Science.gov

Sample records for saline soluble inorganic

  1. Solubility of plutonium(VI) carbonate in saline solutions

    NASA Astrophysics Data System (ADS)

    Reilly, Sean D.; Runde, Wolfgang; Neu, Mary P.

    2007-06-01

    Among the plutonium oxidation states found to form in the environment, mobile plutonium(VI) can exist under oxidizing conditions and in waters with high chloride content due to radiolysis effects. We are investigating the solubility and speciation of plutonium(VI) carbonate under conditions relevant to natural waters and brines such as those found near some geologic radioactive waste repositories. The solid Pu(VI) phase PuO 2CO 3(s) was prepared and its solubility was measured in NaCl and NaClO 4 solutions in a CO 2 atmosphere as a function of pH and ionic strength (0.1-5.6 m). The concentration of soluble plutonium in solution was calculated from spectroscopic data and liquid scintillation counting. Spectroscopic measurements also revealed the plutonium oxidation state. The apparent solubility product of PuO 2CO 3(s) was determined at selected electrolyte concentrations to be, log Ks,0 = -13.95 ± 0.07 (0.1 m NaCl), log Ks,0 = -14.07 ± 0.13 (5.6 m NaCl), and log Ks,0 = -15.26 ± 0.11 (5.6 m NaClO 4). Specific ion interaction theory was used to calculate the solubility product at zero ionic strength, logKs,0∘=-14.82±0.05.

  2. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. PMID:26143083

  3. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  4. The Interplay between Inorganic Phosphate and Amino Acids determines Zinc Solubility in Brain Slices

    PubMed Central

    Rumschik, Sean M.; Nydegger, Irma; Zhao, Jinfu; Kay, Alan R

    2009-01-01

    Inorganic phosphate (Pi) is an important polyanion needed for ATP synthesis and bone formation. Since it is found at millimolar levels in plasma it is usually incorporated as a constituent of artificial cerebrospinal fluid (ACSF) formulations for maintaining brain slices. In this paper we show that Pi limits the extracellular zinc concentration by inducing metal precipitation. We present data suggesting that amino acids like histidine may counteract the Pi-induced zinc precipitation by the formation of soluble zinc complexes. We propose that the interplay between Pi and amino acids in the extracellular space may influence the availability of metals for cellular uptake. PMID:19183267

  5. Evidence for the Role of Vacuolar Soluble Pyrophosphatase and Inorganic Polyphosphate in Trypanosoma cruzi Persistence*

    PubMed Central

    Galizzi, Melina; Bustamante, Juan M.; Fang, Jianmin; Miranda, Kildare; Medeiros, Lia C. Soares; Tarleton, Rick L.; Docampo, Roberto

    2013-01-01

    Summary Trypanosoma cruzi infection leads to development of a chronic disease but the mechanisms that the parasite utilizes to establish a persistent infection despite activation of a potent immune response by the host are currently unknown. Unusual characteristics of T. cruzi are that it possesses cellular levels of pyrophosphate (PPi) at least ten times higher than those of ATP and molar levels of inorganic polyphosphate (polyP) within acidocalcisomes. We characterized an inorganic soluble EF-hand containing pyrophosphatase from T. cruzi (TcVSP) that, depending on the pH and cofactors, can hydrolyze either pyrophosphate (PPi) or polyphosphate (polyP). The enzyme is localized to both acidocalcisomes and cytosol. Overexpression of TcVSP (TcVSP-OE) resulted in a significant decrease in cytosolic PPi, and short and long chain polyP levels. Additionally, the TcVSP-OE parasites showed a significant growth defect in fibroblasts, less responsiveness to hyperosmotic stress, and reduced persistence in tissues of mice, suggesting that PPi and polyP are essential for the parasite to resist the stressful conditions in the host and to maintain a persistent infection. PMID:24033456

  6. Collection and analysis of inorganic and water soluble organic aerosols over Maryland and Virginia

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; Ziemba, L. D.; Beyersdorf, A. J.; Phinney, K.; Conny, J.; Dickerson, R. R.

    2012-12-01

    Aerosols aloft have slower removal than those near the ground, in part, because dry and wet deposition rates result in longer lifetimes and greater range of influence. Knowledge of deposition rates and range of transport for different species are important for developing local and regional air quality policy. Currently, the vertical distribution of organic aerosols (OA's) and their polar, oxidized fraction is largely unknown. Comprehensive methods to analyze aerosol composition collected in the boundary layer and the lower free troposphere are lacking. During DISCOVER AQ 2011, both the NASA P3 and Cessna 402B collected aerosols, through shrouded aerosol inlets, onto Teflon and quartz fiber filters. Collection occurred in both the boundary layer and lower free troposphere over Maryland and Virginia, USA. After extraction with water and optimizing separation via ion chromatography, commonly identified secondary organic aerosols can be separated based on their functionality as mono-, di-, or polycarboxylic acids. Inorganic aerosol components can simultaneously be separated and identified with the same method. Individual organic acid compound analysis with detection limits in the low ppb range can be achieved when conductivity/ultraviolet/ and mass spectrometric detectors are placed in tandem. Additionally, thermo optical analysis can be used to determine the mass fraction of water soluble organic carbon versus the total collected mass. This research is designed to provide information on the vertical distribution of particulate organic carbon in the atmosphere, its optical properties, information on aerosol transport in the lower free troposphere, and to provide water soluble organic aerosol structural characterization.

  7. Formation of soluble microbial products (SMP) by activated sludge at various salinities.

    PubMed

    Li, Yan; Li, Ai-Min; Xu, Juan; Li, Wen-Wei; Yu, Han-Qing

    2013-02-01

    Soluble microbial products (SMP) present a significant component of effluent organic matter from biological wastewater treatment reactors, and can affect the membrane fouling and formation of disinfection by-products. Thus, SMP have attracted increasing concerns in wastewater treatment and reclamation. In this work, the formation of SMP by activated sludge at various NaCl concentrations is investigated by using fluorescence excitation-emission matrix (EEM) spectroscopy with parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI). The results show that a high level of salinity decreases substrate removal efficiency and leads to an accumulation of SMP, especially proteins. Three components of SMP, one protein-like and two humic-acid-like components, are identified by PARAFAC, which exhibit different trends with the variation of NaCl concentration. FRI analysis reveals that the majority of protein fluorescence is attributed to tryptophan and tryptophan-like proteins, rather than tyrosine and tyrosine-like proteins. With an increase in NaCl concentration, the normalized volume percentages of tyrosine and tryptophan region increase, while those of humic- and fulvic-acid-like region decrease significantly. This work demonstrates that salinity affects the formation of SMP, and that EEM with PARAFAC in combination with FRI analysis is a useful tool to get insight into the formation of SMP by activated sludge. PMID:22622691

  8. Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Western Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.

    2006-01-01

    Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative

  9. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance*

    PubMed Central

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-01-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na+ into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of

  10. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Vet, R.; Wiebe, A.; Mihele, C.; Sukloff, B.; Chan, E.; Moran, M. D.; Iqbal, S.

    2008-07-01

    Size-segregated water-soluble inorganic ions, including particulate sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Cl-) and base cations (K+, Na+, Mg2+, Ca2+), were measured using a Micro-Orifice Uniform Deposit Impactor (MOUDI) during fourteen short-term field campaigns at eight locations in both polluted and remote regions of eastern and central Canada. The size distributions of SO42- and NH4+ were unimodal, peaking at 0.3 0.6 μm in diameter, during most of the campaigns, although a bimodal distribution was found during one campaign and a trimodal distribution during another campaign made at a coastal site. The size distributions of NO3- were unimodal, peaking at 4.0 7.0 μm, during the warm-season campaigns and bimodal, with one peak at 0.3 0.6 μm and another at 4 7 μm, during the cold-season campaigns. A unimodal size distribution, peaking at 4 6 μm, was found for Cl-, Na+, Mg2+ and Ca2+ during approximately half of the campaigns and a bimodal distribution, with one peak at 2 μm and the other at 6 μm, was found during the rest of the campaigns. For K+, a bimodal distribution, with one peak at 0.3 μm and the other at 4 μm, was observed during most of the campaigns. The measured ion concentrations varied by one order of magnitude across the various sites. The air-mass origins and meteorological conditions both played important roles in formulating the observed geographical and seasonal patterns of these ion species concentration levels, size distributions and fine particle acidity.

  11. Levels and indoor-outdoor relationships of PM 10 and soluble inorganic ions in Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Atallah, M.; Al-Kadamany, G.

    2009-03-01

    PM 10, which is considered among the major indoor and outdoor pollutants, was measured in several residential homes and corresponding outdoor environments in the Great Beirut area over the summer and winter seasons of 2005. Few studies on PM 10 levels indoors in Beirut are restricted to short-term periods in public places. In this study, 78 PM 10 samples were collected on Teflon filters using an active sampler at a flow rate of 5 L/min. PM 10 mass concentrations were determined by gravimetric analysis, and inorganic chemical speciation was carried out using ion chromatography. Outdoors, PM 10 elevated mass concentrations correlated well with high traffic density. The observed high intra-site temporal variation (minimum of 34 and a maximum of 120 μg/m 3) was attributed to the dynamic air masses passing over the Eastern Mediterranean region. Indoors, PM 10 levels were highly affected by outdoor levels, but were enhanced over those of outdoors when smoking activities were recorded. In winter, the overall average outdoor concentration dropped by 19%, whereas the average indoor concentration increased by 50% over the ones calculated for the summer. Ventilation and air exchange rates were found to be approximately equal to unity during summer since most doors and windows remain open. This rate drops to almost half during winter. As for particulate ions namely nitrates and sulfates, the former showed concentrations that are higher than the values reported in the region in both winter and summer seasons, suggesting high emissions from local vehicles. However, SO 42- average concentrations were comparable to values reported in other studies conducted in Eastern Mediterranean sites. Soluble particulate nitrates and sulfates exhibited similar indoor and outdoor levels in non-smoking homes (IO ~ 1), but in smoking homes the drop in nitrate concentrations reached around 70%, indicating a high anionic reactivity with tobacco smokes.

  12. [Characteristics of mass size distributions of water-soluble, inorganic ions during summer and winter haze days of Beijing].

    PubMed

    Huang, Yi-Min; Liu, Zi-Rui; Chen, Hong; Wang, Yue-Si

    2013-04-01

    To investigate the size distribution characteristics of water soluble inorganic ions in haze days, the particle samples were collected by two Andersen cascade impactors in Beijing during summer and winter time and each sampling period lasted two weeks. Online measurement of PM10 and PM2.5 using TEOM were also conducted at the same time. Sources and formation mechanism of water soluble inorganic ions were analyzed based on their size distributions. The results showed that average concentrations of PM10 and PM 2.5 were (245.5 +/- 8.4) microg x m(-3) and (120.2 +/- 2.0) microg x m(-3) during summer haze days (SHD), and were (384.2 +/- 30.2) microg x m(-3) and (252.7 +/- 47.1) microg x m(-3) during winter haze days (WHD), which suggested fine particles predominated haze pollution episode in both seasons. Total water-soluble inorganic ions concentrations were higher in haze days than those in non-haze days, especially in fine particles. Furthermore, concentrations of secondary inorganic ions (SO4(2-), NO3(-) and NH4(+)) increased quicker than other inorganic ions in fine particles during haze days, indicating secondary inorganic ions played an important role in the formation of haze pollution. Similar size distributions were found for all Sinorganic water soluble ions except for NO3(-), during SHD and WHD. SO4(2-) and NH4(+) dominated in the fine mode (PM1.0) while Mg2+ and Ca2+ accumulated in coarse fraction, Na+, Cl- and K+ showed a bimodal distribution. For NO3(-), however, it showed a bimodal distribution during SHD and a unimodal distribution dominated in the fine fraction was found during WHD. The average mass median aerodynamic diameter (MMAD) of SO4(2-) was 0.64 microm in SHD, which suggested the formation of SO4(2-) was mainly attributed to in-cloud processes. Furthermore, a higher apparent conversion rate of sulfur dioxide (SOR) was found in SHD, indicating more fine particles were produced by photochemical reaction in haze days than that in non-haze days. The

  13. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Vet, R.; Wiebe, A.; Mihele, C.; Sukloff, B.; Chan, E.; Moran, M. D.; Iqbal, S.

    2008-12-01

    Size-segregated water-soluble inorganic ions, including particulate sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Cl-), and base cations (K+, Na+, Mg2+, Ca2+), were measured using a Micro-Orifice Uniform Deposit Impactor (MOUDI) during fourteen short-term field campaigns at eight locations in both polluted and remote regions of eastern and central Canada. The size distributions of SO42- and NH4+ were unimodal, peaking at 0.3-0.6 µm in diameter, during most of the campaigns, although a bimodal distribution was found during one campaign and a trimodal distribution was found during another campaign made at a coastal site. SO42- peaked at slightly larger sizes in the cold seasons (0.5-0.6 µm) compared to the hot seasons (0.3-0.4 µm) due to the higher relative humidity in the cold seasons. The size distributions of NO3- were unimodal, peaking at 4.0-7.0 µm during the warm-season campaigns, and bimodal, with one peak at 0.3-0.6 µm and another at 4-7 µm during the cold-season campaigns. A unimodal size distribution, peaking at 4-6 µm, was found for Cl-, Na+, Mg2+, and Ca2+ during approximately half of the campaigns and a bimodal distribution, with one peak at 2 µm and the other at 6 µm, was found during the rest of the campaigns. For K+, a bimodal distribution, with one peak at 0.3 µm and the other at 4 µm, was observed during most of the campaigns. Seasonal contrasts in the size-distribution profiles suggest that emission sources and air mass origins were the major factors controlling the size distributions of the primary aerosols while meteorological conditions were more important for the secondary aerosols. The dependence of the particle acidity on the particle size from the nucleation mode to the accumulation mode was not consistent from site to site or from season to season. Particles in the accumulation mode were more acidic than those in the nucleation mode when submicron particles were in the state of strong acidity; however, when

  14. Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors.

    PubMed

    Wilson, Brian; Gandhi, Jay; Zhang, Chunlong Carl

    2011-09-01

    Over 97% of the Earth's water is high salinity water in the form of gulfs, oceans, and salt lakes. There is an increasing concern for the quality of water in bays, gulfs, oceans, and other natural waters. These waters are affected by many different sources of contamination. The sources are, but not limited to, groundwater run-off of nitrogen containing fertilizer, pesticides, cleaning agents, solid wastes, industrial waters, and many more. The final destinations of these contaminants are rivers, lakes, and bayous that eventually will lead to bays, gulfs, and oceans. Many industries depend on the quality of these waters, such as the fishing industry. In addition to wild marine life, there are large aquariums and fish and shrimp farms that are required to know the quality of the water. However, the ability of these industries to monitor their processes is limited. Most analytical methods do not apply to the analysis of high salinity waters. They are dependent on wet chemistry techniques, spectrophotometers, and flow analyzers. These methods do not have the accuracy, precision, and sensitivity when compared to ion chromatography (IC). Since the inception of IC, it has become a standard practice for determining the content of many different water samples. Many IC methods are limited in the range of analytes that can be detected, as well as the numerous sample sources of which the methods are applicable. The main focus of current IC methods does not include high salinity waters. This research demonstrates an ion chromatographic method that has the ability to determine low level concentrations of inorganic nitrogen and related anions (nitrite-N, nitrate-N, phosphorous-P, sulfate, bromide, chloride, sulfide, fluoride, ammonia, calcium, and magnesium) in a single run using a combination of UV and conductivity detectors. This method is applicable to various waters, and uses both freshwater and high salinity water samples. PMID:21859532

  15. Numerical Procedures for the Calculations of Inorganic Solubility and Cohesive Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D.

    1996-01-01

    The entire history of chemistry bears witness to the extraorinary importance of the phenomena of solubility. It is necessary to emphasize that the Hildebrand parameter (solubility parameter) is fundamentally a liquid state property. When gases are considered they are treated as hypothetical.

  16. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    ERIC Educational Resources Information Center

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  17. [Isolation and catalytic properties of the soluble monomeric form of inorganic pyrophosphatase from baker's yeast].

    PubMed

    Kasho, V N; Bakuleva, N P; Baĭkov, A A; Avaeva, S M

    1982-06-01

    Data from sedimentation analysis suggest that modification of about 40% of free amino groups of inorganic pyrophosphatase by maleic anhydride, pH 10.5, results in a loss of the enzyme ability to form dimers at neutral values of pH. The specific activity of monomeric pyrophosphatase is 50-80% of that of the dimeric form. The monomer has a pH optimum of about 7, requires metal ions for activation of both enzyme and substrate and is capable of exergonic synthesis of PPi in the active center. The enzyme binding to PPi is strongly stabilized by fluoride. The experimental data indicate that the individual subunit of inorganic pyrophosphatase possesses all the main catalytic properties of native dimeric molecule. PMID:6126223

  18. Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters

    SciTech Connect

    Wang, Zan; Small, Mitchell J; Karamalidis, Athanasios K

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304–433 K, pressure range 74–500 bar, and salt concentration range 0–7 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  19. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm. PMID:22946180

  20. 2D Inorganic-Antimalarial Drug-Polymer Hybrid with pH-Responsive Solubility.

    PubMed

    Kim, Ji-Yeong; Yang, Jae-Hun; Lee, Ji-Hee; Choi, Goeun; Park, Dae-Hwan; Jo, Mi-Rea; Choi, Soo-Jin; Choy, Jin-Ho

    2015-10-01

    Artesunic acid (ASH), an antimalarial drug, has low oral bioavailability due to its low aqueous solubility. To overcome this problem, artesunate (AS) was intercalated into zinc basic salt (ZBS) via co-precipitation. AS was immobilized with a tilted double layer arrangement, which was also confirmed by XRD and 1-D electron density mapping. In order to decrease the release rate of AS under gastrointestinal conditions and to simultaneously increase the release rate of AS under intestinal conditions, ZBS-AS was coated with EUDRAGIT L100 (ZBS-AS-L100). Finally, we performed an in-vivo pharmacokinetic study to compare the oral bioavailability of AS of ZBS-AS-L100 with that of ASH. Surprisingly, it was found that the former is 5.5 times greater than the latter due to an enhanced solubility of AS thanks to the ternary hybridization with ZBS and EUDRAGIT L100. Therefore, the present ZBS-AS-L100 system has a great potential as a novel antimalarial drug formulation with pH selectivity and enhanced bioavailability. PMID:25965188

  1. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China

    NASA Astrophysics Data System (ADS)

    Meng, C. C.; Wang, L. T.; Zhang, F. F.; Wei, Z.; Ma, S. M.; Ma, X.; Yang, J.

    2016-05-01

    In order to explore the spatial, temporal, and chemical characteristics of fine particulate matter (PM2.5) pollution in Handan city, China, a comprehensive dataset including continuous online observations at four air quality monitoring stations in 2013 and 2014, and the concentrations of water-soluble inorganic ions (WSII) (NO3-, SO42 -, NH4+, Cl-, Na+, Mg2 +, K+, Ca2 +) in PM2.5 samples collected in four representative seasons in 2013 and 2014 are analyzed in this study. And the principal component analysis (PCA) method is applied to identify the source of WSII in Handan. Our results indicate that PM2.5 concentration decreased from 139.4 μg/m3 in 2013 to 116.0 μg/m3 in 2014 on annual average. Spatial variations of PM2.5 mass are not pronounced, indicating that PM2.5 is nearly evenly spread over the study area. The seasonal variations of PM2.5 concentration are significant, normally with 1.7 to 2.4 times higher in winter than in summer. The concentrations of TWSII (total water-soluble inorganic ions) remain relatively stable in two years, with annual averages of 63.1 μg/m3 in 2013 and 57.2 μg/m3 in 2014. SNA (SO42 -, NO3-, NH4+) dominates in the TWSII, accounting for ~ 87% of the TWSII. Similar to PM2.5, WSII exhibits obvious seasonal variations with higher concentrations in autumn and winter, lower in spring and summer. PM2.5 samples are acidic in spring, summer and autumn of 2013, while in winter of 2013 and all seasons of 2014, they are alkaline. SO42 -, NO3- are formed mainly through homogeneous reactions, heterogeneous reactions also exist in winter. Finally, the major sources of WSII in Handan are identified as the mixture of secondary origin, coal combustion, biomass burning (46.1%), dust sources (25.8%), and motor vehicle (12.3%).

  2. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets.

    PubMed

    Hanff, Erik; Böhmer, Anke; Zinke, Maximilian; Gambaryan, Stepan; Schwarz, Alexandra; Supuran, Claudiu T; Tsikas, Dimitrios

    2016-07-01

    Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite. PMID:27129464

  3. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojuan; Liu, Zirui; Zhang, Junke; Wen, Tianxue; Ji, Dongsheng; Wang, Yuesi

    2016-02-01

    Particulate matter (PM) pollution is a serious issue that has aroused great public attention in Beijing. To examine the seasonal characteristics of aerosols in typical pollution episodes, water-soluble inorganic ions (SO42 -, NO3-, NH4+, Cl-, K+, Na+, Ca2 + and Mg2 +) in size-segregated PM collected by an Anderson sampler (equipped with 50% effective cut-off diameters of 9.0, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65, 0.43 μm and an after filter) were investigated in four intensive campaigns from June 2013 to May 2014 in the Beijing urban area. Pronounced seasonal variation of TWSIs in fine particles (aerodynamic diameter less than 2.1 μm) was observed, with the highest concentration in summer (71.5 ± 36.3 μg/m3) and the lowest in spring (28.1 ± 15.2 μg/m3). Different ion species presented different seasonal characteristics of mass concentration and size distribution, reflecting their different dominant sources. As the dominant component, SO42 -, NO3- and NH4+ (SNA) in fine particles appeared to play an important role in the formation of high PM pollution since its contribution to the TWSIs and PM2.1 mass increased significantly during pollution episodes. Due to the hygroscopic growth and enhanced secondary formation in the droplet mode (0.65-2.1 μm) from clean days to polluted days, the size distribution peak of SNA in the fine mode tended to shift from 0.43-0.65 μm to 0.65-2.1 μm. Relative humidity (RH) and temperature contributed to influence the secondary formation and regulate the size distributions of sulfates and nitrates. Partial correlation analysis found that high RH would promote the sulfur and nitrogen oxidation rates in the fine mode, while high temperature favored the sulfur oxidation rate in the condensation mode (0.43-0.65 μm) and reduced the nitrogen oxidation rate in the droplet mode (0.65-2.1 μm). The NO3-/SO42 - mass ratio in PM2.1 (73% of the samples) exceeded 1.0, suggesting that vehicle exhaust currently makes a greater contribution to aerosol

  4. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength

    PubMed Central

    Tang, Jianwu; Niedermayr, Andrea; Köhler, Stephan J.; Böhm, Florian; Kısakürek, Basak; Eisenhauer, Anton; Dietzel, Martin

    2012-01-01

    In order to apply Sr/Ca and 44Ca/40Ca fractionation during calcium carbonate (CaCO3) formation as a proxy to reconstruct paleo-environments, it is essential to evaluate the impact of various environmental factors. In this study, a CO2 diffusion technique was used to crystallize inorganic calcite from aqueous solutions at different ionic strength/salinity by the addition of NaCl at 25 °C. Results show that the discrimination of Sr2+ versus Ca2+ during calcite formation is mainly controlled by precipitation rate (R in μmol/m2/h) and is weakly influenced by ionic strength/salinity. In analogy to Sr incorporation, 44Ca/40Ca fractionation during precipitation of calcite is weakly influenced by ionic strength/salinity too. At 25 °C the calcium isotope fractionation between calcite and aqueous calcium ions (Δ44/40Cacalcite-aq = δ44/40Cacalcite − δ44/40Caaq) correlates inversely to log R values for all experiments. In addition, an inverse relationship between Δ44/40Cacalcite-aq and log DSr, which is independent of temperature, precipitation rate, and aqueous (Sr/Ca)aq ratio, is not affected by ionic strength/salinity either. Considering the log DSr and Δ44/40Cacalcite-aq relationship, Sr/Ca and δ44/40Cacalcite values of precipitated calcite can be used as an excellent multi-proxy approach to reconstruct environmental conditions (e.g., temperature, precipitation rate) of calcite growth and diagenetic alteration. PMID:22347722

  5. Dithizone derivatives as sensitive water soluble chromogenic reagents for the ion chromatographic determination of inorganic and organo-mercury in aqueous matrices.

    PubMed

    Shaw, Matthew J; Jones, Phil; Haddad, Paul R

    2003-10-01

    Water-soluble sulfonate and the novel carboxylate analogues of dithizone, combined with ion interaction chromatography on a Dionex Acclaim 120 C18 silica column (250 x 4.6 mm id) with an eluent consisting of 10 mM tetrabutylammonium bromide and 60:40 methanol:water, have been developed as highly sensitive chromogenic ligands for the quantitative isocratic determination of inorganic and organo-mercury compounds in aqueous matrices in under 12 min. Using an optimised post column reagent system containing 0.65 mM dye, 0.5% Triton X-100 and 50 mM sodium hydroxide, good linearity (0-7.5 mg L(-1) R2 > 0.999), reproducibility using peak area measurements (RSD 0.69-1.38%, n = 8), and limits of detection (4-12 microg L(-1)) were achieved for methyl mercury, inorganic mercury and phenyl mercury. PMID:14667153

  6. [Characterization of water-soluble inorganic ions in PM2.5 and PM1.0 in summer in Guangzhou].

    PubMed

    Tao, Jun; Zhang, Ren-jian; Dong, Lin; Zhang, Tao; Zhu, Li-hua; Han, Jing-lei; Xu, Zhen-cheng

    2010-07-01

    PM2.5 and PM1.0 samples were collected simultaneously during July of 2008 in Guangzhou. The concentrations of water-soluble inorganic ions (Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, and SO4(2-)) were determined by ion chromatography. Meteorological parameters, atmospheric scattering, visibility, and concentrations of trace gases (SO2, NO2, and O3) for this period were also recorded. The results showed the total water-soluble inorganic ions concentrations were (25.5 +/- 10.9) microg x m(-1) and (22. 7 +/- 10.5) microg x m(-3) in PM2.5 and PM1.0, which occupied (47.9 +/- 4.3)% and (49.3 +/- 4.3)% of PM mass respectively. Sulfate was the most abundant ion and contributed (25.8 +/- 4.0)% of PM2.5 mass and (27.5 +/- 4.5)% of PM1.0 mass respectively. High temperature and high ozone level favored the formation of sulfate from sulfur dioxide, while the high relative humidity favored the formation of nitrate were observed. Moreover, sulfate, nitrate, and ammonium in PM2.5 and PM1.0 had great impact on the scattering coefficient and visibility degradation. PMID:20825004

  7. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    L-1), although the chloride comprises only a fraction of the total dissolved salts in water. The Cl/TDS ratio varies from 0.1 in nonmarine saline waters to ˜0.5 in marine-associated saline waters. Water salinity is also defined by electrical conductivity (EC). In soil studies, the electrical conductivity and the ratio of Na/√(Ca+Mg) (SAR) are often used as an indirect measure of soil salinity. In addition to chloride, high levels of other dissolved constituents may limit the use of water for domestic, agriculture, and industrial applications. In some parts of Africa, China, and India, for example, high fluoride content is associated with saline groundwater and causes severe dental and skeletal fluorosis (Shiklomanov, 1997). Hence, the "salinity" problem is only the "tip of the iceberg," as high levels of salinity are associated with high concentrations of other inorganic pollutants (e.g., sodium, sulfate, boron, fluoride), and bioaccumulated elements (e.g., selenium, and arsenic) (see Chapter 9.03).The World Health Organization (WHO) recommends that the chloride concentration of the water supply for human consumption should not exceed 250 mg L-1. Agriculture applications also depend upon the salinity level of the supplied water. Many crops, such as citrus, avocado, and mango, are sensitive to chloride concentration in irrigation water (an upper limit of 250 mg L-1). In addition, long-term irrigation with water enriched with sodium results in a significant reduction in the hydraulic conductivity and hence the fertility of the irrigated soil. Similarly, the industrial sector demands water of high quality. For example, the high-tech industry requires a large amount of water with low levels of dissolved salts. Hence, the salinity level of groundwater is one of the limiting factors that determine the suitability of water for a variety of applications.The salinity problem is a global phenomenon but it is more severe in water-scarce areas, such as arid and semi

  8. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    L-1), although the chloride comprises only a fraction of the total dissolved salts in water. The Cl/TDS ratio varies from 0.1 in nonmarine saline waters to ˜0.5 in marine-associated saline waters. Water salinity is also defined by electrical conductivity (EC). In soil studies, the electrical conductivity and the ratio of Na/√(Ca+Mg) (SAR) are often used as an indirect measure of soil salinity. In addition to chloride, high levels of other dissolved constituents may limit the use of water for domestic, agriculture, and industrial applications. In some parts of Africa, China, and India, for example, high fluoride content is associated with saline groundwater and causes severe dental and skeletal fluorosis (Shiklomanov, 1997). Hence, the "salinity" problem is only the "tip of the iceberg," as high levels of salinity are associated with high concentrations of other inorganic pollutants (e.g., sodium, sulfate, boron, fluoride), and bioaccumulated elements (e.g., selenium, and arsenic) (see Chapter 9.03).The World Health Organization (WHO) recommends that the chloride concentration of the water supply for human consumption should not exceed 250 mg L-1. Agriculture applications also depend upon the salinity level of the supplied water. Many crops, such as citrus, avocado, and mango, are sensitive to chloride concentration in irrigation water (an upper limit of 250 mg L-1). In addition, long-term irrigation with water enriched with sodium results in a significant reduction in the hydraulic conductivity and hence the fertility of the irrigated soil. Similarly, the industrial sector demands water of high quality. For example, the high-tech industry requires a large amount of water with low levels of dissolved salts. Hence, the salinity level of groundwater is one of the limiting factors that determine the suitability of water for a variety of applications.The salinity problem is a global phenomenon but it is more severe in water-scarce areas, such as arid and semi

  9. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  10. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    PubMed Central

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-01-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828

  11. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    PubMed

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC. PMID:26489299

  12. Hypertonic saline solutions do not influence the solubility of sputum from secretor and non-secretor cystic fibrosis patients

    PubMed Central

    Barboza, Marcelo A.I.; Brandão de Mattos, Cinara C.; Ferreira, Ana Iara C.; Barja, Paulo R.; Santos de Faria Junior, Newton; de Oliveira, Luís Vicente F.; de Mattos, Luiz C.

    2011-01-01

    Introduction Functional alterations of the cystic fibrosis transmembrane conductance regulator gene (CFTR) increase the viscoelasticity of pulmonary secretions of cystic fibrosis (CF) patients and require the use of therapeutic aerosols. The biochemical properties of exocrine secretions are influenced by the expression of the FUT2 gene which determine the secretor and non-secretor phenotypes of the ABH glycoconjugates. The aim of this study was to determine the influence of secretor and non-secretor phenotypes by means of photoacoustic analysis, both the typical interaction time (t 0) and the solubilization interval (Δt) of the sputum of secretor and non-secretor CF patients nebulized by hypertonic saline solutions at different concentrations. Material and methods Sputum samples were obtained by spontaneous expectoration from 6 secretor and 4 non-secretor patients with CF. Each sample was nebulized with 3%, 6%, and 7% hypertonic saline solutions in a photoacoustic cell. The values of t 0 and Δt were determined using the Origin 7.5® computer program (Microcal Software Inc.). The t-test was employed using the GraphPad Instat 3.0® computer program to calculate the mean and standard deviation for each parameter. Results For all hypertonic saline solutions tested, the mean values of t 0 and Δt do not show statistically significant differences between secretor and non-secretor patients. Conclusions The secretor and non-secretor phenotypes do not influence the in vitro solubilization of the sputum nebulized by hypertonic saline solutions at different concentrations when analysed by photoacoustic technique. PMID:22291775

  13. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  14. Polyimide/metal composite films via in situ decomposition of inorganic additives - Soluble polyimide versus polyimide precursor

    NASA Technical Reports Server (NTRS)

    Rancourt, J. D.; Porta, G. M.; Moyer, E. S.; Madeleine, D. G.; Taylor, L. T.

    1988-01-01

    Polyimide-metal oxide (Co3O4 or CuO) composite films have been prepared via in situ thermal decomposition of cobalt (II) chloride or bis(trifluoroacetylacetonato)copper(II). A soluble polyimide (XU-218) and its corresponding prepolymer (polyamide acid) were individually employed as the reaction matrix. The resulting composites exhibited a greater metal oxide concentration at the air interface with polyamide acid as the reaction matrix. The water of imidization that is released during the concurrent polyamide acid cure and additive decomposition is believed to promote metal migration and oxide formation. In contrast, XU-218 doped with either HAuCl4.3H2O or AgNO3 yields surface gold or silver when thermolyzed (300 C).

  15. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique. PMID:19350912

  16. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Gao, Yuan

    2008-06-01

    To characterize the mass size distributions of water-soluble inorganic and organic ions associated with urban particulate matter, a total of 15 sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in the urban area of Newark in New Jersey from July to December 2006. The mass concentrations of PM1.8 accounted for ∼68% of the mass concentrations of PM10. The mass concentrations of the total water-soluble ions in PM1.8 accounted for 31-81% of the mass concentrations of PM1.8. Sulfate was the dominant ion in fine particles, accounting for 31% of the PM1.8 mass with its dominant mode at 0.32-0.56 μm throughout all the samples. Nitrate size distributions were bi-modal, peaking at 0.32-0.56 and 3.2-5.6 μm, and the shift of the nitrate dominant fraction between fine and coarse modes was affected by temperature. The ratios of nitrate to PM1.8 varied significantly, 0.5-27%. The C2-C4 dicarboxylic acids accounted for 1.9±0.9% of PM1.8 mass, with oxalate being the dominant ion. The size distributions of oxalate exhibited two to four modes with the dominant one at 0.32-0.56 μm. Chloride existed in both coarse and fine modes, suggesting the influence of sea-salt aerosol and anthropogenic emissions. A crucial formation mechanism for the mass size distributions of these ions observed at this location is likely to be a combination of the gas-to-particle conversion and in-cloud/fog processing.

  17. Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer

    NASA Astrophysics Data System (ADS)

    Xu, Guojie; Gao, Yuan; Lin, Qi; Li, Wei; Chen, Liqi

    2013-12-01

    characterize the concentrations and size distributions of water-soluble organic and inorganic aerosol species, including Na+, non-sea-salt sulfate (nss SO42-), methane sulfonate (MSA), oxalate, and succinate, over the Southern Ocean (SO) and coastal East Antarctica (CEA), bulk and size-segregated aerosols were collected from 40°S, 100°E to 69°S, 76°E and between 69°S, 76°E and 66°S, 110°E during a cruise from November 2010 to March 2011. Results show that sea salt was the major component of the total aerosol mass, accounting for 72% over the SO and 56% over CEA. The average concentrations of nss SO42- varied from 420 ng m-3 over the SO to 480 ng m-3 over CEA. The concentrations of MSA ranged from 63 to 87 ng m-3 over the SO and from 46 to 170 ng m-3 in CEA. The average concentrations of oxalate were 3.8 ng m-3 over the SO and 2.2 ng m-3 over CEA. The concentrations of formate, acetate, and succinate were lower than those of oxalate. A bimodal size distribution of aerosol mass existed over CEA, peaking at 0.32-0.56 µm and 3.2-5.6 µm. MSA was accumulated in particles of 0.32-0.56 µm over CEA. High chloride depletion was associated with fine-mode particles enriched with nss SO42-, MSA, and oxalate. Higher cation-to-anion and NH4+/nss SO42- ratios in aerosols over CEA compared to that over the SO imply the higher neutralization capacity of the marine atmosphere over CEA.

  18. PEGylated Inorganic Nanoparticles

    SciTech Connect

    Karakoti, Ajay S.; Das, Soumya; Thevuthasan, Suntharampillai; Seal, Sudipta

    2011-02-25

    Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long term stability and attachment of selective functional groups. PEGylation of surfaces is a key strategic approach for providing stealth characteristics to nanomaterials otherwise identified as foreign materials by human body. The current review describes the role of surface modification of oxides by polyethylene glycol (PEG) in providing versatile characteristics to inorganic oxide nanoparticles with a focus on their biomedical applications. The role of PEG as structure directing agent in synthesis of oxides is also captured in this short review.

  19. Measuring soil salinity.

    PubMed

    Hardie, Marcus; Doyle, Richard

    2012-01-01

    Soil salinity is a form of land degradation in which salts accumulate in the soil profile to an extent that plant growth or infrastructure are negatively affected. A range of both field and laboratory procedures exist for measuring soil salinity. In the field, soil salinity is usually inferred from apparent electrical conductivity (EC(a)) using a range of devices, depending on the required depth of analysis, or size of the survey area. Field measurements of EC(a) require calibration to the actual salt content by laboratory analysis. In the laboratory, soil salinity is usually assessed by determining either the total soluble salts by evaporation of a soil water extract (TSS), or by determining the electrical conductivity (EC) of either a 1:5 distilled water:soil dilution, or a saturated paste extract. Although procedures for measuring soil salinity appear relatively straightforward, differences in methodology have considerable influence on measured values and interpretation of results. PMID:22895776

  20. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources

    NASA Astrophysics Data System (ADS)

    Li, Xingru; Wang, Lili; Ji, Dongsheng; Wen, Tianxue; Pan, Yuepeng; Sun, Ying; Wang, Yuesi

    2013-10-01

    To investigate the characteristics of aerosols in north China, the samples of water-soluble ions, including anions (F-, Cl-, NO2-, NO3-, SO42-) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle fractions, are collected using a sampler from Sep. 2009 to Aug. 2010 at four sites in urban areas (Beijing, Tianjin and Tangshan) and a background region (Xinglong) in the Jing-Jin-Ji urban agglomeration. High spatial variability is observed between the urban areas and the background region. The results of chemical composition analysis showed that secondary water soluble ions (SO42- + NO3- + NH4+) (SWSI) composed more than half the total ions, and are mainly found in fine particles (aerodynamic diameters less than 2.1 μm), while Mg2+ and Ca2+ contributed to a large fraction of the total water-soluble ions in coarse particles (aerodynamic diameters greater than 2.1 μm and less than 9.0 μm). The concentrations of SO42-, NO3- and NH4+ are higher in summer and winter and lower in spring and autumn. Mg2+ and Ca2+ are obviously abundant in winter in Beijing, Tianjin and Tangshan. In contrast, Mg2+ and Ca2+ are abundant in autumn in Xinglong. The SWSI showed a bimodal size distribution with the fine mode at 0.43-1.1 μm and the coarse mode at 4.7-5.8 μm, and had different seasonal variations and bimodal shapes. NH4+ played an important role in the size distributions and the formations of SO42- and NO3-. Heterogeneous reaction is the main formation mechanism of SO42- and NO3-, which tended to be enriched in the coarse mode of aerosol. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) indicated high photochemical oxidation property over the whole Jing-Jin-Ji urban agglomeration.

  1. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.

    PubMed

    Pal, Abhijit; Majumder, Kunal; Bandyopadhyay, Abhijit

    2016-11-01

    Noble copolymers from xanthan gum (XG) and poly(acrylic acid) (PAA) were synthesised through surfactant mediated graft copolymerization. The copolymers were applied as a biosorbent for inorganic Hg(II) at higher concentration level (300ppm). The copolymers were characterized using different analytical techniques which showed, the grafting principally occurred across the amorphous region of XG. Measurement of zeta potential and hydrodynamic size indicated, the copolymers were strong polyanion and possessed greater hydrodynamic size (almost in all cases) than XG, despite a strong molecular degradation that took place simultaneously during grafting. In the dispersed form, all grades of the copolymer displayed higher adsorption capability than XG, however, the grade with maximum grafting produced the highest efficiency (68.03%). Manipulation produced further improvement in efficiency to 72.17% with the same copolymer after 75min at a pH of 5.0. The allowable biosorbent dose, however, was 1000ppm as determined from the experimental evidences. PMID:27516248

  2. In situ determination of salinity by PGNAA.

    PubMed

    Borsaru, M; Smith, C; Merritt, J; Aizawa, T; Rojc, A

    2006-05-01

    Salinity is a very important environmental issue all around the world. In many cases salinity was produced from human activities like farming and mining. Different soluble salts contribute to salinity, however, NaCl is the most common salt producing salinity. This work deals with the application of the prompt gamma neutron activation analysis (PGNAA) technique for in situ determination of salinity. The technique is based on the measurement of chlorine, a component of the common salt, by PGNAA. PMID:16448819

  3. Reactive Transport Modeling of Geologic CO{sub 2} Sequestration in Saline Aquifers: The Influence of Intra-Aquifer Shales and the Relative Effectiveness of Structural, Solubility, and Mineral Trapping During Prograde and Retrograde Sequestration

    SciTech Connect

    Johnson, J W; Nitao, J J; Steefel, C I; Knauss, K G

    2001-04-24

    In this study, we address a series of fundamental questions regarding the processes and effectiveness of geologic CO{sub 2} sequestration in saline aquifers. We begin with the broadest: what is the ultimate fate of CO{sub 2} injected into these environments? Once injected, it is immediately subject to two sets of competing processes: migration processes and sequestration processes. In terms of migration, the CO{sub 2} moves by volumetric displacement of formation waters, with which it is largely immiscible; by gravity segregation, which causes the immiscible CO{sub 2} plume to rise owing to its relatively low density; and by viscous fingering, owing to its relatively low viscosity. In terms of sequestration, some fraction of the rising plume will dissolve into formation waters (solubility trapping); some fraction may react with formation minerals to precipitate carbonates (mineral trapping); and the remaining portion eventually reaches the cap rock, where it migrates up-dip, potentially accumulating in local topographic highs (structural trapping). Although this concept of competing migration/sequestration processes is intuitively obvious, identifying those sub-processes that dominate the competition is by no means straightforward. Hence, at present there are large uncertainties associated with the ultimate fate of injected CO{sub 2} (Figure 1). Principal among these: can a typical shale cap rock provide a secure seal? Because gravity segregation will always keep the immiscible CO{sub 2} plume moving towards the surface, caprock integrity is the single most important variable influencing isolation security. An extremely thick shale cap rock exists at Sleipner (several 100 m); here, however, we examine the performance of a 25-m-thick cap, which is more representative of the general case. Although the cap rock represents the final barrier to vertical CO{sub 2} migration, what is the effect of intra-aquifer permeability structure? Because this structure directs the

  4. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies. PMID:24875879

  5. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use

    NASA Astrophysics Data System (ADS)

    Duan, S.; Kaushal, S. S.

    2015-12-01

    There has been increased salinization of fresh water over decades due to the use of road salt deicers, wastewater discharges, saltwater intrusion, human-accelerated weathering, and groundwater irrigation. Salinization can mobilize bioreactive elements (carbon, nitrogen, phosphorus, sulfur) chemically via ion exchange and/or biologically via influencing of microbial activity. However, the effects of salinization on coupled biogeochemical cycles are still not well understood. We investigated potential impacts of increased salinization on fluxes of bioreactive elements from stream ecosystems (sediments and riparian soils) to overlying stream water and evaluated the implications of percent urban land use on salinization effects. Two-day incubations of sediments and soils with stream and deionized water across three salt levels were conducted at eight routine monitoring stations across a land-use gradient at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Results indicated (1) salinization typically increased sediment releases of labile dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), total dissolved Kjeldahl nitrogen (TKN) (ammonium + ammonia + dissolved organic nitrogen), and sediment transformations of nitrate; (2) salinization generally decreased DOC aromaticity and fluxes of soluble reactive phosphorus from both sediments and soils; (3) the effects of increased salinization on sediment releases of DOC and TKN and DOC quality increased with percentage watershed urbanization. Biogeochemical responses to salinization varied between sediments and riparian soils in releases of DOC and DIC, and nitrate transformations. The differential responses of riparian soils and sediments to increased salinization were likely due to differences in organic matter sources and composition. Our results suggest that short-term increases in salinization can cause releases of significant amounts of labile organic

  6. Secondary Inorganic Soluble Aerosol in Hong Kong: Continuous Measurements, Formation Mechanism Discussion and Improvement of an Observation-Based Model to Study Control Strategies

    NASA Astrophysics Data System (ADS)

    Xue, Jian

    Work in this thesis focuses on half-hourly or hourly measurements of PM2.5 secondary inorganic aerosols (SIA) in two locations in Hong Kong (HK) using a continuous system, PILS (Particle-into-Liquid System) coupled to two ion chromatographs. The high-resolution data sets allow the examination of SIA temporal dynamics in the scale of hours that the filter-based approach is incapable of providing. (1) Impacts of local emissions, regional transports and their interactions on chemical composition and concentrations of PM2.5 SIA and other ionic species were investigated at the Hong Kong University of Science and Technology (HKUST), a receptor site, under three synoptic conditions. (2) Chemical compositions and size characteristics of ionic species were investigated at Tung Chung, a new town area located in the Southwest part of HK. The sampling period was from 17 to 26 December 2009, covering both normal conditions and an aerosol episode. The three major secondary inorganic ions, SO42, NH4+ and NO 3-, accounted for 47 +/- 6% of PM2.5 mass. Further examination of size characteristics of NO3 - shows that fine mode NO3- is more likely to occur in environments when the fine particles are less acidic and the sea-salt aerosol contributions are low. (3) The ionic chemical composition of PM2.5 and meteorological parameters (e.g., temperature, RH) obtained at the HKUST site under all three different synoptic conditions are input into Aerosol Inorganic Model (AIM-III) for estimation of in situ pH through calculation of H+ amount and aerosol liquid water content (LWC). The second part of this thesis work is to improve an observation-based model (OBAMAP) for SIA, which was first developed by Dr. Zibing Yuan (2006) to evaluate the sensitivity of formation of nitrate ad sulfate to changes in the emissions of their precursors (i.e., NOx, SO2, and VOCs). The improvement work includes incorporating updated chemical mechanisms, thermodynamic equilibrium for gas-aerosol phase

  7. Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan.

    PubMed

    Chang, Li-Peng; Tsai, Jiun-Horng; Chang, Kai-Lun; Lin, Jim Juimin

    2008-06-01

    In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter <0.1 microm) and nano mode (PMnano, diameter <0.056 microm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 microm < diameter <1.0 microm). Mass fractions (percentages) of the three major water-soluble ions (nitrate, sulfate, and ammonium) as a group in PMnano, PM0.1, PM1, and PM2.5 were 18.4, 21.7, 50.0, and 50.7%, respectively. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1-1). Particles smaller than 0.1 microm were essentially basic, whereas those greater than 2.5 microm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 microm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates. PMID:17874279

  8. Chemical coupling between acid gases and water-soluble inorganic ions in size-segregated aerosols during Arabian Dust in Beirut

    NASA Astrophysics Data System (ADS)

    Saliba, Najat; Dada, Lubna; Baalbaki, Rima

    2015-04-01

    In the proximity of the Eastern Mediterranean region, the combination of two large desert areas; Arabian and African, with heavy oil industry and high insolation during summer delineate a unique location of atmospheric processes in the region. Once emitted, dust particles can be transported over long distances and/or remain suspended in the atmosphere for several days. The so-called remnant dust episodes in Beirut originate from both African and Arabian deserts. In this study, the gas and particle transformations and gas-to-particle conversion during Arabian-dust (Ar-D) events are assessed. The increase in primary and secondary gas concentrations during Ar-D days is ascribed to three contributing factors; (i) the regional-long-range transport (LRT), (ii) the drop in the average solar radiation leading to a slow primary-to-secondary conversion and secondary gas photo-degradation, and (iii) the enhancement of the recirculation and accumulation of the main pollutants during dusty days. In parallel, a respective mass increase by 137, 149 and 13% in the coarse (CPM), accumulation (ACC) and ultrafine (UF) fractions was measured and an increase in particle volume distribution was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. This lead to major changes in the inorganic chemical composition of all particle sizes. In particular, the enhanced presence of several types of nitrate and sulfate salts in the accumulation mode confirms that remnant dust episodes offer a favorable environment for gas-to-particle conversion and particle chemical transformations and growth.

  9. In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes.

    PubMed

    Eamens, Andrew L; Smith, Neil A; Dennis, Elizabeth S; Wassenegger, Michael; Wang, Ming-Bo

    2014-02-01

    Potato spindle tuber viroid (PSTVd) is a small non-protein-coding RNA pathogen that can induce disease symptoms in a variety of plant species. How PSTVd induces disease symptoms is a long standing question. It has been suggested that PSTVd-derived small RNAs (sRNAs) could direct RNA silencing of a targeted host gene(s) resulting in symptom development. To test this, we expressed PSTVd sequences as artificial microRNAs (amiRNAs) in Nicotiana tabacum and Nicotiana benthamiana. One amiRNA, amiR46 that corresponds to sequences within the PSTVd virulence modulating region (VMR), induced abnormal phenotypes in both Nicotiana species that closely resemble those displayed by PSTVd infected plants. In N. tabacum amiR46 plants, phenotype severity correlated with amiR46 accumulation and expression down-regulation of the bioinformatically-identified target gene, a Nicotiana soluble inorganic pyrophosphatase (siPPase). Taken together, our phenotypic and molecular analyses suggest that disease symptom development in Nicotiana species following PSTVd infection results from sRNA-directed RNA silencing of the host gene, siPPase. PMID:24503090

  10. A 12 year observation of water-soluble inorganic ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust

    NASA Astrophysics Data System (ADS)

    Boreddy, S. K. R.; Kawamura, K.

    2015-03-01

    In order to characterize the long term trend of remote marine aerosols, a 12 year observation was conducted for water-soluble inorganic ions in TSP aerosols collected from 2001-2012 in the Asian outflow region at a Chichijima Island in the western North Pacific. We found a clear difference in chemical composition between the continentally affected and marine background air masses over the observation site. Asian continental air masses are delivered from late autumn to spring, whereas marine air masses were dominated in summer. Concentrations of nss-SO42-, NO3-, NH4+, nss-K+ and nss-Ca2+ are high in winter and spring and low in summer. On the other hand, MSA- exhibits higher concentrations during spring and winter, probably due to springtime dust bloom or due to the direct continental transport of MSA- to the observation site. We could not find any clear decadal trend for Na+, Cl-, Mg2+ and nss-Ca2+ in all seasons, although there exists a clear seasonal trend. However, concentrations of nss-SO42- continuously decreased from 2007-2012, probably due to the decreased SO2 emissions in East Asia especially in China. In contrast, nss-K+ and MSA- concentrations continuously increased from 2001-2012 during winter and spring seasons, demonstrating that biomass burning and/or terrestrial biological emissions in East Asia are increasingly more transported from the Asian continent to the western North Pacific.

  11. Salinization Enhances Mobilization of Nutrients from Sediments to Streams

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.; Hohman, S.; Coplin, J.; Duan, S.

    2015-12-01

    Many regions of the U.S. and elsewhere are experiencing increased salinization of freshwater due to the widespread application of road salts. Increased salinization has the potential to release stored nutrients from sediments, decrease biodiversity, and perturb water quality. We conducted laboratory experiments to investigate the potential effects of road salt (NaCl) on nutrient mobilization from sediments to stream water. Sediments and stream water were incubated from 2 urbanizing watersheds of the Chesapeake Bay in the Baltimore-Washington Metropolitan area. Stream sediment was incubated from 11 routinely monitored streams exhibiting a land use gradient within the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) site and Anacostia River watershed. Our results indicate that salinization increased the release of soluble reactive phosphorus and total dissolved nitrogen at all sites. The release of dissolved organic carbon and dissolved inorganic carbon varied between sites, and these differential responses may be due to: stream sediment composition, organic matter content, and ambient water quality. The magnitude and frequency of road salt application may be amplified in the near future due to the interactive effects of climate variability and urbanization, and our research suggests this can have water quality and ecological implications for freshwater ecosystems. Further research is necessary to elucidate driving mechanisms of changes in sediment biogeochemical cycles in response to salinization and the temporal response of freshwater ecosystems.

  12. Characterization of saline dust emission resulted from Urmia Lake drying.

    PubMed

    Gholampour, Akbar; Nabizadeh, Ramin; Hassanvand, Mohammad Sadegh; Taghipour, Hasan; Nazmara, Shahrokh; Mahvi, Amir Hossein

    2015-01-01

    Compared with common dust storms, saline dust storms transport high concentrations of fine-grain saline and alkaline material. The saline dust storm differs from common dust storm, especially considering the sources of the suspended particulate matter (PM), chemical composition, grain size, and circulation processes. Atmospheric particulate matters (TSP, PM10, PM2.5, and PM1) and their water-soluble ions were concurrently measured at two sites located at north and southeast part of Urmia lake from January 2013 to September 2013. Particulate matters (PMs) were measured using high volume sampler and HAZ-DUST EPAM-5000 particulate air monitors. In both of the sampling sites, the highest concentration of PM was observed during the summer season (521.6, 329.1, 42.6, and 36.5 for TSP, PM10, PM2.5, and PM1, respectively). A total of 11 inorganic water-soluble ions in the TSP and PM10 were identified by ion chromatography (IC). No statistically significant difference was found between PM's ions concentrations of two sampling sites. The average of the total measured water-soluble ions in the sampling sites was 28.75 ± 12.9 μg/m(3) (11.9 ± 4.8% of total TSP mass) for TSP and 14.65 ± 7.1μg/m(3) (8.7 ± 4.4 of total PM10 mass) for PM10. Among all detected ions, sulfate was the dominant constituent followed by nitrate and sodium. This study showed that the water soluble salts compose 3-20% of the total mass of TSP and PM10. The PCA analysis showed that saline particulates formed from Urmia lake bed were the dominant source (57.6 %) of TSP. In addition, saline particulates together with crustal materials resulted from resuspension were the main source (59.9%) of PM10. PMID:26617986

  13. Sediment-water partitioning of inorganic mercury in estuaries.

    PubMed

    Turner, A; Millward, G E; Le Roux, S M

    2001-12-01

    The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter. PMID:11770766

  14. Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China.

    PubMed

    Shen, Zhenxing; Arimoto, Richard; Cao, Junji; Zhang, Renjian; Li, Xuxiang; Du, Na; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru

    2008-12-01

    Total suspended particulate (TSP) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) samples were collected over Xi'an for a 1-yr period to characterize the seasonal variations of water-soluble inorganic ions and to evaluate the effectiveness of the pollution policies and controls during the past 10 yr. Mass concentrations of five cations (sodium [Na+], potassium [K+], ammonium [NH4+], calcium [Ca2+], and magnesium [Mg2+]) and four anions (fluoride [F-], chloride [Cl-], nitrate [NO3-], and sulfate [SO4(2-)]) were determined by ion chromatography. The yearly arithmetic-mean mass concentrations of the total measured water-soluble ions in TSP and PM2.5 were 83.9 +/- 58.4 and 45 +/- 34.3 microg x m(-3). The most abundant ions in TSP were SO4(2-), NO3-, Ca2+, and NH4+; whereas in PM2.5 the dominant ions were SO4(2-), NH4 +, and NO3-. Most of the ions were more concentrated in the PM2.5 than in TSP, but two exceptions were Ca2+ and Mg2+. Comparisons of the molar ratios of Mg2+/Ca2+ in TSP indicated that fugitive dust was the main source for these two ions, and the influence of soil dust from outside of the city was most evident during dust storms. The mass concentrations of SO4(2-), NO3-, , NH4+, and K+ in TSP were highest in winter and lowest in spring, but Ca2+ was much higher in spring than other seasons because of suspended mineral dust. In PM2.5, NO3- and K+ also showed winter maxima, but SO4(2-) and NH4+ were highest in summer. Calculations of ion equivalents showed that TSP samples were more alkaline than PM2.5, the latter being weakly acidic in winter and autumn. High sulfur and nitrogen oxidation ratios occurred in summer and autumn, and there was evidence for the formation of ammonium bisulfate in TSP, ammonium sulfate in PM2.5, and ammonium nitrate in both fractions. Comparisons with the results of prior studies indicate that pollution controls in Xi'an have reduced the levels of air pollution over the past 10 yr. The SO4

  15. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  16. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  17. Characterization of Soluble Organics in Produced Water

    SciTech Connect

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively

  18. The chemical control of soluble phosphorus in the Amazon estuary

    NASA Technical Reports Server (NTRS)

    Fox, L. E.; Wofsy, S. C.; Sager, S. L.

    1986-01-01

    The role of sediments in controlling concentrations of soluble phosphorous in the Amazon estuary is examined. The efflux of phosphorous through the estuary is calculated using data collected on field excursions in December 1982 and May 1983, and laboratory mixing experiments. It is observed that soluble phosphorus was released from bottom sediments at a rate of 0.2 micro-M/day, when in seawater and deionizd water mixtures. The relation between release rates and salinity and sediment concentrations is studied. A one-dimensional dispersion model was developed to estimate phosphate inputs to the estuary. The model predicted total fluxes of soluble inorganic phosphorous of 15 x 10 to the 6th mole/day for December 1982 and 27 x 10 to the 6th mole/day for May 1983; the predictions correlate with field observations. It is noted that phosphorous removal is between 0 and 4 ppt at a rate of 0.044 + or - 0.01 micron-M/ppt per day and the annual mean input of phophorous from Amazon to outer-estuary is 23 x 10 to the 6th moles/day.

  19. Saline Sinus Rinse Recipe

    MedlinePlus

    ... Saline Sinus Rinse Recipe Share | Saline Sinus Rinse Recipe Saline sinus rinses can bring relief to patients ... at a fraction of the cost. Saline Rinse Recipe Ingredients 1. Pickling or canning salt-containing no ...

  20. Method for producing heat-resistant semi-inorganic compounds

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Hasegawa, Y.

    1983-01-01

    The method for producing a heat resistant, semi-inorganic compound is discussed. Five examples in which various alcohols, phenols, and aromatic carbonic acids are used to test heat resistance and solubility are provided.

  1. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Hypertonic saline.

    PubMed

    Constable, P D

    1999-11-01

    A key feature in the successful resuscitation of dehydrated or endotoxemic ruminants is the total amount of sodium administered. Administration of small volumes of HS and HSD offer major advantages over large volumes of isotonic saline because HS and HSD do not require intravenous catheterization or periodic monitoring, and are therefore suitable for use in the field. Hypertonic saline and HSD exert their beneficial effect by rapidly increasing preload and transiently decreasing afterload. Contrary to early reports, HS and HSD decrease cardiac contractility and do not activate a pulmonary reflex. The osmolality of HS and HSD should be 2400 mOsm/L (7.2% NaCl solution, 8 times normal plasma osmolality). Use of HS and HSD solutions of different osmolality to 2400 mOsm/L should be avoided at all costs, as too low a tonicity removes the main advantages of HS (low cost, decreased infusion time), whereas too high a tonicity may cause rapid vasodilation and decreased cardiac contractility, resulting in death. Rapid administration (> 1 mL/kg-1/min-1) of HS (2400 mOsm/L) should be avoided, as the induced hypotension may be fatal when coupled with a transient decrease in cardiac contractility. For treating dehydrated adult ruminants, HS (2400 mOsm/L, 4-5 mL/kg i.v. over 4-5 minutes) should be administered through the jugular vein and the cow allowed to drink water. This means that 2 L of HS should be administered to adult cattle. HSD should be administered in conjunction with isotonic oral electrolyte solutions to all calves 8% or more dehydrated (eyes recessed > or = 4 mm into the orbit, cervical skin tent duration > 6 seconds) or calves with reduced cardiac output (fetlock temperature < 29 degrees C when housed at 10-24 degrees C). For treating dehydrated calves, HSD (2400 mOsm/L NaCl in 6% dextran-70, 4-5 mL/kg i.v. over 4-5 minutes) should be administered through the jugular vein and the calf allowed to suckle an isotonic oral electrolyte solution. This means that 120

  3. Practically Saline.

    PubMed

    Schroeder, Jonathan; O'Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  4. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  5. Practically Saline

    PubMed Central

    Schroeder, Jonathan; O’Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  6. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  7. Bioremediation of metals and inorganic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    Bioremediation has been a problematic alternative for remediation of metals and inorganic compound contamination. Unlike organic contaminants, which often can be broken down by biological processes into relatively harmless metabolites and byproducts, metals are elemental. Further, metals and their salts often have an inhibitory effect on biological activity. However, despite these potential pitfalls, there has been progress recently in applying bioremediation technologies to metals and inorganics. This volume encompasses topics such as lead solubility reduction, chromium reduction, denitrification, volatilization of selenium in soils, metals recovery from acid mine drainage, and even the possibility of applying artificial neural network technology to aid in bioremediation.

  8. Solubility of Structurally Complicated Materials: II. Bone

    NASA Astrophysics Data System (ADS)

    Horvath, Ari L.

    2006-12-01

    Bone is a structurally complex material, formed of both organic and inorganic chemicals. The organic compounds constitute mostly collagen and other proteins. The inorganic or bone mineral components constitute predominantly calcium, phosphate, carbonate, and a host of minor ingredients. The mineralized bone is composed of crystals which are closely associated with a protein of which collagen is an acidic polysaccharide material. This association is very close and the protein integrates into the crystalline structure. The mineralization involves the deposition of relatively insoluble crystals on an organic framework. The solubility process takes place when the outermost ions in the crystal lattice breakaway from the surface and become separated from the crystal. This is characteristic for ions dissolving in water or aqueous solutions at the specified temperature. The magnitude of solubility is temperature and pH dependent. Bone is sparingly soluble in most solvents. Enamel is less soluble than bone and fluoroapatite is the least soluble of all apatites in acid buffers. Collagen is less soluble in neutral salt solution than in dilute acid solutions at ambient temperatures. The solubility of collagens in solvents gradually decreases with increasing age of the bone samples.

  9. The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Papadimitriou, S.; Kennedy, H.; Norman, L.; Kennedy, D. P.; Dieckmann, G. S.; Thomas, D. N.

    A large-scale geographical study of the ice pack in the seasonal ice zone of the Weddell Sea, Antarctica, took place from September to October 2006. Sea ice brines with a salinity greater than 58 and temperature lower than -3.6°C were sampled from 22 ice stations. The brines had large deficits in total alkalinity and in the concentrations of the major dissolved macronutrients (total dissolved inorganic carbon, nitrate, and soluble reactive phosphorus) relative to their concentrations in the surface oceanic water and conservative behavior during seawater freezing. The concentration deficits were related to the dissolved inorganic carbon-consuming processes of photosynthesis, CaCO3 precipitation, and CO2 degassing. The largest concentration deficits in total dissolved inorganic carbon were found to be associated with CaCO3 precipitation and CO2 degassing, because the magnitude of the photosynthesis-induced concentration deficit in total dissolved inorganic carbon is controlled by the size of the inorganic nutrient pool, which can be limited in sea ice by its openness to exchange with the surrounding oceanic water.

  10. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  11. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors

    USGS Publications Warehouse

    Leland, H.V.; Brown, L.R.; Mueller, D.K.

    2001-01-01

    1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, 'lowland type' river. 2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2-4 ??g L-1 day-1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6-11 ??g L-1 day-1) occurred in the summer, but not in the spring (loss of 1-6 ??g L-1 day-1) or autumn (loss of 2-5 ??g L-1 day-1). 3. The phytoplankton was dominated in summer by 'r-selected' centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply. 4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp

  12. Inorganic contents of peats

    SciTech Connect

    Raymond, R. Jr.; Bish, D.L.; Cohen, A.D.

    1988-02-01

    Peat, the precursor of coal, is composed primarily of plant components and secondarily of inorganic matter derived from a variety of sources. The elemental, mineralogic, and petrographic composition of a peat is controlled by a combination of both its botanical and depositional environment. Inorganic contents of peats can vary greatly between geographically separated peat bogs as well as vertially and horizontally within an individual bog. Predicting the form and distribution of inorganic matter in a coal deposit requires understanding the distribution and preservation of inorganic matter in peat-forming environments and diagenetic alterations affecting such material during late-stage peatification and coalification processes. 43 refs., 4 figs., 3 tabs.

  13. SPOT5 imagery for soil salinity assessment in Iraq

    NASA Astrophysics Data System (ADS)

    Teggi, S.; Costanzini, S.; Despini, F.; Chiodi, P.; Immordino, F.

    2012-10-01

    Soil salinization is a form of topsoil degradation due to the formation of soluble salts at deleterious levels. This phenomenon can seriously compromise vegetation health and agricultural productivity, and represents a worldwide environmental problem. Remote sensing is a very useful tool for soil salinization monitoring and assessment. In this work we show some results of a study aimed to define a methodology for soil salinity assessment in Iraq based on SPOT 5 imagery. This methodology allows the identification of salinized soils primarily on bare soils. Subsequently some soil salinity assessment can be done on vegetated soils. On bare soil the identification of salt is based on spectral analysis, using the Minimum Noise Fraction transformation and several indexes found in literature. In case of densely vegetated soils the methodology for the discrimination of salinized soils has been integrated with the results obtained from the classification of vegetation coverage.

  14. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    SciTech Connect

    Chapman, Piers; *Morse, John W.

    2010-11-15

    1. Objective The general objective of this research was to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, carbon dioxide partial pressure (pCO2), and modest ranges of T and P. This would be done by studying both reaction rates and solubility from changes in solution chemistry. Also, nanoscale observations of calcite surface morphology and composition would be made to provide an understanding of rate controlling mechanisms.

  15. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  16. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  17. Determination of microgram quantities of inorganic sulfate in atmospheric particulates

    SciTech Connect

    Wolfson, J.M.

    1980-01-01

    This method makes it possible for a minimally equipped analytical laboratory to measure the microgram quantities of water soluble inorganic sulfate in respirable-sized ambient air particulates. It is particularly appropriate for indoor and personal dosimeter samples which often contain cigarette smoke.

  18. Salinity Management in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  19. Solubility of hydroxyapatite/mica composites.

    PubMed

    Nordström, E G; Hara, T; Herø, H

    1996-01-01

    The solubility of some inorganic materials was studied. It was found that Ca dissolution was high in calcium phosphates with Ca/P ratios 1.67-2.0. Dissolution of P was moderate compared with dissolution of Ca. The composites, HA content 70 wt-%, and HA showed to be corrosion resistant. Dissolution of alumina in the mineral muscovite, used as a filler material, was found to be neglectable and dependent on the density of the composite. PMID:8761517

  20. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  1. Saline infusion sonohysterography.

    PubMed

    2004-01-01

    Saline infusion sonohysterography consists of ultrasonographic imaging of the uterus and uterocervical cavity, using real-time ultrasonography during injection of sterile saline into the uterus. When properly performed, saline infusion sonohysterography can provide information about the uterus and endometrium. The most common indication for sonohysterography is abnormal uterine bleeding. sonohysterography should not be performed in a woman who is pregnant or could be pregnant or in a woman with a pelvic infection or unexplained pelvic tenderness. Physicians who perform or supervise diagnostic saline infusion sonohysterograpy should have training, experience, and demonstrated competence in gynecologic ultrasonography and saline infusion sonohysterography. Portions of this document were developed jointly with the American College of Radiology and the American Institute of Ultrasound in Medicine. PMID:14968760

  2. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  3. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  4. Sea Surface Salinity

    NASA Video Gallery

    The heat of the sun also forces evaporation at the ocean's surface, which puts water vapor into the atmosphere but leaves minerals and salts behind, keeping the ocean salty. The salinity of the oce...

  5. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  6. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  7. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  8. Soluble vs. insoluble fiber

    MedlinePlus

    ... diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, and some fruits and vegetables. It is also found in psyllium, ...

  9. RESPONSE OF LEAD SOLUBILITY TO DISSOLVED CARBONATE IN DRINKING WATER

    EPA Science Inventory

    A model is presented showing the detailed response of the theoretical solubility curves for lead to changes in dissolved inorganic carbonate concentration (TIC) and pH at 25 C. Aqueous Pb(II) ion, lead carbonate complexes, lead hydroxide monomers and polymers, and the solids lead...

  10. Controls on Calcite Solubility in Metamorphic and Magmatic Fluids

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Eguchi, J.; Galvez, M.

    2015-12-01

    Calcite is an important hydrothermal alteration product in a wide range of environments. The role of calcite in hydrothermal alteration depends on its solubility in geologic fluids, especially H2O. At ambient T and P, calcite solubility is low and it exhibits well-known declining, or "reverse", solubility with rising T. However, experimental and theoretical studies show that increasing P yields higher solubility and restricts the region of reverse solubility behavior to higher temperature. At 0.2 GPa the reverse solubility region lies at T>600°C; at 0.5 GPa, >800°C. Thus, whereas calcite possesses relatively low solubility in pure H2O in shallow hydrothermal systems (typically <10 ppm C), it is substantially more soluble at conditions of middle and lower crustal metamorphism and magmatism, reaching concentrations ≥1000 ppm. At the higher P of subduction zones, aragonite solubility in H2O is even greater. Thus, neglecting other solubility controls, calcite precipitation is favored as crustal fluids cool and/or decompress. However, the solubility of calcite in H2O also depends strongly on other solutes, pH, and fO2. Sources of alkalinity decrease calcite solubility. In contrast, sources of acidity such as CO2 and Cl increase solubility. Crustal fluids can be enriched in alkali halides such as NaCl. Calcite solubility increases with increasing salt content at a given P and T. From approximately seawater salinity to salt saturation, the fluid behaves as a dilute molten salt and calcite solubility increases as the square of the salt mole fraction regardless of the alkali (Li, Na, K, Cs) or halogen (F, Cl, Br, I) considered. Similar behavior is seen in mixed salt solutions. At lower salinities, solubility behavior is as expected in dilute electrolyte solutions. The transition from dilute electrolyte to molten salt is fundamental to the properties of crustal fluids. Reduction of carbonate species or CO2 in the fluid to CH4, which is common during serpentinization of

  11. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  12. Amyloid Fibril Solubility.

    PubMed

    Rizzi, L G; Auer, S

    2015-11-19

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general. PMID:26496385

  13. Estimation of environmental properties for inorganic compounds using LSER

    USGS Publications Warehouse

    Hickey, James P.

    1999-01-01

    The Great Lakes Science Center has devised values for inorganic species for use in the environmental property- predictive quantitative structure-activity relationships (QSAR) Linear Solvation Energy Relationship (LSER). Property estimation has been difficult for inorganic species. In this presentation aqueous solubility, bioconcentration and acute aquatic toxicity are estimated for inorganic compounds using existing LSER equations. The best estimations arise from the most accurate description of predominant solution species, many within an order of magnitude. The toxicities also depend on an estimation of the bioactive amount and configuration. A number of anion/cation combinations (salts) still resist accurate property estimation, and the reasons currently are not understood. These new variable values will greatly extend the application and utility of LSER for the estimation of environmental properties.

  14. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  15. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  16. Saline Systems highlights for 2006

    PubMed Central

    DasSarma, Shiladitya

    2007-01-01

    Saline Systems is a journal devoted to both basic and applied studies of saline and hypersaline environments and their biodiversity. Here, I review the reports and commentaries published in the journal in 2006, including some exploring the geochemistry of saline estuaries, lakes, and ponds, others on the ecology and molecular biology of the indigenous halophilic organisms, and still others addressing the environmental challenges facing saline environments. Several studies are relevant to applications in biotechnology and aquaculture. PMID:17244355

  17. Development and testing of spheroidal inorganic sorbents

    SciTech Connect

    Collins, J.L.; Anderson, K.K.

    1998-01-29

    The general objectives of this task are to develop, prepare, and test spheroidal inorganic ion exchangers made by the HMTA (hexamethylenetetramine) internal gelation process to remove radionuclides and heavy metals from waste streams occurring at the various DOE sites. Inorganic ion-exchange materials, such as sodium silicotitanate, sodium titanate, ammonium molybdeophosphate, phosphotungstic acid, hexacyanoferrates, titanium monohydrogen phosphate, hydrous titanium oxide, polyantimonic acid, magnesium oxide, etc. have high selectivities and efficiencies for separating and removing radionuclides (e.g., cesium, strontium, technetium, iodine, europium, cerium, ruthenium, and zirconium), actinides, and other elements (such as lead, mercury, silver, nickel, zinc, chromium, and fluoride) from aqueous waste streams. The development of cesium specific spherical sorbents for treatment of acidic, high-salt waste solutions was initiated in FY 1998. Acid-side treatment is important at INEEL and could become important if acidic sludge washing were to become a treatment option at Hanford, Savannah River, or Oak Ridge. Zirconium monohydrogen phosphates (ZrHP) embedded with ammonium molybdophosphate (AMP) was the cesium selective inorganic sorbent chosen for making microspheres. AMP is known to be a very effective sorbent for removing cesium from waste streams over a wide range of acidity and salinity, and it has very rapid loading kinetics. The cesium can also be eluted from AMP with ammonium salt solutions. AMP cannot be used as a sorbent at pHs above 7 because it decomposes. In the pH range of 1 to 7, ZrHP is also a very effective sorbent for removing Cs, Sr, Th, U(VI), Pu(IV), AM(III), Hg, and Pb from streams of lower ionic concentrations.

  18. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  19. Inorganic nitrogen and phosphorus dynamics in the water column of the patuxent river. Final technical report, 1 July 1989-31 December 1991

    SciTech Connect

    Capone, D.G.; Miller, V.; Love, J.; Duguay, L.

    1992-01-01

    An analysis was made of nitrogen (N) and phosphorus (P) dynamics in the water column of the Patuxent River, Maryland, over a 2 year cycle. Specifically, inorganic N and P assimilation were determined by isotopic tracer methods at 3 stations along the salinity gradient of the river on a monthly basis. The authors determined the concentrations of particulate N and P and the major dissolved species. Among inorganic species, nitrate showed the greatest seasonal variation, particularly at the upstream stations. Nitrate, which increased going upstream, tended to dominate the inorganic N pools. Ammonium, nitrate and phosphate uptake varied over a wide range among and within sites. Values tended to increase moving upstream. Nitrate uptake dominated inorganic N assimilation upstream while ammonium uptake was of greater importance at the most saline station. With respect to indicies of nutrient limitation, except for the summer, dissolved inorganic N was in excess relative to inorganic P, suggestive of P limitation.

  20. Soil salination indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  1. Applications of Solubility Data

    ERIC Educational Resources Information Center

    Tomkins, Reginald P. T.

    2008-01-01

    This article describes several applications of the use of solubility data. It is not meant to be exhaustive but rather to show that knowledge of solubility data is required in a variety of technical applications that assist in the design of chemical processes. (Contains 3 figures and 1 table.)

  2. What Variables Affect Solubility?

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn

    2003-01-01

    Helps middle school students understand the concept of solubility through hands-on experience with a variety of liquids and solids. As they explore factors that affect solubility and saturation, students gain content mastery and an understanding of the inquiry process. Also enables teachers to authentically assess student performance on several…

  3. Physiological and molecular changes in barley and wheat under salinity.

    PubMed

    Temel, Aslihan; Gozukirmizi, Nermin

    2015-03-01

    In this study, it was aimed to compare salinity-induced changes in barley (Hordeum vulgare L. cv. Bornova-92) and bread wheat (Triticum aestivum L. cv. Gerek-79). Seeds were germinated under saline conditions (0, 50, 100, 250, and 500 mM NaCl) for 2 days and recovered under non-saline conditions for 2 days. At the end of the salt treatment, germination, water content (WC), total soluble protein content, and catalase (CAT, EC 1.11.1.6) activity were affected in both species, while superoxide dismutase (SOD, EC 1.15.1.1) activity was affected in barley. Salinity affected WC, protein content, and CAT activity in both species, while it affected germination in barley and affected fresh weight and SOD activity in wheat after recovery. Physiological responses of both species were correlated. Expression of α-tubulin, Atls1, and Lls1 genes was down-regulated in barley after 250 mM NaCl treatment. HVA1 gene was highly (more than 50-fold) stimulated by salinity in barley. However, α-tubulin and Atls1 genes were down-regulated, and Lls1 gene was up-regulated in wheat after recovery from 250-mM NaCl treatment. Increase in HVA1 expression was not significant in wheat. The expression profiles of barley and wheat under salinity are different, and barley tended to regulate gene expression faster than wheat. PMID:25578157

  4. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine.

    PubMed

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J

    2016-08-01

    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny. PMID:27393920

  5. Inorganic polymer engineering materials

    SciTech Connect

    Stone, M.L.

    1993-06-01

    Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

  6. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  7. Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage.

    PubMed

    Zhang, Naiyuan; Shi, Xiaomeng; Guan, Zhiyong; Zhao, Shuang; Zhang, Fei; Chen, Sumei; Fang, Weiming; Chen, Fadi

    2016-08-01

    Salinity-stressed plants of salinity sensitive ('Qx096') and tolerant ('Qx097') chrysanthemum cultivar were treated with a range of concentrations of spermidine (Spd). Plant performance, as indicated by various parameters associated with growth, was improved by the treatment, as was the tissue content of soluble protein and proline. The extent of both Na(+) accumulation and K(+) loss was reduced. Activity levels of the stress-related enzymes SOD, POD, APX and CAT were significantly increased and the production of malondialdehyde (MDA) decreased. The suggestion was that treatment with 1.5 mM Spd would be an effective means alleviating salinity-stress induced injury through its positive effect on photosynthetic efficiency, reactive oxygen species scavenging ability and the control of ionic balance and osmotic potential. Its protective capacity was more apparent in 'Qx096' than in 'Qx097'. PMID:27173095

  8. Overview of SMOS Salinity

    NASA Astrophysics Data System (ADS)

    Nicolas, R.

    2014-12-01

    While it is well known that the ocean is one of the most important components of the climate system, with a heat capacity 1100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions are now providing the first space borne measurements of the sea surface salinity (SSS). In this talk, we will present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land-ocean and atmosphere-ocean interaction processes that occur within the marine hydrological cycle. In particular, we shall illustrate how SMOS and its ocean mapping capability provides observations across the world's largest tropical ocean fresh pool regions and we will discuss intra-seasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon-Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations will be shown to yield new freshwater budget and ocean circulation insight. Examples of SMOS capabilities of monitoring salt exchanges across the Gulf Stream through meso-scale eddies will be provided. SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.

  9. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  10. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  11. [Solubility of 6 gases in blood and various liquid media].

    PubMed

    Guitart, R

    1993-09-01

    Sulfur hexafluoride, ethane, cyclopropane, enflurane, diethyl ether and acetone are six gases commonly used in the measurement of the distribution of ventilation-perfusion ratios. In order to obtain reference data, their liquid/gas partition coefficients (K) have been determined in water at three different temperatures and in several inorganic, organic and biologic media at 37 degrees C, by a headspace-gas chromatographic method. As expected, an increase in temperature and concentration of solutes in the liquid matrix reduces the solubility of the gases. All gases, except acetone, are more soluble in olive oil than in water. The solubility of SF6, ethane, cyclopropane and enflurane in human and rat blood is greater than in water, the solubility of ether remains practically unchanged, and that of acetone is lower in blood than in water. PMID:8310171

  12. The inorganic speciation of tin(II) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2012-06-01

    This paper reports new voltammetric measurements on the interactions between tin(II) and the most important natural inorganic ligands, OH-, Cl-, F-, CO32-, SO42- and PO43-. For a better understanding of tin(II) speciation, an analysis is also given of prior data on the same systems from the literature. The formation constants were determined at t = 25 °C in different ionic media and at different ionic strengths, specifically the following: Sn(OH)q (0.1 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), SnClr and Sn(OH)Cl (0.1 ⩽ I/mol L-1 ⩽ 2.3 in Na(NO3, Cl)), Sn(SO4)r (0.1 ⩽ I/mol L-1 ⩽ 1.6 in Na(NO3, SO4)), SnHqCO3 and SnHqPO4 (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaNO3), where the subscripts r and q represent the stoichiometric coefficients. Concerning the SnFr species, reliable literature values were considered (0.15 ⩽ I/mol L-1 ⩽ 1.0 in NaClO4). Fifteen voltammetric measurements were performed in synthetic seawater; the total seawater binding ability was evaluated by a model in which synthetic seawater is expressed as a single salt, BA. The formation of species between tin(II) and the anion of the marine salt (A) was also proposed, and the corresponding stability constants at different salinities (5 ⩽ S ⩽ 50) were reported. In addition, studies on the solubility of Sn(OH)2(s) were carried out using voltammetry and light scattering measurements. The "extra-stability" of the mixed species with respect to the parent species was evaluated, in particular for Sn(OH)Cl and the corresponding species involving the anion of the marine salt (A). The dependence of the formation constants on ionic strength was analysed using extended Debye-Hückel and Specific ion Interaction Theory (SIT) type equations. Tin(II) speciation was also evaluated in different natural fluid conditions, where, in all cases, carbonate complexation was predominant, hampering the formation of hydrolytic species throughout the investigated pH range. Moreover, some formation enthalpy changes were calculated

  13. Biochemical and Anatomical Changes and Yield Reduction in Rice (Oryza sativa L.) under Varied Salinity Regimes

    PubMed Central

    Hakim, M. A.; Juraimi, Abdul Shukor; Hanafi, M. M.; Ismail, Mohd Razi; Selamat, Ahmad; Rafii, M. Y.; Latif, M. A.

    2014-01-01

    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m−1, were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m−1 and decreased up to 12 dS m−1. Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m−1 salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results. PMID:24579076

  14. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ismail, Mohd Razi; Selamat, Ahmad; Rafii, M Y; Latif, M A

    2014-01-01

    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results. PMID:24579076

  15. What Should We Teach Beginners about Solubility and Solubility Products?

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    1998-01-01

    Argues that consideration should be given to whether teaching solubility product calculations is at all useful. Claims that experienced teachers seriously misunderstand and misuse solubility product calculations. (DDR)

  16. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  17. Learning about Solubility

    ERIC Educational Resources Information Center

    Salinas, Dino G.; Reyes, Juan G.

    2015-01-01

    Qualitative questions are proposed to assess the understanding of solubility and some of its applications. To improve those results, a simple quantitative problem on the precipitation of proteins is proposed.

  18. Solubility of Organic Compounds

    ERIC Educational Resources Information Center

    James, K. C.

    1972-01-01

    Outlines factors to be considered in choosing suitable solvents for non-electrolytes and salts of weak acids and bases. Describes how, in some simple situation, the degree of solubility can be estimated. (Author/DF)

  19. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  20. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    PubMed

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  1. Solubility of inert gases in dog blood and skeletal muscle.

    PubMed

    Meyer, M; Tebbe, U; Piiper, J

    1980-03-01

    Solubility of H2, Ar, CH4 and SF6 was determined at 310 K (37 degrees C) in water, in saline (0.154 mol NaCl/l H2O), in plasma and whole blood of dogs, and in homogenates of the dog gastrocnemius muscle. The liquids were equilibrated with pure gases, and the dissolved gases were extracted and measured by gas chromatography as described previously (Meyer, M.: Pflügers Arch. 375, 161--165, 1978). In saline, the solubilities were 4% (SF6) to 15% (Ar) lower than in water. For dog blood the following mean values for the solubility coefficient (in mumol . 1(-1) . kPa-1) were found: for H2, 6.44; for Ar, 9.94; for CH4, 11.44; for SF6, 2.62. The red cell/plasma and the muscle/blood solubility ratios were near unity for H2, Ar and CH4 (ranging from 0.9 to 1.3); for SF6, however, they were much higher (about 2.1), apparently due to the high solubility of SF6 in hydrophobic substances (lipids). PMID:6247698

  2. Survival strategies of microorganisms in extreme saline environments

    NASA Astrophysics Data System (ADS)

    Imhoff, J. F.

    Halophilic representatives are found in all main lines of evolutionary descendence of microbes: in archaebacteria, Gram-negative and Gram-positive eubacteria, and also in eucaryotes. In principe all halophilic microorganisms have to adapt their surface and membrane structures to their highly ionic environments. Concerning their intracellular compartment two different strategies have been developed: Inorganic ions are largely excluded in some microorganisms while such ions are actively accumulated in others. In particular the second group of organisms has to adapt the whole metabolic machinery to the highly ionic conditions of several molar salts, whereas in the first group only the outer surface of the cytoplasmic membrane and the extracytoplasmic structures are in contact with high concentrations of inorganic ions. In this latter group, a variety of organic solutes is accumulated in response to increases of the salinity of the environment.

  3. Extracting inorganics from scrap tires

    SciTech Connect

    Cummings, R.; Wertz, D.L.

    1995-12-31

    Scrap tires contain several inorganic moieties in abundances >0.5% which are impregnated into their carbonaceous matrix. These inorganic species are known to produce acid rain, toxic aerosols, and boiler scale and could produce unwanted catalytic effects as well. It is our position that the potential of recycling scrap tires would be considerably enhanced if the inorganics in question - S, Ca, and Zn - were removed prior to attempts to upgrade the carbonaceous matrix. Using non-mechanical methods, we are attempting to cleave the adherence between the co-polymer matrix and to extract the inorganics. The efficiency of our methods is being measured by wavelength dispersive x-ray spectrometry and by other methods.

  4. A new family of anionic organic–inorganic hybrid doughnut-like nanostructures

    SciTech Connect

    Zhang, Zhuxiu; Gao, Wen-Yang; Wojtas, Lukasz; Zhang, Zhenjie; Zaworotko, Michael J.

    2015-06-15

    A family of soluble organic–inorganic hybrid doughnut-like anions, hydoughnuts, has been prepared by the self-assembly of polyoxovanadate anions and 1,3-benzenedicarboxylate (bdc) linkers. Derivatives of the parent hydoughnut, [(V₄O₈Cl)₄(bdc)₈]⁴⁻, can be obtained by changing the counter-ion or by using a variant of bdc.

  5. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of

  6. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  7. Silica Transport and Distribution in Saline, Immiscible Fluids: Application to Subseafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Steele-Macinnis, M.; Bodnar, R. J.; Lowell, R.; Rimstidt, J. D.

    2009-05-01

    Quartz is a nearly ubiquitous gangue mineral in hydrothermal mineral deposits, most often constituting the bulk of hydrothermal mineralization. The dissolution, transport and precipitation of quartz is controlled by the solubility of silica; in particular, in hot hydrothermal fluids in contact with quartz, silica saturation can generally be assumed, as rates of dissolution and precipitation are generally much faster than fluid flow rates. The solubility of silica in aqueous fluids can be used to understand the evolution of hydrothermal systems by tracing the silica distribution in these systems through time. The solubility of quartz in an aqueous fluid is dependent upon the pressure, temperature and composition (PTX) of the fluid. Silica solubility in pure water as a function of pressure and temperature is well understood. However, natural fluids contain variable amounts of dissolved ionic species, thus it is necessary to include the effects of salinity on silica solubility to accurately predict quartz distribution in hydrothermal systems. In particular, addition of NaCl results in enhanced quartz solubility over a wide range of PT conditions. Furthermore, if phase separation occurs in saline fluids, silica is preferentially partitioned into the higher salinity brine phase; if vapor is removed from the system, the bulk salinity in the system evolves towards the brine end member, and overall silica solubility is enhanced. There is abundant evidence from natural fluid inclusions for fluid immiscibility in hydrothermal ore deposits. Additionally, recent hydrothermal models that include fluid phase equilibria effects predict that phase separation may be an important control on the distribution of dissolved components in seafloor hydrothermal systems. An empirical equation describing the solubility of silica in salt-bearing hydrothermal solutions over a wide range of PTX conditions has been incorporated into a multiphase fluid flow model for seafloor hydrothermal

  8. Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities

    NASA Technical Reports Server (NTRS)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1989-01-01

    Chemical differences were noted between two Antarctic cryptoendolithic (hidden within rock) microenvironments colonized by different microbial communities. Microenvironments dominated by cyanobacteria (BPC) had a higher pH (pH 7-8) than those dominated by lichen (LTL) (pH 4.5-5.5). In order to understand the interactions between the microbiota and the inorganic environment, the inorganic environment was characterized. Water-soluble, carbonate-bound, metal-oxide, organically bound, and residual inorganic species were sequentially extracted from rock samples by chemical means. Each fraction was then quantified using inductively coupled plasma atomic emission spectrometry. BPC contained much more water-soluble and carbonate-bound Ca and Mg than LTL. Metal-oxide species of Al, Fe, and Mn were more abundant in LTL than BPC. Metal oxides appeared to be mobilized (in the order Mn > Fe > Al) from the LTL lichen zone but remained immobile in BPC sandstone. The distribution of K and P bound to metal oxide reflected the distribution of iron oxide in LTL, an indication of the importance of iron in controlling the availability of nutrients in this ecosystem. Metal oxides in turn were likely controlled or influenced by organic matter associated with the lichen community. Despite overall depletion of Fe, Al, and K in the lichen zone, SEM X-ray analysis showed that they were enriched in fungal hyphae. Water-soluble P was present despite the presence of metal oxides, which sequester phosphate. This has biological relevance since P is an essential nutrient.

  9. Thallium (I), soluble salts

    Integrated Risk Information System (IRIS)

    Thallium ( I ) , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  10. Fluorine (soluble fluoride)

    Integrated Risk Information System (IRIS)

    Fluorine ( soluble fluoride ) ; CASRN 7782 - 41 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  11. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  12. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  13. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  14. Polymer Coating for Immobilizing Soluble Ions in a Phosphate Ceramic Product

    SciTech Connect

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    1999-05-05

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  15. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  16. Solubilities of gases in simulated Tank 241-SY-101 wastes

    SciTech Connect

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

  17. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  18. Concerning inorganic crystal structure types.

    PubMed

    Bergerhoff; Berndt; Brandenburg; Degen

    1999-04-01

    All representatives of an inorganic crystal structure type can be found systematically in the new database SICS (Standardized Inorganic Crystal Structures). It is derived from the Inorganic Crystal Structure Database (ICSD) by selecting the best determination of each phase. In addition, each entry is given in a standardized description and complemented by searchable descriptors Delta, which give the difference between all structures of an isopointal set. Because of the large number of structures the full information on relationships present can only be found by means of the new database itself. Some examples are given here in printed form. The limitations and the possibilities of expansion of SICS in terms of the concept of 'structure types' are demonstrated. PMID:10927350

  19. Inorganic composites for space applications

    NASA Technical Reports Server (NTRS)

    Malmendier, J. W.

    1984-01-01

    The development of inorganic composite materials for space applications is reviewed. The composites do not contain any organic materials, and therefore, are not subject to degradation by ultraviolet radiation, volatilization of constituents, or embrittlement at low temperatures. The composites consist of glass, glass/ceramics or ceramic matrices, reinforced by refractory whiskers or fibers. Such composites have the low thermal expansion, refractories, chemical stability and other desirable properties usually associated with the matrix materials. The composites also have a degree of toughness which is extraordinary for refractory inorganic materials.

  20. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage.

    PubMed

    Chen, Weiwei; Guo, Chen; Hussain, Saddam; Zhu, Bingxin; Deng, Fang; Xue, Yan; Geng, Mingjian; Wu, Lishu

    2016-01-01

    Soil salinity is a stringent abiotic constraint limiting crop growth and productivity. The present study was carried out to appraise the role of xylo-oligosaccharides (XOSs) in improving the salinity tolerance of Chinese cabbage. Salinity stress (0.5% NaCl solution) and four levels (0, 40, 80, 120 mg L(-1)) of XOSs were imposed on 20-day-old plants cultured under controlled conditions. Salinity stress decreased the aboveground fresh biomass, photosynthesis, transpiration rate, stomatal conductance, internal CO2 concentration, water use efficiency, and chlorophyll contents but increased the stomatal limitation value of Chinese cabbage compared with control. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Chinese cabbage were significantly alleviated by the addition of XOSs under salinity stress. Under salinity stress, application of XOSs significantly enhanced the activities of enzymatic (superoxide dismutase, peroxidase, catalase) and non-enzymatic (ascorbate, carotene) antioxidants and reduced the malondialdehyde content in the leaves of Chinese cabbage. The XOS-applied plants under salinity stress also recorded higher soluble sugars, proline, and soluble protein content in their leaves. Exposure of salinity stress increased the ratio of Na(+)/K(+), Na(+)/Ca(2+), and Na(+)/Mg(2+) in shoot as well as root of Chinese cabbage, however, XOS application significantly reduced these ratios particularly in shoot. Lower levels of XOSs (40 or 80 mg L(-1)) were more effective for most of the studied attributes. The greater salinity tolerance and better growth in these treatments were related with enhanced antioxidative defense system, reduced lipid peroxidation, increased osmolyte accumulation, and maintenance of ionic balance. PMID:26358207

  1. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2015-01-01

    The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents. PMID:25462718

  2. Soluble and insoluble fiber (image)

    MedlinePlus

    Dietary fiber is the part of food that is not affected by the digestive process in the body. ... of the stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and ...

  3. A Perspective on Solubility Rules.

    ERIC Educational Resources Information Center

    Monroe, Manus; Abrams, Karl

    1984-01-01

    Presents four generalizations about solubilities. These generalizations (rules), are useful in introducing the dynamic topics of solubility and in helping high school and introductory college chemistry students make some order out of the tremendous number of facts available. (JN)

  4. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    USGS Publications Warehouse

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  5. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  6. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  7. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  8. Alfalfa production using saline drainage water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three year study investigated the use of saline (< 6 dS/m) drainage water for irrigation of salt tolerant alfalfa in the presence of shallow saline groundwater. The irrigation treatments included; irrigating twice between cuttings with non-saline water, 2) irrigating with moderately saline water...

  9. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  10. Colloidal inorganic nanocrystals: Nucleation, growth and biological applications

    NASA Astrophysics Data System (ADS)

    Lynch, Jared James

    nanocrystals can be realized. Finally, a novel phase transfer process is demonstrated using inorganic salts, such as sodium arsenite, to make water soluble metal oxide nanocrystals. The water soluble iron oxide nanocrystals are fully characterized by several complementary techniques and then used in cellular studies. The arsenite-coated iron oxide composite nanocrystals (AICN) are shown to be effective cancer therapy agents.

  11. Net Subterranean Estuarine Export Fluxes of Dissolved Inorganic C, N, P, Si, and Total Alkalinity into the Jiulong River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wang, Z.; Zhai, W. D.; Moore, W. S.; Li, Q.; Yan, X.; Qi, D.; Jiang, Y.

    2014-12-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.24~0.51 in the spring, 0.56~1.16 in the summer, 0.38~0.79 in the fall, and 0.22~0.45 in the winter. This was equivalent to 6-16% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 51-89% of the concomitant riverine fluxes for DIC and TA, around 10-25% for DSi and DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source that spreads throughout the estuary in contrast to the major point sources of the river and the ocean for the estuary. Thus, despite apparent conservative mixing of DIC, DIN, and DSi, subterranean exports of these species into estuaries must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  12. Solubility and Solubility Product Determination of a Sparingly Soluble Salt: A First-Level Laboratory Experiment

    ERIC Educational Resources Information Center

    Bonomo, Raffaele P.; Tabbi, Giovanni; Vagliasindi, Laura I.

    2012-01-01

    A simple experiment was devised to let students determine the solubility and solubility product, "K"[subscript sp], of calcium sulfate dihydrate in a first-level laboratory. The students experimentally work on an intriguing equilibrium law: the constancy of the product of the ion concentrations of a sparingly soluble salt. The determination of…

  13. Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations

    NASA Astrophysics Data System (ADS)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2014-06-01

    Atmospheric deposition of reactive nitrogen (N) species from air pollutants is a significant source of exogenous nitrogen in marine ecosystems. Here we use an atmospheric chemical transport model to investigate the supply of soluble organic nitrogen (ON) from anthropogenic sources to the ocean. Comparisons of modeled deposition with observations at coastal and marine locations show good overall agreement for inorganic nitrogen and total soluble nitrogen. However, previous modeling approaches result in significant underestimates of the soluble ON deposition if the model only includes the primary soluble ON and the secondary oxidized ON in gases and aerosols. Our model results suggest that including the secondary reduced ON in aerosols as a source of soluble ON contributes to an improved prediction of the deposition rates (g N m-2 yr-1). The model results show a clear distinction in the vertical distribution of soluble ON in aerosols between different processes from the primary sources and the secondary formation. The model results (excluding the biomass burning and natural emission changes) suggest an increase in soluble ON outflow from atmospheric pollution, in particular from East Asia, to the oceans in the twentieth century. These results highlight the necessity of improving the process-based quantitative understanding of the chemical reactions of inorganic nitrogen species with organics in aerosol and cloud water.

  14. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  15. Mirabilite solubility in equilibrium sea ice brines

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary

    2016-06-01

    The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the

  16. Volumetrics of CO2 storage in deep saline formations.

    PubMed

    Steele-MacInnis, Matthew; Capobianco, Ryan M; Dilmore, Robert; Goodman, Angela; Guthrie, George; Rimstidt, J Donald; Bodnar, Robert J

    2013-01-01

    Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO(2) from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO(2) must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO(2) depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO(2) stored as a supercritical fluid (structural or stratigraphic trapping); CO(2) dissolved in pre-existing brine (solubility trapping); and CO(2) solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO(2) by solubility trapping reduces the volume required to store the same amount of CO(2) by structural or stratigraphic trapping by about 50%. Accessibility of CO(2) to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO(2) volumetric requirements and long-term storage security. PMID:22916959

  17. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques.

    PubMed

    Bilgili, Ali V

    2013-01-01

    The Harran Plain is located in the southeastern part of Turkey and has recently been developed for irrigation agriculture. It already faces soil salinity problems causing major yield losses. Management of the problem is hindered by the lack of information on the extent and geography of the salinization problem. A survey was carried out to delineate the spatial distribution of salt-affected areas by randomly selecting 140 locations that were sampled at two depths (0 to 30 and 30 to 60 cm) and analyzed for soil salinity variables: soil electrical conductivity (EC), soluble cations (Ca(2+,) Mg(2+), Na(+), and K(+)), soluble anions (SO (4) (2-) , Cl(-)), exchangeable Na(+) (me 100 g(-1)) and exchangeable sodium percentage. Terrain attributes (slope, topographical wetness index) were extracted from the digital elevation model of the study area. Variogram analyses after log transformation and ordinary kriging (OK) were applied to map spatial patterns of soil salinity variables. Multivariate geostatistical methods-regression kriging (RK) and kriging with external drift (KED)-were used using elevation and soil electrical conductivity data as covariates. Performances of the three estimation methods (OK, RK, and KED) were compared using independent validation samples randomly selected from the main dataset. Soils were categorized into salinity classes using disjunctive kriging (DK) and ArcGIS, and classification accuracy was tested using the kappa statistic. Results showed that soil salinity variables all have skewed distribution and are poorly correlated with terrain indices but have strong correlations among each other. Up to 65 % improvement was obtained in the estimations of soil salinity variables using hybrid methods over OK with the best estimations obtained with RK using EC(0-30) as covariate. DK-ArcGIS successfully classified soil samples into different salinity groups with overall accuracy of 75 % and kappa of 0.55 (p < 0.001). PMID:22415846

  18. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    PubMed

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  19. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges

    PubMed Central

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na+], and [Cl−] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na+, K+-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  20. INORGANIC PYROPHOSPHATASE OF DESULFOVIBRIO DESULFURICANS.

    PubMed

    AKAGI, J M; CAMPBELL, L L

    1963-09-01

    Akagi, J. M. (University of Illinois, Urbana) and L. Leon Campbell. Inorganic pyrophosphatase of Desulfovibrio desulfuricans. J. Bacteriol. 86:563-568. 1963.-The inorganic pyrophosphatase of Desulfovibrio desulfuricans was purified 136-fold by (NH(4))(2)SO(4) and ethanol fractionation and diethylaminoethyl cellulose chromatography. Mg(++) or Mn(++) was required for optimal activity; Co(++) was only 65% as effective as Mg(++). The optimal ratio of Mg(++) to pyrophosphate was 1.0 at pH 8.0. The K(s) for the pyrophosphatase was found to be in the region of 1.9 x 10(-3)m. Sulfhydryl inhibitors and sodium fluoride had no effect on enzyme activity at a concentration of 10(-3)m. The purified enzyme did not hydrolyze adenosine triphosphate, glycerol phosphate, diphenyl phosphate, or p-nitrophenyl phosphate. Thermal stability studies showed that the enzyme is rapidly inactivated at temperatures above 40 C. PMID:14066437

  1. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N.; Fain, D.E.; Roettger, G.E.; White, D.E.

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  2. Average concentration of soluble salts in leached soils inferred from the convective-dispersive equation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The convective-dispersive, or advective-dispersive, or CDE, equation has long been the model of choice for solute transport in soils. Using the total mass of soluble salts in soil profile to evaluate changes in salinity due to irrigation can be beneficial when the spatial variability of soil salini...

  3. Reactions of inorganic nitrogen species in supercritical water

    SciTech Connect

    Dell`Orco, P.C.

    1994-12-31

    Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

  4. Inorganic yellow-red pigments without toxic metals

    NASA Astrophysics Data System (ADS)

    Jansen, M.; Letschert, H. P.

    2000-04-01

    Inorganic pigments have been utilized by mankind since ancient times, and are still widely used to colour materials exposed to elevated temperatures during processing or application. Indeed, in the case of glasses, glazes and ceramics, there is no alternative to inorganic pigments for colouring. However, most inorganic pigments contain heavy metals or transition metals that can adversely effect the environment and human health if critical levels are exceeded. Cadmium-based pigments in particular are a cause of concern: although the pigments are not toxic due to their very low solubility in water and dilute mineral acids, cadmium itself is toxic and can enter the environment in a bioavailable form through waste-disposal sites and incineration plants. This has led to regulations, based on the precautionary principle, that strongly restrict the use of cadmium pigments. And even though recent assessments have concluded that the risk to humans or the environment might be not as significant as originally feared, a strong demand for inherently safer substitutes remains. Here we demonstrate that solid solutions of the perovskites CaTaO 2N and LaTaON2 constitute promising candidates for such substitutes: their brilliance, tinting strength, opacity, dispersability, light-fastness and heat stability rival that of the cadmium pigments, while their colour can be tuned through the desired range, from yellow through orange to deep red, by simple composition adjustments. Because all the constituent elements are harmless, this perovskite-based inorganic pigment system seems a promising replacement that could eliminate one of the sources for cadmium emissions to the environment and some of the remaining concerns about pigment safety.

  5. Determining Salinity by Simple Means.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This paper describes the construction and use of a simple salinometer. The salinometer is composed, mainly, of a milliammeter and a battery and uses the measurement of current flow to determine the salinity of water. A complete list of materials is given, as are details of construction and operation of the equipment. The use of the salinometer in…

  6. Mycelial bacteria of saline soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  7. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    PubMed

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. PMID:27212381

  8. The effects of estuarine processes on the fluxes of inorganic and organic carbon in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Gu, Dianjun; Zhang, Longjun; Jiang, Liqing

    2009-12-01

    Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.

  9. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  10. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  11. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  12. The Aquarius Mission: Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.

    2001-01-01

    Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km

  13. Runoff quality impacts of dust suppression using saline water

    NASA Astrophysics Data System (ADS)

    Loch, Rob J.; Squires, Helen

    2010-05-01

    In mining and gas operations, dust generation from unsealed roads is a major problem. Commonly, road watering is used to suppress dust, with the lowest water quality available generally being selected for that purpose. Whilst minimising water usage for the site, that practice does create concerns with respect to potential environmental impacts if runoff from the treated roads has significantly elevated salinity. For coal seam gas operations, the water extracted concurrently with the gas contains predominantly sodium bicarbonate. Therefore, where coal seam gas water is sprayed onto roads, there is potential for elevated sodium in runoff to impact on soil adjoining the roads, but there is no information on the rates of dissolution and mobilisation of soluble salt from the surface of roads that have been sprayed with low quality water to reduce dust. Therefore a rainfall simulator study was carried out to investigate rates of mobilisation of sodium bicarbonate from compacted soil surfaces simulating an unsealed road. The study considered effects of the amount of precipitated sodium bicarbonate on the soil surface and variations in rainfall intensity. Because the soil surfaces were compacted, runoff commenced almost immediately following application of rain. For all treatments with applied surface salt, runoff quality data showed a peak in salt concentration in the first flush of runoff, and relatively rapid reduction through time in those initial concentrations. The magnitude and duration of peak concentrations depended on both rainfall rate and the quantity of salt present on the soil surface. The flush of salts in run-off from the roads occurred very early in the run-off event, when none of the surrounding area would have commenced to run off. Consequently, the relatively small volume of run-off produced directly by the road could be expected to predominantly infiltrate in the table drain adjoining the road. The initial flush of saline water would then be leached to

  14. Equilibrium phase diagrams and water absorption properties of aqueous mixtures of malonic acid and inorganic salts.

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Salgado-Olea, G.

    2006-12-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. Solubility in water, water activity of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid with ammonium sulfate, ammonium bisulfate, and ammonium nitrate at 25oC over the full range of composition (from 0 wt% to the solubility limit of the mixture components). The data was used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity. Measured water activity of liquid solutions was compared with an extended Zdanovskii-Stokes-Robinson (ZSR) expression, which then was used to predict water absorption of the mixtures.

  15. Effect of Salinity on Tomato Fruit Ripening 1

    PubMed Central

    Mizrahi, Yosef

    1982-01-01

    Tomato (Lycopersicon esculentum Mill) plants from various cultivars growing on half-strength Hoagland solution were exposed at anthesis to 3 or 6 grams per liter NaCl. Salinity shortened the time of fruit development by 4 to 15%. Fruits of salt-treated plants were smaller and tasted better than did fruits of control plants. This result was obtained both for ripe fruits tested on the day of picking and for those picked at 100% development and allowed to ripen at room temperature for 9 days. Percentage of dry weight, total soluble solids, and titratable acidity; content of reducing sugars, Cl−, Na+, and various pericarp pigments; and electrical conductivity of the juice were higher in fruits of saline-treated plants than they were in those of control plants, while the pH was lower. Ethylene and CO2 evolution rates during ripening; as well as the activities of pectin methyl esterase, polymethylgalacturonase, and polygalacturonase; were also higher in fruits of the saline-treated plants. The treatment with 6 grams per liter NaCl shortened the fruit shelf life considerably. PMID:16662327

  16. INTEGRATING DESALINATION AND AGRICULTURAL SALINITY CONTROL ALTERNATIVES

    EPA Science Inventory

    The cost-effectiveness relationships for various agricultural and desalination alternatives for controlling salinity in irrigation return flows are developed. Selection of optimal salinity management strategies on a river basin scale is described as a problem of integrating optim...

  17. Bony fish and their contribution to marine inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Salter, Michael; Perry, Chris; Wilson, Rod; Harborne, Alistair

    2016-04-01

    Conventional understanding of the marine inorganic carbon cycle holds that CaCO3 (mostly as low Mg-calcite and aragonite) precipitates in the upper reaches of the ocean and sinks to a point where it either dissolves or is deposited as sediment. Thus, it plays a key role controlling the distribution of DIC in the oceans and in regulating their capacity to absorb atmospheric CO2. However, several aspects of this cycle remain poorly understood and have long perplexed oceanographers, such as the positive alkalinity anomaly observed in the upper water column of many of the world's oceans, above the aragonite and calcite saturation horizons. This anomaly would be explained by extensive dissolution of a carbonate phase more soluble than low Mg-calcite or aragonite, but major sources for such phases remain elusive. Here we highlight marine bony fish as a potentially important primary source of this 'missing' high-solubility CaCO3. Precipitation of CaCO3 takes place within the intestines of all marine bony fish as part of their normal physiological functioning, and global production models suggest it could account for up to 45 % of total new marine CaCO3 production. Moreover, high Mg-calcite containing >25 % mol% MgCO3 - a more soluble phase than aragonite - is a major component of these precipitates. Thus, fish CaCO3 may at least partially explain the alkalinity anomaly in the upper water column. However, the issue is complicated by the fact that carbonate mineralogy actually varies among fish species, with high Mg-calcite (HMC), low Mg-calcite (LMC), aragonite, and amorphous calcium carbonate (ACC) all being common products. Using data from 22 Caribbean fish species, we have generated a novel production model that resolves phase proportions. We evaluate the preservation/dissolution potential of these phases and consider potential implications for marine inorganic carbon cycling. In addition, we consider the dramatic changes in fish biomass structure that have resulted

  18. Plasma chemistry for inorganic materials

    NASA Technical Reports Server (NTRS)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  19. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  20. Inorganic Nanoparticles in Cancer Therapy

    PubMed Central

    Bhattacharyya, Sanjib; Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-01-01

    Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies. PMID:21104301

  1. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions

    PubMed Central

    Ballhorn, Daniel J.; Elias, Jacob D.

    2014-01-01

    Background and Aims Increasing soil salinity poses a major plant stress in agro-ecosystems worldwide. Surprisingly little is known about the quantitative effect of elevated salinity on secondary metabolism in many agricultural crops. Such salt-mediated changes in defence-associated compounds may significantly alter the quality of food and forage plants as well as their resistance against pests. In the present study, the effects of soil salinity on cyanogenesis in white clover (Trifolium repens), a forage crop of international importance, are analysed. Methods Experimental clonal plants were exposed to five levels of soil salinity, and cyanogenic potential (HCNp, total amount of accumulated cyanide in a given plant tissue), β-glucosidase activity, soluble protein concentration and biomass production were quantified. The attractiveness of plant material grown under the different salt treatments was tested using cafeteria-style feeding trials with a generalist (grey garden slug, Deroceras reticulatum) and a specialist (clover leaf weevil, Hypera punctata) herbivore. Key Results Salt treatment resulted in an upregulation of HCNp, whereas β-glucosidase activity and soluble protein concentration showed no significant variation among treatments. Leaf area consumption of both herbivore species was negatively correlated with HCNp, indicating bottom-up effects of salinity-mediated changes in HCNp on plant consumers. Conclusions The results suggest that soil salinity leads to an upregulation of cyanogenesis in white clover, which results in enhanced resistance against two different natural herbivores. The potential implications for such salinity-mediated changes in plant defence for livestock grazing remain to be tested. PMID:25006176

  2. The Ksp-Solubility Conundrum.

    ERIC Educational Resources Information Center

    Clark, Roy W.; Bonicamp, Judith M.

    1998-01-01

    Argues that there are only a few cases in which solubility and Ksp are related in a simple way. States that illustrations of the solubility product principle for one-to-one salts are adequate for students. Contains 23 references. (DDR)

  3. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  4. Water soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1989-11-14

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  5. The Aquarius Salinity Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David

    2012-01-01

    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.

  6. Inorganic Phosphor Materials for Lighting.

    PubMed

    Lin, Yuan-Chih; Karlsson, Maths; Bettinelli, Marco

    2016-04-01

    This chapter addresses the development of inorganic phosphor materials capable of converting the near UV or blue radiation emitted by a light emitting diode to visible radiation that can be suitably combined to yield white light. These materials are at the core of the new generation of solid-state lighting devices that are emerging as a crucial clean and energy saving technology. The chapter introduces the problem of white light generation using inorganic phosphors and the structure-property relationships in the broad class of phosphor materials, normally containing lanthanide or transition metal ions as dopants. Radiative and non-radiative relaxation mechanisms are briefly described. Phosphors emitting light of different colors (yellow, blue, green, and red) are described and reviewed, classifying them in different chemical families of the host (silicates, phosphates, aluminates, borates, and non-oxide hosts). This research field has grown rapidly and is still growing, but the discovery of new phosphor materials with optimized properties (in terms of emission efficiency, chemical and thermal stability, color, purity, and cost of fabrication) would still be of the utmost importance. PMID:27573146

  7. Biodegradable and Renal Clearable Inorganic Nanoparticles

    PubMed Central

    Ehlerding, Emily B.; Chen, Feng; Cai, Weibo

    2016-01-01

    Personalized treatment plans for cancer therapy have been at the forefront of oncology research for many years. With the advent of many novel nanoplatforms, this goal is closer to realization today than ever before. Inorganic nanoparticles hold immense potential in the field of nano-oncology, but have considerable toxicity concerns that have limited their translation to date. In this review, an overview of emerging biologically safe inorganic nanoplatforms is provided, along with considerations of the challenges that need to be overcome for cancer theranostics with inorganic nanoparticles to become a reality. The clinical and preclinical studies of both biodegradable and renal clearable inorganic nanoparticles are discussed, along with their implications. PMID:27429897

  8. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  9. The solubility of quartz in aqueous sodium chloride solution at 350°C and 180 to 500 bars

    USGS Publications Warehouse

    Fournier, Robert O.; Rosenbauer, Robert J.; Bischoff, James L.

    1982-01-01

    The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.

  10. Contribution of fish to the marine inorganic carbon cycle.

    PubMed

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle. PMID:19150840

  11. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  12. The Role of Groundwater and Reservoir Interaction in Salinity Distribution in a Saline Area in the Northeastern Part of Thailand

    NASA Astrophysics Data System (ADS)

    Seeboonruang, U.

    2012-12-01

    Salinity is a process by which the concentration of soluble salt in soil and water increases. Human activities can, however, disrupt this natural equilibrium by changing the distribution of salt in the environment. Reservoirs have played a number of crucial roles in the development of human civilization. The main purposes of reservoirs are to prevent floods, to supply water for domestic consumption, to generate electricity, and to irrigate farmlands. Despite various benefits, reservoirs could bring about adverse environmental and social impacts. Infiltration or leakage from man-made reservoirs or dams could cause the change of the groundwater level, thus forcing the deposited salt onto the soil surface and/or waterways. Until now, it is nevertheless unclear as to how the operation and maintenance of reservoirs could impact in a saline soil area physically, environmentally, and/or socially. The purpose of this research is therefore to assess the impacts of reservoirs on groundwater and salinity levels in a saline soil area in the northeastern part of Thailand. Saline soil can be found in many regions of Thailand, particularly in the northeast of Thailand where the Maha Sarakham Foundation, which is composed of imbedded salt rock layers, is the main source of salinity in the region. The salinity accumulation on the surface soil is influenced by the brackish groundwater upward flow and evaporation processes. The study area is located in Nakhon Panom Province in the northeastern part of Thailand along the Great Mekong River and has a total area of approximately 1,300 km2. The yearly evaporation rate in this region is as high as the annual evaporation rate. A reservoir was constructed in the low-lying floodplain area of the Nam Kam basin and started operation since a few years ago. The reservoir is located right in the middle of the floodplain where flood always occurs every rainy season. Groundwater levels are measured and groundwater samples are collected for p

  13. Sources of dissolved inorganic carbon to the Canada Basin halocline: A multitracer study

    NASA Astrophysics Data System (ADS)

    Brown, Kristina A.; McLaughlin, Fiona; Tortell, Philippe D.; Yamamoto-Kawai, Michiyo; Francois, Roger

    2016-05-01

    We examine the dissolved inorganic carbon maximum in the Canada Basin halocline using a suite of geochemical tracers to gain insight into the factors that contribute to the persistence of this feature. Hydrographic and geochemical samples were collected in the upper 500 m of the southwestern Canada Basin water column in the summer of 2008 and fall of 2009. These observations were used to identify conservative and nonconservative processes that contribute dissolved inorganic carbon to halocline source waters, including shelf sediment organic matter remineralization, air-sea gas exchange, and sea-ice brine export. Our results indicate that the remineralization of organic matter that occurs along the Bering and Chukchi Sea shelves is the overwhelming contributor of dissolved inorganic carbon to Pacific Winter Water that occupies the middle halocline in the southwestern Canada Basin. Nonconservative contributions from air-sea exchange and sea-ice brine are not significant. The broad salinity range associated with the DIC maximum, compared to the narrow salinity range of the nutrient maximum, is due to mixing between Pacific and Atlantic water and not abiotic addition of DIC.

  14. Degradation of zinc in saline solutions, plasma, and whole blood.

    PubMed

    Törne, Karin; Larsson, Mariann; Norlin, Anna; Weissenrieder, Jonas

    2016-08-01

    The initial degradation of zinc has been investigated through exposures to simulated and real body fluids of increasing complexity: phosphate buffered saline (PBS), Ringer's saline solution, human plasma, and whole blood. Real body fluids were used to close the electrolyte gap between simulated and in vivo environment. Polarization of zinc in whole blood show a passive response not present in other electrolytes. The analysis shows a decrease in corrosion rate with time for plasma and whole blood and an increase for PBS and Ringer's. During exposure to plasma and whole blood a bi-layered corrosion product with poor adherence was formed over a uniformly corroding surface. The corrosion products comprise a mixture of inorganic material and biomolecules. Samples degrading in PBS were prone to localized corrosion and formed thick porous corrosion products of primarily zinc phosphates while in Ringer's solution a gel like layer of zinc carbonate was formed over an interface with shallow pits. The use of whole blood or plasma as electrolytes for short term in vitro evaluation of potential biodegradable metals may provide an improved understanding of the behavior in vivo, while Ringer's solution is preferred over PBS for long term degradation studies of zinc. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1141-1151, 2016. PMID:26061136

  15. Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wun; Vankayala, Raviraj; Chang, Chien-Liang; Chang, Chia-Hua; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2015-05-01

    Designing various inorganic nanomaterials that are cost effective, water soluble, optically photostable, highly fluorescent and biocompatible for bioimaging applications is a challenging task. Similar to semiconducting quantum dots (QDs), silicon QDs are another alternative and are highly fluorescent, but non-water soluble. Several surface modification strategies were adopted to make them water soluble. However, the photoluminescence of Si QDs was seriously quenched in the aqueous environment. In this report, highly luminescent, water-dispersible, blue- and green-emitting Si QDs were prepared with good photostability. In vitro studies in monocytes reveal that Si QDs exhibit good biocompatibility and excellent distribution throughout the cytoplasm region, along with the significant fraction translocated into the nucleus. The in vivo zebrafish studies also reveal that Si QDs can be evenly distributed in the yolk-sac region. Overall, our results demonstrate the applicability of water-soluble and highly fluorescent Si QDs as excellent in vitro and in vivo bioimaging probes.

  16. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. PMID:25262295

  17. Biomass Yield Efficiency of the Marine Anammox Bacterium, “Candidatus Scalindua sp.,” is Affected by Salinity

    PubMed Central

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium “Candidatus Scalindua sp.” is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of “Ca. Scalindua sp.” enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0–10 mM) were observed under varying salinities (0.5%–4%). Anammox activity was high at 0.5%–3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%–3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium “Ca. Scalindua sp.” was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency. PMID:25740428

  18. Phenylated Polyimides With Greater Solubility

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1991-01-01

    In experiments, 3,6-diphenylpyromellitic dianhydride monomer prepared and polymerized with several different diamines. Polyimides with pendent phenyl groups along polymer backbones considerably more soluble than PMDA-based materials. Increased solubility eases processing, providing increased potential use in variety of applications. Because most polymers soluble in organic solvents, usable in microelectronics applications. Excellent thermal stabilities and high transition temperatures make them ideally suited. Many polymers extremely rigid and useful as reinforcing polymers in molecular composites. More flexible compositions useful as matrix resins in carbon-reinforced composites.

  19. Water-soluble vitamins.

    PubMed

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were <6.5%. The concentrations of vitamins found in premixes with the method were comparable to the values declared. A disadvantage of the methods mentioned above is that sample composition has to be known in advance. According to European legislation, for example, foods might be fortified with riboflavin phosphate or thiamin phosphate, vitamers which are not included in the simultaneous separations described. Vitamin B2.--Viñas et al. elaborated an LC analysis of riboflavin vitamers in foods. Vitamin B2 can be found in nature as the free riboflavin, but in most biological materials it occurs predominantly in the form of 2 coenzymes, flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). Several methods usually involve the conversion of these coenzymes into free riboflavin before quantification of total riboflavin. According to the authors, there is growing interest to know flavin composition of foods. The described method separates the individual vitamers isocratically. Accuracy of the method is tested with 2 certified reference materials (CRMs). Vitamin B5.-Methods for the determination of vitamin B5 in foods are limited

  20. 29 CFR 1910.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Inorganic arsenic. 1910.1018 Section 1910.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1018 Inorganic arsenic. (a) Scope...

  1. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  2. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  3. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  4. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  5. 46 CFR 153.1045 - Inorganic acids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... § 153.1045 Inorganic acids. When Table 1 refers to this section, the person in charge of cargo...

  6. REMOVING DISSOLVED INORGANIC CONTAMINANTS FROM WATER

    EPA Science Inventory

    Dissolved inorganic contaminants in water can be cationic, anionic, or neutral forms of ions, atoms, or molecules of any element in the periodic table. The article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants fr...

  7. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  8. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  9. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  10. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  11. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  12. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  13. 29 CFR 1915.1018 - Inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  14. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  15. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  16. 29 CFR 1926.1118 - Inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  17. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  18. Inorganic nanotubes and fullerene-like materials.

    PubMed

    Tenne, Reshef

    2002-12-01

    Following the discovery of fullerenes and carbon nanotubes, it was shown that nanoparticles of inorganic layered compounds, like MoS2, are unstable in the planar form and they form closed cage structures with polyhedral or nanotubular shapes. Various issues on the structure, synthesis, and properties of such inorganic fullerene-like structures are reviewed, together with some possible applications. PMID:12432497

  19. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  20. water-soluble fluorocarbon coating

    NASA Technical Reports Server (NTRS)

    Nanelli, P.

    1979-01-01

    Water-soluble fluorocarbon proves durable nonpolluting coating for variety of substrates. Coatings can be used on metals, masonry, textiles, paper, and glass, and have superior hardness and flexibility, strong resistance to chemicals fire, and weather.

  1. Method for estimating solubility parameter

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Ingham, J. D.

    1973-01-01

    Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.

  2. [Membrane surface fouling properties in MBRs for high-salinity wastewater treatment].

    PubMed

    Li, Bin; Wang, Zhi-Wei; An, Ying; Wu, Zhi-Chao

    2014-02-01

    The properties of membrane foulants in MBR treating high-salinity wastewater were studied. Results showed that the removal efficiency of organics and NH4(+) -N was stable and high-quality effluent was obtained after the operation time of 121 d; the ratio of VSS/ SS decreased and SVI declined at the same time, indicating that the inorganic content of sludge increased which might lead to more compact flocs and higher settling ability; SMP and EPS of the sludge were largely changed with a lower proportion of protein and a higher proportion of humic acid. Scanning electron microscope-energy diffusive X-ray analyzer (SEM-EDX) demonstrated that Na, Al, Mg, Ca, K, Fe, Ti, Cr, W, Si and Cl were the major inorganic elements in membrane foulants; Gel filtration chromatography (GFC) illustrated that there were organic matters with high molecular weight trapped by membrane and formed the membrane foulants; Fourier transform infrared (FTIR) spectroscopy and Excitation emission matrix (EEM) fluoresce spectroscopy discovered that carbohydrates, protein and humic acid were the main content of organics in membrane foulants.; quantitative analysis of membrane foulants showed that the amount of inorganic membrane foulants were significant when treating high-salinity wastewater. PMID:24812959

  3. Toxicity of inorganic nanomaterials in biomedical imaging.

    PubMed

    Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang

    2014-01-01

    Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. PMID:24389087

  4. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  5. Experimental measurements of the Solubility of CO2 in the brine of the Oriskany sandstone aquifer

    SciTech Connect

    Dilmore, R.M.; Allen, D.; Pique, P.; Jones, R.J.; Hedges, S.W.; Soong, Yee

    2006-09-01

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany sandstone formation under elevated temperature and pressure conditions. These data were collected at pressures between 100 and 450 bars and at temperatures of 21 and 75 ºC. In addition, data on CO2 solubility in pure water were collected over the same pressure range as a means of verifying reliability of experimental technique. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (2003). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated.

  6. Tough, Soluble, Aromatic, Thermoplastic Copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1998-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  7. Solubility of cobalt in cement.

    PubMed

    Fregert, S; Gruvberger, B

    1978-02-01

    Unlike chromate, cobalt occurring as cobalt oxides in cement is not water-soluble in a detectable amount. Cobalt oxides are to some extent soluble in the presence of amino acids with which cobalt forms complexes. Such complexes can elicit patch test reactions. It is postulated that cobalt is more readily dissolved by forming complexes in eczematous skin than in normal skin. This may explain why cobalt sensitization in cement eczemas is secondary to chromate sensitivity. PMID:657784

  8. Seawater temperature and salinity controls on Li/Ca ratios in Mytilus edulis (bivalvia) shells

    NASA Astrophysics Data System (ADS)

    Clarke, L. J.; Wanamaker, A. D., Jr.; Kreutz, K. J.; Borns, H. W., Jr.; Introne, D. S.

    2009-04-01

    In this study we have investigated the effects of seawater temperature and salinity on Li/Ca ratios in newly precipitated shell calcite in Mytilus edulis shells, since this potential temperature proxy has not been widely applied beyond brachiopods and inorganic calcite. Juvenile specimens of M. edulis collected from western Greenland were cultured in laboratory aquaria using a four-by-three factorial design that consisted of four circulating temperature baths and three salinities. New shell growth precipitated during the constrained culturing experiment was identified carefully and subsequently dissected from the shells. Following acid dissolution, Li/Ca ratios were measured by ICP-MS, enabling an assessment of temperature and salinity controls on shell Li/Ca ratios. Furthermore, measurement of Li/Ca ratios in the aquaria seawaters has enabled calculation of Li/Ca ratio partition coefficients and direct comparison to Li/Ca ratio to temperature relationships observed for brachiopods and inorganic calcite. The results of this study suggest that bivalve shell Li/Ca ratios can be used as a new temperature proxy.

  9. Inorganic polymers: morphogenic inorganic biopolymers for rapid prototyping chain.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Shen, Zhijian; Feng, Qingling; Wang, Xiaohong

    2013-01-01

    In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, as well as a post-processing, i.e., surface modification/functionalization to enhance the biocompatibility of the scaffold or to bind some bioactive component. A solution might be provided by the introduction of novel inorganic biopolymers, biosilica and polyphosphate, which resist harsh conditions applied in the RP chain and are morphogenetically active and do not need supplementation by growth factors/cytokines to stimulate the growth and the differentiation of bone-forming cells. PMID:24420716

  10. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer.

    PubMed

    Kahiluoto, H; Kuisma, M; Ketoja, E; Salo, T; Heikkinen, J

    2015-02-17

    Phosphorus (P) flow from deposits through agriculture to waterways leads to eutrophication and depletion of P reserves. Therefore, P must be recycled. Low and unpredictable plant availability of P in residues is considered to be a limiting factor for recycling. We identified the determinants for the plant-availability of P in agrifood residues. We quantified P in Italian ryegrass (Lolium multiflorum) and in field soil fractions with different plant availabilities of P as a response to manure and sewage sludge with a range of P capture and hygienization treatments. P was more available in manure and in sludge, when it was captured biologically or with a moderate iron (Fe)/P (1.6), than in NPK. Increasing rate of sludge impaired P recovery and high Fe/P (9.8) prevented it. Anaerobic digestion (AD) reduced plant-availability at relevant rates. The recovery of P was increased in AD manure via composting and in AD sludge via combined acid and oxidizer. P was not available to plants in the sludge hygienized with a high calcium/P. Contrary to assumed knowledge, the recyclability of P in appropriately treated residues can be better than in NPK. The prevention of P sorption in soil by organic substances in fertilizers critically enhances the recyclability of P. PMID:25569114

  11. Pure Phase Solubility Limits: LANL

    SciTech Connect

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  12. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  13. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  14. PLUMBOSOLVENCY REDUCTION BY HIGH PH AND LOW CARBONATE-SOLUBILITY RELATIONSHIPS

    EPA Science Inventory

    Experiments were conducted to study the effect of a pH > or = 9.0 and a low total inorganic carbonate (TIC) concentration of 10 to 80 mg as CaCO3/L on lead solubility. The results were compared with those of earlier experiments in which the pH was 8.0 to 8.5. In the experiments t...

  15. Soil Salinity Mapping Using Multitemporal Landsat Data

    NASA Astrophysics Data System (ADS)

    Azabdaftari, A.; Sunar, F.

    2016-06-01

    Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM+ satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field's electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.

  16. Relating river discharges to salinity changes

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2014-12-01

    New river discharge data are brought together with spacebased sea surface salinity measurements by Aquarius and SMOS to demonstrate the role of river discharge in salinity changes near three river mouths: the Mississippi, the Ganges, and the Amazon. The characteristics of the seasonal cycle and the year-to-year changes of the river runoff are described. Various versions of the satellite salinity data are compared. The relative roles of river discharge, surface water flux, and horizontal advection in changing surface salinity in regions near the river mouths are examined. Satellite measurements of SSS clearly track movements of the fresh water from river discharges. Besides the river discharge, E-P plays an important role in the seasonal salinity variation near the Ganges and Irrawaddy River mouths. For the Mississippi and Amazon river mouths, central and eastern ITCZ, E-P contributes very little to the salinity seasonal change. In the central and eastern ITCZ, contribution of advection to the salinity tendency is clearly identified. Both salinity and salinity tendency are dominated by semi-annual cycle in the Atlantic ITCZ between 5ºN to 9ºN, whereas annual cycle dominates at other latitudes.

  17. Shape control of inorganic nanoparticles from solution

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Yang, Shuanglei; Wu, Wei

    2016-01-01

    Inorganic materials with controllable shapes have been an intensely studied subject in nanoscience over the past decades. Control over novel and anisotropic shapes of inorganic nanomaterials differing from those of bulk materials leads to unique and tunable properties for widespread applications such as biomedicine, catalysis, fuels or solar cells and magnetic data storage. This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes. Subsequently, typical mechanisms for shape-controlled inorganic nanoparticles and the general shape of the nanoparticles formed by each mechanism are also expounded. Furthermore, the differences between similar mechanisms for the shape control of inorganic nanoparticles are also clearly described. The authors envision that this review will provide valuable guidance on experimental conditions and process control for the synthesis of inorganic nanoparticles with tunable shapes in the solution state.

  18. Inorganic membranes and solid state sciences

    NASA Astrophysics Data System (ADS)

    Cot, Louis; Ayral, André; Durand, Jean; Guizard, Christian; Hovnanian, Nadine; Julbe, Anne; Larbot, André

    2000-05-01

    The latest developments in inorganic membranes are closely related to recent advances in solid state science. Sol-gel processing, plasma-enhanced chemical vapor deposition and hydrothermal synthesis are methods that can be used for inorganic membrane preparation. Innovative concepts from material science (templating effect, nanophase materials, growing of continuous zeolite layers, hybrid organic-inorganic materials) have been applied by our group to the preparation of inorganic membrane materials. Sol-gel-derived nanophase ceramic membranes are presented with current applications in nanofiltration and catalytic membrane reactors. Silica membranes with an ordered porosity, due to liquid crystal phase templating effect, are described with potential application in pervaporation. Defect-free and thermally stable zeolite membranes can be obtained through an original synthesis method, in which zeolite crystals are grown inside the pores of a support. Hybrid organic-inorganic materials with permselective properties for gas separation and facilitated transport of solutes in liquid media, have been successfully adapted to membrane applications. Potential membrane developments offered by CVD deposition techniques are also illustrated through several examples related to the preparation of purely inorganic and hybrid organic-inorganic membrane materials.

  19. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    PubMed

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data. PMID:26815557

  20. Compositional Analysis of Water-Soluble Materials in Corn Stover

    SciTech Connect

    Chen, S. F.; Mowery, R. A.; Scarlata, C. J.; Chambliss, C. K.

    2007-01-01

    Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis. Over 30 previously unknown constituents of aqueous extracts were identified and quantified using a variety of chromatographic techniques. Monomeric sugars (primarily glucose and fructose) were found to be the predominant water-soluble components of corn stover, accounting for 30-46% of the dry weight of extractives (4-12% of the dry weight of feedstocks). Additional constituents contributing to the mass balance for extractives included various alditols (3-7%), aliphatic acids (7-21%), inorganic ions (10-18%), oligomeric sugars (4-12%), and a distribution of oligomers tentatively identified as being derived from phenolic glycosides (10-18%).

  1. The quest for inorganic fullerenes

    DOE PAGESBeta

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy.more » All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less

  2. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd E-mail: ydkim91@skku.edu; Park, Eun Ji; Kim, Young Dok E-mail: ydkim91@skku.edu; Seo, Hyun Ook; Pennycook, Stephen J.

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  3. The quest for inorganic fullerenes

    SciTech Connect

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.

    2015-10-02

    Experimental results of the search for inorganic fullerenes are presented. Mo nSm - and WnSm - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  4. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  5. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium

    PubMed Central

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L−1) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na+/K+–ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  6. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium.

    PubMed

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L(-1)) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na(+)/K(+)-ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  7. Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment.

    PubMed

    Zhang, Xiaoyan; Wu, Yaoguo; Hu, Sihai; Lu, Cong

    2014-01-01

    The economic and effective application of surfactant enhanced remediation (SER) technology in a sediment-freshwater/saline water system was investigated by batch method using the combined effects of inorganic salt (sodium chloride, NaCl) and anionic surfactant (sodium dodecylbenzene sulfonate (SDBS)) on phenanthrene (PHE) removal via sorption by sediment. In all cases, PHE sorption followed a linear equation and partition as the main mechanism for PHE removal from aqueous solution. Separate addition of SDBS (2 mmol L(-1)) and NaCl (2-100 mmol L(-1)) moderately enhanced PHE removal, while with their combined addition the enhancement was substantial, and the removal efficiency achieved a peak of 92.8%. The combined effect expressed a synergy, and the sorption enhancement increased by factors of 2.7, 3.2 and 3.4 when compared with the sum of the separate entities at elevated salinity. This was because the sorbed SDBS, with increasing amount and a high packing conformation at elevated salinity, outcompeted aqueous SDBS for PHE partition. Moreover, a combination of 2 mmol L(-1) SDBS and 2 mmol L(-1) NaCl was optimal for PHE removal. Therefore, SER technology appears more effective for PHE removal in saline water than in freshwater, and preliminary water quality monitoring is essential for economic and efficient SER application. PMID:25353936

  8. Aquarius Instrument and Salinity Retrieval

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.

    2011-01-01

    Aquarius has been designed to map the surface salinity field of the global ocean from space a parameter important for understanding ocean circulation and its relationship to climate and the global water cycle. Salinity is measured remotely from space by measuring the thermal emission from the ocean surface. This is done at the low frequency end of the microwave spectrum (e.g. 1.4 GHz) where the emission is sufficiently sensitive to changes in salinity to be detected with sophisticated radiometers. The goal is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean by providing maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. These are challenging requirements that have led to some unique features of the instrument. These include: a) The addition of a co-located scatterometer to help provide a correction for roughness; b) The addition of a polarimetric channel (third Stokes parameter) to the radiometer to help correct for Faraday rotation; c) Asun-synchronous orbit with a 6 pm ascending equatorial crossing to minimize Faraday rotation and with the antennas looking away from the sun toward the nighttime side to minimize contamination by radiation from the sun; and d) An antenna designed to limit side lobes in the direction of rays from the sun. In addition, achieving the accuracy goal of 0.2 psu requires averaging over one month and to do this requires a highly stable radiometer. Aquarius has three separate radiometers that image in pushbroom fashion with the three antenna beams looking across track. The antenna is a 2.5-m diameter, offset parabolic reflector with three feed horns and the three beams are arranged to image with the boresight aligned to look across track, roughly perpendicular to the spacecraft heading and pointing away from the Sun. The three beams point at angles of theta = 25.8 deg., 33.8 deg. and 40.3 deg. with respect to the spacecraft

  9. Salinity effects on photosynthesis and growth in Alternanthera philoxeroides (Mart. ) Griseb

    SciTech Connect

    Longstreth, D.J.; Bolanos, J.A.; Smith, J.E.

    1984-08-01

    Alternanthera philoxeroides, alligator weed, was grown at five different NaCl concentrations to determine the effect of salinity on factors related to the net rate of CO/sub 2/ uptake (P/sub n/). Over the range of 0 to 400 millimolar NaCl, P/sub n/ declined 51%. Stomatal conductance declined in parallel with P/sub n/ and as a result there was no reduction in intercellular CO/sub 2/ concentrations and therefore no reduction in the amount of CO/sub 2/ available for photosynthesis. The CO/sub 2/ compensation point did not change with salt stress. Increases in leaf thickness tended to compensate slightly for the negative effects of salinity on leaf cell metabolism, at least in relation to P/sub n/. On a mesophyll cell area basis, soluble protein was relatively constant in leaves developed at 100 to 400 millimolar NaCl while total chlorophyll decreased at all salinities. Dry weight production and P/sub n/ were closely correlated in alligator weed grown at different salinities. Plants produced less leaf area per unit dry weight as salinity increased, which may aid in water conservation. 26 references, 5 figures, 2 tables.

  10. Salinity Effects on Photosynthesis and Growth in Alternanthera philoxeroides (Mart.) Griseb. 1

    PubMed Central

    Longstreth, David J.; Bolaños, Jorge A.; Smith, James E.

    1984-01-01

    Alternanthera philoxeroides, alligator weed, was grown at five different NaCl concentrations to determine the effect of salinity on factors related to the net rate of CO2 uptake (Pn). Over the range of 0 to 400 millimolar NaCl, Pn declined 51%. Stomatal conductance declined in parallel with Pn and as a result there was no reduction in intercellular CO2 concentration and therefore no reduction in the amount of CO2 available for photosynthesis. The CO2 compensation point did not change with salt stress. Increases in leaf thickness tended to compensate slightly for the negative effects of salinity on leaf cell metabolism, at least in relation to Pn. On a mesophyll cell area basis, soluble protein was relatively constant in leaves developed at 100 to 400 millimolar NaCl while total chlorophyll decreased at all salinities. Dry weight production and Pn were closely correlated in alligator weed grown at different salinities. Plants produced less leaf area per unit dry weight as salinity increased, which may aid in water conservation. PMID:16663731

  11. Experiments of CO2 Solubility in the Synthetic Brine from the Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yu, Q.

    2015-12-01

    Solubility trapping of CO2 in saline aquifers is accepted to be the promising method in terms of carbon capture and storage (CCS). CO2 solubility at geological sequestration conditions is of great significance in evaluating the carbon capture potential of brine formation. Unfortunately, most CO2 solubility studies focus mainly on single-salt solutions, and only sparse literature exist for the data of CO2 solubility in aqueous solutions containing the mixture of K+, Na+, Ca2+ and Mg2+. To fill the research gap, an experimental investigation on the CO2 solubility in the synthetic brine is carried out. The samples were extracted through the injection wells of the Shenhua Carbon Capture and Storage project in the Erdos Basin located in northern China. The proportion of K+, Na+, Ca2+ and Mg2+ was determined by chemical analysis of the samples in the aquifers. The synthetic brine is used in this study, and the experimental process were improved to lower the risk of penetration of the supercritical fluid. Solubility data were measured over the temperature and pressure ranges of 318-348 K and 8-11 MPa. In the range studied, the average absolute deviation of CO2 solubility between literature and experimental results was 2.7%, and the maximum absolute deviation was less than 5.4%. Krichevsky-Kasarnovsky (KK) equation was established to analyze the experimental data and the effect of different ions on CO2 solubility was quantified using an optimization process. The liner fit between the CO2 solubility and mixed ion concentration is satisfied with correlation coefficient of 0.91. The proposed model and experimental data therefore possess broad adaptability to geological carbon storage. This ambiguity in the mechanism of the ion effect drives our efforts toward a better understanding of the factors controlling CO2 solubility in formation brine.

  12. Developing Pedotransfer Functions for Saline and Saline-Alkali Soils

    NASA Astrophysics Data System (ADS)

    Ramezani, Meysam; Ghanbarian-Alavijeh, Behzad; Liaghat, Abdolmajid

    2010-05-01

    Soil moisture curve is one of the soil hydraulic properities which its direct measurement is time consuming and expensive. Therefore, indirect methods such as developing pedotransfer functions have been used to predict this characteristic from soil readily available or easily measurable data. In this study, multiple linear regression method was used to develop point pedotransfer functions (PTFs) for saline and saline-alkali soils of Iran. For this purpose, 68 soil samples which their EC values were greater than 4 ds/m, and more than half of them had ESP values greater than 15% were selected. Using Jackknife method, the random splitting of data into the development and validation subsets was repeated 10 times. A ratio of 3:1 was used to split data into development and validation sets in each replication. In the SPSS software, parameters such as geometric standard deviation (δg), geometric mean diameter (dg), sodium adsorption ratio (SAR), electrical conductivity (EC), carbonate calcium (CaCO3), bulk density (BD), organic matter (OM), and clay and silt content were applied as the independent variables, and volumetric water content was determined at matric potentials of -10, -33, -100 , -300, -500, -1000, -1500 kPa. The derived PTFs were compared with the H3 model of Rosetta software for 10 splits of validation data set. Comparison of the mean RMSE and R2 values showed that the developed PTFs resulted in more accurate estimation than the Rosetta software at matric potentials of -100 , -300, -500, -1000, -1500 kPa. Whereas, Rosetta model resulted in slightly better estimation than derived PTFs at matric potentials of -10, -33 kPa. For the PTFs developed in this study, the RMSE and R2 values ranged from 0.12 to 0.35 (cm3.cm-3) and 0.64 to 0.83, respectively. While for the Rosetta model, RMSE and R2 values ranged from 0.22 to 0.33 (cm3.cm-3) and 0.37 to 0.74, respectively.

  13. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  14. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study. PMID:27301169

  15. Inorganic protocells: Gated access to microreactors

    NASA Astrophysics Data System (ADS)

    Keating, Christine D.

    2013-06-01

    A pH-responsive inorganic membrane has been devised that acts as a gatekeeper for the transport of charged solutes into and out of its interior volume. This behaviour was further used to regulate an enzymatic reaction.

  16. How Much Inorganic Spectroscopy and Photochemistry?

    ERIC Educational Resources Information Center

    Gray, Harry B.

    1980-01-01

    Describes three levels of courses to treat adequately the ground state electronic structures, the spectroscopy, and the photochemistry of inorganic molecules. Suggests sequences for the courses without repeating material taught in previous courses. (Author/JN)

  17. Salinity change impairs pipefish immune defence.

    PubMed

    Birrer, Simone C; Reusch, Thorsten B H; Roth, Olivia

    2012-12-01

    Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof. PMID:22982326

  18. Investigations in Marine Chemistry: Salinity II.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  19. Effects of Organic-Inorganic Interactions on the Hygroscopicity of Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Lienhard, D.; Krieger, U. K.

    2013-12-01

    Aerosol hygroscopicity is an important property affecting size as well as phase transitions and viscosity of soluble or partially soluble particles following changes in ambient relative humidity (RH) and temperature. The effects of hygroscopic particle growth on the water contents and physical states of aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. The hygroscopic growth of organic-inorganic mixtures in stable or metastable equilibrium with the RH of the surrounding air is governed by chemical thermodynamics and can be described, in principle, by adequate thermodynamic models. Organic-inorganic interactions involving dissolved ionic species in liquid (potentially highly viscous) phases tend to deviate substantially from ideal mixing and can lead to hygroscopicity behaviour deviating from simple linear additivity assumptions at given RH. The latter assumptions are employed in the Zdanovskii-Stokes-Robinson (ZSR) mixing rule, which is typically found to describe hygroscopic mass growth well in the RH range of completely liquid aerosol systems. We present a comparison and discussion of thermodynamic calculations based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and hygroscopic growth factor data from new measurements with an electrodynamic balance (EDB) as well as data from the literature. We focus on the different hygroscopicity features below the full deliquescence RH of multicomponent organic-inorganic systems. Experiments and model calculations are performed for different multicomponent systems showing varying degrees of organic-inorganic miscibility, including liquid-liquid phase separation, hygroscopicity, and hysteresis effects between metastable and stable gas-aerosol equilibria. It is found that depending on the hygroscopicity of the organic aerosol fraction

  20. Solubility of Nd in brine

    SciTech Connect

    Khalili, F.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1993-12-31

    The solubility of Nd(III) has been measured in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl{sub 2}, with an ionic strength of 7.8M (9.4m). The experimental solubility is much less than that estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. The predominant solid compound of Nd (III) at each pcH was determined from X-ray diffraction patterns.

  1. (Inorganic carbon surveys of oceanic basins)

    SciTech Connect

    Wilke, R.J.

    1991-04-25

    Measurements were made aboard the F. S. Meteor, along the 19 degree South cruise track of the following chemical parameters: total dissolved inorganic carbon, pH, pCO2, CFC-12, CFC-11, CFC-113, CC14. This was the first cruise of OASD's newly formed CO2 group. The purpose was to survey World Ocean Circulation Experiment (WOCE) line A9 for inorganic carbon for the Department of Energy's Office of CO2 Research. 1 fig.

  2. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    SciTech Connect

    Gorman, Brian P

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  3. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  4. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  5. Reconstructing Past Ocean Salinity ((delta)18Owater)

    SciTech Connect

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local' changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.

  6. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2012-07-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4. The experimental data were also examined in relation to the levels of gaseous precursors of SIA (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The methods used can be easily applied to other environments to evaluate the physicochemical characteristics of aerosols and the climatic conditions necessary for the formation of ammonium sulfate and ammonium nitrate aerosols.

  7. Methodology for Comparing Soil Maps of Different Dates with the Aim to Reveal and Describe Changes in the Soil Cover (by the Example of Soil Salinization Monitoring)

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.; Kalinina, N. V.; Chernousenko, G. I.; Vil'chevskaya, E. V.; Dolinina, E. A.; Rukhovich, S. V.

    2016-02-01

    A methodology for comparing soil map of different dates in order to reveal changes in the soil cover is discussed. The analysis of a set of the maps of soil salinization on one of the farms in the Golodnaya Steppe region of Uzbekistan is used as an example. It is shown that traditional methods of comparing two maps developed in different years (normally, with an interval of five years and more) are low informative for the assessment of soil salinization dynamics. The suggested methodology assumes simultaneous analysis of several maps in order to reveal the trends in soil salinization. However, even in this case, the obtained results do not adequately characterize the dynamics of soil salinization on irrigated fields. It is argued that the direction of soil salinization-desalinization processes is an improper characteristic in this case. In order to understand the dynamics of soil salinization, the maps showing the dynamism of soil salinity and the maximum changes in the degree of salinity can be applied. A series of the compared maps make it possible to describe the changes in the soil cover related to salinization-desalinization processes. The high dynamism of these processes against the background of a virtually stable pool of soluble salts in the 1-m-deep soil layer is shown for the considered farm.

  8. Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie; Luo, Chao; Doney, Scott C.; Lindsay, Keith; Zender, Charles S.

    2009-09-01

    We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (˜6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3-] + [NH4+] - 16[PO43-]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.

  9. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  10. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3- at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. -from Author

  11. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  12. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  13. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  14. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  15. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  16. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials.

    PubMed

    Huang, Xinhua; Zheng, Sudan; Kim, Il

    2014-02-01

    This paper reviews the recent research and development of hyperbranched polymers (HPs) and dendrimers, and their use as templates for organic-inorganic hybrid nanomaterials. Hyperbranched polymers (HPs) are highly branched macromolecules with three-dimensional globular structures featuring unique properties such as low viscosity, high solubility, and a large number of terminal functional groups compared to their linear analogs. They are easily prepared by (1) condensation polymerization, (2) self-condensing vinyl copolymerization (SCVCP), and (3) ring-opening multibranch polymerization methods. Organic-inorganic hybrid nanomaterials are synthesized by a template approach using HPs/dendrimers. Monometallic, bimetallic (alloy and core/shell), semiconductor, and metal oxide nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticles but also as a stabilizer for the nanoparticles. PMID:24749446

  17. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada

    SciTech Connect

    Koch, I.; Wang, L.; Ollson, C.A.; Cullen, W.R.; Reimer, K.J.

    2000-01-01

    Elevated levels of arsenic in Yellowknife, NWT, Canada, from historic and recent gold mine operations, are of increasing concern to Yellowknife residents. The study of arsenic in Yellowknife plants is a part of ongoing bioavailability and food chain research. A variety of plants from Yellowknife were analyzed for total arsenic and water soluble arsenic species. The plants included vascular plants and bryophytes (mosses). Total amounts of arsenic were greatest in mosses and varied greatly within specimens of the same plant species from different locations. Mostly inorganic arsenic species were extracted from plants using methanol/water (1:1). This result is very important from a toxicological point of view, since inorganic species are relatively toxic arsenic species. Small amounts of methylated arsenic species, as well as arsenosugars, were present in some plants. On average, greater than 50% of arsenic in these plants was not extracted; the chemical and toxicological characteristics of this fraction remain a topic for further study.

  18. Solubility of leaf litter phosphorus and nitrogen from taiga and lowland tropical forest

    NASA Astrophysics Data System (ADS)

    Schreeg, L.; Mack, M. C.; Turner, B. L.

    2011-12-01

    Leaf litter returns significant quantities of phosphorus (P) and nitrogen (N) to the soil environment in terrestrial ecosystems. The release of litter nutrients during decomposition can occur through mineralization of organic material and leaching. While leaching is an important component in our conceptual models of decomposition, the role of leaching in P and N release from leaf litter has been little investigated. Here we synthesize the results from two studies using recently senesced litter from taiga in Siberia and lowland tropical forest in Panama. We show that leaf litter P is highly soluble. On average, 35±10% (mean ± standard deviation) of total litter P was soluble from 41 species of trees and lianas from a lowland tropical forest during a 4 h extract. Similarly, the soluble fraction of litter P was high for recently senesced litter from the taiga - an average of 40±15% of total P was water soluble during a 24 h extract across nine species, which included a sedge, a tree and shrubs spanning two topographical positions (i.e., floodplain and upland). For both systems P extracted per gram litter mass was strongly predicted by total P concentration in initial litter (r2=0.66, p<0.001 in tropical forest; r2=0.63, p<0.001 in taiga). In addition, greater than 80% of the soluble P was inorganic P, suggesting leached P is readily available to plants and microbes. In contrast, litter N was relatively less soluble (<10±5% of the total leaf N on average for both systems), water soluble N per unit litter mass was only weakly predicted by total litter N (r2<0.35 for both systems), and organic N was prominent in extracts. The similarity in solubility results from two distinct latitudes and multiple life forms suggests differences in litter P and N solubility may be fundamental to how these two key nutrients cycle in terrestrial ecosystems across the globe.

  19. Effect of soluble polymer binder on particle distribution in a drying particulate coating.

    PubMed

    Buss, Felix; Roberts, Christine C; Crawford, Kathleen S; Peters, Katharina; Francis, Lorraine F

    2011-07-01

    Soluble polymer is frequently added to inorganic particle suspensions to provide mechanical strength and adhesiveness to particulate coatings. To engineer coating microstructure, it is essential to understand how drying conditions and dispersion composition influence particle and polymer distribution in a drying coating. Here, a 1D model revealing the transient concentration profiles of particles and soluble polymer in a drying suspension is proposed. Sedimentation, evaporation and diffusion govern particle movement with the presence of soluble polymer influencing the evaporation rate and solution viscosity. Results are summarized in drying regime maps that predict particle accumulation at the free surface or near the substrate as conditions vary. Calculations and experiments based on a model system of poly(vinyl alcohol) (PVA), silica particles and water reveal that the addition of PVA slows the sedimentation and diffusion of the particles during drying such that accumulation of particles at the free surface is more likely. PMID:21497825

  20. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  1. [Ecophysiological adaptability of tropical water organisms to salinity changes].

    PubMed

    Chung, K S

    2001-03-01

    Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments. PMID:11795174

  2. Illinois basin coal fly ashes. 1. Chemical characterization and solubility

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.

    1984-01-01

    Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.

  3. The Role of Low Salinity Fluids in Metal Enrichment

    NASA Astrophysics Data System (ADS)

    Yardley, B.

    2015-12-01

    In recent decades the importance of brines for ore-formation has been demonstrated for a wide range of deposit types and geological settings. Chloride can reach high concentrations in fluids of diverse origins and it complexes many metals in solution. Nevertheless, there are elements which are preferentially complexed by other ligands and are transported and concentrated in low-Cl fluids. Magmatic fluids normally have Cl as the dominant cation and may be very saline. Transition metal levels in magmatic brines from arc settings in particular are often very high, reflecting strong chloride complexing and associated mineralization is often dominated by metals such as Fe which reach high concentrations in brines. Not all magmatic hydrothermal fluids are brines however, and where Cl is less abundant the composition of the dissolved load can be very different. Because of "salting out" effects, highly saline fluids are relatively low in dissolved gases, whereas low salinity fluids can carry significant loads of CO2, H2S and other volatile species, including B, As, Sb and Hg. Of the volatile species with the potential to complex specific metals only H2S has been investigated in any detail. Arsenic is particularly abundant in some low-salinity fluids, however the possible role of As-complexing in transport of Au or other metals is not known. There is little evidence for enhancement of metal solubility by CO2 under upper crustal conditions, except through lowering of pH, but there is some evidence that CO2-saturated brines may mobilize Ni more effectively than brines alone. Sulfate is an important anion in a range of magmatic and hydrothermal fluids and may be primary or arise from oxidation of magmatic H2S in geothermal systems. Notably, sulfate preferentially forms aqueous complexes with the HREE, and may play a role in HREE-enrichment. Fluids in which Cl does not dominate the dissolved load have potential to cause enrichment in a diverse range of elements, but this is

  4. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants.

    PubMed

    Song, Xiaoye; McDonald, James; Price, William E; Khan, Stuart J; Hai, Faisal I; Ngo, Hao H; Guo, Wenshan; Nghiem, Long D

    2016-09-01

    The effects of elevated inorganic salt concentration on anaerobic membrane bioreactor (AnMBR) treatment regarding basic biological performance and trace organic contaminant (TrOC) removal were investigated. A set of 33 TrOCs were selected to represent pharmaceuticals, steroids, and pesticides in municipal wastewater. Results show potential adverse effects of increase in the bioreactor salinity to 15g/L (as NaCl) on the performance of AnMBR with respect to chemical oxygen demand removal, biogas production, and the removal of most hydrophilic TrOCs. Furthermore, a decrease in biomass production was observed as salinity in the bioreactor increased. The removal of most hydrophobic TrOCs was high and was not significantly affected by salinity build-up in the bioreactor. The accumulation of a few persistent TrOCs in the sludge phase was observed, but such accumulation did not vary significantly as salinity in the bioreactor increased. PMID:27262094

  5. Solubility of Haloether Anesthetics in Human and Animal Blood

    PubMed Central

    Soares, Joao H. N.; Brosnan, Robert J.; Fukushima, Fabíola B.; Hodges, Joanne; Liu, Hong

    2012-01-01

    Background Anesthetic blood solubility predicts pharmacokinetics for inhaled agents and is essential for determination of blood anesthetic concentrations from end-tidal gas concentrations using Henry’s Law. Though used to model anesthetic effects in humans, there are limited interspecies solubility comparisons that include modern haloethers. This study aimed to measure hematocrit-adjusted blood:gas anesthetic partition coefficients (λB:G) for desflurane, sevoflurane, isoflurane, and methoxyflurane in humans and animals. Methods Whole blood was collected from 20 rats, 8 horses, and 4 each of cats, cattle, humans, dogs, goats, pigs, rabbits, and sheep. Plasma or cell volume was removed to adjust all samples to a packed cell volume of 40%. A single agent calibration gas headspace was added to blood in a glass syringe and was mixed and equilibrated at 37°C for 2 hours. Agent concentrations in the calibration gas and syringe headspace were measured using gas chromatography. Anesthetic solubility in saline, citrate-phosphate-dextrose-adenine, and olive oil were similarly measured. Results Except for goats, all animal species had at least one λB:G measurement that differed significantly from humans. For each agent, λB:G positively correlated with serum triglyceride concentrations, but this only explained 25% of interspecies variability. Desflurane was significantly less soluble in blood than sevoflurane in some species (e.g., humans) but not in others (e.g., rabbits). Conclusions Anesthetic partition coefficients differ significantly between humans and most animals for haloether anesthetics. Because of their similar λB:G values, goats may be a better animal model for inhaled anesthetic pharmacokinetics in people. PMID:22510863

  6. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi; Wang, Zhangyong; Zhai, Weidong; Moore, Willard S.; Li, Qing; Yan, Xiuli; Qi, Di; Jiang, Yuwu

    2015-01-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.29-0.60 in the spring, 0.69-1.44 in the summer, 0.45-0.93 in the fall, and 0.26-0.54 in the winter. This was equivalent to 8-19% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 45-110% of the concomitant riverine fluxes for DIC and TA, around 14-32% for DSi and 7-19% for DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source (at most 11% of the total input at steady state) that spreads throughout the estuary as a non-point source in contrast to the major point sources of the river and the ocean for the estuary and a true open ocean endmember is likely lacking. Greater water flushing in the summer might dilute the STE effect on the mixing lines even more. The great spatial variation in salinity in the estuary introduced the major uncertainty in our estimates of the flushing time, which further affected the estimate of the subterranean discharge and associated material fluxes. Additionally, the great spatial variation in the STE endmember caused the relatively large ranges in these flux estimates. Despite apparent conservative mixing of DIC, DIN, and DSi in estuaries, net subterranean exports must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  7. New ideas about the solubility of drugs.

    PubMed

    Box, Karl; Comer, John E; Gravestock, Tom; Stuart, Martin

    2009-11-01

    Methods are described for detecting precipitation of ionisable drugs under conditions of changing pH, estimating kinetic solubility from the onset of precipitation, and measuring solubility by chasing equilibrium. Definitions are presented for kinetic, equilibrium, and intrinsic solubility of ionisable drugs, supersaturation and subsaturation, and for chasers and non-chasers, which are two classes of ionisable drug with significantly different solubility properties. The use of Bjerrum Curves and Neutral-Species Concentration Profiles to depict solubility properties are described and illustrated with case studies showing super-dissolving behaviour, conversion between crystalline forms and enhancement of solubility through supersaturation, and the use of additives and simulated gastrointestinal fluids. PMID:19937815

  8. Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater.

    PubMed

    van den Brand, T P H; Roest, K; Brdjanovic, D; Chen, G H; van Loosdrecht, M C M

    2014-05-01

    Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate. PMID:24463759

  9. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  10. Systematic Inorganic Reaction Chemistry: Inorganic Reaction Types, General Methods of Synthesis, and the Periodic Table.

    ERIC Educational Resources Information Center

    Basolo, Fred

    1980-01-01

    Describes two approaches for teaching inorganic reactions and syntheses without having students memorize specific reactions. Briefly indicates topics which should be covered in a junior-senior level course but not at the expense of eliminating teaching students how to make basic inorganic compounds. (Author/JN)

  11. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    PubMed

    Kefford, Ben J; Papas, Phil J; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC(50) values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC(50) obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC(50)). This LC(50) value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC(50). For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC(50) and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC(50) of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC(50) values. In contrast, LC(50) determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. PMID:15016457

  12. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water.

    PubMed

    Wu, Haihua; Yang, Rong; Song, Baomin; Han, Qiusen; Li, Jingying; Zhang, Ying; Fang, Yan; Tenne, Reshef; Wang, Chen

    2011-02-22

    We report on the synthesis of inorganic fullerene-like molybdenum disulfide (MoS(2)) nanoparticles by pulsed laser ablation (PLA) in water. The final products were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and resonance Raman spectroscopy, etc. Cell viability studies show that the as-prepared MoS(2) nanoparticles have good solubility and biocompatibility, which may show a great potential in various biomedical applications. It is shown that the technique of PLA in water also provides a green and convenient method to synthesize novel nanomaterials, especially for biocompatible nanomaterials. PMID:21230008

  13. Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry

    NASA Astrophysics Data System (ADS)

    Bourgeat-Lami, Elodie; Lansalot, Muriel

    This review article describes recent advances in the synthesis and properties of waterborne organic/inorganic colloids elaborated through conventional emulsion polymerization, a well-established technology. These materials can be defined as aqueous suspensions of composite latex particles made up of organic and inorganic domains organized into well-defined core-shell, multinuclear, raspberry-like, multipod-like, or armored morphologies. Particular emphasis is placed on the synthetic strategies for fabrication of these colloidal materials. Two main approaches are described: the polymerization of organic monomers in the presence of preformed inorganic particles, and the reverse approach by which inorganic materials are synthesized in the presence of preformed polymer latexes. The list of examples provided in this review is by no means exhaustive but rather intends to give an overview of synthetic methods for selected inorganic compounds (e.g., silica, iron oxide, pigments, clays, quantum dots, and metals), and briefly reports on potential applications of the resulting materials.

  14. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

    PubMed Central

    Smith, Madison A.; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N.; Johnston, Kathryn A.; Lopez, Karlo M.

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  15. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility.

    PubMed

    Smith, Madison A; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N; Johnston, Kathryn A; Lopez, Karlo M

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM(-1 )cm(-1). No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  16. Inorganic Janus particles for biomedical applications

    PubMed Central

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Tenzer, Stefan; Storck, Wiebke; Fischer, Karl; Strand, Dennis; Laquai, Frédéric

    2014-01-01

    Summary Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. PMID:25551063

  17. Inorganic Janus particles for biomedical applications.

    PubMed

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Tenzer, Stefan; Storck, Wiebke; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang

    2014-01-01

    Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic-inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. PMID:25551063

  18. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    SciTech Connect

    Roberts, Jenny R. . E-mail: jur6@cdc.gov; Young, Shih-Houng; Castranova, Vincent; Antonini, James M.

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.

  19. Soluble Manganese(III) in the Marine Environment

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Oldham, V.; Madison, A.; Tebo, B.; Jones, M.; Jensen, L.; Owings, S.; Mucci, A.; Sundby, B.

    2014-12-01

    Recent field studies have confirmed the presence of soluble manganese(III), which along with Mn(II) passes through a 0.2 μm filter, in suboxic marine waters. Here we applied a spectrophotometric method using a soluble porphyrin as a competitive ligand to calculate the concentrations and kinetics of Mn(II) and Mn(III) recovery. Data will be presented from the suboxic porewaters of the Saint Lawrence estuary, the suboxic and anoxic waters of the Chesapeake Bay and the oxygenated surface waters of a coastal waterway bordered by wetlands and salt marshes in Delaware. Soluble Mn(III) accounts for up to 100% of the dissolved Mn pool with concentrations ranging from the detection limit of 50 nM to 80 μM at the oxic/anoxic interface of the non-sulfidic porewaters from the hemipelagic sediments of the St. Lawrence Estuary. Data indicate weak-ligand complexation of Mn(III) formed from Mn(II) oxidation as well as reduction of MnO2. Complexation of Mn(III) in the anoxic waters of Chesapeake Bay appears stronger as the porphyrin could not outcompete the natural ligands binding Mn(III). Mn(III) complexes were reduced in the presence of hydroxylamine or hydrogen sulfide and detected as Mn(II). Soluble Mn(III) comprised up to 52 % of total dissolved Mn. Profiles over the course of a five day cruise showed that high Mn(III) concentrations (7.3 μM) were observed at low H2S (4.9 μM) whereas low Mn(III) (1.1 μM) was detected at high H2S (40 μM). The presence of Mn(III) in sulfidic waters indicated that it is kinetically stabilized in situ by strong ligands so reduction to Mn(II) was incomplete. One electron reductive dissolution of solid MnO2 particles formed at the oxic-anoxic interface appear to be the source of Mn(III). Lastly, soluble Mn(III) was detected in the oxygenated surface waters of a coastal waterway (salinity ranging from freshwater to 31) bordered by wetlands and salt marshes in Delaware. Soluble Mn(III) made up 0-49 % of the total dissolved Mn (maximum of 1.92

  20. Tough soluble aromatic thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    2000-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  1. Aquarius Observations of Sea Surface Salinity

    NASA Video Gallery

    This visualization shows changes in global sea surface salinity, as measured by NASA’s Aquarius instrument aboard the Aquarius/SAC-D spacecraft, from December 2011 through December 2012. Red repr...

  2. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785

  3. Cold saline is more effective than room temperature saline in inducing paresthesia during axillary block.

    PubMed

    Rodríguez, J; Carceller, J; Bárcena, M; Pedraza, I; Calvo, B; Alvarez, J

    1995-08-01

    Confirmation of the perivascular position of the needle by the injection of cold saline may be helpful to the perivascular technique, since the elicitation of a paresthesia indicates the correct positioning of the needle. In this prospective, randomized study of 48 patients, we found a 100% incidence of successful block with saline at 8-11 degrees C compared to 75% in a control group with saline at room temperature. The paresthesia induced by cold saline appears to be due to thermic stimulation and not to mechanical nerve compression by the saline entering the axillary space. A more frequent rate of correct positioning of the needle was found in the group with cold saline. PMID:7618724

  4. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    PubMed

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments. PMID:27498497

  5. Inorganic nutrients, bacteria, and the microbial loop.

    PubMed

    Caron, D A

    1994-09-01

    The realization that natural assemblages of planktonic bacteria may acquire a significant fraction of their nitrogen and phosphorus via the uptake of dissolved inorganic nutrients has modified our traditional view of these microorganisms as nutrient remineralizers in plankton communities. Bacterial uptake of inorganic nitrogen and phosphorus may place bacteria and phytoplankton in competition for growth-limiting nutrients, rather than in their traditional roles as the respective "source" and "sink" for these nutrients in the plankton. Bacterial nutrient uptake also implies that bacterivorous protozoa may play a pivotal role in the remineralization of these elements in the microbial loop. The overall contribution of bacterial utilization of inorganic nutrients to total nutrient uptake in the ocean is still poorly understood, but some generalizations are emerging with respect to the geographical areas and community physiological conditions that might elicit this behavior. PMID:24186457

  6. Intercalation compounds involving inorganic layered structures

    PubMed

    Constantino; Barbosa; Bizeto; Dias

    2000-01-01

    Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts. PMID:10932103

  7. Crystallization and functionality of inorganic materials

    SciTech Connect

    Xue, Dongfeng; Li, Keyan; Liu, Jun; Sun, Congting; Chen, Kunfeng

    2012-10-15

    In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

  8. Sea Surface Salinity : Research Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  9. Treating nahcolite containing formations and saline zones

    DOEpatents

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  10. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+ , F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42- , K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals

  11. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+ , F-, Cl-, SO4 2 - and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO4 2 - , K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals

  12. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B.

    2013-02-01

    Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4 (Extended Aerosol Thermodynamics Model). The experimental data were also examined in relation to the levels of gaseous precursors of secondary inorganic aerosol (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42-] molar ratio and NO3- concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The obtained results and discussion can help in understanding the secondary aerosol formation dynamics in the Po Valley, which is one of the most critical regions for air pollution in southern Europe.

  13. Utilising inorganic nanocarriers for gene delivery.

    PubMed

    Loh, Xian Jun; Lee, Tung-Chun; Dou, Qingqing; Deen, G Roshan

    2016-01-01

    The delivery of genetic materials into cells to elicit cellular responses has been extensively studied by biomaterials scientists globally. Many materials such as lipids, peptides, viruses, synthetically modified cationic polymers and certain inorganic nanomaterials could be used to complex the negatively charged plasmids and deliver the formed package into cells. The recent literature on the delivery of genetic materials utilising inorganic nanoparticles is carefully examined in this review. We have picked out the most relevant references and concisely summarised the findings with illustrated examples. We further propose alternative approaches and suggest future pathways towards the practical use of multifunctional nanocarriers. PMID:26484365

  14. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  15. [Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb].

    PubMed

    Tang, Dong; Mao, Liang; Zhi, Yue-e; Zhang, Jin-Zhong; Zhou, Pei; Chai, Xiao-Tong

    2014-12-01

    The salinity characteristics of greenhouse soils with cropping obstacles in Shanghai suburb were investigated and analyzed. The salinity contents of the salinization greenhouse soils showed a trend of first increasing and then decreasing with the increasing cropping duration. The salinized soils mainly included slightly salted, mildly salted and salted soils, which accounted for 17.39%, 56.52% and 13.04%, respectively. Among them, the degree of salinity in greenhouse soil planted with asparagus in Chongming County was the highest. Among the salt ions in greenhouse soils, the cations were mainly Ca2+ and Na+, while the anions were mainly NO3- and SO4(2-). The degree of salinity was mainly influenced by fertilization mode, cropping duration, crop type and management level, which led to the great variation in the salinity contents and salt ions. Canonical correspondence analysis found that the contents of Ca2+, Mg2+ and NO3- in greenhouse soils were greatly affected by cropping duration, and the degree of salinity would be enhanced and attenuated with long-term application of single fertilizer and mixed application of chemical fertilizer and organic manure, respectively. The greenhouse soils in Shanghai suburb could be classified as four patterns influenced by the relationship between salinity ions and samples, and the most soils were influenced by Ca2+, Mg2+, NO3- and Cl-, which required to be primarily controlled. PMID:25826944

  16. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary.

    PubMed

    Sadat-Noori, Mahmood; Santos, Isaac R; Tait, Douglas R; Maher, Damien T

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO3, PO4, NH4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. PMID:27320738

  17. Two Fixed Ratio Dilutions for Soil Salinity Monitoring in Hypersaline Wetlands

    PubMed Central

    Herrero, Juan; Weindorf, David C.; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content. PMID:26001130

  18. Origin of the soluble species in the Tissint Mars meteorite

    NASA Astrophysics Data System (ADS)

    Oberlin, Elizabeth; Kounaves, Samuel; Claire, Mark; Gabriel-Ori, Gian; Taj-Edine, Kamal

    2015-04-01

    The Tissint martian meteorite is a high magnesium olivine shergottite that was observed falling on 18 July 2011 near the Oued Drâa valley, Morocco [1]. Fragments collected over the next several months in the remote desert region should thus represent minimally contaminated fragments of martian surface and crustal material. We obtained interior fragments of Tissint from the Natural History Museum in London, and analyzed the soluble species using ion chromatography. Analyses showed trace levels of perchlorate (ClO4-) as well as several other species including nitrate (NO3-), chlorate (ClO3), and sulfate (SO42-). In order to differentiate the measured species in Tissint from possible terrestrial contamination, we collected soil samples from the Tissint strewn field, centered at approximately 50km ESE of Tata, and 48 km SSW of Tissint, near El Ga'ïdat plateau and both N and S of Oued El Gsaïb valley. Samples were collected from the surface and at depth from over 15 sites spanning the strewn field. The samples were then brought back to our laboratory and analyzed for a variety of soluble inorganic species. We also compare these values to those recently reported for the Mars meteorite EETA79001 [2], which shares similar lithology, elemental abundance, and cosmic ray exposure age, to the Tissint meteorite. [1] Chennaoui Aoudjehane, H., et al., (2012) Science 338, 785-788 [2] Kounaves, S.P., et al., (2014) Icarus, 229, 206-213

  19. Estimation and characterization of physical and inorganic chemical indicators of water quality by using SAR images

    NASA Astrophysics Data System (ADS)

    Shareef, Muntadher A.; Toumi, Abdelmalek; Khenchaf, Ali

    2015-10-01

    Recently, remote sensing is considering one of the most important tools in studies of water scattering and water characterization. Traditional methods for monitoring pollutants depended on optical satellite rather than Radar data. Thus, many of Water Quality Parameters (WQP) from optical imagery are still limited. In this paper, a new approach based on the TerraSAR-X images has been presented which it is used to map the region of interest and to estimate physical and chemical WQPs. This approach based on a Small Perturbation Model (SPM) for the electromagnetic scattering is applied by using the Elfouhaily spectrum. A series of inversions have been included in this model started by finding the reflectivity from backscattering coefficients which are calculated from SAR images. Another inversion has been applied to find dielectric constant from the calculation models of the reflectivity (in HH and VV polarizations). Then, a Stogryn Debye formulation has been used to estimate temperature and salinity of water surface from SAR images. After many derivations we got a new model able to estimate temperature and salinity directly from backscattering coefficients obtained from radar images. Inorganic chemical parameters which are represented by Total Dissolved Salts (TDS) and the Electrical Conductivity (EC) are estimated directly from salinity. A tow dataset of instu data have been used to validate this work. The validation included a comparison between parameters measured in situ and those estimated from Terra SAR-X image.

  20. Salinity Measurements During the Gulf Stream Experiment

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Koblinsky, C.; Howden, S.; Goodberlet, M.

    2000-01-01

    The salinity of the open ocean is important for understanding ocean circulation, for understanding energy exchange with the atmosphere and for improving models to predict weather and climate. Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (1 psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approx. 0.1 psu) required to be scientifically viable. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of a compliment of airborne microwave instruments (radiometers and scatterometer) and ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the compliment of instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer. A GPS backscatter experiment was also part of the package. These instruments were mounted on the NASA P-3 Orion aircraft. Surface salinity measurements were provided by the RN Cape Henlopen and MN Oleander (thermosalinographs) plus salinity and temperature sensors on three surface drifters deployed from the RN Cape Henopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made

  1. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing

  2. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes

    PubMed Central

    Gómez-García, María R.; Losada, Manuel; Serrano, Aurelio

    2005-01-01

    Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations. PMID:16313235

  3. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    PubMed

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. PMID:26657361

  4. Aluminum solubility control in different horizons of a podzol

    SciTech Connect

    Zysset, M.; Blaser, P.; Luster, J.; Gehring, A.U.

    1999-10-01

    In the last two decades, the anthropogenically induced acceleration of forest soil acidification has been a topic of environmental concern. Aluminum extractability and solubility were investigated in detail in six horizons of a Typic Haplohumod (FAO:Haplic Podzol) from southern Switzerland. Pyrophosphate and oxalate extractions as well as successive acid leaching indicated that in the Ah, (AE), and Bh horizons reactive Al is mainly bound to soil organic matter, whereas in the Bs, BC1, and BC2 horizons it is of inorganic nature. In the latter three horizons, infrared (IR) spectroscopy and transmission electron microscopy (TEM) revealed the presence of imogolite. Batch equilibrium experiments at 20 C in the pH range of approximately 3.5 to 5.5 showed that the podzol profile can be divided into two parts of different Al solubility control. In the Ah and (AE) horizons, Al solubility was found to be controlled by complexation reactions to soil organic matter. Kinetic studies with samples of the Bh, Bs, BC1, and BC2 horizons showed that ion activity products with respect to both Al(OH){sub 3} and imogolite, (HO){sub 3}Al{sub 2}O{sub 3}SiOH, reached a constant value after reaction times of 16 d. For pH {gt}4.1, the compilation of all data revealed pAl + 0.5 pSi = 3.05 pH {minus} 7.04 (r{sup 2} = 0.99) and pAl = 2.87 pH {minus} 8.07 (r{sup 2} = 0.99). These data could be shown to be consistent with either Al solubility control by imogolite-type material (ITM) with a log *K{sub s}{sup 0} = 6.53 {+-} 0.09, which dissolves incongruently, or a simultaneous equilibrium with ITM and hydroxy-Al interlayers of clay minerals. For pH {lt} 4.1, data indicated solubility control by a 1:1 aluminosilicate, e.g., poorly crystalline kaolinite.

  5. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  6. Removing dissolved inorganic contaminants from water

    SciTech Connect

    Clifford, D.; Subramonian, S.; Sorg, T.J.

    1986-11-01

    This article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants from water and wastewater. These are precipitation, coprecipitation, adsorption, ion exchange, membrane separations by reverse osmosis and electrodialysis, and combinations of these processes. The general criteria for process selection are discussed, and the processes and their typical applications are described.

  7. TECHNICAL MANUAL FOR INORGANIC SAMPLING AND ANALYSIS

    EPA Science Inventory

    The manual presents the state-of-the-art of inorganic sampling and analysis (ISA) procedures in a standardized format that makes the methodology readily available to professionals in the field. Because of the breadth of ISA, a system was developed to avoid burying specific method...

  8. FRAMEWORK FOR INORGANIC METALS RISK ASSESSMENT

    EPA Science Inventory

    The EPA has prepared a framework to guide risk assessors in assessing human and ecological risks of inorganic metals. Metals and metal compounds have properties not generally encountered with organic chemicals. For example, metals are neither created nor destroyed by biological a...

  9. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    EPA Science Inventory

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962).

    For over a century w...

  10. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  11. Characterization of Soluble Anthradithiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Chan, Calvin; Loth, Marsha; Anthony, John; Gundlach, David

    2010-03-01

    We will discuss the growth and electrical measurements of a newly developed, partially fluorinated anthradithiophene (F-ADT) derivative with tert-butyldiphenylsilyl (TBDMS) side groups. Single crystals of the material can be readily grown and device hole mobility is shown to exceed 0.05 cm^2/Vs with on/off ratios of 10^7. F- TBDMS ADT is also observed to be readily soluble with films spun cast onto surface treated SiO2 displaying a mobility >0.002 cm^2/Vs. These electrical measurements will be correlated with growth, morphology, and the performance of related F-ADT derivatives.

  12. Characterization of the water soluble component of inedible residue from candidate CELSS crops

    NASA Technical Reports Server (NTRS)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  13. Uranium Distribution along the Salinity Gradient

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.; Seo, J.; Lee, J.; Chung, K.

    2006-12-01

    Uranium distribution has been examined in the estuarine waters of the Keum River, Korea. Water samples were collected along a salinity gradient, range from 0.2 to 31.5 psu. Dissolved uranium in the samples has been extracted by C-18 SPE cartridge after pre-treatment. Extraction of uranium by C-18 cartridge after complexation with APDC/DDDC shows about 90 % recovery. After concentration of sample onto C-18 cartridge, uranium complex has been sequentially extracted by 50 % and 100 % acetonitrile, respectively. Result shows good recovery efficiency at low pH (2.5 _ 3.0) during the pre-treatment of sample which was presumably related with destabilization of uranium-carbonate complex. In the estuary, uranium shows typical conservative behavior along the salinity gradient. The current result substantiates earlier reports that uranium is conservatively transported from the river to the ocean. Most of dissolved trace metals, except cadmium, decreased with increasing salinity in the estuary. Dissolved organic carbon also decreased along the salinity gradient. Copper was rapidly removed during the mixing with seawaters as a result of organic matter flocculation. Dissolved molybdenum, vanadium and uranium distribution in the estuary showed similarities that those concentration increase along the salinity gradient.

  14. "SPURS" in the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Schmitt, Raymond

    2014-05-01

    The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

  15. Biomarker-based salinity reconstruction immediately prior to the Messinian Salinity Crisis (Sorbas Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Mayser, Jan Peter; Martins, Cesar; Flecker, Rachel; Pancost, Rich D.

    2014-05-01

    The salinity crisis which occurred in the Mediterranean at the end of the Miocene (5.97 to 5.33 Ma) was a time of large-scale environmental change and thick evaporite deposits formed both in the deep basins and on the surrounding margins. Late Miocene successions in the Sorbas Basin, south east Spain preserve sediments that were deposited immediately prior to the Messinian Salinity Crisis (MSC) and during the initial phase of gypsum precipitation (Sierro et al., 2001). Salinity changes are indicated by evaporite formation and fluctuations in faunal assemblages, but these provide threshold measurements only e.g. gypsum forms at a salinity of 130 psu. By analysing the lipid biomarker composition by GC and HPLC-MS after Soxhlet extraction of pre-MSC sediments we aim to reconstruct granular changes in salinity leading up to initial gypsum precipitation. The pre-MSC sediments comprise regular alternations of marine marls and terrigenous clays with interspersed diatomites. This lithological cyclicity is climatically forced by orbitally-driven changes in insolation (Krijgsman et al., 1999) such that specific lithologies are thought to accumulate during precession minima (homogeneous marls) and maxima (laminated marls). By targeting these lithologies for salinity reconstruction we can evaluate the orbital control on quantified environmental change. The reconstruction of the salinity is predominantly based on the ACE proxy introduced by Turich and Freeman (2011). The GDGT-based proxy can show differences over a wide range of salinity, because Archaea can survive over a much larger salinity range than haptophyte algae or other plankton and can therefore also record the salinity signal over a wider range. This makes it suitable for the broad salinity ranges leading up to the MSC e.g. ~35 to 130 psu. Turich et al. (2011) already have published 10 low resolution salinity values for pre-MSC sediments from Torrente Vaccarizzo and Serra Pirciata on Sicily. Our high resolution

  16. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  17. Reactivity Network: Secondary Sources for Inorganic Reactivity Information.

    ERIC Educational Resources Information Center

    Mellon, E. K.

    1989-01-01

    Provides an eclectic annotated bibliography of secondary sources for inorganic reactivity information of interest to reactivity network review authors and to anyone seeking information about simple inorganic reactions in order to develop experiments and demonstrations. Gives 119 sources. (MVL)

  18. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the

  19. Dehydration in the tropical tropopause layer: A possible sink of inorganic bromine?

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.

    2012-04-01

    Recent studies have shown the importance of bromine very short-lived substances (VSLS) for the stratospheric bromine budget and their potential impact on ozone depletion. In this study, bromine loading in the tropical upper troposphere/lower stratosphere (UTLS) due to VSLS is investigated with a 3D chemical transport model with a detailed chemistry scheme, including parametrizations of particle adsorption and scavenging as well as heterogeneous reactions on corresponding surfaces. On the source gas side, the long-lived halons and methyl bromide and the two most important bromine short-lived substances, bromoform and dibromomethane, are included. On the other hand, the partitioning of inorganic bromine product gases (Bry) is also explicitly calculated. Our results suggest that loss of soluble inorganic bromine in the tropical UTLS due to dehydration is negligible, in contrast to most earlier studies. The main reasons can be summarized as follows: The majority of bromine short-lived source gases is still intact at the UTLS and is therefore not susceptible to dehydration. Furthermore, the fraction of inorganic bromine which is actually adsorbed on ice particles is generally lower than 25%. Finally, the model shows that the small amount of adsorbed bromine that could be scavenged is released efficiently into gas phase by heterogeneous reactions.

  20. Volumetrics of CO{sub 2} Storage in Deep Saline Formations

    SciTech Connect

    Steele-MacInnis, Matthew; Capobianco, Ryan M; Dilmore, Robert; Goodman, Angela; Guthrie, George; Rimstidt, J Donald; Bodnar, Robert J

    2013-01-01

    Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO{sub 2} from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO{sub 2} must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO{sub 2} depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO{sub 2} stored as a supercritical fluid (structural or stratigraphic trapping); CO{sub 2} dissolved in pre-existing brine (solubility trapping); and CO{sub 2} solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO{sub 2} by solubility trapping reduces the volume required to store the same amount of CO{sub 2} by structural or stratigraphic trapping by about 50%. Accessibility of CO{sub 2} to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO{sub 2} volumetric requirements and long-term storage security.

  1. Rain Impact Model V2.0 for Sea Surface Salinity: A Flag for Salinity Stratification

    NASA Astrophysics Data System (ADS)

    Santos-Garcia, A.

    2015-12-01

    The Central Florida Remote Sensing Laboratory has analyzed Aquarius (AQ) sea surface salinity (SSS) and ESA's Soil Moisture Ocean Salinity (SMOS) retrievals in the presence of rain and has developed a Rain Impact Model (RIM V2.0) that predicts transient near-surface salinity stratification based upon the corresponding rain accumulation over the previous 24 hours and the effect of the wind speed. For both of the satellite SSS measurements, a common reference for comparison is the Hybrid Coordinate Ocean Model (HYCOM) for ocean salinity, but there is a significant mismatch between the remote sensing sampling depth of approximately 0.01 m and the typical range of 5 m to 10 m of in situ instruments. Under normal ocean conditions the upper layer of the ocean is well mixed and there is an approximately uniform salinity for the first 10 m depth; therefore satellite measurements are good estimates of the bulk salinity. Conversely, under rainy conditions, there is a dilution of the near-surface salinity that mixed downward by diffusion and mechanical mixing of gravity waves, where the wind speed information play a significant role in the model. This transient phenomena, known as salinity stratification, significantly modifies the salinity gradient in the upper 1 m of the ocean; and therefore invalidates the usual assumption of well-mixed salinity. Generally, these salinity stratifications dissipate in less than a couple of hours and the upper layer becomes well mixed at a slightly fresher salinity. The Rain Impact Model V2.0 is based on the RIM V1.0, previously published, which includes the rain accumulation effect but ignores the variations on wind speed using a constant vertical diffusivity value. This research addresses the effects of rainfall on the AQ and SMOS SSS retrieval using a macro-scale Rain Impact Model (RIM) in regions of high convective rain. This model, based on the superposition of a one-dimension eddy diffusion (turbulent diffusion) model, relates sea

  2. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  3. Partial repair of salinity-induced damage to sprouting sugarcane buds by proline and glycinebetaine pretreatment.

    PubMed

    Rasheed, Rizwan; Wahid, Abdul; Hussain, Iqbal; Mahmood, Saqib; Parveen, Abida

    2016-05-01

    Sugarcane shows reduced crop stand under relatively suboptimal conditions; the main reason for this is its sensitivity to ionic stress in the soil solution. This research was performed to explore some physiological and developmental changes in the immature sugarcane buds submitted to salt stress and possible role of glycinebetaine (GB) and proline (Pro) in mitigating the ion toxicity in a time course manner. Salinity stress reduced fresh and dry weight, induced the generation of hydrogen peroxide, increased tissue levels of Na(+) sand Cl(-), reduced K(+) and Ca(2+), and K(+):Na(+) and Ca(2+):Na(+) ratios, while increasing the osmolyte synthesis in expanding sugarcane buds. Salinity stress reduced and delayed the formation of new bud leaves and their expansion, which was mainly because of reduction in the number and area of mesophyll cells and poor development of vascular bundles. The pretreatment of bud chips with 20 mM each of GB and Pro decreased tissue levels of Na(+) and Cl(-), reduced the generation of H2O2, improved K(+) and Ca(2+), K(+):Na(+) and Ca(2+):Na(+) ratios, and further increased the levels of GB, free proline (FP), and soluble sugars in the buds. The pretreatment increased mesophyll cell number and expansion of bud leaves and formation of elaborated vascular tissues, which apparently enabled the sprouting buds to adapt to salinity stress. Of the two osmolytes, GB was a relatively better inducer of salinity tolerance than Pro. In short, salinity-induced oxidative stress was the main cause for altered tissue development, the production of which was offset by pretreatment of bud tissues with Pro and GB. PMID:26043840

  4. Understanding salinity responses and adopting 'omics-based' approaches to generate salinity tolerant cultivars of rice.

    PubMed

    Das, Priyanka; Nutan, Kamlesh K; Singla-Pareek, Sneh L; Pareek, Ashwani

    2015-01-01

    Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using 'omics-based' tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary 'omics-based' approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various 'omics' approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice. PMID:26442026

  5. Drug Solubility: Importance and Enhancement Techniques

    PubMed Central

    Savjani, Ketan T.; Gajjar, Anuradha K.; Savjani, Jignasa K.

    2012-01-01

    Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics. PMID:22830056

  6. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  7. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  8. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization. PMID:23695636

  9. Inorganic nanostructures grown on graphene layers

    NASA Astrophysics Data System (ADS)

    Park, Won Il; Lee, Chul-Ho; Lee, Jung Min; Kim, Nam-Jung; Yi, Gyu-Chul

    2011-09-01

    This article presents a review of current research activities on the hybrid heterostructures of inorganic nanostructures grown directly on graphene layers, which can be categorized primarily as zero-dimensional nanoparticles; one-dimensional nanorods, nanowires, and nanotubes; and two-dimensional nanowalls. For the hybrid structures, the nanostructures exhibit excellent material characteristics including high carrier mobility and radiative recombination rate as well as long-term stability while graphene films show good optical transparency, mechanical flexibility, and electrical conductivity. Accordingly, the versatile and fascinating properties of the nanostructures grown on graphene layers make it possible to fabricate high-performance optoelectronic and electronic devices even in transferable, flexible, or stretchable forms. Here, we review preparation methods and possible device applications of the hybrid structures consisting of various types of inorganic nanostructures grown on graphene layers.

  10. Casting inorganic structures with DNA molds

    PubMed Central

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng

    2014-01-01

    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973

  11. Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains

    PubMed Central

    Moyano, Javier; Sanchez-Mico, María; Torres, Manuel; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier

    2014-01-01

    The implication of soluble Abeta in the Alzheimer’s disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinico-pathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Tris-buffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III–IV and Braak V–VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/µg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD samples. PMID:25485545

  12. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  13. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement.

    PubMed

    Zaghdoud, Chokri; Alcaraz-López, Carlos; Mota-Cadenas, César; Martínez-Ballesta, María del Carmen; Moreno, Diego A; Ferchichi, Ali; Carvajal, Micaela

    2012-01-01

    The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires. PMID:22956893

  14. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica) Cultivars to Salinity and Nutritional Quality Improvement

    PubMed Central

    Zaghdoud, Chokri; Alcaraz-López, Carlos; Mota-Cadenas, César; Martínez-Ballesta, María del Carmen; Moreno, Diego A.; Ferchichi, Ali; Carvajal, Micaela

    2012-01-01

    The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψπ), root hydraulic conductance (L0), and stomatal conductance (Gs). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires. PMID:22956893

  15. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2015-02-01

    This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, thereby reducing organic and nutrient removal. The removal of hydrophilic TrOCs by MBR decreased due to salinity build-up. By contrast, with the exception of 17α-ethynylestradiol, the removal of all hydrophobic TrOCs was not affected at high salinity. Moreover, salinity build-up had negligible impact on the residual accumulation of TrOCs in the sludge phase except for a few hydrophilic compounds. Additionally, the response of the biomass to salinity stress also dramatically enhanced the release of both soluble microbial products (SMP) and extracellular polymeric substances (EPS), leading to severe membrane fouling. PMID:25496948

  16. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  17. Inorganic rechargeable non-aqueous cell

    SciTech Connect

    Bowden, William L.; Dey, Arabinda N.

    1985-05-07

    A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

  18. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  19. Thorium(IV) hydrous oxide solubility

    SciTech Connect

    Ryan, J.L.; Rai, D.

    1987-12-02

    The results of a study of the solubility of amorphous, hydrous ThO/sub 2/ over the pH range 3.5 - 14.2 are reported. The solubility is high at pH 3.5 and decreases rapidly at pH 4.5. The chemical modes of solubility over various pH ranges are discussed. No conclusive evidence for any amphoteric behavior of Th(IV) is reported. 22 references, 1 figure.

  20. Inorganic particle analysis of dental impression elastomers.

    PubMed

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties. PMID:21271042

  1. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  2. Development of a salinity/toxicity relationship to predict acute toxicity of saline waters to freshwater organisms. Interim final report, June 1990-March 1992

    SciTech Connect

    Mount, D.R.; Gulley, D.D.

    1992-04-01

    Discharge of produced water to surface waters is generally regulated as part of the NPDES permit problem and, therefore, may be subject to discharge limits for aquatic toxicity. Most produced waters contain elevated (relative to fresh water) concentrations of major ions (e.g., sodium, chloride) that can be toxic to fresh water organisms regardless of other organic and inorganic constituents. The objective of the research was to develop a Salinity/Toxicity Relationship (STR) that predicts the acute toxicity of saline waters to freshwater organisms based on the concentrations of major ions in solution. Laboratory toxicity tests were conducted to measure the acute toxicity of major ions to three freshwater species (Ceriodaphnia dubia, Daphnia magna, and fathead minnows). These laboratory toxicity data were then incorporated into multi-variate logistic regression equations that predict the acute toxicity of any combination of major ions. Logistic regression equations represented the toxicity data quite well, generally explaining in excess of 80 percent of the overall variance in survival. Application of the Ceriodaphnia STR to field data collected from surface waters receiving produced water discharges showed very strong correlation of STR predictions with the results of toxicity tests conducted on field-collected samples.

  3. Salinity tolerance turfgrass: history and prospects.

    PubMed

    Uddin, Md Kamal; Juraimi, Abdul Shukor

    2013-01-01

    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. PMID:24222734

  4. Metagenomes from the saline desert of kutch.

    PubMed

    Pandit, A S; Joshi, M N; Bhargava, P; Ayachit, G N; Shaikh, I M; Saiyed, Z M; Saxena, A K; Bagatharia, S B

    2014-01-01

    We provide the first report on the metagenomic approach for unveiling the microbial diversity in the saline desert of Kutch. High-throughput metagenomic sequencing of environmental DNA isolated from soil collected from seven locations in Kutch was performed on an Ion Torrent platform. PMID:24831151

  5. Metagenomes from the Saline Desert of Kutch

    PubMed Central

    Pandit, A. S.; Joshi, M. N.; Bhargava, P.; Ayachit, G. N.; Shaikh, I. M.; Saiyed, Z. M.; Saxena, A. K.

    2014-01-01

    We provide the first report on the metagenomic approach for unveiling the microbial diversity in the saline desert of Kutch. High-throughput metagenomic sequencing of environmental DNA isolated from soil collected from seven locations in Kutch was performed on an Ion Torrent platform. PMID:24831151

  6. Investigations in Marine Chemistry: Salinity I.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Presented is a unit designed for curriculum infusion and which relies on the hands-on discovery method as an instructive device. The student is introduced to the theory of a functioning salt water conductivity meter. The student explores the resistance of salt water as salinity increases and he treats the data which he has gathered,…

  7. Evaluation of lettuce genotypes for salinity tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is one of the most commonly used salad vegetables and considered to be a relatively salt sensitive crop. Salinity is a major constraint to crop production in all important lettuce districts of the U.S., and the water quality problem is exacerbated by the climate change. In order to identify ...

  8. Evaluation of soil salinity leaching requirement guidelines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for irrigation is a major limitation to agricultural production in many parts of the world. Use of waters with elevated levels of salinity is one likely option to meet the supply of increased demands. The sources of these waters include drainage water generated by irrigated agriculture, munici...

  9. Salinity Tolerance Turfgrass: History and Prospects

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor

    2013-01-01

    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. PMID:24222734

  10. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions

    PubMed Central

    Crisostomo, Amanda C.; Dang, Loan; Digambaranath, Jyothi L.; Klaver, Andrea C.; Loeffler, David A.; Payne, Jeremiah J.; Smith, Lynnae M.; Yokom, Adam L.; Finke, John M.

    2015-01-01

    The data here consists of time-dependent experimental parameters from chemical and biophysical methods used to characterize Aβ monomeric reactants as well as soluble oligomer and amyloid fibril products from a slow (3–4 week) assembly reaction under biologically-relevant solvent conditions. The data of this reaction are both of a qualitative and quantitative nature, including gel images from chemical cross-linking and Western blots, fractional solubility, thioflavin T binding, size exclusion chromatograms, transmission electron microscopy images, circular dichroism spectra, and fluorescence resonance energy transfer efficiencies of donor–acceptor pair labels in the Aβ chain. This data enables future efforts to produce the initial monomer and eventual soluble oligomer and amyloid fibril states by providing reference benchmarks of these states pertaining to physical properties (solubility), ligand-binding (thioflavin T binding), mesoscopic structure (electron microscopy, size exclusion chromatography, cross-linking products, SDS and native gels) and molecular structure (circular dichroism, FRET donor-acceptor distance). Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding

  11. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    PubMed

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system. PMID:27126502

  12. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  13. Structural and Functional Highlights of Vacuolar Soluble Protein 1 from Pathogen Trypanosoma brucei brucei.

    PubMed

    Jamwal, Abhishek; Round, Adam R; Bannwarth, Ludovic; Venien-Bryan, Catherine; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2015-12-18

    Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg(2+) and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1. PMID:26494625

  14. Uptake of acid pollutants by mineral dust and their effect on aerosol solubility

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Chamseddine, Ashraf

    2012-01-01

    Due to the implications caused by mineral dust and sea-salt heterogeneous reactions with SO 2, NO x and NH 3 derivatives, this study aims to understand the interaction between gaseous and particulate phases; PM10 and PM2.5, in dust-rich and dust-poor environments. During dust outbreaks, the increase in PM10 and PM2.5 mass concentrations by 80 and 75%, respectively, was accompanied with approximately 30% decrease in water soluble inorganic ions. However, nitrate ion concentration, which increased by 36% during dust-rich episodes, was correlated with a 96% increase in gaseous HONO concentration. This implies a significant impact of dust storms on the tropospheric NO 2 to HONO conversion and consequently the formation of nitrate in PMs. Products of the reaction between HONO and mineral dust render atmospheric aerosols more soluble and consequently higher nitrogen deposition fluxes were calculated.

  15. Regional assessment of CO2-solubility trapping potential: a case study of the coastal and offshore Texas Miocene interval.

    PubMed

    Yang, Changbing; Treviño, Ramón H; Zhang, Tongwei; Romanak, Katherine D; Wallace, Kerstan; Lu, Jiemin; Mickler, Patrick J; Hovorka, Susan D

    2014-07-15

    This study presents a regional assessment of CO2-solubility trapping potential (CSTP) in the Texas coastal and offshore Miocene interval, comprising lower, middle, and upper Miocene sandstone. Duan's solubility model [Duan et al. Mar. Chem. 2006, 98, 131-139] was applied to estimate carbon content in brine saturated with CO2 at reservoir conditions. Three approaches (simple, coarse, and fine) were used to calculate the CSTP. The estimate of CSTP in the study area varies from 30 Gt to 167 Gt. Sensitivity analysis indicated that the CSTP in the study area is most sensitive to storage efficiency, porosity, and thickness and is least sensitive to background carbon content in brine. Comparison of CSTP in our study area with CSTP values for seven other saline aquifers reported in the literature showed that the theoretical estimate of CO2-solubility trapping potential (TECSTP) has a linear relationship with brine volume, regardless of brine salinity, temperature, and pressure. Although more validation is needed, this linear relationship may provide a quick estimate of CSTP in a saline aquifer. Results of laboratory experiments of brine-rock-CO2 interactions and the geochemical model suggest that, in the study area, enhancement of CSTP caused by interactions between brine and rocks is minor and the storage capacity of mineral trapping owing to mineral precipitation is relatively trivial. PMID:24956931

  16. The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from field data

    NASA Astrophysics Data System (ADS)

    Russak, A.; Yechieli, Y.; Herut, B.; Lazar, B.; Sivan, O.

    2015-10-01

    The effect of seawater intrusion and freshening events in coastal aquifers on nutrient (dissolved inorganic nitrogen species, phosphate and silica) dynamics across the fresh-saline groundwater interface (FSI) were quantified using field data. Seasonal vertical profiles revealed a clear transition between nutrient species across the FSI, which is also an oxycline. In view of the results of our experimental simulations, it is clear that the major process controlling the nutrient dynamics at the FSI, besides the mixing that takes place between the two different water bodies, is the seasonal variation between seawater intrusion (salinization) in summer and flushing of the aquifer (freshening) in winter. Aquifer salinization during the summer shifts the FSI and the anaerobic depth-location upwards and leads to the enrichment of NH4+, PO43- and DSi (dissolved silica) in the saline groundwater. NH4+ and PO43- are enriched due to ion exchange, and DSi is enriched either by ion exchange (as PO43-) or as a result of dissolution of biogenic silica. Denitrification occurs at the base of the FSI, as indicated by the slight NO3- depletion and the enrichment in δ15N of NO3-. Aquifer freshening during the winter shifts the FSI downward and the water becomes suboxic with the influence of the oxic fresh groundwater. This leads to nitrification of the NH4+, enrichment of NO2- and depletion of 15N in the residual NO3- in the FSI. These cyclic processes generate a certain depletion of N and enrichment of P in the saline groundwater. Circulation of the saline groundwater below the FSI back to the sea can serve as a partial counterbalance to the high anthropogenic load of N impacting the coastal groundwater system.

  17. Water table salinization due to seawater intrusion

    NASA Astrophysics Data System (ADS)

    Badaruddin, Sugiarto; Werner, Adrian D.; Morgan, Leanne K.

    2015-10-01

    Seawater intrusion (SWI) is a significant threat to freshwater resources in coastal aquifers around the world. Previous studies have focused on SWI impacts involving salinization of the lower domain of coastal aquifers. However, under certain conditions, SWI may cause salinization of the entire saturated zone of the aquifer, leading to water table salinization (WTS) in unconfined aquifers by replacing freshwater within the upper region of the saturated zone with seawater, thereby posing a salinity threat to the overlying soil zone. There is presently limited guidance on the extent to which WTS may occur as a secondary impact of SWI. In this study, physical experiments and numerical modeling were used to explore WTS associated with SWI in various nontidal, unconfined coastal aquifer settings. Laboratory experiments and corresponding numerical simulations show that significant WTS can occur under active SWI (i.e., the freshwater hydraulic gradient slopes toward the land) because the cessation of freshwater discharge to the sea and the subsequent landward flow across the entire sea boundary eventually lead to water table salinities approaching seawater concentration. WTS during active SWI is larger under conditions of high hydraulic conductivity, rapid SWI, high dispersivity and for deeper aquifers. Numerical modeling of four published field cases demonstrates that rates of WTS of up to 60 m/yr are plausible. Under passive SWI (i.e., the hydraulic gradient slopes toward the sea), minor WTS may arise as a result of dispersive processes under certain conditions (i.e., high dispersivity and hydraulic conductivity, and low freshwater discharge). Our results show that WTS is probably widespread in coastal aquifers experiencing considerable groundwater decline sustained over several years, although further evidence is needed to identify WTS under field settings.

  18. Coastal salinity measurement using a Doppler Radiometer

    NASA Astrophysics Data System (ADS)

    Schwarz, Benjamin S.; Tatnall, Adrian R. L.; Lewis, Hugh G.

    2012-10-01

    Coastal salinity is characterised by large and variable salinity contrasts on relatively small scales. Measurements of salinity at a resolution compatible with these coastal regions on a regular basis would provide a rich source of information that could be used for a number of applications that have a fundamental bearing on the world's lifestyle. Doppler radiometry offers an approach to capture such measurements, as it reduces the number of required antennas needed to form an image, compared with an Interferometer type instrument. In this work, a Doppler Radiometer type instrument on free-flying satellites is introduced. This approach removes the need for a physical connection between all the antennas, affords the system a degree of reconfigurability, yet is still able to provide data of sufficient resolution. A Y-shaped central hub (similar to the SMOS configuration) is employed with additional antennas mounted on free flying platforms surrounding the central hub. The additional baselines formed between the antennas of the free flying satellites and central hub as well as between the free flying satellites extend the u-v coverage beyond that of just the central hub. The spatial resolution of a Doppler Radiometer system with a Y-shaped hub with a SMOS configuration of antennas, with each arm extended by five 6 m spaced free flying antennas would be of the order of 5 km, when imaging from 800 km. This paper will present some initial results from a study into an instrument concept that could provide coastal salinity measurements at microwave wavelengths. The study focuses on antenna array design and on quantifying the improvement in spatial resolution available by using this method, and includes an investigation into the effects of the relative motion between the hub and the free flying satellites on the imaging. Further, whilst this paper focuses on the application of the Doppler Radiometer to salinity measurement, the techniques described are applicable to other

  19. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    USGS Publications Warehouse

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  20. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    PubMed

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-01

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. PMID:26835894

  1. Filtrates & Residues: An Experiment on the Molar Solubility and Solubility Product of Barium Nitrate.

    ERIC Educational Resources Information Center

    Wruck, Betty; Reinstein, Jesse

    1989-01-01

    Provides a two hour experiment using direct gravimetric methods to determine solubility constants. Provides methodology and sample results. Discusses the effect of the common ion on the solubility constant. (MVL)

  2. Biodiversity patterns of soil ciliates along salinity gradients.

    PubMed

    Zhao, Feng; Xu, Kuidong

    2016-04-01

    We evaluated ciliate diversity in saline soils with a salinity range from 6.5 to 65 psu by the morphological method of the Ludox-quantitative protargol stain (QPS) and the molecular techniques of ciliate-specific clone library and denaturing gradient gel electrophoresis. No active ciliates could be detected with the Ludox-QPS method, while high molecular diversity of ciliates was found. The highest ciliate molecular diversity was obtained from the soil at salinity of 8.9 psu, moderate diversity was found at salinity of 6.5 psu, and the diversity sharply decreased at salinity of 50.5 psu. By contrast, the number of ciliate classes clearly decreased with increasing soil salinity: six, five, four and two classes from sites with salinity of 6.5 psu, 8.9 psu, 29.5 psu and 50.5 psu, respectively. Ciliate diversity pattern is different from that of bacteria, whose diversity is also high in extremely saline environments. Meanwhile, the composition of ciliate community was significantly different along salinity gradient. Colpodea and Oligohymenophorea were diverse in soils at salinity less than 29.5 psu, while absent in soils with salinity above 50.5 psu. BIOENV analysis indicated soil salinity and water content were the main factors regulating the distribution of ciliates in saline soils. PMID:26773903

  3. The Effects of Saline Water Drip Irrigation on Tomato Yield, Quality, and Blossom-End Rot Incidence --- A 3a Case Study in the South of China.

    PubMed

    Zhai, Yaming; Yang, Qian; Hou, Maomao

    2015-01-01

    Saline water resources are abundant in the coastal areas of south China. Most of these resources still have not been effectively utilized. A 3-year study on the effects of saline water irrigation on tomato yield, quality and blossom-end rot (BER) was conducted at different lower limits of soil matric potential (-10 kPa, -20 kPa, -30 kPa, -40 kPa and -50 kPa). Saline water differing in electrical conductivity (EC) (3 dS/m, 4 dS/m, 4.5 dS/m, 5 dS/m and 5.5 dS/m) was supplied to the plant after the seedling establishment. In all three years, irrigation water with 5.5 dS/m salinity reduced the maximum leaf area index (LAIm) and chlorophyll content the most significantly when compared with other salinity treatments. However, compared with the control treatment (CK), a slight increase in LAIm and chlorophyll content was observed with 3~4 dS/m salinity. Saline water improved tomato quality, including fruit density, soluble solid, total acid, vitamin C and the sugar-acid ratio. There was a positive relationship between the overall tomato quality and salinity of irrigation water, as analyzed by principal component analysis (PCA). The tomato yield decreased with increased salinity. The 5.5 dS/m treatment reduced the tomato yield (Yt) by 22.4~31.1%, 12.6~28.0% and 11.7~27.3%, respectively in 2012, 2013 and 2014, compared with CK. Moreover, a significant (P≤0.01) coupling effect of salinity and soil matric potential on Yt was detected. Saline water caused Yt to increase more markedly when the lower limit of soil matric potential was controlled at a relatively lower level. The critical salinity level that produced significant increases in the BERi was 3 dS/m~4 dS/m. Following the increase in BERi under saline water irrigation, marketable tomato yield (Ym) decreased by 8.9%~33.8% in 2012, 5.1%~30.4% in 2013 and 10.1%~32.3% in 2014 compared with CK. In terms of maintaining the Yt and Ym, the salinity of irrigation water should be controlled under 4 dS/m, and the lower limit of

  4. The Effects of Saline Water Drip Irrigation on Tomato Yield, Quality, and Blossom-End Rot Incidence --- A 3a Case Study in the South of China

    PubMed Central

    Zhai, Yaming; Yang, Qian; Hou, Maomao

    2015-01-01

    Saline water resources are abundant in the coastal areas of south China. Most of these resources still have not been effectively utilized. A 3-year study on the effects of saline water irrigation on tomato yield, quality and blossom-end rot (BER) was conducted at different lower limits of soil matric potential (-10 kPa, -20 kPa, -30 kPa, -40 kPa and -50 kPa). Saline water differing in electrical conductivity (EC) (3 dS/m, 4 dS/m, 4.5 dS/m, 5 dS/m and 5.5 dS/m) was supplied to the plant after the seedling establishment. In all three years, irrigation water with 5.5 dS/m salinity reduced the maximum leaf area index (LAIm) and chlorophyll content the most significantly when compared with other salinity treatments. However, compared with the control treatment (CK), a slight increase in LAIm and chlorophyll content was observed with 3~4 dS/m salinity. Saline water improved tomato quality, including fruit density, soluble solid, total acid, vitamin C and the sugar-acid ratio. There was a positive relationship between the overall tomato quality and salinity of irrigation water, as analyzed by principal component analysis (PCA). The tomato yield decreased with increased salinity. The 5.5 dS/m treatment reduced the tomato yield (Yt) by 22.4~31.1%, 12.6~28.0% and 11.7~27.3%, respectively in 2012, 2013 and 2014, compared with CK. Moreover, a significant (P≤0.01) coupling effect of salinity and soil matric potential on Yt was detected. Saline water caused Yt to increase more markedly when the lower limit of soil matric potential was controlled at a relatively lower level. The critical salinity level that produced significant increases in the BERi was 3 dS/m~4 dS/m. Following the increase in BERi under saline water irrigation, marketable tomato yield (Ym) decreased by 8.9%~33.8% in 2012, 5.1%~30.4% in 2013 and 10.1%~32.3% in 2014 compared with CK. In terms of maintaining the Yt and Ym, the salinity of irrigation water should be controlled under 4 dS/m, and the lower limit of

  5. The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash.

    PubMed

    Vítková, Martina; Ettler, Vojtech; Sebek, Ondrej; Mihaljevic, Martin; Grygar, Tomás; Rohovec, Jan

    2009-08-15

    The leaching behaviour of fly ash (FA) from a secondary Pb smelter was assessed using the pH-static leaching experiment according to prEN 14997 (pH range 3-11) coupled with mineralogical investigation of the leached FA by XRD and Rietveld analyses and thermodynamic modelling using PHREEQC-2. The procedure was performed on fresh FA and FA washed at a cumulative L/S ratio of 60l/kg to remove readily soluble salts. For both fresh and washed FA, high amounts of inorganic contaminants were released under acidic conditions, exhibiting L-shaped leaching patterns: up to 300g Pb/kg, 4.5g Cd/kg, 4g Zn/kg, 1.05g As/kg and 70mg Sb/kg. The washing of soluble salts significantly decreased the leachability of Cd, Zn, As and Sb and increased the release of Pb, especially under acidic conditions. The leaching of fresh FA removed part of primary caracolite and all the KPb(2)Cl(5) and NaCl. The Pb release was controlled by the precipitation of anglesite and PbSO(3) under acidic conditions and of laurionite and carbonates (hydrocerussite and phosgenite) under alkaline conditions. In contrast, the washed FA was composed mainly of anglesite and PbSO(3), both phases being the main solubility-controlling phases for Pb over the whole studied pH range. PMID:19195776

  6. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a

  7. Formamide: an efficient solvent to synthesize water-soluble and sub-ten-nanometer nanocrystals

    NASA Astrophysics Data System (ADS)

    Xu, Biao; Zhang, Zhicheng; Wang, Xun

    2013-05-01

    Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications.Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00643c

  8. IUPAC-NIST Solubility Data Series. 97. Solubility of Higher Acetylenes and Triple Bonded Derivatives

    NASA Astrophysics Data System (ADS)

    Fogg, Peter G. T.

    2013-03-01

    Solubility of Ethyne in Liquids was published in 2001 as Vol. 76 of the IUPAC-NIST Solubility Data Series. The current work extends the coverage to the solubility in liquids of higher gaseous and liquid acetylenes and to derivatives that contain a triple carbon-carbon bond. Predictive methods for estimating solubilities in water are summarised and usually give values to within an order of magnitude. The literature has been surveyed to the end of 2010.

  9. Uranium isotope dynamics across salinity and redox gradients in a coastal aquifer: implications for the oceanic uranium budget

    NASA Astrophysics Data System (ADS)

    Linhoff, B.; Charette, M. A.; Thompson, W. G.

    2014-12-01

    To balance the ocean's uranium budget it may be necessary to invoke submarine groundwater discharge as a major source for uranium. However, uranium removal from seawater has been observed in coastal aquifers where steep redox gradients at the seawater-freshwater mixing zone result in the reduction of soluble U(IV) to insoluble U(IV). We investigated uranium cycling in groundwater within a permeable sand subterranean estuary in Waquoit Bay, MA using major and trace element chemistry as well as ∂234U measurements. Groundwater and sediment samples were collected across the seawater-freshwater mixing zone. In the groundwater samples uranium does not behave conservatively. During mixing it is removed in the intermediate salinities (3-4 m; 2-12 salinity; 0.1 nM U) and enriched in higher salinities (4-6 m; 20-25 salinity; 32 nM) while in salinities >25, uranium is again removed (7-8 m; 8 nM). Geochemical modeling suggests that U is removed at the seawater-freshwater interface by adsorption to Mn-oxides (3-4 m) while in the deeper saline aquifer (7-8 m), U is removed through reduction from U(VI) to U(IV). Surprisingly, while ∂234U is above secular equilibrium in both the freshwater and seawater, within the intermediate salinities ∂234U is depleted below secular equilibrium (as much as ∂234U = -50). Sediment samples were subjected to a partial leach to extract surface-exchangeable U. This leach was analyzed for ∂234U and found to be highly depleted (∂234U -80 - -20). Based on the depleted ∂234U of the sediment leaches and groundwater, we hypothesize that the high U concentrations observed within the intermediate salinities likely have a sediment source. This also implies that U within this intermediate salinity zone must have a long residence time relative to groundwater-surface water exchange rates. This might be possible if redox boundaries and Mn-oxides act as a barrier to U in the intermediate salinities allowing U leached from sediments to accumulate

  10. The study of titanium oxynitride coatings solubility deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leonova, L. A.; Boytsova, E. L.; Pustovalova, A. A.

    2016-06-01

    To improve hemocompatibility of cardiovascular stents the coatings based on titanium oxides and oxynitrides were used. In the present work the morphology, surface properties (wettability and surface energy), and in vitro solubility of the ternary system Ti-N-O coating were investigated. Experimentally, low dissolution rate of the coating in saline NaCl (0,9%) was confirmed. Instrumental methods of quantitative analysis (XRF, AES) revealed that the Ti-N-O coating is chemical-resistant and does not change the qualitative and quantitative composition of body fluids.

  11. Start-up of two moving bed membrane bioreactors treating saline wastewater contaminated by hydrocarbons.

    PubMed

    Campo, R; Di Prima, N; Freni, G; Giustra, M G; Di Bella, G

    2016-01-01

    This work aims to assess the acclimation of microorganisms to a gradual increase of salinity and hydrocarbons, during the start-up of two moving bed membrane bioreactors (MB-MBRs) fed with saline oily wastewater. In both systems an ultrafiltration membrane was used and two types of carriers were employed: polyurethane sponge cubes (MB-MBRI) and polyethylene cylindrical carriers (MB-MBRII). A decreasing dilution factor of slops has been adopted in order to allow biomass acclimation. The simultaneous effect of salinity and hydrocarbons played an inhibitory role in biomass growth and this resulted in a decrease of the biological removal efficiencies. A reduction of bound extracellular polymeric substances and a simultaneous release of soluble microbial products (SMPs) were observed, particularly in the MB-MBRII system, probably due to the occurrence of a greater suspended biomass stress as response to the recalcitrance of substrate. On the one hand, a clear attachment of biomass occurred only in MB-MBRI and this affected the fouling deposition on the membrane surface. The processes of detachment and entrapment of biomass, from and into the carriers, significantly influenced the superficial cake deposition and its reversibility. On the other hand, in MB-MBRII, the higher production of SMPs implied a predominance of the pore blocking. PMID:26901712

  12. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Rusan, M. J.; Eltaif, N. I.; Shunnar, O. F.

    2014-09-01

    The efficiency of two amendments in reclaiming saline sodic soil using moderately saline (EC) and moderate sodium adsorption ratio (SAR) canal water was investigated. Phosphogypsum (PG) and reagent grade calcium chloride were applied to packed sandy loam soil columns and leached with canal water (SAR = 4, and EC = 2.16 dS m-1). Phosphogypsum was mixed with top soil prior to leaching at application rates of 5, 10, 15, 20, 25, 35, 40 Mg ha-1, whereas calcium chloride was dissolved directly in water at equivalent rates of 4.25, 8.5, 12.75, 17.0, 21.25, 29.75, and 34 Mg ha-1, respectively. Both amendments efficiently reduced soil salinity and sodicity. Calcium chloride removed 90 % of the total Na and soluble salts whereas PG removed 79 and 60 %, respectively. Exchangeable sodium percentage was reduced by 90 % in both amendments. Results indicated that during cation exchange reactions most of the sodium was removed when effluent SAR was at maximum. Phosphogypsum has lower total costs than calcium chloride and as an efficient amendment an application of 30 Mg ha-1 and leaching with 4 pore volume (PV) of canal water could be recommended to reclaim the studied soil.

  13. Electrical Stimulation Improves Microbial Salinity Resistance and Organofluorine Removal in Bioelectrochemical Systems

    PubMed Central

    Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun

    2015-01-01

    Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966

  14. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher. PMID:26152508

  15. An Experimental Approach to CO2 Sequestration in Saline Aquifers: Application to Paradox Valley, CO

    NASA Astrophysics Data System (ADS)

    Rosenbauer, R. J.; Bischoff, J. L.; Koksalan, T.

    2001-12-01

    As part of a Bureau of Reclamation program to decrease the salt load of the lower Colorado River Paradox, Valley Brine (PVB) is being disposed of into the Leadville Formation via a deep-injection well, situated in southwest Colorado. A complex pre-injection process uses nano-filtration to minimize well-plugging scaling caused by elevated downhole temperatures and pressures. We address here the possibility of liquid carbon dioxide as an additive to the injection fluid in an attempt to increase formation porosity. We report here the CO2 solubility results of preliminary experiments on pure water and PVB. We used fixed-volume titanium and flexible gold-cell technology to (1) measure the solubility of CO2 in PVB from surface to downhole conditions and (2) investigate the geochemical interactions between CO2 - charged PVB and rocks from the Leadville Limestone. The apparatus is applicable to the general study of CO2 sequestration in deep-saline aquifers where the understanding of the interaction of CO2 - charged fluids and potential host rocks is important. The experimental procedure is an adaptation of the technology designed to study hydrothermal systems where seawater was reacted with basaltic rocks at high temperature and pressure. This procedure has been used extensively for the investigation of rock-water interactions and the determination of the solubilities of Na-K-Ca-Cl solutions over a wide range of temperature, pressure, and composition, along the vapor pressure curve and from beyond the critical point to the triple point. To validate the experimental design we calibrated the system with published data on the binary CO2 - pure water system. We obtained new data on the solubility of CO2 in pure water and PVB ( ~21% TDS) at 21° C and 50° C from 100 to 600 bars. At 21° C the solubility of CO2 (as wt% CO2/g fluid) in PVB is 2.2, 2.3, and 2.6 at 100, 300 and 600 bars pressure respectively contrasted with 6.5, 7.4 and 8.5 in pure water at similar pressures. At

  16. A Colorful Solubility Exercise for Organic Chemistry

    ERIC Educational Resources Information Center

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  17. Response of aluminum solubility to elevated nitrification in soil of a red spruce stand in eastern Maine

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1997-01-01

    Elevated concentrations of soluble Al can impair tree growth and be toxic to aquatic biota, but effects of acidic deposition on Al solubility in forest soils are only partially understood because of complex interactions with H+ and organic matter. We therefore evaluated Al solubility in two red spruce stands in eastern Maine, one of which received dry (NH4)2SO4 at a rate of 1800 equiv ha-1 yr-1 during 19891995. Samples of soil (Spodosol Oa and Bh horizons) and soil solution were collected on five dates from 1992 to 1995. The treatment elevated nitrification, causing an increase in acid input that led to inorganic Al concentrations of greater than 60 ??mol L-1 in both the Oa and Bh horizons. Solubility of Al was also lower in the Bh horizon of the treated stand than in the reference stand, a response related to higher DOC concentrations in the treated stand. Concentrations of CuCl2 and pyrophosphate-extractable Al were higher in the Oa horizon of the treated watershed than the reference stand, a result of accelerated weathering of mineral particles caused by lower solution pH in the treated stand (3.47) than in the reference stand (3.69). Dissolved Al concentrations in these soils are the result of complex mechanisms through which mineral matter, organic matter, and pH interact to control Al solubility; mechanisms that are not incorporated in current Al solubility models.

  18. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  19. Crystallization of solid-state materials via decomplexation of soluble complexes

    SciTech Connect

    Doxsee, K.M.

    1998-10-01

    A variety of compounds which are at best sparingly soluble in aqueous media may be readily brought into solution through the formation of soluble coordination complexes. Modification of experimental conditions through, e.g., dilution or slow removal of the complexing agent, leads to supersaturation and, consequently, crystallization of the original solid-state phase. This technique of decomplexation crystallization, both of simple inorganic coordination complexes and of complexes with macrocyclic organic chelating agents, offers the opportunity both to effect the recrystallization of sparingly soluble species and to modify their crystal morphology. Similarly, precursors for solid-state materials may be solubilized in nonaqueous solvents through the formation of soluble complexes and then allowed to undergo reaction crystallization, allowing the examination of both solvent effects and chelation effects on the morphology and phase of the resulting solid-state materials. These effects are often dramatic, and such complexation-mediated crystallization approaches offer promise for the facile preparation of metastable phases from simple precursors under ambient conditions.

  20. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  1. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  2. Water-soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1990-05-29

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  3. Water-soluble conductive polymers

    DOEpatents

    Aldissi, M.

    1988-02-12

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  4. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  5. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  6. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    PubMed

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía

    2014-06-01

    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites. PMID:24740394

  7. A simple thermodynamic model useful for calculating gas solubilities in water/brine/hydrocarbon mixtures from 0 to 250 C and 1 to 150 bars

    NASA Astrophysics Data System (ADS)

    Perez, R. J.; Shevalier, M.; Hutcheon, I.

    2004-05-01

    Gas solubility is of considerable interest, not only for the theoretical understanding of vapor-liquid equilibria, but also due to extensive applications in combined geochemical, engineering, and environmental problems, such as greenhouse gas sequestration. Reliable models for gas solubility calculations in salt waters and hydrocarbons are also valuable when evaluating fluid inclusions saturated with gas components. We have modeled the solubility of methane, ethane, hydrogen, carbon dioxide, hydrogen sulfide, and five other gases in a water-brine-hydrocarbon system by solving a non-linear system of equations composed by modified Henry's Law Constants (HLC), gas fugacities, and assuming binary mixtures. HLCs are a function of pressure, temperature, brine salinity, and hydrocarbon density. Experimental data of vapor pressures and mutual solubilities of binary mixtures provide the basis for the calibration of the proposed model. It is demonstrated that, by using the Setchenow equation, only a relatively simple modification of the pure water model is required to assess the solubility of gases in brine solutions. Henry's Law constants for gases in hydrocarbons are derived using regular solution theory and Ostwald coefficients available from the literature. We present a set of two-parameter polynomial expressions, which allow simple computation and formulation of the model. Our calculations show that solubility predictions using modified HLCs are acceptable within 0 to 250 C, 1 to 150 bars, salinity up to 5 molar, and gas concentrations up to 4 molar. Our model is currently being used in the IEA Weyburn CO2 monitoring and storage project.

  8. The solubility of sphalerite and galena in 1-5 m NaCl solutions to 300 degree C

    SciTech Connect

    Barrett, T.J. ); Anderson, G.M. )

    1988-04-01

    Sphalerite and galena solubilities have been experimentally determined under H{sub 2}S-saturated conditions over the 3-5 molal (=m) NaCl range and for temperatures up to 95{degree}C. Using recent literature values for the stability constants of the chloride complexes of Zn and Pb up to 300{degree}C, the authors have calculated ZnS and PbS solubilities over the 25-300{degree}C and 1-5 m NaCl range. Field data from various geothermal systems have been used to calculate equilibrium solubilities of sphalerite and galena in these systems. High-salinity brines appear to range from supersaturated (Salton Sea, high-temperature) to strongly supersaturated (Red Sea, low temperature) with respect to these sulfides. By contrast, high-temperature seawater-salinity solutions at sediment-free spreading axes are grossly undersaturated in sphalerite and galena. The latter situation is of interest in that massive sulfide deposits are nevertheless forming from such solutions. On the other hand, vent fluids depositing sulfides at the sediment-covered axis in the Guaymas Basin appear to be near saturation in sphalerite and galena. This is probably related to the higher pH of these fluids, and the higher metal contents of the underlying sediments relative to basalts. Calculated solubilities for on-land geothermal systems yield values in reasonable agreement (<0.2 log units) in two of three cases.

  9. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  10. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  11. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  12. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  13. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  14. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  15. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  16. DOES SALINITY REDUCE BORON’S TOXIC EFFECT IN BROCCOLI?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High salinity and boron often occur together in irrigation water in arid climates, but very little research has been done to study the interaction of the two. A greenhouse experiment was conducted at the U.S. Salinity Laboratory in sand tanks to evaluate the interactions between B and saline draina...

  17. IMPLEMENTATION OF AGRICULTURAL SALINITY CONTROL TECHNOLOGY IN GRAND VALLEY

    EPA Science Inventory

    A summary of the results of applied research on salinity control of irrigation return flows in the Grand Valley of Colorado is presented for the period of 1969 to 1976. Salinity and economic impacts are described for the Grand Valley Salinity Control Demonstration Project which c...

  18. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  19. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  20. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  1. Speciation and microalgal bioavailability of inorganic silver

    SciTech Connect

    Reinfelder, J.R.; Chang, S.I.

    1999-06-01

    Silver accumulation in aquatic organisms is primarily attributed to the bioavailability of the free Ag ion (Ag{sup +}). Some reports suggest that AgCl(aq) is also available for biological uptake, but few studies of Ag bioavailability used the range of chloride concentrations over which AgCl{sup 0}(aq) is the dominant Ag species. None used environmentally realistic, low Ag concentrations. To assess the bioavailability of inorganic Ag species and the importance of the low polarity AgCl(aq) complex to biological uptake, the authors determined the octanol-water partition coefficient of Ag over a range of chloride concentrations representative of fresh to brackish waters and measured short-term Ag uptake rates in the euryhaline marine microalga Thalassiosira weissflogii exposed to a total silver concentration of 50 pM. Overall octanol-water partition coefficients (D{sub ow}) of inorganic silver ranged from 0.02 to 0.06. The K{sub ow} of AgCl(aq) calculated using D{sub ow} values measured at 0.5, 5, and 50 mM Cl{sup {minus}} and the K{sub ow} of Ag{sup +} (0.03, measured in the absence of Cl{sup {minus}}) was 0.09. Silver D{sub ow} and uptake rate constants in phytoplankton were highest at the Cl{sup {minus}} concentration where uncharged AgCl(aq) is the dominant silver species. Their results demonstrate that AgCl(aq) is the principal bioavailable species of inorganic silver in phytoplankton and suggest that direct uptake of AgCl(aq) is important to the overall accumulation of Ag in aquatic invertebrates.

  2. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  3. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  4. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  5. Milling and mechanical alloying of inorganic nonmetallics

    NASA Technical Reports Server (NTRS)

    Kosmac, T.; Courtney, T. H.

    1992-01-01

    The versatility of high energy grinding for instigating mechanochemical reactions in inorganic systems has been studied. High-energy grinding can be used to produce amorphous carbon from synthetic graphite and some forms of natural graphite. Elemental sulfur can be amorphized by prolonged energy grinding. The presence of iron resulting from wear of the grinding media strongly affects phase transformations of alphaFe2O3 and mechanochemical reactions of this phase with ZnO and NiO. Data obtained confirm that low-temperature mechanochemical method is a robust process route for production of a wide range of materials.

  6. Single inorganic-organic hybrid photovoltaic nanorod

    NASA Astrophysics Data System (ADS)

    Yoo, Sang-Hoon; Liu, Lichun; Ku, Tea-Woong; Hong, Soonchang; Whang, Dongmok; Park, Sungho

    2013-09-01

    We demonstrate that single photovoltaic (PV) nanorods can be readily fabricated by electrochemical processing in solution-phase under ambient conditions. A porous Au nanorod electrode in the core of the PV nanorod was central to both its structural formation and superior performance. We examined an intrinsically conducting polymer (polypyrrole) and an inorganic semiconductor (cadmium selenide) as precursor materials. Through an extremely simple and cost-effective fashioning process (solution-phase, room temperature), unadorned PV nanorods with up to 1.1% power conversion efficiency were obtained.

  7. Inorganic pyrophosphatases: structural diversity serving the function

    NASA Astrophysics Data System (ADS)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  8. Saline Nasal Irrigation for Upper Respiratory Conditions

    PubMed Central

    2009-01-01

    Acute and chronic upper respiratory conditions are common and expensive disorders with enormous impact on patient quality of life and society at large. Saline nasal irrigation (SNI), a therapy with roots in Ayurvedic medicine that bathes the nasal mucosa with in spray or liquid saline, has been used as adjunctive care for upper respiratory conditions. In liquid form, SNI has been found to be effective adjunctive care by the Cochrane Collaboration for symptoms associated with chronic rhinosinusitis. Less conclusive clinical trial evidence supports its use in spray and liquid forms as adjunctive treatment for mild-to-moderate allergic rhinitis and acute upper respiratory infections. Consensus or expert opinion recommendations exist for SNI as a treatment for a variety of other conditions including rhinitis of pregnancy. SNI appears safe; side effects are minimal and transient. It can be recommended by clinicians to interested patients with a range of upper respiratory conditions in the context of patient education and printed instructional handouts. PMID:19904896

  9. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  10. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  11. Two decades of inorganic carbon dynamics along the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hauri, C.; Doney, S. C.; Takahashi, T.; Erickson, M.; Jiang, G.; Ducklow, H. W.

    2015-11-01

    We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO2 measurements provide unique insights into the spatial, seasonal, and interannual variability in this dynamic system. Discrete measurements from depths > 2000 m align well with World Ocean Circulation Experiment observations across the time series and underline the consistency of the data set. Surface total alkalinity and dissolved inorganic carbon data showed large spatial gradients, with a concomitant wide range of Ωarag (< 1 up to 3.9). This spatial variability was mainly driven by increasing influence of biological productivity towards the southern end of the sampling grid and meltwater input along the coast towards the northern end. Large inorganic carbon drawdown through biological production in summer caused high near-shore Ωarag despite glacial and sea-ice meltwater input. In support of previous studies, we observed Redfield behavior of regional C / N nutrient utilization, while the C / P (80.5 ± 2.5) and N / P (11.7 ± 0.3) molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal salinity-based predictions of Ωarag suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than 20 % of the predictions for winters and springs between 1999 and 2013 resulted in Ωarag < 1.2. Such low levels of Ωarag may have implications for important organisms such as pteropods. Even though we did not detect any statistically significant long-term trends, the combination of on-going ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.

  12. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  13. Laboratory investigations of mixed organic/inorganic particles: Ice nucleation and optical hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Beaver, Melinda R.

    extinction at various relative humidities (RH) are needed. In this work, the optical growth factors, fRHext(80%RH, Dry) have been measured using cavity ring-down aerosol extinction spectroscopy at 532 nm for particles of varying organic/sulfate compositions. Specifically, slightly soluble, multifunctional aromatic compounds resulting from biomass burning have been investigated. In general, the organic compounds studied exhibit much smaller optical growth than inorganic compounds such as ammonium sulfate. Also, a linear relationship between mass fraction organic and optical growth has been observed for most organic compounds studied, in agreement with previous studies of more water-soluble organics. The role of particle density for mixtures that do not follow a linear relationship is also explored. In order to investigate more complex particle morphologies, the optical growth factors, fRHext(RH, Dry) for complex particles composed of an inorganic salt, sodium nitrate, and an anionic surfactant, sodium dodecyl sulfate have also been measured. In contrast to previous studies using soluble and slightly soluble organic compounds, optical growth in excess to that expected based on the volume weighted water uptake of the individual components is observed. The relationship between optical growth and concentration of surfactant is explored by investigating the role of particle density, the effect of a surfactant monolayer, and increased light extinction by surfactant aggregates.

  14. Organic and Inorganic Species in CBM Produced Water: Implications for Water Management Strategies

    NASA Astrophysics Data System (ADS)

    Kharaka, Y. K.; Rice, C. A.

    2003-12-01

    Coal-bed methane (CBM) wells currently produce close to one billion bbl of water annually and deliver about 8% of total natural gas in the USA. The salinity of this produced water generally is lower than that of water from conventional petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges from 200 to 150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water generally has no oil and grease and has relatively low (2-10 mg/L) dissolved organic carbon (DOC), but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has low (<1,000 mg/L TDS) salinity and sodium adsorption ratio (SAR) is considered acceptable for irrigation, surface discharge and for injection into freshwater aquifers. Because groundwater associated with coal, especially with lignite and subbituminous coal, is known to contain a variety of toxic or potentially toxic organics, including hydroxyphenols and PAHs, the organic and inorganic compositions of CBM waters should be systematically characterized and their potential for harm to human health, crops and the environment carefully evaluated prior to its addition to existing water supplies. As an alternative to costly disposal, lower salinity produced water from high-yield CBM wells is being considered for reclamation. The treated water would be a valuable new water resource, especially in the arid western USA. The feasibility and cost of reclaiming produced water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study. The estimated treatment cost was high at about 0.39/bbl (3,000/acre-ft) for potable water, but would be substantially lower and competitive for irrigation and industrial uses in some arid regions of the USA.

  15. Deep roots of the Messinian salinity crisis.

    PubMed

    Duggen, Svend; Hoernle, Kaj; van den Bogaard, Paul; Rüpke, Lars; Morgan, Jason Phipps

    2003-04-10

    The Messinian salinity crisis--the desiccation of the Mediterranean Sea between 5.96 and 5.33 million years (Myr) ago--was one of the most dramatic events on Earth during the Cenozoic era. It resulted from the closure of marine gateways between the Atlantic Ocean and the Mediterranean Sea, the causes of which remain enigmatic. Here we use the age and composition of volcanic rocks to reconstruct the geodynamic evolution of the westernmost Mediterranean from the Middle Miocene epoch to the Pleistocene epoch (about 12.1-0.65 Myr ago). Our data show that a marked shift in the geochemistry of mantle-derived volcanic rocks, reflecting a change from subduction-related to intraplate-type volcanism, occurred between 6.3 and 4.8 Myr ago, largely synchronous with the Messinian salinity crisis. Using a thermomechanical model, we show that westward roll back of subducted Tethys oceanic lithosphere and associated asthenospheric upwelling provides a plausible mechanism for producing the shift in magma chemistry and the necessary uplift (approximately 1 km) along the African and Iberian continental margins to close the Miocene marine gateways, thereby causing the Messinian salinity crisis. PMID:12686997

  16. Incorporation of salinity in Water Availability Modeling

    NASA Astrophysics Data System (ADS)

    Wurbs, Ralph A.; Lee, Chihun

    2011-10-01

    SummaryNatural salt pollution from geologic formations in the upper watersheds of several large river basins in the Southwestern United States severely constrains the use of otherwise available major water supply sources. The Water Rights Analysis Package modeling system has been routinely applied in Texas since the late 1990s in regional and statewide planning studies and administration of the state's water rights permit system, but without consideration of water quality. The modeling system was recently expanded to incorporate salinity considerations in assessments of river/reservoir system capabilities for supplying water for environmental, municipal, agricultural, and industrial needs. Salinity loads and concentrations are tracked through systems of river reaches and reservoirs to develop concentration frequency statistics that augment flow frequency and water supply reliability metrics at pertinent locations for alternative water management strategies. Flexible generalized capabilities are developed for using limited observed salinity data to model highly variable concentrations imposed upon complex river regulation infrastructure and institutional water allocation/management practices.

  17. Lead uptake and lead loss in the fresh water field crab, Barytelphusa guerini, on exposure to organic and inorganic lead

    SciTech Connect

    Tulasi, S.J.; Yasmeen, R.; Reddy, C.P.; Rao, J.V.R.

    1987-07-01

    Lead is a heavy metal which is widely used in paint industry, pigments, dyes, electrical components and electronics, plastic chemicals and in various other things. Since some of the lead salts are soluble in water, lead presents a potential threat to aquatic organisms. Studies dealing with invertebrates include those on mortality, growth and lead uptake in Lymnaea palustris and bioaccumulation of heavy metals in oysters and mussels. Little information exists regarding the effect of lead on the fresh water crustaceans. Hence the present investigation has been undertaken to study the uptake and loss of lead on exposure to subtoxic levels or organic and inorganic lead.

  18. Inorganic spark chamber frame and method of making the same

    NASA Technical Reports Server (NTRS)

    Heslin, T. M. (Inventor)

    1982-01-01

    A spark chamber frame, manufactured using only inorganic materials is described. The spark chamber frame includes a plurality of beams formed from inorganic material, such as ceramic or glass, and are connected together at ends with inorganic bonding material having substantially the same thermal expansion as the beam material. A plurality of wires formed from an inorganic composition are positioned between opposed beams so that the wires are uniformly spaced and form a grid. A plurality of hold down straps are formed of inorganic material such as ceramic or glass having substantially the same chemical and thermal properties as the beam material. Hold down straps overlie wires extending over the beams and are bonded thereto with inorganic bonding material.

  19. [Characteristics of soil salinity profiles and their electromagnetic response under various vegetation types in coastal saline area].

    PubMed

    Yang, Jing-Song; Yao, Rong-Jiang; Zou, Ping; Liu, Guang-Ming

    2008-10-01

    Aiming at the intrinsic relationships between vegetation type and soil salinity in coastal saline area, and by using electromagnetic induction EM38 and field sampling method, the characteristics of soil salinity profiles under various vegetation types in typical coastal saline region of the Yellow River Delta were analyzed, and the electromagnetic response characters of the salinity profiles were compared. The results showed that across the study area, soil salinity exhibited the characteristics of top enrichment and strong spatial variation. The horizontal electromagnetic conductivity EM(h) responded well to soil salinity at upper layers, and the response of vertical electromagnetic conductivity EM(v) to soil salinity at deeper layers was superior to that of EM(h). Soil salinity profiles were classified into inverted, normal, and uniform types. The vegetation types of inverted salinity profiles were mainly bare land and Suaeda salsa, while those of normal and uniform salinity profiles were cotton and weed, respectively. The sequence of top enrichment intensity was bare land > S. salsa land > weed land > cotton land. With the change of vegetation type of cotton-weed-S. salsa-bare land, the EM(v)/EM(h) value of salinity profiles decreased gradually. Nonparametric test results showed that there was a significant correlation between vegetation type and electromagnetic response characters, and the distribution characters of EM(v)/EM(h) under various vegetation types varied significantly. PMID:19123343

  20. Engineered inorganic nanoparticles for drug delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Comenge, Joan; García-Fernández, Lorena; Megson, Zoë A; Casals, Eudald; Puntes, Victor F

    2013-06-01

    Inorganic nanoparticles (NPs) currently have immense potential as drug delivery vectors due to their unique physicochemical properties such as high surface area per unit volume, their optical and magnetic uniqueness and the ability to be functionalized with a large number of ligands to enhance their affinity towards target molecules. These features, together with the therapeutic activity of some drugs, render the combination of these two entities (NP-drug) as an attractive alternative in the area of drug delivery. One of the major advantages of these conjugates is the possibility to have a local delivery of the drug, thus reducing systemic side effects and enabling a higher efficiency of the therapeutic molecule. This review highlights the direct implications of nanoscale particles in the development of drug delivery systems. In more detail, it is also remarked the extensive use of inorganic NPs for targeted cancer therapies. As the range of nanoparticles and their applications continues to increase, human safety concerns are gaining importance, which makes it necessary to better understand the potential toxicity hazards of these materials. PMID:23116108

  1. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  2. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    NASA Astrophysics Data System (ADS)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  4. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters

    NASA Astrophysics Data System (ADS)

    Gemayel, E.; Hassoun, A. E. R.; Benallal, M. A.; Goyet, C.; Rivaro, P.; Abboud-Abi Saab, M.; Krasakopoulou, E.; Touratier, F.; Ziveri, P.

    2015-12-01

    A compilation of data from several cruises between 1998 and 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total dissolved inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross-validation results and revealed that second- and third-order polynomials fit the AT and CT data respectively. The AT surface fit yielded a root mean square error (RMSE) of ± 10.6 μmol kg-1, and salinity and temperature contribute to 96 % of the variability. Furthermore, we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ± 14.3 μmol kg-1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The identified empirical equations were applied on the 0.25° climatologies of temperature and salinity, available from the World Ocean Atlas 2013. The 7-year averages (2005-2012) showed that AT and CT have similar patterns with an increasing eastward gradient. The variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summer-winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations.

  6. The complementary role of SMOS sea surface salinity observations for estimating global ocean salinity state

    NASA Astrophysics Data System (ADS)

    Lu, Zeting; Cheng, Lijing; Zhu, Jiang; Lin, Renping

    2016-06-01

    Salinity is a key ocean state property, changes in which reveal the variation of the water cycle and the ocean thermohaline circulation. However, prior to this century, in situ salinity observations were extremely sparse, which decreased the reliability of simulations of ocean general circulation by ocean and climate models. In 2009, sea surface salinity (SSS) observations covered the global ocean via the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission, and several versions of global SSS products were subsequently released. How can these data benefit model performance? Previous studies found contradictory results. In this work, we assimilated SMOS-SSS data into the LASG/IAP Climate system Ocean Model (LICOM) using the Ensemble Optimum Interpolation (EnOI) assimilation scheme. To assess and quantify the contribution of SMOS-SSS data to model performance, several tests were conducted. The results indicate that the CECOS/CATDS 2010.V02 SMOS-SSS product can significantly improve model simulations of sea surface/subsurface salinity fields. This study provides the basis for the future assimilation of SMOS-SSS data for short-range climate forecasting.

  7. Effects of salinity on baldcypress seedlings: Physiological responses and their relation to salinity tolerance

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.

    1997-01-01

    Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.

  8. Provocative Opinion: Some Reflections on the Inorganic Course

    ERIC Educational Resources Information Center

    Gorman, Mel

    1973-01-01

    Discusses two pedagogical problems encountered in teaching of inorganic chemistry, namely, excessive instruction of bond theory and neglect of introducing new development, especially bioinorganic knowledge. (CC)

  9. Part 6: The Literature of Inorganic Chemistry, Revised.

    ERIC Educational Resources Information Center

    Douville, Judith A.

    2002-01-01

    Presents a list of resources on inorganic chemistry that includes general surveys, nomenclature, dictionaries, handbooks, compilations, and treatises. Selected for use by academic and student chemists. (DDR)

  10. The Resolution of a Completely Inorganic Coordination Compound.

    ERIC Educational Resources Information Center

    Yasui, Takaji; And Others

    1989-01-01

    Discussed is a technique used by Alfred Werner to resolve inorganic coordination compounds. The materials, procedures and analysis necessary for undergraduates to repeat this procedure are described. (CW)

  11. Inorganic Nanosystems for Therapeutic Delivery: Status and Prospects

    PubMed Central

    Kim, Chang Soo; Tonga, Gülen Yesilbag; Solfiell, David; Rotello, Vincent M.

    2012-01-01

    Inorganic nanomaterials have an array of structural and physical properties that can be used in therapeutic delivery systems. The sizes, shapes, and surfaces of inorganic nanomaterials can be tailored to produce distinct interactions with biological systems both in vitro and in vivo. Nanoparticle cores can likewise be engineered to possess unique opticophysical properties, including upconversion, size-dependent absorbance/emission as well as magnetic properties such as superparamagnetism. These properties make inorganic nanomaterials useful imaging agents for noninvasive diagnostics and remotely activated theragnostics. Taken together, these unique properties of inorganic nanomaterials make them promising delivery systems. PMID:22981754

  12. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  13. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    PubMed

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. PMID:24589477

  14. Minor element geochemistry of groundwater from an area with prevailing saline groundwater in Chikhwawa, lower Shire valley (Malawi)

    NASA Astrophysics Data System (ADS)

    Monjerezi, Maurice; Vogt, Rolf D.; Gebru, Asfaw Gebretsadik; Saka, John D. K.; Aagaard, Per

    Groundwater resources with high salinity content are found in some parts of the lower Shire River valley (Malawi). This paper discusses the geochemistry of minor elements with regards to the prevailing salinity. Hierarchical clustering and principal component analyses were used to identify factors which relate to both minor elements and samples and were interpreted as reflecting the influence of prevailing saline/brackish groundwater. Concentrations of lead (Pb), boron (B), strontium (Sr) and chromium (Cr) were associated with groundwater with high content of total dissolved solids (TDS). Speciation calculations indicated that dissolved Sr, barium (Ba) and lithium (Li) were mainly in the form of free aqueous ions whereas hydrolysed species were significant for aluminium (Al) and Cr, and carbonate complexes for Pb. Chloride complexes were prevalent for silver (Ag). Solubility of cerussite (PbCO3) and barite (BaSO4) was shown to act as a control on the levels of Pb and Ba, respectively. Thus, Ba concentrations were very low in saline groundwater owing to their high sulphate content. A relatively variable B concentration in the groundwater samples was explained using a binary mixing model of saline and fresh groundwater. The mixing of fresh groundwater with saline groundwater was concomitant with high Na+/Ca2+ ratios and enrichment of B, probably by desorption from clays. The WHO drinking water guidelines for Ba, B, Cr and Pb were exceeded in 6.5%, 9.7%, 16.1% and 64.5% of all the samples, respectively. However, all samples were below the Malawian specification of B in borehole and shallow well water quality (MS 733:2005) of 5.0 mg/L.

  15. Solubility prediction of satranidazole in propylene glycol-water mixtures using extended hildebrand solubility approach.

    PubMed

    Rathi, P B

    2011-11-01

    Extended Hildebrand solubility approach is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various propylene glycol-water mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility equation employs term interaction energy (W) to replace the geometric mean (δ(1)δ(2)), where δ(1) and δ(2) are the cohesive energy densities for the solvent and solute, respectively. The new equation provides an accurate prediction of solubility once the interaction energy, W, is obtained. In this case, the energy term is regressed against a polynomial in δ(1) of the binary mixture. A quartic expression of W in terms of solvent solubility parameter was found for predicting the solubility of satranidazole in propylene glycol-water mixtures. The expression yields an error in mole fraction solubility of ~3.74%, a value approximating that of the experimentally determined solubility. The method has potential usefulness in preformulation and formulation studies during which solubility prediction is important for drug design. PMID:23112403

  16. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-04-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 μg m-3 and the WSOC concentration was between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations.

  17. The water cycles of water-soluble organic salts of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Peng, Changgeng; Chan, Chak K.

    In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76-2.18 from RH=10-90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH 4) 2SO 4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.

  18. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans.

    PubMed

    Giovannini, Donatella; Touhami, Jawida; Charnet, Pierre; Sitbon, Marc; Battini, Jean-Luc

    2013-06-27

    Inorganic phosphate uptake is a universal function accomplished by transporters that are present across the living world. In contrast, no phosphate exporter has ever been identified in metazoans. Here, we show that depletion of XPR1, a multipass membrane molecule initially identified as the cell-surface receptor for xenotropic and polytropic murine leukemia retroviruses (X- and P-MLV), induced a decrease in phosphate export and that reintroduction of various XPR1 proteins, from fruit fly to human, rescued this defect. Inhibition of phosphate export was also obtained with a soluble ligand generated from the envelope-receptor-binding domain of X-MLV in all human cell lines tested, as well as in diverse stem cells and epithelial cells derived from renal proximal tubules, the main site of phosphate homeostasis regulation. These results provide new insights on phosphate export in metazoans and the role of Xpr1 in this function. PMID:23791524

  19. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    PubMed

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-01-01

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase. PMID:26489420

  20. 0.9% saline is neither normal nor physiological

    PubMed Central

    Li, Heng; Sun, Shi-ren; Yap, John Q.; Chen, Jiang-hua; Qian, Qi

    2016-01-01

    The purpose of this review is to objectively evaluate the biochemical and pathophysiological properties of 0.9% saline (henceforth: saline) and to discuss the impact of saline infusion, specifically on systemic acid-base balance and renal hemodynamics. Studies have shown that electrolyte balance, including effects of saline infusion on serum electrolytes, is often poorly understood among practicing physicians and inappropriate saline prescribing can cause increased morbidity and mortality. Large-volume (>2 L) saline infusion in healthy adults induces hyperchloremia which is associated with metabolic acidosis, hyperkalemia, and negative protein balance. Saline overload (80 ml/kg) in rodents can cause intestinal edema and contractile dysfunction associated with activation of sodium-proton exchanger (NHE) and decrease in myosin light chain phosphorylation. Saline infusion can also adversely affect renal hemodynamics. Microperfusion experiments and real-time imaging studies have demonstrated a reduction in renal perfusion and an expansion in kidney volume, compromising O2 delivery to the renal parenchyma following saline infusion. Clinically, saline infusion for patients post abdominal and cardiovascular surgery is associated with a greater number of adverse effects including more frequent blood product transfusion and bicarbonate therapy, reduced gastric blood flow, delayed recovery of gut function, impaired cardiac contractility in response to inotropes, prolonged hospital stay, and possibly increased mortality. In critically ill patients, saline infusion, compared to balanced fluid infusions, increases the occurrence of acute kidney injury. In summary, saline is a highly acidic fluid. With the exception of saline infusion for patients with hypochloremic metabolic alkalosis and volume depletion due to vomiting or upper gastrointestinal suction, indiscriminate use, especially for acutely ill patients, may cause unnecessary complications and should be avoided. More

  1. 0.9% saline is neither normal nor physiological.

    PubMed

    Li, Heng; Sun, Shi-Ren; Yap, John Q; Chen, Jiang-Hua; Qian, Qi

    2016-03-01

    The purpose of this review is to objectively evaluate the biochemical and pathophysiological properties of 0.9% saline (henceforth: saline) and to discuss the impact of saline infusion, specifically on systemic acid-base balance and renal hemodynamics. Studies have shown that electrolyte balance, including effects of saline infusion on serum electrolytes, is often poorly understood among practicing physicians and inappropriate saline prescribing can cause increased morbidity and mortality. Large-volume (>2 L) saline infusion in healthy adults induces hyperchloremia which is associated with metabolic acidosis, hyperkalemia, and negative protein balance. Saline overload (80 ml/kg) in rodents can cause intestinal edema and contractile dysfunction associated with activation of sodium-proton exchanger (NHE) and decrease in myosin light chain phosphorylation. Saline infusion can also adversely affect renal hemodynamics. Microperfusion experiments and real-time imaging studies have demonstrated a reduction in renal perfusion and an expansion in kidney volume, compromising O2 delivery to the renal parenchyma following saline infusion. Clinically, saline infusion for patients post abdominal and cardiovascular surgery is associated with a greater number of adverse effects including more frequent blood product transfusion and bicarbonate therapy, reduced gastric blood flow, delayed recovery of gut function, impaired cardiac contractility in response to inotropes, prolonged hospital stay, and possibly increased mortality. In critically ill patients, saline infusion, compared to balanced fluid infusions, increases the occurrence of acute kidney injury. In summary, saline is a highly acidic fluid. With the exception of saline infusion for patients with hypochloremic metabolic alkalosis and volume depletion due to vomiting or upper gastrointestinal suction, indiscriminate use, especially for acutely ill patients, may cause unnecessary complications and should be avoided. More

  2. Sediment Dynamics and Fate of Heavy Metals, Carbon, and Inorganic Matter in the Hudson Estuary, New York

    NASA Astrophysics Data System (ADS)

    Sritrairat, S.; Kenna, T. C.; Peteet, D. M.; Nguyen, K.; Perez, M.; Huang, Z.; Miller, A.

    2010-12-01

    The Hudson River Estuary is typical of a large, intensively used and modified estuary. Its watershed is an important resource for small communities along the river as well as large population centers such as the Metropolitan area of New York City. In addition to past industrial activities within the region that have resulted in many instances of environmental contamination, the estuary is at high risk for climatic and other anthropogenic changes. This study focuses on sediment dynamics and the fate of heavy metals, inorganic matter, and carbon in 27 sediment cores and 15 surface samples taken from wetlands and tributaries of the Hudson Estuary along a north-south transect from Troy, NY to New York harbor. Each site experiences different salinity, vegetation, landscape, and flow pattern. 1) We quantified and mapped the distribution of toxic heavy metals, including Pb, Cu, and Zn, in the estuary to examine the fate of these contaminants. Jamaica Bay and the East River sediments from New York City are the most contaminated with heavy metals among the sites analyzed. 2) We examined the sedimentation rate and sedimentation pattern, using pollution chronology along with radiometric methods. Sedimentation rates at 17 sites range from 0.26 - 2.63 cm/yr during the last century. Cores taken from high-energy or non-vegetated area are more likely to have a disturbed sedimentation pattern, and thus there is a higher risk of contaminant resuspension at those locations. 3) We quantified Ti and K concentration as a measure of the fluctuation of inorganic matter input and the fate of inorganic matter in the estuary. We quantified organic matter content with the Loss-on-Ignition (LOI) method at selected sites to identify carbon sequestration rate in the estuary. Inorganic matter content during the last century at most sites is significantly higher than that found prior to the European Settlements at the same location, suggesting increasing erosion and disturbances. However, more

  3. Nitrogen sources and sinks in a wastewater impacted saline aquifer beneath the Florida Keys, USA

    NASA Astrophysics Data System (ADS)

    Dillon, Kevin S.; Chanton, Jeffrey P.; Smith, Leslie K.

    2007-06-01

    Groundwater wells surrounding a high volume advance treatment wastewater (ATW) disposal well in the Florida Keys were monitored for nitrate, nitrite, and ammonium concentrations over a 14 month period. Nutrient concentrations in the shallow subsurface (9 m) show a bimodal distribution between the low salinity wastewater plume and the ambient brackish to saline groundwaters. High NO 3- concentrations are found within the ATW plume while the highest NH 4+ concentrations are found in shallow wells outside of the plume. Evidence suggests that the overlying mud layer unique to this study site contributes the bulk of the NH 4+ observed in these wells. NO 3- concentrations at 9 m wells varied by a factor of four in response to concurrent variations in ATW NO 3- loads over the coarse of the study. Estimated NO 3- uptake rates varied from 32 ± 29 to 98 ± 69 and did not directly correlate with ATW NO 3- loading as we hypothesized. We estimate that 70 ± 34% of the NO 3- from the treatment plant is removed from solution in the subsurface of the study site. Considerable decreases in NO 3- concentration and enrichment of 15NO 3- was observed in many wells, indicating significant denitrification or anaerobic ammonium oxidation is occurring in the subsurface. Dissolved inorganic nitrogen concentrations, distributions, and 15N compositions indicate that denitrification is likely the dominant mechanism for N removal in the ATW plume at Key Colony Beach, Florida.

  4. Δ14C of Dissolved Inorganic Carbon in Surface Seawater from a Time-Series Site off Southern California

    NASA Astrophysics Data System (ADS)

    Hinger, E. N.; Dos Santos, G. M.; Griffin, S. M.; Druffel, E. R.

    2006-12-01

    To better understand the variability of carbon cycling in coastal seawater, we studied the carbon isotope abundances of dissolved inorganic carbon (DIC) in surface seawater at a time series site off the Newport Beach Pier in Orange County, California. A suite of samples was collected daily from October 16 to November 11, 2004. Δ14C values averaged 34±2‰, similar to values obtained for surface seawater from sites off the coast of CA. Fresh water input from the Santa Ana River caused lower than average Δ14C values. Since this initial set of measurements, a time-series site has been maintained from November 2004 to the present. Surface seawater has been collected every 15 days and analyzed for AMS- 14C, 13C/12C stable isotopes, salinity, and total inorganic carbon concentrations. These data will be presented along with meteorological data from the coastal Orange County region (precipitation, water temperature and Santa Ana River discharge) and discuss the factors important for varying the concentration and isotopic signatures of the dissolved inorganic carbon in seawater at our coastal site

  5. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    PubMed Central

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  6. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    PubMed

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  7. Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Swain, W.C.

    1995-01-01

    The distribution of salinity and selected trace elements in shallow ground water in the Tulare Basin, California, was assessed to evaluate potential problems related to disposal in evaporation ponds of irrigation drain water containing elevated concentrations of selenium and other trace elements. The constituents of primary concern were selenium, arsenic, and salinity; uranium, boron, and molybdenum also were evaluated. Samples from 117 shallow wells were analyzed, and the results for samples from 110 of the wells were interpreted in relation to surficial geology, sediment depositional environment, soil characteristics, and hydrologic processes to determine the geochemical and hydrologic factors affecting the distribution of these constituents in ground water. In general, shallow ground water in areas where concentrations of salinity and most trace elements are elevated is influenced primarily by sediments derived from marine sedimentary rocks originating in the Coast Range, San Emigdio Mountains, and Tehachapi Mountains, and probably by unusual exposures of similar marine formations in the Sierra Nevada. Ground water in areas where concentrations of salinity and trace elements are significantly lower generally is influenced by igneous and metamorphic rocks exposed in the Sierra Nevada. In addition to sources of sediments, evaporation of shallow ground water, as indicated by isotopic enrichment of oxygen-18 and deuterium, increases salinity and concentrations of conservative trace elements such as selenium (under oxidizing conditions) and boron. Redox conditions affect the oxidation state of all trace elements of concern, except boron, and were found to be a major influence on trace-element solubility. Under oxidized conditions, selenate predominates and behaves conservatively, and arsenate predominates and is affected by sorption reactions that can limit arsenic solubility. Under reduced conditions, selenium is reduced to insoluble elemental selenium and arsenite

  8. Salinization as the main soil-forming process in soils of natural oases in the Gobi desert

    NASA Astrophysics Data System (ADS)

    Pankova, E. I.; Aidarov, I. P.; Golovanov, D. L.; Yamnova, I. A.

    2015-10-01

    The saline soils of the natural Ekhiin-Gol oasis located in southern deserts of the Mongolian Trans-Altai Gobi are characterized. Specific features and the genesis of hydromorphic solonchaks, dark-colored meadow, and takyr-like desert soils predominating in the territory of the oasis are considered. Within the Ekhiin-Gol oasis, hydromorphic solonchaks occupy more than 50% of its area. They are formed in the zone of discharge of weakly mineralized groundwater confined to tectonic faults. The upper saline horizon of the solonchaks contains nearly 40-60% of easily soluble salts. Their composition is mainly chloride-sulfate, and their elevated alkalinity is often related to the presence of boron in the soils and groundwater. The mineralogical composition of salts in the solonchaks of the oasis was studied; the reasons for the formation of almost nonsaline dark-colored meadow and takyr-like desert soils along with solonchaks are considered. The water-salt budget was calculated, the distribution of salts along the soil profiles was studied, and reasons for their salinization are considered. The soils of the major part of the Ekhiin-Gol oasis are shown to be subjected to progressing salinization whose intensity depends on the groundwater level and mineralization, as well as on the correlation between the annual evaporation and the amount of water coming to the soil surface with precipitation, groundwater, and water of flooding ice (naled).

  9. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.

  10. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  11. Characterization of soluble microbial products (SMP) under stressful conditions.

    PubMed

    Wang, Zhi-Ping; Zhang, Tong

    2010-10-01

    Soluble microbial products (SMP) in the wastewater treatment process not only cause fouling to the membrane, but also generate disinfection by-products (DBP) in the effluent, thus get increasing attention. In this study, SMP produced by activated sludge and isolates under different stressful conditions, i.e. starvation, salinity, heavy metals, low pH and high temperature, were characterized to investigate the effects of these conditions on the amount of SMP and their compositions. The analysis results using size exclusion chromatography (SEC), high pressure liquid chromatography (HPLC) and fluorescence excitation emission matrix (FEEM) showed that activated sludge and isolates suffered with the same stressful condition contained almost the same concentration and composition of SMP, indicating that the stressful condition instead of the microbial species played the crucial role in the production of SMP. Among of stressful conditions tested, high temperature had stimulated the production of polysaccharides and polycarboxylate-type humic acid with high hydrophilicity, which is in positive proportion to the foulants formation potential, thus should be avoided in membrane bioreactors. Low pH had promoted the generation of hydrophobic humic acid-like or protein-like organics, which had been proved as the main disinfection byproduct (DBP) precursor, thus should be avoided in the biological treatment. Starvation had less effect on SMP production as the seeding microbes had no substrates. PMID:20655085

  12. Soluble endoglin, hypercholesterolemia and endothelial dysfunction.

    PubMed

    Rathouska, Jana; Jezkova, Katerina; Nemeckova, Ivana; Nachtigal, Petr

    2015-12-01

    A soluble form of endoglin (sEng) is known to be an extracellular domain of the full-length membrane endoglin, which is elevated during various pathological conditions related to vascular endothelium. In the current review, we tried to summarize a possible role of soluble endoglin in cardiovascular pathologies, focusing on its relation to endothelial dysfunction and cholesterol levels. We discussed sEng as a proposed biomarker of cardiovascular disease progression, cardiovascular disease treatment and endothelial dysfunction. We also addressed a potential interaction of sEng with TGF-β/eNOS or BMP-9 signaling. We suggest soluble endoglin levels to be monitored, because they reflect the progression/treatment efficacy of cardiovascular diseases related to endothelial dysfunction and hypercholesterolemia. A possible role of soluble endoglin as an inducer of endothelial dysfunction however remains to be elucidated. PMID:26520890

  13. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  14. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  15. DEVELOPMENT OF SOLUBILITY PRODUCT VISUALIZATION TOOLS

    SciTech Connect

    T.F. Turner; A.T. Pauli; J.F. Schabron

    2004-05-01

    Western Research Institute (WRI) has developed software for the visualization of data acquired from solubility tests. The work was performed in conjunction with AB Nynas Petroleum, Nynashamn, Sweden who participated as the corporate cosponsor for this Jointly Sponsored Research (JSR) task. Efforts in this project were split between software development and solubility test development. The Microsoft Windows-compatible software developed inputs up to three solubility data sets, calculates the parameters for six solid body types to fit the data, and interactively displays the results in three dimensions. Several infrared spectroscopy techniques have been examined for potential use in determining bitumen solubility in various solvents. Reflectance, time-averaged absorbance, and transmittance techniques were applied to bitumen samples in single and binary solvent systems. None of the techniques were found to have wide applicability.

  16. SOLUBLE ORGANIC NITROGEN CHARACTERISTICS AND REMOVAL

    EPA Science Inventory

    This report discusses sources, concentrations, characteristics and methods for removal of Soluble Organic Nitrogen (SON) in wastewater. Removal by various physical, chemical and biological processes are described and molecular weight distribution is characterized. A significant p...

  17. An Introduction to the Understanding of Solubility.

    ERIC Educational Resources Information Center

    Letcher, Trevor M.; Battino, Rubin

    2001-01-01

    Explores different solubility processes and related issues, including the second law of thermodynamics and ideal mixtures, real liquids, intermolecular forces, and solids in liquids or gases in liquids. (Contains 22 references.) (ASK)

  18. The quantitative influence of salinity on the apparent resistivity on a physical model upon salination

    SciTech Connect

    Khair, K.; Skokan, C.

    1996-11-01

    The excessive exploitation of groundwater aquifers leads to water table drawdown, and subsequently to the contamination of these aquifers by the intrusion of sea water or other hazardous sources. This worldwide environmental problem is becoming increasingly critical in coastal agricultural areas, where the fine grained materials develop a thick fringe zone. By evapo-transpiration the moisture of this zone pumps up the salt in the dry season, which cannot be efficiently washed away in the wet season. The current study investigates the possibility of an early detection of salination, through systematic observation of electrical resistivity in selected positions with fixed electrode arrays. A direct current electrical profiling system of Wenner configuration was tested in the laboratory using a physical model. The model was constructed of wood and plastic tilled with saturated sand and having a constant water flow of 1.6 l/mn. The model size is 148 by 85 cm for lateral dimensions and 25 cm of sand thickness, with a total porosity of 360%. Upon salination the salt was increasingly added to the system to reach a concentration of 32 g/l. Upon desalination salt water was replaced by fresh water to dilute the water in the system to a concentration of 0.25 g/l. The results show that the relationship between salinity and electrical resistivity is inversely proportional and characterized by linear logarithmic function; the velocity of water flow calculated by abrupt resistivity changes is lower than the hydraulic velocity; the resistivity values for low salinity upon desalination are much different (smaller) than those upon salination of equivalent salt concentrations: the relative change of resistivity upon salination and desalination involves almost equally all features of the tank that have distinctive resistivity values.

  19. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  20. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  1. Towards a paleo-salinity proxy: Decreasing D/H fractionation in algal and bacterial lipids with increasing salinity in Christmas Island saline ponds

    NASA Astrophysics Data System (ADS)

    Sachse, D.; Sachs, J. P.

    2007-12-01

    We investigated the effect of a wide range of salinities (13 -149 PSU) on the D/H ratio of lipids in microbial mat sediments from hypersaline ponds on Christmas Island. The hydrogen isotope ratios (expressed as δD values) of total lipid extracts, and the individual hydrocarbons heptadecane, heptadecene, octadecane, octadecene, diploptene and phytene from algae and bacteria, became increasingly enriched in deuterium as salinity increased, spanning a range of 100‰ while lake water δD values spanned a range of just 12‰. D/H fractionation between lipids and source water thus decreased as salinity increased. Isotope fractionation factors (αlipid-water) were strongly correlated with salinity and increased in all compound classes studied. The apparent isotope fractionation (ɛlipid-water) decreased by 0.8 to 1.1‰ per PSU increase in salinity. Differences in the hydrogen isotopic composition of lipids derived from three biosynthetic pathways (acetogenic, MVA and DOXP/MEP) remained similar irrespective of the salinity, suggesting that the mechanism responsible for the observed αlipid-water - salinity relationship originates prior to the last common biosynthetic branching point, the Calvin Cycle. These findings imply that caution must be exercised when attempting to reconstruct source water δD values using lipid δD values from aquatic environments that may have experienced salinity variations of ~3 PSU or more (based on a 1‰ per PSU response of D/H fractionation to salinity changes, and a lipid δD measurement precision of 3‰). On the other hand our results can be used to establish a paleo-salinity proxy based on algal and bacterial lipid δD values if salinity variations exceeded ~3 PSU and/or if additional constraints on source water δD values can be made.

  2. GADOLINIUM SOLUBILITY AND VOLATILITY DURING DWPF PROCESSING

    SciTech Connect

    Reboul, S

    2008-01-30

    Understanding of gadolinium behavior, as it relates to potential neutron poisoning applications at the DWPF, has increased over the past several years as process specific data have been generated. Of primary importance are phenomena related to gadolinium solubility and volatility, which introduce the potential for gadolinium to be separated from fissile materials during Chemical Process Cell (CPC) and Melter operations. Existing data indicate that gadolinium solubilities under moderately low pH conditions can vary over several orders of magnitude, depending on the quantities of other constituents that are present. With respect to sludge batching processes, the gadolinium solubility appears to be highly affected by iron. In cases where the mass ratio of Fe:Gd is 300 or more, the gadolinium solubility has been observed to be low, one milligram per liter or less. In contrast, when the ratio of Fe:Gd is 20 or less, the gadolinium solubility has been found to be relatively high, several thousands of milligrams per liter. For gadolinium to serve as an effective neutron poison in CPC operations, the solubility needs to be limited to approximately 100 mg/L. Unfortunately, the Fe:Gd ratio that corresponds to this solubility limit has not been identified. Existing data suggest gadolinium and plutonium are not volatile during melter operations. However, the data are subject to inherent uncertainties preventing definitive conclusions on this matter. In order to determine if gadolinium offers a practical means of poisoning waste in DWPF operations, generation of additional data is recommended. This includes: Gd solubility testing under conditions where the Fe:Gd ratio varies from 50 to 150; and Gd and Pu volatility studies tailored to quantifying high temperature partitioning. Additional tests focusing on crystal aging of Gd/Pu precipitates should be pursued if receipt of gadolinium-poisoned waste into the Tank Farm becomes routine.

  3. Correlation of Helium Solubility in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  4. Correlation of Catalytic Rates With Solubility Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; England, Christopher

    1987-01-01

    Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.

  5. Soluble cytokine receptors in biological therapy.

    PubMed

    Fernandez-Botran, Rafael; Crespo, Fabian A; Sun, Xichun

    2002-08-01

    Due to their fundamental involvement in the pathogenesis of many diseases, cytokines constitute key targets for biotherapeutic approaches. The discovery that soluble forms of cytokine receptors are involved in the endogenous regulation of cytokine activity has prompted substantial interest in their potential application as immunotherapeutic agents. As such, soluble cytokine receptors have many advantages, including specificity, low immunogenicity and high affinity. Potential disadvantages, such as low avidity and short in vivo half-lifes, have been addressed by the use of genetically-designed receptors, hybrid proteins or chemical modifications. The ability of many soluble cytokine receptors to inhibit the binding and biological activity of their ligands makes them very specific cytokine antagonists. Several pharmaceutical companies have generated a number of therapeutic agents based on soluble cytokine receptors and many of them are undergoing clinical trials. The most advanced in terms of clinical development is etanercept (Enbrel, Immunex), a fusion protein between soluble TNF receptor Type II and the Fc region of human IgG1. This TNF-alpha; antagonist was the first soluble cytokine receptor to receive approval for use in humans. In general, most agents based on soluble cytokine receptors have been safe, well-tolerated and have shown only minor side effects in the majority of patients. Soluble cytokine receptors constitute a new generation of therapeutic agents with tremendous potential for applications in a wide variety of human diseases. Two current areas of research are the identification of their most promising applications and characterisation of their long-term effects. PMID:12171504

  6. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.

    PubMed

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-28

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-[triple bond, length as m-dash]) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click

  7. Developing a salinity-based approach for the evaluation of DIN removal rate in estuarine ecosystems.

    PubMed

    Hong, Yiguo; Wang, Shuailong; Xu, Xiang-Rong; Wu, Jiapeng; Liu, Ling; Yue, Weizhong; Wu, Meilin; Wang, Youshao

    2015-10-01

    Estuaries play an important role in the removal of overloading nitrogen to relieve the eutrophic pressure of coastal seawater. However, the exact amount of nitrogen removed in estuarine ecosystems is difficult to be estimated because of the complex dynamic mixing process between riverine water and coastal seawater. In this study, a new method was developed to calculate the removal rate of dissolved inorganic nitrogen (DIN) in estuarine waters attributed to the mixing process and was based on the assumption that relative salinity can serve as an indicator of the degree of mixing. This assumption was supported by the experimental results that demonstrated a linear regression relationship between DIN decline and salinity increase Thus, the decreased amount of DIN in mixing waters attributed to the dilution effect could be determined with the salinity as an index. With this model, the DIN removal rate in both Chesapeake Bay and Pearl River Estuary were defined. As predicted, our analysis demonstrated that the DIN removal rate increased gradually from upstream to downstream in both studied estuaries with obvious seasonable variation pattern: high in warm seasons and low in cold seasons. The practical application of this method might be affected by multiple factors, including the geographic landform of estuaries, initial estuaries DIN concentration, the DIN concentration in seawater, DIN importing from tributaries, sewage discharge and hydrodynamic mixing. Therefore, the results supported the hypothesis that estuaries have a strong capability to remove the nitrogen inputted from human activities, especially in warm season and therefore should play an important role in regulating the balance of global nitrogen biogeochemical cycle. PMID:25957975

  8. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility.

    PubMed

    Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T

    2013-10-01

    Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum

  9. Estimating the Aqueous Solubility of Pharmaceutical Hydrates.

    PubMed

    Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B

    2016-06-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. PMID:27238488

  10. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  11. Solubility of uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1994-03-29

    The solubility of uranium in alkaline salt solutions was investigated to screen for significant factors and interactions among the major salt components and temperature. The components included in the study were the sodium salts of hydroxide, nitrate, nitrite, aluminate, sulfate, and carbonate. General findings from the study included: (1) uranium solubilities are very low (1-20 mg/L) for all solution compositions at hydroxide concentrations from 0.1 to 17 molar (2) carbonate, sulfate, and aluminate are not effective complexants for uranium at high hydroxide concentration, (3) uranium solubility decreases with increasing temperature for most alkaline salt solutions, and (4) uranium solubility increases with changes in solution chemistry that reflect aging of high level waste (increase in nitrite and carbonate concentrations, decrease in nitrate and hydroxide concentrations). A predictive model for the concentration of uranium as a function of component concentrations and temperature was fitted to the data. All of the solution components and temperature were found to be significant. There is a significant lack of fit for the model, which suggests that the dependence on the uranium solubility over the wide range of solution compositions is non-linear and/or that there are other uncontrolled parameters which are important to the uranium solubility.

  12. How Soluble GARP Enhances TGFβ Activation

    PubMed Central

    Fridrich, Sven; Hahn, Susanne A.; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo. PMID:27054568

  13. The Aquarius Salinity Retrieval Algorithm: Early Results

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.; Lagerloef, Gary; LeVine, David

    2012-01-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation

  14. Salinity trends in the Ebro River (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores

    2016-04-01

    In the Ebro River Basin (Spain), the increase in water diversion for irrigation (following the increase in irrigated area) and the recovery of natural vegetation in the upper reaches, along with climate change have induced changes in the river flow and its associated salt loads. This study was supported by the Ebro River Basin Administration (CHE) and aimed to establish the trends in the salt concentrations and loads of the Ebro River at Tortosa (no 027, the extreme downstream gauging station). The CHE databases from 1972-73 to 2011-12, including mean monthly flows (Q) and concentration readings (electrical conductivity converted to total dissolved solids -TDS- by regression) from monthly grab samples, have been used. The trends were established by (i) harmonic regression analysis; (ii) linear regression by month; and (iii) the non-parametric Mann-Kendall method. Additionally, (iv) the regressions of TDS on Q in the current and previous months were established, allowing for analyzing separately the trends in TDS linked to- (TDSq) and independent of- (TDSaj) the observed changes in flow. In all cases, the trends were analyzed for different periods within the full span 1973-2012 (1973 to 2012, 1981 to 2012, 1990-2012 and 2001-2012), trying to account for periods with sensibly similar patterns of land use change. An increase in TDS was found for all the periods analyzed that was lower as shorter periods were used, suggesting that lower salinity changes might be taking place in the last years, possibly due to the reduction in the rate of irrigation development and to the on-going irrigation modernization process. The higher seasonal TDS increases were found in autumn and winter months and the increase in TDS was linked both to intrinsic changes in salinity (TDSaj) and to the observed decrease in flow (TDSq). On the other hand, the salt loads decreased, especially in autumn, as a result of the observed flow decrease. These results are based on the observed evolution of

  15. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    NASA Astrophysics Data System (ADS)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  16. Bioavailability of Fe(III) in natural soils and the impact on mobility of inorganic contaminants

    SciTech Connect

    Kosson, David S.; Cowan, Robert M.; Young, Lily Y.; Hacherl, Eric L.; Scala, David J.

    2002-10-03

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  17. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. PMID:27372129

  18. Soluble dust as source of nutrients to the oceans and the role of humans

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Myriokefalitakis, S.; Nikolaou, P.; Daskalakis, N.; Theodosi, C.; Nenes, A.; Mihalopoulos, N.

    2014-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA - PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.

  19. Soluble dust as source of nutrients to the global ocean and the role of humans.

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Nikolaou, Panagiota; Daskalakis, Nikos; Theodosi, Christina; Nenes, Athanassios; Tsigaridis, Kostas; Mihalopoulos, Nikos

    2015-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA - PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.

  20. Testing Novel pH Proxies through Inorganic Calcite Precipitations and K/Pg Foraminifera

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Pagani, M.; Wang, Z.

    2013-12-01

    Ocean pH proxies help constrain the carbon system in the paleocean and can be used to infer atmospheric CO2 when coupled with estimates of total alkalinity, aqueous pCO2 or dissolved inorganic carbon. This project investigates two novel pH proxies (cerium abundance and kinetically-controlled oxygen isotopes) through a series of precipitations of inorganic calcite, as well as the previously established boron isotope pH proxy. Precipitations are performed using varied pH and carbonate saturation states that span the range of typical ocean values as well as a 'free drift' that allows pH and saturation state to vary. The light rare earth element cerium speciates, depending on local oxidation-reduction conditions, between the soluble Ce3+ and highly insoluble Ce4+ ions, causing a relative depletion of cerium in ocean water. This project demonstrates how a suite rare earth elements, including cerium, partitions into inorganic calcite and how partitioning varies with changing pH and carbonate saturation state. Oxygen isotope fractionation is primarily controlled by temperature, but this project examines how pH and carbonate saturation state correlate with oxygen isotope values under kinetic conditions during the initial stage of precipitation. The effect of diagenesis on each proxy is simulated by dissolution of precipitated calcite in a pressure vessel. Results from the precipitations are used to inform a record of well-preserved benthic and planktonic foraminifera from DSDP Site 356 that range in age from the K/Pg boundary to the period when the δ13C gradient between the surface and deep ocean returned to pre-event levels. The pH record is used to infer the magnitude and length of the perturbation to the oceanic carbon system following the extinction event, particularly in terms of export productivity.