Sample records for saccharomyces cerevisiae exhibit

  1. Saccharomyces cerevisiae

    PubMed Central

    Kelly, Amy C.; Wickner, Reed B.

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23–46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  2. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    PubMed Central

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-01-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains (“52” - rough and “PE-02” - smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone. PMID:24688501

  3. Saccharomyces cerevisiae Produces a Yeast Substance that Exhibits Estrogenic Activity in Mammalian Systems

    NASA Astrophysics Data System (ADS)

    Feldman, David; Stathis, Peter A.; Hirst, Margaret A.; Price Stover, E.; Do, Yung S.; Kurz, Walter

    1984-06-01

    Partially purified lipid extracts of Saccharomyces cerevisiae contain a substance that displaces tritiated estradiol from rat uterine cytosol estrogen receptors. The yeast product induces estrogenic bioresponses in mammalian systems as measured by induction of progesterone receptors in cultured MCF-7 human breast cancer cells and by a uterotrophic response and progesterone receptor induction after administration to ovariectomized mice. The findings raise the possibility that bakers' yeast may be a source of environmental estrogens.

  4. SACCHAROMYCES CEREVISIAE 03.01.03

    E-print Network

    Kaplan, Alexander

    - SACCHAROMYCES CEREVISIAE 03.01.03 ­ 2014 #12- . , . , , , , , . . , , , #12;6 . , , , . , , , . . Saccharomyces cerevisiae W303. .. ( , , 27, ) http://www.bio.msu.ru. « » __________ 2014 . .. #12;3 . Saccharomyces

  5. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. 866.5785...Anti-Saccharomyces cerevisiae (S. cerevisiae ) antibody (ASCA) test systems. (a) Identification...Anti-Saccharomyces cerevisiae (S. cerevisiae ) antibody (ASCA) test system is an in...

  6. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kouprina, N; Kroll, E; Bannikov, V; Bliskovsky, V; Gizatullin, R; Kirillov, A; Shestopalov, B; Zakharyev, V; Hieter, P; Spencer, F

    1992-01-01

    We have analyzed the CTF4 (CHL15) gene, earlier identified in two screens for yeast mutants with increased rates of mitotic loss of chromosome III and artificial circular and linear chromosomes. Analysis of the segregation properties of circular minichromosomes and chromosome fragments indicated that sister chromatid loss (1:0 segregation) is the predominant mode of chromosome destabilization in ctf4 mutants, though nondisjunction events (2:0 segregation) also occur at an increased rate. Both inter- and intrachromosomal mitotic recombination levels are elevated in ctf4 mutants, whereas spontaneous mutation to canavanine resistance was not elevated. A genomic clone of CTF4 was isolated and used to map its physical and genetic positions on chromosome XVI. Nucleotide sequence analysis of CTF4 revealed a 2.8-kb open reading frame with a 105-kDa predicted protein sequence. The CTF4 DNA sequence is identical to that of POB1, characterized as a gene encoding a protein that associates in vitro with DNA polymerase alpha. At the N-terminal region of the protein sequence, zinc finger motifs which define potential DNA-binding domains were found. The C-terminal region of the predicted protein displayed similarity to sequences of regulatory proteins known as the helix-loop-helix proteins. Data on the effects of a frameshift mutation suggest that the helix-loop-helix domain is essential for CTF4 function. Analysis of sequences upstream of the CTF4 open reading frame revealed the presence of a hexamer element, ACGCGT, a sequence associated with many DNA metabolism genes in budding yeasts. Disruption of the coding sequence of CTF4 did not result in inviability, indicating that the CTF4 gene is nonessential for mitotic cell division. However, ctf4 mutants exhibit an accumulation of large budded cells with the nucleus in the neck. ctf4 rad52 double mutants grew very slowly and produced extremely high levels (50%) of inviable cell division products compared with either single mutant alone, which is consistent with a role for CTF4 in DNA metabolism. Images PMID:1341195

  7. Original article The effect of Saccharomyces cerevisiae

    E-print Network

    Boyer, Edmond

    Original article The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations of Saccharomyces cerevisiae (SC 50 mg/day) and Aspergillus oryzae (AO 3 g/day) on the fermentation processes and reprints #12;Résumé ― Effet de Saccharomyces cerevisiae et Aspergillus oryzae sur les fermentations

  8. Local Regulatory Variation in Saccharomyces cerevisiae

    E-print Network

    Kruglyak, Leonid

    Local Regulatory Variation in Saccharomyces cerevisiae James Ronald1,2 , Rachel B. Brem2 regulatory variation in Saccharomyces cerevisiae. We used genetic linkage analysis to show that nearly in Saccharomyces cerevisiae. PLoS Genet 1(2): e25. Introduction Much effort has recently been devoted

  9. The proteome of Saccharomyces cerevisiae mitochondria

    E-print Network

    Economou, Tassos

    The proteome of Saccharomyces cerevisiae mitochondria Albert Sickmann*, Jo¨ rg Reinders*, Yvonne of Saccharomyces cerevisiae mitochondria. The proteins of highly pure yeast mitochondria were separated by several on a molecular level. The Saccharomyces cerevisiae genome was the first fully se- quenced eukaryotic genome

  10. Xylose fermentation by Saccharomyces cerevisiae

    Microsoft Academic Search

    Peter Kötter; Michael Ciriacy

    1993-01-01

    We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather

  11. Cadmium biosorption by Saccharomyces cerevisiae

    Microsoft Academic Search

    B. Volesky; H. May; Z. R. Holan

    1993-01-01

    Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd\\/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles

  12. Characterization of enzymatic synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae: mutant strains exhibiting long-chain-base auxotrophy are deficient in serine palmitoyltransferase activity.

    PubMed Central

    Pinto, W J; Wells, G W; Lester, R L

    1992-01-01

    We have begun a biochemical-genetic analysis of the synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae and found evidence for the occurrence of serine palmitoyltransferase (SPT) and 3-ketosphinganine reductase, enzymes that catalyze the initial steps of the pathway in other organisms. SPT activity was demonstrated in vitro with crude membrane preparations from S. cerevisiae as judged by the formation of radiolabeled 3-ketosphinganine from the condensation of palmitoyl-coenzyme A (CoA) with radiolabeled serine. Shorter (C12 and C14) and longer (C18) acyl-CoAs sustain significant SPT activity, a result consistent with the finding of both C18 and C20 long-chain bases in the organism. Three products of the long-chain-base synthetic pathway, 3-ketosphinganine, erythrosphinganine, and phytosphingosine, neither directly inhibited the reaction in vitro nor affected the specific activity of the enzyme when these bases were included in the culture medium of wild-type cells. Thus, no evidence for either feedback inhibition or repression of enzyme synthesis could be found with these putative effectors. Mutant strains of S. cerevisiae that require a sphingolipid long-chain base for growth fall into two genetic complementation groups, LCB1 and LCB2. Membrane preparations from both lcb1 and lcb2 mutant strains exhibited negligible SPT activity when tested in vitro. Step 2 of the long-chain-base synthetic pathway was demonstrated by the stereospecific NADPH-dependent reduction of 3-ketosphinganine to erythrosphinganine. Membranes isolated from wild-type cells and from an lcb1 mutant exhibited substantial 3-ketosphinganine reductase activity. We conclude that the Lcb- phenotype of these mutants results from a missing or defective SPT, an activity controlled by both the LCB1 and LCB2 genes. These results and earlier work from this laboratory establish that SPT plays an essential role in sphingolipid synthesis in S. cerevisiae. PMID:1556076

  13. Cadmium biosorption by Saccharomyces cerevisiae

    SciTech Connect

    Volesky, B.; May, H.; Holan, Z.R. (McGill Univ., Montreal, Quebec (Canada))

    1993-04-01

    Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min.

  14. FTIR spectroscopic discrimination of Saccharomyces cerevisiae and Saccharomyces bayanus strains.

    PubMed

    Adt, Isabelle; Kohler, Achim; Gognies, Sabine; Budin, Julien; Sandt, Christophe; Belarbi, Abdelkader; Manfait, Michel; Sockalingum, Ganesh D

    2010-09-01

    In this study, we tested the potential of Fourier-transform infrared absorption spectroscopy to screen, on the one hand, Saccharomyces cerevisiae and non-S. cerevisiae strains and, on the other hand, to discriminate between S. cerevisiae and Saccharomyces bayanus strains. Principal components analysis (PCA), used to compare 20 S. cerevisiae and 21 non-Saccharomyces strains, showed only 2 misclassifications. The PCA model was then used to classify spectra from 14 Samos strains. All 14 Samos strains clustered together with the S. cerevisiae group. This result was confirmed by a routinely used electrophoretic pattern obtained by pulsed-field gel electrophoresis. The method was then tested to compare S. cerevisiae and S. bayanus strains. Our results indicate that identification at the strain level is possible. This first result shows that yeast classification and S. bayanus identification can be feasible in a single measurement. PMID:20921989

  15. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii

    Microsoft Academic Search

    Juliana L. R. Fietto; Raquel S. Araújo; Frederico N. Valadão; Luciano G. Fietto; Rogelio L. Brandão; Maria J. Neves; Fátima C. O. Gomes; Jacques R. Nicoli; Ieso M. Castro

    2004-01-01

    Abstract: In this paper, comparative molecular studies between authentic Saccharomyces cerevisiaestrains, related spe- cies, and the strain described as Saccharomyces boulardiiwere performed. The response of a S. boulardii strain and a S. cerevisiae strain (W303) to different stress conditions was,also evaluated. The results obtained in this study show that S. boulardii is genetically very close or nearly identical to S.

  16. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  17. Elevated evolutionary rates in the laboratory strain of Saccharomyces cerevisiae

    E-print Network

    Petrov, Dmitri

    Elevated evolutionary rates in the laboratory strain of Saccharomyces cerevisiae Zhenglong Gu) of Saccharomyces cerevisiae and found that genes in the laboratory strain tend to evolve faster than in the wild commonly used Saccharomyces cerevisiae haploid in the laboratory, S288c, for which the whole genome

  18. Original article The effect of Saccharomyces cerevisiae and Aspergillus

    E-print Network

    Boyer, Edmond

    Original article The effect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion cerevisiae / Aspergillus oryzae / protozoa / digestion / fibre Résumé - Effet de Saccharomyces cerevisiae et of the SAB in rumen digesta and the growth of protozoa. © Inra/Elsevier, Paris rumen / Saccharomyces

  19. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the...Extract Hydrolysate from Saccharomyces cerevisiae on all food...

  20. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the...Extract Hydrolysate from Saccharomyces cerevisiae on all food...

  1. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the...Extract Hydrolysate from Saccharomyces cerevisiae on all food...

  2. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the...Extract Hydrolysate from Saccharomyces cerevisiae on all food...

  3. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement...Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the...Extract Hydrolysate from Saccharomyces cerevisiae on all food...

  4. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  5. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    Microsoft Academic Search

    Tong Ihn Lee; Nicola J. Rinaldi; François Robert; Duncan T. Odom; Ziv Bar-Joseph; Georg K. Gerber; Nancy M. Hannett; Christopher T. Harbison; Craig M. Thompson; Itamar Simon; Julia Zeitlinger; Ezra G. Jennings; Heather L. Murray; D. Benjamin Gordon; Bing Ren; John J. Wyrick; Jean-Bosco Tagne; Thomas L. Volkert; Ernest Fraenkel; David K. Gifford; Richard A. Young

    2002-01-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global

  6. Mitochondrial DNA ligase function in Saccharomyces cerevisiae

    Microsoft Academic Search

    Sarah L. Donahue; Brian E. Corner; Laura Bordone; Colin Campbell

    2001-01-01

    The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria.

  7. The genetic characteristics Saccharomyces cerevisiae aci(+) mutants.

    PubMed

    Grochowalska, Renata; Machnicka, Beata; Wysocki, Robert; Lachowicz, Tadeusz M

    2003-01-01

    A series of 30 Saccharomyces cerevisiae aci(+) mutants (characterized as acidifying Ogur's glucose medium containing bromocresol purple) were isolated after EMS mutagenesis. All the mutants excreted acid metabolites to the medium after 24 or 48 hours of incubation. The character of the aci(+) mutations was defined using classical genetic techniques. Three of the aci(+) mutants were studied by molecular genetics techniques. PMID:12813559

  8. Acid excreting mutants of yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    B. Machnicka; R. Grochowalska; E. Boniewska-Bernacka; L. S?omi?ska; T. M. Lachowicz

    2004-01-01

    Saccharomyces cerevisiae mutants acidifying glucose medium containing bromocresol purple were shown to excrete protons when placed in unbuffered water in the absence of any external carbon source. The mutants belong to 16 different complementation groups. Most of them do not grow on glycerol and the excreted protons are associated to particular sets of organic anions such as citrate, aconitate, succinate,

  9. Functional profiling of the Saccharomyces cerevisiae genome

    E-print Network

    Gerstein, Mark

    Functional profiling of the Saccharomyces cerevisiae genome Guri Giaever1 , Angela M. Chu2 , Li Ni3 , Michael Snyder3 , Peter Philippsen13 , Ronald W. Davis1,2 & Mark Johnston5 1 Stanford Genome Technology University School of Medicine, Stanford, California 94305-5307, USA 3 Department of Molecular, Cellular

  10. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  11. Mcm2 and Mcm3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae.

    PubMed Central

    Young, M R; Tye, B K

    1997-01-01

    The Mcm2-7 proteins are a family of conserved proteins whose functions are essential for the initiation of DNA synthesis in all eukaryotes. These patients are constitutively present in high abundance in actively proliferating cells. In Saccharomyces cerevisiae, the intracellular concentrations of Mcms are between 100 and 500 times the number of replication origins. However, these proteins are limiting for the initiation of DNA synthesis at replication origins. Our studies indicate that only a small fraction of Mcm2 and Mcm3 tightly associates with chromatin, from late M phase to the beginning of the S phase. The rest of the Mcm2 and Mcm3 proteins are disturbed to both the cytoplasm and nucleoplasm in relatively constant levels throughout the cell cycle. We also show that S. cerevisiae Mcm3 is a phosphoprotein that exists in multiple isoforms and that distinct isoforms of Mcm2 and Mcm3 can be detected at specific stages of the cell cycle. These results suggest that the localization and function of the Mcm proteins are regulated by posttranslational phosphorylation in a manner that is consistent with a role for the Mcm proteins in restricting DNA replication to once per cell cycle. Images PMID:9285827

  12. Mechanism of Uranium mineralization by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ohnuki, T.; Ozaki, T.; Yoshida, T.; Kozai, N.; Francis, A. J.; Iefuji, H.

    2002-12-01

    We examined mechanism of the uranium mineralization by the yeast (Saccharomyces cerevisiae, X-2180-1B). Uptake experiments of U by S. cerevisiae were carried out for 4.2x10-4 M U solutions with their final pHs between 3 and 5. Concentrations of U and P were measured at the predetermined intervals. After 96 hours of contact time, the U accumulated S. cerevisiae was observed by scanning electron microscope equipped with energy dispersive spectroscopy (SEM-EDS). The Kd, defined by the ratio of U accumulated in S. cerevisiae to that in solution, shows monotone increase with time below pH 4, and reached steady state within 60 hours above pH 4. During U accumulation P was released from S. cerevisiae, while no release of P was observed in the absence of U. SEM-EDS analyses of the U accumulated S. cerevisiae indicated that uranyl phosphate minerals were occurred on the surface of S. cerevisiae at any pH. Thermodynamic calculation indicated that chemical compositions of the solutions at pH above 4 were super-saturated with respect to H-autunite. On the contrary, the chemical compositions of the solutions of pHs below 4 were under-saturated with respect to H-autunite, and were super-saturated at one-order higher concentration of U(VI) or P than observed. These results indicate that U mineralization is metabolism dependent, induced by the release of P from S. cerevisiae. Two different processes are relevant to U mineralization by S. cerevisiae. One is the process in which U reacts in the solution with P released from S. cerevisiae, where the chemical composition in the solution is super-saturated with respect to H-autunite. The other is the process in which U reacts with P on the surface of S. cerevisiae, where H-autunite is occurred by local-saturation condition.

  13. Genome instability in rad54 mutants of Saccharomyces cerevisiae

    Microsoft Academic Search

    Jacqueline Schmuckli-Maurer; Michael Rolfsmeier; Ho Nguyen; Wolf-Dietrich Heyer

    2003-01-01

    The RAD54 gene of Saccharomyces cerevisiae encodes a conserved dsDNA-dependent ATPase of the Swi2\\/Snf2 family with a specialized function during recombinational DNA repair. Here we ana- lyzed the consequences of the loss of Rad54 func- tion in vegetative (mitotic) cells. Mutants in RAD54 exhibited drastically reduced rates of spontaneous intragenic recombination but were proficient for spontaneous intergenic recombinant formation. The

  14. Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty Elements

    E-print Network

    Jordan, King

    Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty of the sequencing of the Saccharomyces cerevisiae genome provides a unique opportunity to analyze the evolutionary: Saccharomyces cerevisiae -- Ty -- Ret- rotransposons -- Regulatory evolution -- Recombina- tion Introduction

  15. GENOME-SCALE PROTEIN FUNCTION PREDICTION IN YEAST SACCHAROMYCES CEREVISIAE THROUGH

    E-print Network

    GENOME-SCALE PROTEIN FUNCTION PREDICTION IN YEAST SACCHAROMYCES CEREVISIAE THROUGH INTEGRATING Saccharomyces cerevisiae through integrating various high-throughput biological data, including protein binary predicted genes in yeast Saccharomyces cerevisiae (Baker's yeast) were functionally characterized when

  16. GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome

    E-print Network

    Boyer, Edmond

    1 GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae: causality in yeast Keywords: recombination, Saccharomyces cerevisiae, GC content, biased gene conversion Saccharomyces cerevisiae, for which the most refined recombination data are available. First, we confirmed

  17. Manganese biosorption sites of Saccharomyces cerevisiae.

    PubMed

    Parvathi, K; Nareshkumar, R; Nagendran, R

    2007-07-01

    Experiments conducted by pre-treating the fermentation industrial waste biomass of Saccharomyces cerevisiae with laboratory grade chemicals like formaldehyde-formic acid, ethanol, triethyl phosphite-nitromethane, dithiopyridine and benzene helped in studying the roles played by amines, carboxylic acids, phosphates, sulfhydryl group and lipids present on the cell wall of the biomass in manganese biosorption. Potentiometric titration of S. cerevisiae revealed the presence of carboxyl, phosphate, amine groups. The extent of the contribution of the functional groups and lipids to manganese biosorption was in the order: carboxylic acids > amines > lipids > phosphates. Blocking of sulfhydryl group did not have any significant effect on manganese uptake. PMID:17674651

  18. Cellular death of two non- Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae

    Microsoft Academic Search

    F. Pérez-Nevado; H. Albergaria; T. Hogg; F. Girio

    2006-01-01

    The early death of two non-Saccharomyces wine strains (H. guilliermondii and H. uvarum) during mixed fermentations with S. cerevisiae was studied under enological growth conditions. Several microvinifications were performed in synthetic grape juice, either with single non-Saccharomyces or with mixed S. cerevisiae\\/non-Saccharomyces inocula. In all mixed cultures, non-Saccharomyces yeasts grew together with S. cerevisiae during the first 1–3 days (depending

  19. Removing cadmium from electroplating wastewater by waste saccharomyces cerevisiae

    Microsoft Academic Search

    Shu-juan DAI; De-zhou WEI; Dong-qin ZHOU; Chun-yun JIA; Yu-juan WANG; Wen-gang LIU

    2008-01-01

    The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on biosorption of cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae and precipitation process of waste saccharomyces cerevisiae after adsorbing cadmium were studied. The results show that removal rate of cadmium is over 88% after

  20. Saccharomyces cerevisiae strains sensitive to inorganic mercury

    Microsoft Academic Search

    Bun-ichiro Ono; Estuo Sakamoto; Kumie Yamaguchi

    1987-01-01

    In Saccharomyces cerevisiae, the HGS2-1 allele confers sensitivities to inorganis mercury (Ono and Sakamoto 1985) and to excess fermentable sugars such as glucose (Sakamoto et al. 1985); exogenous tyrosine antagonizes both inorganic mercury and excess glucose. In this sutdy, the inorganic mercury sensitive strain has been shown to have about twice more glucose-1,6-bisphosphate and slightly less pyruvate than the normal

  1. Proteinase Mutants of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Jones, Elizabeth W.

    1977-01-01

    Fifty-nine mutants with reduced ability to cleave the chymotrypsin substrate N-acetyl-DL-phenylalanine ?-naphthyl ester have been isolated in S. cerevisiae. All have reduced levels of one or more of the three well-characterized proteinases in yeast. All have reduced levels of proteinase C (carboxy-peptidase Y). These mutations define 16 complementation groups. PMID:320092

  2. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  3. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.

    PubMed

    van Zyl, Willem H; Lynd, Lee R; den Haan, Riaan; McBride, John E

    2007-01-01

    Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP. PMID:17846725

  4. Critical analysis of factors influencing sphaeroplast generation from Saccharomyces cerevisiae

    Microsoft Academic Search

    J. A. Kumari; T. Panda

    1992-01-01

    Efficient synthesis of large numbers of viable sphaeroplast from Saccharomyces cerevisiae has been found to be influenced by a number of factors. In this case, Trichoderma harzianum, NCIM 1185, culture filtrate has been used to prepare sphaeroplast from Saccharomyces cerevisiae, NCIM 3288. A method has been devised to isolate large number of viable sphaeroplast from the cell. Detailed analysis of

  5. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae ) antibody...

  6. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  7. YEAST VOL. 11: 1275-1280 (1995) Precise Gene Disruption in Saccharomyces cerevisiae by

    E-print Network

    Botstein, David

    YEAST VOL. 11: 1275-1280 (1995) Precise Gene Disruption in Saccharomyces cerevisiae by Double in Saccharomyces cerevisiae. KEY WORDS ~ gene disruption; fusion PCR; Saccharomyces cerevisiae INTRODUCTIONUCl8: pJJ215 (bearing the HIS3 #12;1276 Table 1. Saccharomyces cerevisiae strains. D. C. AMBERG ET AL

  8. [Engineering Saccharomyces cerevisiae for sclareol production].

    PubMed

    Yang, Wei; Zhou, Yongjin; Liu, Wujun; Shen, Hongwei; Zhao, Zongbao K

    2013-08-01

    Sclareol is a member of labdane type diterpenes mostly used as fragrance ingredient. To enable microbial production of sclareol, synthetic pathways were constructed by incorporating labdenediol diphosphate synthase (LPPS) and terpene synthase (TPS) of the plant Salvia sclarea into Saccharomyces cerevisiae. It was found that sclareol production could be benefited by overexpression of key enzyme for precursor biosynthesis, construction of fusion protein for substrate channeling, and removal of signal peptides from LPPS and TPS. Under optimal shake flask culture conditions, strain S6 produced 8.96 mg/L sclareol. These results provided useful information for development of heterologous hosts for production of terpenoids. PMID:24364354

  9. Components of microtubular structures in Saccharomyces cerevisiae.

    PubMed Central

    Pillus, L; Solomon, F

    1986-01-01

    Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified. Images PMID:3517870

  10. Acid excreting mutants of yeast Saccharomyces cerevisiae.

    PubMed

    Machnicka, B; Grochowalska, R; Boniewska-Bernacka, E; S?omi?ska, L; Lachowicz, T M

    2004-12-17

    Saccharomyces cerevisiae mutants acidifying glucose medium containing bromocresol purple were shown to excrete protons when placed in unbuffered water in the absence of any external carbon source. The mutants belong to 16 different complementation groups. Most of them do not grow on glycerol and the excreted protons are associated to particular sets of organic anions such as citrate, aconitate, succinate, fumarate or malate. These novel types of respiratory mutations seem to be located in genes operating in the Krebs or glyoxylate cycle. PMID:15541392

  11. Expression of VHHs in Saccharomyces cerevisiae.

    PubMed

    Gorlani, Andrea; de Haard, Hans; Verrips, Theo

    2012-01-01

    The production of VHHs in microorganisms is relatively straightforward, however the amount of VHH produced per volume unit can vary substantially from hardly detectable to hundreds of milligrams per liter. Expression in Escherichia coli is more commonly used at initial research phase, since production of VHHs for large-scale application in E. coli is for a number of reasons not preferred. Otherwise VHH production in GRAS organisms such as Saccharomyces cerevisiae fits very well with industrial fermentation processes, and in fact the only commercially available VHHs are produced in S. cerevisiae. Immediately after the discovery of heavy chain only antibodies, which are per definition devoid of light chains, it was investigated whether many problems encountered with the production of conventional antibodies in lower eukaryotes were absent during the production of VHHs. Here we provide a protocol for the expression of VHH genes in S. cerevisiae in a fed-batch fermentation process. This protocol is also suitable for the production of multivalent VHHs. PMID:22886258

  12. Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae

    Microsoft Academic Search

    Laura Edwards-Ingram; Paul Gitsham; Nicola Burton; Geoff Warhurst; Ian Clarke; David Hoyle; Stephen G. Oliver; Lubomira Stateva

    2007-01-01

    Saccharomyces boulardii, a yeast that was isolated from fruit in Indochina, has been used as a remedy for diarrhea since 1950 and is now a commercially available treatment throughout Europe, Africa, and South America. Though initially classified as a separate species of Saccharomyces, recent publications have shown that the genome of S. boulardii is so similar to Saccharomyces cerevisiae that

  13. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae

    E-print Network

    Botstein, David

    Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae Maitreya and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610; §Departments of Molecular Contributed by David Botstein, October 15, 2002 Genome rearrangements, especially amplifications and deletions

  14. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    PubMed

    Garcia, David E; Keasling, Jay D

    2014-01-01

    The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni²? column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M) of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max) was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²? dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH?=?7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP. PMID:24475236

  15. Kinetics of Phosphomevalonate Kinase from Saccharomyces cerevisiae

    PubMed Central

    Garcia, David E.; Keasling, Jay D.

    2014-01-01

    The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni2+ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The KM of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The Vmax was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg2+ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH?=?7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP. PMID:24475236

  16. Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae

    E-print Network

    Fay, Justin

    on sugar. In comparison to other yeasts, Saccharomyces favor aerobic fermentation over respiration of yeast as the cause of fermentation [5], numerous strains of S. cerevisiae have been isolated to the idea that S. cerevisiae is a domesticated species, specialized for the fermentation of alcoholic

  17. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    Microsoft Academic Search

    Alis van der Aa Kühle; Kerstin Skovgaard; Lene Jespersen

    2005-01-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast

  18. Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid.

    PubMed

    Pérez-Torrado, Roberto; González, Sara Susana; Combina, Mariana; Barrio, Eladio; Querol, Amparo

    2015-07-01

    Saccharomyces cerevisiae plays a main role in the winemaking process, although other species, like Saccharomyces uvarum or Saccharomyces paradoxus, have been associated with must fermentations. It has been reported in recent years, that yeast hybrids of different Saccharomyces species might be responsible for wine productions. Although S. cerevisiae×Saccharomyces kudriavzevii hybrids have been well studied, very little attention has been paid to S. cerevisiae×S. uvarum hybrids. In this work we characterized the genomic composition of S6U, a widely used commercial S. cerevisiae×S. uvarum yeast hybrid isolated in wine fermentations containing one copy of the genome of each parental species, which suggests a relatively recent hybridization event. We also studied its performance under diverse enological conditions. The results show enhanced performance under low temperature enological conditions, increased glycerol production, lower acetic acid production and increased production of interesting aroma compounds. We also examined the transcriptomic response of the S6U hybrid strain compared with the reference species under enological conditions. The results show that although the hybrid strain transcriptome is more similar to S. uvarum than to S. cerevisiae, it presents specifically regulated genes involved in stress response, lipids and amino acid metabolism. The enological performance and aroma profile of this S. cerevisiae×S. uvarum hybrid makes it a good candidate for participating in winemaking, especially at low temperatures. PMID:25867085

  19. Biosorption of 241 Am by immobilized Saccharomyces cerevisiae

    Microsoft Academic Search

    Ning Liu; Jiali Liao; Shunzhong Luo; Yuanyou Yang; Jiannan Jin; Taiming Zhang; Pengji Zhao

    2003-01-01

    Americium-241 is one of the most serious radioactive contaminating nuclides due to its high toxicity and long half-life. The encouraging biosorption of 241Am from aqueous solutions by free Saccharomyces cerevisiae (S. cerevisiae) has been observed in our previous experiments. In this study, the 241Am biosorption by immobilized S. cerevisiae and the effect of the various experimental conditions on the adsorption

  20. Prediction of Saccharomyces cerevisiae replication origins

    PubMed Central

    Breier, Adam M; Chatterji, Sourav; Cozzarelli, Nicholas R

    2004-01-01

    Background Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible. Results We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26 characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich region. The predictions identified the exact location of the ACS. A total of 84 of the top 100 Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct. We compared the predictions to corresponding sequences in related Saccharomyces species and found that the ACSs of experimentally supported predictions show significant conservation. Conclusions The high accuracy of the predictions indicates that we have defined near-sufficient conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized generality in yeast replication origins and significant discriminatory power in the algorithm. PMID:15059255

  1. Comparative effects of Saccharomyces cerevisiae and Aspergillus oryzae on rumen fermentations

    E-print Network

    Boyer, Edmond

    Comparative effects of Saccharomyces cerevisiae and Aspergillus oryzae on rumen fermentations F Aubière Cedex, France Saccharomyces cerevisiae (SC) and Aspergillus oryzae (AO) have both been proposed

  2. Mapping small effect mutations in Saccharomyces cerevisiae: impacts of experimental design and mutational properties

    E-print Network

    Gruber, Jonathan

    1 Mapping small effect mutations in Saccharomyces cerevisiae: impacts responsible for three EMS-induced mutant phenotypes in Saccharomyces cerevisiae of experimental design and mutational properties Fabien Duveau*, Brian P.H. Metzger

  3. Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae

    Microsoft Academic Search

    Satish J. Parulekar; Gary B. Semones; Michael J. Rolf; Jefferson C. Lievense; Henry C. Lim

    1986-01-01

    Continuous cultures of Saccharomyces cerevisiae are known to exhibit oscillatory behavior in the oxidative region. Important findings of a series of experiments conducted to identify the causes for initiation of and the means for elimination of oscillations in these cultures are reported in this paper. These oscillations are seen to be connected to the growth kinetics of the microorganism and

  4. Removal of Copper from Aqueous Solutions by Waste Biomass of Saccharomyces cerevisiae

    Microsoft Academic Search

    Chunhui Fan; Zhuo Diao; Yingchao Zhang; Dongfang Meng; Ying Zhang; Xiuyun Qi; Lixiang Zhang

    2009-01-01

    Put dead immobilized saccharomyces cerevisiae biomass into column of continuous upflowing reactor. Study the influence of temperature, quantity of saccharomyces cerevisiae in column and initial Cu2+ concentration on Cu2+ adsorption. Determine optimal operating parameters of initial pH values, flow rates and quantities of saccharomyces cerevisiae in column through orthogonal experiment. Analyse adsorption mechanisms on Cu2+ by saccharomyces cerevisiae powder through

  5. Copper transport in the yeast Saccharomyces cerevisiae

    SciTech Connect

    Martinez, L.D.; Connelly, J.L.

    1987-05-01

    Biochemical processes involved in the movement of copper (Cu) into and out of the yeast Saccharomyces Cerevisiae have been investigated. Overall uptake of Cu was measured by disappearance of Cu from the reaction mixture by atomic absorption sensitive to 10/sup -10/M. The process of Cu influx is composed of a prerequisite binding and subsequent transport. The binding is non-energetic but is competitively inhibited by zinc(Zn). Transport is energetic as shown by an increased influx in the presence of added glucose. This process is prevented by 2,4-dinitrophenol(DNP). Cu influx is accompanied by an exchange for potassium(K) in a ratio of K:Cu=2:1. The process of Cu efflux involves a second type of binding site, probably of low affinity but large capacity. The presence of glucose causes the binding of extracellular Cu to these sites in a non-energy-dependent mechanism which prevents Cu efflux. Zn does not compete. DNP has no effect. The K:Cu ratio of 4:1 observed in the absence of glucose suggests a lowered net Cu uptake as a result of concomitant efflux activity. Finally, in the absence but not the presence of glucose, the pH of the extracellular solution increases. These observations are consistent with the idea that (a) yeast membrane has two Cu-binding sites, one of which participates in influx and one in efflux; (b) Cu exchanges with K during influx and with protons during efflux.

  6. Processing of preribosomal RNA in Saccharomyces cerevisiae.

    PubMed

    Fernández-Pevida, Antonio; Kressler, Dieter; de la Cruz, Jesús

    2015-01-01

    Most, if not all RNAs, are transcribed as precursors that require processing to gain functionality. Ribosomal RNAs (rRNA) from all organisms undergo both exo- and endonucleolytic processing. Also, in all organisms, rRNA processing occurs inside large preribosomal particles and is coupled to nucleotide modification, folding of the precursor rRNA (pre-rRNA), and assembly of the ribosomal proteins (r-proteins). In this review, we focus on the processing pathway of pre-rRNAs of cytoplasmic ribosomes in the yeast Saccharomyces cerevisiae, without doubt, the organism where this pathway is best characterized. We summarize the current understanding of the rRNA maturation process, particularly focusing on the pre-rRNA processing sites, the enzymes responsible for the cleavage or trimming reactions and the different mechanisms that monitor and regulate the pathway. Strikingly, the overall order of the various processing steps is reasonably well conserved in eukaryotes, perhaps reflecting common principles for orchestrating the concomitant events of pre-rRNA processing and ribosome assembly. PMID:25327757

  7. Evolution of Microsatellites in the Yeast Saccharomyces cerevisiae: Role of Length and Number of Repeated Units

    E-print Network

    Pupko, Tal

    Evolution of Microsatellites in the Yeast Saccharomyces cerevisiae: Role of Length and Number. The observed and expected frequencies of occurrence of microsatellites in the yeast Saccharomyces cerevisiae taken from the Saccharomyces cerevisiae database (Goffeau et al. 1997). The mononucleotides were counted

  8. Computational identication of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics

    E-print Network

    Eddy, Sean

    Computational identi®cation of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics-coding RNAs (ncRNAs) in the genome sequence of the yeast Saccharomyces cerevisiae using computational (5±17). The budding yeast Saccharomyces cerevisiae is one of the most powerful model systems

  9. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards

    E-print Network

    Fay, Justin

    Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards between these two groups. Keywords: gene flow, oak, population genetics, Saccharomyces cerevisiae. The budding yeast Saccharomyces cerevisiae is widely distributed and consis- tently associated with two

  10. Discovery of Recurrent Sequence Motifs in Saccharomyces cerevisiae Cell Wall Proteins

    E-print Network

    Epstein, Susan L.

    Discovery of Recurrent Sequence Motifs in Saccharomyces cerevisiae Cell Wall Proteins Juan E in a set of 171 known and putative cell wall proteins from baker's yeast, Saccharomyces cerevisiae Saccharomyces cerevisiae (bakers' yeast) and the visually-oriented methods used to find them. The evolutionary

  11. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    E-print Network

    Shamir, Ron

    REPORT Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models shown that only B18% of Saccharomyces cerevisiae genes are essential for growth on a rich medium

  12. Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae Strains

    E-print Network

    Kruglyak, Leonid

    Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae of Saccharomyces cerevisiae­more precisely, the S288c strain­was completely sequenced. However, experimental work and redundant coverage of the ,12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed

  13. Structural Characterization of the Saccharomyces cerevisiae THO Complex by Small-Angle X-Ray Scattering

    E-print Network

    Schierup, Mikkel Heide

    Structural Characterization of the Saccharomyces cerevisiae THO Complex by Small-Angle X-competent messenger ribonucleoprotein particles. In Saccharomyces cerevisiae, THO has been defined as a heteropentamer of the Saccharomyces cerevisiae THO Complex by Small-Angle X-Ray Scattering. PLoS ONE 9(7): e103470. doi:10

  14. Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii

    Microsoft Academic Search

    Simone Cesaro; Pierangelo Chinello; Lucia Rossi; Luigi Zanesco

    2000-01-01

    A case of Saccharomyces fungemia in an 8-month-old baby affected by acute myeloid leukemia while receiving intensive chemotherapy is reported. The\\u000a patient was receiving prophylaxis treatment with Saccharomyces boulardii capsules (Codex) to prevent diarrhea, which is commonly associated with this type of chemotherapy. Fever spiked just the\\u000a day after ending the chemotherapy course, and a strain of Saccharomyces cerevisiae was

  15. Regulation of cation balance in Saccharomyces cerevisiae.

    PubMed

    Cyert, Martha S; Philpott, Caroline C

    2013-03-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  16. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  17. A Saccharomyces cerevisiae -based bioassay for assessing pesticide toxicity

    Microsoft Academic Search

    Karine Estève; C. Poupot; P. Dabert; M. Mietton-Peuchot; V. Milisic

    2009-01-01

    This study evaluates the toxic effect of three pesticides (Azoxystrobin, Cymoxanil, and Diuron) on the yeast Saccharomyces cerevisiae for the development of a new bioassay based on inhibition of S. cerevisiae metabolic activity at the level of adenosine-5-triphosphate (ATP) synthesis, as compared with two different toxicity tests\\u000a based on inhibition of Daphnia magna mobility (NF EN ISO 6341) and inhibition of

  18. [Tolerance of Saccharomyces cerevisiae to monoterpenes--a review].

    PubMed

    Liu, Jidong; Zhou, Jingwen; Chen, Jian

    2013-06-01

    Tolerance of Saccharomyces cerevisiae to monoterpenes is important in both metabolic engineering of the yeast to produce these chemicals de novo and efficient use of biomass containing these chemicals. Understanding the mechanisms in the tolerance of S. cerevisiae to monoterpenes could facilitate the construction of yeast strains with enhanced monoterpenes resistance, and therefore improve related bioprocesses. Monoterpenes could disturb the redox balance in S. cerevisiae, therefore increase the accumulation of reactive oxygen species (ROS) and result in cell death. S. cerevisiae has to systematically improve its antioxidative ability to deal with the ROS induced damage. The current review summarized the recent developments in demonstration of the tolerance of S. cerevisiae to different typical monoterpenes mainly from the aspect of the antioxidative mechanisms. Based on the analysis of the previous works, further attempts to demonstrate the mechanisms were proposed. PMID:24028054

  19. Production of lipid compounds in the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    M. Veen; C. Lang

    2004-01-01

    This review describes progress using the yeast Saccharomyces cerevisiae as a model organism for the fast and efficient analysis of genes and enzyme activities involved in the lipid biosynthetic pathways of several donor organisms. Furthermore, we assess the impact of baker's yeast on the production of novel, high-value lipid compounds. Yeast can be genetically modified to produce selected substances in

  20. Complete Nucleotide Sequence of Saccharomyces cerevisiae Chromosome VIII

    Microsoft Academic Search

    M. Johnston; S. Andrews; R. Brinkman; J. Cooper; H. Ding; J. Dover; Z. Du; A. Favello; L. Fulton; S. Gattung; C. Geisel; J. Kirsten; T. Kucaba; L. Hillier; M. Jier; L. Johnston; Y. Langston; P. Latreille; E. J. Louis; C. Macri; E. Mardis; S. Menezes; L. Mouser; M. Nhan; L. Rifkin; L. Riles; H. St. Peter; E. Trevaskis; K. Vaughan; D. Vignati; L. Wilcox; P. Wohldman; R. Waterston; R. Wilson; M. Vaudin

    1994-01-01

    The complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII reveals that it contains 269 predicted or known genes (300 base pairs or larger). Fifty-nine of these genes (22 percent) were previously identified. Of the 210 novel genes, 65 are predicted to encode proteins that are similar to other proteins of known or predicted function. Sixteen genes appear to be relatively

  1. Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network

    Microsoft Academic Search

    Jochen Forster; Iman Famili; Patrick Fu; Bernhard Ø; Jens Nielsen

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic

  2. ETHANOL PRODUCTION FROM PEARL MILLET BY USING SACCHAROMYCES CEREVISIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four pearl millet genotypes were tested for their potential as raw material for fuel ethanol production in this study. Ethanol fermentation was performed both in flasks on a rotary shaker and in a 5-L bioreactor by using Saccharomyces cerevisiae (ATCC 24860). For rotary-shaker fermentation, the fi...

  3. Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae

    E-print Network

    Aris, John P.

    Chapter 8 Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae John P is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic

  4. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi

    Microsoft Academic Search

    Daniele Armaleo; Guang-Ning Ye; Theodore M. Klein; Katherine B. Shark; John C. Sanford; Stephen Albert Johnston

    1990-01-01

    Tungsten microprojectiles coated with nucleic acid and accelerated to velocities of approximately 500 m\\/s, can penetrate living cells and tissues with consequent expression of the introduced genes (Klein et al. 1987). Saccharomyces cerevisiae is used here as a model system to define the basic parameters governing the biolistic (biological-ballistic) delivery of DNA into cells. Among the physical factors affecting the

  5. Identification and Characterization of Phenylpyruvate Decarboxylase Genes in Saccharomyces cerevisiae

    Microsoft Academic Search

    Zeynep Vuralhan; Marcos A. Morais; Siew-Leng Tai; Matthew D. W. Piper; Jack T. Pronk

    2003-01-01

    Received 9 December 2002\\/Accepted 7 May 2003 Catabolism of amino acids via the Ehrlich pathway involves transamination to the corresponding -keto acids, followed by decarboxylation to an aldehyde and then reduction to an alcohol. Alternatively, the aldehyde may be oxidized to an acid. This pathway is functional in Saccharomyces cerevisiae, since during growth in glucose-limited chemostat cultures with phenylalanine as

  6. SHORT REPORT Open Access Saccharomyces cerevisiae chitin biosynthesis

    E-print Network

    Paris-Sud XI, Université de

    SHORT REPORT Open Access Saccharomyces cerevisiae chitin biosynthesis activation by N Thellend2 Abstract Background: To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were

  7. Improving biomass sugar utilization by engineered Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a...

  8. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  9. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    Microsoft Academic Search

    Alison Coluccio; Edith Bogengruber; Michael N. Conrad; Michael E. Dresser; Peter Briza; Aaron M. Neiman

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized

  10. Genetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae, pp. 507519

    E-print Network

    Rosenberg, Noah

    Genetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae, pp. 507­519 Dean Calahan- tion tolerance in budding yeast that establish it as a powerful genetic system to understand, pp. 561­577 Sang Chul Choi and Jody Hey Although genetic data can be used to determine which

  11. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae

    Microsoft Academic Search

    Hung Pham; Roberto Ferrari; Shawn J Cokus; Siavash K Kurdistani; Matteo Pellegrini

    2007-01-01

    Acetylation of histones plays an important role in regulating transcription. Histone acetylation is mediated partly by the recruitment of specific histone acetyltransferases (HATs) and deacetylases (HDACs) to genomic loci by transcription factors, resulting in modulation of gene expression. Although several specific interactions between transcription factors and HATs and HDACs have been elaborated in Saccharomyces cerevisiae, the full regulatory network remains

  12. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae

    Microsoft Academic Search

    David Donze; Christopher R. Adams; Jasper Rine; Rohinton T. Kamakaka

    1999-01-01

    The chromosomes of eukaryotes are organized into structurally and functionally discrete domains that provide a mechanism to compact the DNA as well as delineate independent units of gene activity. It is believed that insulator\\/boundary elements separate these domains. Here we report the identification and characterization of boundary elements that flank the transcriptionally repressed HMR locus in the yeast Saccharomyces cerevisiae.

  13. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  14. THE FUNCTION OF THE CITRIC ACID CYCLE IN SACCHAROMYCES CEREVISIAE

    Microsoft Academic Search

    A. O. M. Stoppani; S. L. S. de Favelukes; L. Conches; E. Ramos; M. M. Pigretti

    1959-01-01

    The role of the citric acid cycle in yeast was investigated. ; Suspensions of fasting Saccharomyces cerevisiae were incubated with carbon-14 ; bicarbonate and substrates in a closed vessel connected with a volume ; compensator, and simultaneous measurements of the oxygen consumption were made ; under equal experimental conditions. (C.H.);

  15. The genetics of aging in the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    S. Michal Jazwinski

    1993-01-01

    The yeastSaccharomyces cerevisiae possesses a finite life span similar in many attributes and implications to that of higher eukaryotes. Here, the measure of the life span is the number of generations or divisions the yeast cell has undergone. The yeast cell is the organism, simplifying many aspects of aging research. Most importantly, the genetics of yeast is highly-developed and readily

  16. Ethanol production from carob pods by Saccharomyces cerevisiae

    Microsoft Academic Search

    T. Roukas

    1993-01-01

    The production of ethanol from carob pods extract by Saccharomyces cerevisiae in static and shake flask fermentation was investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The external addition of nutrients into the carob pods extract did not improve the production of ethanol. The maximum concentration of ethanol (75

  17. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32, the protein itself causes a feedback inhibition of the splicing of the transcript of its own gene. The synthesis of ribosomes involves a massive transfer of material across the nuclear envelope in both directions. Nuclear localization signals have been identified for at least three ribosomal proteins; they are similar but not identical to those identified for the simian virus 40 T antigen. There is no information about how ribosomal subunits are transported from the nucleus to the cytoplasm.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2666845

  18. Crystal Structure of the Oxygen-dependant Coproporphyrinogen Oxidase (Hem13p) of Saccharomyces cerevisiae*

    E-print Network

    Hill, Chris

    structure of the oxygen-dependent CPO from Saccharomyces cerevisiae (Hem13p), which was deter- mined protoporphyrinogen IX (Fig. 1) (1, 2). The enzyme from Saccharomyces cerevisiae is called Hem13p (3). In plantsCrystal Structure of the Oxygen-dependant Coproporphyrinogen Oxidase (Hem13p) of Saccharomyces

  19. Copyright 2001 by the Genetics Society of America Phosphate Transport and Sensing in Saccharomyces cerevisiae

    E-print Network

    Wykoff, Dennis D.

    are sensed. The similarity of Pho84p, a high- affinity phosphate transporter in Saccharomyces cerevisiae). In Saccharomyces cerevisiae inability to induce PHO5 (Lemire et al. 1985). Cells this increase in phosphate uptakeCopyright 2001 by the Genetics Society of America Phosphate Transport and Sensing in Saccharomyces

  20. Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere

    E-print Network

    Tian, Weidong

    Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient, 2005; Accepted January 2, 2006 ABSTRACT In Saccharomyces cerevisiae at least five genes, EST1, EST2 ends from DNA breaks and facilitate complete chromosomal rep- lication (2­4). In Saccharomyces

  1. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as

    E-print Network

    van Oudenaarden, Alexander

    in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats is available online at www.genome.org.] In the baker's yeast Saccharomyces cerevisiae, the rDNA array, whichLetter Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces

  2. In Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces cerevisiae

    E-print Network

    Lieb, Jason

    Hill, North Carolina, United States of America Abstract Previous studies in Saccharomyces cerevisiae on Nucleosome Occupancy and Position in Saccharomyces cerevisiae. PLoS Genet 8(6): e1002771. doi:10.1371/journalIn Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces

  3. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics

    E-print Network

    Eddy, Sean

    1 Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative systems amenable to genetic and biochemical analysis (5-16). The budding yeast Saccharomyces cerevisiae@genetics.wustl.edu Abstract We screened for new structural non-coding RNAs in the genome sequence of the yeast Saccharomyces

  4. Behaviour of Kloeckera apiculata Flocculent Strain in Coculture with Saccharomyces cerevisiae

    Microsoft Academic Search

    Oscar A. Sos; María C. Manca de Nadra; Marta E. Farías

    2008-01-01

    Summary The behaviour of the flocculent Kloeckera apiculata strain in coculture with the non- flocculent Saccharomyces cerevisiae strain, both yeasts isolated from wine, has been anal- yzed. Pure culture of Kloeckera apiculata (apiculate yeast) exhibits 75 % flocculation in the yeast extract\\/peptone\\/glucose (containing 20 g\\/L of glucose, YPG20) medium after 24- -hour incubation at 28 °C. This yeast expresses a

  5. Response of Saccharomyces cerevisiae to the Stimulation of Lipopolysaccharide

    PubMed Central

    Shen, Lulu; Li, Ye; Jiang, Linghuo; Wang, Xiaoyuan

    2014-01-01

    Lipopolysaccharide, known as endotoxin, can stimulate potent host immune responses through the complex of Toll-like-receptor 4 and myeloid differentiation protein 2; but its influence on Saccharomyces cerevisiae, a model organism for studying eukaryotes, is not clear. In this study, we found that lipopolysaccharide-treated S. cerevisiae cells could be stained by methylene blue, but did not die. Transcriptional profiling of the lipopolysaccharide-treated S. cerevisiae cells showed that 5745 genes were modulated: 2491 genes up-regulated and 3254 genes down-regulated. Significantly regulated genes (460 up-regulated genes and 135 down-regulated genes) in lipopolysaccharide-treated S. cerevisiae cells were analyzed on Gene Ontology, and used to establish physical protein-protein interaction network and protein phosphorylation network. Based on these analyses, most of the regulated genes in lipopolysaccharide-treated S. cerevisiae cells were related to cell wall, membrane, peroxisome and mitochondrion. Further experiments demonstrated that lipopolysaccharide stimulation caused the exposure of phosphatidylserine and the increase of mitochondrial membrane potential in S. cerevisiae cells, but levels of intracellular reactive oxygen species and metacaspase activation were not increased. This study demonstrated that lipopolysaccharide stimulation causes significant changes in S. cerevisiae cells, and the results would contribute to understand the response of eukaryotic cells to lipopolysaccharide stimulation. PMID:25105496

  6. Effect of caffeine on ozone-sensitivity in Saccharomyces cerevisiae.

    PubMed

    Dubeau, H; Chung, Y S

    1984-01-01

    The addition of 0.1% caffeine to the plating medium markedly reduced the ozone-survival of the wild-type and the rad1 and rad6 mutants of Saccharomyces cerevisiae, whereas no effect was observed in the rad52 mutant. Since, in S. cerevisiae, caffeine has been reported to interfere with the recombinational repair pathway under the control of the RAD52 gene, these results support previous observations suggesting that this pathway is involved in the repair of ozone-induced DNA damage. PMID:6387392

  7. ANALYSIS OF CYTOPLASMIC mRNA DECAY IN SACCHAROMYCES CEREVISIAE

    PubMed Central

    Passos, Dario O.; Parker, Roy

    2010-01-01

    The yeast, Saccharomyces cerevisiae, is a model system for the study of eukaryotic mRNA degradation. In this organism, a variety of methods have been developed to measure mRNA decay rates, trap intermediates in the mRNA degradation process, and establish precursor–product relationships. In addition, the use of mutant strains lacking specific enzymes involved in mRNA destruction, or key regulatory proteins, allows one to determine the mechanisms by which individual mRNAs are degraded. In this chapter, we discuss methods for analyzing mRNA degradation in S. cerevisiae. PMID:19111187

  8. Saccharomyces cerevisiae STR3 and yeast cystathionine ?-lyase enzymes

    PubMed Central

    Holt, Sylvester; Cordente, Antonio G.; Curtin, Chris

    2012-01-01

    Selected Saccharomyces cerevisiae strains are used for wine fermentation. Based on several criteria, winemakers often use a specific yeast to improve the flavor, mouth feel, decrease the alcohol content and desired phenolic content, just to name a few properties. Scientists at the AWRI previously illustrated the potential for increased flavor release from grape must via overexpression of the Escherichia coli Tryptophanase enzyme in wine yeast. To pursue a self-cloning approach for improving the aroma production, we recently characterized the S. cerevisiae cystathionine ?-lyase STR3, and investigated its flavor releasing capabilities. Here, we continue with a phylogenetic investigation of STR3 homologs from non-Saccharomyces yeasts to map the potential for using natural variation to engineer new strains. PMID:22572787

  9. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    DOE PAGESBeta

    Dar, R. D. [Oak Ridge National Laboratory (ORNL), TN (United States). Center for Nanophase Materials Science and Univ. of Tenneessee, Knoxville, TN (United States); Karig, D. K. [Oak Ridge National Laboratory (ORNL), TN (United States). Center for Nanophase Materials Science; Cooke, J. F. [Univ. of Tennessee, Knoxville, TN (United States); Cox, C. D. [Univ. of Tennessee, Knoxville, TN (United States); Simpson, M. L. [Oak Ridge National Laboratory (ORNL), TN (United States). Center for Nanophase Materials Science and Univ. of Tennessee, Knoxville, TN (United States)

    2010-09-28

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offs between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.

  10. Calcium Dependence of Eugenol Tolerance and Toxicity in Saccharomyces cerevisiae

    PubMed Central

    Roberts, Stephen K.; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections. PMID:25036027

  11. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  12. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J

    2013-12-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  13. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

    Microsoft Academic Search

    Konrad T. Howitz; Kevin J. Bitterman; Haim Y. Cohen; Dudley W. Lamming; Siva Lavu; Jason G. Wood; Robert E. Zipkin; Phuong Chung; Anne Kisielewski; Li-Li Zhang; Brandy Scherer; David A. Sinclair

    2003-01-01

    In diverse organisms, calorie restriction slows the pace of ageing and increases maximum lifespan. In the budding yeast Saccharomyces cerevisiae, calorie restriction extends lifespan by increasing the activity of Sir2 (ref. 1), a member of the conserved sirtuin family of NAD+-dependent protein deacetylases. Included in this family are SIR-2.1, a Caenorhabditis elegans enzyme that regulates lifespan, and SIRT1, a human

  14. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration

    Microsoft Academic Search

    Su-Ju Lin; Matt Kaeberlein; Alex A. Andalis; Lori A. Sturtz; Pierre-Antoine Defossez; Valeria C. Culotta; Gerald R. Fink; Leonard Guarente

    2002-01-01

    Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant

  15. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Nevan J. Krogan; Gerard Cagney; Haiyuan Yu; Gouqing Zhong; Xinghua Guo; Alexandr Ignatchenko; Joyce Li; Shuye Pu; Nira Datta; Aaron P. Tikuisis; Thanuja Punna; José M. Peregrín-Alvarez; Michael Shales; Xin Zhang; Michael Davey; Mark D. Robinson; Alberto Paccanaro; James E. Bray; Anthony Sheung; Bryan Beattie; Dawn P. Richards; Veronica Canadien; Atanas Lalev; Frank Mena; Peter Wong; Andrei Starostine; Myra M. Canete; James Vlasblom; Samuel Wu; Chris Orsi; Sean R. Collins; Shamanta Chandran; Robin Haw; Jennifer J. Rilstone; Kiran Gandi; Natalie J. Thompson; Gabe Musso; Peter St Onge; Shaun Ghanny; Mandy H. Y. Lam; Gareth Butland; Amin M. Altaf-Ul; Shigehiko Kanaya; Ali Shilatifard; Erin O'Shea; Jonathan S. Weissman; C. James Ingles; Timothy R. Hughes; John Parkinson; Mark Gerstein; Shoshana J. Wodak; Andrew Emili; Jack F. Greenblatt

    2006-01-01

    Identification of protein–protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption\\/ionization–time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy.

  16. A Mutant of Saccharomyces cerevisiae Defective for Nuclear Fusion

    Microsoft Academic Search

    Jaime Conde; Gerald R. Fink

    1976-01-01

    A mutant unable to fuse nuclei during mating has been isolated from standard wild-type Saccharomyces cerevisiae. Tetrad analysis of the mutation responsible for this defect (kar1-1) shows that it segregates as a single Mendelian factor. The defect in kar1-1 appears to be nuclear limited. Cytological and genetic evidence shows that in this mutant the events associated with zygote formation are

  17. Distribution and correlation of three oenological traits in Saccharomyces cerevisiae

    Microsoft Academic Search

    Laura Corte; Paolo Rellini; Francesco Sciascia; Raffaele De Nicola; Fabrizio Fatichenti; Gianluigi Cardinali

    2006-01-01

    The improvement of yeast starters for wine making, with classical genetic techniques, relays on the effective independence\\u000a of the main oenological traits in order to combine them optimally. The analysis of three characters (ethanol production, volatile\\u000a acidity and fermenting rate) in 787Saccharomyces cerevisiae strains, isolated from several parts of the world and substrates, shows moderate correlation between the volatile acidity

  18. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae

    Microsoft Academic Search

    Adam Bertl; Hermann Bihler; Carsten Kettner; Clifford L. Slayman

    1998-01-01

    Since the mid-1980s, use of the budding yeast, Saccharomyces cerevisiae, for expression of heterologous (foreign) genes and proteins has burgeoned for several major purposes, including facile genetic\\u000a manipulation, large-scale production of specific proteins, and preliminary functional analysis. Expression of heterologous\\u000a membrane proteins in yeast has not kept pace with expression of cytoplasmic proteins for two principal reasons: (1) although plant

  19. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation

    PubMed Central

    Guimarães, Pedro MR; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity. PMID:21326922

  20. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.

    PubMed Central

    Ramos, C; Calderon, I L

    1992-01-01

    In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially. PMID:1622238

  1. Engineering pathways for malate degradation in Saccharomyces cerevisiae.

    PubMed

    Volschenk, H; Viljoen, M; Grobler, J; Petzold, B; Bauer, F; Subden, R E; Young, R A; Lonvaud, A; Denayrolles, M; van Vuuren, H J

    1997-03-01

    Deacidification of grape musts is crucial for the production of well-balanced wines, especially in colder regions of the world. The major acids in wine are tartaric and malic acid. Saccharomyces cerevisiae cannot degrade malic acid efficiently due to the lack of a malate transporter and the low substrate affinity of its malic enzyme. We have introduced efficient pathways for malate degradation in S. cerevisiae by cloning and expressing the Schizosaccharomyces pombe malate permease (mae1) gene with either the S. pombe malic enzyme (mae2) or Lactococcus lactis malolactic (mleS) gene in this yeast. Under aerobic conditions, the recombinant strain expressing the mae1 and mae2 genes efficiently degraded 8 g/L of malate in a glycerol-ethanol medium within 7 days. The recombinant malolactic strain of S. cerevisiae (mae1 and mleS genes) fermented 4.5 g/L of malate in a synthetic grape must within 4 days. PMID:9062925

  2. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    PubMed Central

    de Ponzzes-Gomes, Camila M.P.B.S.; de Mélo, Dângelly L.F.M.; Santana, Caroline A.; Pereira, Giuliano E.; Mendonça, Michelle O.C.; Gomes, Fátima C.O.; Oliveira, Evelyn S.; Barbosa, Antonio M.; Trindade, Rita C.; Rosa, Carlos A.

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 105 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  3. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley.

    PubMed

    de Ponzzes-Gomes, Camila M P B S; de Mélo, Dângelly L F M; Santana, Caroline A; Pereira, Giuliano E; Mendonça, Michelle O C; Gomes, Fátima C O; Oliveira, Evelyn S; Barbosa, Antonio M; Trindade, Rita C; Rosa, Carlos A

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 10(5) cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  4. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    PubMed

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272

  5. Transport of l -tryptophan in Saccharomyces cerevisiae

    Microsoft Academic Search

    A. Kotyk; M. Dvo?áková

    1990-01-01

    In addition to the general amino acid transport system (GAP) ofS. cerevisiae\\u000a l-tryptophan is transported by another system with approximately 25% capacity of GAP, with aK\\u000a T of 0.41±0.08 mmol\\/L and with a similar specificity as GAP (lower inhibition by Met, Pro, Ser, Thr and 2-aminoisobutyric acid;\\u000a greater inhibition by Glu and His). The pH optimum of this system is

  6. Saccharomyces cerevisiae: a nomadic yeast with no niche?

    PubMed

    Goddard, Matthew R; Greig, Duncan

    2015-05-01

    Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. PMID:25725024

  7. The Conserved and Non-conserved Regions of Rpb4 Are Involved in Multiple Phenotypes in Saccharomyces cerevisiae*

    E-print Network

    Srinivasan, N.

    in Saccharomyces cerevisiae* Received for publication, June 4, 2003, and in revised form, August 11, 2003 Published polymerase II in Saccharomyces cerevisiae, is required for many phe- notypes, including growth at high. Saccharomyces cerevisiae RNA polymerase II is a complex of 12 subunits, Rpb1­12, named in the order

  8. Copyright 2002 by the Genetics Society of America Spt3 Plays Opposite Roles in Filamentous Growth in Saccharomyces cerevisiae

    E-print Network

    Winston, Fred

    in Saccharomyces cerevisiae and Candida albicans and Is Required for C. albicans Virulence Lisa Laprade,* Victor L for publication February 26, 2002 ABSTRACT Spt3 of Saccharomyces cerevisiae is required for the normal and C. albicans. THE Saccharomyces cerevisiae transcription factor Spt3 et al. 1996; Grant et al. 1997

  9. Saccharomyces cerevisiae Esc2p Interacts with Sir2p through a Small Ubiquitin-like Modifier (SUMO)-binding

    E-print Network

    Bi, Xin

    Saccharomyces cerevisiae Esc2p Interacts with Sir2p through a Small Ubiquitin-like Modifier (SUMO Saccharomyces cerevisiae Esc2p is a member of a conserved family of proteins that contain small ubiquitin silencing in Saccharomyces cerevisiae occurs at telomeric, rDNA, HML (homothallic mating locus left

  10. Function Prediction for Hypothetical Proteins in Yeast Saccharomyces cerevisiae Using Multiple Sources of High-Throughput Data

    E-print Network

    1 Function Prediction for Hypothetical Proteins in Yeast Saccharomyces cerevisiae Using Multiple have applied our method to yeast Saccharomyces cerevisiae and predicted functions for 1548 out of 2472, yeast, high- throughput data, Saccharomyces cerevisiae. #12;3 1.INTRODUCTION Determination of protein

  11. Acetyl-coenzyme A synthetase 2 is a nuclear protein required for replicative longevity in Saccharomyces cerevisiae

    E-print Network

    Aris, John P.

    in Saccharomyces cerevisiae Alaric A. Falco´n � Shaoping Chen � Michael S. Wood � John P. Aris Received: 29 April. 2009 Abstract Acs2p is one of two acetyl-coenzyme A syn- thetases in Saccharomyces cerevisiae. We have and replicative longevity in yeast. Keywords Acetyl-coenzyme A Á Aging Á Nucleus Á Saccharomyces cerevisiae

  12. Crystal Structure of the Saccharomyces cerevisiae Ubiquitin-conjugating Enzyme Rad6 at 2.6 Resolution*

    E-print Network

    Hill, Chris

    Crystal Structure of the Saccharomyces cerevisiae Ubiquitin-conjugating Enzyme Rad6 at 2.6 Ã? of Texas Medical Branch, Medical Research Building, Galveston Texas 77555 The Saccharomyces cerevisiae by a ubiquitin-protein ligase or E3. The Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 (also known

  13. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1

    E-print Network

    Tong, Liang

    LETTERS Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1, obesity and other diseases1­5 . The AMPK homologue in Saccharomyces cerevisiae, known as SNF1, is essential for responses to glucose starvation as well as for other cellular processes, although SNF1 seems

  14. Whole-genome expression analysis of snf swi mutants of Saccharomyces cerevisiae

    E-print Network

    Ghosh, Joydeep

    Whole-genome expression analysis of snf swi mutants of Saccharomyces cerevisiae Priya Sudarsanam (received for review September 22, 1999) The Saccharomyces cerevisiae Snf Swi complex has been previ- ously mutants deleted for a gene encoding one conserved (Snf2) or one unconserved (Swi1) Snf Swi component

  15. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    Microsoft Academic Search

    Rosa Garcia Sanchez; Kaisa Karhumaa; César Fonseca; Violeta Sànchez Nogué; João RM Almeida; Christer U Larsson; Oskar Bengtsson; Maurizio Bettiga; Bärbel Hahn-Hägerdal; Marie F Gorwa-Grauslund

    2010-01-01

    BACKGROUND: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. RESULTS: Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose

  16. Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae

    E-print Network

    Rao, Rajini

    Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae Christopher L. Brett1Hv) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH

  17. Continuous Biosorption on Copper (II) and Industrial Wastewater Treatment by Saccharomyces Cerevisiae Biomass in Upflowing Reactor

    Microsoft Academic Search

    Fan Chunhui; Diao Zhuo; Zhang Yingchao; Zhang Ying

    2009-01-01

    Put dead immobilized saccharomyces cerevisiae biomass into column of continuous upflowing reactor, investigated immobilized materials on copper (II) adsorption through batch adsorption procedures, breakthrough curves of different immobilized materials, initial pH values, flow rates and diameters of immobilized products were studied on copper (II) adsorption, desorption tests and industrial wastewater treatment were analyzed. The results showed: saccharomyces cerevisiae was a

  18. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Vishnu Varthini, Lakshmanaperumal; Selvaraju, Kandasamy; Srinivasan, Malathi; Nachiappan, Vasanthi

    2015-01-01

    Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3?rog1?) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis. PMID:25433290

  19. Small Toxic Protein Encoded on Chromosome VII of Saccharomyces cerevisiae

    PubMed Central

    Makanae, Koji; Kintaka, Reiko; Ishikawa, Koji; Moriya, Hisao

    2015-01-01

    In a previous study, we found an unknown element that caused growth inhibition after its copy number increased in the 3? region of DIE2 in Saccharomyces cerevisiae. In this study, we further identified this element and observed that overexpression of a small protein (sORF2) of 57 amino acids encoded in this region caused growth inhibition. The transcriptional response and multicopy suppression of the growth inhibition caused by sORF2 overexpression suggest that sORF2 overexpression inhibits the ergosterol biosynthetic pathway. sORF2 was not required in the normal growth of S. cerevisiae, and not conserved in related yeast species including S. paradoxus. Thus, sORF2 (designated as OTO1) is an orphan ORF that determines the specificity of this species. PMID:25781884

  20. Expression of acylphosphatase in Saccharomyces cerevisiae enhances ethanol fermentation rate

    SciTech Connect

    Raugei, G.; Modesti, A.; Magherini, F. [Universita di Firenze (Italy)] [and others

    1996-06-01

    Previous experiments in vitro have demonstrated the ability of acylphosphatase to increase the rate of glucose fermentation in yeast. To evaluate the possibility of increasing fermentation in vivo also, a chemically synthesized DNA sequence coding for human muscle acylphosphatase was expressed at high level in Saccharomyces cerevisiae. Ethanol production was measured in these engineered strains in comparison with a control. Acylphosphatase expression strongly increased the rate of ethanol production both in aerobic and anaerobic culture. This finding may be potentially important for the development of more efficient industrial fermentation processes. 20 refs., 5 figs.

  1. Dual system for potassium transport in Saccharomyces cerevisiae.

    PubMed Central

    Rodríguez-Navarro, A; Ramos, J

    1984-01-01

    In a newly formulated growth medium lacking Na+ and NH4+, Saccharomyces cerevisiae grew maximally at 5 microM K+. Cells grown under these conditions transported K+ with an apparent Km of 24 microM, whereas cells grown in customary high-K+ medium had a significantly higher Km (2 mM K+). The two types of transport also differed in carbonyl cyanide-m-chlorophenyl hydrazone sensitivity, response to ATP depletion, and temperature dependence. The results can be accounted for either by two transport systems or by one system operating in two different ways. PMID:6384187

  2. Transport of acetylated sugars into Saccharomyces cerevisiae RXII cells

    Microsoft Academic Search

    Eva Stejskalová; M. Burger

    1964-01-01

    The only acetylated sugar taken up bySaccharomyces cerevisiae RXII was 2,3,4,6-tetra-0-acetyl-?, D-glucopyranose and the only cells which took it up were those which grew under aerobic\\u000a conditions and were harvested during the logarithmic phase of growth. The rate of the uptake of 2,3,4,6,-tetra-0-acetyl-?,\\u000a D-glucopyranose was considerably slower than that of galactose and its “space” was approximately half the “space” of

  3. Saccharomyces cerevisiae pneumonia in a patient with acquired immune deficiency syndrome.

    PubMed Central

    Tawfik, O W; Papasian, C J; Dixon, A Y; Potter, L M

    1989-01-01

    The clinical course of a patient with a polymicrobial pneumonia that included Saccharomyces cerevisiae infection is described. S. cerevisiae was recovered from autopsy cultures of the lungs, spleen, oral mucosa, and small intestine, and organisms morphologically consistent with S. cerevisiae were visualized in histologic sections of the lung. The role of this organism as a human pathogen is reviewed. Images PMID:2671026

  4. Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminant bacteria of alcoholic fermentation

    Microsoft Academic Search

    Thais de Paula NOBRE; Jorge HORII; André Ricardo ALCARDE

    2007-01-01

    The aim of this project was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products to decrease the cellular viability of the yeast Saccharomyces cerevisiae. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast S. cerevisiae (strain Y-904) for 72 hours at 32

  5. Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    PubMed Central

    Diezmann, Stephanie; Dietrich, Fred S.

    2009-01-01

    Background Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. Methodology/Principal Findings DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. Conclusions/Significance Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups. PMID:19390633

  6. [Anti-Saccharomyces cerevisiae antibodies in patients with Crohn's disease].

    PubMed

    Barta, Z; Csípö, I; Antal-Szalmás, P; Sipka, S; Szabó, G; Szegedi, G

    2001-10-21

    Inflammatory Bowel Diseases are a group of diseases with chronic inflammation of the gastrointestinal tract, but without proven etiology. Immunologic, environmental, infective and genetic factors equally can play role in their development. Antibodies to an oligomannose epitope of the Saccharomyces cerevisiae demonstrated in 60-70% of the patients with Crohn's disease. The origin and the clinicopathological role are not clarified. It is important that there are no surveys with patients suffering in gluten sensitive enteropathy in the literature. As there are no ASCA survey in Hungary, the aim of this study was to determine the prevalence of the ASCA. The authors examined at their patients the ASCA's occurrence and compared with the clinical picture of the Crohn's disease. The results supported the theory that ASCA positivity correlates with small intestines' Crohn's disease and in these cases both the IgG and IgA type antibodies proved. The antibodies in the sera at the analyzed ASCA positive cases prove a systemic immune response against Saccharomyces cerevisiae and the authors suggest the end of the oral tolerance against the yeast's antigens. The diet restriction (elemental diet, total parenteral nutrition, and fecal diversion) may ameliorate the status of the patients with Crohn's disease. It is speculated that the yeast-free diet as a part of the therapy for the ASCA positive patients can be reasonable: moreover the permanent "forbidding" of the yeast can be an acceptable alternative in case of getting well. PMID:11760647

  7. Saccharomyces cerevisiae nuclear and nucleolar antigen preservation for immunoelectron microscopy.

    PubMed

    Mistríková, V; Bednár, J

    2010-01-01

    Yeast cells in general are known to be difficult to prepare for electron microscopy investigations particularly when the preservation of antigenicity is required. In this work, we compare various protocols for preparation of Saccharomyces cerevisiae cells for immunoelectron microscopy, ranging from classical chemical fixation to high-pressure freezing followed by freeze-substitution in different kinds of substitution media. Our aim was to establish a protocol giving optimal, routinely reproducible results for simultaneous retention of fine ultrastructural details and antigen immunoreactivity, with particular focus on the preservation of nuclear and nucleolar architecture. This was demonstrated by ultrastructural immunolocalization of various nucleolar (Nop1 and Nsr1), nuclear (Nsp1) and alpha-tubulin antigens. The protocol which we found to yield the best preserved Saccharomyces cerevisiae cells for both morphological and immunological studies included cryo-fixation by high-pressure freezing followed by freeze-substitution in acetone with 0.1% uranyl acetate and embedding in Lowicryl HM20. In addition, immunofluorescence detection of the antigens was performed and correlated with immunolabelling at the electron microscopy level. PMID:20653994

  8. Biosynthesis of Riboflavine in Saccharomyces cerevisiae: the Role of Genes rib1 and rib7

    PubMed Central

    Oltmanns, O.; Bacher, A.

    1972-01-01

    Haploid strains of Saccharomyces cerevisiae with mutations in two different rib genes were constructed. These strains were studied by tetrad analysis and by quantitative determination of accumulation products. The genes rib1, rib7, and rib2 are not linked to each other. rib1-rib7 strains and rib1-rib2 strains exhibit the phenotypic properties of rib1 strains. rib7-rib2 strains show the phenotypic properties of rib7 strains. The results support the conclusion that the genes rib1 and rib7 code for the first and second enzyme of the riboflavine pathway, respectively. PMID:4555411

  9. Identification of a glutaminyl-tRNA synthetase mutation Saccharomyces cerevisiae.

    PubMed Central

    Mitchell, A P; Ludmerer, S W

    1984-01-01

    Saccharomyces cerevisiae glutaminyl-tRNA synthetase mutants were isolated through systematic screening of tight Gln- derivatives of a leaky glutamine auxotroph. These mutations define a single nuclear gene, GLN4. The gln4-1 mutation is specific for Gln-tRNA synthetase and shows a dosage effect in heterozygous diploids. The wild-type Gln-tRNA synthetase exhibits a Km for glutamine of 25 microM; the gln4-1 mutation increases this value 20-fold. These observations strongly suggest that GLN4 encodes the Gln-tRNA synthetase. PMID:6144664

  10. Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae

    PubMed Central

    Duarte, Natalie C; Palsson, Bernhard Ø; Fu, Pengcheng

    2004-01-01

    Background The yeast Saccharomyces cerevisiae is an important microorganism for both industrial processes and scientific research. Consequently, there have been extensive efforts to characterize its cellular processes. In order to fully understand the relationship between yeast's genome and its physiology, the stockpiles of diverse biological data sets that describe its cellular components and phenotypic behavior must be integrated at the genome-scale. Genome-scale metabolic networks have been reconstructed for several microorganisms, including S. cerevisiae, and the properties of these networks have been successfully analyzed using a variety of constraint-based methods. Phenotypic phase plane analysis is a constraint-based method which provides a global view of how optimal growth rates are affected by changes in two environmental variables such as a carbon and an oxygen uptake rate. Some applications of phenotypic phase plane analysis include the study of optimal growth rates and of network capacity and function. Results In this study, the Saccharomyces cerevisiae genome-scale metabolic network was used to formulate a phenotypic phase plane that displays the maximum allowable growth rate and distinct patterns of metabolic pathway utilization for all combinations of glucose and oxygen uptake rates. In silico predictions of growth rate and secretion rates and in vivo data for three separate growth conditions (aerobic glucose-limited, oxidative-fermentative, and microaerobic) were concordant. Conclusions Taken together, this study examines the function and capacity of yeast's metabolic machinery and shows that the phenotypic phase plane can be used to accurately predict metabolic phenotypes and to interpret experimental data in the context of a genome-scale model. PMID:15355549

  11. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan

    2011-06-01

    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  12. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    SciTech Connect

    Yannai, S.; Berdicevsky, I.; Duek, L. (Technion-Israel Institute of Technology, Haifa (Israel))

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans was the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.

  13. Ciclohexadespipeptide beauvericin degradation by different strains of Saccharomyces cerevisiae.

    PubMed

    Meca, G; Zhou, T; Li, X Z; Ritieni, A; Mañes, J

    2013-09-01

    The interaction between the mycotoxin beauvericin (BEA) and 9 yeast strains of Saccharomyces cerevisiae named LO9, YE-2, YE5, YE-6, YE-4, A34, A17, A42 and A08 was studied. The biological degradations were carried out under aerobic conditions in the liquid medium of Potato Dextrose Broth (PDB) at 25°C for 48 h and in a food/feed system composed of corn flour at 37°C for 3 days, respectively. BEA present in fermented medium and corn flour was determined using liquid chromatography coupled to the mass spectrometry detector in tandem (LC-MS/MS) and the BEA degradation products produced during the fermentations were determined using the technique of the liquid chromatography coupled to a linear ion trap (LIT). Results showed that the S. cerevisiae strains reduced meanly the concentration of the BEA present in PDB by 86.2% and in a food system by 71.1%. All the S. cerevisiae strains used in this study showed a significant BEA reduction during the fermentation process employed. PMID:23791659

  14. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    PubMed Central

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L.; Friant, Sylvie

    2015-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes. PMID:25584613

  15. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  16. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.

    PubMed

    Satomura, Atsushi; Katsuyama, Yoshiaki; Miura, Natsuko; Kuroda, Kouichi; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro; Ueda, Mitsuyoshi

    2013-01-01

    A thermotolerant Saccharomyces cerevisiae yeast strain, YK60-1, was bred from a parental strain, MT8-1, via stepwise adaptation. YK60-1 grew at 40°C, a temperature at which MT8-1 could not grow at all. YK60-1 exhibited faster growth than MT8-1 at 30°C. To investigate the mechanisms how MT8-1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress-responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60-1. Furthermore, nontargeting metabolome analysis showed that YK60-1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8-1. In conclusion, S. cerevisiae MT8-1 acquired thermotolerance by induction of specific stress-responsive genes and enhanced intracellular trehalose levels. PMID:24115578

  17. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity.

    PubMed

    Wang, Qi-Ming; Liu, Wan-Qiu; Liti, Gianni; Wang, Shi-An; Bai, Feng-Yan

    2012-11-01

    The budding yeast, Saccharomyces cerevisiae, is a leading system in genetics, genomics and molecular biology and is becoming a powerful tool to illuminate ecological and evolutionary principles. However, little is known of the ecology and population structure of this species in nature. Here, we present a field survey of this yeast at an unprecedented scale and have performed population genetics analysis of Chinese wild isolates with different ecological and geographical origins. We also included a set of worldwide isolates that represent the maximum genetic variation of S. cerevisiae documented so far. We clearly show that S. cerevisiae is a ubiquitous species in nature, occurring in highly diversified substrates from human-associated environments as well as habitats remote from human activity. Chinese isolates of S. cerevisiae exhibited strong population structure with nearly double the combined genetic variation of isolates from the rest of the world. We identified eight new distinct wild lineages (CHN I-VIII) from a set of 99 characterized Chinese isolates. Isolates from primeval forests occur in ancient and significantly diverged basal lineages, while those from human-associated environments generally cluster in less differentiated domestic or mosaic groups. Basal lineages from primeval forests are usually inbred, exhibit lineage-specific karyotypes and are partially reproductively isolated. Our results suggest that greatly diverged populations of wild S. cerevisiae exist independently of and predate domesticated isolates. We find that China harbours a reservoir of natural genetic variation of S. cerevisiae and perhaps gives an indication of the origin of the species. PMID:22913817

  18. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Xu, Hengyu; West, Ann H; Cook, Paul F

    2006-10-01

    Kinetic data have been measured for the histidine-tagged saccharopine dehydrogenase from Saccharomyces cerevisiae, suggesting the ordered addition of nicotinamide adenine dinucleotide (NAD) followed by saccharopine in the physiologic reaction direction. In the opposite direction, the reduced nicotinamide adenine dinucleotide (NADH) adds to the enzyme first, while there is no preference for the order of binding of alpha-ketoglutarate (alpha-Kg) and lysine. In the direction of saccharopine formation, data also suggest that, at high concentrations, lysine inhibits the reaction by binding to free enzyme. In addition, uncompetitive substrate inhibition by alpha-Kg and double inhibition by NAD and alpha-Kg suggest the existence of an abortive E:NAD:alpha-Kg complex. Product inhibition by saccharopine is uncompetitive versus NADH, suggesting a practical irreversibility of the reaction at pH 7.0 in agreement with the overall K(eq). Saccharopine is noncompetitive versus lysine or alpha-Kg, suggesting the existence of both E:NADH:saccharopine and E:NAD:saccharopine complexes. NAD is competitive versus NADH, and noncompetitive versus lysine and alpha-Kg, indicating the combination of the dinucleotides with free enzyme. Dead-end inhibition studies are also consistent with the random addition of alpha-Kg and lysine. Leucine and oxalylglycine serve as lysine and alpha-Kg dead-end analogues, respectively, and are uncompetitive against NADH and noncompetitive against alpha-Kg and lysine, respectively. Oxaloacetate (OAA), pyruvate, and glutarate behave as dead-end analogues of lysine, which suggests that the lysine-binding site has a higher affinity for keto acid analogues than does the alpha-Kg site or that dicarboxylic acids have more than one binding mode on the enzyme. In addition, OAA and glutarate also bind to free enzyme as does lysine at high concentrations. Glutarate gives S-parabolic noncompetitive inhibition versus NADH, indicating the formation of a E:(glutarate)2 complex as a result of occupying both the lysine- and alpha-Kg-binding sites. Pyruvate, a slow alternative keto acid substrate, exhibits competitive inhibition versus both lysine and alpha-Kg, suggesting the combination to the E:NADH:alpha-Kg and E:NADH:lysine enzyme forms. The equilibrium constant for the reaction has been measured at pH 7.0 as 3.9 x 10(-7) M by monitoring the change in NADH upon the addition of the enzyme. The Haldane relationship is in very good agreement with the directly measured value. PMID:17002315

  19. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis

    PubMed Central

    2012-01-01

    Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi. PMID:23092287

  20. Fungemia with Saccharomyces cerevisiae in Two Newborns, Only One of Whom Had Been Treated with Ultra-Levura

    Microsoft Academic Search

    J. Perapoch; A. M. Planes; A. Querol; V. López; I. Martínez-Bendayán; R. Tormo; F. Fernández; G. Peguero; S. Salcedo

    2000-01-01

    Ultra-Levura (Upsamédica, Spain) is a yeast (Saccharomyces boulardii) widely used as a biotherapeutic agent. To date, few adverse effects have been reported, although fungemia with Saccharomyces cerevisiae can occur in weak and immunosuppressed patients. Reported here are two cases of fungemia with Saccharomyces cerevisiae. One patient had been treated with Ultra-Levura and the other contracted the infection from the first.

  1. Saccharomyces cerevisiae live cells stimulate degradation and fermentation of cellulose by the rumen anaerobic

    E-print Network

    Paris-Sud XI, Université de

    Saccharomyces cerevisiae live cells stimulate degradation and fermentation of cellulose fermentation patterns and to increase numbers of rumen bacteria, especially cellulolytic species (Wallace and fermentation of cellulose by an anaerobic fungus, Neocallimastix frontalis MCH3, which is particularly

  2. Recessive Uaa Suppressors of the Yeast SACCHAROMYCES CEREVISIAE

    PubMed Central

    Ono, Bun-Ichiro; Tanaka, Mitsuaki; Kominami, Masayo; Ishino, Yumiko; Shinoda, Sumio

    1982-01-01

    Recessive lysine-independent revertants were isolated from a ?+ haploid strain of the yeast Saccharomyces cerevisiae containing one of the leucine-inserting UAA suppressors, SUP29, and various UAA mutations including lys1-1. The majority of the revertants were found to have recessive suppressors in addition to the pre-existing SUP29 mutation. The recessive suppressors were able to suppress only a very limited number of UAA mutations, and none of the UAG mutations thus far examined. The recessive inefficient UAA suppressors were assigned to three complementation groups, sup111, sup112, and sup113. A high incidence of gene conversion was observed for an allele of sup111. An antisuppressor acting on sup111, but not detectably on SUP29, was inadvertently obtained during the course of the study. Interactions between SUP29, sup111 and the antisuppressor asu12 were studied. PMID:6821248

  3. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids.

    PubMed Central

    Dickson, R C; Wells, G B; Schmidt, A; Lester, R L

    1990-01-01

    Sphingolipids comprise a large, widespread family of complex eucaryotic-membrane constituents of poorly defined function. The yeast Saccharomyces cerevisiae is particularly suited for studies of sphingolipid function because it contains a small number of sphingolipids and is amenable to molecular genetic analysis. Moreover, it is the only eucaryote in which mutants blocked in sphingolipid biosynthesis have been isolated. Beginning with a nonreverting sphingolipid-defective strain that requires the addition of the long-chain-base component of sphingolipids to the culture medium for growth, we isolated two strains carrying secondary, suppressor mutations that permit survival in the absence of exogenous long-chain base. Remarkably, the suppressor strains made little if any sphingolipid. A study of how the suppressor gene products compensate for the lack of sphingolipids may reveal the function(s) of these membrane lipids in yeast cells. Images PMID:2183021

  4. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation

    SciTech Connect

    D'Amore, T.; Panchal, C.J.; Stewart, G.G.

    1988-01-01

    An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures.

  5. Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Carman, George M.; Han, Gil-Soo

    2013-01-01

    The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products. PMID:21275641

  6. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae.

    PubMed Central

    Erdmann, R; Veenhuis, M; Mertens, D; Kunau, W H

    1989-01-01

    Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level. These lesions (pas1-1 and pas2) are shown to be nonallelic and recessive. Crossing of pas1-1 and pas2 strains resulted in diploid cells that had regained the ability to grow on oleic acid as sole carbon source and to form peroxisomes. These pas mutants may provide useful tools for future studies on the molecular mechanisms involved in peroxisomal assembly. Images PMID:2568633

  7. Modeling growth and telomere dynamics in Saccharomyces cerevisiae

    PubMed Central

    Bertuch, Alison A.

    2013-01-01

    A general branching process is proposed to model a population of cells of the yeast Saccharomyces cerevisiae following loss of telomerase. Previously published experimental data indicate that a population of telomerase-deficient cells regain exponential growth after a period of slowing due to critical telomere shortening. The explanation for this phenomenon is that some cells engage telomerase-independent pathways to maintain telomeres that allow them to become “survivors.” Our model takes into account random variation in individual cell cycle times, telomere length, finite replicative lifespan of mother cells, and survivorship. We identify and estimate crucial parameters such as the probability of an individual cell becoming a survivor, and compare our model predictions to experimental data. PMID:20018194

  8. Pyrimidine-specific cleavage by an endoribonuclease of Saccharomyces cerevisiae

    SciTech Connect

    Stevens, A.

    1985-10-01

    An endoribonuclease with pyrimidine cleavage site specificity was isolated from Saccharomyces cerevisiae. The enzyme had a pH optimum of 6 to 7 and did not require a divalent cation. It was inhibited by 5 x 10/sup -5/ M hetidium bromide, although it appeared to be single strand specific. The enzyme gave a limited cleavage of yeast mRNA and rRNA, yielding products that were terminated with pyrimidine nucleoside 2',3'-cyclic phosphate. The bonds between pyrimidine and A residues constituted more than 90% of the scission sites when the average product size was 50 nucloetides. Homopolyribonucleotides were cleaved poorly. Poly(A,U) was cleaved rapidly, and analysis of the products of poly(A,U) hydrolysis showed a very stringent cleavage of U-A bonds.

  9. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  10. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki [Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934 (Japan); Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934 (Japan)], E-mail: naoyuki@kenroku.kanazawa-u.ac.jp; Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi [Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934 (Japan); Murakami, Seishi [Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934 (Japan); Nishimoto, Takeharu [Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan)

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  11. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  12. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    PubMed Central

    Chang, Chien-I; Schandel, Kimberly A.; Jenness, Duane D.

    2014-01-01

    ABSTRACT This study investigates endocytosis of Saccharomyces cerevisiae ?-factor receptor and the role that receptor oligomerization plays in this process. ?-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the ?-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events. PMID:24682008

  13. Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae

    PubMed Central

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-01-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites. PMID:25860149

  14. Variations of two pools of glycogen and carbohydrate in Saccharomyces cerevisiae grown with various ethanol concentrations

    Microsoft Academic Search

    M. S. Dake; J. P. Jadhv; N. B. Patil

    2010-01-01

    Glycogen, a major reservoir of energy in Saccharomyces cerevisiae, is found to be present as soluble and membrane-bound insoluble pools. Yeast cells can store excess glycogen when grown in\\u000a media with higher concentration of sugar or when subjected to nutritional stress conditions. Saccharomyces cerevisiae NCIM-3300 was grown in media having ethanol concentrations up to 12% (v\\/v). The effects of externally

  15. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa

    Microsoft Academic Search

    S. Sarri; P. Misaelides; M. Papanikolaou; D. Zamboulis

    2009-01-01

    The sorption of uranium from acidic aqueous solutions (pH 4.5, C\\u000a \\u000a init\\u000a = 10 to 1000 mg U\\/L) by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa was investigated using a batch technique. The U-sorption onto Saccharomyces cerevisiae and Debaryomyces hansenii followed a Langmuir, while that onto Kluyveromyces marxianus and Candida colliculosa a Freundlich isotherm. The results demonstrated that

  16. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  17. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  18. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude

    Microsoft Academic Search

    S Guerrero; A López-Malo; S. M Alzamora

    2001-01-01

    The resistance of Saccharomyces cerevisiae cells to the action of ultrasound (20 kHz, wave amplitude in the range 71–110 ?m) was analyzed at 35, 45 and 55°C in Sabouraud broth at pH 3.0 and 5.6. The inactivation rate where a first-order kinetic was observed exhibited D values between 0.5 and 31 min. The resistance of the yeast decreased as ultrasonic

  19. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    PubMed Central

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae. PMID:18304329

  20. RAD50 protein of S.cerevisiae exhibits ATP-dependent DNA binding.

    PubMed Central

    Raymond, W E; Kleckner, N

    1993-01-01

    RAD50 function of Saccharomyces cerevisiae is required during vegetative growth for recombinational repair of DNA double strand breaks, and during meiosis for initiation of meiotic recombination and formation of synaptonemal complex. RAD50 encodes a 153 kDa polypeptide which includes an amino-terminal ATP binding domain essential for function and two long heptad repeat regions. We show below that RAD50 protein purified from yeast exhibits ATP-dependent binding to double stranded DNA. Physical properties of the purified protein are also described. Models for RAD50 function in vivo are discussed. Images PMID:8367302

  1. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    PubMed Central

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  2. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation.

    PubMed

    Knight, Sarah; Goddard, Matthew R

    2015-02-01

    Eukaryotic microbes are key ecosystem drivers; however, we have little theory and few data elucidating the processes influencing their observed population patterns. Here we provide an in-depth quantitative analysis of population separation and similarity in the yeast Saccharomyces cerevisiae with the aim of providing a more detailed account of the population processes occurring in microbes. Over 10,000 individual isolates were collected from native plants, vineyards and spontaneous ferments of fruit from six major regions spanning 1000?km across New Zealand. From these, hundreds of S. cerevisiae genotypes were obtained, and using a suite of analytical methods we provide comprehensive quantitative estimates for both population structure and rates of gene flow or migration. No genetic differentiation was detected within geographic regions, even between populations inhabiting native forests and vineyards. We do, however, reveal a picture of national population structure at scales above ?100?km with distinctive populations in the more remote Nelson and Central Otago regions primarily contributing to this. In addition, differential degrees of connectivity between regional populations are observed and correlate with the movement of fruit by the New Zealand wine industry. This suggests some anthropogenic influence on these observed population patterns. PMID:25062126

  3. ELM1 Is Required for Multidrug Resistance in Saccharomyces cerevisiae

    PubMed Central

    Souid, Abdul-Kader; Gao, Chen; Wang, Luming; Milgrom, Elena; Shen, W.-C. Winston

    2006-01-01

    In Saccharomyces cerevisiae, transcription of several drug transporter genes, including the major transporter gene PDR5, has been shown to peak during mitosis. The significance of this observation, however, remains unclear. PDR1 encodes the primary transcription activator of multiple drug transporter genes in S. cerevisiae, including PDR5. Here, we show that in synchronized PDR1 and pdr1-3 (multidrug resistant) strains, cellular efflux of a known substrate of ATP-binding-cassette transporters, doxorubicin (a fluorescent anticancer drug), is highest during mitosis when PDR5 transcription peaks. A genetic screen performed to identify regulators of multidrug resistance revealed that a truncation mutation in ELM1 (elm1-300) suppressed the multidrug resistance of pdr1-3. ELM1 encodes a serine/threonine protein kinase required for proper regulation of multiple cellular kinases, including those involved in mitosis, cytokinesis, and cellular morphogenesis. elm1-300 as well as elm1? mutations in a pdr1-3 strain also caused elongated bud morphology (indicating a G2/M delay) and reduction of PDR5 transcription under induced and noninduced conditions. Interestingly, mutations in several genes functionally related to ELM1, including cla4?, gin4?, and cdc28-C127Y, also caused drastic reductions in drug resistance and PDR5 transcription. Collectively, these data show that ELM1, and genes encoding related serine/threonine protein kinases, are required for regulation of multidrug resistance involving, at least in part, control of PDR5 transcription. PMID:16751665

  4. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    PubMed

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  5. Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae

    PubMed Central

    Liang, Jing; Ning, Jonathan C.; Zhao, Huimin

    2013-01-01

    Bacterial operons are nature’s tool for regulating and coordinating multi-gene expression in prokaryotes. They are also a gene architecture commonly used in the biosynthesis of many pharmaceutically important compounds and industrially useful chemicals. Despite being an important eukaryotic production host, Saccharomyces cerevisiae has never had such gene architecture. Here, we report the development of a system to assemble and regulate a multi-gene pathway in S. cerevisiae. Full pathways can be constructed using pre-made parts from a plasmid toolbox. Subsequently, through the use of a yeast strain containing a stably integrated gene switch, the assembled pathway can be regulated using a readily available and inexpensive compound—estradiol—with extremely high sensitivity (10 nM). To demonstrate the use of the system, we assembled the five-gene zeaxanthin biosynthetic pathway in a single step and showed the ligand-dependent coordinated expression of all five genes as well as the tightly regulated production of zeaxanthin. Compared with a previously reported constitutive zeaxanthin pathway, our inducible pathway was shown to have 50-fold higher production level. PMID:23262224

  6. Cybernetic model for the growth of Saccharomyces cerevisiae on melibiose.

    PubMed

    Gadgil, C J; Bhat, P J; Venkatesh, K V

    1996-01-01

    Cybernetic modeling has traditionally been used in the modeling of microbial growth on multiple substrates. In this paper, cybernetic modeling has been applied to serve as a model for growth on substrates such as melibiose, which are disaccharides and enzymatically degrade to a monosaccharide mixture in the fermentation broth. The enzyme alpha-galactosidase has been shown to be strongly induced in the presence of galactose and severely repressed by glucose. In the present model, the relative concentration of alpha-galactosidase has been linked to that of the key enzyme for galactose metabolism. The enzymatic degradation process is placed under the control of the cybernetic variables. The maximum rate of melibiose degradation vm and the Monod parameters for growth of Saccharomyces cerevisiae on pure glucose and galactose were estimated by batch growth experiments. S. cerevisiae growth on melibiose and a mixture of melibiose and glucose under a variety of preculturing conditions was simulated. Depending on the rate of enzymatic degradation (i.e., the value of vm), the cell mass profile for microbial growth on a disaccharide can resemble profiles for growth on a single substrate (melibiose) or can resemble diauxie growth. Experiments indicate that the model is able to accurately predict the cell mass profiles for yeast growth. PMID:8983203

  7. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation

    PubMed Central

    Knight, Sarah; Goddard, Matthew R

    2015-01-01

    Eukaryotic microbes are key ecosystem drivers; however, we have little theory and few data elucidating the processes influencing their observed population patterns. Here we provide an in-depth quantitative analysis of population separation and similarity in the yeast Saccharomyces cerevisiae with the aim of providing a more detailed account of the population processes occurring in microbes. Over 10?000 individual isolates were collected from native plants, vineyards and spontaneous ferments of fruit from six major regions spanning 1000?km across New Zealand. From these, hundreds of S. cerevisiae genotypes were obtained, and using a suite of analytical methods we provide comprehensive quantitative estimates for both population structure and rates of gene flow or migration. No genetic differentiation was detected within geographic regions, even between populations inhabiting native forests and vineyards. We do, however, reveal a picture of national population structure at scales above ?100?km with distinctive populations in the more remote Nelson and Central Otago regions primarily contributing to this. In addition, differential degrees of connectivity between regional populations are observed and correlate with the movement of fruit by the New Zealand wine industry. This suggests some anthropogenic influence on these observed population patterns. PMID:25062126

  8. Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae.

    PubMed

    Campbell, Robert N; Leverentz, Michael K; Ryan, Louise A; Reece, Richard J

    2008-09-01

    The comparatively simple eukaryote Saccharomyces cerevisiae is composed of some 6000 individual genes. Specific sets of these genes can be transcribed co-ordinately in response to particular metabolic signals. The resultant integrated response to nutrient challenge allows the organism to survive and flourish in a variety of environmental conditions while minimal energy is expended upon the production of unnecessary proteins. The Zn(II)2Cys6 family of transcriptional regulators is composed of some 46 members in S. cerevisiae and many of these have been implicated in mediating transcriptional responses to specific nutrients. Gal4p, the archetypical member of this family, is responsible for the expression of the GAL genes when galactose is utilized as a carbon source. The regulation of Gal4p activity has been studied for many years, but we are still uncovering both nuances and fundamental control mechanisms that impinge on its function. In the present review, we describe the latest developments in the regulation of GAL gene expression and compare the mechanisms employed here with the molecular control of other Zn(II)2Cys6 transcriptional regulators. This reveals a wide array of protein-protein, protein-DNA and protein-nutrient interactions that are employed by this family of regulators. PMID:18687061

  9. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells.

    PubMed

    Lezzi, Chiara; Bleve, Gianluca; Spagnolo, Stefano; Perrotta, Carla; Grieco, Francesco

    2012-12-01

    It has been demonstrated that Agaricus bisporus tyrosinase is able to oxidize various phenolic compounds, thus being an enzyme of great importance for a number of biotechnological applications. The tyrosinase-coding PPO2 gene was isolated by reverse-transcription polymerase chain reaction (RT-PCR) using total RNA extracted from the mushroom fruit bodies as template. The gene was sequenced and cloned into pYES2 plasmid, and the resulting pY-PPO2 recombinant vector was then used to transform Saccharomyces cerevisiae cells. Native polyacrylamide gel electrophoresis followed by enzymatic activity staining with L-3,4-dihydroxyphenylalanine (L-DOPA) indicated that the recombinant tyrosinase is biologically active. The recombinant enzyme was overexpressed and biochemically characterized, showing that the catalytic constants of the recombinant tyrosinase were higher than those obtained when a commercial tyrosinase was used, for all the tested substrates. The present study describes the recombinant production of A. bisporus tyrosinase in active form. The produced enzyme has similar properties to the one produced in the native A. bisporus host, and its expression in S. cerevisiae provides good potential for protein engineering and functional studies of this important enzyme. PMID:22996308

  10. Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae.

    PubMed

    Yu, Dayu; Xu, Fuchao; Zi, Jiachen; Wang, Siyuan; Gage, David; Zeng, Jia; Zhan, Jixun

    2013-07-01

    Two fungal cyclooligomer depsipeptide synthetases(CODSs), BbBEAS (352 kDa) and BbBSLS (348 kDa) from Beauveria bassiana ATCC7159, were reconstituted in Saccharomyces cerevisiae BJ5464-NpgA, leading to the production of the corresponding anticancer natural products, beauvericins and bassianolide, respectively. The titers of beauvericins (33.8 ± 1.4 mg/l) and bassianolide (21.7± 0.1 mg/l) in the engineered S. cerevisiae BJ5464-NpgA strains were comparable to those in the native producer B. bassiana. Feeding D-hydroxyisovaleric acid (D-Hiv) and the corresponding L-amino acid precursors improved the production of beauvericins and bassianolide. However, the high price of D-Hiv limits its application in large-scale production of these cyclooligomer depsipeptides. Alternatively, we engineered another enzyme, ketoisovalerate reductase (KIVR) from B. bassiana, into S. cerevisiae BJ5464-NpgA for enhanced in situ synthesis of this expensive substrate. Co-expression of BbBEAS and KIVR in the yeast led to significant improvement of the production of beauvericins.The total titer of beauvericin and its congeners (beauvericins A-C) was increased to 61.7 ± 3.0 mg/l and reached 2.6-fold of that in the native producer B. bassiana ATCC7159. Supplement of L-Val at 10 mM improved the supply of ketoisovalerate, the substrate of KIVR, which consequently further increased the total titer of beauvericins to 105.8 ± 2.1 mg/l. Using this yeast system,we functionally characterized an unknown CODS from Fusarium venenatum NRRL 26139 as a beauvericin synthetase, which was named as FvBEAS. Our work thus provides a useful approach for functional reconstitution and engineering of fungal CODSs for efficient production of this family of anticancer molecules. PMID:23608474

  11. Role of social wasps in Saccharomyces cerevisiae ecology and evolution

    PubMed Central

    Stefanini, Irene; Dapporto, Leonardo; Legras, Jean-Luc; Calabretta, Antonio; Di Paola, Monica; De Filippo, Carlotta; Viola, Roberto; Capretti, Paolo; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2012-01-01

    Saccharomyces cerevisiae is one of the most important model organisms and has been a valuable asset to human civilization. However, despite its extensive use in the last 9,000 y, the existence of a seasonal cycle outside human-made environments has not yet been described. We demonstrate the role of social wasps as vector and natural reservoir of S. cerevisiae during all seasons. We provide experimental evidence that queens of social wasps overwintering as adults (Vespa crabro and Polistes spp.) can harbor yeast cells from autumn to spring and transmit them to their progeny. This result is mirrored by field surveys of the genetic variability of natural strains of yeast. Microsatellites and sequences of a selected set of loci able to recapitulate the yeast strain’s evolutionary history were used to compare 17 environmental wasp isolates with a collection of strains from grapes from the same region and more than 230 strains representing worldwide yeast variation. The wasp isolates fall into subclusters representing the overall ecological and industrial yeast diversity of their geographic origin. Our findings indicate that wasps are a key environmental niche for the evolution of natural S. cerevisiae populations, the dispersion of yeast cells in the environment, and the maintenance of their diversity. The close relatedness of several wasp isolates with grape and wine isolates reflects the crucial role of human activities on yeast population structure, through clonal expansion and selection of specific strains during the biotransformation of fermented foods, followed by dispersal mediated by insects and other animals. PMID:22847440

  12. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance

    PubMed Central

    2013-01-01

    Background Butanol is a chemical with potential uses as biofuel and solvent, which can be produced by microbial fermentation. However, the end product toxicity is one of the main obstacles for developing the production process irrespective of the choice of production organism. The long-term goal of the present project is to produce 2-butanol in Saccharomyces cerevisiae. Therefore, unraveling the toxicity mechanisms of solvents such as butanol and understanding the mechanisms by which tolerant strains of S. cerevisiae adapt to them would be an important contribution to the development of a bio-based butanol production process. Results A butanol tolerant S. cerevisiae was achieved through a series of sequential batch cultures with gradual increase of 2-butanol concentration. The final mutant (JBA-mut) tolerates all different alcohols tested at higher concentrations compared to the wild type (JBA-wt). Proteomics analysis of the two strains grown under mild butanol-stress revealed 46 proteins changing their expression by more than 1.5-fold in JBA-mut, 34 of which were upregulated. Strikingly, 21 out of the 34 upregulated proteins were predicted constituents of mitochondria. Among the non-mitochondrial up-regulated proteins, the minor isoform of Glycerol-3-phosphatase (Gpp2) was the most notable, since it was the only tested protein whose overexpression was found to confer butanol tolerance. Conclusion The study demonstrates several differences between the butanol tolerant mutant and the wild type. Upregulation of proteins involved in the mitochondrial ATP synthesizing machinery constituents and glycerol biosynthesis seem to be beneficial for a successful adaptation of yeast cells to butanol stress. PMID:23855998

  13. Non-Coding RNA Prediction and Verification in Saccharomyces cerevisiae

    PubMed Central

    Kavanaugh, Laura A.; Dietrich, Fred S.

    2009-01-01

    Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 5? or 3? untranslated regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative genomics, can be used to predict ncRNA with significant structural elements. PMID:19119416

  14. Mismatch Correction Acts as a Barrier to Homeologous Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Selva, E. M.; New, L.; Crouse, G. F.; Lahue, R. S.

    1995-01-01

    A homeologous mitotic recombination assay was used to test the role of Saccharomyces cerevisiae mismatch repair genes PMS1, MSH2 and MSH3 on recombination fidelity. A homeologous gene pair consisting of S. cerevisiae SPT15 and its S. pombe homolog were present as a direct repeat on chromosome V, with the exogenous S. pombe sequences inserted either upstream or downstream of the endogenous S. cerevisiae gene. Each gene carried a different inactivating mutation, rendering the starting strain Spt15(-). Recombinants that regenerated SPT15 function were scored after nonselective growth of the cells. In strains wild type for mismatch repair, homeologous recombination was depressed 150- to 180-fold relative to homologous controls, indicating that recombination between diverged sequences is inhibited. In one orientation of the homeologous gene pair, msh2 or msh3 mutations resulted in 17- and 9.6-fold elevations in recombination and the msh2 msh3 double mutant exhibited an 43-fold increase, implying that each MSH gene can function independently in trans to prevent homeologous recombination. Homologous recombination was not significantly affected by the msh mutations. In the other orientation, only msh2 strains were elevated (12-fold) for homeologous recombination. A mutation in MSH3 did not affect the rate of recombination in this orientation. Surprisingly, a pms1 deletion mutant did not exhibit elevated homeologous recombination. PMID:7768431

  15. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  16. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry

    Microsoft Academic Search

    Dorit Schuller; Margarida Casal

    2005-01-01

    In recent decades, science and food technology have contributed at an accelerated rate to the introduction of new products to satisfy nutritional, socio-economic and quality requirements. With the emergence of modern molecular genetics, the industrial importance of Saccharomyces cerevisiae, is continuously extended. The demand for suitable genetically modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or

  17. Role of Nitrogen and Carbon Transport, Regulation, and Metabolism Genes for Saccharomyces cerevisiae Survival In Vivo

    Microsoft Academic Search

    Joanne M. Kingsbury; Alan L. Goldstein; John H. McCusker

    2006-01-01

    Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium,

  18. Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions

    Microsoft Academic Search

    Anabel Almagro; Catarina Prista; Santiago Castro; Célia Quintas; Amândio Madeira-Lopes; José Ramos; Maria C Loureiro-Dias

    2000-01-01

    The effect of Na+ and K+ on growth and thermal death of Debaryomyces hansenii and Saccharomyces cerevisiae were compared under stress conditions as those commonly found in food environments. At the supraoptimal temperature of 34°C both cations at concentrations of 0.5 M stimulated growth of D. hansenii, while K+ had no effect and Na+ inhibited growth of S. cerevisiae. At

  19. Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production

    E-print Network

    Mountziaris, T. J.

    ARTICLE Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production in Fed cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed

  20. Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics

    Microsoft Academic Search

    Donald A. MacKenzie; Marianne Defernez; Warwick B. Dunn; Marie Brown; Linda J. Fuller; Andreas Günther; Steve A. James; John Eagles; Mark Philo; Royston Goodacre; Ian N. Roberts

    2008-01-01

    Ten medically important Saccharomyces strains, comprising six clinical isolates of Saccharomyces cerevisiae and four probiotic strains of Saccharomyces boulardii ,w ere characterized at the genetic and metabolic level and compared with non-medical, commercial yeast strains used in baking and wine-making. Strains were compared by genetic fingerprinting using amplified fragment length polymorphism (AFLP) analysis, by ribosomal DNA ITS1 sequencing and by

  1. Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms

    Microsoft Academic Search

    Karen R. Christie; Shuai Weng; Rama Balakrishnan; Maria C. Costanzo; Kara Dolinski; Selina S. Dwight; Stacia R. Engel; Becket Feierbach; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Laurie Issel-tarver; Robert S. Nash; Anand Sethuraman; Barry Starr; Chandra L. Theesfeld; Rey Andrada; Gail Binkley; Qing Dong; Mark Schroeder; David Botstein; J. Michael Cherry

    2004-01-01

    The Saccharomyces Genome Database (SGD; http:\\/\\/ www.yeastgenome.org\\/), a scientific database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, has recently developed several new resources that allow the comparison and integration of information on a genome-wide scale, enabling the user not only to find detailed information about individual genes, but also to make connections across groups of genes

  2. Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome

    Microsoft Academic Search

    Jodi E. Hirschman; Rama Balakrishnan; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Eurie L. Hong; Michael S. Livstone; Robert S. Nash; Julie Park; Rose Oughtred; Marek S. Skrzypek; Barry Starr; Chandra L. Theesfeld; Jennifer Williams; Rey Andrada; Gail Binkley; Qing Dong; Stuart R. Miyasato; Anand Sethuraman; Mark Schroeder; Mayank K. Thanawala; Shuai Weng; Kara Dolinski; David Botstein; J. Michael Cherry

    2006-01-01

    Sequencing and annotation of the entire Saccharomyces cerevisiae genome has made it pos- sible to gain a genome-wide perspective on yeast genes and gene products. To make this information available on an ongoing basis, the Saccharomyces 20Genome Database (SGD) (http:\\/\\/www.yeastgenome. org\\/) has created the Genome Snapshot (http:\\/\\/db. yeastgenome.org\\/cgi-bin\\/genomeSnapShot.pl). The Genome Snapshot summarizes the current state of knowledge about the genes

  3. Saccharomyces cerevisiae Is Permissive for Replication of Bovine Papillomavirus Type 1

    Microsoft Academic Search

    Kong-Nan Zhao; Ian H. Frazer

    2002-01-01

    We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA.

  4. [Saccharomyces cerevisiae fungemia in an elderly patient following probiotic treatment].

    PubMed

    Eren, Zehra; Gurol, Ye?im; Sonmezoglu, Meral; Eren, Hatice Seyma; Celik, Gülden; Kantarci, Gülçin

    2014-04-01

    Saccharomyces cerevisiae, known as baker's yeast, is also used as a probiotic agent to treat gastroenteritis by modulating the endogenous flora and immune system. However, since there have been increasing reports of fungemia due to S.cerevisiae and its subspecies S.boulardii, it is recommended that probiotics should be cautiously used in immunosuppressed patients, people with underlying diseases and low-birth weight babies. To emphasize this phenomenon, in this report, a case of S.cerevisiae fungemia developed in a patient given probiotic treatment for antibiotic-associated diarrhea, was presented. An 88-year-old female patient was admitted to our hospital with left hip pain, hypotension, and confusion. Her medical history included hypertension, chronic renal failure, left knee replacement surgery, and recurrent urinary tract infections due to neurogenic bladder. She was transferred to the intensive care unit with the diagnosis of urosepsis. After obtaining blood and urine samples for culture, empirical meropenem (2 x 500 mg) and linezolid (1 x 600 mg) treatment were administered. A central venous catheter (CVC) was inserted and after one day of inotropic support, her hemodynamic parameters were stabilized. The urine culture obtained on admission yielded extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Urine culture was repeated after three days and no bacteria were isolated. On the 4th day of admission she developed diarrhea. Toxin A/B tests for Clostridium difficile were negative. To relieve diarrhea, S.boulardii (Reflor 250 mg capsules, Sanofi Aventis, Turkey) was administered twice a day, without opening capsules. Two days later, her C-reactive protein (CRP) level increased from 23.2 mg/L to 100 mg/L without fever. Her blood culture taken from the CVC yielded S.cerevisiae. Linezolid and meropenem therapies were stopped on the 13th and 14th days, respectively, while prophylactic fluconazole therapy was replaced with caspofungin 1 x 50 mg on the fifth day. After seven days of therapy CRP and serum creatinine levels decreased to 9.1 mg/L and 1.2 mg/dl, respectively; and she was discharged from the hospital with improvement. The probiotic capsules were used unopen, thus, it was proposed that S.cerevisiae fungemia originated from translocation from the intestinal mucosa. Since it was not possible to investigate the molecular genetics of the strain isolated from the blood culture and the strain present in the probiotic, a definite conclusion about the origin of the strain could not be reached. It was thought that old age and underlying disease of the patient were the related predisposing factors for S.cerevisiae fungemia. This case emphasized that clinicians should be cautious in case of probiotic application even though in encapsulated form, even in immunocompetent patients with a history of long-term hospital stay and use of broad-spectrum antimicrobials since there may be a risk of S.cerevisiae fungemia development. PMID:24819274

  5. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes. PMID:9409150

  6. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases

    PubMed Central

    2013-01-01

    Background Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. Results The Aspergillus tubingensis T8.4 ?-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnu?1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnu?1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnu?1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). Conclusions In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis ?-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases. PMID:24286270

  7. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    PubMed

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation. PMID:25248867

  8. Modulation of efficiency of translation termination in Saccharomyces cerevisiae.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2014-01-01

    Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy. PMID:25486049

  9. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes fused with proteoliposomes, as model systems for studies on the mechanism and regulation of transport is evaluated. PMID:7603412

  10. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  11. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  12. Multiple Pathways for Homologous Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Rattray, A. J.; Symington, L. S.

    1995-01-01

    The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway. PMID:7705645

  13. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    PubMed Central

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  14. Characterization of Saccharomyces cerevisiae mutants supersensitive to aminoglycoside antibiotics.

    PubMed Central

    Ernst, J F; Chan, R K

    1985-01-01

    We describe mutants of Saccharomyces cerevisiae that are more sensitive than the wild type to the aminoglycoside antibiotics G418, hygromycin B, destomycin A, and gentamicin X2. In addition, the mutants are sensitive to apramycin, kanamycin B, lividomycin A, neamine, neomycin, paromomycin, and tobramycin--antibiotics which do not inhibit wild-type strains. Mapping studies suggest that supersensitivity is caused by mutations in at least three genes, denoted AGS1, AGS2, and AGS3 (for aminoglycoside antibiotic sensitivity). Mutations in all three genes are required for highest antibiotic sensitivity; ags1 ags2 double mutants have intermediate antibiotic sensitivity. AGS1 was mapped 8 centimorgans distal from LEU2 on chromosome III. Analyses of yeast strains transformed with vectors carrying antibiotic resistance genes revealed that G418, gentamicin X2, kanamycin B, lividomycin A, neamine, and paromomycin are inactivated by the Tn903 phosphotransferase and that destomycin A is inactivated by the hygromycin B phosphotransferase. ags strains are improved host strains for vectors carrying the phosphotransferase genes because a wide spectrum of aminoglycoside antibiotics can be used to select for plasmid maintenance. PMID:2989254

  15. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  16. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.

    PubMed Central

    Verdone, L; Camilloni, G; Di Mauro, E; Caserta, M

    1996-01-01

    We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery. PMID:8628264

  17. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    SciTech Connect

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.; Van Dijken, J.P. (Delft Univ. of Technology (Netherlands))

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.

  18. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  19. Ordered Nucleation and Spreading of Silenced Chromatin in Saccharomyces cerevisiae

    PubMed Central

    Rusché, Laura N.; Kirchmaier, Ann L.; Rine, Jasper

    2002-01-01

    In Saccharomyces cerevisiae, silencing at the HM loci depends on Sir proteins, which are structural components of silenced chromatin. To explore the structure and assembly of silenced chromatin, the associations of Sir proteins with sequences across the HMR locus were examined by chromatin immunoprecipitation. In wild-type cells, Sir2p, Sir3p, and Sir4p were spread throughout and coincident with the silenced region at HMR. Sir1p, in contrast, associated only with the HMR-E silencer, consistent with its role in establishment but not maintenance of silencing. Sir4p was required for the association of other Sir proteins with silencers. In contrast, in the absence of Sir2p or Sir3p, partial assemblies of Sir proteins could form at silencers, where Sir protein assembly began. Spreading across HMR required Sir2p and Sir3p, as well as the deacetylase activity of Sir2p. These data support a model for the spreading of silenced chromatin involving cycles of nucleosome deacetylation by Sir2p followed by recruitment of additional Sir2p, Sir3p, and Sir4p to the newly deacetylated nucleosome. This model suggests mechanisms for boundary formation, and for maintenance and inheritance of silenced chromatin. The principles are generalizable to other types of heritable chromatin states. PMID:12134062

  20. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae.

    PubMed

    Lalou, Sofia; Mantzouridou, Fani; Paraskevopoulou, Adamantini; Bugarski, Branko; Levic, Steva; Nedovic, Victor

    2013-11-01

    The rising trend of bioflavour synthesis by microorganisms is hindered by the high manufacturing costs, partially attributed to the cost of the starting material. To overcome this limitation, in the present study, dilute-acid hydrolysate of orange peel was employed as a low-cost, rich in fermentable sugars substrate for the production of flavour-active compounds by Saccharomyces cerevisiae. With this purpose, the use of immobilized cell technology to protect cells against the various inhibitory compounds present in the hydrolysate was evaluated with regard to yeast viability, carbon and nitrogen consumption and cell ability to produce flavour active compounds. For cell immobilization the encapsulation in Ca alginate beads was used. The results were compared with those obtained using free-cell system. Based on the data obtained immobilized cells showed better growth performance and increased ability for de novo synthesis of volatile esters of "fruity" aroma (phenylethyl acetate, ethyl hexanoate, octanoate, decanoate and dodecanoate) than those of free cells. The potential for in situ production of new formulations containing flavour-active compounds derive from yeast cells and also from essential oil of orange peel (limonene, ?-terpineol) was demonstrated by the fact that bioflavour mixture was found to accumulate within the beads. Furthermore, the ability of the immobilized yeast to perform efficiently repeated batch fermentations of orange peel hydrolysate for bioflavour production was successfully maintained after six consecutive cycles of a total period of 240 h. PMID:23995224

  1. Vacuolar cation/H+ antiporters of Saccharomyces cerevisiae.

    PubMed

    Cagnac, Olivier; Aranda-Sicilia, Maria Nieves; Leterrier, Marina; Rodriguez-Rosales, Maria-Pilar; Venema, Kees

    2010-10-29

    We previously demonstrated that Saccharomyces cerevisiae vnx1? mutant strains displayed an almost total loss of Na(+) and K(+)/H(+) antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K(+)/H(+) antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1?vcx1? nhx1? triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca(2+)/H(+) antiporter activity catalyzed by Vcx1p, the K(+)/H(+) antiporter activity was strongly inhibited by Cd(2+) and to a lesser extend by Zn(2+). Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K(+) and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed. PMID:20709757

  2. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    PubMed

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing. PMID:8720066

  3. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae.

    PubMed Central

    Young, E T; Sloan, J S; Van Riper, K

    2000-01-01

    The genome of Saccharomyces cerevisiae contains numerous unstable microsatellite sequences. Mononucleotide and dinucleotide repeats are rarely found in ORFs, and when present in an ORF are frequently located in an intron or at the C terminus of the protein, suggesting that their instability is deleterious to gene function. DNA trinucleotide repeats (TNRs) are found at a higher-than-expected frequency within ORFs, and the amino acids encoded by the TNRs represent a biased set. TNRs are rarely conserved between genes with related sequences, suggesting high instability or a recent origin. The genes in which TNRs are most frequently found are related to cellular regulation. The protein structural database is notably lacking in proteins containing amino acid tracts, suggesting that they are not located in structured regions of a protein but are rather located between domains. This conclusion is consistent with the location of amino acid tracts in two protein families. The preferred location of TNRs within the ORFs of genes related to cellular regulation together with their instability suggest that TNRs could have an important role in speciation. Specifically, TNRs could serve as hot spots for recombination leading to domain swapping, or mutation of TNRs could allow rapid evolution of new domains of protein structure. PMID:10757753

  4. Coexpression of ?-l-arabinofuranosidase and ?-glucosidase in Saccharomyces cerevisiae.

    PubMed

    Zietsman, Anscha J J; de Klerk, Daniel; van Rensburg, Pierre

    2011-02-01

    Monoterpenes are important aroma compounds in grape varieties such as Muscat, Gewürztraminer and Riesling, and are present as either odourless, glycosidically bound complexes or free aromatic monoterpenes. Commercial enzymes can be used to release the monoterpenes, but they commonly consist of crude extracts that often have unwanted and unpredictable side-effects on wine aroma. This project aims to address these problems by the expression and secretion of the Aspergillus awamori?-l-arabinofuranosidase in combination with either the ?-glucosidases from Saccharomycopsis fibuligera or from Aspergillus kawachii in the industrial yeast Saccharomyces cerevisiae VIN13. The concentration of five monoterpenes was monitored throughout alcoholic fermentation of Gewürztraminer grapes. The recombinant yeast strains that caused an early boost in the geraniol concentration led to a reduction in the final geraniol levels due to the downregulation of the sterol biosynthetic pathway. Monoterpene concentrations were also analysed 9 and 38 days after racking and the performance of the VB2 and VAB2 recombinant strains was similar, and in many cases, better than that of a commercial enzyme used in the same experiment. The results were backed by sensorial analysis, with the panel preferring the aroma of the wines produced by the VAB2 strain. PMID:21062416

  5. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  6. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production.

    PubMed

    Feng, Xueyang; Lian, Jiazhang; Zhao, Huimin

    2015-01-01

    Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45mg/L to 71mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71mg/L to 140mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140mg/L to 330mg/L). Through fed-batch fermentation using resting cells, over 1.1g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date. PMID:25466225

  7. Sulfate Assimilation Mediates Tellurite Reduction and Toxicity in Saccharomyces cerevisiae

    PubMed Central

    Ottosson, Lars-Göran; Logg, Katarina; Ibstedt, Sebastian; Sunnerhagen, Per; Käll, Mikael; Blomberg, Anders; Warringer, Jonas

    2010-01-01

    Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism. PMID:20675578

  8. Identification of Genes Affecting Hydrogen Sulfide Formation in Saccharomyces cerevisiae?

    PubMed Central

    Linderholm, Angela L.; Findleton, Carrie L.; Kumar, Gagandeep; Hong, Yeun; Bisson, Linda F.

    2008-01-01

    A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H2S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H2S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H2S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H2S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H2S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H2S production, instead often resulting in decreased levels. PMID:18192430

  9. Genetic Analysis of Default Mating Behavior in Saccharomyces Cerevisiae

    PubMed Central

    Dorer, R.; Boone, C.; Kimbrough, T.; Kim, J.; Hartwell, L. H.

    1997-01-01

    Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating. PMID:9135999

  10. Isolation of Mutants of Saccharomyces Cerevisiae Requiring DNA Topoisomerase I

    PubMed Central

    Sadoff, B. U.; Heath-Pagliuso, S.; Castano, I. B.; Zhu, Y.; Kieff, F. S.; Christman, M. F.

    1995-01-01

    Despite evidence that DNA topoisomerase I is required to relieve torsional stress during DNA replication and transcription, yeast strains with a top1 null mutation are viable and display no gross defects in DNA or RNA synthesis, possibly because other proteins provide overlapping functions. We isolated mutants whose inviability or growth defect is relieved when TOP1 is expressed [trfmutants (topoisomerase one-requiring function)]. The TRF genes define at least four complementation groups. TRF3 is allelic to TOP2. TRF1 is allelic to HPR1, previously shown to be homologous to TOP1 over two short regions. TRF4 encodes a novel 584-amino acid protein with homology to the N-terminus of Saccharomyces cerevisiae topo I. Like top1 mutants, trf4 mutants have elevated rDNA recombination and fail to shut off RNA polymerase II transcription in stationary phase. trf4 null mutants are cs for viability, display reduced expression of GALI and Cell Cycle Box UAS::LacZ fusions, and are inviable in combination with trfI null mutants, indicating that both proteins may share a common function with DNA topoisomerase I. The existence of multiple TRF complementation groups suggests that not all biological functions of topo I can be carried out by topo II. PMID:8647385

  11. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  12. Isolation and functional characterization of mutant ferrochelatases in Saccharomyces cerevisiae.

    PubMed

    Góra, M; Chaciñska, A; Rytka, J; Labbe-Bois, R

    1996-01-01

    Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the incorporation of ferrous iron into protoporphyrin, the last step in protoheme biosynthesis. It is encoded by the HEM15 gene in the yeast Saccharomyces cerevisiae. Five hem15 mutants causing defective heme synthesis and protoporphyrin accumulation were investigated. The mutations were identified by sequencing the mutant hem15 alleles amplified in vitro from mutant genomic DNA. A single nucleotide change, causing an amino acid substitution, was found in each mutant. The substitution L62F caused a five-fold increase in Vmax and 32-fold and four-fold increases in the KM's for protoporphyrin and metal. Replacements of the conserved G47 by S and S102 by F increased the KM for protoporphyrin 10-fold without affecting the affinity for metal or enzyme activity. Two amino acid changes, L205P and P221L, produced a thermosensitive phenotype. In vivo heme synthesis, the amount of immunodetected protein, and ferrochelatase activity measured in vitro were more affected in cells grown at 37 degrees C than at 30 degrees C. The effects of these mutations on the enzyme function are discussed with respects to ferrochelatase structure and mechanism of action. PMID:8818224

  13. Nutritional and environmental factors in ethanol fermentation by Saccharomyces cerevisiae

    SciTech Connect

    Wong, H.; Wilke, C.R.; Blanch, H.W.

    1983-05-01

    Using Saccharomyces cerevisiae as a model system, a basic study of the nutritional and environmental factors in ethanol fermentation was carried out to provide fundamental and practical bases for design of fermentation media and culture conditions. The requirements for all active medium components need to be determined in order to establish balanced media, which are important to reduce raw materials costs and to minimize inhibition from buildup of excess feed components in recycle processes with selective ethanol removal. Pulse injection of nutrients into continuous cultures was an effective method for screening active nutrients. In a systematic sensitivity analysis the effect of feed concentration of these individual nutrients was then determined and allowed formulation of media optimal with respect to the major fermentation parameters. Biotin, pantothenate, myo-inositol, potassium and phosphates appeared to stimulate growth preferentially to ethanol production. In contrast, thiamine and pyridoxine appeared to enhance specific ethanol productivity. The effect of ammonium sulfate depended on concentration. A conceptual model was proposed to relate the effects of these nutrients to biochemical pathways and functions. With these data and model the minimum cost combination of raw materials to achieve a medium of well defined components can be determined with a linear program. This computer program shows that many growth factors and minerals can be added to media more economically as pure components than as fractions of complex factors. 225 references, 61 figures, 54 tables.

  14. Transcriptional Induction by Aromatic Amino Acids in Saccharomyces cerevisiae

    PubMed Central

    Iraqui, Ismaïl; Vissers, Stéphan; André, Bruno; Urrestarazu, Antonio

    1999-01-01

    Aromatic aminotransferase II, product of the ARO9 gene, catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism in Saccharomyces cerevisiae. ARO9 expression is under the dual control of specific induction and nitrogen source regulation. We have here identified UASaro, a 36-bp upstream element necessary and sufficient to promote transcriptional induction of reporter gene expression in response to tryptophan, phenylalanine, or tyrosine. We then isolated mutants in which UASaro-mediated ARO9 transcription is partially or totally impaired. Mutations abolishing ARO9 induction affect a gene called ARO80 (YDR421w), coding for a Zn2Cys6 family transcription factor. A sequence highly similar to UASaro was found upstream from the YDR380w gene encoding a homolog of bacterial indolepyruvate decarboxylase. In yeast, this enzyme is postulated to catalyze the second step of tryptophan catabolism to tryptophol. We show that ARO9 and YDR380w (named ARO10) have similar patterns of transcriptional regulation and are both under the positive control of Aro80p. Nitrogen regulation of ARO9 expression seems not directly to involve the general factor Ure2p, Gln3p, Nil1p, Uga43p, or Gzf3p. ARO9 expression appears, rather, to be mainly regulated by inducer exclusion. Finally, we show that Gap1p, the general amino acid permease, and Wap1p (Ycl025p), a newly discovered inducible amino acid permease with broad specificity, are the main aromatic amino acid transporters for catabolic purposes. PMID:10207060

  15. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae

    PubMed Central

    van Zutphen, Tim; Todde, Virginia; de Boer, Rinse; Kreim, Martin; Hofbauer, Harald F.; Wolinski, Heimo; Veenhuis, Marten; van der Klei, Ida J.; Kohlwein, Sepp D.

    2014-01-01

    Cytosolic lipid droplets (LDs) are ubiquitous organelles in prokaryotes and eukaryotes that play a key role in cellular and organismal lipid homeostasis. Triacylglycerols (TAGs) and steryl esters, which are stored in LDs, are typically mobilized in growing cells or upon hormonal stimulation by LD-associated lipases and steryl ester hydrolases. Here we show that in the yeast Saccharomyces cerevisiae, LDs can also be turned over in vacuoles/lysosomes by a process that morphologically resembles microautophagy. A distinct set of proteins involved in LD autophagy is identified, which includes the core autophagic machinery but not Atg11 or Atg20. Thus LD autophagy is distinct from endoplasmic reticulum–autophagy, pexophagy, or mitophagy, despite the close association between these organelles. Atg15 is responsible for TAG breakdown in vacuoles and is required to support growth when de novo fatty acid synthesis is compromised. Furthermore, none of the core autophagy proteins, including Atg1 and Atg8, is required for LD formation in yeast. PMID:24258026

  16. Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae.

    PubMed

    Gonzalez-Perez, David; Alcalde, Miguel

    2014-01-01

    The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies. PMID:24830983

  17. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    SciTech Connect

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The (/sup 3/He)methylated residue in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-(/sup 3/H-methyl)-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine.

  18. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    SciTech Connect

    Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T.

    1981-08-01

    Commercial bakers' yeast (Saccharomyces cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees Celcius, and the optimal pH range was 4 to 6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of D-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. (Refs. 21).

  19. Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae.

    PubMed

    Dilworth, David; Nelson, Christopher J

    2015-01-01

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described. PMID:25867090

  20. Saccharomyces cerevisiae strains sensitive to inorganic mercury. III. Tyrosine uptake.

    PubMed

    Ono, B; Sakamoto, E; Yamaguchi, K

    1987-01-01

    In Saccharomyces cerevisiae, the HGS2-1 allele confers sensitivities to inorganis mercury (Ono and Sakamoto 1985) and to excess fermentable sugars such as glucose (Sakamoto et al. 1985); exogenous tyrosine antagonizes both inorganic mercury and excess glucose. In this study, the inorganic mercury sensitive strain has been shown to have about twice more glucose-1,6-bisphosphate and slightly less pyruvate than the normal strains, suggesting that the inorganic mercury sensitive strain has the reduced aldolase activity. It has been also shown that the growth retarded cells accumulate trehalose, by which the lower level of glucose-6-phosphate in the inorganic mercury sensitive strain is accounted for, and that inorganic mercury, presumably excess glucose also, causes growth inhibition via depletion of cellular tyrosine. The mechanism how cellular tyrosine is depleted by inorganic mercury or excess glucose is accounted for by the facts that (1) the tyrosine uptake activity is decreased with increase of glucose concentration in growth medium, (2) HGS2-1 enhances the effect of glucose on the tyrosine uptake activity, and (3) inorganic mercury inhibits the tyrosine uptake system by binding to its SH-group(s). Thus, it is concluded that the role of tyrosine is not to detoxify inorganic mercury nor excess fermentable sugars but simply to counteract depletion of cellular tyrosine induced by them. PMID:3329970

  1. Characterization of a mitochondrial inorganic pyrophosphatase in Saccharomyces cerevisiae.

    PubMed

    Lundin, M; Deopujari, S W; Lichko, L; da Silva, L P; Baltscheffsky, H

    1992-01-16

    We have studied a mitochondrial inorganic pyrophosphatase (PPase) in the yeast Saccharomyces cerevisiae. The uncoupler FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) and the ionophores valinomycin and nigericin stimulate the PPase activity of repeatedly washed yeast mitochondria 2-3-fold. We have previously cloned a yeast gene, PPA2, encoding the catalytic subunit of a mitochondrial PPase. Uncouplers stimulate the PPase activity several-fold in mitochondria from both cells that overexpress PPA2 from a high copy number plasmid and cells with normal expression. These results indicate that the PPA2 polypeptide functions as an energy linked and membrane associated PPase. The stimulation of mitochondrial PPase activity by FCCP, but not by valinomycin and nigericin, was greatly enhanced by the presence of DTT. The antibiotics Dio-9, equisetin and the F0F1-ATPase inhibitor oligomycin also increase mitochondrial PPase activity several fold. This stimulation is much higher, whereas basal PPase activity is lower, in isotonic than in hypotonic solution, which indicates that intact membranes are a prerequisite for maximal effects. PMID:1309654

  2. Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs.

    PubMed Central

    Brandriss, M C

    1979-01-01

    Proline-requiring mutants of Saccharomyces cerevisiae were isolated. Each mutation is recessive and is inherited as expected for a single nuclear gene. Three complementation groups cold be defined which are believed to correspond to mutations in the three genes (pro1, pro2, and pro3) coding for the three enzymes of the pathway. Mutants defective in the pro1 and pro2 genes can be satisfied by arginine or ornithine as well as proline. This suggests that the blocks are in steps leading to glutamate semialdehyde, either in glutamyl kinase or glutamyl phosphate reductase. A pro3 mutant has been shown by enzyme assay to be deficient in delta 1-pyrroline-5-carboxylate reductase which converts pyrroline-5-carboxylate to proline. A unique feature of yeast proline auxotrophs is their failure to grown on the rich medium, yeast extract-peptone-glucose. This failure is not understood at present, although it accounts for the absence of proline auxotrophs in previous screening for amino acid auxotrophy. PMID:378940

  3. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    PubMed Central

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations. PMID:11973293

  4. Identification of Genes Required for ?2 Repression in Saccharomyces Cerevisiae

    PubMed Central

    Wahi, M.; Johnson, A. D.

    1995-01-01

    Transcriptional repression of the a-specific genes in Saccharomyces cerevisiae ? cells involves the concerted action of several proteins. The homeodomain protein ?2, together with MCM1, recruits two general transcriptional repressors, SSN6 and TUP1, to the promoters of a-specific genes. SSN6 and TUP1 then mediate repression of the a-specific genes. SIN4, another general negative regulator, is required for this repression, but unlike tup1 or ssn6 deletions, sin4 deletions cause only partial loss of repression. We have screened for other genes required for a-specific gene repression in ? cells. In addition to recovering multiple alleles of previously identified genes required for this process (referred to as ?2 repression), we have identified four other genes, designated ARE1, ARE2, ARE3, and ARE4 (for alpha2 repression). Recessive mutations in the ARE genes cause partial loss of a-specific gene repression and cause pleiotropic phenotypes similar to those resulting from mutations in SSN6, TUP1, or SIN4, suggesting that the ARE genes are general negative regulators. Based on our initial analysis, we propose that two distinct classes of general negative regulators cooperate to bring about full levels of ?2 repression. The sequence of ARE1 revealed that it encodes a CDC28-related protein kinase, identical to UME5, and thus suggests that protein phosphorylation plays a role in ?2 repression. PMID:7635311

  5. Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production

    PubMed Central

    Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna; Sato, Trey K.; Gasch, Audrey P.

    2014-01-01

    Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors—including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains’ transcriptomic responses to heat and ethanol treatment—two stresses relevant to industrial bioethanol production—pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains. PMID:25364804

  6. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.

    PubMed

    Stambuk, B U; de Araujo, P S

    2001-04-01

    alpha-Glucosides are the most abundant fermentable sugars in the industrial applications of Saccharomyces cerevisiae, and the active transport across the plasma membrane is the rate-limiting step for their metabolism. In this report we performed a detailed kinetic analysis of the active alpha-glucoside transport system(s) present in a wild-type strain, and in strains with defined alpha-glucoside permeases. Our results indicate that the wild-type strain harbors active transporters with high and low affinity for maltose and trehalose, and low-affinity transport systems for maltotriose and alpha-methylglucoside. The maltose permease encoded by the MAL21 gene showed a high affinity (K(m) approximately 5 mM) for maltose, and a low affinity (K(m) approximately 90 mM) for trehalose. On the other hand, the alpha-glucoside permease encoded by the AGT1 gene had a high affinity (K(m) approximately 7 mM) for trehalose, a low affinity (K(m) approximately 18 mM) for maltose and maltotriose, and a very low affinity (K(m) approximately 35 mM) for alpha-methylglucoside. PMID:12702465

  7. Host Factors That Affect Ty3 Retrotransposition in Saccharomyces cerevisiae

    PubMed Central

    Aye, Michael; Irwin, Becky; Beliakova-Bethell, Nadejda; Chen, Eric; Garrus, Jennifer; Sandmeyer, Suzanne

    2004-01-01

    The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNAVal(AAC) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets. PMID:15579677

  8. Mechanism of Benzoic Acid Uptake by Saccharomyces cerevisiae

    PubMed Central

    Macris, Basil J.

    1975-01-01

    A fast uptake of the preservative benzoic acid was observed in Saccharomyces cerevisiae, reaching saturation in about two min and then remaining constant at this level. The strong dependence of benzoic acid uptake on pH was due to the relative distribution of molecular and ionic forms in solution and not to the pH itself. The molecular form was the only one taken up by the cells. The specificity of the uptake mechanism was evidenced by the pattern of irreversible heat inactivation of the uptake system resembling protein denaturation by heat. Furthermore, the effect of temperature on the uptake was similar to that observed in enzymic reactions, whereas the kinetic data of uptake conformed to the Michaelis-Menten curve of saturation with a Km of 1.54 × 10-2 M and Vmax of 3 × 10-3 M/10s. The evidence presented in this paper indicates that compounds of protein nature are involved in the uptake of this preservative. PMID:242253

  9. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    PubMed

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed. PMID:25133732

  10. Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae.

    PubMed

    Voutilainen, Sanni P; Nurmi-Rantala, Susanna; Penttilä, Merja; Koivula, Anu

    2014-04-01

    We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S-S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T m) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C. PMID:23974371

  11. Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae.

    PubMed

    Yuan, Bo; Wang, Shi-An; Li, Fu-Li

    2013-07-01

    It is hypothesized that introduction of an endoinulinase gene into Saccharomyces cerevisiae will improve its inulin utilization and ethanol fermentation through collaboration between the heterologous endoinulinase and the inherent invertase SUC2. The aim of this work was to test the hypothesis by introducing the endoinulinase gene inuA from Aspergillus niger into S. cerevisiae. The results showed that heterologous inuA expressed in S. cerevisiae selectively digested long chains of inulin into short fructooligosaccharides and parts of these fructooligosaccharides could be efficiently utilized by the yeast. This study demonstrated that collaboration between heterologous endoinulinase and inherent invertase improved inulin degradation and ethanol fermentation in S. cerevisiae. PMID:23683966

  12. Copyright 0 1994 by the Genetics Society of America The Saccharomyces cerevisiae SPT8 Gene Encodes a Very Acidic Protein That

    E-print Network

    Winston, Fred

    Copyright 0 1994 by the Genetics Society of America The Saccharomyces cerevisiae SPT8 Gene Encodes March 16, 1994 ABSTRACT Mutations in the Saccharomyces cerevisiae SPTB gene were previously isolated; SAWADAGOand SENTENAC 1990). In the yeast Saccharomyces cerevisiae, the isola- tion of mutationsin many ofthe

  13. Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Dtrk2D mutant cells exert dual effect on ion homeostasis

    E-print Network

    Kahana, Chaim

    Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Dtrk2D mutant cells exert dual effect that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion: Protein kinase; Sky1p; Ptk2p; Trk1p; Trk2p; Saccharomyces cerevisiae; Membrane potential; Salt tolerance

  14. Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2. Kinetic Mechanism for the Sequential Hydrolysis of Two

    E-print Network

    Lewis, Timothy

    Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2 ABSTRACT: In the preceding paper, we showed that DNA topoisomerase II from Saccharomyces cereVisiae binds orthovanadate, Sigma. The Saccharomyces cereVisiae to- poisomerase II and the sheared salmon sperm DNA were

  15. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production

    PubMed Central

    Li, Hongxing; Wu, Meiling; Xu, Lili; Hou, Jin; Guo, Ting; Bao, Xiaoming; Shen, Yu

    2015-01-01

    To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65?h?1 in yeast extract peptone dextrose medium, and the ethanol yield was 0.45?g?g?1 consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production. PMID:25616171

  16. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production.

    PubMed

    Li, Hongxing; Wu, Meiling; Xu, Lili; Hou, Jin; Guo, Ting; Bao, Xiaoming; Shen, Yu

    2015-03-01

    To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65?h(-1) in yeast extract peptone dextrose medium, and the ethanol yield was 0.45?g?g(-1) consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production. PMID:25616171

  17. In vitro study of the dose effect of Saccharomyces cerevisiae on rumen digestion of a mixed diet

    E-print Network

    Paris-Sud XI, Université de

    In vitro study of the dose effect of Saccharomyces cerevisiae on rumen digestion of a mixed diet JP suggested as a mean of stabilizing rumen microbial digestion in animals fed diets rich in starch (RJ Wallace of Saccharomyces cerevisiae (I-1077)* (SC) were tested in Rusitec to study their effects on rumen digestive

  18. Copyright0 1994 by the Genetics Society of America The SPTlO and SPT21 Genes of Saccharomyces cerevisiae

    E-print Network

    Winston, Fred

    SPT2I was phenotypically wild type. The T y elements of Saccharomyces cerevisiae are a groupCopyright0 1994 by the Genetics Society of America The SPTlO and SPT21 Genes of Saccharomyces cerevisiae Georges Natsoulis,*" Fred Winstont andJef D. Boeke* *Department of Molecular Biology and Genetics

  19. Effects of live cells of Saccharomyces cerevisiae on in vitro lactate utilization by Megasphaera elsdenii and on the interactions

    E-print Network

    Paris-Sud XI, Université de

    Effects of live cells of Saccharomyces cerevisiae on in vitro lactate utilization by Megasphaera disorders. The positive effect of several microbial additives such as Aspergillus oryzae on in vitro lactate of Saccharomyces cerevisiae (CNCM I-1077, Institut Pasteur, France) on lactate utilization by a strain

  20. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes. Results To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism. Conclusions Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery. PMID:23402697

  1. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Racenis, P V; Lai, J L; Das, A K; Mullick, P C; Hajra, A K; Greenberg, M L

    1992-01-01

    The presence of the acyl dihydroxyacetone phosphate (acyl DHAP) pathway in yeasts was investigated by examining three key enzyme activities of this pathway in Saccharomyces cerevisiae. In the total membrane fraction of S. cerevisiae, we confirmed the presence of both DHAP acyltransferase (DHAPAT; Km = 1.27 mM; Vmax = 5.9 nmol/min/mg of protein) and sn-glycerol 3-phosphate acyltransferase (GPAT; Km = 0.28 mM; Vmax = 12.6 nmol/min/mg of protein). The properties of these two acyltransferases are similar with respect to thermal stability and optimum temperature of activity but differ with respect to pH optimum (6.5 for GPAT and 7.4 for DHAPAT) and sensitivity toward the sulfhydryl blocking agent N-ethylmaleimide. Total membrane fraction of S. cerevisiae also exhibited acyl/alkyl DHAP reductase (EC 1.1.1.101) activity, which has not been reported previously. The reductase has a Vmax of 3.8 nmol/min/mg of protein for the reduction of hexadecyl DHAP (Km = 15 microM) by NADPH (Km = 20 microM). Both acyl DHAP and alkyl DHAP acted as substrates. NADPH was the specific cofactor. Divalent cations and N-ethylmaleimide inhibited the enzymatic reaction. Reductase activity in the total membrane fraction from aerobically grown yeast cells was twice that from anaerobically grown cells. Similarly, DHAPAT and GPAT activities were also greater in aerobically grown yeast cells. The presence of these enzymes, together with the absence of both ether glycerolipids and the ether lipid-synthesizing enzyme (alkyl DHAP synthase) in S. cerevisiae, indicates that non-ether glycerolipids are synthesized in this organism via the acyl DHAP pathway. Images PMID:1512203

  2. L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner

    PubMed Central

    Cartwright, Stephanie P.; Bill, Roslyn M.; Hipkiss, Alan R.

    2012-01-01

    The dipeptide L-carnosine (?-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. PMID:22984600

  3. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.

    PubMed

    Andlid, Thomas A; Veide, Jenny; Sandberg, Ann-Sofie

    2004-12-15

    Iron and zinc deficiencies are global problems, frequently leading to severe illness in vulnerable human populations. Addition of phytases can improve the bioavailability of iron and zinc in food. Saccharomyces cerevisiae would be an ideal candidate as a bioavailability improving food additive if it demonstrates significant phytase activity. The purpose of the paper was to study yeast phytase activity to obtain information required to improve strains. All yeasts tested readily degraded extracellular inositol hexaphosphate (phytate; IP6) in media with IP6 as the sole phosphorous source. Phosphate (Pi) addition yielded repression consistent with the PHO system. However, repression of IP6-degrading enzymes was not only dependent on level of Pi, but also on pH and medium composition. In complex medium, containing Pi at a concentration previously suggested to yield full repression of the secretory acid phosphatases (SAPs; e.g., [Mol. Biol. Cell 11 (2000) 4309]), and at relatively high pH, repression of phytate-degrading enzymes was weak. The capacity to degrade phytate, irrespective of Pi addition or not, was highest at the pH most distant from the pH optimum of the SAPs [Microbiol. Res. 151 (1996) 291], suggesting that expression rather than enzyme activity was affected by pH. In synthetic medium, repression was strong and pH-independent (no IP6 degradation within the range tested). The distinct difference between media shows that, in addition to known regulatory role of Pi for the PHO system, additional factors may be involved. Using a deletion strain, we further demonstrate that the main secretory acid phosphatase Pho5p is not essential for intact phytate-degrading capacity and growth without Pi, neither is Pho3p. However, when constitutively overexpressing PHO5 an increased net phytase activity was obtained, in repressing and non-repressing conditions. This proves that, although redundant in a wild type, Pho5p can catalyze hydrolysis of IP6 and that at least one more enzyme is capable of effective hydrolysis of IP6 (sufficient to provide the cell with phosphorous at a rate yielding maximum growth). Finally, a bread dough experiment showed that the typical concentrations of Pi during leavening exceed levels shown to repress phytate degradation by a wild-type S. cerevisiae. PMID:15541802

  4. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  5. Characterization of Glycogen-Deficient Glc Mutants of Saccharomyces Cerevisiae

    PubMed Central

    Cannon, J. F.; Pringle, J. R.; Fiechter, A.; Khalil, M.

    1994-01-01

    Forty-eight mutants of Saccharomyces cerevisiae with defects in glycogen metabolism were isolated. The mutations defined eight GLC genes, the functions of which were determined. Mutations in three of these genes activate the RAS/cAMP pathway either by impairment of a RAS GTPase-activating protein (GLC1/IRA1 and GLC4/IRA2) or by activating Ras2p (GLC5/RAS2). SNF1 protein kinase (GLC2) was found to be required for normal glycogen levels. Glycogen branching enzyme (GLC3) was found to be required for significant glycogen synthesis. GLC6 was shown to be allelic to CIF1 (and probably FDP1, BYP1 and GGS1), mutations in which were previously found to prevent growth on glucose; this gene is also the same as TPS1, which encodes a subunit of the trehalose-phosphate synthase. Mutations in GLC6 were capable of increasing or decreasing glycogen levels, at least in part via effects on the regulation of glycogen synthase. GLC7 encodes a type 1 protein phosphatase that contributes to the dephosphorylation (and hence activation) of glycogen synthase. GLC8 encodes a homologue of type 1 protein phosphatase inhibitor-2. The genetic map positions of GLC1/IRA1, GLC3, GLC4/IRA2, GLC6/CIF1/TPS1 (and the adjacent VAT2/VMA2), and GLC7 were clarified. From the data on GLC3, there may be a suppression of recombination near the chromosome V centromere, at least in some strains. PMID:8150278

  6. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    PubMed Central

    Andersen, Kaj Scherz; Bojsen, Rasmus; Sørensen, Laura Gro Rejkjær; Nielsen, Martin Weiss; Lisby, Michael; Folkesson, Anders; Regenberg, Birgitte

    2014-01-01

    Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the ?1278b background and found 71 genes that were essential for biofilm development. Quantitative northern blots further revealed that AIM1, ASG1, AVT1, DRN1, ELP4, FLO8, FMP10, HMT1, KAR5, MIT1, MRPL32, MSS11, NCP1, NPR1, PEP5, PEX25, RIM8, RIM101, RGT1, SNF8, SPC2, STB6, STP22, TEC1, VID24, VPS20, VTC3, YBL029W, YBL029C-A, YFL054C, YGR161W-C, YIL014C-A, YIR024C, YKL151C, YNL200C, YOR034C-A, and YOR223W controlled biofilm through FLO11 induction. Almost all deletion mutants that were unable to form biofilms in liquid medium also lost the ability to form surface-spreading biofilm colonies (mats) on agar and 69% also lost the ability to grow invasively. The protein kinase A isoform Tpk3p functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell–cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally. The study provides a resource of biofilm-influencing genes for additional research on biofilm development and suggests that the regulation of FLO11 is more complex than previously anticipated. PMID:25009170

  7. Saccharomyces cerevisiae genes involved in survival of heat shock.

    PubMed

    Jarolim, Stefanie; Ayer, Anita; Pillay, Bethany; Gee, Allison C; Phrakaysone, Alex; Perrone, Gabriel G; Breitenbach, Michael; Dawes, Ian W

    2013-12-01

    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H(+)-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance. PMID:24142923

  8. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Cid, V J; Durán, A; del Rey, F; Snyder, M P; Nombela, C; Sánchez, M

    1995-01-01

    In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. PMID:7565410

  9. Saccharomyces cerevisiae fungemia, a possible consequence of the treatment of Clostridium difficile colitis with a probioticum.

    PubMed

    Santino, I; Alari, A; Bono, S; Teti, E; Marangi, M; Bernardini, A; Magrini, L; Di Somma, S; Teggi, A

    2014-01-01

    The yeast Saccharomyces boulardii is a biotherapeutic agent used for the prevention and treatment of several gastrointestinal diseases, such as diarrhoea caused by Clostridium difficile, in addition to the antibiotic therapy. In this study we report a case of Saccharomyces cerevisiae fungemia in a patient with Clostridium difficile-associated diarrhoea (CDAD) treated orally with S. boulardii in association with vancomycin. The identification of the S. cerevisiae was confirmed by molecular technique. Fungemia is a rare, but a serious complication to treatment with probiotics. We believe it is important to remind the clinicians of this risk when prescribing probiotics, especially to immunocompromised patients. PMID:24674691

  10. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    PubMed Central

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  11. Effect of cultivation conditions on invertase production by hyperproducing Saccharomyces cerevisiae isolates

    Microsoft Academic Search

    Mirza Ahsen Baig; Sikander Ali

    2005-01-01

    Invertase (?-D-fructofuranoside fructohydrolase, EC 3.2.1.26) finds major uses in confectionery and in the production of invert syrup. In the present study, we report on invertase production by wild cultures of Saccharomyces cerevisiae. The yeast strains were isolated from dates available in a local market. Five hyperproducing yeast strains (>100- fold higher invertase activity) were kinetically analysed for invertase production. Saccharomyces

  12. Expression of alanine:glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii

    Microsoft Academic Search

    Tatsuya Kato; Enoch Y. Park

    2006-01-01

    Two plasmids containing an autonomously replicating sequence from Saccharomyces cerevisiae were constructed. Using these vectors, the AGX1 gene encoding alanine:glyoxylate aminotransferase (AGT) from S. cerevisiae, which converts glyoxylate into glycine but is not present in Ashbya gossypii, was expressed in A. gossypii. Geneticin-resistant transformants with the plasmid having the kanamycin resistance gene under the control of the translation elongation factor

  13. Isolation and subcloning analysis of functional centromere DNA(CEN11) from Saccharomyces cerevisiae chromosome XI

    Microsoft Academic Search

    M. Fitzgerald-Hayes; J. M. Buhler; T. G. Cooper; J. Carbon

    1982-01-01

    The authors have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Generic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned

  14. Statistical optimization of culture media and conditions for production of mannan by Saccharomyces cerevisiae

    Microsoft Academic Search

    Hong-Zhi Liu; Qiang Wang; Yuan-Yuan Liu; Fang Fang

    2009-01-01

    In view of the increase in Saccharomyces cerevisiae mannan content, the culture medium and condition for S. cerevisiae were optimized in this study. The influence of culture medium ingredients such as carbon and nitrogen sources, inorganic\\u000a ion, and enzyme activator on mannan production were evaluated using factional design. The mathematical model was established\\u000a by the quadratic rotary combination design through

  15. Protein Kinase A, TOR, and Glucose Transport Control the Response to Nutrient Repletion in Saccharomyces cerevisiae

    Microsoft Academic Search

    Matthew G. Slattery; Dritan Liko; Warren Heideman

    2008-01-01

    Nutrient repletion leads to substantial restructuring of the transcriptome in Saccharomyces cerevisiae. The expression levels of approximately one-third of all S. cerevisiae genes are altered at least twofold when a nutrient-depleted culture is transferred to fresh medium. Several nutrient-sensing pathways are known to play a role in this process, but the relative contribution that each pathway makes to the total

  16. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria

    SciTech Connect

    Uribe, S.; Rangel, P.; Espinola, G.; Aguirre, G. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico))

    1990-07-01

    Little information on the effects of cyclohexane at the cellular or subcellular level is available. In Saccharomyces cerevisiae, cyclohexane inhibited respiration and diverse energy-dependent processes. In mitochondria isolated from S. cerevisiae, oxygen uptake and ATP synthesis were inhibited, although ATPase activity was not affected. Cyclohexane effects were similar to those reported for beta-pinene and limonene, suggesting that the cyclohexane ring in these monoterpenes may be a determinant for their biological activities.

  17. Bioreduction of phenylglyoxylic acid to R-(?)-mandelic acid by Saccharomyces cerevisiae FD11b

    Microsoft Academic Search

    Mei-Tian Xiao; Ya-Yan Huang; Xian-Ai Shi; Yang-Hao Guo

    2005-01-01

    Screening from 40 microorganisms belonging to different taxonomical groups (Saccharomyces cerevisiae, Lactoballius, Streptococcus faecalis and Candida albicans) was performed to select the strain with high production rate of R-(?)-mandelic acid (R-MA). A sp. strain S. cerevisiae FD11b with high yield and enantiomeric excess (e.e.) and little byproducts was obtained by means of UV-mutation breeding. In the optimal conditions of pH

  18. Accumulation and chemical states of radiocesium by fungus Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian

    2014-05-01

    After accident of Fukushima Daiichi Nuclear Power Plant, the fall-out radiocesium was deposited on the ground. Filamentous fungus is known to accumulate radiocesium in environment, even though many minerals are involved in soil. These facts suggest that fungus affect the migration behavior of radiocesium in the environment. However, accumulation mechanism of radiocesium by fungus is not understood. In the present study, accumulation and chemical states change of Cs by unicellular fungus of Saccharomyces cerevisiae have been studied to elucidate the role of microorganisms in the migration of radiocesium in the environment. Two different experimental conditions were employed; one is the accumulation experiments of radiocesium by S. cerevisiae from the agar medium containing 137Cs and a mineral of zeolite, vermiculite, smectite, mica, or illite. The other is the experiments using stable cesium to examine the chemical states change of Cs. In the former experiment, the cells were grown on membrane filter of 0.45 ?m installed on the agar medium. After the grown cells were weighed, radioactivity in the cells was measured by an autoradiography technique. The mineral weight contents were changed from 0.1% to 1% of the medium. In the latter experiment, the cells were grown in the medium containing stable Cs between 1 mM and 10mM. The Cs accumulated cells were analyzed by SEM-EDS and EXAFS. The adsorption experiments of cesium by the cells under resting condition were also conducted to test the effect of cells metabolic activity. Without mineral in the medium, cells of S. cerevisiae accumulated 1.5x103 Bq/g from the medium containing 137Cs of 2.6x102 Bq/g. When mineral was added in the medium, concentration of 137Cs in the cells decreased. The concentration of 137Cs in the cells from the medium containing different minerals were in the following order; smectite, illite, mica > vermiculite > zeolite. This order was nearly the same as the inverse of distribution coefficient of mineral for 137Cs in the medium solution. The concentration of 137Cs in the cells lowered in the medium containing higher mineral content. These results indicate that radiocesium was competively accumulated in the cells with minerals in the soil. Higher concentration of stable Cs was accumulated in the cells in the metabolically active condition than in the resting cells condition. XAFS analyses showed that the k3-weighted extended-XAFS functions and the radial structural function of Cs accumulated by the cells in the metabolically active condition were similar to those in the resting condition, indicating that chemical states of the accumulated Cs were nearly the same between both conditions. These results indicate that the fungus accumulates radiocesium by competitively with minerals in the soils, and performs higher retardation of the migration of Cs in the metabolically active condition than the resting one. A part of this study is the results of "Multidisciplinary investigation on radiocesium fate and transport for safety assessment for interim storage and disposal of heterogeneous waste" carried out under the Initiatives for Atomic Energy Basic and Generic Strategic Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  19. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    PubMed Central

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (?nth1), acid trehalase mutants (?ath1), and double mutants (?nth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The ?nth1 and ?ath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the ?nth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  20. Phosphorylation of protein synthesis initiation factor 2 (elF-2) in the yeast Saccharomyces cerevisiae

    SciTech Connect

    Romero, D.P.

    1986-01-01

    Initiation Factor 2 (elF-2) in the yeast Saccharomyces cerevisiae is comprised of 3 subunits. The control of protein synthesis in mammalian cells have been shown to involve the phosphorylation of the small (alpha) subunit by a specific protein kinase. Phosphorylation results in an inhibition of protein synthesis. In order to determine whether or not an analogous system is operative in yeast, the phosphorylation state of the alpha subunit of elF-2 in Saccharomyces was determined during various growth and nongrowth conditions. Cells were radiolabelled with /sup 32/P and /sup 35/S, and the whole cell lysates were analyzed by two dimensional gel electrophoresis. These experiments revealed that the smallest subunit (alpha, M/sub r/ = 31,000) is a phosphoprotein in vivo under a variety of growth and nongrowth conditions. This is in direct contrast to the pattern exhibited in mammalian cells. The fact that the small subunit of elF-2 in yeast is phosphorylated under a variety of physiological conditions indicates that such a covalent modification is important for some aspects of elF-2 function. In order to investigate this problem further, a protein kinase that specifically labels the alpha subunit of elF-2 in vitro was isolated. The kinase is not autophosphorylating, utilizes ATP as a phosphate donor, phosphorylates an exogenous protein, casein, modifies serine residues in elF-2, is cyclic nucleotide-independent, and is strongly inhibited by heparin.

  1. Suspended Animation Extends Survival Limits of Caenorhabditis elegans and Saccharomyces cerevisiae at Low Temperature

    PubMed Central

    Chan, Kin; Goldmark, Jesse P.

    2010-01-01

    The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment. PMID:20462960

  2. Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature.

    PubMed

    Chan, Kin; Goldmark, Jesse P; Roth, Mark B

    2010-07-01

    The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment. PMID:20462960

  3. Engineering and Analysis of a Saccharomyces cerevisiae Strain That Uses Formaldehyde as an Auxiliary Substrate?

    PubMed Central

    Baerends, Richard J. S.; de Hulster, Erik; Geertman, Jan-Maarten A.; Daran, Jean-Marc; van Maris, Antonius J. A.; Veenhuis, Marten; van der Klei, Ida J.; Pronk, Jack T.

    2008-01-01

    We demonstrated that formaldehyde can be efficiently coutilized by an engineered Saccharomyces cerevisiae strain that expresses Hansenula polymorpha genes encoding formaldehyde dehydrogenase (FLD1) and formate dehydrogenase (FMD), in contrast to wild-type strains. Initial chemostat experiments showed that the engineered strain coutilized formaldehyde with glucose, but these mixed-substrate cultures failed to reach steady-state conditions and did not exhibit an increased biomass yield on glucose. Subsequent transcriptome analyses of chemostat cultures of the engineered strain, grown on glucose-formaldehyde mixtures, indicated that the presence of formaldehyde in the feed caused biotin limitations. Further transcriptome analysis demonstrated that this biotin inactivation was prevented by using separate formaldehyde and vitamin feeds. Using this approach, steady-state glucose-limited chemostat cultures were obtained that coutilized glucose and formaldehyde. Coutilization of formaldehyde under these conditions resulted in an enhanced biomass yield of the glucose-limited cultures. The biomass yield was quantitatively consistent with the use of formaldehyde as an auxiliary substrate that generates NADH and subsequently, via oxidative phosphorylation, ATP. On an electron pair basis, the biomass yield increase observed with formaldehyde was larger than that observed previously for formate, which is tentatively explained by different modes of formate and formaldehyde transport in S. cerevisiae. PMID:18378663

  4. Telomere Maintenance and Survival in Saccharomyces cerevisiae in the Absence of Telomerase and RAD52

    PubMed Central

    LeBel, Catherine; Rosonina, Emanuel; Sealey, David C. F.; Pryde, Fiona; Lydall, David; Maringele, Laura; Harrington, Lea A.

    2009-01-01

    Telomeres are essential features of linear genomes that are crucial for chromosome stability. Telomeric DNA is usually replenished by telomerase. Deletion of genes encoding telomerase components leads to telomere attrition with each cycle of DNA replication, eventually causing cell senescence or death. In the Saccharomyces cerevisiae strain W303, telomerase-null populations bypass senescence and, unless EXO1 is also deleted, this survival is RAD52 dependent. Unexpectedly, we found that the S. cerevisiae strain S288C could survive the removal of RAD52 and telomerase at a low frequency without additional gene deletions. These RAD52-independent survivors were propagated stably and exhibited a telomere organization typical of recombination between telomeric DNA tracts, and in diploids behaved as a multigenic trait. The polymerase-? subunit Pol32 was dispensable for the maintenance of RAD52-independent survivors. The incidence of this rare escape was not affected by deletion of other genes necessary for RAD52-dependent survival, but correlated with initial telomere length. If W303 strains lacking telomerase and RAD52 first underwent telomere elongation, rare colonies could then bypass senescence. We suggest that longer telomeres provide a more proficient substrate for a novel telomere maintenance mechanism that does not rely on telomerase, RAD52, or POL32. PMID:19380905

  5. Saccharomyces cerevisiae Expressing Gp43 Protects Mice against Paracoccidioides brasiliensis Infection

    PubMed Central

    Assis-Marques, Mariana Aprigio; Oliveira, Aline Ferreira; Ruas, Luciana Pereira; dos Reis, Thaila Fernanda; Roque-Barreira, Maria Cristina; Coelho, Paulo Sergio Rodrigues

    2015-01-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM). It is believed that approximately 10 million people are infected with the fungus and approximately 2% will eventually develop the disease. Unlike viral and bacterial diseases, fungal diseases are the ones against which there is no commercially available vaccine. Saccharomyces cerevisiae may be a suitable vehicle for immunization against fungal infections, as they require the stimulation of different arms of the immune response. Here we evaluated the efficacy of immunizing mice against PCM by using S. cerevisiae yeast expressing gp43. When challenged by inoculation of P. brasiliensis yeasts, immunized animals showed a protective profile in three different assays. Their lung parenchyma was significantly preserved, exhibiting fewer granulomas with fewer fungal cells than found in non-immunized mice. Fungal burden was reduced in the lung and spleen of immunized mice, and both organs contained higher levels of IL-12 and IFN-? compared to those of non-vaccinated mice, a finding that suggests the occurrence of Th1 immunity. Taken together, our results indicate that the recombinant yeast vaccine represents a new strategy to confer protection against PCM. PMID:25790460

  6. Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome.

    PubMed

    Sun, Jie; Wen, Fei; Si, Tong; Xu, Jian-He; Zhao, Huimin

    2012-06-01

    Arabinoxylan is a heteropolymeric chain of a ?-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes. The miniscaffoldin derived from Clostridium thermocellum contained one or three cohesin modules and was tethered to the cell surface through the S. cerevisiae a-agglutinin adhesion receptor. Up to three types of hemicellulases, an endoxylanase (XynII), an arabinofuranosidase (AbfB), and a ?-xylosidase (XlnD), each bearing a C-terminal dockerin, were assembled onto the miniscaffoldin by high-affinity cohesin-dockerin interactions. Compared to uni- and bifunctional minihemicellulosomes, the resulting quaternary trifunctional complexes exhibited an enhanced rate of hydrolysis of arabinoxylan. Furthermore, with an integrated d-xylose-utilizing pathway, the recombinant yeast displaying the bifunctional minihemicellulosome CipA3-XynII-XlnD could simultaneously hydrolyze and ferment birchwood xylan to ethanol with a yield of 0.31 g per g of sugar consumed. PMID:22447594

  7. Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan.

    PubMed

    Corona-González, R I; Pelayo-Ortiz, C; Jacques, G; Guatemala, G; Arriola, E; Arias, J A; Toriz, G

    2015-01-01

    A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 3(3) factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7-66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 2(2) factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana. PMID:25432071

  8. Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI.

    PubMed Central

    Fitzgerald-Hayes, M; Buhler, J M; Cooper, T G; Carbon, J

    1982-01-01

    We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae. Images PMID:6287222

  9. Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit.

    PubMed

    Lee, Jong-Sub; Park, Eun-Hee; Kim, Jung-Wan; Yeo, Soo-Hwan; Kim, Myoung-Dong

    2013-09-28

    The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and 35oC, respectively. Under this growth condition, S. cerevisiae NK28 produced 98.9 ± 5.67 g/l ethanol in 24 h with a volumetric ethanol production rate of 4.12 ± 0.24 g/l·h. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A. PMID:23893096

  10. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis

    Microsoft Academic Search

    Meher Parveen; Kamrul Hasan; Junko Takahashi; Yoshinori Murata; Emiko Kitagawa; Osamu Kodama; Hitoshi Iwahashi

    2004-01-01

    Plant-derived essential oils with monoterpenoids have been used as antifungal drugs since ancient times, but the mode of action of these natural hydrocarbons at the molecular level is not understood. In order to understand the mechanisms of toxicity of ?-terpinene (a cyclic monoterpene), a culture of Saccharomyces cerevisiae was exposed to 0.02% ?-terpinene for 2 h and transcript profiles were

  11. Merging of multiple signals regulating ?9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae

    Microsoft Academic Search

    Y. Nakagawa; A. Ueda; Y. Kaneko; S. Harashima

    2003-01-01

    Fatty acid desaturation, which requires molecular oxygen (O 2) as an electron acceptor, is catalyzed by ?9 fatty acid desaturase, which is encoded by OLE1 in Saccharomyces cerevisiae. Transcription of the OLE1 gene is repressed by unsaturated fatty acids (UFAs) and activated by hypoxia and low temperatures via the endoplasmic reticulum membrane protein Mga2p. We previously reported the isolation of

  12. Sinergistic action of genetic and phenotypic suppression of nonsense mutations in yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    A. P. Surguchov; E. M. Pospelova; V. N. Smirnov

    1981-01-01

    It was found that the phenotypic suppression induced by the paromamine-containing antibiotic paromomycin could be significantly strengthened by a ribosomal suppressor mutation in yeast Saccharomyces cerevisiae. As a result the suppressor efficient towards ochre mutations in the presence of paromomycin acquired the ability to suppress both amber and opal mutations. It is suggested that phenotypic suppression by paromomycin and genotypic

  13. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Bruce W. Birren; Manolis Kellis; Eric S. Lander

    2004-01-01

    Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related

  14. LACTIC ACID PRODUCTION BY SACCHAROMYCES CEREVISIAE EXPRESSING A RHIZOPUS ORYZAE LACTATE DEHYDROGENASE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work demonstrates the first example of a fungal LDH expressed in yeast. A L(+)-lactate dehydrogenase gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adhl promoter and terminator, then placed in a 2 micron contai...

  15. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors

    Microsoft Academic Search

    Gaël Yvert; Rachel B Brem; Jacqueline Whittle; Joshua M Akey; Eric Foss; Erin N Smith; Rachel Mackelprang; Leonid Kruglyak

    2003-01-01

    Natural genetic variation can cause significant differences in gene expression, but little is known about the polymorphisms that affect gene regulation. We analyzed regulatory variation in a cross between laboratory and wild strains of Saccharomyces cerevisiae. Clustering and linkage analysis defined groups of coregulated genes and the loci involved in their regulation. Most expression differences mapped to trans-acting loci. Positional

  16. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  17. Identification of Genes Required for Normal Pheromone-Induced Cell ~ Polarization in Saccharomyces cerevisiae

    Microsoft Academic Search

    Janet Chenevert; Nicole Val; Ira Herskowitz

    ABSTRACT In response to mating pheromones, cells of the yeast Saccharomyces cerevisiae adopt a polarized “shmoo” morphology, in which the cytoskeleton and proteins involved in mating are localized to a cell- surface projection. This polarization , yet to be determined. We discuss the possible roles of these gene products in establishing cell polarity during mating. M ANY cell types generate

  18. Minear, S., et al Curcumin inhibits growth of Saccharomyces cerevisiae1

    E-print Network

    Stearns, Tim

    Minear, S., et al 1 Curcumin inhibits growth of Saccharomyces cerevisiae1 through iron chelation2 3 of print on 9 September 2011 #12;Minear, S., et al 2 Abstract (limit 250 words)46 47 Curcumin, a polyphenol of ailments. Interest in curcumin has49 increased recently, with on-going clinical trials exploring curcumin

  19. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, ?-cyclodextrin and modified starch

    Microsoft Academic Search

    Efstathia I. Paramera; Spyros J. Konteles; Vaios T. Karathanos

    2011-01-01

    Curcumin, a polyphenol with pharmacological function and colouring power, was encapsulated in baker’s yeast (Saccharomyces cerevisiae) cells, ?-cyclodextrin (?-CD) and modified starch (MS) by various methods. The encapsulation forms were evaluated for their efficiency in overcoming curcumin’s heat, light and oxygen sensitivity (storage stability). The release (dissolution) profile of curcumin in simulated gastric (SGF) and pancreatic fluid (SPF) was, also,

  20. The Mitochondrial Alcohol Dehydrogenase Adh3p Is Involved in a Redox Shuttle in Saccharomyces cerevisiae

    Microsoft Academic Search

    BARBARA M. BAKKER; CHRISTOFFER BRO; PETER KOTTER; MARIJKE A. H. LUTTIK; JOHANNES P. VAN DIJKEN; JACK T. PRONK

    2000-01-01

    NDI1 is the unique gene encoding the internal mitochondrial NADH dehydrogenase of Saccharomyces cerevisiae. The enzyme catalyzes the transfer of electrons from intramitochondrial NADH to ubiquinone. Surprisingly, NDI1 is not essential for respiratory growth. Here we demonstrate that this is due to in vivo activity of an ethanol-acetaldehyde redox shuttle, which transfers the redox equivalents from the mitochondria to the

  1. Effect of yeast culture, Saccharomyces cerevisiae, on ruminal fermentation during adaptation to high-concentrate feeding

    E-print Network

    Boyer, Edmond

    Effect of yeast culture, Saccharomyces cerevisiae, on ruminal fermentation during adaptation concentrate diet, addition of yeast culture may stabilize the ruminal fermentations, and reduce the large in the fermentation pathway, and can accumulate rapidly (Mackie and Gilchrist, 1979, Appl Environ Microbiol, 38, 422

  2. Engineering Saccharomyces cerevisiae for consolidated bioprocessing in starch and biomass conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of starch or biomass to biofuel is a two-stage process involving enzymatic treatment, followed by yeast fermentation. An alternative route would be to consolidate the process by engineering Saccharomyces cerevisiae capable of both saccharification and fermentation. An approach was d...

  3. Genes involved in the control of nuclear fusion during the sexual cycle of Saccharomyces cerevisiae

    Microsoft Academic Search

    Julio Polaina; Jaime Conde

    1982-01-01

    Mutants of Saccharomyces cerevisiae defective for nuclear fusion have been isolated. Their mutations have been characterized by meiotic analysis, dominance-recessivity and complementation. Twelve of the mutations are allelic to the previously described kar 1-1; five affect a second gene designated KAR 2 and three affect a third gene designated KAR 3. There is evidence suggesting that other two mutants are

  4. A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae.

    PubMed Central

    Mager, W H; Planta, R J; Ballesta, J G; Lee, J C; Mizuta, K; Suzuki, K; Warner, J R; Woolford, J

    1997-01-01

    The availability of the complete sequence of the Saccharomyces cerevisiae genome has allowed a comprehensive analysis of the genes encoding cytoplasmic ribosomal proteins in this organism. On the basis of this complete inventory a new nomenclature for the yeast ribosomal proteins is presented. PMID:9396790

  5. Chitin Synthase 2 is Essential for Septum Formation and Cell Division in Saccharomyces cerevisiae

    Microsoft Academic Search

    Sanford J. Silverman; Adriana Sburlati; Martin L. Slater; Enrico Cabib

    1988-01-01

    Previous work led to the puzzling conclusion that chitin synthase 1, the major chitin synthase activity in Saccharomyces cerevisiae, is not required for synthesis of the chitinous primary septum. The mechanism of in vivo synthesis of chitin has now been clarified by cloning the structural gene for the newly found chitin synthase 2, a relatively minor activity in yeast. Disruption

  6. Role of the mitochondrion in the regulation of protein synthesis in the eucaryote Saccharomyces cerevisiae

    Microsoft Academic Search

    P. P. Puglisi; A. Algeri

    1971-01-01

    Induction of several enzymes is abolished in respiratory deficient strains of Saccharomyces cerevisiae. Such block depends on the integrity of the mitochondrial protein sinthesizing machinery. A model is proposed which is based on a double control of protein synthesis, a negative regulation similar to that described in E. coli and a positive regulation mediated by mitochondria.

  7. Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae

    Microsoft Academic Search

    Gunther Daum; Norman D. Lees; Martin Bard; Robert Dickson

    1998-01-01

    The yeast Saccharomyces cerevisiae is a powerful experimental system to study biochemical, cell biological and molecular biological aspects of lipid synthesis. Most but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of this unicellular eukaryote have been cloned, and many gene products have been functionally characterized. Less information is available about genes and gene

  8. A novel technique to evaluate interactions between Saccharomyces cerevisiae cell wall and mycotoxins: application to zearalenone

    Microsoft Academic Search

    Alexandros Yiannikouris; Laurent Poughon; Xavier Cameleyre; Claude-Gilles Dussap; Jean François; Gérard Bertin; Jean-Pierre Jouany

    2003-01-01

    Three models based on sigmoidal plotting were tested for their ability to describe zearalenone adsorption on Saccharomyces cerevisiae cell walls in vitro. All three models closely fitted the experimental data, but Hill's equation gave the most accurate parameters, and provided information on the physical and chemical mechanisms involved in the adsorption of mycotoxin on yeast cell walls.

  9. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae

    Microsoft Academic Search

    Fernando Moreno; Pilar Herrero

    2002-01-01

    Sugars, predominantly glucose, evoke a variety of responses in Saccharomyces cerevisiae. These responses are elicited through a complex network of regulatory mechanisms that transduce the signal of presence of external glucose to their final intracellular targets. The HXK2 gene, encoding hexokinase 2 (Hxk2), the enzyme that initiates glucose metabolism, is highly expressed during growth in glucose and plays a pivotal

  10. Analysis of the morphologic changes of Monascus sp. J101 cells cocultured with Saccharomyces cerevisiae

    Microsoft Academic Search

    Jung-Hae Suh; Chul Soo Shin

    2000-01-01

    Changes in cell life cycle and intracellular structure of Monascus sp. J101 by coculture with Saccharomyces cerevisiae were investigated. Cocultured Monascus cells showed accelerated cell growth and reproduction. Production of asexual and sexual spores was used as an efficient method of cell proliferation. Formation of meiotic (sexual) spores was more frequently observed in the cocultured Monascus cells. The interior structure

  11. Chromosomal integration of recombinant alpha-amylase and glucoamylase genes in saccharomyces cerevisiae for starch conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant constructs of barley '-amylase and Lentinula edodes glucoamylase genes were integrated into the chromosomes of Saccharomyces cerevisiae. The insertion was confirmed by PCR amplification of the gene sequence in the chromosomes. The expression was analyzed by SDS-PAGE of the enzymes puri...

  12. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  13. Rates of alcoholic fermentation by yeast (Saccharomyces cerevisiae) using four different sugars

    Microsoft Academic Search

    Larry Barnes

    Yeast (Saccharomyces cerevisiae) in 250 ml containers at 40 degrees C generated CO2 gas as a byproduct of alcoholic fermentation when fed glucose, sucrose, maltose, and lactose. Glucose (a monosaccharide) yielded CO2 more quickly than the other sugars (all disaccharides). The slowest reaction occurred with lactose, and there was no significant difference between sucrose and maltose.

  14. Single QTLmapping and nucleotide-level resolution ofa physiologic trait in wine Saccharomyces cerevisiae strains

    E-print Network

    Paris-Sud XI, Université de

    microarray; aneuploidy; ASP1 ; wine fermentation. Abstract Natural Saccharomyces cerevisiae yeast strains two strains from grape must isolates. The trait was quantified during alcoholic fermentation Yeasts used in wine fermentation are derived from wild strains capable of developing in grape juice

  15. Release of cell wall polysaccharides from Saccharomyces cerevisiae thermosensitive autolytic mutants during alcoholic fermentation

    Microsoft Academic Search

    Giovanna Giovani; Iolanda Rosi

    2007-01-01

    In order to increase the release of cell wall polysaccharides during alcoholic fermentation, a wine strain of Saccharomyces cerevisiae was subjected to UV mutagenesis to obtain thermosensitive autolytic mutants affected in cell wall integrity. Five mutants and the parental strain were utilized in fermentation trials conducted at 28, 32 and 34 °C. Results showed that at all temperatures the mutant strains

  16. Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae

    Microsoft Academic Search

    J. N. Jackowetz; S. Dierschke; R. Mira de Orduña

    2011-01-01

    Acetaldehyde is the terminal electron acceptor in the alcoholic fermentation by Saccharomyces cerevisiae. Quantitatively the most important carbonyl by-product, it has relevance for ethanol production yields as well as product stabilization and toxicology. The aim of this study was to investigate the effect of various enological parameters on acetaldehyde kinetics during alcoholic fermentations. Two commercial yeast strains were tested in

  17. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains

    Microsoft Academic Search

    J. p. Van Dijken; J. Bauer; L. Brambilla; P. Duboc; J. m. Francois; C. Gancedo; M. l. f. Giuseppin; J. j. Heijnen; M. Hoare; H. c. Lange; E. a. Madden; P. Niederberger; J. Nielsen; J. l. Parrou; T. Petit; D. Porro; M. Reuss; N. Van Riel; M. Rizzi; H. y. Steensma; C. t. Verrips; J. Vindeløv; J. t. Pronk

    2000-01-01

    To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state

  18. The effect of Saccharomyces cerevisiae on ruminal fermentation in dairy cows

    Microsoft Academic Search

    P. DOLEŽAL; J. DOLEŽAL; J. T?INÁCTÝ

    2005-01-01

    This study presents the results of an experiment in which the effect of addition of a yeast culture (Saccharomyces cerevisiae, Strain 47) on rumen fermentation was studied in thirty-six dairy cows of Holstein breed. The animals were divided into one control and five experimental groups. Each group involved 6 individuals. The animals received a diet consisting of good maize silage

  19. Effects of GPD1 Overexpression in Saccharomyces cerevisiae Commercial Wine Yeast Strains Lacking ALD6 Genes

    Microsoft Academic Search

    Brigitte Cambon; Virginie Monteil; Fabienne Remize; Carole Camarasa; Sylvie Dequin

    2006-01-01

    The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overex- pression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the

  20. Localized secretion of acid phosphatase reflects the pattern of cell surface growth in saccharomyces cerevisiae

    Microsoft Academic Search

    CHARLES FIELD; RANDY SCHEKMAN

    1980-01-01

    Secretion of cell wall-bound acid phosphatase by Saccharomyces cerevisiae occurs along a restricted portion of the cell surface . Acid phosphatase activity produced during derepressed synthesis on a phosphate-limited growth medium is detected with an enzyme- specific stain and is localized initially to the bud portion of a dividing cell . After two to three generations of phosphate-limited growth, most

  1. Effect of Saccharomyces cerevisiae or Aspergillus oryzae cultures and NDF level on parameters of ruminal fermentation

    Microsoft Academic Search

    R. L. A. Miranda; M. G. D. Mendoza; J. R. Bárcena-Gama; M. S. S. González; R. Ferrara; C. M. E. Ortega; P. M. A. Cobos

    1996-01-01

    A metabolism trial was conducted to study the effect of two direct-fed microbial cultures (Saccharomyces cerevisiae, SC; Aspergillus oryzae, AO) and neutral detergent fibre (NDF) level on ruminal fermentation. Six ruminally fistulated Holstein heifers (300 kg body weight) were randomly assigned to a 6 × 6 Latin square where treatments were control groups (CG) at two NDF levels (27 and

  2. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway

    Microsoft Academic Search

    Daniel J. Klionsky; Rosario Cueva; Debbie S. Yaver

    1992-01-01

    The Saccharomyces cerevisiae APE1 gene product, aminopeptidase I (API), is a soluble hydro- lase that has been shown to be localized to the vac- uole. API lacks a standard signal sequence and con- tains an unusual amino-terminal propeptide. We have examined the biosynthesis of API in order to elucidate the mechanism of its delivery to the vacuole. API is synthesized

  3. Optimization and Production of Bioethanol from Cashew Apple Juice Using Immobilized Yeast Cells by Saccharomyces cerevisiae

    Microsoft Academic Search

    T. Neelakandan; G. Usharani

    Ethanol has been known for a long time, being perhaps the oldest product obtained through traditional biotechnology. A study was taken up to evaluate the role of some fermentation parameters like substrate concentration, pH, temperature andinoculum concentration on ethanol production from cashew apple juice using immobilized yeast cells by Saccharomyces cerevisiae. This paper mainly focused on identifying the optimum conditions

  4. EMPLEO DE FRACCIONES CELULARES DE LA LEVADURA Saccharomyces cerevisiae COMO ADITIVO ALIMENTARIO PARA Artemia franciscana

    Microsoft Academic Search

    Yamilé Comabella; Tsai García-Galano; Olimpia Carrillo; Yadir Mauri

    RESUMEN En el presente estudio se evalúa la levadura Saccharomyces cerevisiae de forma desintegrada (LD) y tres fracciones celulares obtenidas de ella: complejo pared-membrana (FP), núcleo-proteínas (FN) y citoplasma (FC) como aditivo alimentario utilizando al crustáceo Artemia franciscana como modelo de experimentación. Se realizaron dos bioensayos para determinar el efecto que ejercían dichos aditivos en el crecimiento, biomasa seca, supervivencia

  5. Spectrophotometric determination of some pesticides in water samples after preconcentration with Saccharomyces cerevisiae immobilized on sepiolite

    Microsoft Academic Search

    A. Tunçeli; H. Ba?; Rehber A. Türker

    2001-01-01

    A sensitive and selective method for the preconcentration and determination of carbaryl, chlorpyrifos, linuron, and thiram was developed. The column sorption method was used for the preconcentration studies. Several parameters, such as amount of sorbent, pH, flow rate, volume of elution solution, and interferences, that can influence the retention of pesticides on Saccharomyces cerevisiae immobilized on sepiolite were investigated. Results

  6. The Role of Interelement Selection in Saccharomyces cerevisiae Ty Element Evolution

    E-print Network

    Jordan, King

    The Role of Interelement Selection in Saccharomyces cerevisiae Ty Element Evolution I. King Jordan by their ability to replicate faster than the host genomes in which they reside. Elements with higher rates of genomic replication possess a selective advan- tage over less active elements. Retrotransposon popula

  7. A Recombinant Saccharomyces cerevisiae Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze

    Microsoft Academic Search

    Daniel Gonzalez-Ramos; Eduardo Cebollero; Ramon Gonzalez

    2008-01-01

    Stabilization against protein haze was one of the first positive properties attributed to yeast mannoproteins in winemaking. In previous work we demonstrated that deletion of KNR4 leads to increased mannoprotein release in laboratory Saccharomyces cerevisiae strains. We have now constructed strains with KNR4 deleted in two different industrial wine yeast backgrounds. This required replacement of two and three alleles of

  8. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae

    SciTech Connect

    Xu, Liuzhong; Ajimura, M.; Padmore, R.; Klein, C.; Kleckner, N. [Harvard Univ., Cambridge, MA (United States)

    1995-12-01

    This report describes the identification of a new meiosis-specific gene of Saccharomyces cerevisiae called NDT80. DNA cloning and molecular analysis revealed that the NDT80 gene maps on the right arm of chromosome 8 and is transcribed during middle meiotic prophase. 82 refs., 6 figs., 3 tabs.

  9. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14oc-demethylase (14DM) from Saccharomyces cerevisiae. n open reading fram of 530 codons encodes a 60.7-kDa protein. hen this gene is disrupted by integrative transformation, the resulting strain requires e...

  10. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14 alpha-demethylase (14DM) from Saccharomyces cerevisiae. An open reading frame of 530 codons encodes a 60.7-kDa protein. When this gene is disrupted by integrative transformation, the resulting strain req...

  11. Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA

    E-print Network

    Santos, Janine H.

    Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase in POLG, which encodes the human mitochondrial DNA (mtDNA) polymerase g, PEO and Alpers patients, dominant-negative mutant poly- merases, elevated levels of mitochondrial and nuclear DNA damage

  12. Microtubule Dynamics from Mating through the First Zygotic Division in the Budding Yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Paul Maddox; E. Chin; A. Mallavarapu; E. Yeh; E. D. Salmon; K. Bloom

    1999-01-01

    We have used time-lapse digital imaging mi- croscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae . Mating be- gins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cy- cle and grow a projection towards one another forming

  13. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Kerry S. Bloom; E. D. Salmon; Paul S. Maddox

    1999-01-01

    Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus

  14. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae

    Microsoft Academic Search

    Jasper Rine; Ira Herskowitz

    1987-01-01

    Mating type interconversion in Saccharomyces cerevisiae occurs by transposition of copies of the a or ..cap alpha.. mating type cassettes from inactive loci, HML and HMR, to an active locus, MAT. The lack of expression of the a and ..cap alpha.. genes at the silent loci results from repression by trans-acting regulators encoded by SIR (Silent Information Regulator) genes. In

  15. Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces cerevisiae Mitochondria from Proteolytic

    E-print Network

    Trumpower, Bernard L.

    Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces cerevisiae Mitochondria- sulfur protein into the mitochondrial matrix and proc- essing of the precursor protein by matrix processing peptidase was investigated using high concentrations of metal chelators and iron-sulfur protein

  16. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates.

    PubMed Central

    Gralla, E B; Valentine, J S

    1991-01-01

    Deletion-replacement mutations of the Saccharomyces cerevisiae Cu,Zn superoxide dismutase gene were constructed. They were exquisitely sensitive to redox cycling drugs and showed slight sensitivity to other agents. The aerobic spontaneous mutation rate was three- to fourfold higher in sod1 delta 1 mutants, while the anaerobic rate was similar to that of the wild type. PMID:1885557

  17. Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage.

    PubMed

    Kubo, Ryosuke; Ohta, Keisuke; Funakawa, Shinya; Kitabatake, Naofumi; Araki, Shigeru; Izawa, Shingo

    2014-12-01

    We investigated yeast strains used in Cameroonian microbreweries, and identified a Saccharomyces cerevisiae strain (OCY3) with an excellent capacity for alcoholic fermentation. OCY3 showed higher tolerance to lactic acid and better fermentation performance under acidic conditions than a representative Japanese sake yeast, Kyokai No. 7, and a wine yeast, EC1118. PMID:24910259

  18. Heat Shock Protein Genes and Newly Integrated Glucose Metabolic Pathways Promote Ethanol Tolerance of Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulose-to-ethanol conversion provides a promising alternative means for production of sustainable and cleaner transportation fuels. Development of stress tolerant ethanologenic Saccharomyces cerevisiae is important for low-cost biobased economy. Tolerance to high levels of ethanol has been...

  19. Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation.

    PubMed

    Berry, D; Volz, P A

    1979-10-01

    Rates of phosphate uptake were approximately twice as great for Saccharomyces cerevisiae single-cell phenotypic isolates exposed to space parameters as for the wild-type ground control. Quantitative determination of 32P was performed by liquid scintillation spectrometry utilizing Cerenkov radiation counting techniques. PMID:395899

  20. “Ant” and “Grasshopper” Life-History Strategies in Saccharomyces cerevisiae

    PubMed Central

    Spor, Aymé; Wang, Shaoxiao; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2008-01-01

    From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as “ant” and “grasshopper” strategies of resource utilization. Interestingly, a strain may be “ant” in one medium and “grasshopper” in another. These life-history strategies are discussed with regards to yeast physiology, and in an evolutionary perspective. PMID:18270570

  1. Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Protein secretion is a fundamental process in all living cells. Proteins can either be secreted via the classical or non-classical pathways. In Saccharomyces cerevisiae, gluconeogenic enzymes are in the extracellular fraction/periplasm when cells are grown in media containing low glucose. Following a transfer of cells to high glucose media, their levels in the extracellular fraction are reduced rapidly. We hypothesized that changes in the secretome were not restricted to gluconeogenic enzymes. The goal of the current study was to use a proteomic approach to identify extracellular proteins whose levels changed when cells were transferred from low to high glucose media. Results We performed two iTRAQ experiments and identified 347 proteins that were present in the extracellular fraction including metabolic enzymes, proteins involved in oxidative stress, protein folding, and proteins with unknown functions. Most of these proteins did not contain typical ER-Golgi signal sequences. Moreover, levels of many of these proteins decreased upon a transfer of cells from media containing low to high glucose media. Using an extraction procedure and Western blotting, we confirmed that the metabolic enzymes (glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, pyruvate decarboxylase), proteins involved in oxidative stress (superoxide dismutase and thioredoxin), and heat shock proteins (Ssa1p, Hsc82p, and Hsp104p) were in the extracellular fraction during growth in low glucose and that the levels of these extracellular proteins were reduced when cells were transferred to media containing high glucose. These proteins were associated with membranes in vesicle-enriched fraction. We also showed that small vesicles were present in the extracellular fraction in cells grown in low glucose. Following a transfer from low to high glucose media for 30 minutes, 98% of these vesicles disappeared from the extracellular fraction. Conclusions Our data indicate that transferring cells from low to high glucose media induces a rapid decline in levels of a large number of extracellular proteins and the disappearance of small vesicles from the extracellular fraction. Therefore, we conclude that the secretome undergoes dynamic changes during transition from glucose-deficient to glucose-rich media. Most of these extracellular proteins do not contain typical ER signal sequences, suggesting that they are secreted via the non-classical pathway. PMID:24520859

  2. Genomic instability induced by mutations in Saccharomyces cerevisiae POL1.

    PubMed Central

    Gutiérrez, Pedro J A; Wang, Teresa S-F

    2003-01-01

    Mutations of chromosome replication genes can be one of the early events that promote genomic instability. Among genes that are involved in chromosomal replication, DNA polymerase alpha is essential for initiation of replication and lagging-strand synthesis. Here we examined the effect of two mutations in S. cerevisiae POL1, pol1-1 and pol1-17, on a microsatellite (GT)(16) tract. The pol1-17 mutation elevated the mutation rate 13-fold by altering sequences both inside and downstream of the (GT)(16) tract, whereas the pol1-1 mutation increased the mutation rate 54-fold by predominantly altering sequences downstream of the (GT)(16) tract in a RAD52-dependent manner. In a rad52 null mutant background pol1-1 and pol1-17 also exhibited different plasmid and chromosome loss phenotypes. Deletions of mismatch repair (MMR) genes induce a differential synergistic increase in the mutation rates of pol1-1 and pol1-17. These findings suggest that perturbations of DNA replication in these two pol1 mutants are caused by different mechanisms, resulting in various types of mutations. Thus, mutations of POL1 can induce a variety of mutator phenotypes and can be a source of genomic instability in cells. PMID:14504218

  3. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...that consists of the reagents used to measure, by immunochemical techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S. cerevisiae antibodies may aid in the diagnosis of...

  4. Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content.

    PubMed

    Taillandier, Patricia; Lai, Quoc Phong; Julien-Ortiz, Anne; Brandam, Cédric

    2014-07-01

    Alcoholic fermentation by an oenological strain of Torulaspora delbrueckii in association with an oenological strain of Saccharomyces cerevisiae was studied in mixed and sequential cultures. Experiments were performed in a synthetic grape must medium in a membrane bioreactor, a special tool designed to study indirect interactions between microorganisms. Results showed that the S. cerevisiae strain had a negative impact on the T. delbrueckii strain, leading to a viability decrease as soon as S. cerevisiae was inoculated. Even for high inoculation of T. delbrueckii (more than 20× S. cerevisiae) in mixed cultures, T. delbrueckii growth was inhibited. Substrate competition and cell-to-cell contact mechanism could be eliminated as explanations of the observed interaction, which was probably an inhibition by a metabolite produced by S. cerevisiae. S. cerevisiae should be inoculated 48 h after T. delbrueckii in order to ensure the growth of T. delbrueckii and consequently a decrease of volatile acidity and a higher isoamyl acetate production. In this case, in a medium with a high concentration of assimilable nitrogen (324 mg L(-1)), S. cerevisiae growth was not affected by T. delbrueckii. But in a sequential fermentation in a medium containing 176 mg L(-1) initial assimilable nitrogen, S. cerevisiae was not able to develop because of nitrogen exhaustion by T. delbrueckii growth during the first 48 h, leading to sluggish fermentation. PMID:24500666

  5. Copyright 2002 by the Genetics Society of America The tRNA-Tyr Gene Family of Saccharomyces cerevisiae: Agents of Phenotypic

    E-print Network

    Sinha, Himanshu

    derived Saccharomyces cerevisiae strain involving a cox15 ochre mutation, which acts as a reporter ], Saccharomyces cerevisiae is a particularly useful phism, antigenic variation, and phase variation) playsCopyright 2002 by the Genetics Society of America The tRNA-Tyr Gene Family of Saccharomyces

  6. The metal-coordinated Casiopeína IIIEa induces the petite-like phenotype in Saccharomyces cerevisiae.

    PubMed

    López-Rodríguez, Angélica; Cárabez-Trejo, Alfonso; Rosas-Sánchez, Fernando; Mejía, Carmen; Ruiz-Azuara, Lena; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2011-12-01

    The Casiopeínas® are mixed chelate copper (II) complexes and promising antineoplastics agents against cancer cells and tumors in vitro and in vivo. However, the action mode of these compounds is poorly characterized. In this work the effect of the antineoplastic Casiopeína IIIEa on the metabolism and ultrastructure of the yeast Saccharomyces cerevisiae was investigated. Exposure of cells growing in rich or in low-iron medium to 5 ?M of the compound decreased duplication time and reduced oxygen consumption. Those cells formed smaller colonies when growing in a non-fermentable carbon source and low-iron medium, and under the light microscope, multiple folds were observed along the plasma membrane accompanied with a reduction in the diameter of the yeast. These observations were confirmed under the electron microscope, which also revealed a slight reduction of the mitochondrial size. A correlation was found with smaller colonies exhibiting lower rates of oxygen consumption, and yeast labelled with fluorescent MitoTracker(TM) consistently exhibited reduced mitochondrial activity. It appears that Casiopeína IIIEa gives rise to smaller yeast and petite-like colonies by reducing the mitochondrial respiratory activity without significantly affecting the mitochondrial structure. PMID:21779809

  7. Identification of Genes Required for Normal Pheromone-Induced Cell Polarization in Saccharomyces Cerevisiae

    PubMed Central

    Chenevert, J.; Valtz, N.; Herskowitz, I.

    1994-01-01

    In response to mating pheromones, cells of the yeast Saccharomyces cerevisiae adopt a polarized ``shmoo'' morphology, in which the cytoskeleton and proteins involved in mating are localized to a cell-surface projection. This polarization is presumed to reflect the oriented morphogenesis that occurs between mating partners to facilitate cell and nuclear fusion. To identify genes involved in pheromone-induced cell polarization, we have isolated mutants defective in mating to an enfeebled partner and studied a subset of these mutants. The 34 mutants of interest are proficient for pheromone production, arrest in response to pheromone, mate to wild-type strains, and exhibit normal cell polarity during vegetative growth. The mutants were divided into classes based on their morphological responses to mating pheromone. One class is unable to localize cell-surface growth in response to mating factor and instead enlarges in a uniform manner. These mutants harbor special alleles of genes required for cell polarization during vegetative growth, BEM1 and CDC24. Another class of mutants forms bilobed, peanut-like shapes when treated with pheromone and defines two genes, PEA1 and PEA2. PEA1 is identical to SPA2. A third class forms normally shaped but tiny shmoos and defines the gene TNY1. A final group of mutants exhibits apparently normal shmoo morphology. The nature of their mating defect is yet to be determined. We discuss the possible roles of these gene products in establishing cell polarity during mating. PMID:8013906

  8. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae.

    PubMed

    Ramos, F; Wiame, J M

    1982-04-01

    Saccharomyces cerevisiae mutants lacking the anabolic L-threonine deaminase, the ilv1- mutants, have been found to exhibit a normal ability to grow, without auxotrophy towards isoleucine, on L-threonine of L-serine as only nitrogen nutrient. Starting from a strain carrying a ilv1- mutation, a new mutation affecting the ability to utilize L-threonine as nitrogen source was selected. This mutation, which also impairs the ability to utilize L-serine, has been denominated cha-, for 'catabolism of hydroxyamino acids' and was found to result in the lack of a catabolic L-serine (L-threonine) deaminase. This enzyme which, unlike the anabolic threonine deaminase, is more active towards serine than towards threonine, differs from the latter enzyme by a number of biochemical and regulatory properties. Whereas the anabolic enzyme is an allosteric enzyme sensitive to feedback inhibition by isoleucine, the catabolic enzyme exhibits Michaelian kinetics: no control of its activity has been detected. Its synthesis is induced by L-serine and L-threonine. These two enzymes, which thus can be easily differentiated by means of their regulations, display a limited ability to compensate for one another's absence and appear to play clearly distinct roles under normal physiological conditions. PMID:7042346

  9. A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically viable production of lignocellulosic ethanol requires efficient conversion of feedstock sugars to ethanol. Saccharomyces cerevisiae cannot ferment xylose, the main five-carbon sugars in biomass, but can ferment xylulose, an enzymatically derived isomer. Xylulose fermentation is slow rel...

  10. Modeling disease-related proteins in Saccharomyces cerevisiae : insights into alpha-synuclein and TorsinA biology

    E-print Network

    Valastyan, Julie S. (Julie Suzanne)

    2013-01-01

    The yeast Saccharomyces cerevisiae has long been used to model complex cellular processes. As a eukaryote, much of its fundamental biology is conserved with higher organisms. As a single-celled, genetically tractable ...

  11. Except in Every Detail: Comparing and Contrasting G-Protein Signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe

    Microsoft Academic Search

    Charles S. Hoffman

    2005-01-01

    When asked to explain the difference between the mecha- nisms controlling mating type switching in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharo- myces pombe, Brandeis University's Jim Haber once replied, \\

  12. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Engineering the industrial ethanologen Saccharomyces cerevisiae to utilize pentose sugars from lignocellulosic biomass is critical for commercializing cellulosic fuel ethanol production. Approaches to engineer pentose-fermenting yeasts have required expression of additional genes. We implemented a...

  13. Multiple gene mediated aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural and HMF (5-hydroxymethylfurfural) are representative inhibitors to ethanologenic yeast generated from biomass pretreatment using dilute acid hydrolysis. Few yeast strains tolerant to inhibitors are available. We have developed tolerant strains of Saccharomyces cerevisiae with enhanced bio...

  14. Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.

    1981-01-01

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent.

  15. Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the northern european wine-making environment.

    PubMed

    Erny, C; Raoult, P; Alais, A; Butterlin, G; Delobel, P; Matei-Radoi, F; Casaregola, S; Legras, J L

    2012-05-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (??)(2) genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  16. Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

    PubMed Central

    Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei-Radoi, F.; Casaregola, S.

    2012-01-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (??)2 genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  17. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    PubMed

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts. PMID:23329062

  18. Influence of Saccharomyces cerevisiae Dose on Ruminal Fermentation and Digestion in Sheep Fed a Corn Stover Diet

    Microsoft Academic Search

    M. M. Crosby; G. D. Mendoza; R. Bárcena; S. González; E. Aranda

    2004-01-01

    Crosby, M.M., Mendoza, G.D., Bárcena, R., González, S. and Aranda, E. 2004. Influence of Saccharomyces cerevisiae dose on ruminal fermentation and digestion in sheep fed a corn stover diet. J. Appl. Anim. Res., 25: 9–12.A metabolism trial was conducted to evaluate Saccharomyces cerevisiae dose on ruminal fermentation and digestibility. Fourteen Suffolk ewes (35±4 kg BW) with ruminal and duodenal cannula

  19. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    Microsoft Academic Search

    Yunsong Zhang; Weiguo Liu; Li Zhang; Meng Wang; Maojun Zhao

    2011-01-01

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption

  20. Electron microscopy of the K2 killer effect of Saccharomyces cerevisiae T206 on a mesophilic wine yeast

    Microsoft Academic Search

    A. S. Vadasz; D. B. Jagganath; I. S. Pretorius; A. S. Gupthar

    2000-01-01

    A mesophilic wine yeast, Saccharomyces cerevisiae CSIR Y217 K-R- was subjected to the K2 killer effect of Saccharomyces cerevisiae T206 K+R+ in a liquid grape medium. The lethal effect of the K2 mycoviral toxin was confirmed by methylene blue staining. Scanning electron microscopy of cells from challenge experiments revealed rippled cell surfaces, accompanied by cracks and pores, while those unaffected

  1. “A comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces Cerevisiae, Saccharomyces Ludwigii and Saccharomyces Rouxii on Brewer’S Spent Grain”

    PubMed Central

    Mohammadi, Aniseh; Razavi, Seyyed Hadi; Mousavi, Seyyed Mohammad; Rezaei, Karamatollah

    2011-01-01

    The immobilization of Saccharomyces cerevisiae DSM 70424, Saccharomyces ludwigii DSM 3447 and Saccharomyces rouxii DSM 2531 on brewer’s spent grain and then ethanol production and sugar consumption of these immobilized yeasts were investigated. The aim of this study was to investigate the abilities of these three immobilized yeasts for producing alcohol for brewing at two temperatures (7 and 12 °C) using two different sugar levels (one at original level supplied in the brewery and one with 2.5% (w/v), added glucose to the wort). Increasing both parameters resulted in higher alcohol production by all the yeasts studied. At 7 °C and with original wort density the ethanol content at the end of fermentation was 2.7% (v/v) for S. cerevisiae, 1.7% for S. ludwigii and 2.0% for S. rouxii. After the addition of 2.5% (w/v) glucose at the same temperature (7 °C), the alcohol production was increased to 4.1, 2.8 and 4.1%, respectively. Similar improvements were observed when the fermentation was carried out at 12 °C with/without the addition of glucose to the wort. However, temperature indicated greater influence on S. ludwigii than did on S. rouxii and S. cerevisiae. The immobilization as carried out in this study impacted both S. ludwigii and S. rouxii in a way that they could consume maltose under certain conditions. PMID:24031672

  2. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards

    PubMed Central

    Hyma, Katie E.; Fay, Justin C.

    2012-01-01

    Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak-tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human-associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak-trees within three North American vineyards and compared them to those isolated from oak-trees outside of vineyards. Within vineyards we found evidence of migration between grapes and oak-trees and potential gene flow between the divergent oak-tree and vineyard groups. Yet, we found no vineyard genotypes on oak-trees outside of vineyards. In contrast, S. paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak-tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups. PMID:23286354

  3. Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

    PubMed Central

    Xu, Guoqiang; Zou, Wei; Chen, Xiulai; Xu, Nan; Liu, Liming; Chen, Jian

    2012-01-01

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L–1 without any apparent change in growth in fed-batch culture. FT-IR and 1H and 13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L–1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L–1 FA in batch culture when the SFC1 gene encoding a succinate–fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering. PMID:23300594

  4. Mathematical model for the aerobic growth of saccharomyces cerevisiae with a saturated respiratory capacity

    SciTech Connect

    Barford, J.P.; Hall, R.J.

    1981-08-01

    A mathematical model for the aerobic growth of Saccharomyces cerevisiae in both batch and continuous culture is described. It was based on the experimental observation that the respiratory capacity of this organism may become saturated and exhibit a maximum specific oxygen uptake rate after suitable adaptation. This experimental observation led to the possibility that transport into and out of the mitochondrion was of major importance in the overall metabolism of S. cerevisiae and was subject to long-term adaptation. Consistent with this observation a distributed model was proposed which, as its basis, assumed the control of respiration and fermentation to be the result of saturation of respiration without any specific repression or inhibition of the uptake rates of other substrates. No other regulation of fermentation and respiration was assumed. The model provided a suitable structure allowing precise quantification of the changes in rate and stoichiometry of energy production. The model clearly indicated that growth under the wide range of experimental conditions reported could not be predicted using constant values for the maximum specific respiratory rate or constant values of Yatp (g biomass/mol ATP) and PO ratio of (mol ATP/atom oxygen). The causes of the variation in the respiratory rate were not determined and it was concluded that a more detailed analysis (reported subsequently) was required. The variation of Y atp and PO ratio with specific growth rate implied that the efficiency of ATP generation or ATP utilization decreased with increasing specific growth rate. It was concluded that it was not possible to quantify the individual effect of Yatp and PO ratio until independent means for their reliable estimation is available. (Refs. 84).

  5. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae.

    PubMed Central

    Basrai, M A; Kingsbury, J; Koshland, D; Spencer, F; Hieter, P

    1996-01-01

    A chromosome transmission fidelity (ctf) mutant, s138, of Saccharomyces cerevisiae was identified by its centromere (CEN) transcriptional readthrough phenotype, suggesting perturbed kinetochore integrity in vivo. The gene complementing the s138 mutation was found to be identical to the S. cerevisiae SPT4 gene. The s138 mutation is a missense mutation in the second of four conserved cysteine residues positioned similarly to those of zinc finger proteins, and we henceforth refer to the mutation of spt4-138. Both spt4-138 and spt4 delta strains missegregate a chromosome fragment at the permissive temperature, are temperature sensitive for growth at 37 degrees C, and upon a shift to the nonpermissive temperature show an accumulation of large budded cells, each with a nucleus. Previous studies suggest that Spt4p functions in a complex with Spt5p and Spt6p, and we determined that spt6-140 also causes missegregation of a chromosome fragment. Double mutants carrying spt4 delta 2::HIS3 and kinetochore mutation ndc10-42 or ctf13-30 show a synthetic conditional phenotype. Both spt4-138 and spt4 delta strains exhibit synergistic chromosome instability in combination with CEN DNA mutations and show in vitro defects in microtubule binding to minichromosomes. These results indicate that Spt4p plays a role in chromosome segregation. The results of in vivo genetic interactions with mutations in kinetochore proteins and CEN DNA and of in vitro biochemical assays suggest that Spt4p is important for kinetochore function. PMID:8649393

  6. Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity.

    PubMed

    Hong, Jiefang; Yang, Huajun; Zhang, Kun; Liu, Cheng; Zou, Shaolan; Zhang, Minhua

    2014-11-01

    Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key is the engineering of a microorganism that can efficiently utilize cellulose. Development of Saccharomyces cerevisiae for CBP requires high level expression of cellulases, particularly cellobiohydrolases (CBH). In this study, to construct a CBP-enabling yeast with enhanced CBH activity, three cassettes containing constitutively expressed CBH-encoding genes (cbh1 from Aspergillus aculeatus, cbh1 and cbh2 from Trichoderma reesei) were constructed. T. reesei eg2, A. aculeatus bgl1, and the three CBH-encoding genes were then sequentially integrated into the S. cerevisiae W303-1A chromosome via ?-sequence-mediated integration. The resultant strains W1, W2, and W3, expressing uni-, bi-, and trifunctional cellulases, respectively, exhibited corresponding cellulase activities. Furthermore, both the activities and glucose producing activity ascended. The growth test on cellulose containing plates indicated that CBH was a necessary component for successful utilization of crystalline cellulose. The three recombinant strains and the control strains W303-1A and AADY were evaluated in acid- and alkali-pretreated corncob containing media with 5 FPU exogenous cellulase/g biomass loading. The highest ethanol titer (g/l) within 7 days was 5.92 ± 0.51, 18.60 ± 0.81, 28.20 ± 0.84, 1.40 ± 0.12, and 2.12 ± 0.35, respectively. Compared with the control strains, W3 efficiently fermented pretreated corncob to ethanol. To our knowledge, this is the first study aimed at creating cellulolytic yeast with enhanced CBH activity by integrating three types of CBH-encoding gene with a strong constitutive promoter Ptpi. PMID:25164958

  7. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division

    Microsoft Academic Search

    Leland H. Hartwell; Michael W. Unger

    1977-01-01

    ABSTRACT The budding yeast, Saccharomyces cerevisiae, was grown exponentially at differ- ent,rates,in the,presence,of growth,rate-limiting concentrations,of a protein synthesis inhibitor, cycloheximide. The volumes of the parent cell and the bud were,determined,as were,the intervals of the cell cycle devoted,to the unbudded and,budded,periods. We,found,that S. cerevisiae cells divide,unequally.,The daughter,cell (the cell produced,at division,by the,bud,of the previous,cycle) is smaller,and,has a longer,subsequent,cell cycle than,the parent,cell

  8. Regulation of HIS4-lacZ fusions in Saccharomyces cerevisiae.

    PubMed Central

    Silverman, S J; Rose, M; Botstein, D; Fink, G R

    1982-01-01

    The beginning of the Saccharomyces cerevisiae HIS4 gene has been fused to the structural gene for Escherichia coli beta-galactosidase. This construction, which contains HIS4 DNA from -732 to +30 relative to the translation initiation codon, has been integrated into the yeast genome at two chromosomal locations, HIS4 and URA3. At both locations, this 762-base-pair stretch of DNA is sufficient for initiating expression of beta-galactosidase activity in S. cerevisiae and confers upon this activity the regulatory response normally found for HIS4. Images PMID:6817079

  9. Bioconversion of lactose/whey to fructose diphosphate with recombinant Saccharomyces cerevisiae cells

    SciTech Connect

    Compagno, C.; Tura, A.; Ranzi, B.M.; Martegani, E. (Univ. di Milano (Italy))

    1993-07-01

    Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli [beta]-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. The authors showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate.

  10. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  11. Oxidative Stress Induced in Saccharomyces Cerevisiae Exposed to Dielectric Barrier Discharge Plasma in Air at Atmospheric Pressure

    Microsoft Academic Search

    Huixia Chen; Fengwu Bai; Zhilong Xiu

    2010-01-01

    Nonthermal plasmas are considered to be effective methods for sterilization. However, the changes that occur within the cells of microorganism during sterilization are rarely reported. This paper investigated the effects of dielectric barrier discharge air plasma at atmospheric pressure on yeast Saccharomyces cerevisiae ATCC 4126 suspended in water. S. cerevisiae showed extensive cell death after plasma discharge. For plasma-treated cells,

  12. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A

    Microsoft Academic Search

    Paula Jouhten; Eija Rintala; Anne Huuskonen; Anu Tamminen; Mervi Toivari; Marilyn Wiebe; Laura Ruohonen; Merja Penttilä; Hannu Maaheimo

    2008-01-01

    BACKGROUND: The yeast Saccharomyces cerevisiae is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of S. cerevisiae but understanding of the oxygen dependence of intracellular

  13. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: Influence of yeast and solid surface properties

    Microsoft Academic Search

    Gaëlle Guillemot; Guadalupe Vaca-Medina; Helene Martin-Yken; Aude Vernhet; Philippe Schmitz; Muriel Mercier-Bonin

    2006-01-01

    The present study focused on the shear-induced detachment of Saccharomyces cerevisiae in adhesive contact with a 316L stainless steel surface using a shear stress flow chamber, with a view to determining the respective influence of the yeast surface properties and the support characteristics. The effect of cultivation of S. cerevisiae yeast cells on their subsequent detachment from the solid surface

  14. [New aspects of the pleiotropic action of the genes coding Saccharomyces cerevisiae exopolyphosphatases].

    PubMed

    Gromosova, E N; Kachur, T L; Bo?chuk, S I; Riazanova, L P; Kulakovskaia, T V

    2012-01-01

    Inactivation of the key genes, which are responsible for the enzymes of polyphosphates degradation, exopolyphosphatases ppx1 and ppn1, caused both an increase of polyphosphates content in Saccharomyces cerevisiae cells and an increase in chain length of acid-soluble and alkali-soluble fractions. It had no effect on the frequency of volutine granules metachromasy that was based on the interaction of dye molecules with ionic groups of polyphosphates. At the same time, a mutant strain reaction to nystatin differed from the reaction of the parental and wild-type strains when the metachromasy was absent. Obtained data may indicate a pleiotropic effect of ppx1 and ppn1 genes, which encode the major exopolyphosphatase of Saccharomyces cerevisiae and affect the reaction of cells to external factors through changes in the metabolism of polyphosphates. PMID:23120983

  15. Dominant lethal mutations in the plasma membrane H(+)-ATPase gene of Saccharomyces cerevisiae.

    PubMed Central

    Harris, S L; Na, S; Zhu, X; Seto-Young, D; Perlin, D S; Teem, J H; Haber, J E

    1994-01-01

    The plasma membrane H(+)-ATPase of Saccharomyces cerevisiae is an essential protein that is required to establish cellular membrane potential and maintain a normal internal pH. An Asp-378 to Asn substitution at the residue phosphorylated during catalysis is dominant lethal when the pma1-D378N mutation is expressed along with a wild-type plasma membrane H(+)-ATPase (PMA1) gene. Several mutations in the first two putative transmembrane domains are also dominant lethal. However, these dominant lethal mutants often appear to be innocuous, because they are frequently lost by gene conversion to the wild-type sequence during the process of introducing the mutant sequence and subsequently removing the wild-type gene. Loss of the mutation by gene conversion does not occur while introducing recessive lethal mutations. Cells carrying the wild-type PMA1 gene on the chromosome and a dominant lethal mutation under the control of a GAL1 promoter on a centromere-containing plasmid exhibit a galactose-dependent lethality. Indirect immunofluorescence staining using anti-Pma1 antibodies shows that induction of dominant lethal PMA1 mutations leads to the accumulation of a number of intensely staining cytoplasmic structures that are not coincident with the nucleus and its immediately surrounding endoplasmic reticulum. These structures also accumulate the endoplasmic reticulum protein Kar2. Expression of the dominant lethal protein also prevents transport of the wild-type ATPase to the plasma membrane. Images PMID:7937988

  16. Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae.

    PubMed

    Thota, Swarna Gowri; Unnikannan, C P; Thampatty, Sitalakshmi R; Manorama, R; Bhandari, Rashna

    2015-02-15

    Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1? yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1? yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a ?-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1? yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription. PMID:25423617

  17. Identification and Characterization of Major Lipid Particle Proteins of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Athenstaedt, Karin; Zweytick, Dagmar; Jandrositz, Anita; Kohlwein, Sepp Dieter; Daum, Günther

    1999-01-01

    Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism. PMID:10515935

  18. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae.

    PubMed

    Athenstaedt, K; Zweytick, D; Jandrositz, A; Kohlwein, S D; Daum, G

    1999-10-01

    Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism. PMID:10515935

  19. REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis

    SciTech Connect

    Larimer, F.W.; Perry, J.R.; Hardigree, A.A.

    1989-01-01

    The REV1 gene of Saccharomyces cerevisiae is required for normal induction of mutations by physical and chemical agents. We have determined the sequence of a 3,485-base-pair segment of DNA that complements the rev1-1 mutant. Gene disruption was used to confirm that this DNA contained the REV1 gene. The sequenced segment contains a single long open reading frame, which can encode a polypeptide of 985 amino acid residues. The REV1 transcript is 3.1 kilobase pairs in length. Frameshift mutations introduced into the open reading frame yielded a Rev-phenotype. A base substitution, encoding Gly-193 to Arg-193, was found in this open reading frame in rev1-1. Deletion mutants, lacking segments of the 5' region of REV1, had intermediate mutability relative to REV1 and rev1-1; a complete deletion exhibited lower mutability than rev1-1. REV1 is not an essential gene. An in-frame fusion of the 5' end of the REV1 open reading frame to the lacZ gene produced beta-galactosidase activity constitutively. The predicted REV1 protein is hydrophilic, with a predicted pI of 9.82. No homologies to RAD1, RAD2, RAD3, RAD7, or RAD10 proteins were noted. A 152-residue internal segment displayed 25% identity with UMUC protein.

  20. Pronounced and Extensive Microtubule Defects in a Saccharomyces cerevisiae DIS3 Mutant

    PubMed Central

    Smith, Sarah B.; Kiss, Daniel L.; Turk, Edward; Tartakoff, Alan M.; Andrulis, Erik D.

    2012-01-01

    Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological, and transcriptomic analysis, we examine the role of Dis3 – an essential polypeptide with endo- and 3’ to 5’ exo-ribonuclease activity – in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (i) accumulate anaphase and pre-anaphase mitotic spindles; (ii) exhibit spindles that are mis-oriented and displaced from the bud neck; (iii) harbor elongated spindle-associated astral MTs; (iv) have an increased G1 astral MT length and number; and (v) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4 – but not other exosome subunit gene mutants – also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggests an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs, and cell cycle progression. PMID:21919057

  1. Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae

    SciTech Connect

    Parulekar, S.J.; Semones, G.B.; Rolf, M.J.

    1986-05-01

    Continuous cultures of Saccharomyces cerevisiae are known to exhibit oscillatory behavior in the oxidative region. Important findings of a series of experiments conducted to identify the causes for initiation of and the means for elimination of oscillations in these cultures are reported in this paper. These oscillations are seen to be connected to the growth kinetics of the microorganism and are induced at very low glucose concentrations and at dissolved oxygen (DO) levels that are neither high nor low (DO values between 20 and 78% air saturation at a dilution rate of 0.2/h and pH of 5.5 at 30 degrees C). The oscillatory behavior is encountered over a range of dilution rates (0.09-0.25/h at 30 degrees C for pH = 5.5 and DO = 50% air saturation). The oscillations can be eliminated by raising the DO level above a critical value or by lowering the DO level below a critical value. 26 references.

  2. Studies on immobilized Saccharomyces cerevisiae. I. Analysis of continuous rapid ethanol fermentation in immobilized cell reactor

    SciTech Connect

    Tyagi, R.D.; Ghose, T.K.

    1982-04-01

    Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30/sup 0/C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L/sup -1/ h/sup -1/. The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g cells/g carrier was achieved. The immobilized-cell column was operated continuously at steady state over a period of 35 days. Based on the parameter data monitored from the system, mathematical analysis has been made and rate equations proposed, and the values of specific productivity of ehtanol and specific growth rate for immobilized cells computed. It has been established that immobilized cells exhibit higher specific rate of ethanol formation compared to free cells but the specific growth rate appears to be comparatively low. The yield of ethanol in the immobilized-cell system is also higher than in the free-cell system.

  3. Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures.

    PubMed

    Jones, K D; Kompala, D S

    1999-05-28

    Growth of Saccharomyces cerevisiae on glucose in aerobic batch culture follows the well-documented diauxic pattern of completely fermenting glucose to ethanol during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming ethanol. In continuous cultures over a range of intermediate dilution rates, the yeast bioreactor exhibits sustained oscillations in all the measured concentrations, such as cell mass, glucose, ethanol, and dissolved oxygen, the amounts of intracellular storage carbohydrates, such as glycogen and trehalose, the fraction of budded cells as well as the culture pH. We present here a structured, unsegregated model for the yeast growth dynamics developed from the 'cybernetic' modeling framework, to simulate the dynamic competition between all the available metabolic pathways. This cybernetic model accurately predicts all the key experimentally observed aspects: (i) in batch cultures, duration of the intermediate lag phase, sequential production and consumption of ethanol, and the dynamics of the gaseous exchange rates of oxygen and carbon dioxide; and (ii) in continuous cultures, the spontaneous generation of oscillations as well as the variations in period and amplitude of oscillations when the dilution rate or agitatin rate are changed. PMID:10483102

  4. Saccharomyces cerevisiae Ribosomal Protein L26 Is Not Essential for Ribosome Assembly and Function

    PubMed Central

    Babiano, Reyes; Gamalinda, Michael

    2012-01-01

    Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell. PMID:22688513

  5. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae.

    PubMed

    Benjaphokee, Suthee; Koedrith, Preeyaporn; Auesukaree, Choowong; Asvarak, Thipa; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-01-15

    Use of thermotolerant strains is a promising way to reduce the cost of maintaining optimum temperatures in the fermentation process. Here we investigated genetically a Saccharomyces cerevisiae strain showing a high-temperature (41°C) growth (Htg(+)) phenotype and the result suggested that the Htg(+) phenotype of this Htg(+) strain is dominant and under the control of most probably six genes, designated HTG1 to HTG6. As compared with a Htg(-) strain, the Htg(+) strain showed a higher survival rate after exposure to heat shock at 48°C. Moreover, the Htg(+) strain exhibited a significantly high content of trehalose when cultured at high temperature and stronger resistance to Congo Red, an agent that interferes with cell wall construction. These results suggest that a strengthened cell wall in combination with increased trehalose accumulation can support growth at high temperature. The gene CDC19, encoding pyruvate kinase, was cloned as the HTG2 gene. The CDC19 allele from the Htg(+) strain possessed five base changes in its upstream region, and two base changes resulting in silent mutations in its coding region. Interestingly, the latter base changes are probably responsible for the increased pyruvate kinase activity of the Htg(+) strain. The possible mechanism leading to this increased activity and to the Htg(+) phenotype, which may lead to the activation of energy metabolism to maintain cellular homeostasis, is discussed. PMID:21459167

  6. Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae

    PubMed Central

    Thota, Swarna Gowri; Unnikannan, C. P.; Thampatty, Sitalakshmi R.; Manorama, R.; Bhandari, Rashna

    2014-01-01

    Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1? yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1? yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a ?-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1? yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription. PMID:25423617

  7. A Novel Allele of Hap1 Causes Uninducible Expression of Hem13 in Saccharomyces Cerevisiae

    PubMed Central

    Ushinsky, S. C.; Keng, T.

    1994-01-01

    Transcription of HEM13 in Saccharomyces cerevisiae is repressed by heme and oxygen. We have isolated two mutants in which expression of HEM13 is aberrant. The mutant alleles in these strains represent two different alleles of HAP1. HAP1 encodes an activator protein whose DNA binding activity is stimulated by heme, and is required for the transcription of CYC1, ROX1 and a number of other heme-dependent genes. One of our mutant alleles confers a phenotype much like that of the hap1::LEU2 allele. Expression of HEM13 in a strain with this mutation is elevated under repressing conditions and not fully inducible in the absence of heme. The other mutant allele of HAP1 we uncovered confers a novel phenotype. A strain containing this allele exhibits heme-independent expression of CYC1 and ROX1 and uninducible expression of HEM13 and ANB1. The mutation associated with this novel allele of HAP1 was localized to a glycine to aspartate change in amino acid 235 of HAP1, between the DNA binding and heme responsive domains. DNA binding assays demonstrated that the protein made from this HAP1 allele retains the ability to bind DNA, but that unlike wild-type HAP1 protein, this binding is not stimulated by heme. PMID:8005437

  8. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.

    PubMed Central

    Dancis, A; Roman, D G; Anderson, G J; Hinnebusch, A G; Klausner, R D

    1992-01-01

    The principal iron uptake system of Saccharomyces cerevisiae utilizes a reductase activity that acts on ferric iron chelates external to the cell. The FRE1 gene product is required for this activity. The deduced amino acid sequence of the FRE1 protein exhibits hydrophobic regions compatible with transmembrane domains and has significant similarity to the sequence of the plasma membrane cytochrome b558 (the X-CGD protein), a critical component of a human phagocyte oxidoreductase, suggesting that FRE1 is a structural component of the yeast ferric reductase. FRE1 mRNA levels are repressed by iron. Fusion of 977 base pairs of FRE1 DNA upstream from the translation start site of an Escherichia coli lacZ reporter gene confers iron-dependent regulation on expression of beta-galactosidase in yeast. An 85-base-pair segment of FRE1 5' noncoding sequence contains a RAP1 binding site and a repeated sequence, TTTTTGCTCAYC; this segment is sufficient to confer iron-repressible transcriptional activity on heterologous downstream promoter elements. Images PMID:1570306

  9. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae.

    PubMed

    Jensen, Niels B; Strucko, Tomas; Kildegaard, Kanchana R; David, Florian; Maury, Jérôme; Mortensen, Uffe H; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2014-03-01

    Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out. PMID:24151867

  10. Biogenesis of RNA Polymerases II and III Requires the Conserved GPN Small GTPases in Saccharomyces cerevisiae

    PubMed Central

    Minaker, Sean W.; Filiatrault, Megan C.; Ben-Aroya, Shay; Hieter, Philip; Stirling, Peter C.

    2013-01-01

    The GPN proteins are a poorly characterized and deeply evolutionarily conserved family of three paralogous small GTPases, Gpn1, 2, and 3. The founding member, GPN1/NPA3/XAB1, is proposed to function in nuclear import of RNA polymerase II along with a recently described protein called Iwr1. Here we show that the previously uncharacterized protein Gpn2 binds both Gpn3 and Npa3/Gpn1 and that temperature-sensitive alleles of Saccharomyces cerevisiae GPN2 and GPN3 exhibit genetic interactions with RNA polymerase II mutants, hypersensitivity to transcription inhibition, and defects in RNA polymerase II nuclear localization. Importantly, we identify previously unrecognized RNA polymerase III localization defects in GPN2, GPN3, and IWR1 mutant backgrounds but find no localization defects of unrelated nuclear proteins or of RNA polymerase I. Previously, it was unclear whether the GPN proteins and Iwr1 had overlapping function in RNA polymerase II assembly or import. In this study, we show that the nuclear import defect of iwr1?, but not the GPN2 or GPN3 mutant defects, is partially suppressed by fusion of a nuclear localization signal to the RNA polymerase II subunit Rpb3. These data, combined with strong genetic interactions between GPN2 and IWR1, suggest that the GPN proteins function upstream of Iwr1 in RNA polymerase II and III biogenesis. We propose that the three GPN proteins execute a common, and likely essential, function in RNA polymerase assembly and transport. PMID:23267056

  11. Assessment of the biological pathways targeted by isocyanate using N-succinimidyl N-methylcarbamate in budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-01-01

    Isocyanates, a group of low molecular weight aromatic and aliphatic compounds possesses the functional isocyanate group. They are highly toxic in nature hence; we used N-succinimidyl N-methylcarbamate (NSNM), a surrogate chemical containing a functional isocyanate group to understand the mode of action of this class of compounds. We employed budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by NSNM. Our screening with yeast mutants revealed that it affects chromatin, DNA damage response, protein-ubiquitylation and chaperones, oxidative stress, TOR pathway and DNA repair processes. We also show that NSNM acts as an epigenetic modifier as its treatment causes reduction in global histone acetylation and formation of histone adducts. Cells treated with NSNM exhibited increase in mitochondrial membrane potential as well as intracellular ROS levels and the effects were rescued by addition of reduced glutathione to the medium. We also report that deletion of SOD1 and SOD2, the superoxide dismutase in Saccharomyces cerevisiae displayed hypersensitivity to NSNM. Furthermore, NSNM treatment causes rapid depletion of total glutathione and reduced glutathione. We also demonstrated that NSNM induces degradation of Sml1, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. In summary, we define the various biological pathways targeted by isocyanates. PMID:24664350

  12. Assessment of the Biological Pathways Targeted by Isocyanate Using N-Succinimidyl N-Methylcarbamate in Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S.

    2014-01-01

    Isocyanates, a group of low molecular weight aromatic and aliphatic compounds possesses the functional isocyanate group. They are highly toxic in nature hence; we used N-succinimidyl N-methylcarbamate (NSNM), a surrogate chemical containing a functional isocyanate group to understand the mode of action of this class of compounds. We employed budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by NSNM. Our screening with yeast mutants revealed that it affects chromatin, DNA damage response, protein-ubiquitylation and chaperones, oxidative stress, TOR pathway and DNA repair processes. We also show that NSNM acts as an epigenetic modifier as its treatment causes reduction in global histone acetylation and formation of histone adducts. Cells treated with NSNM exhibited increase in mitochondrial membrane potential as well as intracellular ROS levels and the effects were rescued by addition of reduced glutathione to the medium. We also report that deletion of SOD1 and SOD2, the superoxide dismutase in Saccharomyces cerevisiae displayed hypersensitivity to NSNM. Furthermore, NSNM treatment causes rapid depletion of total glutathione and reduced glutathione. We also demonstrated that NSNM induces degradation of Sml1, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. In summary, we define the various biological pathways targeted by isocyanates. PMID:24664350

  13. Saccharomyces cerevisiae boulardii transient fungemia after intravenous self-inoculation.

    PubMed

    Cohen, Lola; Ranque, Stéphane; Raoult, Didier

    2013-02-14

    We report the case of a young psychotic intravenous drug user injecting herself with Saccharomyces cervisiae (boulardii). She experienced a 24 h fever, resolving spontaneously confirming, quasi experimentally, the inocuity of this yeast in a non-immunocompromised host. PMID:24432219

  14. Altered ribosomal protein L29 in a cycloheximide-resistant strain of Saccharomyces cerevisiae

    Microsoft Academic Search

    Walter Stöcklein; Wolfgang Piepersberg

    1980-01-01

    A spontaneous high-level cycloheximide-resistant mutant of the yeast Saccharomyces cerevisiae (strain cy32) is found to have an altered protein of the large subunit (60S) of cytoplasmic ribosomes, namely protein L29. The resistance character segregates together with this biochemical defect and is semidominant in heterozygous diploids. Judged from in vitro susceptibility to inhibition by cycloheximide there are at least 50% resistant

  15. Recessive Nonsense Suppressors in SACCHAROMYCES CEREVISIAE : Action Spectra, Complementation Groups and Map Positions

    PubMed Central

    Ono, Bun-Ichiro; Ishino-Arao, Yumiko; Tanaka, Masahiro; Awano, Ikuko; Shinoda, Sumio

    1986-01-01

    Three genes SUP111, SUP112 and SUP113 of Saccharomyces cerevisiae have been identified that can mutate to give recessive omnipotent nonsense suppressors. Alleles of these loci can also act as allosuppressors; that is, different phenotypes, due apparently to different efficiencies of suppression, can result from different alleles at a given locus. The SUP111, SUP112 and SUP113 loci map to the right arms of chromosomes VIII, VII and XIII, respectively. PMID:3533713

  16. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters

    Microsoft Academic Search

    Lani F. Wu; Timothy R. Hughes; Armaity P. Davierwala; Mark D. Robinson; Roland Stoughton; Steven J. Altschuler

    2002-01-01

    Genome sequencing has led to the discovery of tens of thousands of potential new genes. Six years after the sequencing of the well-studied yeast Saccharomyces cerevisiae and the discovery that its genome encodes ?6,000 predicted proteins, more than 2,000 have not yet been characterized experimentally, and determining their functions seems far from a trivial task. One crucial constraint is the

  17. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly

    Microsoft Academic Search

    M. Andrew Hoyt; Ling He; Kek Khee Loo; William S. Saunders

    1992-01-01

    Two Saccharomyces cerevisiae genes, CIN8 and KIP1 (a.k.a. CIN9), were identified by their re- quirement for normal chromosome segregation. Both genes encode polypeptides related to the heavy chain of the microtubule-based force-generating enzyme kinesin. Cin8p was found to be required for pole separation during mitotic spindle assembly at 37~ although overproduced Kiplp could substitute. At lower temperatures, the activity of

  18. The effect of millimeter waves at the yeast Saccharomyces cerevisiae during heliogeophysical disturbances

    NASA Astrophysics Data System (ADS)

    Rogacheva, Svetlana M.; Babaeva, Milena I.

    2013-02-01

    The isolated and combined effect of heliogeophysical factors and low intensive electromagnetic radiation of millimeter diapason at the metachromasia reaction of the yeast Saccharomyces cerevisiae was studied. It was established that longterm influence of EMR 65 GHz induced changes in the response of cells towards heliogeomagnetic disturbance. On our opinion millimeter waves may reduce the effect of heliogeophysical factors on living organisms because of destabilization of the intracellular water structure.

  19. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity

    Microsoft Academic Search

    Douglas I. Johnson; John R. Pringle

    1990-01-01

    The Saccharomyces cerevisiae CDC42 gene product is involved in the morphogenetic events of the cell division cycle; temperature-sensitive cdc42 mu- tants are unable to form buds and display delocalized cell-surface deposition at the restrictive temperature (Adams, A. E. M., D. I. Johnson, R. M. Longnecker, B. E Sloat, and J. R. Pringle. 1990. J. Cell Biol. 111:131-142). To begin a

  20. RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae

    Microsoft Academic Search

    T. A. Weinert; L. H. Hartwell

    1988-01-01

    Cell division is arrested in many organisms in response to DNA damage. Examinations of the genetic basis for this response in the yeast Saccharomyces cerevisiae indicate that the RAD9 gene product is essential for arrest of cell division induced by DNA damage. Wild-type haploid cells irradiated with x-rays either arrest or delay cell division in the G2 phase of the

  1. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Yu-Fang Chang; George M. Carman

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7

  2. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair

    Microsoft Academic Search

    Soo-Hwang Teo; Stephen P. Jackson

    1997-01-01

    DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I–IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification

  3. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae

    Microsoft Academic Search

    Reeta Prusty; Paula Grisafi; Gerald R. Fink

    2004-01-01

    Fungi must recognize plant-specific signals to initiate subsequent morphogenetic events such as filamentation that lead to infection. Here we show that the plant hormone indoleacetic acid (IAA) induces adhesion and filamentation of Saccharomyces cerevisiae. Genome expression profiling of cells treated with IAA identified Yap1, a fungal specific transcription factor, as a key mediator of this response. Strains lacking YAP1 (yap1-1)

  4. Physiological role of d -amino acid- N -acetyltransferase of Saccharomyces cerevisiae : detoxification of d -amino acids

    Microsoft Academic Search

    Geok-Yong Yow; Takuma Uo; Tohru Yoshimura; Nobuyoshi Esaki

    2006-01-01

    Saccharomyces cerevisiae is sensitive to d-amino acids: those corresponding to almost all proteinous l-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that d-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of d-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant

  5. A highly efficient diastereoselective synthesis of ?-isosalicin by maltase from Saccharomyces cerevisiae

    Microsoft Academic Search

    Dušan Veli?kovi?; Aleksandra Dimitrijevi?; Filip Bihelovi?; Dejan Bezbradica; Ratko Jankov; Nenad Milosavi?

    2011-01-01

    In this report, ?-isosalicin, a potent anticoagulant and skin whitening agent, was synthesized by a highly efficient chemoselective and diastereoselective reaction, catalyzed by maltase from bakers’ yeast (Saccharomyces cerevisiae). The highest yield of this one-step transglucosylation reaction was achieved with 50mM of salicyl alcohol as a glucose acceptor. The key reaction factors were optimized using response surface methodology (RSM) with

  6. Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase

    Microsoft Academic Search

    Hélène Cordier; Francis Karst; Thierry Bergès

    1999-01-01

    Sequence comparison with the mevalonate diphosphate decarboxylase (MVD) amino acid sequence of Saccharomyces cerevisiae identified an EST clone corresponding to a cDNA that may encode Arabidopsis thaliana MVD (AtMVD1). This enzyme catalyses the synthesis of isopentenyl diphosphate, the building block of sterol and isoprenoid biosynthesis, and uses mevalonate diphosphate as a substrate. Sequencing of the full-length cDNA was performed. The

  7. The complete amino acid sequence of copper, zinc superoxide dismutase from Saccharomyces cerevisiae

    Microsoft Academic Search

    Jack T. Johansen; Carsten Overballe-Petersen; Brian Martin; Villy Hasemann; Ib Svendsen

    1979-01-01

    The amino acid sequence of the copper zinc superoxide dismutase from Saccharomyces cerevisiae has been determined by automated\\u000a Edman degradation. Peptides were obtained from cyanogen bromide cleavage, Staphylococcus aureus V8 protease digestion, tryptic\\u000a and chymotryptic digests of the citraconylated reduced and carboxymethylated enzyme, and by further fragmentation of selected\\u000a peptides with trypsin. From the alignment of these peptides and the

  8. Homoserine and threonine pools of borrelidin resistant Saccharomyces cerevisiae mutants with an altered aspartokinase

    Microsoft Academic Search

    Michael Seibold; Karl Nill; Karl Poralla

    1981-01-01

    Borrelidin is a specific inhibitor of the threonyl-tRNA-synthethase. A class of dominant borrelidin resistant mutants (BOR1) of Saccharomyces cerevisiae was biochemically characterized. The mutants possess an altered aspartokinase which is insensitive to threonine inhibition. The threonine and homoserine pools in these mutants are 22 times larger than in the wild type. By feeding aspartate under a variety of conditions the

  9. Locus-specific suppression of ilv1 in Saccharomyces cerevisiae by deregulation of CHA1 transcription

    Microsoft Academic Search

    J. Ø. Pedersen; M. A. Rodríguez; M. Prætorius-Ibba; T. Nilsson-Tillgren; I. L. Calderón; S. Holmberg

    1997-01-01

    The ILV1 gene of Saccharomyces cerevisiae encodes the anabolic threonine deaminase, which catalyzes the first committed step in isoleucine biosynthesis. Strains devoid\\u000a of a functional Ilv1p have a requirement for isoleucine. Threonine can also be deaminated by a second serine\\/threonine deaminase\\u000a encoded by the CHA1 gene. CHA1 is regulated by transcriptional induction by serine and threonine, and enables yeast to

  10. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae

    Microsoft Academic Search

    Peter Uetz; Loic Giot; Gerard Cagney; Traci A. Mansfield; Richard S. Judson; James R. Knight; Daniel Lockshon; Vaibhav Narayan; Maithreyan Srinivasan; Pascale Pochart; Alia Qureshi-Emili; Ying Li; Brian Godwin; Diana Conover; Theodore Kalbfleisch; Govindan Vijayadamodar; Meijia Yang; Mark Johnston; Jonathan M. Rothberg

    2000-01-01

    Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple

  11. Fusion of Escherichia coli LacZ to the Cytochrome c Gene of Saccharomyces cerevisiae

    Microsoft Academic Search

    Leonard Guarente; Mark Ptashne

    1981-01-01

    Hybrid genes between the Escherichia coli lacZ gene and the iso-1-cytochrome c (CYC1) gene of Saccharomyces cerevisiae were constructed by recombination in vitro. Each of the hybrid genes encodes a chimeric protein with a cytochrome c moiety at the amino terminus and an active beta -galactosidase (beta -D-galactoside galactohydrolase, EC 3.2.1.23) moiety at the carboxy terminus. When these hybrids are

  12. Omics Tools for Environmental Monitoring of Chemicals, Radiation, and Physical Stresses in Saccharomyces Cerevisiae

    Microsoft Academic Search

    Yoshihide Tanaka; Tetsuji Higashi; Randeep Rakwal; Junko Shibato; Emiko Kitagawa; Satomi Murata; Shin-ichi Wakida; Hitoshi Iwahashi

    The yeast Saccharomyces cerevisiae is one of the most characterized eucaryotes and its complete genome sequence was published in 1986. Thus, this organism is\\u000a a good candidate for biological environmental monitoring. Omics (genomics, proteomics, metabolomics) technology is being applied\\u000a to biological studies from prokaryotes to humans. We are applying omics technologies to environmental monitoring using yeast\\u000a cells, medaka, rice, rat,

  13. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.

    PubMed

    Wurm, Jan Philip; Lioutikov, Anatoli; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2014-10-01

    The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost complete (>90%) (1)H,(13)C,(15)N backbone and side chain NMR assignment of a 15 kDa Nop6 construct comprising the RNA binding and coiled-coil domains. PMID:23921755

  14. New amylolytic yeast strains for starch and dextrin fermentation. [Schwanniomyces alluvius, Saccharomyces cerevisiae var. diastaticus

    SciTech Connect

    Laluce, C.; Bertolini, M.C.; Ernandes, J.R. (Universidade Estadual Paulista, Sao Paulo (Brazil)); Martini, A.V.; Martini, A. (Universita de Perugia (Italy))

    1988-10-01

    Yeast strains capable of fermenting starch and dextrin to ethanol were isolated from samples collected from Brazilian factories in which cassava flour is produced. Considerable alcohol production was observed for all the strains selected. One strain (DI-10) fermented starch rapidly and secreted 5 times as much amylolytic enzyme than that observed for Schwanniomyces alluvius UCD 54-83. This strain and three other similar isolates were classified as Saccharomyces cerevisiae var. diastaticus by morphological and physiological characteristics and molecular taxonomy.

  15. Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae

    Microsoft Academic Search

    Jeong-Ho Kim; Valerie Brachet; Hisao Moriya; Mark Johnston

    2006-01-01

    Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3\\/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that

  16. The SNFZ, SNFS and SNF6 Genes Are Required for Ty Transcription in Saccharomyces cerevisiae

    Microsoft Academic Search

    Anne M. Happel; Michele S. Swanson; Fred Winston

    1991-01-01

    The Saccharomyces cerevisiae SNF2, SNFS and SNF6 genes were initially identified as genes required for expression of SUC2 and other glucose repressible genes. The Suc- defect in all three of these classes of mutants is suppressed by mutations in the SPT6 gene. Since mutations in SPT6 had also been identified as suppressors of Ty and solo 6 insertion mutations at

  17. Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae

    Microsoft Academic Search

    Jung-Mi Kim; Seung-Moon Park; Dae-Hyuk Kim

    2010-01-01

    BACKGROUND: A tannic acid-inducible and mycoviral-regulated laccase3 (lac3) from the chestnut blight fungus Cryphonectria parasitica has recently been identified, but further characterization was hampered because of the precipitation of protein products by tannic acid supplementation. The present study investigated the heterologous expression of the functional laccase3 using a yeast Saccharomyces cerevisiae. RESULTS: Laccase activity in the culture broth of transformants

  18. A new isolation method of ?- d-glucans from spent yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Xiao-Yong Liu; Qiang Wang; Steve W. Cui; Hong-Zhi Liu

    2008-01-01

    ?-d-glucans, which are widely distributed in the cell walls of microorganisms, mushrooms and plants, have received much attention with respect to their biological functions. Traditional method for preparing ?-d-glucans from Saccharomyces cerevisiae cells was based on repeated extractions with acid or alkali solutions, which resulted in degradation of the ?-d-glucan chains. A new mild method to extract ?-d-glucans from S.

  19. The influence of extracellular alkali and alkaline-earth ions on electropermeation of Saccharomyces cerevisiae

    Microsoft Academic Search

    Masafumi Muraji; Wataru Tatebe; Hermann Berg

    1998-01-01

    The influence of some extracellular ions on electropermeation of Saccharomyces cerevisiae is presented. Yeast suspensions containing either NaCl, KCl, MgCl2, CaCl2 or MgSO4 were treated by application of a condenser discharge pulse. A consistent time constant was maintained for each condenser pulse. The same discharge condenser was used and the concentration of dissolved salts was adjusted so that yeast suspensions

  20. Expression of nutritionally well-balanced protein, AmA1, in Saccharomyces cerevisiae

    Microsoft Academic Search

    Tae-Geum Kim; Ju Kim; Dae-Hyuk Kim; Moon-Sik Yang

    2001-01-01

    Food yeast.Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins.\\u000a AmA1, a seed storage albumin fromAmaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further\\u000a improving food and animal feed additives. In order to

  1. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation

    Microsoft Academic Search

    S. Plessas; A. Bekatorou; A. A. Koutinas; M. Soupioni; I. M. Banat; R. Marchant

    2007-01-01

    A biocatalyst was prepared by immobilizing a commercial Saccharomyces cerevisiae strain (baker’s yeast) on orange peel pieces for use in alcoholic fermentation and for fermented food applications. Cell immobilization was shown by electron microscopy and by the efficiency of the immobilized biocatalyst for alcoholic fermentation of various carbohydrate substrates (glucose, molasses, raisin extracts) and at various temperatures (30–15°C). Fermentation times

  2. Expression of an Aspergillus niger Phytase Gene (phyA )i n Saccharomyces cerevisiae

    Microsoft Academic Search

    YANMING HAN; DAVID B. WILSON; XIN GEN LEI

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA )i nSaccharomyces cerevisiae and to determine the effects of glycosylation on the phytase's activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene

  3. Purification and characterization of a novel poly(U), poly(C) ribonuclease from Saccharomyces cerevisiae

    Microsoft Academic Search

    Vassiliki S Lalioti; Juan P. G Ballesta; Emmanuel G Fragoulis

    1997-01-01

    A new ribonuclease from Saccharomyces cerevisiae, specific for poly(U) and poly(C) substrate, was purified near to homogeneity by successive fractionation with DEAE–Sepharose, Heparin–Sepharose and CM–Sepharose chromatography. The purified molecule detected by SDS\\/polyacrylimide gel electrophoresis has a molecular mass of 29 kDa. The optimum pH for the enzyme activity is 5.5–7 and its isoelectric point is 7.5. The purified enzyme was

  4. Studies on immobilized Saccharomyces cerevisiae. I. Analysis of continuous rapid ethanol fermentation in immobilized cell reactor

    Microsoft Academic Search

    R. D. Tyagi; T. K. Ghose

    1982-01-01

    Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30°C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L⁻¹ h⁻¹. The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g

  5. Functional Expression of a Fungal Laccase in Saccharomyces cerevisiae by Directed Evolution

    Microsoft Academic Search

    Thomas Bulter; Miguel Alcalde; Volker Sieber; Peter Meinhold; Christian Schlachtbauer; Frances H. Arnold

    2003-01-01

    Laccase from Myceliophthora thermophila (MtL) was expressed in functional form in Saccharomyces cerevisiae. Directed evolution improved expression eightfold to the highest yet reported for a laccase in yeast (18 mg\\/liter). Together with a 22-fold increase in kcat, the total activity was enhanced 170-fold. Specific activities of MtL mutants toward 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and syringaldazine indicate that sub- strate specificity was not

  6. Dependence of ORC Silencing Function on NatA-Mediated N  Acetylation in Saccharomyces cerevisiae

    Microsoft Academic Search

    Antje Geissenhoner; Christoph Weise; Ann E. Ehrenhofer-Murray

    2004-01-01

    N acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N- terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required

  7. Incorporation of Ceramides into Saccharomyces cerevisiae Glycosylphosphatidylinositol-Anchored Proteins Can Be Monitored In Vitro

    Microsoft Academic Search

    Regine Bosson; Isabelle Guillas; Christine Vionnet; Carole Roubaty; Andreas Conzelmann

    2009-01-01

    After glycosylphosphatidylinositols (GPIs) are added to GPI proteins of Saccharomyces cerevisiae, a fatty acid of the diacylglycerol moiety is exchanged for a C26:0 fatty acid through the subsequent actions of Per1 and Gup1. In most GPI anchors this modified diacylglycerol-based anchor is subsequently transformed into a ceramide-containing anchor, a reaction which requires Cwh43. Here we show that the last step

  8. Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463

    Microsoft Academic Search

    J. P. Jadhav; G. K. Parshetti; S. D. Kalme; S. P. Govindwar

    2007-01-01

    Saccharomyces cerevisiae MTCC 463 decolourizes toxic azo dye, methyl red by degradation process. Methyl red (100mgl?1) is degraded completely within 16min in plain distilled water under static anoxic condition, at the room temperature. Effect of physicochemical parameters (pH of medium, composition of medium, concentration of cells, concentration of dye, temperature and agitation) on methyl red decolourization focused the optimal condition

  9. Characterization of the NHA1 gene encoding a Na +\\/H +-antiporter of the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Concepcion Prior; Serge Potier; Jean-Luc Souciet; Hana Sychrova

    1996-01-01

    The NHA1 gene (2958 nt) encoding a putative Na+\\/H+antiporter (986 aa) in Saccharomyces cerevisiae was cloned by selection based on increased NaCl tolerance. The putative protein is highly similar to sodium\\/proton antiporters from Schizosaccharomyces pombe (gene sod2), and Zygosaccharomyces rouxii (gene Z-SOD2). Overexpression of the NHA1 gene results in higher and partially pH-dependent tolerance to sodium and lithium; its disruption

  10. Identification of a Cytosolically Directed NADH Dehydrogenase in Mitochondria of Saccharomyces cerevisiae

    Microsoft Academic Search

    W. CURTIS SMALL; LEE MCALISTER-HENN

    1998-01-01

    The reoxidation of NADH generated in reactions within the mitochondrial matrix of Saccharomyces cerevisiae is catalyzed by an NADH dehydrogenase designated Ndi1p (C. A. M. Marres, S. de Vries, and L. A. Grivell, Eur. J. Biochem. 195:857-862, 1991). Gene disruption analysis was used to examine possible metabolic functions of two proteins encoded by open reading frames having significant primary sequence

  11. Modelling of aerobic growth of Saccharomyces cerevisiae in a pH-auxostat

    Microsoft Academic Search

    H. T. B. Pham; G. Larsson; S.-O. Enfors

    1999-01-01

    A model for growth and overflow metabolism of Saccharomyces cerevisiae was applied to simulate continuous cultivations in a pH-auxostat. The concentrations of glucose, biomass and ethanol are controlled by the flow ratio r between fresh medium and titrant solution, both of which are pH-regulated. A critical value of r could be derived, below which the culture becomes substrate depleted, resulting

  12. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows

    Microsoft Academic Search

    M. Thrune; A. Bach; M. Ruiz-Moreno; M. D. Stern; J. G. Linn

    2009-01-01

    An experiment was conducted with eight ruminally-cannulated cows using a crossover design with 2 periods to determine the effects of yeast supplementation on rumen fermentation. Holstein dairy cows in late lactation were either supplemented with 0.5 g\\/hd\\/d of Saccharomyces cerevisiae, an active dry yeast (CNCM-1077, Levucell SC20 (r) SC, Lallemand Animal Nutrition) or not supplemented (control). A basal diet consisting of

  13. Fast purification and kinetic studies of the glycerol-3-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae

    Microsoft Academic Search

    Jingmin Cai; Markus Pietzsch; Uwe Theobald; Manfred Rizzi

    1996-01-01

    The glycerol-3-phosphate dehydrogenase has been purified from Saccharomyces cerevisiae 140-fold to electrophoretic homogeneity by a simple procedure involving affinity and ion exchange chromatography. The purified enzyme was most active at pH 6.8 and 51 °C. Its molecular mass was determined to be 45000 ± 2000 Da by SDS-polyacrylamide gel electrophoresis. At physiological pH values the thermodynamic equilibrium constant was determined

  14. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint

    Microsoft Academic Search

    Eric Weiss; Mark Winey

    1996-01-01

    M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spin- dle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check- point function. In cdc31-2 and mps2-1 mutants, condi- tional failure of SPB duplication

  15. Cybernetic modeling of spontaneous oscillations in continuous cultures of Saccharomyces cerevisiae.

    PubMed

    Kompala, D S

    1999-05-28

    We have developed a 'cybernetic' model to simulate the dynamic competition between all the available metabolic pathways of yeast Saccharomyces cerevisiae. This computer model predicts all the key experimentally observed aspects of the sustained oscillations in all the measured concentrations in continuous cultures, such as the spontaneous generation of oscillations as well as the variations in period and amplitude of oscillations when the dilution rate or agitation rate are changed. PMID:10483111

  16. 3-Hexaprenyl-4-hydroxybenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis in Saccharomyces cerevisiae

    Microsoft Academic Search

    Wayne W. Poon; B. Noelle Marbois; Kym F. Faull; Catherine F. Clarke

    1995-01-01

    The biosynthesis of ubiquinone (coenzyme Q) was studied in Saccharomyces cerevisiae. Lipid extracts were prepared from wild-type yeast grown in the presence of p-[U-14C]- and p-[carboxy-14C]hydroxybenzoic acid. Ergosterol was removed by adsorption to digitonin-celite, and radiolabeled lipids were purified by sequential reverse-phase and normal-phase HPLC steps. Radiolabeled peaks were identified by comparison with synthetic standards using retention time and electron

  17. Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol

    Microsoft Academic Search

    Mark R. Wilkins; Wilbur W. Widmer; Karel Grohmann

    2007-01-01

    The effects of d-limonene concentration, enzyme loading, and pH on ethanol production from simultaneous saccharification and fermentation (SSF) of citrus peel waste by Saccharomyces cerevisiae were studied at 37°C. Prior to SSF, citrus peel waste underwent a steam explosion process to remove more than 90% of the initial d-limonene present in the peel waste. d-Limonene is known to inhibit yeast

  18. Ribose5-phosphate isomerase from Saccharomyces cerevisiae: Purification and molecular analysis of the enzyme

    Microsoft Academic Search

    R. Reuter; M. Naumann; J. Bär; Th. Miosga; G. Kopperschläger

    1998-01-01

    Purification and molecular analysis of ribose-5-phosphate isomerase (EC5.3.1.6) from Saccharomyces cerevisiae is described first time. The enzymewas enriched from a haploid deletion mutant containing the wild-type gene ona multicopy plasmid elaborating the following steps: ammonium sulphateprecipitation, interfacial salting out on Sepharose 6B, high performanceliquid chromatography on Fractogel EMD DEAE and on Resource Phenyl. Theenzyme activity was found to be rather

  19. Production of kefir like product from mixed cultures of Saccharomyces cerevisiae, Streptococcus cremoris and Streptococcus lactis

    Microsoft Academic Search

    Pongpakorn Kaewprasert; Naiyatat Poosaran

    Various ratios of Streptococcus cremoris to Streptococcus lactis, 0.5 : 1.5, 1 : 1 and 1.5 : 0.5% were added to milk supplemented with 5% (w\\/v) sucrose. Fermentation temperature was kept constant at 30oC. For the first 15 h of fermentation, the milk was fermented by 5% (v\\/v) Saccharomyces cerevisiae, followed by lactic acid bacteria. The total fermentation time was

  20. Identification of Saccharomyces cerevisiae Genes Involved in the Resistance to Phenolic Fermentation Inhibitors

    Microsoft Academic Search

    Linda Sundström; Simona Larsson; Leif J. Jönsson

    2010-01-01

    Saccharomyces cerevisiae was exposed to inhibitory concentrations of the three phenolic phenylpropanoids: coniferyl aldehyde, ferulic acid, and isoeugenol.\\u000a Deoxyribonucleic acid microarray analysis was employed as one approach to generate a set of candidate genes for deletion mutant\\u000a analysis to determine the potential contribution of the corresponding gene products to the resistance against toxic concentrations\\u000a of phenolic fermentation inhibitors. Three S.

  1. NAD +-specific d-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae

    Microsoft Academic Search

    Katsumi Amako; Kazuyo Fujita; Taka-aki Shimohata; Etsuko Hasegawa; Ritsuko Kishimoto; Kiyoshi Goda

    2006-01-01

    Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from d-arabinose by d-arabinose dehydrogenase (ARA) and d-arabinono-?-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in

  2. Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters

    Microsoft Academic Search

    Bernardo M. T. da Costa; Katrina Cornish; Jay D. Keasling

    2007-01-01

    Magnesium is an important divalent ion for organisms. There have been a number of studies in vitro suggesting that magnesium\\u000a affects enzyme activity. Surprisingly, there have been few studies to determine the cellular mechanism for magnesium regulation.\\u000a We wished to determine if magnesium levels could be regulated in vivo. It is known that Saccharomyces cerevisiae has two magnesium transporters (ALR1

  3. Fungicidal Action of Aureobasidin A, a Cyclic Depsipeptide Antifungal Antibiotic, againstSaccharomyces cerevisiae

    Microsoft Academic Search

    MASAHIRO ENDO; KAZUTOH TAKESAKO; IKUNOSHIN KATO; ANDHIDEYO YAMAGUCHI

    1997-01-01

    Aureobasidin A, an antifungal antibiotic inhibiting a wide range of pathogenic fungi, is lethal for growing cells of susceptible fungi. We did cytological studies on the mechanism of its fungicidal action against Saccharomyces cerevisiae. When cultures were treated with 5.0 mg of aureobasidin A per ml, the numbers of viablecellsstartedtodecreaseafter2to3hofincubation,andmostcellshadlostviabilityafter5to6h.When cell death in the treated cultures began, amino acids released

  4. Role of DNA Replication Proteins in Double-Strand Break-Induced Recombination in Saccharomyces cerevisiae

    Microsoft Academic Search

    Xuan Wang; Grzegorz Ira; JoseAntonio Tercero; Allyson M. Holmes; John F. X. Diffley; James E. Haber

    2004-01-01

    Mitotic double-strand break (DSB)-induced gene conversion involves new DNA synthesis. We have analyzed the requirement of several essential replication components, the Mcm proteins, Cdc45p, and DNA ligase I, in the DNA synthesis of Saccharomyces cerevisiae MAT switching. In an mcm7-td (temperature-inducible degron) mutant, MAT switching occurred normally when Mcm7p was degraded below the level of detection, suggesting the lack of

  5. The dosage of chromatin proteins affects transcriptional silencing and DNA repair in Saccharomyces cerevisiae

    Microsoft Academic Search

    Sarah Z. Benbow; Michelle L. DuBois

    2008-01-01

    Alterations in protein composition or dosage within chromatin may trigger changes in processes such as gene expression and DNA repair. Through transposon mutagenesis and targeted gene deletions in haploids and diploids of Saccharomyces cerevisiae, we identified mutations that affect telomeric silencing in genes encoding telomere-associated Sir4p and Yku80p and chromatin remodeling ATPases Ies2p and Rsc1p. We found that sir4\\/SIR4 heterozygous

  6. Uptake of L-lysine by a double mutant of Saccharomyces cerevisiae

    Microsoft Academic Search

    J. C. García; A. Kotyk

    1988-01-01

    Agap1 can1 mutant ofSaccharomyces cerevisiae with a single lysine transport system remaining was used to study detailed kinetics of this transport. Its half-saturation\\u000a constant was 78 ?mol per litre, its maximum rate of transport was 0.29 ?molL-lysine per g dry matter per minute, both parameters being lower by more than an order of magnitude in comparison with the\\u000a GAP system.

  7. Data acquisition, analysis, and mining: Integrative tools for discerning metabolic function in Saccharomyces cerevisiae

    Microsoft Academic Search

    Michael C. Jewett; Michael Hansen; Jens Nielsen

    The well defined genetic architecture and metabolic network of Saccharomyces\\u000a cerevisiae make this organism a cornerstone for metabolomics research. Recent efforts\\u000a have focused on robust sample preparation techniques, analytical tools to quantitatively identify\\u000a hundreds of metabolites at the same time, and elegant approaches for analyzing and interpreting the\\u000a data. While equally important, we focus here on approaches for extracting useful information

  8. Anaerobic growth of Saccharomyces cerevisiae alleviates the le- thal effect of phosphotyrosyl phosphatase activators depletion

    Microsoft Academic Search

    Bozenna Rempola; Aneta Kaniak; Jean-Paul di Rago; Joanna Rytka

    2001-01-01

    Saccharomyces cerevisiae homologues of phosphotyrosyl phosphatase activator (PTPA) are encoded by RRD1 and RRD2, genes whose combined deletion is synthetic lethal. Previously we have shown that the lethality of rrd1,2 can be suppressed by in- creasing the osmolarity of the medium. Here we show that the lethality of rrd1,2 is also suppressed under oxygen-limited conditions. The absence of respiration per

  9. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae.

    PubMed Central

    Flores-Samaniego, B; Olivera, H; González, A

    1993-01-01

    The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism. PMID:7902349

  10. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. [Saccharomyces cerevisiae

    Microsoft Academic Search

    Y. Ohsumi; K. Kitamoto; Y. Anraku

    1988-01-01

    A specific effect of Cu\\/sup 2 +\\/ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 200 ..mu..M CuClâ was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25°C. The release of amino acids was

  11. An impaired RNA polymerase II activity in Saccharomyces cerevisiae causes cell-cycle inhibition at START

    Microsoft Academic Search

    Michael A. Drebot; Gerald C. Johnston; James D. Friesen; Richard A. Singer

    1993-01-01

    Saccharomyces cerevisiae cells harboring the temperature-sensitive mutation rpo21-4, in the gene encoding the largest subunit of RNA polymerase II, were shown to be partially impaired for cell-cycle progress at a permissive temperature, and to become permanently blocked at the cell-cycle regulatory step, START, at a restrictive temperature. The rpo21-4 mutation was lethal in combination with cdc28 mutations in the p34

  12. Ploidy influences cellular responses to gross chromosomal rearrangements in saccharomyces cerevisiae

    Microsoft Academic Search

    Paul P Jung; Emilie S Fritsch; Corinne Blugeon; Jean-Luc Souciet; Serge Potier; Sophie Lemoine; Joseph Schacherer; Jacky de Montigny

    2011-01-01

    Background  Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features\\u000a of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of\\u000a additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model

  13. Composition and Formation of the Saccharomyces cerevisiae Centromeric Nucleosome

    E-print Network

    Camahort, Raymond Anthony

    2008-01-01

    of the replicated genome. The S. cerevisiae CenH3 histone variant Cse4 is an evolutionarily conserved histone H3-like inner kinetochore protein that is essential for kinetochore function. Through immunopurification of Cse4 interacting proteins we have identified...

  14. Molecular Characterization of New Natural Hybrids of Saccharomyces cerevisiae and S. kudriavzevii in Brewing? †

    PubMed Central

    González, Sara S.; Barrio, Eladio; Querol, Amparo

    2008-01-01

    We analyzed 24 beer strains from different origins by using PCR-restriction fragment length polymorphism analysis of different gene regions, and six new Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrid strains were found. This is the first time that the presence in brewing of this new type of hybrid has been demonstrated. From the comparative molecular analysis of these natural hybrids with respect to those described in wines, it can be concluded that these originated from at least two hybridization events and that some brewing hybrids share a common origin with wine hybrids. Finally, a reduction of the S. kudriavzevii fraction of the hybrid genomes was observed, but this reduction was found to vary among hybrids regardless of the source of isolation. The fact that 25% of the strains analyzed were discovered to be S. cerevisiae × S. kudriavzevii hybrids suggests that an important fraction of brewing strains classified as S. cerevisiae may correspond to hybrids, contributing to the complexity of Saccharomyces diversity in brewing environments. The present study raises new questions about the prevalence of these new hybrids in brewing as well as their contribution to the properties of the final product. PMID:18296532

  15. Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation.

    PubMed

    Lopez, Claudia Lorena Fernandez; Beaufort, Sandra; Brandam, Cédric; Taillandier, Patricia

    2014-08-01

    Traditional tequila fermentation is a complex microbial process performed by different indigenous yeast species. Usually, they are classified in two families: Saccharomyces and Non-Saccharomyces species. Using mixed starter cultures of several yeasts genera and species is nowadays considered to be beneficial to enhance the sensorial characteristics of the final products (taste, odor). However, microbial interactions occurring in such fermentations need to be better understood to improve the process. In this work, we focussed on a Saccharomyces cerevisiae/Kluyveromyces marxianus yeast couple. Indirect interactions due to excreted metabolites, thanks to the use of a specific membrane bioreactor, and direct interaction due to cell-to-cell contact have been explored. Comparison of pure and mixed cultures was done in each case. Mixed cultures in direct contact showed that both yeast were affected but Saccharomyces rapidly dominated the cultures whereas Kluyveromyces almost disappeared. In mixed cultures with indirect contact the growth of Kluyveromyces was decreased compared to its pure culture but its concentration could be maintained whereas the growth of Saccharomyces was enhanced. The loss of viability of Kluyveromyces could not be attributed only to ethanol. The sugar consumption and ethanol production in both cases were similar. Thus the interaction phenomena between the two yeasts are different in direct and indirect contact, Kluyveromyces being always much more affected than Saccharomyces. PMID:24677041

  16. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.

  17. Genes from Debaryomyces hansenii increase salt tolerance in Saccharomyces cerevisiae W303.

    PubMed

    Prista, Catarina; Soeiro, Ana; Vesely, Paul; Almagro, Anabel; Ramos, José; Loureiro-Dias, Maria C

    2002-05-01

    The yeast Debaryomyces hansenii has been chosen as a model for molecular studies of tolerance to NaCl. A gene library was built and transformants of Saccharomyces cerevisiae W303 containing genes from D. hansenii were selected for their ability to grow in the presence of high concentrations of NaCl and/or low concentrations of KCl. In three of these transformants 500 mM NaCl improved growth at pH 7.6 like in D. hansenii but not in S. cerevisiae. One of the plasmids restored growth at 50 microM KCl and K(+) uptake in a mutant of S. cerevisiae lacking genes that encode K(+) transporters. PMID:12702302

  18. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test.

    PubMed

    Dolezalova, Jaroslava; Rumlova, Lubomira

    2014-11-01

    This new biological test of water toxicity is based on monitoring of specific conductivity changes of yeast Saccharomyces cerevisiae suspension as a result of yeast fermentation activity inhibition in toxic conditions. The test was verified on ten substances with various mechanisms of toxic effect and the results were compared with two standard toxicity tests based on Daphnia magna mobility inhibition (EN ISO 6341) and Vibrio fischeri bioluminescence inhibition (EN ISO 11348-2) and with the results of the S. cerevisiae lethal test (Rumlova and Dolezalova, 2012). The new biological test - S. cerevisiae conductometric test - is an express method developed primarily for field conditions. It is applicable in case of need of immediate information about water toxicity. Fast completion is an advantage of this test (time necessary for test completion is about 60min), the test is simple and the test organism - dried instant yeast - belongs among its biggest advantages because of its long-term storage life and broad availability. PMID:25461558

  19. A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation

    PubMed Central

    Wang, Yuchong; Lilley, Kathryn S; Oliver, Stephen G

    2014-01-01

    Most protocols for yeast subcellular fractionation involve the use of mechanical shear forces to lyse the spheroplasts produced by the enzymatic digestion of the Saccharomyces cerevisiae cell wall. These mechanical homogenization procedures often involve the manual use of devices such as the Dounce homogenizer, and so are very operator-dependent and, in consequence, lack reproducibility. Here, we report a highly reproducible method of homogenizing yeast cells based on nitrogen cavitation. This has been optimized to allow efficient release of subcellular compartments that show a high degree of integrity. The protocol remains effective and reproducible across a range of sample volumes and buffer environments. The subsequent separation method, which employs both sucrose and iodixanol density gradients, has been developed to resolve the major membrane-bound compartments of S. cerevisiae. We present an integrated protocol that is fast, facile, robust and efficient and that will enable ‘omics’ studies of the subcellular compartments of S. cerevisiae and other yeasts. PMID:24510422

  20. Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation.

    PubMed

    Quevedo-Hidalgo, Balkys; Monsalve-Marín, Felipe; Narváez-Rincón, Paulo César; Pedroza-Rodríguez, Aura Marina; Velásquez-Lozano, Mario Enrique

    2013-03-01

    Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g(-1), 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels. PMID:23117675

  1. Comparative toxicities of putative phagocyte-generated oxidizing radicals toward a bacterium (Escherichia coli) and a yeast (Saccharomyces cerevisiae).

    PubMed

    King, David A; Sheafor, Mark W; Hurst, James K

    2006-09-01

    Toxicities of the radiolytically generated oxidizing radicals HO(*), CO(3)(-)(*), and NO(2)(*) toward suspension cultures of a bacterium (Escherichia coli) and a yeast (Saccharomyces cerevisiae) were examined. As demonstrated by the absence of protection from the membrane-impermeable HO(*) scavenger polyethylene glycol (PEG), externally generated HO(*) was not bactericidal under these conditions; however, partial protection by PEG was observed for S. cerevisiae, indicating the presence of a fungicidal pathway involving external HO(*). For both organisms, conversion of external HO(*) to the secondary radical, CO(3)(-)(*), by reaction with HCO(3)(-) increases their susceptibility to radiolytic killing. In contrast, externally generated NO(2)(*) exhibited toxicity comparable to that of CO(3)(-)(*) toward E. coli, but completely blocked the extracellular toxicity of HO(*) toward S. cerevisiae. Cogeneration of equal fluxes of NO(2)(-)(*) and either HO(*) or CO(3)(-)(*) also essentially eliminated the extracellular microbicidal reactions. This behavior is consistent with expectations based upon relative rates of radical-radical self-coupling and cross-coupling reactions. The different patterns of toxicity observed imply fundamentally different microbicidal mechanisms for the two organisms, wherein the bacterium is susceptible to killing by oxidation of highly reactive targets on its cellular envelope but, despite undergoing similar oxidative insult, the fungus is not. PMID:16895797

  2. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    PubMed

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. PMID:25673756

  3. Analysis of Biological Features Associated with Meiotic Recombination Hot and Cold Spots in Saccharomyces cerevisiae

    PubMed Central

    Hansen, Loren; Kim, Nak-Kyeong; Mariño-Ramírez, Leonardo; Landsman, David

    2011-01-01

    Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where systematic biases have been documented. PMID:22242140

  4. Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface.

    PubMed

    Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Proximity effect is a form of synergistic effect exhibited when cellulases work within a short distance from each other, and this effect can be a key factor in enhancing saccharification efficiency. In this study, we evaluated the proximity effect between 3 cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface, that is, endoglucanase, cellobiohydrolase, and ?-glucosidase. We constructed 2 kinds of arming yeasts through genome integration: ALL-yeast, which simultaneously displayed the 3 cellulases (thus, the different cellulases were near each other), and MIX-yeast, a mixture of 3 kinds of single-cellulase-displaying yeasts (the cellulases were far apart). The cellulases were tagged with a fluorescence protein or polypeptide to visualize and quantify their display. To evaluate the proximity effect, we compared the activities of ALL-yeast and MIX-yeast with respect to degrading phosphoric acid-swollen cellulose after adjusting for the cellulase amounts. ALL-yeast exhibited 1.25-fold or 2.22-fold higher activity than MIX-yeast did at a yeast concentration equal to the yeast cell number in 1 ml of yeast suspension with an optical density (OD) at 600 nm of 10 (OD10) or OD0.1. At OD0.1, the distance between the 3 cellulases was greater than that at OD10 in MIX-yeast, but the distance remained the same in ALL-yeast; thus, the difference between the cellulose-degrading activities of ALL-yeast and MIX-yeast increased (to 2.22-fold) at OD0.1, which strongly supports the proximity effect between the displayed cellulases. A proximity effect was also observed for crystalline cellulose (Avicel). We expect the proximity effect to further increase when enzyme display efficiency is enhanced, which would further increase cellulose-degrading activity. This arming yeast technology can also be applied to examine proximity effects in other diverse fields. PMID:25304511

  5. Metabolomic analysis of antimicrobial mechanisms of ?-poly-L-lysine on Saccharomyces cerevisiae.

    PubMed

    Bo, Tao; Liu, Miao; Zhong, Cheng; Zhang, Qian; Su, Qin-Zhi; Tan, Zhi-Lei; Han, Pei-Pei; Jia, Shi-Ru

    2014-05-14

    ?-Poly-L-lysine (?-PL), a naturally occurring amino acid homopolymer, has been widely used as a food preservative. However, its antimicrobial mechanism has not been fully understood. This study investigated the antimicrobial mode of action of ?-PL on a yeast, Saccharomyces cerevisiae. When treated with ?-PL at the concentration of 500 ?g/mL, cell mortality was close to 100% and the phospholipid bilayer curvature, pores, and micelles on the surface of S. cerevisiae were clearly observed by scanning electron microscopy (SEM). At the level of 200 ?g/mL, ?-PL significantly inhibited the cell growth of S. cerevisiae. When treated with 50 ?g/mL ?-PL, the yeast cell was able to grow but the cell cycle was prolonged. A significant increase in cell membrane permeability was induced by ?-PL at higher concentrations. Metabolomics analysis revealed that the ?-PL stress led to the inhibition of primary metabolic pathways through the suppression of the tricarboxylic acid cycle and glycolysis. It is therefore proposed that the microbiostatic effect of ?-PL at lower levels on S. cerevisiae is achieved by inducing intracellular metabolic imbalance via disruption of cell membrane functions. Moreover, the results suggested that the antimicrobial mechanism of ?-PL on S. cerevisiae can in fact change from microbiostatic to microbicidal when the concentration of ?-PL increased, and the mechanisms of these two modes of action were completely different. PMID:24735012

  6. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Efficient degradation of cellulosic biomass requires the synergistic action of the cellulolytic enzymes endoglucanase, cellobiohydrolase, and ?-glucosidase. Although there are many reports describing consolidation of hydrolysis and fermentation steps using recombinant Saccharomyces cerevisiae that express cellulolytic enzymes, the efficiency of cellulose degradation has not been sufficiently improved. Although the yeast S. cerevisiae cannot take up cellooligosaccharide, some fungi can take up and assimilate cellooligosaccharide through a cellodextrin transporter. In this study, a S. cerevisiae strain co-expressing genes for several cell surface display cellulases and the cellodextrin transporter was constructed for the purpose of improving the efficiency of direct ethanol fermentation from phosphoric acid swollen cellulose (PASC). The cellulase/cellodextrin transporter-coexpressing strain produced 1.7-fold more ethanol (4.3 g/L) from PASC during a 72-h fermentation than did a strain expressing cellulase only (2.5 g/L). Direct ethanol production from PASC by the recombinant S. cerevisiae strain was improved by co-expression of cellulase display and cellodextrin transporter genes. These results suggest that cellulase- and cellodextrin transporter-co-expressing S. cerevisiae could be a promising technology for efficient direct ethanol production from cellulose. PMID:23800294

  7. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells.

    PubMed

    Cao, Guozhen; Zhang, Miaomiao; Miao, Jianshun; Li, Wenjian; Wang, Jufang; Lu, Dong; Xia, Jiefang

    2015-03-01

    Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S. cerevisiae cell membranes have barely been studied. Here, we investigated the changes in the permeability and integrity of S. cerevisiae cell membranes induced by high-linear energy transfer carbon ion (CI) beam or low-linear energy transfer X-ray. After CI exposure, protein elution and nucleotide diffusion were more pronounced than after X-ray treatment at the same doses, although these features were most prevalent following irradiation doses of 25-175 Gy. Flow cytometry of forward scatter light versus side scatter light and double-staining with fluorescein diacetate and propidium iodide showed that CI and X-ray irradiation significantly affected S. cerevisiae cell membrane integrity and cellular enzyme activity compared with untreated control cells. The extent of lesions in CI-irradiated cells, which exhibited markedly altered morphology and size, was greater than that in X-ray-irradiated cells. The relationships between permeabilized cells, esterase activity, and non-viable cell numbers furthermore indicated that irradiation-induced increases in cell permeabilization and decreases in esterase activity are dependent on the type of radiation and that these parameters correspond well with cell viability. These results also indicate that the patterns of cell inactivity due to X-ray or CI irradiation may be similar in terms of cell membrane damage. PMID:25599994

  8. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells

    PubMed Central

    Cao, Guozhen; Zhang, Miaomiao; Miao, Jianshun; Li, Wenjian; Wang, Jufang; Lu, Dong; Xia, Jiefang

    2015-01-01

    Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S. cerevisiae cell membranes have barely been studied. Here, we investigated the changes in the permeability and integrity of S. cerevisiae cell membranes induced by high–linear energy transfer carbon ion (CI) beam or low–linear energy transfer X-ray. After CI exposure, protein elution and nucleotide diffusion were more pronounced than after X-ray treatment at the same doses, although these features were most prevalent following irradiation doses of 25–175 Gy. Flow cytometry of forward scatter light versus side scatter light and double-staining with fluorescein diacetate and propidium iodide showed that CI and X-ray irradiation significantly affected S. cerevisiae cell membrane integrity and cellular enzyme activity compared with untreated control cells. The extent of lesions in CI-irradiated cells, which exhibited markedly altered morphology and size, was greater than that in X-ray-irradiated cells. The relationships between permeabilized cells, esterase activity, and non-viable cell numbers furthermore indicated that irradiation-induced increases in cell permeabilization and decreases in esterase activity are dependent on the type of radiation and that these parameters correspond well with cell viability. These results also indicate that the patterns of cell inactivity due to X-ray or CI irradiation may be similar in terms of cell membrane damage. PMID:25599994

  9. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  10. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation.

    PubMed

    Pinu, Farhana R; Edwards, Patrick J B; Gardner, Richard C; Villas-Boas, Silas G

    2014-12-01

    To investigate the assimilation and production of juice metabolites by Saccharomyces cerevisiae during winemaking, we compared the metabolite profiles of 63 Sauvignon blanc (SB) grape juices collected over five harvesting seasons from different locations of New Zealand before and after fermentation by the commercial wine yeast strain EC1118 at 15 °C. Metabolite profiles were obtained using gas chromatography-mass spectrometry and nuclear magnetic resonance and the oenological parameters were determined by Fourier transform infrared spectroscopy. Our results revealed that the amino acids threonine and serine were the most consumed organic nitrogen sources, while proline and gamma-aminobutyric acid were the least consumed amino acids during SB juice fermentation. Saccharomyces cerevisiae metabolised some uncommon nitrogen sources (e.g. norleucine, norvaline and pyroglutamic acid) and several organic acids, including some fatty acids, most likely after fermenting the main juice sugars (glucose, fructose and mannose). However, consumption showed large variation between juices and in some cases between seasons. Our study clearly shows that preferred nitrogen and carbon sources were consumed by S. cerevisiae EC1118 independent of the juice fine composition, whilst the consumption of other nutrient sources mainly depended on the concentration of other juice metabolites, which explains the uniqueness of each barrel of wine. PMID:25345561

  11. Hap4 is not essential for activation of respiration at low specific growth rates in Saccharomyces cerevisiae.

    PubMed

    Raghevendran, Vijayendran; Patil, Kiran Raosaheb; Olsson, Lisbeth; Nielsen, Jens

    2006-05-01

    In Saccharomyces cerevisiae, the heme-activated protein complex Hap2/3/4/5 plays a major role in the transcription of genes involved in respiration. Thus, overexpression of HAP4 has been shown to result in a 10% increase in the respiratory capacity. Here the physiology of a HAP4-deleted S. cerevisiae strain was investigated, and we found that the hap4delta S. cerevisiae exhibited poor growth on ethanol, although the growth rate on glucose was indifferent from the wild type in aerobic as well as anaerobic cultures. Moreover, it exhibited a large (75%) reduction in the critical glucose uptake rate at which fermentative metabolism is onset, indicating a substantial reduction in respiratory capacity. We also performed whole genome transcription analysis for the hap4delta and the wild type, grown in carbon-limited chemostat cultures operated at a dilution rate of 0.05 h(-1). Although both strains exhibited respiratory metabolism, there was significant change in expression of many genes in the hap4delta strain. These genes are involved in several different parts of the metabolism, including oxidative stress response, peroxisomal functions, and energy generation. This study strongly indicates that Hap4 activation only occurs at intermediate specific growth rates, below which the transcription of genes responsible for respiration is dependent on the Hap2/3/5 complex and above which the Hap4 protein augments the transcription. Furthermore, statistical analysis of the transcription data and integration of the data with a genome scale metabolic network provided new insight and evidence for the role of Hap4 in transcriptional regulation of mitochondrial respiration. PMID:16522629

  12. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ?PYC2 + ?RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940

  13. Comparison of the genetic activity of 5-nitroimidazole derivatives in Escherichia coli, Neurospora crassa, Saccharomyces cerevisiae and Drosophila melanogaster.

    PubMed

    Mohn, G R; Ong, T M; Callen, D F; Kramers, P G; Aaron, C S

    1979-01-01

    5-nitroimidazoles, including metronidazole (compound 1) and 3 analogues (compounds 2, 3 and 4) of actual or potential chemotherapeutic use were assayed for genetic activity in test systems detecting forward and back mutations in Escherichia coli K-12/343/113, forward mutations in Neurospora crassa heterokaryon 12, mitotic gene conversion in the heteroallelic diploid yeast strain Saccharomyces cerevisiae D4 and sex-linked recessive lethals in Drosophila melanogaster. Whereas metronidazole exhibits moderate mutagenic activity in E. coli, two of the analogues, compounds 2 and 3 are strongly mutagenic even at concentrations that do not inactive the colony forming ability of the cells. The analogue compound 4 does not show any effect toward E. coli under the present experimental conditions. Similar results were obtained with N. crassa, with S. cerevisiae and with Drosophila in which compound 2 exhibits the highest effect, while compound 4 is non-mutagenic in all assays. These biological effects have been partly explained on the basis of differences in the chemical structure of the compounds. PMID:154545

  14. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    PubMed

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. PMID:25084640

  15. Functional implications and ubiquitin-dependent degradation of the peptide transporter Ptr2 in Saccharomyces cerevisiae.

    PubMed

    Kawai, Ken; Moriya, Atsuto; Uemura, Satoshi; Abe, Fumiyoshi

    2014-11-01

    The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2?trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. PMID:25172766

  16. Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae.

    PubMed

    Peters, Theodore W; Huang, Mingxia

    2007-01-01

    It is well established that protein aggregation is associated with many neurodegenerative disorders including polyglutamine diseases, but a mechanistic understanding of the role of protein aggregates in the disease pathogenesis remains elusive. Previously thought to be the cause of cellular toxicity such as cellular dysfunction and cell death, protein aggregation is now proposed to serve a protective role by sequestering toxic oligomers from interfering with essential physiological processes. To investigate the relationship between protein aggregation and cellular toxicity, we have characterized and compared the effects of two GFP-fusion proteins that form aggregates in Saccharomyces cerevisiae, one with a polyasparagine repeat (GFP(N104)) and one without (GFP(C)). Although both proteins can form microscopically visible GFP-positive aggregates, only the GFP(N104)-containing aggregates exhibit morphological and biochemical characteristics that resemble the aggregates formed by mutant huntingtin in yeast cells. Formation of both the GFP(C) and GFP(N104) aggregates depends on microtubules, while only the GFP(N104) aggregate requires the chaperone Hsp104 and the prion Rnq1 and is resistant to SDS. Although no microscopically visible GFP(N104) aggregates were observed in the hsp104Delta and rnq1Delta mutant cells, SDS-insoluble aggregates can still be detected by the filter trap assay. These observations argue that the GFP(N104)-containing aggregates can exist in at least two distinct states in vivo. We also show that a nucleus-targeted GFP(N104) interferes with transcription from two SAGA-dependant promoters and results in a decrease in cell viability. Overall, the results imply that the GFP(N104) protein behaves similarly to the mutant huntingtin in yeast cells and provides a new model for investigating the interplay between protein aggregates and the associated phenotypes. PMID:19164913

  17. Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening.

    PubMed

    Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su

    2015-01-20

    In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. PMID:25435378

  18. Genetic Analysis of Multiple Drug Cross Resistance in SACCHAROMYCES CEREVISIAE: a Nuclear-Mitochondrial Gene Interaction

    PubMed Central

    Cohen, Joe D.; Eaton, Norman R.

    1979-01-01

    A mutant of the yeast Saccharomyces cerevisiae, cross resistant to several antibiotics, was isolated in our laboratory and subjected to genetic analysis. Tetrad analysis of diploids obtained from crosses between the resistant mutant and a sensitive wild-type strain suggest that the multiple resistance to the five agents, oligomycin (OLI), rhodamine 6G (RHG), tetracycline (TCN), chloramphenicol (CAP) and cycloheximide (CHX) is determined by a single nuclear gene, ant1, and requires several cytoplasmic genes for expression of resistance to oligomycin, rhodamine 6G and tetracycline.——Vegetatively growing diploid clones derived from the cross ant1 [RHO+] x + [RHO+] show mitotic segregation of two phenotypic classes for the drugs OLI, RHG TCN. Diploids derived from the two reciprocal crosses, ant1 [RHO+] x + [RHO-] and ant1 [RHO-] x + [RHO+], fail to exhibit mitotic segregation. These results are consistent with our hypothesis concerning the involvement of cytoplasmic loci. They suggest, in addition, that these loci are associated with mitochondrial DNA (mtDNA).——Evidence for this association is provided by the demonstration of genetic linkage between the cytoplasmic loci involved in the interaction, RHG-1, TCN-1 and OLI-5, and two well-characterized mitochondrial loci, ERY and CAP.——We have mapped the nuclear ant1 locus 3.3 cM from the centromere-linked gene, leu1, on the same side of the centromere of chromosome VII as leu1.——In the light of these findings, we discuss the claims made by several authors of the episomal nature of mutations similar to the one described here, as well as of the possible involvement of yeast 2µ DNA in such mutations. PMID:372044

  19. Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin.

    PubMed

    Moore, C W

    1989-12-15

    Low-molecular-weight phleomycin (Mr approximately 1500-1600) is considerably less active on a per mol basis than structurally related bleomycin in degrading purified Saccharomyces cerevisiae DNA. Phleomycin also exhibits a substantially higher requirement than bleomycin for ferrous ions. However, phleomycin (0.13 to 3.3 x 10(-6) M) produced 7 to 350 times more breaks than bleomycin in prelabeled intracellular [2-14C]DNA and [6-3H]DNA and is considerably more cytotoxic than bleomycin. Phleomycin and bleomycin produced equivalent numbers of DNA breaks at equivalent, physiologically meaningful levels of survival, indicating that DNA breaks are related to lethal properties of the anticancer glycopeptides. Phleomycin degradation of extracellular DNA was only detectable at greater than or equal to 1.7 x 10(-4) M, approximately two orders of magnitude higher than the concentrations of phleomycin which yielded equivalent fragmentation of intracellular DNA, indicating that phleomycin causes substantially more degradation of intracellular DNA than extracellular DNA. In contrast, bleomycin (greater than or equal to 1.7 x 10(-5) M) degradation of purified DNA is quite extensive and considerably greater than the degradation of DNA in cells incubated with the same or higher concentrations of bleomycin. Neither phleomycin nor bleomycin cleaved extracellular DNA in the absence of ferrous ions, although both chemical analogues cleaved intracellular DNA without adding iron. Therefore, the requirement for metal ion in stimulating DNA degradation by the two structural families of glycopeptidic antibiotics is met by the cell itself. PMID:2479473

  20. Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae

    PubMed Central

    Deng, Xu; Petitjean, Marjorie; Teste, Marie-Ange; Kooli, Wafa; Tranier, Samuel; François, Jean Marie; Parrou, Jean-Luc

    2014-01-01

    The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the ?-(1,6) disaccharides isomaltose and palatinose, with Michaëlis–Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an ?-(1,6) linkage, but also ?-(1,2), ?-(1,3) and ?-(1,5) disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for ?-(1,6) substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties. PMID:24649402

  1. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle

    PubMed Central

    1991-01-01

    The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells. PMID:2050738

  2. Genomic Diversity of Saccharomyces cerevisiae Yeasts Associated with Alcoholic Fermentation of Bacanora Produced by Artisanal Methods.

    PubMed

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately. PMID:25561061

  3. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  4. Improvement of Phytase Activity by a New Saccharomyces cerevisiae Strain Using Statistical Optimization

    PubMed Central

    Ries, Edi Franciele; Alves Macedo, Gabriela

    2011-01-01

    Using statistical optimization, we enhanced the activity of phytase by a new Saccharomyces cerevisiae strain cultured in mineral medium. Concentrations of carbon source and inducer of phytase production were optimized using a 22 full factorial CCD and response surface methodology (RSM). Urea was fixed as nitrogen source in culture medium (0.15%, w/v). The culture medium consisting of 2.5% sucrose and 0.5% sodium phytate optimally supported the maximum phytase activity. In addition, we found that culture of the yeast at 35°C with shaking at 150?rpm supports maximum phytase production. The validity of this model was verified by culturing the organisms in flasks on a shaker. Using the optimized media and growth conditions, we obtained a 10-fold improvement in the production of phytase by S. cerevisiae. PMID:21837273

  5. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.

    PubMed Central

    Lewis, T A; Taylor, F R; Parks, L W

    1985-01-01

    Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background. PMID:3891725

  6. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast. PMID:22388689

  7. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.

    PubMed

    Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília

    2015-03-01

    In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. PMID:25536512

  8. mazF-mediated deletion system for large-scale genome engineering in Saccharomyces cerevisiae.

    PubMed

    Liu, Quanli; Wu, Yuzhen; Yang, Ping; Zhang, Xiuming; Bai, Yanling; Xu, Haijin; Qiao, Mingqiang

    2014-12-01

    A new mazF-based strategy for large-scale and scarless genome rearrangements in Saccharomyces cerevisiae was developed. We applied this method to delete designed internal (26.5 kbp) and terminal (28.9 kbp) regions located on the left arm of the chromosome XI of S. cerevisiae BY4741. The number of transformants was increased by one order of magnitude and about 90% of tested colonies were desired integrants using in vivo assembled deletion cassette containing longer flanking homology. Compared to conventional URA3 marker, in the counter-selection process, the new system generated 2-13 folds more colonies and the ratio of deletant was simultaneously elevated by 20-24%. PMID:25463384

  9. Alternative Splicing of PTC7 in Saccharomyces cerevisiae Determines Protein Localization

    PubMed Central

    Juneau, Kara; Nislow, Corey; Davis, Ronald W.

    2009-01-01

    It is well established that higher eukaryotes use alternative splicing to increase proteome complexity. In contrast, Saccharomyces cerevisiae, a single-cell eukaryote, conducts predominantly regulated splicing through retention of nonfunctional introns. In this article we describe our discovery of a functional intron in the PTC7 (YHR076W) gene that can be alternatively spliced to create two mRNAs that code for distinct proteins. These two proteins localize to different cellular compartments and have distinct cellular roles. The protein translated from the spliced mRNA localizes to the mitochondria and its expression is carbon-source dependent. In comparison, the protein translated from the unspliced mRNA contains a transmembrane domain, localizes to the nuclear envelope, and mediates the toxic effects of Latrunculin A exposure. In conclusion, we identified a definitive example of functional alternative splicing in S. cerevisiae that confers a measurable fitness benefit. PMID:19564484

  10. Co-inoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines.

    PubMed

    Barrajón, N; Capece, A; Arévalo-Villena, M; Briones, A; Romano, P

    2011-08-01

    Wine is the result of the performance of different yeast strains throughout the fermentation in both spontaneous and inoculated processes. 22 Saccharomyces cerevisiae strains were characterized by microsatellite fingerprinting, selecting 6 of them to formulate S. cerevisiae mixed cultures. The aim of this study was to ascertain a potential benefit to use mixed cultures to improve wine quality. For this purpose yeasts behavior was studied during co-inoculated fermentations. Aromatic composition of the wines obtained was analyzed, and despite the fact that only one strain dominated at the end of the process, co-cultures released different concentrations of major volatile compounds than single strains, especially higher alcohols and acetaldehydes. Nevertheless, no significant differences were found in the type and quantity of the amino acids assimilated. This study demonstrates that the final wine composition may be modulated and enhanced by using suitable combinations of yeast strains. PMID:21569955

  11. Reversal of the ?-Oxidation Cycle in Saccharomyces cerevisiae for Production of Fuels and Chemicals.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2015-03-20

    Functionally reversing the ?-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the ?-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the ?-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed ?-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae. PMID:24959659

  12. Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae.

    PubMed

    Sun, Meiqing; Yu, Qilin; Hu, Mengyuan; Hao, Zhenwei; Zhang, Chengdong; Li, Mingchun

    2014-05-30

    Although there have been numerous studies on bacterial toxicity, the cytotoxicity of nanoparticles toward fungi remains poorly understood. We investigated the toxicity of various sizes of lead sulfide particles against the important model fungus, Saccharomyces cerevisiae. The smallest particle exerted the highest toxicity, inhibiting cell growth and decreasing cell viability, likely reflecting reduced sedimentation and persistent cell wall attack. In response to cell wall stress, S. cerevisiae showed an increase in the cell wall chitin content and the overexpression of FKS2 and PRM5, two genes of the cell wall integrity signaling pathway. Cell wall stress increased the concentration of intracellular reactive oxygen species, leading to mitochondrial dysfunction and cell apoptosis. The contribution of dissolved lead ions to the overall toxicity was negligible. These findings provide the first demonstration of the physiological protective response of a fungus toward nanoparticles, thereby contributing useful information to the assessment of the environmental impact of metal nanoparticles. PMID:24704549

  13. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    PubMed

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes. PMID:23958656

  14. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae.

    PubMed Central

    Avery, S V; Tobin, J M

    1992-01-01

    Laboratory and brewing strains of Saccharomyces cerevisiae were compared for metabolism-independent and -dependent Sr2+ uptake. Cell surface adsorption of Sr2+ to live cells was greater in the brewing than in the laboratory strain examined. However, uptake levels were greater in denatured (dried and ground) S. cerevisiae, and the relative affinities of Sr2+ for the two strains were reversed. Results for the brewing S. cerevisiae strain were similar whether the organism was obtained fresh from brewery waste or after culturing under the same conditions as for the laboratory strain. Reciprocal Langmuir plots of uptake data for live biomass were not linear, whereas those for denatured biomass were. The more complex Sr2+ binding mechanism inferred for live S. cerevisiae was underlined by cation displacement experiments. Sr2+ adsorption to live cells resulted in release of Mg2+, Ca2+, and H+, suggesting a combination of ionic and covalent bonding of Sr2+. In contrast, Mg2+ was the predominant exchangeable cation on denatured biomass, indicating primarily electrostatic attraction of Sr2+. Incubation of live S. cerevisiae in the presence of glucose resulted in a stimulation of Sr2+ uptake. Cell fractionation revealed that this increased Sr2+ uptake was mostly due to sequestration of Sr2+ in the vacuole, although a small increase in cytoplasmic Sr2+ was also evident. No stimulation or inhibition of active H+ efflux resulted from metabolism-dependent Sr2+ accumulation. However, a decline in cytoplasmic, and particularly vacuolar, Mg2+, in comparison with that of cells incubated with Sr2+ in the absence of glucose, was apparent. This was most marked for the laboratory S. cerevisiae strain, which contained higher Mg2+ levels than the brewing strain. PMID:1335718

  15. Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition

    Microsoft Academic Search

    1967-01-01

    The anaerobic glucose uptake (at 20°, pH 3.5) by resting cells of Saccharomyces cerevisiae followed unidirectional Michaelis-Menten kinetics and was competitively inhibited by l-sorbose; Km and Ki were respectively 5.6×10-4m and 1.8×10-1m; Vmax was 6.5×10-8 moles mg-1 min-1. The aerobic uptake of glucose by resting yeast was also inhibited by l-sorbose but did not follow unidirectional Michaelis-Menten kinetics. Glucose-limited growth

  16. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles

    Microsoft Academic Search

    G. C. Johnston; J. A. Prendergast; R. A. Singer

    1991-01-01

    Abstract. After the initiation of bud formation, cells of the yeast Saccharomyces,cerevisiae direct new growth,to the developing,bud. We show,here that this vectorial growth,is facilitated by activity of the MY02 gene. The wild-type MY02 gene encodes,an essential form of myosin,composed,of an NH2-terminal domain typical of the globular, actin-binding domain of other myosins. This NH:-terminal domain,is linked by what appears to be

  17. Oxygen requirements for formation and activity of the squalene expoxidase in Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the 'mitochondrial' fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the 'microsomal' fraction. At 0.03 percent (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent K sub m for oxygen of 0.38 percent (vol/vol) was determined from a crude particulate preparation for the epoxidase.

  18. Mcx1p, a ClpX homologue in mitochondria of Saccharomyces cerevisiae.

    PubMed

    van Dyck, L; Dembowski, M; Neupert, W; Langer, T

    1998-11-01

    Members of the Hsp100/Clp-family of molecular chaperones form regulatory subunits of ATP-dependent Clp proteases and fulfill crucial roles for cellular thermotolerance. We have identified a Clp-like protein in Saccharomyces cerevisiae, Mcx1p, which shares approximately 30% sequence identity with ClpX-proteins in bacteria, plants and nematodes. Mcx1p localizes to the matrix space of mitochondria and is peripherally associated with the inner membrane. A homologue of E. coli ClpP protease was not identified when screening the yeast genome. We therefore propose that Mcx1p represents a novel molecular chaperone of mitochondria with non-proteolytic function. PMID:9827555

  19. Polyphosphatase PPN1 of Saccharomyces cerevisiae: Switching of Exopolyphosphatase and Endopolyphosphatase Activities

    PubMed Central

    Andreeva, Nadezhda; Trilisenko, Ludmila; Eldarov, Mikhail; Kulakovskaya, Tatiana

    2015-01-01

    The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase activity splitting phosphate from chain end and an endopolyphosphatase activity fragmenting high molecular inorganic polyphosphates into shorter polymers. We revealed the compounds switching these activities of PPN1. Phosphate release and fragmentation of high molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively. Phosphate release and polyphosphate chain shortening in the presence of Co2+ were inhibited by ADP but not affected by ATP and arginin?. The polyphosphate chain shortening in the presence of Mg2+ was activated by ADP and arginine but inhibited by ATP. PMID:25742176

  20. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae.

    PubMed Central

    Jahnke, L; Klein, H P

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the "mitochondrial" fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the "microsomal" fraction. At 0.03% (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent Km for oxygen of 0.38% (vol/vol) was determined from a crude particulate preparation for the epoxidase. PMID:6348021