranched arrays in a dye-sensitized solar cell. This value is significantly higher than that observed for pure rutile TiO2 nanorods.

  20. Preparation of atomically flat rutile TiO2(001) surfaces for oxide film growth

    SciTech Connect

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; Lee, Ho Nyung; Weitering, Hanno; Snijders, Paul C.

    2016-01-01

    The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.

  1. Visible light photocatalytic activity of rutile TiO2 fiber clusters in the degradation of terephthalic acid

    NASA Astrophysics Data System (ADS)

    Yener, H. Banu; Helvacı, Şerife Ş.

    2015-09-01

    Rutile TiO2 nanoparticles, in different structural and morphological properties, were produced by the hydrolysis of titanium tetrachloride in a highly acidic reaction media at moderate temperatures without calcination. Their photocatalytic activities were investigated in the liquid-phase degradation of terephthalic acid under visible light illumination. The parameters, which are the concentration of the titanium tetrachloride solution (0.1-1 M) and reaction temperature (60-95 °C), effective on the properties of the particles, and their photocatalytic performances, were investigated. The XRD patterns indicated a pure rutile crystal structure at moderate temperatures without need of calcination. The FEGSEM images showed the formation of flower-, pinecone-, and sphere-like clusters consisting of interconnected nanofibers. The N2 adsorption-desorption isotherms pointed out the microporous structure of the clusters. Band gap energies were found to be varying between 3.02 and 3.08 eV due to the well-developed rutile crystallite structure. Systematic studies elucidated that the optimum reactant concentration and reaction temperature are 0.5 M TiCl4 and 95 °C, respectively. The rutile clusters synthesized at the optimum reaction conditions exhibited 99 % of the photocatalytic degradation of TPA under visible light illumination at shorter irradiation times compared with commercial P25 TiO2.

  2. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns

    EPA Science Inventory

    The distinct effects of humic acid (HA, 0−10 mg L−1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3−200 mM NaCl, pH 5.7 and 9.0). Specifically, the tra...

  3. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Column

    EPA Science Inventory

    Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...

  4. Small-scale transport of trace elements Nb and Cr during growth of titanite: an experimental study at 600 °C, 0.4 GPa

    NASA Astrophysics Data System (ADS)

    Lucassen, Friedrich; Franz, Gerhard; Rhede, Dieter

    2012-12-01

    Trace element distribution in titanite overgrowths on rutile has been investigated experimentally at 600 °C, 400 MPa and fO2 near NiNiO buffer. Compositionally homogenous Cr- or Nb-doped synthetic rutile single crystals or Nb-containing natural rutile crystals were the source of Cr, Nb and Ti to synthesize titanite using the double-capsule technique. All element exchange with the source of Si, Ca and Al occurred via a NaCl-H2O fluid. Titanite forms quickly and exclusively around the rutile crystals. The titanite overgrowth separates rutile from the bulk fluid, and all elements from rutile dissolution have to pass through the titanite rim. Trace element concentrations in titanite show a considerable scatter in experiments with and without Al, although the average concentrations of Cr or Nb of titanite around compositionally homogeneous synthetic rutile approach the expected values for closed system conditions. Variability of Al with Cr or Nb in the titanite is not correlated. The Al zoning is irregular and patchy, and also the distribution of trace elements does not show systematic trends in the spatial distribution. In experiments using zoned natural rutile, the concentrations of Nb in titanite are related to the Nb zoning in rutile, but the contents also vary unsystematically. Under the controlled conditions of the experiment, the explanation for the strongly irregular spatial distribution is most likely due to variations in elemental concentrations during transport from the rutile along the titanite grain boundaries. The transport pathway is complex because grain boundary migration is important during titanite growth. Such irregular element distribution is also found in a natural sample of titanite overgrowth on rutile from an eclogite with retrograde overprint in the amphibolite facies. Transport of Ti and trace elements was focused on grain boundaries and shielded from the rutile as a source of these elements. We conclude that this type of zoning is not

  5. Growth and termination of a rutile IrO2(100) layer on Ir(111)

    NASA Astrophysics Data System (ADS)

    Rai, Rahul; Li, Tao; Liang, Zhu; Kim, Minkyu; Asthagiri, Aravind; Weaver, Jason F.

    2016-10-01

    We investigated the oxidation of Ir(111) by gas-phase oxygen atoms at temperatures between 500 and 625 K using temperature programmed desorption (TPD), low energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEISS) and density functional theory (DFT) calculations. We find that a well-ordered surface oxide with (√ 3 × √ 3)R30° periodicity relative to Ir(111) develops prior to the formation of a rutile IrO2(100) layer. The IrO2(100) layer reaches a saturation thickness of about four oxide layers under the oxidation conditions employed, and decomposes during TPD to produce a single, sharp O2 desorption peak at ~ 770 K. Favorable lattice matching at the oxide-metal interface is likely responsible for the preferential growth of the IrO2(100) facet during the initial oxidation of Ir(111), with the resulting coincidence lattice generating a clear (6 × 1) moiré pattern in LEED. Temperature programmed reaction spectroscopy (TPRS) experiments reveal that CO and H2O molecules bind only weakly on the IrO2(100) surface and LEISS measurements show that the oxide surface is highly enriched in O-atoms. These characteristics provide strong evidence that the rutile IrO2(100) layer is oxygen-terminated, and thus lacks reactive Ir atoms that can strongly bind molecular adsorbates. Oxygen binding energies predicted by DFT suggest that on-top O-atoms will remain adsorbed on IrO2(100) at temperatures up to ~ 625 K, thus supporting the conclusion that the rutile IrO2 layer grown in our experiments is oxygen-terminated. As such, the appearance of only a single O2 TPD peak indicates that the singly coordinate, on-top O-atoms remain stable on the IrO2(100) surface up to temperatures at which the oxide layer begins to thermally decompose.

  6. Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO{sub 2} (110)

    SciTech Connect

    Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Saha, Santanu; Goedecker, Stefan; Meyer, Ernst Glatzel, Thilo; Sadeghi, Ali; Such, Bartosz; Szymonski, Marek

    2015-09-07

    Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(II) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO{sub 2} (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO{sub 2}. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption.

  7. Optical studies of cobalt implanted rutile TiO2 (110) surfaces

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Mishra, Indrani; Malik, V. K.; Mishra, N. C.; Kanjilal, D.; Varma, Shikha

    2016-11-01

    Present study investigates the photoabsorption properties of single crystal rutile TiO2 (110) surfaces after they have been implanted with low fluences of cobalt ions. The surfaces, after implantation, demonstrate fabrication of nanostructures and anisotropic nano-ripple patterns. Creation of oxygen vacancies (Ti3+ states), development of cobalt nano-clusters as well as band gap modifications have also been observed. Results presented here demonstrate that fabrication of self organized nanostructures, upon implantation, along with the development of oxygen vacancies and ligand field transitions of cobalt ion promote the enhancement of photo-absorbance in both UV (∼2 times) and visible (∼5 times) regimes. These investigations on nanostructured TiO2 surfaces can be important for photo-catalysis.

  8. Transport properties in single-crystalline rutile TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Chen, C. A.; Wang, W. C.; Tsai, H. Y.; Huang, Y. S.

    2011-11-01

    Electronic transport properties of the single-crystalline titanium dioxide (TiO2) nanorods (NRs) with single rutile phase have been investigated. The conductivity values for the individual TiO2 NRs grown by metal-organic chemical vapor deposition are in the range of 1-10 Ω-1 cm-1. The temperature-dependent measurement shows the presence of two shallow donor levels/bands with activation energies at 8 and 28 meV, respectively. On the photoconductivity (PC), the TiO2 NRs exhibit the much higher normalized PC gain and sensitive excitation-power dependence than the polycrystalline nanotubes. The results demonstrate the superior photoconduction efficiency and distinct mechanism in the monocrystalline one-dimensional TiO2 nanostructures in comparison to the polycrystalline or nanoporous counterparts.

  9. Fano resonances in photoconductivity spectra of hydrogen donors in ZnO and rutile

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.; Herklotz, F.; Weber, J.

    2015-02-01

    The results of photoconductivity studies of hydrogen donors in ZnO and rutile TiO2 are presented. It is shown that local vibrational modes of O-H bonds comprising donors in both semiconductors can be detected in photoconductivity spectra as Fano resonances at 3611 and 3290 cm-1 in the case of ZnO and TiO2, respectively. The frequencies of these features red-shift in energy down to 2668 (ZnO) and 2445 cm-1 (TiO2) if hydrogen is substituted by deuterium. Based on the frequency of the deuterium resonance it is concluded that the ionization energy of the hydrogen donor in TiO2 is less than 300 meV, which is in variance with predictions of theory. The reasons for such a discrepancy are discussed.

  10. Diffusion of CO{sub 2} on Rutile TiO{sub 2}(110) Surface

    SciTech Connect

    Lee, Junseok; Sorescu, Dan C.; Deng, Xingyi; Jordan, Kenneth D.

    2011-12-15

    The diffusion of CO{sub 2} molecules on a reduced rutile TiO{sub 2}(110)-(1×1) surface has been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM feature associated with a CO{sub 2} molecule at an oxygen vacancy (V{sub O}) becomes increasingly streaky with increasing temperature, indicating thermally activated CO{sub 2} diffusion from the V{sub O} site. From temperature-dependent tunneling current measurements, the barrier for diffusion of CO{sub 2} from the V{sub O} site is estimated to be 3.31 ± 0.23 kcal/mol. The corresponding value from the DFT calculations is 3.80 kcal/mol. In addition, the DFT calculations give a barrier for diffusion of CO{sub 2} along Ti rows of only 1.33 kcal/mol.

  11. First-principles DFT +GW study of oxygen vacancies in rutile TiO2

    NASA Astrophysics Data System (ADS)

    Malashevich, Andrei; Jain, Manish; Louie, Steven G.

    2014-02-01

    We perform first-principles calculations of the quasiparticle defect states, charge transition levels, and formation energies of oxygen vacancies in rutile titanium dioxide. The calculations are done within the recently developed combined DFT +GW formalism, including the necessary electrostatic corrections for the supercells with charged defects. We find the oxygen vacancy to be a negative U defect, where U is the defect electron addition energy. For Fermi level values below ˜2.8 eV (relative to the valence-band maximum), we find the +2 charge state of the vacancy to be the most stable, while above 2.8 eV we find that the neutral charge state is the most stable.

  12. Voltage-dependent resistance of undoped rutile, TiO{sub 2}, ceramics

    SciTech Connect

    Liu, Yang; West, Anthony R.

    2013-12-23

    Lightly reduced rutile ceramics are n-type semiconductors whose resistance increases reversibly by 1–2 orders of magnitude, depending on temperature, on application of a small dc bias of 10–100 V cm{sup −1}. A similar effect is seen on changing the oxygen partial pressure surrounding the sample during impedance measurements and the bias dependence is attributed to changes in the equilibria between various ionised oxygen species adsorbed on sample surfaces, leading to changes in the mobile electron concentration in the sample bulk. The increase in resistance of n-type TiO{sub 2} with dc bias mirrors the decrease in resistance seen with p-type semiconductors such as acceptor-doped BaTiO{sub 3} and represents an effect, which has certain memristive characteristics but also significant differences.

  13. Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase

    SciTech Connect

    Zhang, J. J.; He, H. Y.; Xie, Y.; Pan, B. C.

    2014-11-21

    The effect of the doped boron on the phase transition temperature between the monoclinic phase and the rutile phase of VO{sub 2} has been studied by performing first-principles calculations. It is found that the phase transition temperature decreases linearly with increasing the doping level of B in each system, no matter where the B atom is in the crystal. More importantly, the descent of the transition temperature is predicted to be as large as 83 K/at. % B, indicating that the boron concentration of only 0.5% can cause the phase transition at room temperature. These findings provide a new routine of modulating the phase transition of VO{sub 2} and pave a way for the practicality of VO{sub 2} as an energy-efficient green material.

  14. Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods

    NASA Astrophysics Data System (ADS)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Mallick, Tapas K.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Due to the lower cost, natural dye molecules are good alternatives for the ruthenium based sensitizers in the dye-sensitized solar cells. In this article, we have reported the natural sensitizer based dye-sensitized solar cells fabricated using TiO2 nanorods. Rutile phase TiO2 nanorods have been synthesized by template free hydrothermal method which results in TiO2 nanorods in the form of acropora corals. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The maximum conversion efficiency of 1.53% has been obtained for TiO2 nanorods based solar cells sensitized with the leaves of Camellia sinensis. The flowers of Sesbania grandiflora and roots of Rubia tinctorum sensitized TiO2 nanorods based solar cells exhibited an efficiency of 0.65% and 1.28% respectively.

  15. Heterogeneity and Disorder in Ti{1-x}Fe{y}O{2-d) Nanocrystal Rutile-based Flower Like Aggregates: Detection of Anatase

    SciTech Connect

    Bozin, E.S.; Kremenovic, A.; Antic, B.; Blanusa, J.; Comor, M.; Columban, P.; Mazerolles, L.

    2011-03-24

    Here we report results of systematic investigation of heterogeneity and disorder in Ti{sub 1-x}Fe{sub y}O{sub 2-d} nanorod rutile-based flowerlike aggregates. It was found that Ti{sub 1-x}Fe{sub y}O{sub 2-d} aggregates are composed of two crystalline phases: rutile as a dominant and anatase as a minor phase. Flowerlike aggregates were found to grow from an isometric core ca. 5-10 nm in diameter that was built from anatase and rutile nanorods ca. 5 x 100 nm that were grown on the anatase surface having base plane (001) intergrowth with an anatase plane. The direction of rutile nanorods growth, i.e., direction of the nanorod elongation, was [001]. Highly nonisometric rutile crystals produce anisotropic X-ray powder diffraction line broadening and doubling of vibrational bands in Raman spectra. Both these techniques confirmed nonisometric character of rutile crystals and gave a quantitative measure of crystal shape anisotropy in excellent agreement with high-resolution transmission electron microscopy measurements. In addition, from the atomic pair distribution function and Raman spectral analyses the level of vacancy concentration was determined in rutile and anatase phases of investigated samples.

  16. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  17. Trace-element characteristics of rutile in HP-UHP rocks from the Western Gneiss Complex, Norway: implications for element mobility and provenance studies

    NASA Astrophysics Data System (ADS)

    Enea, Florentina; Cuthbert, Simon; Storey, Craig; Marschall, Horst

    2014-05-01

    Trace element compositions of rutiles from the Western Gneiss Complex of the Norwegian Caledonides, a giant HP-UHP terrane representing a transiently subducted continental margin. Trace element characterisation (V, Cr, Zr, Nb, Mo, Sn, Sb, Hf, Ta, W and U) was used to fingerprint the geochemical features of rutile in both mafic and pelitic source rocks that span a range of P-T conditions from 550°C, 1.6GPa to 850°C, 4.5GPa. The results provide the first large-scale use of the Zr-in-rutile geothermometer in the WGC, and this method is shown to be more reliable than exchange thermometers based on the major phases in these rocks. On Nb versus Cr plots, which have been used to discriminate mafic from pelitic rutiles in other HP terranes, WGC rutiles that equilibrated below 650°C successfully discriminate mafic from pelitic HP and UHP rutiles. However, those equilibrated above 650°C show mafic eclogite rutile compositions overlapping into the pelite field. This indicates trace element mixing above 650°C due to mobility of fluids or melts and their migration from the predominant felsic host rocks into the eclogite bodies. This finding is supported by distinct trace-element differences between hydrothermal vein rutiles in HP versus UHP eclogites from the WGC, and is also consistent with previous studies of Sr isotopic compositions in WGC eclogites. In addition, the results have implications for the the use of Nb/Cr plots to discriminate mafic from pelitic rutile in sedimentary provenance studies, as some rutiles of mafic eclogitic origin will tend to be misrepresented. Extremely niobian rutiles (up to 118,000 μg/g) were found in enigmatic eclogites enclosed within a large, mantle-derived, orogenic peridotite massif. The reasons for this are not yet fully understood, but suggest either metasomatism after Scandian tectonic emplacement into the subducted continental crust by fluids sourced from the nearby felsic gneisses, or by deep mantle (carbonatitic?) fluids during

  18. Electrical switching effect of a single-unit-cell CrO2 layer on rutile TiO2 surface

    NASA Astrophysics Data System (ADS)

    Li, Si-Da; Liu, Bang-Gui

    2014-03-01

    Rutile CrO2 is the most important half-metallic material with nearly 100% spin polarization at the Fermi level, and rutile TiO2 is a wide-gap semiconductor with many applications. Here, we show through first-principles investigation that a single-unit-cell CrO2 layer on rutile TiO2 (001) surface is ferromagnetic and semiconductive with a gap of 0.54 eV, and its electronic state transits abruptly to a typical metallic state when an electrical field is applied. Consequently, this makes an interesting electrical switching effect which may be useful in designing spintronic devices.

  19. Deducing the depth of origin of granulite xenoliths from zircon-rutile thermometry: a case study from Tanzania

    NASA Astrophysics Data System (ADS)

    Aeiker, D. M.; Mansur, A. T.; Rudnick, R. L.; Picolli, P.; McDonough, W. F.

    2006-05-01

    We have applied the zircon-rutile geothermometer of Watson et al. (2006) to granulite-facies xenoliths and high-grade surface metamorphic rocks from the Mozambique Fold Belt (MFB), Tanzania, in order to determine whether the xenoliths derive from the present-day lower crust or from near-surface granulite terranes. Diffusion of Ti in zircon is expected to be exceedingly slow and reflect the temperature at which the zircons grew. In contrast, Zr diffuses relatively rapidly in rutile, and, as cooling rates decrease, the blocking temperature of rutile systematically decreases. Thus, in granulites that experienced very slow cooling (such as those in the present-day lower crust), Zr-in-rutile temperatures should be significantly lower than the temperatures recorded by coexisting zircons. In contrast, granulite-facies rocks found at or near the surface experienced uplift during the final phase of the orogeny, and may have cooled at a markedly faster rate (5 to 10°C/m.y.). In this case, zircon and rutile are expected to return similar temperatures (i.e., within 30-50°C, assuming a peak T of 800°C). We have measured Zr in rutile using EPMA and Ti in zircon using LA-ICP-MS from three granulite-facies xenoliths carried in rift-related basalts erupted through the MFB (two from the Kisite locality) and on the margin of the Tanzanian craton (one from the Labait locality). The two xenoliths from the MFB show contrasting results: a gt-bio orthogneiss yields zircon temperatures ranging from 780 to 1030°C (mean = 850 ± 30°C, 1 σ), which are significantly higher than those recorded in coexisting rutile (620 to 750°C, mean = 680 ± 23°C). In contrast, a gt-opx mafic granulite from Kisite yields zircon and rutile temperatures that are indistinguishable from each other at 780 ± 30°C; these temperatures are also notably cooler than those from zircon in the gt-bio orthogneiss. It thus appears that the orthogneiss derived from the present-day lower crust (and cooled very slowly

  20. Zirconium-in-Rutile thermometry: increasing resolution of temperatures in the Dulan ultrahigh-pressure region, northwest China

    NASA Astrophysics Data System (ADS)

    Regel, M. E.; Mattinson, C. G.

    2012-12-01

    The North Qaidam ultrahigh-pressure (UHP) terrane in northwestern China contains the approximately 140 km2 Dulan UHP region, with UHP eclogites outcropping in the east and high-pressure (HP) granulites outcropping in the west. Zirconium (Zr)-in-Rutile (Rt) thermometry of six representative samples (five eclogites and one granulite) was completed to determine the spatial variation of temperatures within the east-west oriented Dulan UHP belt. Previous Fe2+-Mg exchange thermometry from the Dulan UHP and HP rocks provides a temperature range of 620 - 930 °C, however; the large range of temperatures and large uncertainty prevented a detailed understanding of P-T histories and exhumation paths. Peak eclogite pressures have been estimated at 26-32 kbars, and granulite pressures at ~14 kbars. 20 - 40 electron microprobe spots from both matrix and inclusion Rt crystals were selected from polished thin sections. Fe content increases weakly with temperature, while Si decreases weakly with increasing temperature. Cr and Nb do not show consistent temperature trends. Inclusion rutiles in two samples record temperatures ~40-50 °C lower than matrix rutiles of the same samples. This preservation of prograde metamorphic conditions suggests that the temperatures increased during development of the peak eclogite assemblage. Inclusion rutile temperatures in four samples match the matrix rutile, suggesting recrystallization of the eclogites during peak metamorphic conditions. The granulite shows two temperature populations: 1) ~800 °C, and 2) ~750 - 800 °C. The lower temperature rutiles are located near a retrogressed fracture filled with secondary minerals. From the east to the west, the eclogites show peak temperatures of 670 °C, 662 °C, 691 °C, and 711 °C, respectively, while the granulite sample has an average peak temperature of ~800 °C. The UHP eclogites preserve a small temperature gradient, but the temperature discontinuity between the UHP eclogites in the east and the

  1. Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile

    NASA Astrophysics Data System (ADS)

    Kordouli, Eleana; Dracopoulos, Vassileios; Vaimakis, Tiverios; Bourikas, Kyriakos; Lycourghiotis, Alexis; Kordulis, Christos

    2015-12-01

    The effect of calcination temperature and time on structural and textural changes of two commercial TiO2 samples (pure anatase and a mixture of anatase and rutile) has been investigated using N2 physisorption, ex-situ and in-situ X-ray powder diffraction, differential scanning calorimetry and UV-vis diffuse reflectance spectroscopy. The increase of the calcination temperature (up to 700 °C) and time (up to 8 h) causes only textural changes in the pure anatase, whereas a transformation of the anatase to rutile takes place, in addition, in the mixed titania (containing anatase and rutile). The textural changes observed in pure anatase sample were attributed to solid state diffusion leading to an increase in the size of anatase nanocrystals, through sintering. Thus, the mean pore diameter shifts to higher values and the pore volume and specific surface area decrease. The successful application of the Johnson-Mehl-Avrami-Kolmogorov model in the kinetic data concerning the pure anatase indicates a mass transfer control of sintering process. Similar textural changes were also observed upon calcination of the sample containing anatase and rutile. In this case not only sintering but the anatase to rutile transformation contributes also to the textural changes. Kinetic analysis showed that the rutile nanocrystals in the mixed titania served as seed for by-passing the high energy barrier nucleation step allowing/facilitating thus the anatase to rutile transformation. A fine control of the anatase to rutile ratio and thus of energy-gap and the population of hetero-junctions may be obtained by adjusting the calcination temperature and time.

  2. Effect of cobalt implantation on structural and optical properties of rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Malik, V. K.; Mishra, N. C.; Kanjilal, D.; Varma, Shikha

    2016-07-01

    Photo-absorption properties of Co implantation in rutile TiO2(110) have been investigated. Nearly five times enhancement in absorbance of visible light and 1.7 times increase in UV light have been observed. Formation of crystalline CoTiO3 and Ti1- x Co x O2 phases at high and low fluences, respectively, demonstrates a crucial role in increasing the photo-absorbance, especially in the visible regime. Ti-rich nanostructures and Ti3+ vacancies that develop after ion implantation also reveal significant contribution in these observations. These Co implanted rutile TiO2 surfaces will be useful for visible light photo-catalysis.

  3. Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile.

    PubMed

    Shen, Xiaojun; Zhang, Jinlong; Tian, Baozhu

    2011-08-30

    Titanium oxide with different ratios of anatase to rutile has been prepared by the microemulsion-mediated solvothermal method. The resulting samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectra, transmission electron microscopy and Brunauer-Emmett-Teller analysis. The contents of anatase and rutile in the TiO(2) particles have been successfully controlled by simply adjusting the amount of urea in the aqueous phase of the microemulsion. Both the degradation of Rhodamine B in aqueous solutions and mineralization of TOC revealed that the catalyst containing 47.6% anatase have presented the highest photocatalytic activity. A proposed mechanism is discussed to interpret the evolution of the phases based on the effect of different amount of urea. PMID:21684078

  4. Photocatalytic Activity of Bulk TiO{sub 2} Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy

    SciTech Connect

    Xu Mingchun; Gao Youkun; Moreno, Elias Martinez; Kunst, Marinus; Muhler, Martin; Wang Yuemin; Idriss, Hicham; Woell, Christof

    2011-04-01

    A systematic study on the photocatalytic activity of well-defined, macroscopic bulk single-crystal TiO{sub 2} anatase and rutile samples has been carried out, which allows us to link photoreactions at surfaces of well-defined oxide semiconductors to an important bulk property with regard to photochemistry, the life time of e-h pairs generated in the bulk of the oxides by photon absorption. The anatase (101) surface shows a substantially higher activity, by an order of magnitude, for CO photo-oxidation to CO{sub 2} than the rutile (110) surface. This surprisingly large difference in activity tracks the bulk e-h pair lifetime difference for the two TiO{sub 2} modifications as determined by contactless transient photoconductance measurements on the corresponding bulk materials.

  5. A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Jijith, M.; Gummaluri, Venkata Siva; Vijayan, C.

    2016-05-01

    Rutile TiO2 microflowers with three-dimensional spiky flower like architecture at the nanometer level are obtained by a fast single step surfactant free ethylene glycol based solvothermal scheme of synthesis. These structures are characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Raman spectroscopy. These measurements confirm Rutile phase of TiO2 flowers with very high crystallinity. Photodegradation of Rhodamine B with UV exposure is investigated by UV-Visible spectroscopy measurements in the presence of these samples. They are shown to have high photocatalytic activity due to the large surface area contributed by the highly dense spiky nanostructures. The plasmonic (Au) loading in these structures are shown to significantly enhance the photocatalytic activity.

  6. Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Peisheng; Cai, Weiping; Fang, Ming; Li, Zhigang; Zeng, Haibo; Hu, Jinlian; Luo, Xiangdong; Jing, Weiping

    2009-07-01

    TiO2 nanoparticles were prepared by one-step pulsed laser ablation of a titanium target immersed in a poly-(vinylpyrrolidone) solution at room temperature. The products were systematically characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The results indicated that the rutile TiO2 nanocrystalline particles were one-step synthesized at room temperature and the mean size in diameter is about 50 nm with a narrow size distribution. A probable formation process was proposed on the basis of the microstructure and the instantaneous plasma plume induced by the laser. Photocatalytic activity was monitored by degradation of a methylene blue solution. The as-prepared rutile TiO2 nanoparticles demonstrate a good photocatalytic performance. This work shows that pulsed laser ablation in liquid media is a good method to synthesize some nanosized materials which are difficult to produce by other conventional methods.

  7. Concentration-driven phase control for low temperature synthesis of phase-pure anatase and rutile titanium oxide.

    PubMed

    Wang, Zhifeng; Xiao, Chunyan; Yamada, Shuhei; Yoshinaga, Kohji; Bu, Xiu R; Zhang, Ming

    2015-06-15

    It is highly desirable to develop controlled synthetic methods at low temperature (<100 °C) for defined phases of titanium oxide nanoparticle. We present here a simple low temperature approach which is based on the peroxide route. This approach allows the preparation of phase-pure rutile and anatase without the use of any additives or surfactants or external acids. The formation of crystalline phases is found to be dependent on reaction temperature and highly dependent on concentration. Phase-pure rutile is obtained in two concentration zones while phase-pure anatase is obtained in one concentration zone. The relationship between phases and reaction conditions (concentration and temperature) fits well with the nucleation diffusion rate model. PMID:25746180

  8. The growth of TiO 2 (rutile) single crystals using the FZ method under high oxygen pressure

    NASA Astrophysics Data System (ADS)

    Park, Jong Kwan; Shim, Kwang Bo; Auh, Keun Ho; Tanaka, Isao

    2002-04-01

    High purity TiO 2 (rutile) single crystals were grown using the floating zone process by applying oxygen pressures of 0.3, 0.4, 0.5, and 0.8 MPa, respectively. All of the as-grown single crystals were dark blue and transparent, and differed only slightly from their appearance by observation of the naked eye. Crystals grown under high oxygen pressure had just a few low-angle grain boundaries, except for the periphery of the crystal, compared to the rutile crystals grown under ambient oxygen pressure. In particular, a single crystal grown under an oxygen pressure of 0.5 MPa contains no low-angle grain boundaries, indicating that it can be used for optical devices.

  9. The effect of concentration on Li diffusivity and conductivity in rutile TiO2.

    PubMed

    Yildirim, Handan; Greeley, Jeffrey P; Sankaranarayanan, Subramanian K R S

    2012-04-01

    Li transport characteristics are studied by means of density functional theory (DFT) and molecular dynamics (MD) simulations in order to investigate concentration effects on Li chemical diffusivity and conductivity in TiO(2) rutile. Our MD simulations predict one-dimensional diffusion of Li ions via jumps between the octahedral sites along the channels parallel to the c-axis. The diffusion barrier and diffusion coefficient (at room temperature) for the isolated Li, determined by means of DFT calculations, correspond to 60 meV and 9.1 × 10(-6) cm(2) s(-1), respectively. Such a small barrier suggests rapid mass transport along the channels. MD simulations are performed to evaluate the concentration dependent diffusivity profiles. The changes in Li energetics and dynamics are studied as a function of Li content, which is varied primarily between 10% and 50%. In addition, we consider a couple of compositions over 50% although this is above the intercalation limit. Our results suggest that Li diffusivity is strongly dependent on the Li ∶ TiO(2) ratio, and it decreases with increasing Li concentration. For instance, at room temperature, we find Li diffusivity for high concentrations (50% Li) to be three orders of magnitude slower than that for lower concentrations (10% Li). Our analyses on the energetics and dynamics suggest that the changes in the diffusivities originate from successive increases in the barriers with increasing concentration. The decrease in diffusivity as a function of increasing Li content is attributed to the fact that additional Li ions successively block the energetically preferred vacant sites along the channels. Our analyses also show that increasing Li concentration enhances the Li-Li repulsion within the channels, and as a result, diffusion is hindered. We also compare concentration-dependent diffusivities for Li diffusion in anatase, rutile and amorphous TiO(2). Interestingly, we find differing concentration dependence of the

  10. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  11. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Haiying; Zhou, Qiwen; Kong, Mengqi; Ye, Haitao; Yang, Gang

    2013-10-01

    Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO2 as an anode for lithium storage with improved electrode performance.Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800 °C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO2 as an anode for lithium storage with improved electrode performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02819d

  12. The temperature dependence of the nuclear quadrupole interaction of 44Ti(EC)44Sc in rutile

    NASA Astrophysics Data System (ADS)

    Butz, T.; Vianden, R.

    2013-05-01

    The temperature dependence of the Nuclear Quadrupole Interaction on 44Sc in rutile was measured by Time Differential Perturbed Angular Correlation in the temperature range from 300 K to 945 K. Whereas \\upomega _Q = eQV_zz/4hbar with Vzz denoting the largest component of the electric field gradient tensor in magnitude increases with increasing temperature, the asymmetry parameter η remains essentially constant. This observation fits into the systematic with other probes provided the sign of Vzz is negative.

  13. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    PubMed

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed. PMID:19928267

  14. Low temperature one-step synthesis of rutile TiO{sub 2}/BiOCl composites with enhanced photocatalytic activity

    SciTech Connect

    Duo, Fangfang; Wang, Yawen Fan, Caimei; Mao, Xiaoming; Zhang, Xiaochao; Wang, Yunfang; Liu, Jianxin

    2015-01-15

    The rutile TiO{sub 2}/BiOCl composites were successfully fabricated by a facile one-step hydrolysis method at low temperature (50 °C). The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, and X-ray photoelectron spectroscopy measurements were employed to characterize the phase structures, morphologies, optical properties, surface areas, and electronic state of the samples. The rutile TiO{sub 2}/BiOCl composites exhibited higher photocatalytic activity than pure BiOCl and rutile TiO{sub 2} for the degradation of phenol under artificial solar light irradiation. In addition, the photocatalytic mechanism has also been investigated and discussed. The enhanced photocatalytic performance of rutile TiO{sub 2}/BiOCl composites is closely related to the heterojunctions between BiOCl and rutile TiO{sub 2}, which can not only broaden the light adsorption range of BiOCl but also improve the electron–hole separation efficiency under artificial solar light irradiation. - Highlights: • Rutile TiO{sub 2}/BiOCl was prepared by a low temperature one-step hydrolysis method. • The synthetic method is quite convenient and energy-saving. • The composites exhibit enhanced photocatalytic activity on phenol degradation. • The high photocatalytic activity relates to the heterojunctions of BiOCl and TiO{sub 2}.

  15. Molecular dynamics study on surface structure and surface energy of rutile TiO 2 (1 1 0)

    NASA Astrophysics Data System (ADS)

    Song, Dai-Ping; Liang, Ying-Chun; Chen, Ming-Jun; Bai, Qing-Shun

    2009-03-01

    The formula for surface energy was modified in accordance with the slab model of molecular dynamics (MDs) simulations, and MD simulations were performed to investigate the relaxed structure and surface energy of perfect and pit rutile TiO 2(1 1 0). Simulation results indicate that the slab with a surface more than four layers away from the fixed layer expresses well the surface characteristics of rutile TiO 2 (1 1 0) surface; and the surface energy of perfect rutile TiO 2 (1 1 0) surface converges to 1.801±0.001 J m -2. The study on perfect and pit slab models proves the effectiveness of the modified formula for surface energy. Moreover, the surface energy of pit surface is higher than that of perfect surface and exhibits an upper-concave parabolic increase and a step-like increase with increasing the number of units deleted along [0 0 1] and [1 1 0], respectively. Therefore, in order to obtain a higher surface energy, the direction along which atoms are cut out should be chosen in accordance with the pit sizes: [ 1¯10] direction for a small pit size and [0 0 1] direction for a big pit size; or alternatively the odd units of atoms along [1 1 0] direction are removed.

  16. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

    NASA Astrophysics Data System (ADS)

    Lee, Go-Woon; Ambade, Swapnil B.; Cho, Young-Jin; Mane, Rajaram S.; Shashikala, V.; Yadav, Jyotiprakash; Gaikwad, Rajendra S.; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-01

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g - 1, 0.0964 cm3 g - 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

  17. Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

    PubMed

    Yu, Kai; Huang, Linyue; Lou, Lan-Lan; Chang, Yue; Dong, Yanling; Wang, Huan; Liu, Shuangxi

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded. PMID:25323028

  18. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO 2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO 2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO 2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  19. TiO2 nanocrystals coated rutile nanorod microspheres as the scattering layers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2013-12-01

    Anatase TiO2 nanocrystals were deposited on the rutile TiO2 nanorod microspheres (NCRNMs) via the controlled hydrolysis and condensation of titanium (IV) bis(ammonium lactato) dihydroxide (TALH) in the presence of polyethyleneimine (PEI). The anatase TiO2 nanocrystals prevented the growth of rutile TiO2 nanorod microspheres from sintering process. By coating of anatase nanocrystals, the decreasing of specific surface area of rutile TiO2 nanorod microspheres (RNMs) were efficiently inhibited. The specific surface area of NCRNM was 47.0 m2/g after sintering at 500 °C,which was 50% increment compared to RNM. The dye sensitized solar cells (DSSCs) were assembled using the semitransparent underlayers and NCRNM scattering layers as the photoanodes. The incident photon to current conversion efficiency (IPCE) analysis showed the DSSCs in the presence of NCRNMs adsorbed more dye molecules while kept a high light-harvesting efficiency. The cell covered with the NCRNM scattering layer had the efficiency of 7.33%, which was 20% increment compared to that of the absence one.

  20. Self assembled DC sputtered nanostructured rutile TiO₂ platform for bisphenol A detection.

    PubMed

    Singh, Nawab; Reza, K Kamil; Ali, Md Azahar; Agrawal, Ved Varun; Biradar, A M

    2015-06-15

    A novel biosensor platform comprising of the functionalized sputtered rutile nanostructured titanium dioxide (nTiO2) for rapid detection of estrogenic substance (bisphenol A) has been proposed. The direct current (DC) sputtering of titanium (Ti) on glass substrate has been converted to ordered nanostructured TiO2 film via oxidation. The nanostructured TiO2 surface was functionalized with self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde. The enzyme molecule, tyrosinase (Tyrs) has been covalently immobilized on the surface of APTES modified nanostructured TiO2 film. To investigate the crystalline structure and surface morphology of functionalized nTiO2/Ti electrode, the X-ray diffraction, scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy have been carried out. This impedimetric biosensor exhibits a comparable sensitivity (361.9 kΩ/µM) in a wide range of detection (0.01-1.0 µM) and a response time of 250 s for bisphenol A (BPA) monitoring. This novel manufacturing process for nTiO2 film is cheap, practical and safer for functionalization with SAM and glutaraldehyde to improve the biosensor efficacy. The strong protein absorption capability of the nTiO2 surface demonstrates an excellent electrochemical biosensor and could be useful for the detection of other phenolic compounds. PMID:25656780

  1. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles

    SciTech Connect

    Wu, M.; Long, J.; Huang, A.; Luo, Y.; Feng, S.; Xu, R.

    1999-12-21

    Uniform nanoparticles of rutile and anatase were prepared, respectively, by a new approach, a microemulsion-mediated method, in which the microemulsion medium was further treated by hydrothermal reaction. Herein, the combined procedure of microemulsion and hydrothermal synthesis to prepare nanoparticles is referred to as a microemulsion-mediated hydrothermal (MMH) method. This MMH method could lead to the formation of crystalline titania powders under much milder reaction conditions than the normally reported microemulsion-mediated methods, in which posttreatment of calcination was necessary. In this work, a kind of solution was formed by dissolving tetrabutyl titanate into hydrochloric acid or nitric acid, and the solution was dispersed in an organic phase for the preparation of the microemulsion medium. The aqueous cores of water/Triton X-100/hexanol/cyclohexane microemulsions were used as constrained microreactors for a controlled growth of titania particles under hydrothermal conditions. The product of hydrothermal synthesis was separated and dried for characterization. The phase components and the morphologies and grain sizes of products were determined by X-ray diffraction (XRD) and by transmission electron microscopy (TEM). The effects of changing the variables of the reaction conditions, such as the use of acid, the concentrations of acid, the reaction temperatures, and/or the reaction times on the phases and morphologies of the titania product are described.

  2. Adsorption of small hydrocarbons on rutile TiO2(110)

    DOE PAGESBeta

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1–C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption ofmore » n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2–C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  3. One-step synthesis of titanium oxide nanocrystal- rutile by hydrothermal method

    SciTech Connect

    Yan, Evyan Yang Chia; Zakaria, Sarani; Chia, Chin Hua

    2014-09-03

    Pure rutile phase titanium oxides (TiO{sub 2}) nanocrystals were synthesized via hydrothermal method with titanium tetrachloride (TiCl{sub 4}) and water (H{sub 2}O) treated in an autoclave. The particle size and phase assemblages were characterized using Scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Band gap energy (E{sub g}) of the nanocrystals was estimated from the Ultra violet – visible light (UV-vis) absorption spectra. It was demonstrated that TiO{sub 2} nanocrystals can be prepared through increasing of temperature and period of treatment. It is believed that the presence of acid chloride (HCl) as by-product during the hydrolysis played an important role in controlling the growth of morphology and crystal structures. The E{sub g} of the samples were estimated from the plot of modified Kubelka-Munk function were in the range of 3.04 – 3.26eV for the samples synthesized at temperature ranging from 50 to 200°C for 16 hours.

  4. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle

    PubMed

    Rudnick; Barth; Horn; McDonough

    2000-01-14

    A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust and depleted mantle both have subchondritic Nb/Ta, Nb/La, and Ti/Zr, which requires the existence of an additional reservoir with superchondritic ratios, such as refractory eclogite produced by slab melting. Trace element compositions of minerals in xenolithic eclogites derived from cratonic lithospheric mantle show that rutile dominates the budget of Nb and Ta in the eclogites and imparts a superchondritic Nb/Ta, Nb/La, and Ti/Zr to the whole rocks. About 1 to 6 percent by weight of eclogite is required to solve the mass imbalance in the silicate Earth, and this reservoir must have an Nb concentration >/= 2 parts per million, Nb/La >/= 1.2, and Nb/Ta between 19 and 37-values that overlap those of the xenolithic eclogites. As the mass of eclogite in the continental lithosphere is significantly lower than this, much of this material may reside in the lower mantle, perhaps as deep as the core-mantle boundary. PMID:10634776

  5. One-step synthesis of titanium oxide nanocrystal- rutile by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Yan, Evyan Yang Chia; Zakaria, Sarani; Chia, Chin Hua

    2014-09-01

    Pure rutile phase titanium oxides (TiO2) nanocrystals were synthesized via hydrothermal method with titanium tetrachloride (TiCl4) and water (H2O) treated in an autoclave. The particle size and phase assemblages were characterized using Scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Band gap energy (Eg) of the nanocrystals was estimated from the Ultra violet - visible light (UV-vis) absorption spectra. It was demonstrated that TiO2 nanocrystals can be prepared through increasing of temperature and period of treatment. It is believed that the presence of acid chloride (HCl) as by-product during the hydrolysis played an important role in controlling the growth of morphology and crystal structures. The Eg of the samples were estimated from the plot of modified Kubelka-Munk function were in the range of 3.04 - 3.26eV for the samples synthesized at temperature ranging from 50 to 200°C for 16 hours.

  6. Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek

    2013-08-07

    The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate well with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.

  7. Vacancy Assisted Diffusion of Alkoxy Species on Rutile TiO2(110)

    SciTech Connect

    Zhang, Zhenrong; Rousseau, Roger J.; Gong, Jinlong; Li, Shao-Chun; Kay, Bruce D.; Ge, Qingfeng; Dohnalek, Zdenek

    2008-10-10

    The catalytic and photocatalytic properties of TiO2 have attracted widespread interest in a variety of applications, such as air purification, self-cleaning glass, water splitting, solar cells and wastewater treatment. In many cases the catalytic chemistry of reducible oxides is dominated by oxygen vacancy sites. For reduced rutile TiO2(110)-1×1, the bridge-bonded oxygen (BBO) vacancies (BBOV’s) are the most prevalent surface defects and, as has been shown, they can readily dissociate small molecules such as H2O, O2, and alcohols.Here we demonstrate for the first time that BBOV’s can also catalyze the transport of adsorbed species which is a key ingredient in heterogeneous catalytic processes. Specifically, we show that at elevated temperatures (≥ 400 K), mobile BBOV’s can assist the diffusion of alkoxy groups formed by the dissociation of alcohols at BBOV’s. This type of mechanism is likely applicable to other adsorbates bound to BBO atoms of TiO2(110).

  8. Adsorption of small hydrocarbons on rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnálek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  9. Characterization of CO2 behavior on rutile TiO2 (110) surface

    SciTech Connect

    Yoon, Yeohoon

    2013-06-03

    The dynamic behavior of carbon dioxide (CO2) adsorbed on the rutile TiO2 (110) surface is studied by dispersion-corrected density functional theory (DFT) and combined ab initio molecular dynamics (AIMD). Understanding he behavior of CO2 is important regarding possible applications for treating CO2 in current environmental problems along with the consideration as a renewable energy source. Concerning the ability as a redusible support of TiO2 surface, a fundamental understanding of the interaction between CO2 and TiO2 surface will help extending the possibile applications. In the current study, CO2 interaction and dynamics behavior on the TiO2 surface is characterized including he effect of the oxygen vacancy (OV) defect. Also the coverage dependence of CO2 behavior is investigated since more contribution of the intermolecular interaction among CO2 molecules can be expected as the coverage increasing. This work is supported by the US Department of Energy (DOE), Office of Basic Science, Division of Chemical Sciences, Geosicences and Biosciences. Pacific Northwest National Laboratory (PNNL) is multiprogram national laboratory operated for DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  10. Localized states induced by an oxygen vacancy in rutile TiO{sub 2}

    SciTech Connect

    Lin, Chungwei; Shin, Donghan; Demkov, Alexander A.

    2015-06-14

    Using density functional theory and model Hamiltonian analysis, we investigate the localized states induced by an oxygen vacancy in rutile TiO{sub 2}. We identify two classes of localized states—the hybrid and the polaron. The hybrid state is caused by the orbital overlap between three Ti atoms next to a vacancy and is mainly derived from the Ti e{sub g} orbitals. The polaron state is caused by the local lattice distortion and is mainly composed of one particular t{sub 2g} orbital from a single Ti atom. The first principles calculation shows that the polaron state is energetically favored, and the tight-binding analysis reveals the underlying connection between the bulk band structure and the orbital character of the polaron. The magnetic coupling between two nearby polaron states is found to be ferromagnetic. Using this picture, we analyze the results of recent theoretical calculations and experiments and discuss the connection to vacancies in SrTiO{sub 3}.

  11. Effective dose in SMAW and FCAW welding processes using rutile consumables.

    PubMed

    Herranz, M; Rozas, S; Idoeta, R; Alegría, N

    2014-03-01

    The shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes use covered electrodes and flux cored wire as consumables. Among these consumables, ones containing rutile are the most widely used, and since they have a considerable natural radioactive content, they can be considered as NORM (naturally occurring radioactive material). To calculate the effective dose on workers during their use in a conservative situation, samples of slag and aerosols and particles emitted or deposited during welding were taken and measured by gamma, alpha and beta spectrometry. An analytical method was also developed for estimating the activity concentration of radionuclides in the inhaled air. (222)Rn activity concentration was also assessed. With all these data, internal and external doses were calculated. The results show that external doses are negligible in comparison with internal ones, which do not exceed 1 mSv yr(-1), either in this conservative situation or in any other more favourable one. Radionuclides after Rn in the radioactive natural series are emitted at the same activity concentration to the atmosphere, this being around 17 times higher than that corresponding to radionuclides before Rn. Taking into account these conclusions and the analytical method developed, it can be concluded that one way to assess the activity concentration of natural radionuclides in inhaled air and hence effective doses could be the early gamma-ray spectrometry of aerosols and particles sampled during the welding process. PMID:24334773

  12. Structure determination of the rutile-TiO2(110)-(1 × 2) surface using total-reflection high-energy positron diffraction (TRHEPD).

    PubMed

    Mochizuki, I; Ariga, H; Fukaya, Y; Wada, K; Maekawa, M; Kawasuso, A; Shidara, T; Asakura, K; Hyodo, T

    2016-03-14

    The exact structure of the rutile-TiO2(110)-(1 × 2) surface, which had been under debate over the past 30 years, was investigated using the newly developed technique of total-reflection high-energy positron diffraction (TRHEPD), which is a positron counterpart of reflection high-energy electron diffraction (RHEED). The rocking-curves for the 00-spot obtained from the experimental diffraction patterns were compared to the curves for various models calculated with a full-dynamical theory. It was found that the rocking-curves matched those for a surface consisting of a Ti2O3 configuration, originally suggested by Onishi and Iwasawa [H. Onishi and Y. Iwasawa, Surf. Sci., 1994, 313, L783], but with a further modification of atomic positions close to the ones proposed by Wang et al. [Q. Wang, A. R. Oganov, Q. Zhu and X. F. Zhou, Phys. Rev. Lett., 2014, 113, 266101]. This result demonstrates that TRHEPD can distinguish between the existence and absence of the oxygen atoms on the topmost surface, and between the Ti atoms residing in positions at the interstitial-vertical sites and those at interstitial-horizontal sites. PMID:26884096

  13. Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO 2 (110) by first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sebbari, K.; Domain, C.; Roques, J.; Perron, H.; Simoni, E.; Catalette, H.

    2011-07-01

    Density Functional Theory (DFT), based on both static and Born-Oppenheimer Molecular Dynamics approaches, has been used to investigate the effect of hydrogen bonds and temperature on the water monolayer adsorption on the rutile TiO2 (110) face. It was demonstrated that the difference between some previous theoretical results and experimental data is due to too slim slab thickness model and/or too small surface area. According to the present static calculations, water monolayer adsorbs molecularly on the five-fold titanium atoms of an optimised five-layer slab thickness, due to the stabilising lateral hydrogen bonds between molecules. From the molecular dynamics simulations, two adsorption mechanisms were described as a function of temperature. Finally, it was pointed out that the dynamics of water adsorption is strongly influenced by the structural model used. When temperature increases, the monolayer dissociates gradually. However, because of the periodic boundary conditions, the 1 × 1 surface unit needs to be extended to at least 2 × 5 to get an accurate representation of the monolayer dissociation ratio. In these conditions, this ratio is around 20%, 25% and 33% at 270, 350 and 425 K, respectively.

  14. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    PubMed

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. PMID:25703177

  15. Precipitation of Oriented Rutile and Ilmenite Needles in Garnet, Northeastern Connecticut, USA: Evidence for Extreme Metamorphic Conditions?

    NASA Astrophysics Data System (ADS)

    Ague, J. J.; Eckert, J. O.

    2011-12-01

    We report the discovery of oriented needles of rutile and, less commonly, ilmenite in the cores of garnets from northeastern CT, USA. The rocks preserve granulite facies mineral assemblages, form part of the Merrimack Synclinorium, and underwent metamorphism and deformation during the Acadian orogeny. The needles appear identical to those reported from a number of extreme P-T environments worldwide, including UHP metamorphic rocks, high-P granulites, and garnet peridotites. The needles are predominantly oriented along <111> directions in garnet. The long axes of the rutile needles commonly do not go extinct parallel to the cross hairs under cross-polarized light (e.g., Griffin et al., 1971). This anomalous extinction indicates that the needles do not preserve a specific crystallographic relationship with their garnet hosts (e.g., Hwang et al., 2007). The needles range from a few hundred nm to a few um in diameter, and can be mm-scale in length. Micrometer-scale plates of rutile, srilankite and crichtonite have also been observed in some garnets together with the Fe-Ti oxide needles. Several origins for the needles have been proposed in the literature; we investigate the hypothesis that they precipitated in situ from originally Ti-rich garnet. Chemical profiles across garnets indicate that some retain Ti zoning, with elevated-Ti concentrations in the cores dropping to low values in the rims. For these zoned garnets, high-resolution, 2-D chemical mapping using the JEOL JXA-8530F field emission gun electron microprobe at Yale University reveals that the needles are surrounded by well-defined Ti-depletion halos. Chemical profiles also document strong depletions of Cr (which is present in both rutile and ilmenite) directly adjacent to needles. The observed Ti-depletions demonstrate that the needles precipitated from Ti-bearing garnet, probably during cooling and/or decompression associated with exhumation. The rutile precipitates must be largely incoherent with respect

  16. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Rongbo; Tshabalala, Mandla A.; Li, Qingyu; Wang, Hongyan

    2015-02-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution. The morphology and the crystal structure of TiO2 coated on the wood surface were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The TiO2 morphology on the wood surface could be tuned by simply changing either the reaction time or pH value of the reaction mixture. After modification with perfluorodecyltriethoxysilane (PFDTS), the water contact angle (WCA) of the TiO2-treated wood (T1) surface increased to 140.0 ± 4.2°, which indicated a highly hydrophobic wood surface. In addition, compared with untreated control wood, PFDTS-TiO2 treatment (PFDTS-T1-treated) not only reduced liquid water uptake, but also delayed the onset of water saturation point of the wood substrate. The weight change of PFDTS-T1-treated wood after 24 h of water immersion was 19.3%, compared to 81.3% for the untreated control wood. After 867 h of water immersion, the weight change for the treated and untreated wood specimens was 117.1%, and 155.1%, respectively. The untreated control wood reached the steady state after 187 h, while the PFDTS-T1-treated wood did not reach the steady state until after 600 h of immersion.

  17. Adsorption of small hydrocarbons on rutile TiO2(110)

    SciTech Connect

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1–C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2–C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  18. Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings.

    PubMed

    Silva, Sónia; Oliveira, Helena; Craveiro, Sandra C; Calado, António J; Santos, Conceição

    2016-05-01

    TiO2-nanoparticles (TiO2-NPs) are increasingly released to the environment. The present work investigates the cytotoxicity, genotoxicity and uptake of TiO2-NPs in Triticum aestivum. Wheat seeds were exposed to 5-150 mg L(-1) of anatase (ana) or rutile + anatase (rut + ana) TiO2-NPs for 5 d. After exposure, germination and growth rates were determined. Cytotoxic effects were evaluated by changes in the cell cycle dynamics and in the membrane integrity. Genotoxicity was assessed by ploidy mutations and DNA-damage, and by mitotic abnormalities. NP uptake was analyzed by Energy Dispersive X-ray Spectroscopy (EDS). Ana-TiO2 revealed higher toxicity regarding the rate of germination, but no negative effects were detected concerning growth. Although roots and shoots showed no EDS-detectable levels of Ti, despite cyto- and genotoxicity was observed in ana and rut + ana-NPs exposed roots. Cell cycle profile was formulation dependent with rut + ana presenting a higher capability to induce a cell cycle arrest at G0/G1. Both formulations induced genotoxic effects by increasing micronucleated cells: for rut + ana a dose-dependent response is evident and seems to be more genotoxic than ana at lower concentrations. Rut + ana also increased membrane permeability. The observed higher cytotoxicity of rut + ana may be explained by the higher photoactivity of this mixture. Overall, these data indicate that during germination, TiO2-NPs induce severe cyto/genotoxic effects, which are dependent on the TiO2-NP formulation. PMID:26928332

  19. Defect energetics in α-Al2O3 and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Catlow, C. R. A.; James, R.; Mackrodt, W. C.; Stewart, R. F.

    1982-01-01

    We report a theoretical survey of defect energetics in α-Al2O3 and rutile TiO2 which we relate to structural and transport properties of these materials. The study of these crystals has required us to modify our computational methods based on the Mott-Littleton theory, which were previously confined to the treatment of cubic materials. We discuss the theoretical aspects of a new and quite general computational procedure, HADES III, which can be used for defect calculations on crystals of any symmetry. Our discussion pays particular attention to the effects on the calculated energetics of the use of Mott-Littleton methods adapted for anisotropic crystals. Other features, considered in detail, are the sensitivity of calculated defect energies to the choice of lattice potential and to the size of the atomistically simulated region surrounding the defect. We also compare our results for α-Al2O3 and those of an earlier study of Dienes et al. Our calculations are then used to discuss the simplest features of the defect properties of pure and doped α-Al2O3 and TiO2. The present results support the dominance of Schottky disorder in both crystals; cation Frenkel energies are high and anion Frenkel pairs may be of significance in α-Al2O3. In addition we present a survey of doped alumina and of the effect of oxygen partial pressure on the defect structure of this material. Our results suggest that defect clustering will have a major influence on the properties of doped Al2O3.

  20. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  1. Searching for active binary rutile oxide catalyst for water splitting from first principles.

    PubMed

    Chen, Dong; Fang, Ya-Hui; Liu, Zhi-Pan

    2012-12-28

    Water electrolysis is an important route to large-scale hydrogen production using renewable energy, in which the oxygen evolution reaction (OER: 2H(2)O → O(2) + 4H(+) + 4e(-)) causes the largest energy loss in traditional electrocatalysts involving Ru-Ir mixed oxides. Following our previous mechanistic studies on the OER on RuO(2)(110) (J. Am. Chem. Soc. 2010, 132, 18214), this work aims to provide further insight into the key parameters relevant to the activity of OER catalysts by investigating a group of rutile-type binary metal oxides, including RuNiO(2), RuCoO(2), RuRhO(2), RuIrO(2) and OsIrO(2). Two key aspects are focused on, namely the surface O coverage at the relevant potential conditions and the kinetics of H(2)O activation on the O-covered surfaces. The O coverage for all the oxides investigated here is found to be 1 ML at the concerned potential (1.23 V) with all the exposed metal cations being covered by terminal O atoms. The calculated free energy barrier for the H(2)O dissociation on the O covered surfaces varies significantly on different surfaces. The highest OER activity occurs at RuCoO(2) and RuNiO(2) oxides with a predicted activity about 500 times higher than pure RuO(2). On these oxides, the surface bridging O near the terminal O atom has a high activity for accepting the H during H(2)O splitting. It is concluded that while the differential adsorption energy of the terminal O atom influences the OER activity to the largest extent, the OER activity can still be tuned by modifying the electronic structure of surface bridging O. PMID:22941355

  2. Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110).

    PubMed

    Zehr, Robert T; Henderson, Michael A

    2010-07-28

    The ultraviolet (UV) photon-induced decomposition of hexafluoroacetone ((CF(3))(2)CO; HFA) adsorbed on the rutile TiO(2)(110) surface was investigated using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). HFA adsorbs both molecularly and dissociatively on the reduced TiO(2)(110) surface. The initial approximately 0.2 ML (where 1 ML equates to the cation site density of the ideal surface) coverage of HFA thermally decomposes resulting in the formation of adsorbed trifluoroacetate groups, with further HFA exposure resulting in molecular adsorption. No evidence was found for HFA photochemistry on the reduced surface. HFA adsorbed and desorbed molecularly on a pre-oxidized TiO(2)(110) surface with only a minor amount (approximately 1%) of thermal decomposition in TPD. A new adsorption state at 350 K was assigned to the reversible formation of a photoactive HFA-diolate species [(CF(3))(2)COO]. UV irradiation depleted the 350 K state, resulting in evolution of CF(3), CO, and CO(2) in the gas phase and formation of surface bound trifluoroacetate groups. (18)O isotope scrambling experiments showed that the ejected CO(2) was from photodecomposition of the HFA-diolate species while the CO photoproduct was not. These results are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO(2)(110), where UV irradiation resulted in the gas phase ejection of one of the carbonyl substituent groups as well as a stoichiometric amount of carboxylate left on the surface. We conclude that fluorination alters the electronic structure of adsorbed carbonyls on TiO(2)(110) in such a way as to promote complete fragmentation of the adsorbed carbonyl complex to form gas phase CO(2) as well as to open up additional photodissociation pathways leading to CO production. PMID:20523937

  3. Role of Water in Methanol Photochemistry on Rutile TiO2(110)

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2012-08-07

    Photochemistry of the molecularly and dissociatively adsorbed forms of methanol on the vacuum-annealed rutile TiO2(110) surface was explored using temperature programmed desorption (TPD), both with and without coadsorbed water. Methoxy, and not methanol, was confirmed as the photochemically active form of adsorbed methanol on this surface. UV irradiation of methoxy-covered TiO2(110) lead to depletion of the methoxy coverage and formation of formaldehyde and a surface OH group. Coadsorbed water did not promote either molecular methanol photochemistry or thermal decomposition of methanol to methoxy. However, terminal OH groups (OHt), prepared by coadsorption of water and oxygen atoms, thermally converted molecularly adsorbed methanol to methoxy at 120 K, thus enabling photoactivity. While chemisorbed water molecules had no influence on methoxy photochemistry, water molecules hydrogen-bonded in the second layer to bridging oxygen (Obr) sites inhibited the methoxy photodecomposition to formaldehyde. From this we conclude that Obr sites accept protons from the hole-mediated conversion of methoxy to formaldehyde. These results provide new fundamental understanding of the hole-scavenging role of methanol in photochemical processes on TiO2-based materials and how water influences this photochemistry. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  4. In situ rutile petrochronology: texture-related T, Paleoproterozoic inheritance and a Pan-African overprint in the oldest subduction-related eclogites, Usagaran Orogen, Tanzania

    NASA Astrophysics Data System (ADS)

    Moeller, A.; Kraus, K.; Herms, P.; Appel, P.; Raase, P.

    2014-12-01

    Rutile U-Pb thermochronology is applied successfully by both TIMS and beam methods to date cooling events in mafic and metapelitic rocks, as well as in detrital studies. The Zr-in-rutile thermometer is very robust to thermal diffusion, and generally requires complete recrystallization to change recorded crystallization temperatures. Evidence for diffusion of HFSE elements in rutile is sparse; whereas U-Pb chronology generally records diffusion controlled cooling from the last event. This study follows conventional thermobarometry and U-Pb TIMS results on monazite, sphene and rutile of Möller et al. (1995) establishing a 2 Ga eclogite facies event from MORB-like metabasic, and metapelitic rocks in the Usagaran Orogen of Tanzania, interpreted to be the oldest outcrops of subduction-related eclogites. Rutile from both rock types were discordant near a ca. 500 Ma lower intercept, confirming a thermal overprint postulated on the basis of K-Ar and Rb-Sr mica ages by e.g. Wendt et al. (1972). The age of the eclogite-facies event was confirmed by U-Pb zircon dating of a 1991±2 Ma crosscutting pegmatite (Collins et al., 1999). We present in situ LA-ICP-MS rutile petrochronology on five metabasic and metapelitic eclogite facies samples with variable retrograde amphibolite-facies recrystallization. Thermometry confirms conventional Fe-Mg results, including higher peak temperatures in metabasites. Traverses on rutile inclusions in large garnet prophyroblasts in metapelites show increasing temperatures from cores outwards and a slight decrease towards outermost rims, with peak T coinciding with highest Mg# and highest grossular content, hence consistent with preservation of prograde zoning in the garnets and a brief eclogite facies event. Large rutiles (800μm) in recrystallized samples record temperature zoning profiles. U-Pb results show inheritance of near concordant 2 Ga domains, but dominantly confirm the ca. 490 Ma amphibolite facies overprint. The study is an excellent

  5. Adsorption of formic acid on rutile TiO{sub 2} (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study

    SciTech Connect

    Mattsson, A.; Österlund, L.; Hu, Shuanglin Hermansson, K.

    2014-01-21

    Formic acid (HCOOH) adsorption on rutile TiO{sub 2} (110) has been studied by s- and p-polarized infrared reflection-absorption spectroscopy (IRRAS) and spin-polarized density functional theory together with Hubbard U contributions (DFT+U) calculations. To compare with IRRAS spectra, the results from the DFT+U calculations were used to simulate IR spectra by employing a three-layer model, where the adsorbate layer was modelled using Lorentz oscillators with calculated dielectric constants. To account for the experimental observations, four possible formate adsorption geometries were calculated, describing both the perfect (110) surface, and surfaces with defects; either O vacancies or hydroxyls. The majority species seen in IRRAS was confirmed to be the bridging bidentate formate species with associated symmetric and asymmetric frequencies of the ν(OCO) modes measured to be at 1359 cm{sup −1} and 1534 cm{sup −1}, respectively. The in-plane δ(C–H) wagging mode of this species couples to both the tangential and the normal component of the incident p-polarized light, which results in absorption and emission bands at 1374 cm{sup −1} and 1388 cm{sup −1}. IRRAS spectra measured on surfaces prepared to be either reduced, stoichiometric, or to contain surplus O adatoms, were found to be very similar. By comparisons with computed spectra, it is proposed that in our experiments, formate binds as a minority species to an in-plane Ti{sub 5c} atom and a hydroxyl, rather than to O vacancy sites, the latter to a large extent being healed even at our UHV conditions. Excellent agreement between calculated and experimental IRRAS spectra is obtained. The results emphasize the importance of protonation and reactive surface hydroxyls – even under UHV conditions – as reactive sites in e.g., catalytic applications.

  6. Oxygen-Induced Restructuring of Rutile TiO(2)(110): Formation Mechanism, Atomic Models, and Influence on Surface Chemistry

    SciTech Connect

    Li, Min; Hebenstreit, Wilhelm; Diebold, Ulrike; Henderson, Michael A.; Jennison, Dwight R.

    1999-07-07

    The rutile TiO{sub 2} (110) (1x1) surface is considered the prototypical ''well-defined'' system in the surface science of metal oxides. Its popularity results partly from two experimental advantages: bulk-reduced single crystals do not exhibit charging, and stoichiometric surfaces--as judged by electron spectroscopes--can be prepared reproducibly by sputtering and annealing in oxygen. We present results that show that this commonly-applied preparation procedure may result in a surface structure that is by far more complex than generally anticipated. Flat, (1x1) terminated surfaces are obtained by sputtering and annealing in ultrahigh vacuum. When re-annealed in oxygen at moderate temperatures (470 K to 660 K), irregular networks of partially-connected, pseudohexagonal rosettes (6.5 x 6 {angstrom} wide), one-unit cell wide strands, and small ({approximately} tens of {angstrom}) (1x1) islands appear. This new surface phase is formed through reaction of oxygen gas with interstitial Ti from the reduced bulk. Because it consists of an incomplete, kinetically-limited (1x1) layer, this phenomenon has been termed restructuring. We report a combined experimental and theoretical study that systematically explores this restructuring process. The influence of several parameters (annealing time, temperature, pressure, sample history, gas) on the surface morphology is investigated using STM. The surface coverage of the added phase as well as the kinetics of the restructuring process are quantified by LEIS and SSIMS measurements in combination with annealing in {sup 18}O-enriched gas. Atomic models of the essential structural elements are presented and are shown to be stable with first-principles density functional calculations. The effect of oxygen-induced restructuring on surface chemistry and its importance for TiO{sub 2} and other bulk-reduced oxide materials is briefly discussed.

  7. Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal-semiconductor-metal UV detector based on Si substrate

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-07-01

    Rutile-phase titanium dioxide nanorods (NRs) were synthesized successfully on p-type silicon (Si) (1 1 1), c-plane sapphire (Al2O3), glass coated with fluorine-doped tin oxide (FTO), glass, and quartz substrates via chemical bath deposition method. All substrates were seeded with a TiO2 seed layer synthesized with a radio frequency reactive magnetron sputtering system prior to NRs growth. The effect of substrate type on structural, morphological, and optical properties of rutile TiO2 NRs was studied. X-ray diffraction, Raman spectroscopy, and field-emission scanning electron microscopy analyses showed the tetragonal rutile structure of the synthesized TiO2 NRs. Optical properties were examined with photoluminescence (PL) spectroscopy of the grown rutile NRs on all substrates, with the spectra exhibiting one strong ultraviolet emission peak intensity compared with broad visible peak. The optimal sample of rutile NRs was grown on Si substrate. Thus, a fast-response metal-semiconductor-metal ultraviolet (UV) detector was fabricated. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias, the device displays 2.62 × 10-5 A photocurrent, and the response and recovery times are calculated as 18.5 and 19.1 ms, respectively. These results demonstrate that the fabricated high-quality photodiode is a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.

  8. Solar light decomposition of DFP on the surface of anatase and rutile TiO 2 prepared by hydrothermal treatment of microemulsions

    NASA Astrophysics Data System (ADS)

    Kiselev, A.; Andersson, M.; Mattson, A.; Shchukarev, A.; Sjöberg, S.; Palmqvist, A.; Österlund, L.

    2005-06-01

    The photocatalytic decomposition of diisopropylfluorophosphate (DFP) over nanostructured anatase and rutile TiO 2 powder was investigated by FTIR and XPS. Upon irradiation with artificial solar light DFP decomposed on both polymorphs as evidenced by FTIR. For both crystalline structures acetone and subsequently coordinated formate and carbonate were observed on the surface during the photocatalytic reaction as the isopropyl groups dissociated from DFP. XPS revealed that small amounts of phosphates and inorganic fluoride (Ti sbnd F) gradually built up on both TiO 2 surfaces, while organic F was present only on the rutile phase. From repeated cycles of intermittent DFP adsorption and irradiation measurements, the decomposition rates and formation of residuals on the surface were deduced. It was found that the overall oxidation yield is higher on anatase than rutile. The oxidation rate decreases with increasing irradiation time, an effect that is more pronounced on rutile. We find that both the difference between the polymorphs and the initial decrease of the oxidation yield can largely be explained by variations in surface area rather than poisoning by PO x or F species. In particular, we observe a dramatic decrease of the specific area of rutile as a function of photocatalytic oxidation cycle.

  9. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  10. Surface chemistry and flotation behavior of monazite, apatite, ilmenite, quartz, rutile, and zircon using octanohydroxamic acid collector

    NASA Astrophysics Data System (ADS)

    Nduwa Mushidi, Josue

    Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.

  11. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency.

    PubMed

    Yella, Aswani; Heiniger, Leo-Philipp; Gao, Peng; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2014-05-14

    We demonstrate low-temperature (70 °C) solution processing of TiO2/CH3NH3PbI3 based solar cells, resulting in impressive power conversion efficiency (PCE) of 13.7%. Along with the high efficiency, a strikingly high open circuit potential (VOC) of 1110 mV was realized using this low-temperature chemical bath deposition approach. To the best of our knowledge, this is so far the highest VOC value for solution-processed TiO2/CH3NH3PbI3 solar cells. We deposited a nanocrystalline TiO2 (rutile) hole-blocking layer on a fluorine-doped tin oxide (FTO) conducting glass substrate via hydrolysis of TiCl4 at 70 °C, forming the electron selective contact with the photoactive CH3NH3PbI3 film. We find that the nanocrystalline rutile TiO2 achieves a much better performance than a planar TiO2 (anatase) film prepared by high-temperature spin coating of TiCl4, which produces a much lower PCE of 3.7%. We attribute this to the formation of an intimate junction of large interfacial area between the nanocrystalline rutile TiO2 and the CH3NH3PbI3 layer, which is much more effective in extracting photogenerated electrons than the planar anatase film. Since the complete fabrication of the solar cell is carried out below 100 °C, this method can be easily extended to plastic substrates. PMID:24628563

  12. Four-faceted nanowires generated from densely-packed TiO2 rutile surfaces: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Evarestov, R. A.; Zhukovskii, Yu. F.

    2013-02-01

    Two-dimensional (2D) slabs and monoperiodic (1D) nanowires orthogonal to the slab surface of rutile-based TiO2 structure terminated by densely-packed surfaces and facets, respectively, have been simulated in the current study. The procedure of structural generation of nanowires (NWs) from titania slabs (2D → 1D) is described. We have simulated: (i) (110), (100), (101) and (001) slabs of different thicknesses as well as (ii) [001]- and [110]-oriented nanowires of different diameters terminated by either four types of related {110} facets or alternating {11¯0} and {001} facets, respectively. Nanowires have been described using both the Ti atom-centered rotation axes as well as the hollow site-centered axes passing through the interstitial sites between the Ti and O atoms closest to the axes. For simulations on TiO2 slabs and NWs, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with the total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO) implemented in CRYSTAL09 code. Both structural and electronic properties of enumerated rutile-based titania slabs and nanowires have been calculated. According to the results of our surface energy calculations, the most stable rutile-based titania slab is terminated by (110) surfaces whereas the energetically favorable [001]-oriented NWs are also terminated by {110} facets only, thus confirming results of previous studies.

  13. Equilibrium state of anatase to rutile transformation for nano-structured Titanium Dioxide powder using polymer template method.

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Jena, Sidhartha S.; Pradhan, Dillip K.

    2016-02-01

    In this work we report the novel synthesis procedure of phase-pure nano-structured titania in anatase phase using polyacrylamide gel based polymer template method. The evolution of rutile phased titania with increasing temperature has also been investigated. The synthesized nano-materials are characterized using X-ray diffraction, Brunauer - Emmett - Teller surface analysis technique and Scanning electron microscopy. We have used dual phase Rietveld refinement method to analyse the X-Ray diffraction data to get clear picture of crystallographic information of the prepared samples.

  14. Patterning of rutile TiO2 surface by ion beam lithography through full-solid masks.

    PubMed

    Sanz, R; Jaafar, M; Hernández-Vélez, M; Asenjo, A; Vázquez, M; Jensen, J

    2010-06-11

    In this work we present and discuss the nanopatterning of rutile TiO(2) single crystal surfaces following their irradiation with energetic heavy ions through a stencil mask of Ni filled self-ordered porous anodic alumina. After etching in HF a corrugated surface morphology is obtained composed of parallel alternate furrows and ridges (or nanobars) 50 nm in diameter and with 100 nm pitch. In addition, isolated, but collapsed, TiO(2) nanorods are seen lying on the patterned surface. The stability of the nanopatterned surface under high temperatures treatments and crystalline properties are analyzed. PMID:20463385

  15. Nanofabrication of PTCDA molecular chains on rutile TiO(2)(011)-(2 × 1) surfaces.

    PubMed

    Tekiel, Antoni; Godlewski, Szymon; Budzioch, Janusz; Szymonski, Marek

    2008-12-10

    The adsorption of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on a rutile TiO(2)(011)-(2 × 1) surface is studied using ultra-high vacuum scanning tunneling microscopy. The self-assembly process is dominated by the fine interplay between the lateral intermolecular interactions and the binding to the substrate. By means of temperature-induced change in the adsorption configuration and the activation of diffusion, the molecules are assembled into one-dimensional chains oriented along the [Formula: see text] crystallographic direction. PMID:21730668

  16. Compact, high-Q, zero temperature coefficient, TE011 sapphire-rutile microwave distributed Bragg reflector resonators.

    PubMed

    Tobar, M E; Cros, D; Blondy, P; Ivanov, E N

    2001-05-01

    Some novel new resonator designs based on the distributed Bragg reflector are presented. The resonators implement a TE011 resonance in a cylindrical sapphire dielectric, which is confined by the addition of rutile and sapphire dielectric reflectors at the end faces. Finite element calculations are utilized to optimize the dimensions to obtain the highest Q-factors and zero frequency-temperature coefficient for a resonator operating near 0 degree C. We show that a Q-factor of 70,000 and 65,000 can be achieved with and without the condition of zero frequency-temperature coefficients, respectively. PMID:11381707

  17. Sorption of Zn(II) and Co(II) on Rutile Surfaces from 25 to 250 Degrees Centigrade by pH Titrations: Impact of X-Ray Standing Wave (XSW) and EXAFS Studies on Electrical Double Layer Models.

    NASA Astrophysics Data System (ADS)

    Wesolowski, D. J.; Machesky, M. L.; Zhang, Z.; Benezeth, P.; Fenter, P. A.; Sturchio, N. C.

    2002-12-01

    Experimental studies have been conducted on rutile powders (ca. 15 m2/g, 110 face dominant) in aqueous sodium trifluoromethanesulfonate (NaTr) solutions (0.03 and 0.30 molal) in a conventional glass-electrode autotitrator as well as a hydrogen-electrode concentration cell, which permits continuous pH-monitoring and sample removal for chemical analysis at elevated temperatures. The surface charge was determined in NaTr with and without 0.001 molal Zn or Co by pH titration, and separate experiments were conducted to determine the amount of metal ion adsorbed as a function of pH. These studies demonstrate that both cations are strongly sorbed, with the affinity for Zn being greater than that of Co. Ionic strength dependence of the sorption edges is very weak, and a combination of the two types of experiments indicates a proton release stoichiometry approaching 2:1 at high temperature. The pH of 50 percent adsorption for both ions decreases more rapidly with temperature than does the point of zero charge of the powder. X-ray Standing Wave measurements conducted on rutile 110 single crystal surfaces at the Advanced Photon Source (Zhang et al., this symposium) indicate that, at room temperature, Zn2+ binds predominantly as a monodentate species with surface oxygens bridged to two underlying titanium atoms. The zinc ions occupy positions equivalent to Ti lattice sites in the underlying crystal, resulting in a fixed distance of 3\\x8F above the Ti plane. Towle et al. (JCIS, 1999, v217, 299) conducted EXAFS studies of Co2+ adsorption on rutile (110) and (001) single crystal surfaces and concluded that this ion also occupies an equivalent Ti site, though they could not distinguish between bridged and terminal sites. These geometrical constraints, coupled with proton binding constants predicted from our temperature-extended MUSIC model, are applied in Stern Layer EDL models. The synchrotron results provide unequivocal evidence for "inner sphere" adsorption at room temperature

  18. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction. PMID:25003716

  19. Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Deskins, N. Aaron; Henderson, Michael A.

    2010-10-14

    The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD), temperature programmed desorption (TPD) and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). No TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state, with TFA molecules in other TPD states unaffected. PSD measurements reveal that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Post-irradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trifluoroacetate (evolving as CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone as both pathways (CH3+trifluoroacetate and CF3+acetate) were detected when thermodynamics shows a clear preference for only one (CF3+acetate). These observations are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of

  20. Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2010-07-20

    The ultraviolet (UV) photon-induced decomposition of hexafluoroacetone (HFA) adsorbed on the rutile TiO2(110) surface was investigated using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The initial 0.2 ML coverage of HFA decomposed when adsorbed on the reduced TiO2(110) surface resulting in the formation of trifluoroacetate (evolving in TPD as CO, CO2, and C2F4 near 600 K). Further HFA exposure resulted in molecular adsorption. No evidence for photochemistry was observed on the reduced surface. HFA adsorbed and desorbed molecularly on a pre-oxidized TiO2(110) surface with only a minor amount (~1%) of thermal decomposition in TPD. A new adsorption state at 350 K was assigned to the reversible formation of a photoactive HFA-diolate species [(CF3)2COO]. UV irradiation depleted the 350 K state and resulted in the formation of surface bound trifluoroacetate. PSD experiments showed that CF3, CO, and CO2 were evolved during irradiation at 95 K. Post-irradiation TPD showed evidence for trifluoroacetate (desorbing as CO, CO2, and C2F4 near 600 K) as surface-bound photodecomposition products. 18O isotope scrambling experiments showed that the origin of the ejected CO2 was from photodecomposition of the HFA-diolate species. CO photodesorption was due to an as-yet unidentified adsorbed HFA species and not due to decomposition of the HFA-diolate. These results are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where UV irradiation resulted in the gas phase ejection of one of the carbonyl substituent groups as well as a stoichiometric amount of carboxylate left on the surface. We conclude that fluorination alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote complete fragmentation of the adsorbed carbonyl complex to form gas phase CO2 as well as open up additional photodissociation pathways leading to CO production.

  1. Methylene bromide chemistry and photochemistry on rutile TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Robbins, Matthew D.

    2011-10-01

    The chemistry and photochemistry of methylene bromide (CD2Br2) on the rutile TiO2(110) surface was probed using temperature programmed desorption (TPD). CD2Br2 desorbed in three desorption states at 145, 160 and 250 K tentatively assigned to desorption from the multilayer, from an η1-CD2Br2 species and a bridging η2-CD2Br2 species, respectively. The latter two TPD states presumably involve binding of CD2Br2 molecules to the surface through Br coordination at five-coordinate Ti4+ surface sites. The 160 and 250 K TPD states saturated at coverages of 1.0 and 0.33 ML, respectively, where 1 ML is equivalent to the surface Ti4+ site density (5.2 × 1014 cm- 2). No thermal decomposition of CD2Br2 was observed on either the clean surface or with preadsorbed O2. UV irradiation of CD2Br2 on TiO2(110) resulted in predominately photodesorption, with trace amounts of photodecomposition evidenced in TPD. The rate of CD2Br2 photodesorption from TiO2(110) occurred with a low cross section (~ 2 × 10- 21 cm2) similar to that expected from direct optical excitation of CD2Br2. This observation suggests that charge carriers generated in TiO2(110) were no more effective in activating adsorbed CD2Br2 molecules than would be expected through direct molecular excitation. Finally, these findings suggest that photocatalytic destruction of halocarbons such as CD2Br2 on TiO2 may preferentially occur though indirect processes (such as OH radical attack) as opposed to direct electron transfer processes involving charge carriers generated in TiO2 by bandgap excitation.

  2. Thermal and photocatalytic oxidation of 2-propanol on rutile titanium dioxide (110) and (100)

    NASA Astrophysics Data System (ADS)

    Brinkley, David Wayne

    The primary focus of this dissertation is the thermal and photocatalytic oxidation of 2-propanol on TiO2 (110) and (100) rutile planes. The object of this study is to establishing what factors govern catalytic oxidation on TiO2. Specifically, the role of surface structure, site geometry, and reactive intermediates must be understood in order to optimize TiO2 as a catalytic material. The catalytic activity of the (110) and (100) surfaces was probed using the oxidation of 2-propanol to determine how the aforementioned factors effected reactivity on TiO2. The average reaction probability per residence time for thermal catalytic oxidation of 2-propanol in the presence of O2 on the (110) and (100) planes is 0.01 and 0.09, respectively. The photocatalytic oxidation channel on these two planes exhibits a similar disparity. The average reaction probability per residence time for a 2-propanol molecule in the presence of O2 on the (110) and (100) planes was 0.08 and 0.03, respectively. The inversion in the branching ratio between the thermal and photocatalytic oxidation on these two surfaces can be attributed to the distance between the titanium binding site and bridging oxygen atoms being shorter on the (100) than on the (110) surface. This closer proximity on the (100) surface allows for a hydrogen bonding interaction to occur, which results in dissociation of bound 2-propanol and permits the thermal oxidation channel to proceed. Due to the difference in site geometry, this hydrogen bonding interaction and the consequent dissociation of 2-propanol is not achieved on the (110) plane, making only the photocatalytic pathway active. In addition, the effect of surface structure was investigated by creating oxygen vacancy sites on the (110) surface. These sites yield an enhancement in the photocatalytic oxidation of 2-propanol from 0.08 to 0.15. In conclusion, this work has demonstrated that surface structure, site geometry and reactive intermediates all play important roles in

  3. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: Arutile samples decreases upon doping in the series R>R/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  4. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  5. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro.

    PubMed

    He, Xiaojia; Sanders, Sabrieon; Aker, Winfred G; Lin, Yunfeng; Douglas, Jessica; Hwang, Huey-Min

    2016-04-01

    In this study, the cytotoxicity of two different crystal phases of TiO2 nanoparticles, with surface modification by humic acid (HA), to Escherichia coli, was assessed. The physicochemical properties of TiO2 nanoparticles were thoroughly characterized. Three different initial concentrations, namely 50, 100, and 200ppm, of HA were used for synthesis of HA coated TiO2 nanoparticles (denoted as A/RHA50, A/RHA100, and A/RHA200, respectively). Results indicate that rutile (LC50 (concentration that causes 50% mortality compared the control group)=6.5) was more toxic than anatase (LC50=278.8) under simulated sunlight (SSL) irradiation, possibly due to an extremely narrow band gap. It is noted that HA coating increased the toxicity of anatase, but decreased that of rutile. Additionally, AHA50 and RHA50 had the biggest differences compared to uncoated anatase and rutile with LC50 of 201.9 and 21.6, respectively. We then investigated the formation of reactive oxygen species (ROS) by TiO2 nanoparticles in terms of hydroxyl radicals (OH) and superoxide anions (O2(-)). Data suggested that O2(-) was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation. We also observed that HA coating decreased the generation of OH and O2(-) on rutile, but increased O2(-) formation on anatase. Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E. coli more than anatase. PMID:27090694

  6. A Paleozoic anorthosite massif related to rutile-bearing ilmenite ore deposits, south of the Polochic fault, Chiapas Massif Complex, Mexico

    NASA Astrophysics Data System (ADS)

    Cisneros, A.; Ortega-Gutiérrez, F.; Weber, B.; Solari, L.; Schaaf, P. E.; Maldonado, R.

    2013-12-01

    The Chiapas Massif Complex in the southern Maya terrane is mostly composed of late Permian igneous and meta-igneous rocks. Within this complex in southern Mexico and in the adjacent San Marcos Department of Guatemala, south of the Polochic fault, several small outcrops (~10 km2) of a Phanerozoic andesine anorthosite massif were found following an E-W trend similar to the Polochic-Motagua Fault System. Such anorthosites are related to rutile-bearing ilmenite ore deposits and hornblendite-amphibolite bands (0.1-3 meters thick). The anorthosites show recrystallization and metamorphic retrogression (rutile with titanite rims), but no relicts of high-grade metamorphic minerals such as pyroxene or garnet have been found. In Acacoyagua, Chiapas, anorthosites are spatially related to oxide-apatite rich mafic rocks; in contrast, further to the west in Motozintla, they are related to monzonites. Zircons from these monzonites yield a Permian U-Pb age (271.2×1.4 Ma) by LA-MC-ICPMS. Primary mineral assemblage of the anorthosites include mostly medium to fine-grained plagioclase (>90%) with rutile and apatite as accessory minerals, occasionally with very low amounts of quartz. Massive Fe-Ti oxide lenses up to tens of meters in length and few meters thick are an ubiquitous constituent of these anorthosites and their mineralogy include ilmenite (with exsolution lamellae of Ti-magnetite), rutile, magnetite, clinochlore, ×spinel, ×apatite, ×zircon and srilankite (Ti2ZrO6, first finding of this phase in Mexico). Rutile occurs within the massive ilmenite in two morphological types: (1) fine-grained (5-40 μm) rutile along ilmenite grain boundaries or fractures, and (2) coarse-grained rutile (<5 mm) as discrete grains, whereas magnetite and srilankite only appear as small grains along ilmenite boundaries. Zircon is present as discontinuously aligned small grains (10-40 μm) forming rims around many rutile and ilmenite grains. Attempts to date zircon rims by U-Pb using LA

  7. Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up from U-Pb dating of rutile (Ivrea-Verbano Zone, Italy)

    NASA Astrophysics Data System (ADS)

    Ewing, T. A.; Rubatto, D.; Hermann, J.; Beltrando, M.

    2015-12-01

    U­-Pb dating of rutile is an ideal tool for exploring the cooling and exhumation history of the lower crust, given its moderate closure temperature and the occurrence of rutile in relevant lithologies. We present an example from the Ivrea-Verbano Zone (IVZ, Italy), a classic section through the Permian lower crust that records high-temperature metamorphism followed by extension and exhumation associated partly with the Jurassic opening of the Alpine Tethys ocean. Granulite facies metapelites collected across ~35 km have Zr-in-rutile temperatures that record crystallisation during Permian metamorphism and anatexis, but SHRIMP U-Pb dating of rutile records cooling through 650-550 °C in the Jurassic. Rutile age distributions are dominated by a peak at ~160 Ma, with a subordinate peak at ~175 Ma. Both age populations show excellent agreement between samples, indicating that the two distinctive cooling stages they record were synchronous on a regional scale. The ~175 Ma population is interpreted to record cooling in the footwall of rift-related faults and shear zones, for which widespread activity in the Lower Jurassic has been documented along the western margin of the Adriatic plate. The ~160 Ma age population postdates the activity of all known rift-related structures within the Adriatic margin, but coincides with extensive gabbroic magmatism and exhumation of sub-continental mantle to the floor of the Alpine Tethys, west of the IVZ. We propose that this ~160 Ma early post-rift age population records regional cooling following episodic heating of the distal Adriatic margin. The partial preservation of the ~175 Ma age cluster suggests that the post-rift (~160 Ma) heating pulse was of short duration. The regional consistency of the rutile U-Pb data is in contrast to many other thermochronometers in the IVZ, demonstrating the value of this technique for probing the thermal evolution of high-grade metamorphic terranes. The decoupling between Zr-in-rutile temperatures

  8. Surface engineering of timet 550 with oxygen to form a rutile-based, wear-resistant coating

    NASA Astrophysics Data System (ADS)

    Boettcher, C.; Bell, T.; Dong, H.

    2002-04-01

    Recently, a thermal oxidation (TO) technique has been successfully developed and applied to the titanium alloy Ti-6Al-4V. This TO technique produces a thin, hard, rutile-based, wear-resistant coating on the surface of the titanium alloy, thus significantly improving the tribological properties of the titanium alloy. In the present investigation, the same principle has been applied to the α+ β high-strength titanium alloy Timet 550. A series of TO treatments have been carried out in air within the temperature range of 600 °C to 650 °C. This developed a rutile-based coating which greatly improved the tribological properties of Timet 550. Systematic characterization of the TO-treated surface was carried out using glow-discharge optical emission spectroscopy (GDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution scanning electron microscopy (HR-SEM) techniques. Ball-on-disc friction testing was used to show the improvement in tribological properties for Timet 550 when TO treated. The sliding wear resistance of the TO treatment was investigated using an Amsler wear tester, utilizing a counterformal block-on-wheel configuration; the TO-treated Timet 550 was run against a carburized S156 steel with splash oil lubrication. It was found that the wear resistance of the TO-treated Timet 550 was greatly improved.

  9. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface.

    PubMed

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, M W; Liu, Li-Min

    2016-01-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2(-) anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417

  10. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  11. Thermal behaviour of ultra-thin Co overlayers on rutile TiO 2(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Chai, J. W.; Pan, J. S.; Wang, S. J.; Huan, C. H. A.; Lau, G. S.; Zheng, Y. B.; Xu, S.

    2005-09-01

    Thermal behaviour of ultra-thin Co overlayers on rutile TiO 2(1 0 0) surface has been studied by in situ X-ray photoelectron spectroscopy (XPS). Metal Co overlayers of about 30 Å have been deposited at room temperature on rutile TiO 2(1 0 0) surfaces, followed by annealing to different temperatures. It was found that the interfacial reaction between the Co overlayers and TiO 2(1 0 0) surfaces occurred upon annealing to temperatures above 400 °C. Above these temperatures, all metallic Co atoms were oxidized into the Co 2+ state, while some Ti 4+ were reduced to Ti 3+ with increasing temperature. Ex situ surface morphology studies by atomic force microscopy (AFM) suggest that thermal annealing resulted in the agglomeration of the metal film deposited at room temperature and the formation of islands. Annealing to higher temperature led to the dissociation of the small Co islands due to Co oxidation while the larger islands remained and grew continuously. Two types of island nanostructures were observed by ex situ high-resolution transmission electron microscopy (HRTEM).

  12. Studies of early growth mechanisms of hydroxyapatite on single crystalline rutile: a model system for bioactive surfaces.

    PubMed

    Lindahl, Carl; Borchardt, Per; Lausmaa, Jukka; Xia, Wei; Engqvist, Håkan

    2010-10-01

    Previous studies have shown that crystalline titanium oxide is in vitro bioactive and that there are differences in the HA formation mechanism depending on the crystalline direction of the titanium oxide surface. In the present study, the early adsorption of calcium and phosphate ions on three different surface directions of the single-crystal rutile TiO(2) substrate has been investigated. A crucial step in the nucleation of HA is believed to be the adsorption of Ca(2+) and PO(4)(3-) from phosphate buffer solutions. The (001), (100) and (110) single crystalline rutile surfaces were soaked in phosphate buffer saline solution for 10 min, 1 h and 24 h at 37°C. The surfaces were then analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results show that the adsorption of Ca(2+) and PO(4)(3-) is faster on the (001) and (100) surfaces than on the (110) surface. This study also shows that TOF-SIMS can be used as a tool to better understand the adsorption of calcium and phosphate ions and the growth mechanism of HA. This knowledge could be used to tailor new bioactive surfaces for better biological reaction. PMID:20680412

  13. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  14. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, Mw; Liu, Li-Min

    2016-03-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2‑ anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process.

  15. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    SciTech Connect

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  16. Nucleation and stochiometry dependence of rutile-TiO2 thin films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Constantin, Costel; Sun, Kai; Feenstra, R. M.

    2008-03-01

    Considerable interest has been shown of late in transition-metal oxides. One case is the titanium dioxide system, which can have applications as a high-k dielectric gate insulator for Si-based devicesootnotetextZ. J. Luo et al., Appl. Phys. Lett. 79, 2803. In this study, rutile-TiO2 thin films were grown on GaN(0001) substrates by oxygen plasma-assisted molecular beam epitaxy. Two sets of films were grown, one in which the initial GaN surface is prepared WITH the pseudo 1x1 Ga-rich surface reconstruction, and the other set, WITHOUT the pseudo 1x1. On top of these two type of surfaces, the rutile-TiO2 thin films were grown at Ts˜ 600 ^oC, and with a thickness ˜ 40 - 50 nm. During growth, reflection high-energy electron diffraction indicated a reversible stoichiometry transition from O-rich to Ti-rich growth. Post-growth x-ray diffraction measurements performed on the samples WITHOUT the GaN pseudo 1x1, show the presence of additional peaks at 2θ = 52.9^o, which implies the existence of additional phases. In addition, the high-resolution transmission electron microscopy performed on these samples show a high degree of disorder, as compared to the samples prepared WITH the pseudo 1x1. Work supported by ONR.

  17. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface

    PubMed Central

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min

    2016-01-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417

  18. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    SciTech Connect

    Kaspar, Tiffany C.; Ney, A.; Mangham, Andrew N.; Heald, Steve M.; Joly, Yves; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, Flora; Chambers, Scott A.

    2012-07-23

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, O K-edge, N K-edge, and Ti K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could not be confirmed, although secondary phase Fe2O3 and metallic Fe can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism (XLD) signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice, and is not present as a secondary phase such as TiN. Simulations of the XANES spectra qualitatively confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valence Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  19. Hierarchically structured microspheres for high-efficiency rutile TiO(2)-based dye-sensitized solar cells.

    PubMed

    Ye, Meidan; Zheng, Dajiang; Wang, Mengye; Chen, Chang; Liao, Wenming; Lin, Changjian; Lin, Zhiqun

    2014-02-26

    Peachlike rutile TiO2 microsphere films were successfully produced on transparent conducting fluorine-doped tin oxide substrate via a facile, one-pot chemical bath route at low temperature (T = 80-85 °C) by introducing polyethylene glycol (PEG) as steric dispersant. The formation of TiO2 microspheres composed of nanoneedles was attributed to the acidic medium for the growth of 1D needle-shaped building blocks where the steric interaction of PEG reduced the aggregation of TiO2 nanoneedles and the Ostwald ripening process. Dye-sensitized solar cells (DSSCs) assembled by employing these complex rutile TiO2 microspheres as photoanodes exhibited a light-to-electricity conversion efficiency of 2.55%. It was further improved to a considerably high efficiency of 5.25% upon a series of post-treatments (i.e., calcination, TiCl4 treatment, and O2 plasma exposure) as a direct consequence of the well-crystallized TiO2 for fast electron transport, the enhanced capacity of dye loading, the effective light scattering, and trapping from microstructures. PMID:24467178

  20. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi.

    PubMed

    Markowska-Szczupak, Agata; Wang, Kunlei; Rokicka, Paulina; Endo, Maya; Wei, Zhishun; Ohtani, Bunsho; Morawski, Antoni W; Kowalska, Ewa

    2015-10-01

    Antifungal properties of anatase and rutile crystallites isolated from commercial titania P25 photocatalyst were investigated by mycelium growth in the dark and under indoor light. Investigated fungi, i.e., Pseudallescheria boydii, Scedosporium apiospermum, Pseudallescheria ellipsoidea, Scedosporium aurantiacum, Aspergillus versicolor, Aspergillus flavus, Stachybotrys chartarum, Penicillium chrysogenum, Aspergillus melleus, were isolated from air and from moisture condensed on walls. Anatase and rutile were isolated from homogenized P25 (homo-P25) by chemical dissolution, and then purified by washing and thermal treatment. For comparison, homo-P25 was also thermally treated at 200 °C and 500 °C. Titania samples were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and scanning transmission electron microscopy (STEM). It was found that properties of titania, i.e., band-gap energy, impurities adsorbed on the surface, nanoparticle aggregation, and kind of fungal structure, highly influenced resultant antifungal activities. It is proposed that some fungi could uptake necessary water and nutrient from titania surface. It was also found that even when differences in mycelium growth were not significant, the sporulation and mycotoxin generation were highly inhibited by light and presence of titania. PMID:26177513

  1. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia

    NASA Astrophysics Data System (ADS)

    Alifirova, T. A.; Pokhilenko, L. N.; Korsakov, A. V.

    2015-06-01

    Eclogite mantle xenoliths from the central part of Siberian craton (Udachnaya and Zarnitsa kimberlite pipes) as well as from the northeastern edge of the craton (Obnazhennaya kimberlite) were studied in detail. Garnet and clinopyroxene show evident exsolution textures. Garnet comprises rutile, ilmenite, apatite, and quartz/coesite oriented inclusions. Clinopyroxene contains rutile (± ilmenite) and apatite precipitates. Granular inclusions of quartz in kyanite and garnet usually retain features of their high-pressure origin. According to thermobarometric calculations, the studied eclogitic suite was equilibrated within lithospheric mantle at 3.2-4.9 GPa and 813-1080 °C. The precursor composition of garnets from Udachnaya and Zarnitsa eclogites suggests their stability at depths 210-260 km. Apatite precipitation in clinopyroxenes of Udachnaya and Zarnitsa allows us to declare that original pyroxenes could have been indicative of their high P-T stability. Raman spectroscopic study of quartz and coesite precipitates in garnet porphyroblasts confirms our hypothesis on the origin of the exsolution textures during pressure-temperature decrease. With respect to mineralogical data, we suppose the rocks to be subjected to stepwise decompression and cooling within mantle reservoir.

  2. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Ney, A.; Mangham, A. N.; Heald, S. M.; Joly, Y.; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, F.; Chambers, S. A.

    2012-07-01

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, Ti K-edge, O K-edge, and N K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could be inferred, and secondary phases such as Fe2O3, Fe3O4, and FeTiO3 can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice and is not present as a secondary phase such as TiN. Simulations of the XANES spectra confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valent Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  3. Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films.

    PubMed

    Jeon, Woojin; Rha, Sang Ho; Lee, Woongkyu; Yoo, Yeon Woo; An, Cheol Hyun; Jung, Kwang Hwan; Kim, Seong Keun; Hwang, Cheol Seong

    2014-05-28

    The role of Al dopant in rutile-phased TiO2 films in the evaluation of the mechanism of leakage current reduction in Al-doped TiO2 (ATO) was studied in detail. The leakage current of the ATO film was strongly affected by the Al concentration at the interface between the ATO film and the RuO2 electrode. The conduction band offset of the interface increased with the increase in the Al dopant concentration in the rutile TiO2, which reduced the leakage current in the voltage region pertinent to the next-generation dynamic random access memory application. However, the Al doping in the anatase TiO2 did not notably increase the conduction band offset even with a higher Al concentration. The detailed analyses of the leakage conduction mechanism based on the quantum mechanical transfer-matrix method showed that Schottky emission and Fowler-Nordheim tunneling was the dominant leakage conduction mechanism in the lower and higher voltage regions, respectively. The chemical analyses using X-ray photoelectron spectroscopy corroborated the electrical test results. PMID:24749990

  4. Insights into acetone photochemistry on rutile TiO₂(110). 2. new photodesorption channel with CH₃ ejection along the surface normal

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Angle-resolved photon stimulated desorption (PSD) combined with infrared reflection-adsorption spectroscopy and temperature programmed desorption reveal two distinct channels in the photochemistry of acetone on rutile TiO₂(110) surface. During UV irradiation of co-adsorbed oxygen and acetone molecules, methyl radicals (CH₃) are ejected in two different directions: i) normal to the surface and ii) off-normal at ~±66° to the surface normal in the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti atoms). Both components are relatively narrow and non-cosine, indicating non-thermal evolution of CH₃ radicals. The direction of the “off-normal” PSD component is consistent with orientation of the C–CH₃ bonds in the n²-acetone diolate—a photoactive form of acetone chemisorption on the oxidized TiO₂(110) surface proposed earlier from experimental and theoretical studies. The direction of the “normal” PSD component requires an orientation of a C–CH₃ bond which is not consistent with the n²-acetone diolate structure. The angular distribution of the CH₃ PSD depends on the acetone coverage. The “off-normal” PSD component dominates at lower acetone coverage (< 0.2 ML), but does not increase at higher coverages in accord with the acetone diolate peak intensity in the infrared reflection-absorption spectra. The “normal” PSD component grows with the acetone coverage up to 0.6 ML. The newly discovered “normal” PSD channel is tentatively assigned to a photo-produced n²- acetone enolate as a potential precursor based on the H/D exchange experiments

  5. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  6. The nuclear quadrupole interaction at 111Cd and 181Ta sites in anatase and rutile TiO2: A TDPAC study

    NASA Astrophysics Data System (ADS)

    Das, Satyendra K.; Thakare, Sanjay V.; Butz, Tilman

    2009-03-01

    The nuclear quadrupole interaction of the I=5/2 state of the nuclear probes 111Cd and 181Ta in the anatase and rutile polymorphs of bulk TiO2 was studied using the time differential perturbed angular correlation (TDPAC). The fast-slow coincidence setup is based on the CAMAC electronics. For anatase, the asymmetry of the electric field gradient was eta=0.22(1) and a quadrupole interaction frequency: 44.01(3) Mrad/s was obtained for 181Ta. For rutile, the respective values are eta=0.56(1) and quadrupole frequency=130.07(9) Mrad/s. The values for rutile match closely with the literature values. In case of the 111Cd probe produced from the beta decay of 111Ag, the quadrupole interaction frequency and the asymmetry parameter for anatase was negligible. This indicates an unperturbed angular correlation in anatase. On the other hand for rutile, the quadrupole frequency is 61.74(2) Mrad/s and the asymmetry is 0.23(1) for 111Cd probe. The results have been interpreted in terms of the surrounding atom positions in the lattice and the charge state of the probe nucleus.

  7. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  8. Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2013-12-01

    Rutile titanium dioxide (TiO2) nanostructures were successfully fabricated using the simple chemical bath deposition method at various deposition temperatures. These nanostructures were fabricated on (100 ± 10 nm) TiO2 seed layer coated glass, which was prepared via radio frequency (RF) magnetron sputtering at a substrate temperature of 350 °C. The synthesized TiO2 nanostructures were annealed at 550 °C for 2 h and examined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and Raman spectroscopy. The XRD patterns showed the presence of the peaks characteristic of rutile phase. The band gap of the TiO2 nanostructures was calculated using the UV-vis absorption spectrum and was determined to be between 3.15 and 3.24 eV. The Raman spectra contained three characteristic bands at 232, 446 and 612 cm-1, which correspond to the tetragonal TiO2 rutile. The results showed good quality of nanocrystalline TiO2 rutile phase.

  9. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.

    PubMed

    Wang, Yong-Qing; Gu, Lin; Guo, Yu-Guo; Li, Hong; He, Xiao-Qing; Tsukimoto, Susumu; Ikuhara, Yuichi; Wan, Li-Jun

    2012-05-01

    Well-defined Li(4)Ti(5)O(12) nanosheets terminated with rutile-TiO(2) at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO(2) terminated Li(4)Ti(5)O(12) nanosheets show much improved rate capability and specific capacity compared with pure Li(4)Ti(5)O(12) nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO(2) as a carbon-free coating layer to improve the kinetics of Li(4)Ti(5)O(12) toward fast lithium insertion/extraction. The carbon-free nanocoating of rutile-TiO(2) is highly effective in improving the electrochemical properties of Li(4)Ti(5)O(12), promising advanced batteries with high volumetric energy density, high surface stability, and long cycle life compared with the commonly used carbon nanocoating in electrode materials. PMID:22530994

  10. Atomic scale X-ray studies of the electrical double layer structure at the rutile titanium dioxide (110)-aqueous interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan

    When a metal oxide surface comes in contact with an aqueous solution, an electrical double layer (EDL) is formed at the interface. The EDL region greatly affects many natural and industrial processes. Efforts for more than a century have been put forward to understand the features of the EDL. However, with little atomic scale structural knowledge, the ability is very limited to test current competing models and further understand or predict EDL properties. In this work, the surface and the adsorbate structure at the rutile TiO 2 (110)-aqueous interface is probed with synchrotron based X-rays. Combining X-ray standing wave (XSW) imaging, which is direct and model independent, with tradition XSW triangulation, precise atom positions and absolute coverages are achieved. Crystal truncation rod (CTR) measurements yield the interfacial structure. It has been revealed the rutile (110) surface termination and structure and the specifically adsorbed ion locations while contacting with the bulk water. In the aqueous solution, both the bridging (BO) and the terminal oxygen (TO) rows are present and the surface undergoes minimal relaxations. An additional layer of water molecules with well-defined vertical and lateral positions are formed on top of surface oxygen groups. No more water structure is found farther away from the interface. The metal ions, including mono-, di-, and tri-valent ions, are all found to be 'inner sphere' adsorbates at the rutile (110)-aqueous interface. The adsorption location is primarily determined by the ion sizes. The larger ions, like Rb+, Sr 2+, and Y3+, take the tetradentate positions, which are of equal distances to the two TO and BO atoms. Small ions, like Zn 2+, are at the extended bulk Ti positions. With monovalent ions as the only background electrolytes at concentrations <1 mol/kg, we found that, the adsorbed divalent ions are independent of the type of the background electrolyte and the solution ionic strength; both Zn2+ and Sr2+ ions

  11. Half-metallic behaviour in doped TiO2 (rutile) with double impurities: ab initio calculation

    NASA Astrophysics Data System (ADS)

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; El Kenz, A.

    2013-12-01

    Dilute magnetic oxides are without doubt among the most interesting classes of magnetic materials. However, the nature of their electronic structure and magnetic exchange is far from understood. Here, we apply the ab initio augmented spherical wave (ASW) method, with corrected generalised gradient approximation to study the electronic structure and magnetic properties of doped TiO2 rutile with double impurities. The study reveals a half-metallic ferromagnetic behaviour for Ti1-2x Cr x Mo x O2, and the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Mo, which would lead to the ferromagnetic state through the double-exchange mechanism in transition metal oxides.

  12. Effects of O-deficiency on the interaction between rutile and Arg: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-ping; Lu, Xiong; Luo, Xue-gang; Lin, Xiao-yan; Zhou, Yan-fang

    2014-07-01

    Density functional theory (DFT) was used to investigate the adsorption of arginine (Arg) on three types of rutile (110) surface [R(110)], i.e., a pristine R(110), an R(110) with two kinds of oxygen deficiency, and an R(110) with an adsorbed water layer. The most stable adsorption configuration on pristine R(110) was identified when the aliphatic straight chain of Arg was parallel to the surface. The hindering effect of in-plane oxygen deficiency is larger than that of bridging oxygen deficiency on the interactions between Arg and R(110). The water layer hinders the Arg adsorption on R(110). These results deepened our understanding of the interfacial interactions between Arg and R(110), and would guide the design and development of tailored biomaterials at the electronic level.

  13. Rutile to anatase phase transition induced by N doping in highly oriented TiO2 films.

    PubMed

    Breeson, Andrew C; Sankar, Gopinathan; Goh, Gregory Kia Liang; Palgrave, Robert G

    2016-09-21

    Highly oriented TiO2 thin films were deposited onto Al2O3(0001), SrTiO3(001), and LaAlO3(001) substrates by spin coating a titanium alkoxide precursor solution followed by annealing. The films were nitrogen doped by two different routes: either by adding tetramethyethylenediamine (TMEDA) to the precursor solution or alternatively by high temperature ammonolysis. Undoped TiO2 films were highly oriented and the phase was dependent on the substrate. N doping by ammonolysis led to transformation of rutile films to anatase, confirmed by XRD and by XPS valence band spectroscopy. Significant differences were observed in the spatial distribution of the nitrogen dopant depending upon which synthesis method was used. These two factors may shed light on the increased photocatalytic efficiencies reported in N doped TiO2. PMID:27546382

  14. Influence of strain on water adsorption and dissociation on rutile TiO2(110) surface.

    PubMed

    Yang, Long; Shu, Da-Jun; Li, Shao-Chun; Wang, Mu

    2016-06-01

    The influence of externally applied strain on water adsorption and dissociation on a defect-free rutile TiO2(110) surface is studied by using first-principles calculations. We found that while compressive strain makes water adsorption and dissociation less favorable, tensile strain increases the energy gain of water adsorption, and decreases the energy cost of water dissociation. Specifically, dissociative water becomes more stable than molecular water when an 8% tensile in-plane strain is applied. Moreover, the dissociation barrier decreases with increasing strain more rapidly for more isolated water. The rate of decrease of this barrier for nearly isolated water is 0.017 eV per 1% biaxial strain. This demonstrates that applying strain is a possible way to engineer the surface adsorption and dissociation of water on a TiO2(110) surface, and therefore engineer the relevant surface reactivity. PMID:27138099

  15. Ordered heteromolecular overlayers formed by metal phthalocyanines and porphyrins on rutile titanium dioxide surface studied at room temperature

    NASA Astrophysics Data System (ADS)

    Zając, Łukasz; Olszowski, Piotr; Godlewski, Szymon; Such, Bartosz; Jöhr, Res; Pawlak, Rémy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2015-12-01

    Molecular heterostructures are formed from meso-tetraphenyl porphyrins-Zn(ii) (ZnTPP) and Cu(ii)-phthalocyanines (CuPc) on the rutile TiO2(011) surface. We demonstrate that ZnTPP molecules form a quasi-ordered wetting layer with flat-lying molecules, which provides the support for growth of islands comprised of upright CuPc molecules. The incorporation of the ZnTPP layer and the growth of heterostructures increase the stability of the system and allow for room temperature scanning tunneling microscopy (STM) measurements, which is contrasted with unstable STM probing of only CuPc species on TiO2. We demonstrate that within the CuPc layer the molecules arrange in two phases and we identify molecular dimers as basic building blocks of the dominant structural phase.

  16. Magnetism at grain boundary interfacesin the colossal permittivity dielectric material; In+Nb Co-Doped Rutile

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Cottrell, Stephen; Hu, Wanbiao; Liu, Yun

    With the emphasis in recent years on understanding novel materials with potential technological applications this work seeks to understand magnetic ordering within the colossal-permittivity material, In+Nb co-doped rutile (TiO2). Evidence for a spin-freezing transition was reported from a step like feature in the dielectic data below 50 K but this was largly glossed over. Within this work we show that below 300 K there is a slowing down of magnetic fluctuations associated with the electronic magnetism due to the defect-dipoles created by the co-doping, but the muon spectroscopy results are strongly suggestive of the behaviour being localised to the edges/interfaces of particles/grains. The TC is strongly dependent on the doping level of the samples that presents novel way to control the magnetism and ultimately magneto-electric coupling within a dielectric material.

  17. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)

    PubMed Central

    Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-01-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303

  18. Three-dimensional interaction force and tunneling current spectroscopy of point defects on rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Baykara, Mehmet Z.; Mönig, Harry; Schwendemann, Todd C.; Ünverdi, Ã.-zhan; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    The extent to which point defects affect the local chemical reactivity and electronic properties of an oxide surface was evaluated with picometer resolution in all three spatial dimensions using simultaneous atomic force/scanning tunneling microscopy measurements performed on the (110) face of rutile TiO2. Oxygen atoms were imaged as protrusions in both data channels, corresponding to a rarely observed imaging mode for this prototypical metal oxide surface. Three-dimensional spectroscopy of interaction forces and tunneling currents was performed on individual surface and subsurface defects as a function of tip-sample distance. An interstitial defect assigned to a subsurface hydrogen atom is found to have a distinct effect on the local density of electronic states on the surface, but no detectable influence on the tip-sample interaction force. Meanwhile, spectroscopic data acquired on an oxygen vacancy highlight the role of the probe tip in chemical reactivity measurements.

  19. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-02-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2.

  20. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110).

    PubMed

    Hansen, Jonas Ø; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-01-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303

  1. Tracking Site-specific C-C Coupling of Formaldehyde Molecules on Rutile TiO2(110)

    SciTech Connect

    Zhu, Ke; Xia, Yaobiao; Tang, Miru; Wang, Zhitao; Jan, Bryan; Lyubinetsky, Igor; Ge, Qingfeng; Dohnalek, Zdenek; Park, Kenneth T.; Zhang, Zhenrong

    2015-06-25

    Direct imaging of site-specific reactions of individual mole-cules as a function of temperature is a long-sought goal in molecular science. Here, we report the direct visualization of molecular coupling of formaldehyde on reduced rutile TiO2(110) surfaces as we track the same set of molecules when the temperature is increased from 75 to 170 K using scanning tunneling microscope (STM). Our recent study showed that formaldehyde preferably adsorbs on bridging-bonded oxygen (Ob) vacancy (VO) defect site. Herein, images from the same area as the temperature is increased show that VO-bound formaldehyde couples with Ti-bound formaldehyde forming a diolate intermediate. Exposure of formaldehyde at room temperature leads to diolate as the majority species on the surface and no VO-bound formaldehyde is observed. The diolate species are the key reaction intermediates in the formation of ethylene reported in previous ensemble-averaged studies.

  2. Ordered heteromolecular overlayers formed by metal phthalocyanines and porphyrins on rutile titanium dioxide surface studied at room temperature.

    PubMed

    Zając, Łukasz; Olszowski, Piotr; Godlewski, Szymon; Such, Bartosz; Jöhr, Res; Pawlak, Rémy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2015-12-14

    Molecular heterostructures are formed from meso-tetraphenyl porphyrins-Zn(II) (ZnTPP) and Cu(II)-phthalocyanines (CuPc) on the rutile TiO2(011) surface. We demonstrate that ZnTPP molecules form a quasi-ordered wetting layer with flat-lying molecules, which provides the support for growth of islands comprised of upright CuPc molecules. The incorporation of the ZnTPP layer and the growth of heterostructures increase the stability of the system and allow for room temperature scanning tunneling microscopy (STM) measurements, which is contrasted with unstable STM probing of only CuPc species on TiO2. We demonstrate that within the CuPc layer the molecules arrange in two phases and we identify molecular dimers as basic building blocks of the dominant structural phase. PMID:26671391

  3. A method for the concentration of fine-grained rutile (TiO2) from sediment and sedimentary rocks by chemical leaching

    USGS Publications Warehouse

    Commeau, Judith A.; Valentine, Page C.

    1991-01-01

    Most of the sample analyzed by the method described were marine muds collected from the Gulf of Maine (Valentine and Commeau, 1990). The silt and clay fraction (up to 99 wt% of the sediment) is composed of clay minerals (chiefly illite-mica and chlorite), silt-size quartz and feldspar, and small crystals (2-12 um) of rutile and hematite. The bulk sediment samples contained an average of 2 to 3 wt percent CaCO3. Tiher samples analyzed include red and gray Carboniferous and Triassic sandstones and siltstones exposed around the Bay of Fundy region and Paleozoic sandstones, siltstones, and shales from northern Maine and New Brunswick. These rocks are probable sources for the fine-grained rutile found in the Gulf of Maine.

  4. A new alkali metal titanotantalate, KTi 2Ta 5O 17—A compound that exhibits the "chemically twinned" rutile structure

    NASA Astrophysics Data System (ADS)

    Gatehouse, B. M.; Nesbit, M. C.

    1980-07-01

    KTi 2Ta 5O 17 crystallizes in the orthorhombic system with unit-cell dimensions (from single-crystal data) a = 6.672(4) Å, b = 8.948(5) Å, c = 21.403(9) Å and space group Cmcm, Z = 4. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 1034 reflections measured by counter techniques, 704 with I ≥ 3 σ( I) were used in the least-squares refinement of the model to a conventional R of 0.041 ( ωR = 0.043). The structure consists of edge- and corner-shared tantalum octahedra joined such that tunnels are formed in which the potassium ions are located. Slabs of octahedra are of the rutile (TiO 2) type related to one another by mirror planes (in which the potassium ions are located), producing a structure that may be considered as a "chemical twin" of the rutile structure.

  5. Tailoring the electronic and optical properties of rutile TiO2 by (Nb + Sb, C) codoping from DFT + U calculations

    NASA Astrophysics Data System (ADS)

    Fang, Yu; Cheng, Daojian; Niu, Mang; Yi, Yongjun; Wu, Wei

    2013-04-01

    The electronic structures and optical properties of the rutile TiO2 doped by C, (2Sb, C), (2Nb, C), (Nb + Sb, C) have been investigated by density functional theory plus U calculations. It is found that (2Sb, C), (2Nb, C), (Nb + Sb, C) codoping results in band gap narrowing, due to the appearance of the mid-bandgap states from C 2p and the introduction of Sb 5s and Nb 4d states. In addition, the rutile TiO2 codoped by (Nb + Sb, C) and (2Nb, C) is much more effective for the enhancement of visible light absorption than that for C monodoping and (2Sb, C) codoping.

  6. A study of the impurity structure for 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystal

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed

    2012-02-01

    The local environment around 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystals has been investigated using superposition model (SPM) analysis. The zero-field splitting (ZFS) parameters (ZFSPs) D and E are modeled for the Cr 3+ and Mn 4+ ions at both the substitutional Ti sites with local symmetry orthorhombic D2h and the interstitial sites (ISs) with the same symmetry. Several model parameter sets are adopted so as to acquire the best agreement between the calculated ZFSPs and those measured by electron magnetic resonance (EMR). The feasible values of the structural distortions (Δ RY, Δ RXZ and Δ θ) resulting from dopant Cr 3+ and Mn 4+ ions are determined. As a result, it is confirmed that Mn 4+ ions substitute for Ti 4+ sites in rutile TiO 2 crystal; however, it is suggested that Cr 3+ ions may replace at not only Ti 4+ site but also IS.

  7. Raman-scattering observation of the rutile-to-CaCl{sub 2} phase transition in RuO{sub 2}

    SciTech Connect

    Rosenblum, S.S.; Weber, W.H.; Chamberland, B.L.

    1997-07-01

    Using a diamond-anvil cell, we have probed the pressure-induced rutile-to-CaCl{sub 2} ferroelastic phase transition in RuO{sub 2} with Raman spectroscopy. The transition is marked by a splitting of the degenerate E{sub g} mode of the rutile phase into two nondegenerate components and by an abrupt change in the Gr{umlt u}neisen parameters for all the phonons. The behavior of this splitting shows good agreement with Landau{close_quote}s theory for a second-order phase transition, application of which yields a transition pressure of 11.8{plus_minus}0.3 GPa. {copyright} {ital 1997} {ital The American Physical Society}

  8. Luminescence of SiO2 and GeO2 crystals with rutile structure. Comparison with α-quartz crystals and relevant glasses (Review Article)

    NASA Astrophysics Data System (ADS)

    Trukhin, A. N.

    2016-07-01

    Luminescence properties of SiO2 in different structural states are compared. Similar comparison is made for GeO2. Rutile and α-quartz structures as well as glassy state of these materials are considered. Main results are that for α-quartz crystals the luminescence of self-trapped exciton is the general phenomenon that is absent in the crystal with rutile structure. In rutile structured SiO2 (stishovite) and GeO2 (argutite) the main luminescence is due to a host material defect existing in as-received (as-grown) samples. The defect luminescence possesses specific two bands, one of which has a slow decay (for SiO2 in the blue and for GeO2, in green range) and another, a fast ultraviolet (UV) band (4.75 eV in SiO2 and at 3 eV in GeO2). In silica and germania glasses, the luminescence of self-trapped exciton coexists with defect luminescence. The latter also contains two bands: one in the visible range and another in the UV range. The defect luminescence of glasses was studied in details during last 60-70 years and is ascribed to oxygen deficient defects. Analogous defect luminescence in the corresponding pure nonirradiated crystals with α-quartz structure is absent. Only irradiation of a α-quartz crystal by energetic electron beam, γ-rays and neutrons provides defect luminescence analogous to glasses and crystals with rutile structure. Therefore, in glassy state the structure containing tetrahedron motifs is responsible for existence of self-trapped excitons and defects in octahedral motifs are responsible for oxygen deficient defects.

  9. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities

    PubMed Central

    Luan, Peng; Xie, Mingzheng; Liu, Dening; Fu, Xuedong; Jing, Liqiang

    2014-01-01

    Herein, we have fabricated rutile TiO2 nanorod-coupled α-Fe2O3 by a wet-chemical process. It is demonstrated that the visible activities for photoelectrochemical water oxidation and for degrading pollutant of α-Fe2O3 are greatly enhanced after coupling a proper amount of rutile nanorods. The enhanced activity is attributed to the prolonged lifetime and improved separation of photogenerated charges mainly by the transient surface photovoltage responses. Interestingly, the observed EPR signals (with g⊥ = 1.963 and g|| = 1.948) of Ti3+ in the fabricated TiO2-Fe2O3 nanocomposite at ultra low temperature (1.8 k) after visible laser excitation, along with the electrochemical impedance spectra and the normalized photocurrent action spectra, testify evidently that the spacial transfers of visible-excited high-energy electrons of α-Fe2O3 to TiO2 could happen. Moreover, it is confirmed that it is more favorable for the uncommon electron transfers of α-Fe2O3 to rutile than to anatase. This is responsible for the much obvious enhancement of visible activity of Fe2O3 after coupling with rutile TiO2, compared with anatase and phase-mixed P25 ones. This work would help us to deeply understand the uncommon photophysical processes, and also provide a feasible route to improve the photocatalytic performance of visible-response semiconductor photocatalyst for water splitting and pollutant degradation. PMID:25154460

  10. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.

    PubMed

    Mutuma, Bridget K; Shao, Godlisten N; Kim, Won Duck; Kim, Hee Taik

    2015-03-15

    TiO2 photocatalysts with a mixture of different TiO2 crystal polymorphs have customarily been synthesized hydrothermally at high temperatures using complicated and expensive equipment. In this study TiO2 nanoparticles with a mixture of TiO2 crystals were synthesized using a modified sol-gel method at low temperature. In order to form nanoparticles with different polymorphs a series of samples were obtained at pH 2, 4, 7 and 9. Raw samples were calcined at different temperatures ranging from 200 to 800°C to evaluate the effect of the calcination temperature on the physico-chemical properties of the samples. XRD results revealed that a mixture of anatase and brookite can be obtained in the as-synthesized samples and in those calcined up to 800°C depending on the pH used to obtain the final product. Indeed, a mixture of anatase brookite and rutile; or a sample with only rutile phase can be yielded through further calcination of the as-prepared samples at temperatures ⩾600°C due to phase transformation. The photocatalytic performance of the samples with a mixture of anatase-brookite; anatase-brookite-rutile; and anatase-rutile (Degussa P25 TiO2) was exquisitely investigated in the degradation of methylene blue solutions. The samples obtained at pH 2 and calcined at 200°C possessed the highest activity of all due to its superior properties. This study elucidates a facile method suitable for the synthesis of TiO2 with different mixtures of TiO2 polymorphs with desirable properties for various applications. PMID:25514642

  11. Rutile-structured TiO{sub 2} deposited by plasma enhanced atomic layer deposition using tetrakis(dimethylamino)titanium precursor on in-situ oxidized Ru electrode

    SciTech Connect

    Pointet, John; Gonon, Patrice; Latu-Romain, Lawrence; Bsiesy, Ahmad Vallée, Christophe

    2014-01-15

    In this work, tetrakis(dimethylamino)titanium precursor as well as in-situ oxidized ruthenium bottom electrode were used to grow rutile-structured titanium dioxide thin layers by plasma enhanced atomic layer deposition. Metal–insulator–metal capacitors have been elaborated in order to study the electrical properties of the device. It is shown that this process leads to devices exhibiting excellent results in terms of dielectric constant and leakage current.

  12. Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity

    SciTech Connect

    Xu Hua; Zheng Zhi; Zhang Lizhi Zhang Hailu; Deng Feng

    2008-09-15

    In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, {sup 1}H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO{sub 2} under visible light ({lambda}>420 nm). These hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity. - Graphical abstract: Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst were synthesized on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm)

  13. Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries

    PubMed Central

    Lan, Tongbin; Qiu, Heyuan; Xie, Fengyan; Yang, Jie; Wei, Mingdeng

    2015-01-01

    An in situ hydrothermal route is developed for fabricating rutile TiO2 mesocrystals/reduced graphene oxide nanosheets (TGR) hybrids in the presence of dodecylbenzenesulphonic acid (ADBS). These rutile TiO2 mesocrystals with a Wulff shape are composed of ultra-tiny rod-like subunits with the same oriented direction and closely wrapped by the nanosheets of reduced graphene oxide (RGO). It is found that ADBS played a key role for the formation of mesocrystals during the self-assembly process, which pillared the graphene oxide (GO) nanosheets and involved the aggregation of the mesocrystal subunits. Furthermore, the TGR hybrids are used as an anode material and exhibited a large capacity over 150 mA h g−1 at 20 C after 1000 cycles, and high rate capability up to 40 C. These high performance characteristics may be due to the intrinsic characteristics of rutile TiO2 mesocrystals constructed from ultra-tiny subunits and hybridized with super conductive RGO nanosheets. PMID:25688035

  14. Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti0.95Co0.5O2 film

    DOE PAGESBeta

    Hu, Wen; Hayaski, Kouichi; Fukumura, Tomoteru; Akagi, Kazuto; Tsukada, Masaru; Happo, Naohisa; Hosokawa, Shinya; Ohwada, Kenji; Takahasi, Masamitu; Suzuki, Motohiro; et al

    2015-06-02

    To evaluate local atomic structures around Co in high temperature diluted ferromagnetic semiconductor Co-doped TiO2, x-ray fluorescence holography and x-ray absorption fine structure experiments were carried out on rutile paramagnetic Ti0.99Co0.01O2 and ferromagnetic Ti0.95Co0.05O2 films. The Co atoms in the Ti0.99Co0.01O2 simply substituted for Ti sites in the rutile structure, whereas a suboxidic arrangement of CoO2Ti4 formed around Co in the Ti0.95Co0.05O2 films. A theoretical investigation based on a series of first-principles calculations indicated the stability of the aggregated suboxidic clusters in the rutile TiO2, supporting our hypothesis for the formation of suboxidic coordination in the highly Co-doped sample. Asmore » a result, the suboxidic coordination may be the source of strong exchange interaction, resulting in the high Curie temperature in Co-doped TiO2.« less

  15. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. PMID:26313710

  16. Analysis of the Temperature Dependence of the Capacitance-Voltage and Conductance-Voltage Characteristics of Au/TiO2(rutile)/ n-Si Structures

    NASA Astrophysics Data System (ADS)

    KInacI, BarIş; Özçelik, Süleyman

    2013-06-01

    The capacitance-voltage-temperature ( C- V- T) and the conductance/angular frequency-voltage-temperature ( G/ω- V- T) characteristics of Au/TiO2(rutile)/ n-Si Schottky barrier diodes (SBDs) were investigated over the temperature range from 200 K to 380 K by considering the series resistance effect. Titanium dioxide (TiO2) was deposited on n-type silicon (Si) substrate using a direct-current (DC) magnetron sputtering system at 200°C. To improve the crystal quality, the deposited film was annealed at 900°C to promote a phase transition from the amorphous to rutile phase. The C -2 versus V plots gave a straight line in the reverse-bias region. The main electrical parameters, such as the doping concentration ( N D), Fermi energy level ( E F), depletion layer width ( W D), barrier height ( ф CV), and series resistance ( R S), of Au/TiO2(rutile)/ n-Si SBDs were calculated from the C- V- T and the G/ω- V- T characteristics. The obtained results show that ф CV, R S, and W D values decrease, while E F and N D values increase, with increasing temperature.

  17. Facile preparation of porous In2TiO5-rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature.

    PubMed

    Wu, Hongyuan; Wang, Linlin; Zhou, Jiao; Gao, Jun; Zhang, Guo; Xu, Shuang; Xie, Yu; Li, Li; Shi, Keying

    2016-03-15

    Porous In2TiO5-rutile composite nanotubes (IRCNs) were synthesized via a facile one-step synthesis of the electrospinning approach by using tetrabutyl titanate (TBT), indium nitrate, and polyvinylpyrrolidone (PVP) as a soft-template followed by two-step calcination. The porous composite nanotubes with a bigger surface area have single-crystalline rutile with (110) crystal plane, and the sensor fabricated by it with a content of 12.5 at% In2TiO5 (IRCN2) has shown a response of 4.04 to 100 ppm NO2 at room temperature (RT), which was 20 times as high as the pure In2TiO5 sensor under the same conditions. The IRCN2 sensor had excellent selectivity compared with other gas species such as CO, H2, NH3, H2S and CH4 at RT. The enhanced sensing properties were attributed to the synergy of integrated In2TiO5 and rutile, heterojunction of single-crystal, and its nanotubular structure. Hence, the IRCN2 sensor has a potential application for the development of novel gas sensors at RT. PMID:26707774

  18. Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti{sub 0.95}Co{sub 0.05}O{sub 2} film

    SciTech Connect

    Hu, Wen; Hayashi, Kouichi; Fukumura, Tomoteru; Akagi, Kazuto; Tsukada, Masaru; Happo, Naohisa; Hosokawa, Shinya; Ohwada, Kenji; Takahasi, Masamitu; Suzuki, Motohiro

    2015-06-01

    To evaluate local atomic structures around Co in high temperature diluted ferromagnetic semiconductor Co-doped TiO{sub 2}, x-ray fluorescence holography and x-ray absorption fine structure experiments were carried out on rutile paramagnetic Ti{sub 0.99}Co{sub 0.01}O{sub 2} and ferromagnetic Ti{sub 0.95}Co{sub 0.05}O{sub 2} films. The Co atoms in the Ti{sub 0.99}Co{sub 0.01}O{sub 2} simply substituted for Ti sites in the rutile structure, whereas a suboxidic arrangement of CoO{sub 2}Ti{sub 4} formed around Co in the Ti{sub 0.95}Co{sub 0.05}O{sub 2} films. A theoretical investigation based on a series of first-principles calculations indicated the stability of the aggregated suboxidic clusters in the rutile TiO{sub 2}, supporting our hypothesis for the formation of suboxidic coordination in the highly Co-doped sample. The suboxidic coordination may be the source of strong exchange interaction, resulting in the high Curie temperature in Co-doped TiO{sub 2}.

  19. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    DOE PAGESBeta

    Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  20. Are the alteration halos of massive sulfide deposits syngenetic Evidence from U-Pb dating of hydrothermal rutile at the Kidd volcanic center, Abitibi subprovince, Canada

    SciTech Connect

    Schandl, E.S.; Davis, D.W.; Krogh, T.E. )

    1990-06-01

    The Kidd volcanic complex is composed of felsic volcanic and subvolcanic rocks of Archean age. Metasomatic events affecting the lithology of the Kidd volcanic complex include silicification, extensive CO{sub 2} metasomatism (carbonate), K-metasomatism (sericite-fuchsite), and chlorite and minor carbonate alterations. Petrographic evidence, supported by stable isotope and fluid inclusion studies, suggests that silicification and early carbonate alteration were synvolcanic, and therefore related to ore deposition. During subsequent extensive K-metasomatism, sericite precipitated in the rhyolite, and fuschsite precipitated in the ultramafic rocks. Although chlorite postdates K-metasomatism, the micas and chlorite are both found in anastomosing microfissures, commonly occupying the same set of fractures. Hydrothermal rutile formed by the breakdown of magnetite-ilmenite during K-metasomatism and chlorite alteration gives an age of 2624 {plus minus} 62 Ma (95% confidence level). It is therefore approximately 100 m.y. younger than syngenetic massive sulfide mineralization (2712 {plus minus} 2 Ma). Sulfide stringers within sericite and chlorite veins suggest some remobilization of the ores during these later events. This alteration assemblage, is identical to that found associated with many lode-gold deposits in the Superior province. Recent dating of micas and rutile associated with gold deposits in the Abitibi subprovince gives comparable ages to the rutile in the Kidd volcanic complex, which must therefore record a widespread, late hydrothermal event affecting mineralized rocks.

  1. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Li, C. W.; Hellman, O.; Kim, D. S.; Muñoz, J. A.; Smith, H.; Abernathy, D. L.; Fultz, B.

    2015-08-01

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. Inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3 d electrons of Ti and 2 p electrons of O atoms. With thermal expansion, the energy variation in this "phonon-tracked hybridization" flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.

  2. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe “Doped” and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  3. Structural characterization of mineral with rutile inclusions (TiO2) and manganocolumbite (MnNb2O6) by means of X-ray

    NASA Astrophysics Data System (ADS)

    Arcila, J. F.; Hincapié, A. F.

    2013-11-01

    A sample of mineral obtained in the department of Vichada was characterized by the technique of X-ray diffraction in powder samples, in order to determine the crystallographic phases present. After analyzing diffraction patterns, as a result, the mineral had inclusions of Rutile (86.3%) and Manganocolumbita (13.7%). Next, a simulation of the crystal structure of these minerals from the data entered in the databases was carried on. Later, the Rietveld method was used, from this refinement, the new diffraction pattern and the new network parameters were obtained. For the Rutile it was obtained a tetragonal structure, and for the Manganocolumbita an orthorhombic structure was obtained. The characterization is justified among other aspects due to the important applications of these materials in industry and technology, such as Rutile is used in welding rod coatings, in Industries cardboard paper and ink impression among many other uses, the Manganocolumbita is used in special alloys resistant to high temperatures, it also is directly related to the tantalite in coltan formation.

  4. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps.

    PubMed

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T

    2016-07-28

    The associative and dissociative adsorption of water molecules at low-coverage situations on rutile TiO2 (110) surface with step defects was investigated by the density functional theory calculations. Structural optimization of the hydroxylated/hydrated configurations at step edges along the 11̄1 crystal directions and the dynamic process of water dissociation were discussed to get a better description of the water/TiO2 interface. Our results indicate that steps on the TiO2 (110) surface could be an active site for water dissociation. The results of geometry optimization suggest that the stability of hydroxylated configuration is largely dependent on the locations of the H species and the recombination of water molecules from hydroxyls is observed in the fully hydroxylated condition. However, these hydroxyls can be stabilized by the associatively absorbed water nearby by forming competitive intermolecular hydrogen bonds. The dynamics of water dissociation and hydrogen diffusion were studied by the first principles molecular dynamics simulation and our results suggest that the hydrogen released by water dissociation can be transferred among the adsorbates, such as the unsaturated oxygen atoms-H2O-hydroxyl (TiO-H2O-OH) complex at step edges, or gradually diffuses to the bulk water system in the form of hydronium (H3O(+)) at higher water coverage. PMID:27475381

  5. TiO₂ (rutile) embedded inulin--A versatile bio-nanocomposite for photocatalytic degradation of methylene blue.

    PubMed

    Jayanthi Kalaivani, G; Suja, S K

    2016-06-01

    Inulin, a water soluble carbohydrate polymer, was extracted from Allium sativum L. by hot water diffusion method. A novel bio-nanocomposite was prepared by embedding TiO2 (rutile) onto the inulin matrix. The extracted inulin and the prepared bio-nanocomposite were characterized using UV-vis, FT-IR, XRD, SEM, TEM and TGA techniques. The photocatalytic activity of the bio-nanocomposite for the degradation of methylene blue was studied under UV illumination in batch mode experiment and was found to be twice as high as that of pristine TiO2. The kapp for inulin-TiO2 (0.0449 min(-1)) was higher than that for TiO2 (0.0325 min(-1)) which may be due to the synergistic action of inulin and TiO2. The stabilization of photo excited electron suppressed the electron-hole pair recombination thereby inducing the electrons and the holes to participate in the photo reduction and oxidation processes, respectively and enhancing the photocatalytic activity. PMID:27083343

  6. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1 × 1

    NASA Astrophysics Data System (ADS)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János; Kay, Bruce D.; Kim, Yu Kwon

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50-500 K. NO readily reacts on TiO2(110) to form N2O, which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a by-product of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.

  7. A density functional theory study of atomic steps on stoichiometric rutile TiO{sub 2}(110)

    SciTech Connect

    Stausholm-Møller, Jess; Kristoffersen, Henrik Høgh; Martinez, Umberto; Hammer, Bjørk

    2013-12-21

    We present a detailed theoretical study of the energetics of stoichiometric steps on the (110) surface of rutile TiO{sub 2}. Step structures running along the 〈001〉, 〈11{sup ¯}1〉, and 〈11{sup ¯}0〉 directions including bulk-terminations and possible reconstructions have been considered. A robust method for extracting surface and step energies of vicinal surfaces, where the surface energies converge slowly with respect to slab thickness, is outlined and used. Based on the calculated step energies a 2D Wulff-construction is presented from which it can be concluded that in equilibrium only oxygen terminated steps running along the 〈001〉 directions and reconstructed steps along the 〈11{sup ¯}1〉 directions should be present. Finally it is found that under conditions of stoichiometry the reconstructed 〈11{sup ¯}1〉 steps should be more than twice as abundant as oxygen terminated 〈001〉 steps.

  8. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1

    SciTech Connect

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formed in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .

  9. Dynamics of electron injection from the excited state of anchored organic molecules into rutile (110)TiO II

    NASA Astrophysics Data System (ADS)

    Gundlach, Lars; Ernstorfer, Ralph; Willig, Frank

    2006-08-01

    Hot electron injection from the excited electronic singlet state of perylene chromophores into the (110) surface of rutile TiO II single crystals was measured with femtosecond two-photon photoemission (2PPE) for different anchor/bridge groups attached to the perylene chromophore. Femtosecond 2PPE probes the time and energy dependence of the population of firstly the excited state of the chromophore and secondly of the hot electrons injected into the surface layer of the semiconductor. Measuring both these contributions gives a complete picture of the ultrafast photo-induced injection process and bridges the gap to conventional measurements of the rise time of the corresponding photocurrent. Studying the system in ultra-high-vacuum (UHV) makes all the tools of surface science available. Impurities on the surface were studied with XPS, the alignment of the occupied and unoccupied electronic levels at the interface with UPS and with 2PPE, respectively. The orientation of the elongated chromophores with respect to the crystal surface was deduced from angle and polarization dependent 2PPE signals making use of the known orientation of the dipole moment for the optical transition, the energy distribution of the injected hot electrons was determined with 2PPE from the energy distribution of the photoemitted electrons, and finally the escape of the injected electrons from the surface to bulk states of the semiconductor was obtained from femtosecond 2PPE transients.

  10. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T.

    2016-07-01

    The associative and dissociative adsorption of water molecules at low-coverage situations on rutile TiO2 (110) surface with step defects was investigated by the density functional theory calculations. Structural optimization of the hydroxylated/hydrated configurations at step edges along the <" separators="1 1 ¯ 1 > crystal directions and the dynamic process of water dissociation were discussed to get a better description of the water/TiO2 interface. Our results indicate that steps on the TiO2 (110) surface could be an active site for water dissociation. The results of geometry optimization suggest that the stability of hydroxylated configuration is largely dependent on the locations of the H species and the recombination of water molecules from hydroxyls is observed in the fully hydroxylated condition. However, these hydroxyls can be stabilized by the associatively absorbed water nearby by forming competitive intermolecular hydrogen bonds. The dynamics of water dissociation and hydrogen diffusion were studied by the first principles molecular dynamics simulation and our results suggest that the hydrogen released by water dissociation can be transferred among the adsorbates, such as the unsaturated oxygen atoms-H2O-hydroxyl (TiO-H2O-OH) complex at step edges, or gradually diffuses to the bulk water system in the form of hydronium (H3O+) at higher water coverage.

  11. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-10-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO(2) nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO(2)-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO(2) nanoparticles serve two purposes, namely to prevent the TiO(2) nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO(2)-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO(2)-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites. PMID:21911930

  12. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L.; Valloppilly, Shah R.; Ducharme, Stephen; Sellmyer, David J.

    2011-10-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  13. Diffusion Processes in Water on Oxide Surfaces: Quasielastic Neutron Scattering Study of Hydration Water in Rutile Nano-Powder

    SciTech Connect

    Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J

    2011-01-01

    Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.

  14. Molecular simulation of C 60 adsorption onto a TiO 2 rutile (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Carvalho, A. J. Palace; Ramalho, J. P. Prates

    2010-06-01

    A Monte Carlo molecular simulation study is presented on the adsorption and growth of C 60 films on the surface of the (1 1 0) face of rutile. Simulations are performed for a temperature of 600 K using atomistic models both for the fullerene molecules and the TiO 2 surface. It is found in this work that C 60 is adsorbed preferably in an ordered arrangement along the surface depressions over the exposed undercoordinated Ti cations. At low densities adsorption occurs preferably at alternate rows, with locations in consecutive rows being occupied appreciably only at higher C 60 densities. At low densities, the fullerene molecules tend to aggregate into islands in the surface plane. Additional layers of C 60 form only as the density increases, and do so before a monolayer is completed in all consecutive rows. Full monolayer capacity obtained at the highest densities is about 0.9 C 60 molecules per nm 2, but this is only achieved by completing the packing of molecules in interstices at a slightly upper level. The fraction of the molecules that lie closest to the surface only amounts to 0.6 molecules per nm 2.

  15. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO{sub 2} (110)

    SciTech Connect

    Rieboldt, F.; Vilhelmsen, L. B.; Koust, S.; Lauritsen, J. V.; Lammich, L.; Besenbacher, F.; Hammer, B.; Wendt, S.; Helveg, S.

    2014-12-07

    The nucleation and growth of Pt nanoparticles (NP’s) on rutile TiO{sub 2} (110) surfaces with O on-top atoms (oxidized TiO{sub 2}), surface O vacancies, and H adatoms, respectively (reduced TiO{sub 2}), was studied by means of scanning tunneling microscopy (STM) experiments and density functional theory calculations. At room temperature, Pt was found to be trapped at O on-top atoms and surface O vacancies, leading to rather small Pt NP’s. In contrast, on surfaces with H adatoms the mobility of Pt was much larger. As a result, large Pt NP's were found at room temperature on TiO{sub 2} (110) surfaces with H adatoms. However, at ∼150 K the diffusion of Pt was kinetically hindered on all TiO{sub 2} (110) surfaces considered. STM data acquired after vacuum-annealing at 800 K showed comparable results on all TiO{sub 2} (110) surfaces because the diffusion of Pt is not influenced by surface defects at such high temperatures.

  16. Thin-film growth of (110) rutile TiO2 on (100) Ge substrate by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshihisa; Nagata, Takahiro; Yamashita, Yoshiyuki; Nabatame, Toshihide; Ogura, Atsushi; Chikyow, Toyohiro

    2016-06-01

    The deposition conditions of (100) rutile TiO2 grown on p-type (100) Ge substrates by pulsed laser deposition (PLD) were optimized to improve the electrical properties of the TiO2/Ge structure. Increasing the substrate temperature (T sub) enhanced the grain growth, the surface roughness of the film, and Ge diffusion into the TiO2 layer. The growth rate, which was controlled by the laser density in PLD (L d), affected the Ge diffusion. L d of 0.35 J/cm2 (0.37 nm/min) enhanced the Ge diffusion and improved the crystallinity and surface roughness at a temperature of 450 °C, at which GeO x undergoes decomposition and desorption. However, the Ge diffusion into TiO2 degraded the electrical properties. By using the optimized conditions (L d = 0.7 J/cm2 and T sub = 420 °C) with postannealing, the TiO2/Ge structure showed an improvement in the leakage current of 3 orders of magnitude and the capacitance–voltage property characteristics indicated the formation of a p–n junction.

  17. Significant effects of reaction temperature on morphology, crystallinity, and photoelectrical properties of rutile TiO2 nanorod array films

    NASA Astrophysics Data System (ADS)

    Sun, Xianmiao; Sun, Qiong; Zhang, Qian; Zhu, Qianqian; Dong, Hongzhou; Dong, Lifeng

    2013-03-01

    Oriented single-crystalline TiO2 nanorod arrays have been extensively studied as the electrode of photoelectrochemical cells due to their unique properties. In this study, oriented rutile TiO2 nanorod arrays were directly synthesized on fluorine-doped tin oxide glass substrates by a facile hydrothermal method, and the effects of growth conditions (i.e. reaction temperature, growth time and titanium precursor) on their morphologies, crystal structures and photoelectrical properties were investigated. Reaction temperature played a more critical role in tailoring the surface morphology, crystal structures (i.e. length, diameter and crystallinity of nanorods) and photoelectrical properties of the nanorods than growth time did. With the increase in reaction temperature from 140 °C to 200 °C, both photocurrent density and external quantum efficiency (EQE) increased initially and then decreased, with a maximum value of 5.6 × 10-2 mA cm-2 at 170 °C and 2.7% at 160 °C, respectively. In addition, photoelectric measurements demonstrated that TiO2 nanorod arrays synthesized from TiCl4 at a relatively low reaction temperature exhibited a much higher EQE value than those obtained from titanium isopropoxide.

  18. Ordinary and extraordinary dielectric functions of rutile SnO{sub 2} up to 20 eV

    SciTech Connect

    Feneberg, Martin Lidig, Christian; Lange, Karsten; Goldhahn, Rüdiger; Neumann, Maciej D.; Esser, Norbert; Bierwagen, Oliver; White, Mark E.; Tsai, Min Y.; Speck, James S.

    2014-06-09

    Spectroscopic ellipsometry at room temperature is applied in order to determine the ordinary (ε{sub ⊥}) and extraordinary (ε{sub ∥}) dielectric functions (DFs) of rutile SnO{sub 2} corresponding to electric field (E) polarization perpendicular (E⊥c) and parallel (E∥c) to the optical axis (c), respectively. Strong anisotropic behavior is found for the full spectral range from 0.5 up to 20 eV. The onsets of strong absorption are found at 4.28 eV and 5.42 eV for E⊥c and E∥c, respectively. A dipole-forbidden band gap at (3.59 ± 0.2) eV at room temperature is found by line shape fits to the imaginary parts of the DFs. Further high-energy transitions are resolved. Their accurate energy values are obtained by fitting the second derivatives of the DFs. Comparison to published DFs calculated by ab-initio theory demonstrates that the electron-hole interaction in SnO{sub 2} is strong and has to be included for interpretation.

  19. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE PAGESBeta

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO2(110) to form N2O, which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a by-product of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction productmore » desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  20. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior

    NASA Astrophysics Data System (ADS)

    Zou, Guoqiang; Chen, Jun; Zhang, Yan; Wang, Chao; Huang, Zhaodong; Li, Simin; Liao, Hanxiao; Wang, Jufeng; Ji, Xiaobo

    2016-09-01

    Carbon-coated rutile titanium dioxide (CRT) was fabricated through an in-situ pyrolysis of titanium-based metal organic framework (Ti8O8(OH)4[O2CC6H4CO2]6) crystals. Benefiting from the Tisbnd Osbnd C skeleton structure of titanium-based metal organic framework, the CRT possesses abundant channels and micro/mesopores with the diameters ranging from 1.06 to 4.14 nm, shows larger specific surface area (245 m2 g-1) and better electronic conductivity compared with pure titanium dioxide (12.8 m2 g-1). When applied as anode material for sodium-ion batteries, the CRT electrode exhibits a high cycling performance with a reversible capacity of ∼175 mAh g-1 at 0.5 C-rate after 200 cycles, and obtains an excellent rate capability of ∼70 mAh g-1 after 2000 cycles even at a specific current of 3360 mA g-1(20 C-rate). The outstanding rate capability can be attributed to the carbon-coated structure, which may effectively prevent aggregation of the titanium dioxide nanoparticles, accelerate the mass transfer of Na+ and speed up the charge transfer rate. Considering these advantages of this particular framework structure, the CRT can serve as an alternative anode material for the industrial application of SIBs.

  1. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    SciTech Connect

    Balasubramanian, B; Kraemer, KL; Valloppilly, SR; Ducharme, S; Sellmyer, DJ

    2011-09-13

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  2. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania

    PubMed Central

    Satoh, Norifusa; Nakashima, Toshio; Yamamoto, Kimihisa

    2013-01-01

    Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision. PMID:23743571

  3. Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal-semiconductor-metal UV detector

    NASA Astrophysics Data System (ADS)

    Selman, Abbas M.; Hassan, Z.

    2015-06-01

    This study aimed to investigate the effects of variations in precursor concentration (TiCl3 solution) on the structural, morphological, and optical properties of rutile titanium dioxide (TiO2) nanorods and fabricated metal-semiconductor-metal UV detector depending on the optimal sample. The nanorods were prepared from an aqueous solution of titanium (III) chloride (TiCl3) on p-type, (1 1 1)-oriented Si substrates at different concentrations of TiCl3 solutions (2, 3, 4, and 5 mM). The experimental results showed that the TiO2 nanorods grown at 4 mM concentration exhibited optimal structural properties. A fast-response metal-semiconductor-metal UV detector was fabricated by depositing Pt contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias voltage, the device showed 44.4 sensitivity. In addition, the internal gain was 1.45, and the photoresponse peak was 70 mA/W. The response and the recovery times were calculated to be 7.8 ms upon illumination to a pulse UV light (365 nm) at 5 V bias voltage.

  4. Infrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO{sub 2} (110) surfaces

    SciTech Connect

    Mattsson, Andreas Österlund, Lars; Hu, Shuanglin; Hermansson, Kersti

    2014-11-01

    Adsorption and photodecomposition of formic acid on rutile TiO{sub 2} (110) have been investigated with infrared reflection–absorption spectroscopy (IRRAS) employing p- and s-polarized light along the [001] and [11{sup ¯}0] crystal directions. The single crystal surfaces were prepared either by sputtering and annealing in ultrahigh vacuum (UHV) to obtain a reduced surface (r-TiO{sub 2}), or by sputtering without annealing to create a rough, highly defective surface (sp-TiO{sub 2}). Results are compared with corresponding measurements on rutile nanocrystals performed in synthetic air. IRRAS spectra obtained on r-TiO{sub 2} and rutile nanocrystals are very similar, and show that in both cases formic acid dissociates and is predominately adsorbed as a bridging bidentate formate species, and that the formate adsorption structure on the nanocrystals is dominated by interactions with majority (110) surfaces. In contrast, the IRRAS spectra on sp-TiO{sub 2} are different, with only minor spectral features associated with (110) surfaces and lost azimuthal symmetry, both of which imply changed adsorption geometry due to bonding to low-coordinated Ti atoms with lower valences. The UV-induced rate of formate photodecomposition is about 30 times higher on rutile nanocrystals in synthetic air compared with sp-TiO{sub 2} under UHV conditions, and even larger than on r-TiO{sub 2}. These differences are explained by the lack of oxygen and limited hydroxyl coverage under UHV conditions. The difference in reactivity between the r-TiO{sub 2} and sp-TiO{sub 2} surfaces is attributed to a high concentration of strongly bonded bridging bidentate formate species on the (110) surface, which lowers its reactivity. The results point to a pressure gap where the availability of molecular oxygen and the hydroxyl concentration limit the photoreactivity in UHV leading to an almost 20-fold decrease of the formate degradation rate in UHV. In contrast, the structure represented by the single

  5. On the consistency of QCBED structure factor measurements for TiO2 (Rutile)

    DOE PAGESBeta

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; Spence, John C. H.

    2003-09-16

    The same Bragg reflection in TiO2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importance of extractingmore » experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO2.« less

  6. On the consistency of QCBED structure factor measurements for TiO2 (Rutile)

    SciTech Connect

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; Spence, John C. H.

    2003-09-16

    The same Bragg reflection in TiO2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importance of extracting experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO2.

  7. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations.

    SciTech Connect

    Mamontov, Eugene; Vlcek, Lukas; Wesolowski, David J

    2007-03-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO{sub 2}) and cassiterite (SnO{sub 2}) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H{sub 2}O) molecules per Ti{sub 2}O{sub 4} surface structural unit of TiO{sub 2} and about 4.0 (OH/H{sub 2}O) molecules per Sn{sub 2}O{sub 4} surface unit of SnO{sub 2}. Ab initio optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally distinct sorbed water layers L{sub 1}, L{sub 2}, and L{sub 3}, where the L{sub 1} species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L{sub 2} water molecules are hydrogen bonded to L{sub 1} and structural oxygen atoms at the surface, and L{sub 3} water molecules are more weakly bound. At the hydration levels studied, L{sub 3} is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L{sub 1}-L{sub 3} species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO{sub 2} compared to TiO{sub 2}. In TiO{sub 2} hydration water, the

  8. Electronic structures and ferromagnetism of SnO{sub 2} (rutile) doped with double-impurities: First-principles calculations

    SciTech Connect

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; and others

    2014-01-07

    The electronic and magnetic properties of double-impurities-doped SnO{sub 2} (rutile) are explored using first-principles calculations within the generalized gradient approximation to examine their potential use as spintronic system. Calculations are performed for double impurities (M1 and M2) from M1 = Cr, and M2 = Mn, and Re. The origins of ferromagnetism are shown to be different in the two cases. For Sn{sub 1-2x}Cr{sub x}Mn{sub x}O2, the hybridization between Cr-3d and O-2p results in Cr becoming ferromagnetic with a magnetic moment of about 5.0 μ{sub B} per supercell. The Cr-and Mn-doped SnO{sub 2} system exhibits half-metallic ferromagnetism. The strong ferromagnetic couplings between local magnetic moments can be attributed to p-d hybridization. In contrast, in (Cr, Re) codoped TiO{sub 2}, the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Re, which would lead to the ferromagnetic through the double-exchange mechanism in transition metal oxides. Since there are two possible couplings between the impurities, we studied both configurations (ferromagnetic and antiferromagnetic (AF)) for double-impurities-doped SnO{sub 2}. Our calculations show that a ferromagnetic alignment of the spins is energetically always more stable than simple AF arrangements, which makes these materials possible candidates for spin injection in spintronic devices.

  9. The tetragonal-like to rutile structural phase transition in epitaxial VO2/TiO2 (001) thick films

    NASA Astrophysics Data System (ADS)

    Qiu, Hongbo; Yang, Memgmeng; Dong, Yongqi; Xu, Han; Hong, Bin; Gu, Yueliang; Yang, Yuanjun; Zou, Chongwen; Luo, Zhenlin; Gao, Chen

    2015-11-01

    A controllable metal-insulator transition (MIT) of VO2 has been highly desired due to its huge potential applications in memory storage, smart windows or optical switching devices. Recently, interfacial strain engineering has been recognized as an effective approach to tuning the MIT of epitaxial VO2 films. However, the strain-involved structural evolution during the MIT process is still not clear, which prevents comprehensively understanding and utilizing interfacial strain engineering in VO2 films. In this work, we have systematically studied the epitaxial VO2 thick films grown on TiO2 (001) single crystal substrate and the structural transition at the boundary of MIT region. By using in situ temperature-dependent high-resolution x-ray diffractions, a tetragonal-like (‘T-like’) to ‘rutile’ structural phase transition is identified during the MIT process. The room-temperature crystal phase of epitaxial VO2/TiO2(001) thick film is clarified to be tetragonal-like, neither strained-rutile phase nor monoclinic phase. The calculated atomic structure of this T-like phase VO2 resembles that of the M1 phase VO2, which has been verified by their similar Raman spectra. More, the crystal lattices of the coexisted phases in the MIT region were revealed in detail. The current findings will not only show some clues on the MIT mechanism study from the structural point of view, but also favor the interface engineering assisted VO2-based devices and applications in the future.

  10. Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Shahnawaze Ansari, M.; Alimuddin

    2013-12-01

    Nanoparticles of basic composition Sn1-xCoxO2 (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O-H, Sn-O and Sn-O-Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σac) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Sn2+ and Sn4+ as well as between Co2+ and Co3+ ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M-H curves from 0.01 to 0.1% Co doped SnO2 samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO2 displayed paramagnetism which vanished at higher values of magnetic field.

  11. Interaction of the ionic liquid [BMP][TFSA] with rutile TiO2(110) and coadsorbed lithium.

    PubMed

    Uhl, Benedikt; Hekmatfar, Maral; Buchner, Florian; Behm, R Jürgen

    2016-03-01

    Aiming at a fundamental understanding of the processes at the electrode|ionic liquid interface in Li ion batteries, we investigated the interaction of the ionic liquid n-butyl-n-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] and of Li with a reduced rutile TiO2(110) (1 × 1) surface as well as the interaction between [BMP][TFSA] and Li on the TiO2(110) surface under ultrahigh vacuum (UHV) conditions by X-ray photoelectron spectroscopy and scanning tunnelling microscopy. Between 80 K and 340 K [BMP][TFSA] adsorbs molecularly on the surface and at higher temperatures decomposition is observed, resulting in products such as Sad, Fad and TiNx. The decomposition pattern is compared to proposals based on theory. Small amounts of Li intercalate even at 80 K into TiO2(110), forming Li(+) and Ti(3+) species. The stoichiometry in the near surface region corresponds to Li7Ti5O12. For higher coverages in the range of several monolayers part of the Li remains on the surface, forming a Li2O cover layer. At 300 K, Ti(3+) species become sufficiently mobile to diffuse into the bulk. Li post-deposition on a [BMP][TFSA] covered TiO2(110) surface at 80 K results in two competing reactions, Li intercalation and reaction with the IL, resulting in the decomposition of the IL. Upon warming up, the Ti(3+) formed at low T is consumed by reaction with the IL adlayer and intermediate decomposition products. Post-deposition of [BMP][TFSA] (300 K) on a surface pre-covered with a Li2O/Li7Ti5O12 layer results in the partial reaction of [BMP][TFSA] with the Li(+) and Ti(3+) species, which gets completed at higher temperatures. PMID:26869155

  12. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases.

    PubMed

    Wang, Jiangxue; Chen, Chunying; Liu, Ying; Jiao, Fang; Li, Wei; Lao, Fang; Li, Yufeng; Li, Bai; Ge, Cuicui; Zhou, Guoqiang; Gao, Yuxi; Zhao, Yuliang; Chai, Zhifang

    2008-12-15

    Nanoscale titanium dioxide (TiO(2)) is massively produced and widely used in living environment, which hence make the potential risk to human health. Central nervous system (CNS) is the potential susceptible target of inhaled nanoparticles, but the studies on this aspect are limited so far. We report the accumulation and toxicity results in vivo of two crystalline phases of TiO(2) nanoparticles (80nm, rutile and 155nm, anatase; purity >99%). The female mice were intranasally instilled with 500microg of TiO(2) nanoparticles suspension every other day for 30 days. Synchrotron radiation X-ray fluorescence analysis (SRXRF) and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine the contents of titanium in murine brain. Then, the pathological examination of brain tissue, oxidative stress-mediated responses, and levels of neurochemicals in the brain of exposed mice were also analyzed. The obvious morphological changes of hippocampal neurons and increased GFAP-positive astrocytes in the CA4 region were observed, which were in good agreements with higher Ti contents in the hippocampus region. Oxidative stress occurred obviously in whole brain of exposed mice such as lipid peroxidation, protein oxidation and increased activities of catalase, as well as the excessive release of glutamic acid and nitric oxide. These findings indicate anatase TiO(2) nanoparticles exhibited higher concern on some tested biological effects. To summarize, results provided the preliminary evidence that nasal instilled TiO(2) nanoparticles could be translocated into the central nervous system and cause potential lesion of brain, and the hippocampus would be the main target within brain. PMID:18992307

  13. Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea Abies) wood

    NASA Astrophysics Data System (ADS)

    Pori, Pavel; Vilčnik, Aljaž; Petrič, Marko; Sever Škapin, Andrijana; Mihelčič, Mohor; Šurca Vuk, Angela; Novak, Urban; Orel, Boris

    2016-05-01

    A low temperature approach was developed for the deposition of rutile TiO2 particles on a wood surface by hydrolysis of TiCl4 in aqueous solutions acidified with HCl, and crystallization at 75 and 90 °C (1 h). Prior to hydrothermal treatment, Picea Abies wood was first soaked in a 0.5 mmol/l aqueous solution containing anionic surfactant sodium dodecyl sulphate (SDS, Sigma Aldrich) for 2 h at 80 °C. The crystal structure of the hydrothermally made rutile particles was determined with XRD, while the morphology of the deposited TiO2 particles and their distribution in the wood were examined with SEM and EDX measurements. The penetration and amount of deposited rutile particles could be modified by changing the deposition conditions. Thicker layers were obtained from more concentrated aqueous TiCl4 solutions with and without added HCl, and with longer deposition times and higher temperatures of the hydrothermal treatment. The interaction of TiO2 particles with hemicellulose and lignin in wood was established from infrared attenuated total reflection (FT-IR ATR) and Raman spectra measurements, from which the spectra of wood were subtracted. Analysis of the subtraction spectra showed the presence of titania particles on the wood surface, revealing also the establishment of TiO2-wood coordinative bonds of titanium ions with hemicellulose and lignin. The red frequency shift of the OH stretching modes suggested interaction of the TiO2 particles with water molecules of wood. TiO2 deposited on wood treated with SDS became hydrophobic (water contact angles (WCA) of 150°), contrasting the properties of untreated wood with a deposited TiO2 particle coating, which remained hydrophilic.

  14. U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts. , New York

    SciTech Connect

    Mezger, K.; Rawnsley, C.M.; Hanson, G.N. ); Bohlen, S.R. )

    1991-05-01

    Garnet ages for the Lowlands range from 1,168-1,127 Ma, those from the central and southern Highlands from 1,154-1,013 Ma. Metamorphism in the Highlands may not have occurred as a single event but rather in several discrete thermal pulses. An age of 1,153 {plus minus} 3 Ma was determined for garnets in the syn-regional metamorphic contact aureole of the Diana syenite, consistent with that of the syenite intrusion, 1 155 {plus minus} 4 Ma. Garnets just outside the contact aureole give an age of 1,168 {plus minus} 6 Ma. In the Lowlands, monazite yielded an age of 1,161 {plus minus} 1 Ma, rutiles yielded ages of 1,005 {plus minus} 2 Ma and 953 {plus minus} 4 Ma, and sphene ages range from 1,156 to 1,103 Ma. In the Highlands, monazite yielded an age of 1,033 {plus minus} 1 Ma, rutiles yielded ages of 911 {plus minus} 2 Ma and 885 {plus minus} 2 and sphenes from 1,033 Ma to 991 Ma. The rutile and monazite ages indicate that both terranes cooled at time-integrated rates of ca. 1.5C/Ma for at least 150 Ma following the last phase of high-grade metamorphism. The Lowlands cooled to ca. 400C by ca. 1,000 Ma and the Highlands by ca. 900 Ma. The mineral ages indicate that metamorphic pressures and temperatures recorded by thermobarometry correspond to conditions attained polychronically over 150 Ma or more. Mineral ages combined with temperature estimates for peak metamorphism indicate that the closure temperature for the U-Pb system is >800C in garnet, 640-730C in monazite, and 500-670C in sphene.

  15. Preliminary report on the geology and deposits of monazite, thorite and niobium-bearing rutile of the Mineral Hill district, Lemhi County, Idaho

    USGS Publications Warehouse

    Kaiser, Edward Peck

    1956-01-01

    Deposits of minerals containing niobium (columbium), thorium, and rare earths occur in the Mineral Hill district, 30 miles northwest of Salmon, Lemhi County, Idaho. Monazite, thorite, allanite, and niobium-bearing rutile form deposits in metamorphic limestone layers less than 8 feet thick. The known deposits are small, irregular, and typically located in or near small folds. Minor faults are common. Monazite generally is coarsely crystalline and contains less than one percent thorium. Rutile forms massive lumps up to 3 inches across; it contains between 5 and 10 percent niobium. Rutile occurs in the northwestern half of the district, thorite in the central and southeastern parts. Monazite occurs in all deposits. Allanite is locally abundant and contains several percent thorium. Magnetite and ilmenite are also locally abundant. A major thrust fault trending northwest across the map-area separates moderately folded quartzite and phyllitic rocks of Belt age, on the northeast, from more intensely metamorphosed and folded rocks on the southwest. The more metamorphosed rocks include amphibolite, porphyroblastic feldspar gneiss, quartzite, and limestone, all probably of sedimentary origin, and probably also of Belt (late Precambrian) age. The only rocks of definite igneous origin are rhyolite dikes of probable Tertiary age. The more metamorphosed rocks were formed by metasomatic metamorphism acting on clastic sediments, probably of Belt age, although they may be older than Belt. Metamorphism doubtless was part of the episode of emplacement of the Idaho batholith, but the history of that episode is not well understood. The rare-element deposits show no evidence of fracture-controlled hydrothermal introduction, such as special fracture systems, veining, and gangue material. They may, however, be of hydrothermal type. More likely they are metamorphic segregations or secretions, deposited in favorable stratigraphic and structural positions during regional metamorphism.

  16. Theoretical study of absorption of 2,2,6,6-tetramethylpiperidine-1-oxoammonium cation (TEMPO) on TiO₂(110) rutile surface.

    PubMed

    Nieto-López, Israel; Hernández-García, Luis; Bonilla-Cruz, José; Sanchez, Mario

    2014-03-01

    We present a theoretical study of the adsorption of 2,2,6,6-tetramethylpiperidine-1-oxoammonium cation (TEMPO) onto the TiO₂(110) surface rutile, investigating its bonding nature, electron properties and structural stability. Based on the results obtained with the PBE0/def2-SVP method, natural bond orbital (NBO) analysis suggests a bond order for the O--O bond in complexes 5 and 6, of 0.25 and 0.88, respectively. We also described NBOs for the main interactions of the TiO₂-TEMPO complexes. PMID:24567160

  17. Self-assembling of Zn porphyrins on a (110) face of rutile TiO2-The anchoring role of carboxyl groups

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Olszowski, Piotr; Godlewski, Szymon; Bodek, Lukasz; Such, Bartosz; Jöhr, Res; Pawlak, Remy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2016-08-01

    The ordering of zinc containing porphyrin molecules on surface of rutile TiO2(110)-(1×1) has been investigated using scanning tunneling microscopy (STM) in ultra-high vacuum at room temperature. It is demonstrated that a carboxylic group (COOH) has a profound impact on the immobilization of the molecules. At coverages below 0.1 monolayer only molecules equipped with the group COOH could be anchored to the surface and imaged with STM. At higher coverage both species, with and without the carboxyl substituent, assemble into ordered structures, forming complete monolayers. It is found, however, that the rhomboid unit cells of these structures exhibit differences in size.

  18. Determination of Phase Ratio in Polymorphic Materials by X-Ray Absorption Spectroscopy: The Case of Anatase and Rutile Phase Mixture in TiO2

    SciTech Connect

    Smith, M. F.; Klysubun, W.; Kityakarn, S.; Worayingyong, A.; Zhang, S. B.; Wei, S. H.; Onkaw, D.; Songsiriritthigul, P.; Rujirawat, S.; Limpijumnong, S.

    2009-01-01

    We demonstrate that x-ray absorption spectroscopy (XAS) can be used as an unconventional characterization technique to determine the proportions of different crystal phases in polymorphic samples. As an example, we show that ratios of anatase and rutile phases contained in the TiO{sub 2} samples obtained by XAS are in agreement with conventional x-ray diffraction (XRD) measurements to within a few percent. We suggest that XAS measurement is a useful and reliable technique that can be applied to study the phase composition of highly disordered or nanoparticle polymorphic materials, where traditional XRD technique might be difficult.

  19. Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Brun, E.; Fayard, B.; Cotte, M.; Carrière, M.

    2012-05-01

    Micro-beam x-ray absorption fine structure spectroscopy was used to investigate rutile TiO2 nanoparticles internalized into gastrointestinal cells during their crossing of a gut model barrier. Nanoparticles diluted in culture medium tend to accumulate in cells after 48 h exposure; however, no spectral differences arise between particles in cellular and in acellular environments, as corroborated by quantitative analysis. This finding establishes that no modification of the lattice properties of the nanoparticles occurs upon interaction with the barrier. These measurements demonstrate the possibility of interrogating nanoparticles in situ within cells, suggesting a way to investigate their fate when incorporated in biological hosts.

  20. A melange of subduction temperatures: Zr-in-rutile thermometry of the Catalina Schist and implications for subduction interface rheology

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, Sarah; Kohn, Matthew; Piccoli, Philip

    2016-04-01

    The Catalina Schist contains a spectacular, km-scale amphibolite facies mélange zone, thought to be part of a Cretaceous convergent margin plate interface. In this setting, mafic and ultramafic blocks ranging from cms up to 100s of m in diameter are surrounded by finer-grained matrix that is derived from the blocks. All blocks throughout the mélange contain assemblages consistent with upper amphibolite-facies conditions, suggesting a relatively restricted range of depths and temperatures over which the mélange formed. This apparent uniformity contrasts with other mélanges, such as the Franciscan Complex, where rocks with highly variable peak metamorphic grade suggest extensive mixing of materials along the subduction interface. This mixing has been ascribed to flow of material within relatively low viscosity matrix. The Zr content of rutiles in 26 blocks and 1 matrix sample from the amphibolite facies of the Catalina Schist were measured to determine peak metamorphic temperatures, identify whether these temperatures were different among blocks (within measurement error), and whether the spatial distribution of temperatures throughout the mélange was systematic or random. Resolvably different Zr contents, between 290 and 720 (±10-40) ppm, are found among the blocks, corresponding to different peak metamorphic temperatures of 650 to 730 (±3-15) °C at an assumed pressure of 1 GPa. These results are broadly consistent with previous thermobarometric estimates. No systematic distribution of temperatures was found, however. Like other mélange zones, material flow within the Catalina Schist mélange was likely chaotic, but appears to have occurred on a more restricted scale compared to localities such as the Franciscan. Progressive metamorphism of mélange matrix is expected to produce rheologically stiffer matrix minerals (such as amphiboles and pyroxenes) at the expense of weaker matrix minerals (sheet silicates), affecting the overall rheological behavior of

  1. Comparative study of toxic effects of anatase and rutile type nanosized titanium dioxide particles in vivo and in vitro.

    PubMed

    Numano, Takamasa; Xu, Jiegou; Futakuchi, Mitsuru; Fukamachi, Katsumi; Alexander, David B; Furukawa, Fumio; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki; Suzui, Masumi

    2014-01-01

    Two types of nanosized titanium dioxide, anatase (anTiO2) and rutile (rnTiO2), are widely used in industry, commercial products and biosystems. TiO2 has been evaluated as a Group 2B carcinogen. Previous reports indicated that anTiO2 is less toxic than rnTiO2, however, under ultraviolet irradiation anTiO2 is more toxic than rnTiO2 in vitro because of differences in their crystal structures. In the present study, we compared the in vivo and in vitro toxic effects induced by anTiO2 and rnTiO2. Female SD rats were treated with 500 ?g/ml of anTiO2 or rnTiO2 suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with anTiO2 or rnTiO2 increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG); these increases tended to be lower in the anTiO2 treated group compared to the rnTiO2 treated group. Expression of MIP1??mRNA and protein in lung tissues treated with anTiO2 and rnTiO2 was also significantly up-regulated, with MIP1??mRNA and protein expression significantly lower in the anTiO2 group than in the rnTiO2 group. In cell culture of primary alveolar macrophages (PAM) treated with anTiO2 and rnTiO2, expression of MIP1??mRNA in the PAM and protein in the culture media was significantly higher than in control cultures. Similarly to the in vivo results, MIP1??mRNA and protein expression was significantly lower in the anTiO2 treated cultures compared to the rnTiO2 treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with anTiO2 had less effect on A549 cell proliferation compared to conditioned media from cultures treated with rnTiO2. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated anTiO2 and rnTiO2. In conclusion, our results indicate that anTiO2 is less potent in induction of alveolar macrophage infiltration, 8-OHdG and MIP1??expression in the lung, and growth stimulation of A549 cells in vitro than rnTiO2

  2. Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride.

    PubMed

    Zhang, Xuliang; Cui, Haiqin; Humayun, Muhammad; Qu, Yang; Fan, Naiying; Sun, Xiaojun; Jing, Liqiang

    2016-01-01

    It is highly desired to effectively trap photogenerated holes for efficient photoelectrochemical (PEC) water oxidation to evolve O2 on oxide semiconductors. Herein, it is found for the first time mainly based on the time-resolved- and atmosphere-controlled- surface photovoltage responses that the modified chloride would effectively trap photogenerated holes so as to prolong the charge lifetime and hence promote charge separation of single-crystal rutile TiO2 nanorods. Its strong capacity to trap holes, comparable to the widely-used methanol and Co(II) phosphate, is well responsible for the exceptional photoactivities for PEC water oxidation to evolve O2 on rutile nanorods with a proper amount of chloride modified, about 2.5-time high as that on the resulting anatase nanoparticles, even 10-time if the surface area is considered. Moreover, it is suggested that the hole trapping role of chemically-adsorbed chloride is related to its lonely-pair electrons, and to the subsequently-produced intermediate Cl atoms with proper electronegativity for evolving O2. Interestingly, this finding is also applicable to the chloride-modified anatase TiO2. This work will provide a feasible strategy to design high-activity nanostructured semiconductor photoanodes for PEC water oxidation, even for overall water splitting. PMID:26906953

  3. Modification of the microstructure and electronic properties of rutile TiO2 thin films with 79 MeV Br ion irradiation

    NASA Astrophysics Data System (ADS)

    Rath, Haripriya; Dash, P.; Singh, U. P.; Avasthi, D. K.; Kanjilal, D.; Mishra, N. C.

    2015-12-01

    Modifications induced by 79 MeV Br ions in rutile titanium dioxide thin films, synthesized by dc magnetron sputtering are presented. Irradiations did not induce any new XRD peak corresponding to any other phase. The area and the width of the XRD peaks were considerably affected by irradiation, and peaks shifted to lower angles. But the samples retained their crystallinity at the highest fluence (1 × 1013 ions cm-2) of irradiation even though the electronic energy loss of 79 MeV Br ions far exceeds the reported threshold value for amorphization of rutile TiO2. Fitting of the fluence dependence of the XRD peak area to Poisson equation yielded the radius of ion tracks as 2.4 nm. Ion track radius obtained from the simulation based on the thermal spike model matches closely with that obtained from the fluence dependence of the area under XRD peaks. Williamson-Hall analysis of the XRD spectra indicated broadening and shifting of the peaks are a consequence of irradiation induced defect accumulation leading to microstrains, as was also indicated by Raman and UV-Visible absorption study.

  4. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  5. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    PubMed

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process. PMID:27115517

  6. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    PubMed Central

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741

  7. Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF3SO3 Media to 250 °C

    DOE PAGESBeta

    Machesky, Michael L.; Předota, Milan; Ridley, Moira K.; Wesolowski, David J.

    2015-06-01

    In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF3SO3–) electrolyte media from 25 to 250 °C. Rb+ primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitance values and intrinsic Rb+ bindingmore » constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na+ results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb+ and Na+ reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less

  8. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

    PubMed Central

    De los Santos, Desiré M; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Summary Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm3+. ICP–AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm3+ was confirmed by X-ray photoelectron spectroscopy and UV–vis spectroscopy: the incorporation of Tm3+ was confirmed by the generation of new absorption bands that could be assigned to Tm3+ transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase. PMID:25821701

  9. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-02-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

  10. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline.

    PubMed

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-01-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187

  11. Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride

    PubMed Central

    Zhang, Xuliang; Cui, Haiqin; Humayun, Muhammad; Qu, Yang; Fan, Naiying; Sun, Xiaojun; Jing, Liqiang

    2016-01-01

    It is highly desired to effectively trap photogenerated holes for efficient photoelectrochemical (PEC) water oxidation to evolve O2 on oxide semiconductors. Herein, it is found for the first time mainly based on the time-resolved- and atmosphere-controlled- surface photovoltage responses that the modified chloride would effectively trap photogenerated holes so as to prolong the charge lifetime and hence promote charge separation of single-crystal rutile TiO2 nanorods. Its strong capacity to trap holes, comparable to the widely-used methanol and Co(II) phosphate, is well responsible for the exceptional photoactivities for PEC water oxidation to evolve O2 on rutile nanorods with a proper amount of chloride modified, about 2.5-time high as that on the resulting anatase nanoparticles, even 10-time if the surface area is considered. Moreover, it is suggested that the hole trapping role of chemically-adsorbed chloride is related to its lonely-pair electrons, and to the subsequently-produced intermediate Cl atoms with proper electronegativity for evolving O2. Interestingly, this finding is also applicable to the chloride-modified anatase TiO2. This work will provide a feasible strategy to design high-activity nanostructured semiconductor photoanodes for PEC water oxidation, even for overall water splitting. PMID:26906953

  12. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    PubMed Central

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-01-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187

  13. Surface fluorination of rutile-TiO2 thin films deposited by reactive sputtering for accelerating response of optically driven capillary effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Maeda, Hironobu; Konishi, Satoshi

    2016-06-01

    We report the acceleration of photoresponsive wettability switching by applying surface fluorination to rutile-TiO2 thin films deposited by reactive sputtering. Photoresponsive wettability switchable surfaces can be applied to optically driven liquid manipulation to enable the elimination of the electrical wiring and pneumatic tubing from fluidic systems. In this work, surface fluorination using CF4 plasma treatment is applied to rutile-TiO2 thin films, which exhibit a wider switching range of wettability than that of anatase-TiO2 thin films. Fluorine termination of TiO2 thin films increases the surface acidity and enhances its photocatalytic performance. TiO2 thin films with and without surface fluorination respectively exhibited the transition of contact angles ranging from 73.7 to 12.3°, and from 70.2 to 32° under UV irradiation for 15 min. Liquid introduction into a microchannel is also demonstrated, utilizing the developed TiO2 surface, which can generate a negative capillary pressure difference under ultraviolet light irradiation.

  14. Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment.

    PubMed

    Rossi, S; Moritz, N; Tirri, T; Peltola, T; Areva, S; Jokinen, M; Happonen, R-P; Närhi, T

    2007-09-15

    The bioactivity of the surface reactive TiO(2) coatings for medical implants can be locally modified by CO(2) laser processing to match with the properties of surrounding tissues. The TiO(2) coatings heat-treated at 500 degrees C exhibit in vitro bioactivity. With further CO(2) laser treatment they exhibit enhanced in vitro bioactivity. The aim of this in vivo study was to compare the performance of heat-treated anatase-structured TiO(2) coatings with preheat-treated and CO(2) laser-treated rutile-structured coatings in terms of their ability to attach soft connective tissues. The coatings were characterized with TF-XRD and AFM. TiO(2)-coated discs were implanted in rats. The samples were analyzed with routine histology, SEM-EDS, and TEM. In both groups, already at 3 days, soft connective tissues were in immediate contact with the surface. No thick crystalline CaP layer was detected by SEM-EDS, but a thin amorphous CaP layer was detected by XPS. No gap between the cell membrane and the coating could be observed in TEM pictures. No differences were observed between the anatase- and rutile-structured coatings in terms of tissue responses. Further studies are needed to verify if the tissues are adherent to the surface of the implant. PMID:17335031

  15. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature

    PubMed Central

    Wang, Wei-Kang; Chen, Jie-Jie; Zhang, Xing; Huang, Yu-Xi; Li, Wen-Wei; Yu, Han-Qing

    2016-01-01

    The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis. PMID:26864501

  16. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations

    NASA Astrophysics Data System (ADS)

    Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.

    2015-03-01

    Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent

  17. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    SciTech Connect

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  18. Lateral transport properties of Nb-doped rutile- and anatase-TiO2 films epitaxially grown on c-plane GaN

    NASA Astrophysics Data System (ADS)

    Hazu, K.; Ohtomo, T.; Nakayama, T.; Tanaka, A.; Chichibu, S. F.

    2012-08-01

    Valence-band offsets for Nb-doped (100) rutile (R-TiO2) epilayer on (0001) GaN and (001) anatase (A-TiO2) epilayer mixed with R-TiO2 on (0001) GaN were determined using x-ray photoelectron spectroscopy to be +0.2 eV and +0.6 eV, respectively. Accordingly, they form type-I and type-II heterojunctions, respectively. The electron mobility as high as 260 cm2 V-1 s-1 was measured for the A(+R)-TiO2:Nb epilayer on undoped GaN, which is quantitatively explained in terms of electron accumulation at the interfacial region of GaN. The intrinsic mobility of approximately 30 cm2 V-1 s-1 at 300 K was obtained for the A(+R)-TiO2:Nb epilayer grown on a p-type GaN.

  19. Effect of 79 MeV Br ion irradiation on the surface features of rutile TiO{sub 2} thin film

    SciTech Connect

    Rath, H.; Dash, P.; Som, T.; Dash, B. N.; Singh, U. P.; Kanjilal, D.; Mishra, N. C.

    2012-07-23

    In this study, rutile titanium dioxide thin films deposited on Si (100) substrates by DC magnetron sputtering are irradiated by 79 MeV Br ions. Though each Br ion is expected to amorphize the medium along its path, the film remains crystalline even at the highest fluence of irradiation. The evolution of surface of the films with Br ion fluence is studied using atomicforce microscopy. The films were found to smoothen under dense electronic excitation of Br ions. The irregular shape grain of the pristine films convert to circular shape at a fluence of 1 Multiplication-Sign 10{sup 13} Br ions cm{sup -2}. Power spectral density (PSD) analysis of the AFM images indicates that irradiation induced smoothing of the surfaces is governed by the surface diffusion process.

  20. Micro-Raman study on the softening and stiffening of phonons in rutile titanium dioxide film: Competing effects of structural defects, crystallite size, and lattice strain

    SciTech Connect

    Gautam, Subodh K.; Singh, Fouran Sulania, I.; Kulriya, P. K.; Singh, R. G.; Pippel, E.

    2014-04-14

    Softening and stiffening of phonons in rutile titanium dioxide films are investigated by in situ micro-Raman studies during energetic ion irradiation. The in situ study minimized other possible mechanisms of phonon dynamics. Initial softening and broadening of Raman shift are attributed to the phonon confinement by structural defects and loss of stoichiometry. The stiffening of A{sub 1g} mode is ascribed to large distortion of TiO{sub 6} octahedra under the influence of lattice strain in the (110) plane, which gives rise to lengthening of equatorial Ti-O bond and shortening of apical Ti-O bond. The shortening of apical Ti-O bond induces stiffening of A{sub 1g} mode in the framework of the bond-order-length-strength correlation mechanism.

  1. Growth of Cr-doped TiO₂ Films in the Rutile and Anatase Structures by Oxygen Plasma Assisted Molecular Beam Epitaxy

    SciTech Connect

    Osterwalder, Juerg; Droubay, Timothy C.; Kaspar, Tiffany C.; Williams, Josh R.; Wang, Chong M.; Chambers, Scott A.

    2005-07-22

    As part of a search for new spintronic materials, highly ordered films of CrxTi₁-xO₂ in both rutile and anatase structure and for several Cr concentrations ranging from x=0.02 to 0.16 were grown by oxygen-plasma assisted molecular beam epitaxy. X-ray photoelectron diffraction data of the Cr 2p level exhibit the same patterns and the same modulation amplitudes as those observed for Ti 2p, providing a strong indication that a large fraction of the Cr atoms occupy substitutional lattice sites in both structures. The Cr 2p core-level spectra as well as a Cr 3d related dopant signal above the valence band of TiO₂ are characteristic of Cr³⁺ ions. At room temperature, Cr-doped anatase films exhibit ferromagnetic order with a saturation magnetization of ~0.6 µB per Cr atom and strong in-lane anisotropy.

  2. X-ray absorption and photoemission spectroscopy of zinc protoporphyrin adsorbed on rutile TiO{sub 2}(110) prepared by in situ electrospray deposition

    SciTech Connect

    Rienzo, Anna; Mayor, Louise C.; Magnano, Graziano; Satterley, Christopher J.; O'Shea, James N.; Ataman, Evren; Schnadt, Joachim; Schulte, Karina

    2010-02-28

    Zinc-protoporphyrin, adsorbed on the rutile TiO{sub 2}(110) surface, has been studied using photoemission spectroscopy and near-edge absorption fine structure spectroscopy to deduce the nature of the molecule-surface bonding and the chemical environment of the central metal atom. To overcome the difficulties associated with sublimation of the porphyrin molecules, samples were prepared in situ using ultrahigh vacuum electrospray deposition, a technique which facilitates the deposition of nonvolatile and fragile molecules. Monolayers of Zn protoporphyrin are found to bond to the surface via the oxygen atoms of the deprotonated carboxyl groups. The molecules initially lie largely parallel to the surface, reorienting to an upright geometry as the coverage is increased up to a monolayer. For those molecules directly chemisorbed to the surface, the interaction is sufficiently strong to pull the central metal atom out of the molecule.

  3. Controllable hydrothermal synthesis of rutile TiO{sub 2} hollow nanorod arrays on TiCl{sub 4} pretreated Ti foil for DSSC application

    SciTech Connect

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-11-15

    Rutile TiO{sub 2} nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl{sub 4} pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO{sub 2} nanorod arrays (H-TNRs). The TiCl{sub 4} pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl{sub 4} concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl{sub 4} pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl{sub 4}-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO{sub 2} nanorod array photoanode obtained from original TiO{sub 2} nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO{sub 2} nanorods are prepared via hydrothermal process on TiCl{sub 4}-pretreated Ti foil. • Hollow TiO{sub 2} nanorods are obtained by hydrothermal etching of TiO{sub 2} nanorods. • TiCl{sub 4} pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO{sub 2} nanorods photoanode shows enhanced photoelectric efficiency for DSSC.

  4. Deposition and characterization of binary Al 2O 3/SiO 2 coating layers on the surfaces of rutile TiO 2 and the pigmentary properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsheng; Yin, Hengbo; Wang, Aili; Ren, Min; Gu, Zhuomin; Liu, Yumin; Shen, Yutang; Yu, Longbao; Jiang, Tingshun

    2010-12-01

    Binary Al 2O 3/SiO 2-coated rutile TiO 2 composites were prepared by a liquid-phase deposition method starting from Na 2SiO 3·9H 2O and NaAlO 2. The chemical structure and morphology of binary Al 2O 3/SiO 2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al 2O 3/SiO 2 coating layers both in amorphous phase were formed at TiO 2 surfaces. The silica coating layers were anchored at TiO 2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO 2-coated TiO 2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al 2O 3/SiO 2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al 2O 3/SiO 2-coated TiO 2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al 2O 3/SiO 2-coated TiO 2 composites were higher than those of the naked rutile TiO 2 and the SiO 2-coated TiO 2 samples. The relative light scattering index was found to depend on the composition of coating layers.

  5. ANSI/AWS E308-16 Rutile Electrode : The Effect of Endothermic Materials on Undercut Defect on Low Carbon Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kakkar, I.; Pandey, A.; Gupta, M.; Jaiswal, H.; Kishore, N.

    2013-10-01

    This study is the part of a program to obtain the fundamental knowledge on the effect of endothermic materials on the undercut defect of welding, of which information is scarce in international welding literature. Undercut is one of the most crucial problems which decreases the reliability and restricts the many parameter of welding (like welding speed, weaving pattern, etc.). One reason for this type of defect is excessive current, causing the edges of the joint to melt and drain into the weld; this leaves a drain-like impression along the length of the weld. Another reason is if a poor technique is used that does not deposit enough filler metal along the edges of the weld. A third reason is using an incorrect filler metal, because it will create greater temperature gradients between the center of the weld and the edges. Other causes include too small of an electrode angle, a dampened electrode, excessive arc length, and slow speed. The AWS regulations state that the maximum depth of undercut should not exceed 0.25 mm Cerit (Eng Fail Anal 17:571-578, 2010). In this investigation two rutile coated electrodes are taken. One of these is prepared by increasing the amount of calcite and dolomite with subsequent increase in silica and other electrode is of same composition of AWS/ANSI E308-16 rutile electrodes. This modification improves the slag system of electrode and helps in absorbing excess heat generated during the welding process. Undercuts are measured and other operational behavior like welding current, electrode angle, arc length and electrode travel speed of the electrode were kept constant.

  6. The growth and structure of titanium dioxide films on a Re(1 0 -1 0) surface: Rutile(0 1 1)-(2 × 1)

    NASA Astrophysics Data System (ADS)

    Rosenthal, D.; Zizak, I.; Darowski, N.; Magkoev, T. T.; Christmann, K.

    2006-07-01

    Titanium dioxide films were grown on Re(1 0 -1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO 2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO 2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at ( n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO 2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.

  7. Comparing Quasiparticle H2O Level Alignment on Anatase and Rutile TiO2

    SciTech Connect

    Sun, Huijuan; Mowbray, Duncan J.; Migani, Annapaola; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2015-07-02

    Knowledge of the alignment of molecular frontier levels in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbate’s highest occupied molecular orbital (HOMO) levels relative to the substrate’s valence band maximum (VBM) in the interface describes the favorability of photogenerated hole transfer from the VBM to the adsorbed molecule. This is a key quantity for assessing and comparing H2O photooxidation activities on two prototypical photocatalytic TiO2 surfaces: anatase (A)-TiO2(101) and rutile (R)-TiO2(110). Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0 calculations, we assess the relative photocatalytic activity of intact and dissociated H2O on coordinately unsaturated (Ticus) sites of idealized stoichiometric A-TiO2(101)/R-TiO2(110) and bridging O vacancies (Obrvac) of defective A-TiO2-x(101)/R-TiO2-x(110) surfaces (x = 1/4, 1/8) for various coverages. Such a many-body treatment is necessary to correctly describe the anisotropic screening of electron-electron interactions at a photocatalytic interface and, hence, obtain accurate interfacial level alignments. The more favorable ground state HOMO level alignment for A-TiO2(101) may explain why the anatase polymorph shows higher photocatalytic activities than the rutile polymorph. Our results indicate that (1) hole trapping is more favored on A-TiO2(101) than RTiO2(110) and (2) HO@Ticus is more photocatalytically active than intact H2O@Ticus.

  8. Atomic layer deposition of rutile and TiO2-II from TiCl4 and O3 on sapphire: Influence of substrate orientation on thin film structure

    NASA Astrophysics Data System (ADS)

    Möldre, Kristel; Aarik, Lauri; Mändar, Hugo; Niilisk, Ahti; Rammula, Raul; Tarre, Aivar; Aarik, Jaan

    2015-10-01

    Atomic layer deposition of TiO2 from TiCl4 and ozone on single crystal α-Al2O3 substrates was investigated and the possibility to control the phase composition by the substrate orientation was demonstrated. Epitaxial growth of rutile and high-pressure TiO2-II on α-Al2O3(0 0 0 1) and rutile on α-Al2O3(0 1 1¯ 2) were obtained at 400-600 °C. On α-Al2O3(0 0 0 1), the epitaxial relationships were determined to be [0 1 0]R // [2 1¯ 1¯ 0]S and [0 0 1]R // [0 1 1¯ 0]S for rutile and sapphire, and [0 0 1]II // [2 1¯ 1¯ 0]S and [0 1¯ 0]II // [0 1 1¯ 0]S for TiO2-II and sapphire. The TiO2-II concentration up to 50% was obtained in the films deposited at 425-500 °C. On α-Al2O3(0 1 1¯ 2), the epitaxial relationship of rutile was [0 1 0]R // [2 1¯ 1¯ 0]S and [0 0 1]R // [0 1 1¯ 0]S. The densities of epitaxial films reached 4.2-4.3 g/cm3 on substrates with both orientations but the epitaxial quality was markedly higher on α-Al2O3(0 0 0 1).

  9. Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti0.95Co0.5O2 film

    SciTech Connect

    Hu, Wen; Hayaski, Kouichi; Fukumura, Tomoteru; Akagi, Kazuto; Tsukada, Masaru; Happo, Naohisa; Hosokawa, Shinya; Ohwada, Kenji; Takahasi, Masamitu; Suzuki, Motohiro

    2015-06-02

    To evaluate local atomic structures around Co in high temperature diluted ferromagnetic semiconductor Co-doped TiO2, x-ray fluorescence holography and x-ray absorption fine structure experiments were carried out on rutile paramagnetic Ti0.99Co0.01O2 and ferromagnetic Ti0.95Co0.05O2 films. The Co atoms in the Ti0.99Co0.01O2 simply substituted for Ti sites in the rutile structure, whereas a suboxidic arrangement of CoO2Ti4 formed around Co in the Ti0.95Co0.05O2 films. A theoretical investigation based on a series of first-principles calculations indicated the stability of the aggregated suboxidic clusters in the rutile TiO2, supporting our hypothesis for the formation of suboxidic coordination in the highly Co-doped sample. As a result, the suboxidic coordination may be the source of strong exchange interaction, resulting in the high Curie temperature in Co-doped TiO2.

  10. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    SciTech Connect

    Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.

  11. Water adsorption on rutile TiO2(110) for applications in solar hydrogen production: A systematic hybrid-exchange density functional study

    NASA Astrophysics Data System (ADS)

    Patel, M.; Mallia, G.; Liborio, L.; Harrison, N. M.

    2012-07-01

    Periodic hybrid-exchange density functional theory calculations are used to predict the structure of water on the rutile TiO2(110) surface (Θ⩽ 1 ML), which is an important first step towards understanding the photocatalytic processes that occur in solar water splitting. A detailed model describing the water-water and water-surface interactions is developed by exploring thoroughly the adsorption energetics. The possible adsorption mode—molecular, dissociative, or mixed—and the binding energy are studied as a function of coverage and arrangement, thus separation, of adsorbed species. These dependencies (coverage and arrangement) have a significant influence on the nature of the interactions involved in the H2O-TiO2 system. The importance of both direct intermolecular and surface-mediated interactions between surface species is emphasized. Finally, to gain insight into the photooxidation of adsorbed species at the surface, the electronic structure of the predicted adsorbate-substrate geometries is analyzed in terms of total and projected density of states.

  12. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F.

    2007-01-01

    A comparison of the electronic structure of rutile (110), anatase (101), and anatase (001) single-crystal surfaces has been made using resonant photoemission and x-ray absorption spectroscopy. Under identical preparative conditions, the anatase (101) surface shows the lowest Ti3d and 4sp hybridization in the states close to the valence-band maximum of the three surfaces. It also shows the highest concentration of surface-oxygen vacancies. The effect on the electronic structure of modifying the surface preparative route and thus the concentration of surface-oxygen vacancies is examined. The σ -antibonding Ti3deg/O2p hybridization (probed by XAS) is reduced by the removal of surface-oxygen. Photoemission shows that as the number of surface-defects is increased, the O2p-Ti3dt2gπ -bonding interaction is disrupted. For the anatase (101) surface it is found that as the number of surface-oxygen vacancies is increased, the Ti3d and 4sp contributions at the valence-band maximum are reduced. We discuss the correlation between electronic structure and photocatalytic activity of the different polymorphs of TiO2 .

  13. CO2 Adsorption, Diffusion and Electron-Induced Chemistry on Rutile TiO2(110) – A Low-Temperature Scanning Tunneling Microscopy Study

    SciTech Connect

    Sutter, P.; Acharya, D.P.; Camillone III, N.

    2011-06-23

    Low-temperature scanning tunneling microscopy (STM) has been used to study the adsorption of CO{sub 2} on rutile TiO{sub 2}(110) from 80 to 180 K. For low CO{sub 2} doses, two molecular adsorption sites with different binding energies are identified, which are effectively isolated from one another by an apparent activation barrier to their interconversion. We identify the less tightly bound adsorption site as CO{sub 2} adsorbed atop 5-fold coordinated titanium surface atoms (Ti{sub 5f}), without binding preferentially near oxygen vacancies. CO{sub 2} desorption from Ti{sub 5f} occurs at 140 K. The more strongly bound site involves molecular CO{sub 2} binding at bridging oxygen vacancies (V{sub O,br}). We observe two distinct configurations of V{sub O,br} bound CO{sub 2} molecules. Despite its being bound to the vacancy, CO{sub 2} does not dissociate thermally but remains intact up to the desorption temperature of {approx}175 K. At an elevated tunneling bias, the STM tip can selectively dissociate these CO{sub 2} molecules and thus trigger the healing of individual V{sub O,br}. At higher coverage, CO{sub 2} adsorption occurs predominantly at the more abundant Ti{sub 5f} sites, with the distribution of CO{sub 2} molecules being determined by interactions both along the [001] and [110] directions.

  14. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, the N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.

  15. Manipulating the charge state of Au clusters on rutile TiO2(110) single crystal surfaces through molecular reactions probed by infrared spectroscopy.

    PubMed

    Cao, Yunjun; Hu, Shujun; Yu, Min; Wang, Tingting; Huang, Shiming; Yan, Shishen; Xu, Mingchun

    2016-07-14

    The charge state of Au clusters deposited on rutile TiO2(110) single crystal surfaces was studied by UHV-FTIRS using CO as a probe. The as-deposited Au clusters on oxidized TiO2(110) surfaces are electrically neutral and are identified by the 2105-2112 cm(-1) vibrational frequency of adsorbed CO depending on Au coverage. Annealing Au/TiO2(110) in a moderate O2 atmosphere at 400 K blue shifts the CO vibrational frequency by only 2-3 cm(-1) both on bare TiO2(110) surfaces and on Au clusters. However, NO exposure blue shifts the CO vibrational frequency by 16-26 cm(-1) for CO adsorbed on Au atoms near the interface and by 3-4 cm(-1) for CO adsorbed on top of Au clusters. As the acceptors of the intense charge transfer from Au, the Oa atoms generated through (NO)2→ N2O + Oa reactions on the small fraction of the bare TiO2(110) surface reside around the Au/TiO2(110) interface perimeter, causing the neutral Au(0) to be cationic Au(δ+) states. This is a new approach to manipulate the charge state of Au clusters on oxide surfaces, which may be helpful in regulating the catalytic redox reactions on oxide supported metal systems. PMID:27306113

  16. The mechanism of emerging catalytic activity of gold nano-clusters on rutile TiO{sub 2}(110) in CO oxidation reaction

    SciTech Connect

    Mitsuhara, K.; Tagami, M.; Matsuda, T.; Visikovskiy, A.; Kido, Y.; Takizawa, M.

    2012-03-28

    This paper reveals the fact that the O adatoms (O{sub ad}) adsorbed on the 5-fold Ti rows of rutile TiO{sub 2}(110) react with CO to form CO{sub 2} at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO{sub 2}(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of {approx}1.5 nm and two-atomic layer height corresponding to {approx}50 Au atoms/cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO{sub 2}(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O{sub 2} adsorption on the surface and also enhance the reaction of CO with the O{sub ad} atoms to form CO{sub 2} owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.

  17. Phonon Dispersion, Electronic Structure and Photocatalytic Properties of Rutile TiO2 doped with X-doped (X =N, B and Pt)

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; Jha, Prafulla K.; Lukačević, Igor

    2013-03-01

    First principles calculations were performed on the electronic, vibrational and Raman spectra of substitutional N, B and Pt-doped rutile titanium dioxide (TiO2) , within the density functional theory (DFT), using the plane-wave pseudopotential method as implemented in the ABINIT package. Of all the photocatalytic materials TiO2 has been shown as the most useful one, with the most efficient photoactivity, the highest stability and the lowest cost. Moreover, it is safe for humans and the environment. The development of new types of photocatalytic cells is driven by the need for clean and sustainable energy. In this respect best doped materials are considered as a promising route for departing from the traditional photocatalytic cells. The physical insight provided by computational modeling may help in developing improved photocatalytic devices. To this end it is important to obtain an accurate description of the electronic structure and phonon dynamics, including the fundamental gaps and level alignment at the doped-TiO2 interface.

  18. Spectral emissivity measurements of Mercury's surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Donaldson Hanna, K. L.; Kozlowski, R. W. H.; Helbert, J.; Maturilli, A.; Warell, J. B.; Hora, J. L.

    2009-03-01

    Mid-infrared 2-D spectroscopic measurements from 8.0 to 12.7 μm of Mercury were taken using Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, 7-11 April 2006. Measurements reported here cover radar bright region C, a dark plains region west of Caloris Basin, and the interior of Caloris Basin. By use of spectral deconvolution with a large spectral library composed of many mineral compositions and grain size separates, we fitted, or "unmixed", the Mercury spectra. We find mineral suites composed of magnesium-rich orthopyroxene and olivine, Ca-, Mg-, Na-rich clinopyroxene, potassium feldspar, and Na-bearing plagioclase feldspar. Both Ca- and Mg-rich garnet (pyrope and grossular, respectively) are apparently present in small amounts. Opaque minerals are required for spectral matching, with rutile (TiO 2) repeatedly providing the "best fit". However, in the case of the radar bright region C, perovskite also contributed to a very good fit. Caloris Basin infill is rich in both potassium feldspar and Na-rich plagioclase. There is little or no olivine in the Caloris interior smooth plains. Together with the high alkali content, this indicates that resurfacing magmas were low to intermediate in SiO 2. Data suggest the dark plains exterior to Caloris are highly differentiated low-iron basaltic magmas resulting in material that might be classified as oligoclase basalts.

  19. Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition.

    PubMed

    Chen, C A; Chen, Y M; Korotcov, A; Huang, Y S; Tsai, D S; Tiong, K K

    2008-02-20

    Well-aligned densely-packed rutile TiO(2) nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC(3)H(7))(4)) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ∼33° from the normal to substrates. TEM and SAED measurements showed that the TiO(2) NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO(2) NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO(2) NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed. PMID:21817648

  20. Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.

    2008-02-01

    Well-aligned densely-packed rutile TiO2 nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC3H7)4) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ~33° from the normal to substrates. TEM and SAED measurements showed that the TiO2 NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO2 NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO2 NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed.

  1. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions.

    PubMed

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T

    2016-07-20

    The interaction of amino acids with inorganic materials at interfaces plays an important role in enhancing the biocompatibility of titanium-based alloys. The adsorption of a tripeptide, i.e. Pro-Hyp-Gly, on the hydroxylated rutile TiO2(110) surface was investigated by the MD simulations. The changes in free energy during the adsorption of both the tripeptide and calcium ions were calculated by using the PMF method in order to obtain the adsorption strength. The results suggested that the adsorption of the tripeptide on the TiO2 surface through the carboxyl groups in glycine residues can be more stable compared with other binding conformations. Special attention was focused on the cooperative adsorption of the tripeptide with the assistance of calcium ions. Calcium ions preferred to absorb at the tetradentate or monodentate sites on the negatively charged TiO2 surface. As a result of the strong attraction between the carboxyl group and calcium ions, the tripeptide can be pulled down to the surface by following the trajectory of the calcium ions, forming an indirect interaction with a sandwich structure of peptide-cation-TiO2. However, this indirect interaction could eventually transform to the direct adsorption of the tripeptide on the TiO2 surface with higher binding energy. The results may help to interpret the adsorption of peptides on inorganic materials in aqueous solution with ions. PMID:27383367

  2. H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-03-01

    Hierarchically assembled flower-like rutile TiO2 (FLH-R-TiO2) nanostructures were successfully synthesized from TiCl4 at room temperature without the use of surfactants or templates. An initial sol-gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO2 are discussed.

  3. Formation of a thermally stable bilayer of coadsorbed intact and deprotonated thymine exploiting the surface corrugation of rutile TiO2(110).

    PubMed

    Duncan, D A; Pfisterer, J H K; Deimel, P S; Acres, R G; Fritton, M; Feulner, P; Barth, J V; Allegretti, F

    2016-07-27

    The adsorption of thymine, a pyrimidine based nucleobase, was studied on the (110) termination of rutile titanium dioxide in order to understand the thermal stability and gross structural parameters of the interaction between a strongly polar adsorbate and a highly corrugated transition metal oxide surface. Near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), temperature programmed XPS and temperature programmed desorption indicated the growth of a room temperature stable bilayer, which could only be removed by annealing to 450 K. The remaining first layer was remarkably robust, surviving annealing up to 550 K before undergoing N-H bond scission. The comparison to XPS of a sub-monolayer exposure of 1-methyluracil shows that the origin of the room temperature stable bilayer is not intermolecular interactions. This discovery, alongside the deprotonation of one of the first layer's pyrimidinic nitrogen atoms at room temperature, suggests that the thymine molecules in the first layer bind to the undercoordinated surface Ti atoms, and the second layer thymine molecules coordinate with the bridging oxygen atoms which protrude above the Ti surface plane on the (110) surface. The NEXAFS results indicate an almost upright orientation of the molecules in both layers, with a 30 ± 10° tilt away from the surface normal. PMID:27402290

  4. Pseudo-hexagonal in-plane alignment of rutile (100)Nb:TiO2 on hexagonal (0001)Al2O3 plane

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Dho, Joonghoe; Geul Lee, Sang

    2013-10-01

    Nb-doped TiO2 (Nb:TiO2) films were grown on a hexagonal (0001)Al2O3 substrate at 650 °C and ∼10-5 Torr. The Nb:TiO2 film had a small resistivity of ∼8×10-4 Ω cm at room temperature and a behavior of a slightly increasing resistance upon cooling. In addition, the Nb:TiO2 film had an optical transmittance of about 60% in the visible range. A careful analysis of the in-plane atomic structure suggests that the rutile Nb:TiO2 film on the hexagonal (0001)Al2O3 can be re-interpreted by a certain pseudo-hexagonal structure, which is discriminated from the in-plane rectangular one of the tetragonal (100)Nb:TiO2. The pseudo-hexagonal properties of the Nb:TiO2 film were characterized by negligible mosaic structure at the interface, the same electron diffraction pattern as the hexagonal Al2O3 substrate, and perfect six-fold symmetries in the pole figure and ϕ-scan XRD patterns.

  5. Interaction of carboxylic acids with rutile TiO2(110): IR-investigations of terephthalic and benzoic acid adsorbed on a single crystal substrate

    NASA Astrophysics Data System (ADS)

    Buchholz, Maria; Xu, Mingchun; Noei, Heshmat; Weidler, Peter; Nefedov, Alexei; Fink, Karin; Wang, Yuemin; Wöll, Christof

    2016-01-01

    The adsorption of two carboxylic acids, benzoic acid (BA) and terephthalic acid (TPA), on a single crystal rutile TiO2(110) substrate was studied using infrared reflection-absorption spectroscopy (IRRAS) in conjunction with DFT calculations. On the basis of the high-quality IR data (in particular for the OH bands), various adsorbate species with different geometries could be identified. The adsorption of both, BA and TPA, on TiO2(110) leads to deprotonation of carboxylic acids and protonation of substrate O-atoms. At low coverage, the deprotonated BA molecule adsorbs on TiO2(110) in an upright, bidentate configuration, while the TPA molecule adopts a flat-lying geometry with both carboxylates bound to the surface in a monodentate geometry. At higher coverages, a transition from flat-lying to upright-oriented TPA molecules occurs. At saturation coverage, both BA and TPA molecules undergo dimerization indicating the presence of pronounced attractive intermolecular interactions. We propose that the BA dimers are stabilized by the interaction between adjacent phenyl rings, while the TPA dimerization is attributed to the formation of double hydrogen bonds between adjacent apical carboxylic groups.

  6. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  7. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    NASA Astrophysics Data System (ADS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-11-01

    Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5 μm and diameter of ~200 nm, obtained on 0.15 M TiCl4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.

  8. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  9. Thermally-Driven Processes on Rutile TiO2(110)-(1x1): A Direct View at the Atomic Scale

    SciTech Connect

    Dohnalek, Zdenek; Lyubinetsky, Igor; Rousseau, Roger J.

    2010-05-01

    The technological importance of TiO2 has led to a broad effort aimed at understanding the elementary steps that underlie catalytic and photocatalytic reactions. The most stable surface, rutile TiO2(110), in particular, has became a prototypical model for fundamental studies of TiO2. In this critical review we have selected oxygen, water, and alcohols to evaluate recent progress relevant for applications in the areas of water splitting and oxidation of organic contaminants. We first focus on the characterization of defects and the distribution of excess charge that results from their formation. The subsequent section demonstrates the role of individual surface sites and the effect of available charge in the adsorption processes. The discussion of adsorbate dynamics follows, providing models for intrinsic and extrinsic diffusion processes as well as rotational dynamics of anchored alkoxy species. The final section summarizes our current understanding of TiO2(110) catalyzed reactions between water, oxygen, and their dissociation products.

  10. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells

    SciTech Connect

    Kumar, Akshay; Madaria, Anuj R.; Zhou, Chongwu

    2010-05-06

    TiO{sub 2} is a wide band gap semiconductor with important applications in photovoltaic cells and photocatalysis. In this paper, we report synthesis of single-crystalline rutile phase TiO{sub 2} nanowires on arbitrary substrates, including fluorine-doped tin oxide (FTO), glass slides, tin-doped indium oxide (ITO), Si/SiO{sub 2}, Si(100), Si(111), and glass rods. By controlling the growth parameters such as growth temperature, precursor concentrations, and so forth, we demonstrate that anisotropic growth of TiO{sub 2} is possible leading to various morphologies of nanowires. Optimization of the growth recipe leads to well-aligned vertical array of TiO{sub 2} nanowires on both FTO and glass substrates. Effects of various titanium precursors on the growth kinetics, especially on the growth rate of nanowires, are also studied. Finally, application of vertical array of TiO{sub 2} nanowires on FTO as the photoanode is demonstrated in dye-sensitized solar cell with an efficiency of 2.9 ± 0.2%.

  11. Adsorption geometry, molecular interaction, and charge transfer of triphenylamine-based dye on rutile TiO{sub 2}(110)

    SciTech Connect

    Yu Shun; Ahmadi, Sareh; Weissenrieder, Jonas; Goethelid, Mats; Zuleta, Marcelo; Tian Haining; Yang Xichuan; Schulte, Karina; Pietzsch, Annette; Hennies, Franz

    2010-12-14

    The fast development of new organic sensitizers leads to the need for a better understanding of the complexity and significance of their adsorption processes on TiO{sub 2} surfaces. We have investigated a prototype of the triphenylamine-cyanoacrylic acid (donor-acceptor) on rutile TiO{sub 2} (110) surface with special attention on the monolayer region. This molecule belongs to the type of dye, some of which so far has delivered the record efficiency of 10%-10.3% for pure organic sensitizers [W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Chem. Mater. 22, 1915 (2010)]. The molecular configuration of this dye on the TiO{sub 2} surface was found to vary with coverage and adopt gradually an upright geometry, as determined from near edge x-ray absorption fine structure spectroscopy. Due to the molecular interaction within the increasingly dense packed layer, the molecular electronic structure changes systematically: all energy levels shift to higher binding energies, as shown by photoelectron spectroscopy. Furthermore, the investigation of charge delocalization within the molecule was carried out by means of resonant photoelectron spectroscopy. A fast delocalization ({approx}1.8 fs) occurs at the donor part while a competing process between delocalization and localization takes place at the acceptor part. This depicts the ''push-pull'' concept in donor-acceptor molecular system in time scale.

  12. Experimental Pi.

    ERIC Educational Resources Information Center

    Corris, G.

    1990-01-01

    Discusses the calculation of pi by means of experimental methods. Polygon circle ratios, Archimedes' method, Buffon's needles, a Monte Carlo method, and prime number approaches are used. Presents three BASIC programs for the calculations. (YP)

  13. Experimental calibration of a Ti-in-quartz thermobarometer: an overview for applications to mylonites

    NASA Astrophysics Data System (ADS)

    Thomas, Jay

    2013-04-01

    During the last decade several trace element thermometers (Ti-in-quartz, Ti-in-zircon, Zr-in-rutile and Zr-in-sphene) were developed at RPI by determining the solubilities of trace elements in minerals as a function of pressure and temperature. The Ti-in-quartz thermometer is of particular interest for potentially estimating the P-T conditions of ductile deformation in crustal rocks because quartz fabric development and microstructural formation has been extensively studied. In this presentation I will discuss the experimental approach and thermodynamic basis used to calibrate trace element solubilities for usage as trace element thermometers, and overview some fundamental considerations necessary to 'take the temperature of ductile deformation'. In our experiments quartz and rutile were crystallized at equilibrium from SiO2- and TiO2-saturated fluids (aqueous solutions, hydrous melts) so that TiO2 activity was unity during quartz crystallization. During growth, Ti4+ substituted for Si4+ on the tetrahedral site in quartz so that the quartz contained the equilibrium concentration of Ti for each P-T condition. In static sub-solidus quartzose systems metamorphosed at high temperature conditions, Ti solubility equilibrium in quartz crystals must be attained by Ti diffusion from a Ti-bearing source (e.g. rutile, garnet, ilmenite, etc.). Due to the low diffusivity of Ti and the timescales of thermal events, Ti solubility equilibrium may not be attained in some systems. There are few studies that have investigated the role of dynamic recrystallization in attaining solubility equilibrium (e.g. Behr and Platt 2011; Grujic et al. 2011; Kidder et al. 2013). Constraining TiO2 activity during deformation is particularly important. The presence of rutile during deformation does not necessarily guarantee unity TiO2 activity unless it crystallized during the deformation event of interest. Behr WM, Platt JP (2011) A naturally constrained stress profile through the middle crust in

  14. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2.

    PubMed

    Stoerzinger, Kelsey A; Qiao, Liang; Biegalski, Michael D; Shao-Horn, Yang

    2014-05-15

    The activities of the oxygen evolution reaction (OER) on IrO2 and RuO2 catalysts are among the highest known to date. However, the intrinsic OER activities of surfaces with defined crystallographic orientations are not well-established experimentally. Here we report that the (100) surface of IrO2 and RuO2 is more active in alkaline environments (pH 13) than the most thermodynamically stable (110) surface. The OER activity was correlated with the density of coordinatively undersaturated metal sites of each crystallographic facet. The surface-orientation-dependent activities can guide the design of nanoscale catalysts with increased activity for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications. PMID:26270358

  15. Experimental philosophy.

    PubMed

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious? PMID:21801019

  16. LASS U-Th-Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): Effects of fluid, deformation and metamorphic reactions in local subsystems

    NASA Astrophysics Data System (ADS)

    Wawrzenitz, Nicole; Krohe, Alexander; Baziotis, Ioannis; Mposkos, Evripidis; Kylander-Clark, Andrew R. C.; Romer, Rolf L.

    2015-09-01

    The specific chemical composition of monazite in shear zones is controlled by the syndeformation dissolution-precipitation reactions of the rock-forming minerals. This relation can be used for dating deformation, even when microfabric characteristics like shape preferred orientation or intracrystalline deformation of monazite itself are missing. Monazite contemporaneously formed in and around the shear zones may have different compositions. These depend on the local chemical context rather than reflecting successive crystallization episodes of monazite. This is demonstrated in polymetamorphic, mylonitic high-pressure (HP) garnet-kyanite granulites of the Alpine Sidironero Complex (Rhodope UHP terrain, Northern Greece). The studied mylonitic rocks escaped from regional migmatization at 40-36 Ma and from subsequent shearing through cooling until 36 Ma. In-situ laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) analyses have been carried out on monazite from micro-scale shear zones, from pre-mylonitic microlithons as well as of monazite inclusions in relictic minerals complimented by U-Pb data on rutile and Rb-Sr data of biotite. Two major metamorphic episodes, Mesozoic and Cenozoic, are constrained. Chemical compositions, isotopic characteristics and apparent ages systematically vary among monazite of four different microfabric domains (I-IV). Within three pre-mylonitic domains (inclusions in (I) pre-mylonitic kyanite and (II) garnet porphyroclasts, and (III) in pre-mylonitic microlithons) monazite yields ages of ca. 130-150 Ma for HP-granulite metamorphism, in line with previous geochronological results in the area. Patchy alteration of the pre-mylonitic monazite by intra-grain dissolution-precipitation processes variably increased negative Eu anomaly and reduced the HREE contents. The apparent age of this altered monazite is reduced. Monazite in the syn-mylonitic shear bands (IV) differs in chemical composition from unaltered and

  17. Dynamics and structure of hydration water on rutile and cassiterite nano-powders studied by quasielastic neutron scattering and molecular dynamics simulations

    SciTech Connect

    Mamontov, Eugene

    2007-01-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nano-powder rutile (TiO2) and cassiterite (SnO2) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nano-powders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Ab initio-optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally-distinct sorbed water layers L1, L2, and L3, where the L1 species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L2 water molecules are hydrogen bonded to L1 and structural oxygen atoms at the surface, and L3 water molecules are more weakly bound. At the hydration levels studied, L3 is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L1 "L3 species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO2 compared to TiO2. In TiO2 hydration water, the more strongly bound L2 water molecules exhibited slow (on the time scale of a nanosecond) dynamics characterized by super

  18. First-principles study of electronic structure and magnetic properties of doped SnO 2 (rutile) with single and double impurities

    NASA Astrophysics Data System (ADS)

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; El Kenz, A.; Saidi, E. H.

    2011-12-01

    Using the augmented spherical wave method, the electronic structure and magnetic properties of the rutile SnO2 doped with single and double impurities: Sn1-xMnxO2, Sn1-xWxO2, and Sn1-2xMnxWxO2 with x=0.0625, have been studied. The scalar-relativistic implementation with a generalized gradient approximation functional has been used for treating the effects of exchange and correlation. The ground state of Mn-, and W-doped SnO2 systems have a total magnetic moments of 3 and 2 μB, respectively. The half-metallic nature appears in Sn1-2xMnxWxO2, which makes them suitable as spintronic systems with total magnetic moment of 5 μB. The advantages of doping SnO2 with double impurities are investigated in this work. The total moment of the system, the local magnetic moments of the impurities, and their oxidation states are also discussed. Since there are two possible couplings between the impurities, we studied both configurations (ferromagnetic and antiferromagnetic) for double-impurities-doped SnO2. Magnetic properties and interatomic exchange have been computed for various distances between Mn and W. The indirect exchange between double impurities has similarities with the Zener mechanism in transition metal oxides. Based on the interaction between localized moments, via hybridization between impurities orbitals with the host oxygen, a double exchange mechanism is proposed to explain the ferromagnetism of our system.

  19. Effects of the SO4 groups on the textural properties and local order deformation of SnO2 rutile structure.

    PubMed

    Gutiérrez-Báez, R; Toledo-Antonio, J A; Cortes-Jácome, M A; Sebastian, P J; Vázquez, A

    2004-05-11

    Sulfated tin oxide was synthesized from a hydroxylated tin oxide obtained by the precipitation method, followed by ion exchange of OH groups by SO4 species with a sulfuric acid solution. The samples were characterized by X-ray diffraction, transmission electron microscopy, thermoanalysis, and nitrogen physisorption by the Brunauer-Emmett-Teller method. The rutile crystalline structure was refined by the Rietveld method. Thermal analysis suggests the following stoichiometric formulas: SnO2-x(OH)2x and SnO2-x(OH)x(HSO4)x with X = 0.35 and 0.17 for non-sulfated and sulfated samples, respectively. The SO4 species remained strongly bonded at the SnO2 surface stabilizing its crystallite size against sintering, inhibiting the crystallite aggregation, and it acts as a structure porogen director mediating nanoparticle growth and assembly yielding a mesostructure form of SnO2 with wormhole morphology and high thermal stability. The interaction between SO4(2-) and the SnO2 surface changes the symmetry of the representative tin-oxygen octahedron. It relaxes the four tin-oxygen bond lengths located at the basal plane of the octahedron while the two apical Sn-O bonds decrease, producing a strong deformed octahedron, which could be transformed into a higher asymmetry in the electronic distribution around the Sn4+ nuclei. The elimination of SO4 groups brings about the coalescence and crystallite growth, which collapse the mesostructure form of SnO2, decreasing the surface area and porosity. PMID:15969427

  20. Enhanced photocatalytic activity of Cl-residual rutile TiO2 nanorods after targeted co-modification with phosphoric and boric acids.

    PubMed

    Wu, Jing; Cui, Haiqin; Zhang, Xuliang; Luan, Yunbo; Jing, Liqiang

    2015-06-28

    The promotion of O2 adsorption on semiconductor surfaces for effectively capturing photogenerated electrons in the photocatalytic degradation of pollutants is highly desired. In this study, the targeted co-modification of residual chlorine rutile TiO2 nanorods with phosphoric and boric acids has been accomplished for the first time by simple wet chemical processes. The key to targeted co-modification is to connect -P-OH and -B-OH to the Cl-residual TiO2 surfaces by -Ti-OH and -Ti-Cl, respectively, consequently forming -Ti-O-P-OH and -Ti-Cl:B-OH ends. By means of the atmosphere-controlled surface photovoltage spectroscopy, the degrees for capturing photogenerated electrons by the adsorbed O2 as receptors on the resulting TiO2 nanorods are quantitatively analyzed. It is confirmed that the targeted co-modification could greatly promote the capture of the photogenerated electrons compared to the phosphate and borate modification alone. This is attributed to increased amounts of adsorbed O2 based on electrochemical O2 reduction and O2 temperature-programmed desorption measurements, further leading to the enhanced separation of photogenerated charges, characterized by an increase in the amount of produced hydroxyl radicals. This is responsible for the obviously enhanced photocatalytic activity of TiO2 nanorods towards the degradation of colorless gas-phase acetaldehyde and liquid-phase phenol. This work would provide us a feasible route for the co-modification with inorganic acids to synthesize efficient nanosized TiO2-based photocatalysts. PMID:26017969

  1. A nano-patterned self assembled monolayer (SAM) rutile titania cancer chip for rapid, low cost, highly sensitive, direct cancer analysis in MALDI-MS.

    PubMed

    Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen

    2014-12-01

    We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. PMID:25159382

  2. Characterization of the Active Surface Species Responsible for UV-Induced Desorption of O2 from the Rutile TiO2(110) Surface

    SciTech Connect

    Henderson, Michael A.; Shen, Mingmin; Wang, Zhitao; Lyubinetsky, Igor

    2013-03-21

    We have examined the chemical and photochemical properties of molecular oxygen on the (110) surface of rutile TiO2 at 100 K using electron energy loss spectroscopy (EELS), photon stimulated desorption (PSD) and scanning tunneling microscopy (STM). Oxygen chemisorbs on the TiO2(110) surface at 100 K through charge transfer from surface Ti3+ sites. The charge transfer process is evident in EELS by a decrease in the intensity of the Ti3+ d-to-d transition in EELS at ~0.9 eV and formation of a new loss ~2.8 eV. Based on comparisons with the available homogeneous and heterogeneous literature for complexed/adsorbed O2, the species responsible for the 2.8 eV peak can be assigned to a surface peroxo (O2 2-) state of O2. This species was identified as the active form of adsorbed O2 on TiO2(110) for PSD. The adsorption site of this peroxo species was assigned to that of a regular five-cooridinated Ti4+ (Ti5c) site based on comparisons between the UV exposure dependent behavior of O2 in STM, PSD and EELS data. Assignment of the active form of adsorbed O2 to a peroxo species at normal Ti5c sites necessitates reevaluation of the simple mechanism in which a single valence band hole neutralizes a singly charged O2 species (superoxo or O2-) leading to desorption of O2 from a physisorbed potential energy surface. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), and was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL.

  3. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110) -1×1

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2012-11-21

    A series of NH3 temperature-programmed desorption (TPD) spectra was taken after the NH3 dose at 70 K on rutile TiO2(110)-1×1 surfaces with the oxygen vacancy (VO) concentrations of ~0% (p-TiO2) and 5% (r-TiO2), respectively, to study the effect of VO’s on the desorption energy of NH3 as a function of the coverage, θ. Our results show that at zero coverage limit, the desorption energy of NH3 on r-TiO2 is 115 kJ/mol, which is 10 kJ/mol less than that on p-TiO2. The desorption energy from the Ti4+ sites decreases with increasing θ due to the repulsive NH3 - NH3 interactions and approaches ~ 55 kJ/mol upon the saturation of Ti4+ sites (θ = 1 monolayer, ML) on both p- and r-TiO2. The absolute saturation coverage is determined to be about 10% smaller on r-TiO2 than that on p-TiO2. Further, the trailing edges of the NH3 TPD spectra on the hydroxylated TiO2(110) (h-TiO2) appear to be the same as that on r-TiO2 while those on oxidized TiO2(110) (o-TiO2) shift to higher temperatures. We present the detailed analysis of the results and reconcile the observed differences based on the repulsive adsorbate-adsorbate interactions between neighboring NH3 molecules and the surface charge associated with the presence of VO’s. Besides NH3, no other reaction products are observed in the TPD spectra.

  4. Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO2(110)

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2015-09-16

    The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO2(110) surfaces is studied using infrared reflection-absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IRAS peaks at 2737 cm-1 and 3711 cm-1 are observed for stretching vibrations of ODb and OHb on TiO2(110), respectively. IRAS measurements with s- and p-polarized light demonstrate that the bridging hydroxyls are oriented normal to the (110) surface. The IR peaks disappear after the sample is exposed to O2 or annealed in the temperature range of 400 – 600 K (correlating with the temperature at which pairs of OHb’s reform water and then desorb), which is consistent with their identification as bridging hydroxyls. We have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls (using IRAS) as a function of the annealing temperature for a small amount of water initially dosed on the TiO2(110) at low temperature. Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions largely complete for T > 250 K. The temperature-dependent water-VO reaction kinetics are consistent with a Gaussian distribution of activation energies with Ea = 0.545 eV, ΔEa(FWHM) = 0.125 eV, and a “normal” prefactor, v = 1012 s-1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti5c rows on the reduced TiO2

  5. Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study.

    PubMed

    Duan, Zhi-Gang; Zhao, Zong-Yan; Shi, Qing-Nan

    2015-07-15

    Impurity doping is a simple and efficient modification method to improve the photocatalytic performance of wide band gap photocatalysts. However, some basic and important issues about the mechanism of impurity doping modification still need to be further confirmed and explained. In the present work, Pr-doped TiO2 with a mono-phase crystal structure was prepared by a sol-gel method. Then, the crystal structure, binding information, optical absorption, and photocatalytic activity were systematically investigated. The experimental results show that Pr doping could significantly enhance the photocatalytic activity of TiO2, and the effects of modification on rutile TiO2 are more obvious than for anatase TiO2. In order to understand the underlying mechanism, density functional theory was utilized to calculate the crystal structure and electronic structure of pure and Pr-doped TiO2. The differences in electronic structure between anatase and rutile phases lead to the above photocatalytic performance. The experimental measurements and theoretical calculations mutually support each other in the present work. Two points are confirmed: the position of the band edge determines the redox activity of the photocatalyst, and the shallow energy bands induced by impurity doping could improve the photocatalytic performance. PMID:26130404

  6. Animal experimentation.

    PubMed

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation. PMID:16501652

  7. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  8. Experimental macroevolution.

    PubMed

    Bell, Graham

    2016-01-13

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  9. Comparison of the Photodesorption Activities of cis-Butene, trans-Butene and Isobutene on the Rutile TiO2(110) Surface

    SciTech Connect

    Henderson, Michael A.

    2013-10-17

    The chemical and photochemical properties of three butene molecules (cis-butene, trans-butene and isobutene) were explored on the clean rutile TiO2(110) surface using temperature programmed desorption (TPD) and photon simulated desorption (PSD). At the low coverage limit, trans-butene was the most strongly bound butene on the TiO2(110) surface, desorbing at ~ 210 K, however increased intermolecular repulsions between trans-butene molecules at higher coverage diminished its binding. Both cis-butene and isobutene saturated the first layer on TiO2(110) at a coverage of ~0.50 ML in a single TPD feature at 184 and 192 K, respectively. In contrast, the maximum coverage that trans-butene could achieve in its 210 K peak was ~1/3 ML, with higher coverages resulting a low temperature desorption at ~137 K. Coverages of these molecules above 0.50 ML resulted in population of second layer and multilayer states. The instability of trans-butene at a coverage of 0.5 ML on the surface was linked to the inversion center in its symmetry. In the absence of coadsorbed oxygen, the primary photochemical pathway of each butene molecule on TiO2(110) was photodesorption. The photoactivities of these molecules on TiO2(110) at an initial coverage of 0.50 ML followed the trend: isobutene > cis-butene > trans-butene. In contrast, the photoactivities of low coverages of cis-butene and trans-butene exceeded those measured at 0.50 ML. These data suggest that intermolecular interactions (repulsions) play a significant role in diminishing the photoactivities of weakly bound molecules on TiO2 photocatalysts. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, and performed in the Williams R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and

  10. Impact of nonadiabatic charge transfer on the rate of redox chemistry of carbon oxides on rutile TiO2 (110) surface

    SciTech Connect

    Yoon, Yeohoon; Wang, Yanggang; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra

    2015-03-06

    We present the results of a density functional theory (DFT) within the LDA+U approximation on large models of partially reduced TiO2 (110) rutile surface to investigate the nature of charge transfer and the role of non-adiabatic effects on three prototypical redox reactions: (i) O2 adsorption (ii) CO oxidation and (iii) CO2 reduction. Charge-constrained DFT (cDFT) is used to estimate kinetic parameters for a Marcus theory rate law that accounts for adiabatic coupling effects on reaction rates. We find that for O2 adsorption, the coupling between adiabatic states is strong, leading to fast charge transfer rates. The lowest energy structures at high coverage consist of two chemisorbed O2-, one adsorbed at a VO site and the other adsorbed at an adjacent Ti5C site. For CO oxidation, however, all reactions are kinetically hindered on the ground state due to the weak adiabatic coupling at the state crossing, such that one has to overcome two kinetically unfavorable charge transfer events to drive the process (non-adiabatically) on the thermal ground state. The process can be driven by photochemical means but would result in an adsorbed radical [OCOO-] intermediate species. Similarly, CO2 reduction also proceeds via a non-adiabatic charge transfer to form an adsorbed CO2- species followed by a second non-adiabatic charge transfer to produce CO. Our analysis provides important computational guidelines for modeling these types of processes. We thank Z. Dohnalek, M. Hendersen, G. Kimmel, H. Metieu, and N. Petrik for invaluable discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the

  11. Experimental tectonophysics

    SciTech Connect

    Handin, J.; Logan, J.M.

    1981-07-01

    Because virtually all tectonophysical processes are marked by the overburden, or occur to slowly for adequate observation in anthropocentric time, or both, they must be studied in carefully controlled laboratory experiments that simulate the natural environment as realistically as is practicable. Extrapolations of laboratory data in space and time are invalid unless the experimental and natural phenomenologies are essentially the same. The size of conventional specimens is of the order of 10 cm, whereas the discontinuities (defects in a continuum) in real rock-masses are often much larger, of the order of 1 m or more. Furthermore, such discontinuities as macrofractures (joints) may well dominate the mechanical and fluid-transport properties in nature. Adequate sampling of rock-mass properties will probably always require in-situ testing, but testing machines much larger than any now available could provide useful data at least at intermediate scale.

  12. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering.

    PubMed

    Han, HyukSu; Dufour, Pascal; Mhin, Sungwook; Ryu, Jeong Ho; Tenailleau, Christophe; Guillemet-Fritsch, Sophie

    2015-07-14

    Nb and In co-doped rutile TiO2 nanoceramics (n-NITO) were successfully synthesized through a chemical-solution route combined with a low temperature spark plasma sintering (SPS) technique. The particle morphology and the microstructure of n-NITO compounds were nanometric in size. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG)/differential thermal analysis (DTA), Fourier transform infrared (FTIR), and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compound. The results indicated that the as-synthesized n-NITO oxalate as well as sintered ceramic have a co-doped single phase of titanyl oxalate and rutile TiO2, respectively. Broadband impedance spectroscopy revealed that novel colossal permittivity (CP) was achieved in n-NITO ceramics exhibiting excellent temperature-frequency stable CP (up to 10(4)) as well as low dielectric loss (∼5%). Most importantly, detailed impedance data analyses of n-NITO compared to microcrystalline NITO (μ-NITO) demonstrated that the origin of CP in NITO bulk nanoceramics might be related with the pinned electrons in defect clusters and not to extrinsic interfacial effects. PMID:26058428

  13. Dielectric properties of some MM'O{sub 4} and MTiM'O{sub 6} (M=Cr, Fe, Ga; M'=Nb, Ta, Sb) rutile-type oxides

    SciTech Connect

    Mani, Rohini; Achary, S.N.; Chakraborty, Keka R.; Deshpande, S.K.; Joy, Joby E.; Nag, Abanti; Gopalakrishnan, J.; Tyagi, A.K.

    2010-06-15

    We describe an investigation of the structure and dielectric properties of MM'O{sub 4} and MTiM'O{sub 6} rutile-type oxides for M=Cr, Fe, Ga and M'=Nb, Ta and Sb. All the oxides adopt a disordered rutile structure (P4{sub 2}/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO{sub 4} from the low temperature (17 K) neutron diffraction studies. While both the MM'O{sub 4} oxides (CrTaO{sub 4} and FeTaO{sub 4}) investigated show a normal dielectric property MTiM'O{sub 6} oxides for M=Fe, Cr and M'=Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO{sub 6} and GaTiTaO{sub 6}, do not show a relaxor response at T<500 K. - Graphical abstract: Dielectric response of FeTiNbO{sub 6}.

  14. Calculations of Photoemission from Rutile

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Schultz, Peter; Moore, Chris

    2015-03-01

    Photoemission is a well-known mechanism for release of electrons from a surface during electrical breakdown of a gas such as air. During air breakdown, UV photons, which are emitted from the highly excited gas molecules, are absorbed in the surfaces such as the cathode and the anode. These absorbed photons create energetic electrons, and a small portion of these electrons reach the surface. Those that overcome the potential energy barrier at the surface tend to be emitted. In this talk, the Boltzmann equation that describes these phenomena is formulated. A Monte Carlo probabilistic method is used to obtain the rate of electron emission as a function of photon energy. The role of bandstructure effects will be discussed. This bandstructure information is obtained by using a density-functional theory (DFT) method. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Experimental Tachyons

    NASA Astrophysics Data System (ADS)

    Soli, George

    2008-05-01

    In the physics of potential superluminal information transfer, causality is preserved by the experimental identification of the CMB (Cosmic Microwave Background) rest frame, as the preferred inertial frame in which potential superluminal information transfer is isotropic [Rembielinski] (http://arxiv.org/PScache/quant-ph/pdf/0010/0010026v2.pdf). Potential superluminal information transfer is engineered by tunneling through two successive barriers [Olkhovsky] (http://arxiv.org/PScache/quant-ph/pdf/0002/0002022v5.pdf). In our experiment we use two meter wavelength photons tunneling through two water-tank barriers, separated by an air-gap length [Soli] (http://www.siderealdilaton.com/). The data presented in this talk demonstrates that if the air-gap length is adjusted for subluminal information transfer, then the democracy of inertial frames is recovered, and no preferred frame is measured. The one-way subluminal tunneling group velocity of light is shown to be isotropic to accuracy below the CMB rest frame velocity. It has already been argued in the literature that Einstein's special relativity with tachyons predicts the existence of antimatter [Recami] (http://arxiv.org/PScache/arxiv/pdf/0709/0709.2453v1.pdf). We conjecture that the dilaton scalar particle is discovered by any sidereal data producible by this instrument.

  16. Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF3SO3 Media to 250 °C

    SciTech Connect

    Machesky, Michael L.; Předota, Milan; Ridley, Moira K.; Wesolowski, David J.

    2015-06-01

    In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF3SO3) electrolyte media from 25 to 250 °C. Rb+ primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitance values and intrinsic Rb+ binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na+ results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb+ and Na+ reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.

  17. Experimental Summary and Outlook

    SciTech Connect

    Peter Bosted

    2005-02-01

    A brief experimental overview of the workshop is given, with emphasis on polarized targets from the experimental equipment perspective, and kinematic coverage, precision, and newly investigated channels from the experimental results perspective.

  18. Experimental and Quasi-Experimental Design.

    ERIC Educational Resources Information Center

    Cottrell, Edward B.

    With an emphasis on the problems of control of extraneous variables and threats to internal and external validity, the arrangement or design of experiments is discussed. The purpose of experimentation in an educational institution, and the principles governing true experimentation (randomization, replication, and control) are presented, as are…

  19. O2 adsorption on MO2 (M=Ru, Ir, Sn) films supported on rutile TiO2(110) by DFT calculations: Probing the nature of metal oxide-support interaction.

    PubMed

    Xu, Xianglan; Sun, Xiongfei; Sun, Baozhen; Peng, Honggen; Liu, Wenming; Wang, Xiang

    2016-07-01

    To explore metal oxide-support interaction and its effect on O2 adsorption, periodic DFT calculations were used to explore the most preferred O2 molecular and dissociative adsorption on stoichiometric (MO2) and defective (MO2-x) (M=Ru, Ir, Sn) films supported on rutile TiO2(110), and compared with that on pure surfaces without TiO2(110) support. For defective RuO2-x films, it is revealed that the TiO2(110) support and the film thickness have an evident impact on the O2 adsorbed species. On the contrary, the two factors show little influence for defective IrO2-x and SnO2-x films. The analyses for Bader charge and density of states indicate that the reducibility change of the unsaturated surface Ru atoms, which are adjacent to the bridge oxygen vacancies, is responsible for this O2 adsorption alteration. These results provide insights into the oxide-oxide interaction, and its effect on the properties of supported oxide catalysts. PMID:27060230

  20. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Qian, Jieshu; Pan, Hao; Tu, Luo; Zhou, Xingfu

    2011-09-01

    The construction of nanocrystals with controllable composition and desirable micro-nanostructures is a well-known challenge. A combination of favorable composition and optimized micro-nanostructures can enhance the performance of a material significantly. Using TiO2 as an example, we demonstrate here a facile approach to prepare anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores. Our strategy relies on polymer-assisted assembly of ~ 5 nm nano-building blocks into three-dimensional hierarchical hollow micro-nanospheres in a mixed alcohol-water solution. This superior micro-nanostructure endows the sample with hierarchical mesopores and a high surface area of 106 m2 g - 1. We also show that, due to the synergetic effects of the mixed-phase composition and the micro-nanostructures, the sample exhibited significantly improved photovoltaic performance and similar photocatalytic performance compared with the commercial Degussa P25. These results suggested that our sample has great potential for future photovoltaic and photocatalytic applications.

  1. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    NASA Astrophysics Data System (ADS)

    Lazzari, Rémi; Li, Jingfeng; Jupille, Jacques

    2015-01-01

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO2 are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO2(110) and helps revealing mixed phonon/plasmon excitations.

  2. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    SciTech Connect

    Lazzari, Rémi Li, Jingfeng Jupille, Jacques

    2015-01-15

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO{sub 2} are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO{sub 2}(110) and helps revealing mixed phonon/plasmon excitations.

  3. Investigations of defect structures and g factors for octahedral (CrO6)7‑ and (VO6)8‑ clusters in rutile-type crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Lianxuan; Wang, Minjie

    2016-05-01

    The electron paramagnetic resonance (EPR) g factor formulas for Cr5+ and V4+ ions in Al2O3, TiO2 and VO2 crystals are deduced from Jahn-Teller effect and contributions of the charge transfer (CT) levels. The tetragonal distortions. ΔR(R∥‑ R⊥) = ‑0.0184,‑0.0045 and ‑0.0124 nm, and Δ𝜃 = 0∘, ‑ 0.001∘ and 0∘, for Al2O3:Cr5+, TiO2:V4+ and VO2, respectively. The calculations of the g factors agree well with the experimental values. The contributions of the CT levels to g factors increase with the increasing valence state. It must be taken into account in the precise calculations of g factors for the high valence state d1 ions in crystals.

  4. Definition of "experimental procedures".

    PubMed

    2009-11-01

    This Practice Committee Opinion provides a revised definition of "experimental procedures." This version replaces the document "Definition of Experimental" that was published most recently in November 2008. PMID:19836733

  5. Microexperiencia Educativa (Microeducational Experimentation).

    ERIC Educational Resources Information Center

    Burton Meis, Roberto

    1970-01-01

    Experimentation for educational reform in Argentina is limited to specifically designated schools which are to be in a permanent state of experimentation. This article presents the official statements designating the experimental schools and includes remarks covering administration, evaluation, and supervision. (VM)

  6. Atomic layer deposition of rutile-phase TiO2 on RuO2 from TiCl4 and O3: Growth of high-permittivity dielectrics with low leakage current

    NASA Astrophysics Data System (ADS)

    Aarik, Jaan; Arroval, Tõnis; Aarik, Lauri; Rammula, Raul; Kasikov, Aarne; Mändar, Hugo; Hudec, Boris; Hušeková, Kristina; Fröhlich, Karol

    2013-11-01

    Crystallization of TiO2 thin films grown by atomic layer deposition from TiCl4 and O3 on RuO2 layers was investigated with the aim to develop alternative methods for preparation of high-permittivity dielectrics with low leakage current density for capacitor structures of memory devices. The lowest substrate temperature allowing reproducible growth of TiO2 with a rate exceeding 0.01 nm per cycle was determined to be around 225 °C. The highest deposition temperature used was limited to 450 °C because of RuO2 decomposition at higher temperatures. The TiO2 films deposited on RuO2 electrodes at substrate temperatures of 225-450 °C contained rutile phase. Reference films deposited on Si substrates were amorphous when deposited at 225 °C and contained anatase when deposited at 250 °C and higher temperatures. At temperatures 250-450 °C, the growth rate values of 10-25 nm thick films ranged from 0.04 to 0.07 nm per cycle being somewhat higher on RuO2 than on Si substrates. The dependence of the mean growth rate on the substrate material was mainly due to differences in nucleation and became weaker with increasing film thickness. Relative permittivity measured for TiO2 in the Pt/TiO2/RuO2 structures at a frequency of 10 kHz ranged from 106 to 126. The TiO2 films with the lowest leakage current densities were grown at 300-350 °C. Leakage current densities as low as (5-7)×10-8 A/cm2 at an applied voltage of 0.8 V were recorded for capacitor structures with capacitance-equivalent dielectric thicknesses of 0.41-0.45 nm.

  7. A new LA-ICP-MS method for Ti-in-Quartz: Implications and application to HP rutile-quartz veins from the Czech Erzgebirge

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Mertz-Kraus, R.; Zack, T.; Feineman, M. D.; Woods, G.

    2014-12-01

    Experimental determination of the pressure and temperature controls on Ti solubility in quartz provide a calibration of the Ti-in-quartz (TitaniQ) geothermometer applicable to geologic conditions up to ~20 kbar (Thomas et al. (2010) Contrib Mineral Petrol 160, 743-759). One of the greatest limitations to analyzing Ti in metamorphic quartz by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the lack of a suitable matrix-matched reference material. Typically LA-ICP-MS analyses of Ti in minerals use 49Ti as a normalizing mass because of an isobaric interference from 48Ca, which is present in most well characterized reference glasses, on 48Ti. The benefit of using a matrix-matched reference material to analyze Ti in quartz is the opportunity to use 48Ti (73.8 % abundance) as a normalizing mass, which results in an order of magnitude increase in signal strength compared to the less abundant isotope 49Ti (5.5 % abundance), thereby increasing the analytical precision. Here we characterize Ti-bearing SiO2 glasses from Heraeus Quarzglas and natural quartz grains from the Bishop Tuff by cathodoluminescence (CL) imaging, electron probe microanalysis (EPMA), and LA-ICP-MS, in order to determine their viability as reference materials for Ti in quartz. Titanium contents in low-CL rims in the Bishop Tuff quartz grains were determined to be homogenous by EPMA (41 ± 2 µg/g Ti, 2σ), and are a potential natural reference material. We present a new method for determining 48Ti concentrations in quartz by LA-ICP-MS at the 1 µg/g level, relevant to quartz in HP-LT terranes. We suggest that natural quartz such as the homogeneous low-CL rims of the Bishop Tuff quartz are more suitable than NIST reference glasses as an in-house reference material for low Ti concentrations because matrix effects are limited and Ca isobaric interferences are avoided, thus allowing for the use of 48Ti as a normalizing mass. Titanium concentration from 33 analyses of low

  8. Experimentation in software engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Selby, R. W.; Hutchens, D. H.

    1986-01-01

    Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.

  9. Questioning and Experimentation

    ERIC Educational Resources Information Center

    Mutanen, Arto

    2014-01-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated…

  10. 7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL FOREST BUNKHOUSE, FERNOW EXPERIMENTAL FOREST GARAGE, AND FERNOW EXPERIMENTAL FOREST RESIDENCE. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV

  11. The Experimental Hydrology Wiki

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; van Meerveld, Ilja; Graeff, Thomas

    2013-04-01

    The "Experimental Hydrology Wiki" is a forum for hydrologists to learn about, recommend, question and discuss new and established, basic and advanced methods and equipment for hydrological research. As a database of "lessons learned" it does not only contain short descriptions of specific experimental equipment but also information on encountered errors and problems and recommendations on how to deal with them. This makes valuable personal field experience accessible to a wider audience. The Wiki allows experimentalists to share and find solutions for common problems and thus helps us in not making the same mistakes others have made before us. At the same time modellers can use this platform to find information on sources of error and uncertainty in the data they use for model validation and calibration. The general idea and layout of the Experimental Hydrology Wiki is presented here along with an invitation to all experimental hydrologists to contribute their knowledge and experiences! http://www.experimental- hydrology.net/

  12. Magnetohydrodynamic generator experimental studies

    NASA Technical Reports Server (NTRS)

    Pierson, E. S.

    1972-01-01

    The results for an experimental study of a one wavelength MHD induction generator operating on a liquid flow are presented. First the design philosophy and the experimental generator design are summarized, including a description of the flow loop and instrumentation. Next a Fourier series method of treating the fact that the magnetic flux density produced by the stator is not a pure traveling sinusoid is described and some results summarized. This approach appears to be of interest after revisions are made, but the initial results are not accurate. Finally, some of the experimental data is summarized for various methods of excitation.

  13. Experimental Semiotics: A Review

    PubMed Central

    Galantucci, Bruno; Garrod, Simon

    2010-01-01

    In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience. PMID:21369364

  14. Designing an Experimental "Accident"

    ERIC Educational Resources Information Center

    Picker, Lester

    1974-01-01

    Describes an experimental "accident" that resulted in much student learning, seeks help in the identification of nematodes, and suggests biology teachers introduce similar accidents into their teaching to stimulate student interest. (PEB)

  15. Nuclear test experimental science

    SciTech Connect

    Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S.

    1989-01-01

    This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

  16. Experimental scattershot boson sampling

    PubMed Central

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-01-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy. PMID:26601164

  17. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  18. SPHINX experimenters information package

    SciTech Connect

    Zarick, T.A.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  19. Questioning and Experimentation

    NASA Astrophysics Data System (ADS)

    Mutanen, Arto

    2014-08-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated model can be interpreted realistically. Moreover, the model demonstrates an explicit logic of knowledge acquisition. So, the natural extension of the model is to apply it to an analysis of the learning process.

  20. Communicating Uncertain Experimental Evidence

    ERIC Educational Resources Information Center

    Davis, Alexander L.; Fischhoff, Baruch

    2014-01-01

    Four experiments examined when laypeople attribute unexpected experimental outcomes to error, in foresight and in hindsight, along with their judgments of whether the data should be published. Participants read vignettes describing hypothetical experiments, along with the result of the initial observation, considered as either a possibility…

  1. EXPERIMENTAL ANIMAL MAINTENANCE

    DOEpatents

    Finkel, M.P.

    1962-01-22

    A method of housing experimental animals such as mice in individual tube- like plastic enclosures is described. Contrary to experience, when this was tried with metal the mice did not become panicky. Group housing, with its attendant difficulties, may thus be dispensed with. (AEC)

  2. Experimental fluvial geomorphology

    SciTech Connect

    Schumm, S.A.; Mosley, M.P.; Weaver, W.

    1987-01-01

    The authors bring together the results of several years of experimental work in drainage basin evolution, hydrology, river-channel morphology, and sedimentology. These investigations are related to real-world applications, particularly geological exploration and mapping. This text shows how awareness of natural phenomena can improve management of the natural environment, such as the control of rivers and eroding gullies.

  3. Administrative Aspects of Human Experimentation.

    ERIC Educational Resources Information Center

    Irvine, George W.

    1992-01-01

    The following administrative aspects of scientific experimentation with human subjects are discussed: the definition of human experimentation; the distinction between experimentation and treatment; investigator responsibility; documentation; the elements and principles of informed consent; and the administrator's role in establishing and…

  4. Teaching experimental design.

    PubMed

    Fry, Derek J

    2014-01-01

    Awareness of poor design and published concerns over study quality stimulated the development of courses on experimental design intended to improve matters. This article describes some of the thinking behind these courses and how the topics can be presented in a variety of formats. The premises are that education in experimental design should be undertaken with an awareness of educational principles, of how adults learn, and of the particular topics in the subject that need emphasis. For those using laboratory animals, it should include ethical considerations, particularly severity issues, and accommodate learners not confident with mathematics. Basic principles, explanation of fully randomized, randomized block, and factorial designs, and discussion of how to size an experiment form the minimum set of topics. A problem-solving approach can help develop the skills of deciding what are correct experimental units and suitable controls in different experimental scenarios, identifying when an experiment has not been properly randomized or blinded, and selecting the most efficient design for particular experimental situations. Content, pace, and presentation should suit the audience and time available, and variety both within a presentation and in ways of interacting with those being taught is likely to be effective. Details are given of a three-day course based on these ideas, which has been rated informative, educational, and enjoyable, and can form a postgraduate module. It has oral presentations reinforced by group exercises and discussions based on realistic problems, and computer exercises which include some analysis. Other case studies consider a half-day format and a module for animal technicians. PMID:25541547

  5. Saturation curve of SiO{sub 2} component in rutile-type GeO{sub 2}: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    SciTech Connect

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami

    2015-09-15

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO{sub 2} component in the rutile-structured phase of GeO{sub 2} (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO{sub 2} in TiO{sub 2} shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this

  6. Geoengineering as Collective Experimentation.

    PubMed

    Stilgoe, Jack

    2016-06-01

    Geoengineering is defined as the 'deliberate and large-scale intervention in the Earth's climatic system with the aim of reducing global warming'. The technological proposals for doing this are highly speculative. Research is at an early stage, but there is a strong consensus that technologies would, if realisable, have profound and surprising ramifications. Geoengineering would seem to be an archetype of technology as social experiment, blurring lines that separate research from deployment and scientific knowledge from technological artefacts. Looking into the experimental systems of geoengineering, we can see the negotiation of what is known and unknown. The paper argues that, in renegotiating such systems, we can approach a new mode of governance-collective experimentation. This has important ramifications not just for how we imagine future geoengineering technologies, but also for how we govern geoengineering experiments currently under discussion. PMID:25862639

  7. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  8. Blois V: Experimental summary

    SciTech Connect

    Albrow, M.G.

    1993-09-01

    The author gives a summary talk of the best experimental data given at the Vth Blois Workshop on Elastic and Diffractive Scattering. He addresses the following eight areas in his talk: total and elastic cross sections; single diffractive excitation; electron-proton scattering; di-jets and rapidity gaps; areas of future study; spins and asymmetries; high-transverse momentum and masses at the Tevatron; and disoriented chiral condensates and cosmic radiation.

  9. MSFC Skylab experimenter's reference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined in the main text and amplified, as appropriate, in appendixes. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  10. Structural femtochemistry: experimental methodology.

    PubMed Central

    Williamson, J C; Zewail, A H

    1991-01-01

    The experimental methodology for structural femtochemistry of reactions is considered. With the extension of femtosecond transition-state spectroscopy to the diffraction regime, it is possible to obtain in a general way the trajectories of chemical reactions (change of internuclear separations with time) on the femtosecond time scale. This method, considered here for simple alkali halide dissociation, promises many applications to more complex reactions and to conformational changes. Alignment on the time scale of the experiments is also discussed. Images PMID:11607189

  11. SAA drift: Experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  12. Electrodeless Experimental Thruster

    SciTech Connect

    Brainerd, Jerome J.; Reisz, Al

    2009-03-16

    An electrodeless experimental electric thruster has been built and tested at the NASA Marshall Space Flight Center (MSFC). The plasma is formed by Electron-Cyclotron Resonance (ECR) absorption of RF waves (microwaves). The RF source operates in the 1 to 2 kW range. The plasma is overdense and is confined radially by an applied axial dc magnetic field. The field is shaped by a strong magnetic mirror on the upstream end and a magnetic nozzle on the downstream end. Argon is used as the propellant. The velocity profile in the exhaust plume has been measured with Laser Induced Fluorescence (LIF). An unusual bimodal velocity profile has been measured.

  13. Electric propulsion: Experimental research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1992-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  14. Electric Propulsion: Experimental Research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1995-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  15. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  16. Experimental turbine VT-400

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Milčák, Petr; Noga, Tomáš

    2016-03-01

    The experimental air turbine VT400 is located in hall laboratories of the Department of Power System Engineering. It is a single-stage air turbine located in the suction of the compressor. It is able to solve various problems concerning the construction solution of turbine stages. The content of the article will deal mainly with the description of measurements on this turbine. The up-to-now research on this test rig will be briefly mentioned, too, as well as the description of the ongoing reconstruction.

  17. Modeling and experimental studies of oxide covered metal surfaces: TiO sub 2 /Ti a model system

    SciTech Connect

    Smyrl, W.H.

    1991-01-01

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  18. Modeling and experimental studies of oxide covered metal surfaces: TiO{sub 2}/Ti a model system. Progress report

    SciTech Connect

    Smyrl, W.H.

    1991-12-31

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  19. [Animal experimentation in Israel].

    PubMed

    Epstein, Yoram; Leshem, Micah

    2002-04-01

    In 1994 the Israeli parliament (Knesset) amended the Cruelty to Animals Act to regulate the use of experimental animals. Accordingly, animal experiments can only be carried out for the purposes of promoting health and medical science, reducing suffering, advancing scientific research, testing or production of materials and products (excluding cosmetics and cleaning products) and education. Animal experiments are only permitted if alternative methods are not possible. The National Board for Animal Experimentation was established to implement the law. Its members are drawn from government ministries, representatives of doctors, veterinarians, and industry organizations, animal rights groups, and academia. In order to carry out an animal experiment, the institution, researchers involved, and the specific experiment, all require approval by the Board. To date the Board has approved some 35 institutions, about half are public institutions (universities, hospitals and colleges) and the rest industrial firms in biotechnology and pharmaceutics. In 2000, 250,000 animals were used in research, 85% were rodents, 11% fowls, 1,000 other farm animals, 350 dogs and cats, and 39 monkeys. Academic institutions used 74% of the animals and industry the remainder. We also present summarized data on the use of animals in research in other countries. PMID:12017891

  20. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.