Science.gov

Sample records for salinity geothermal brines

  1. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    NASA Astrophysics Data System (ADS)

    Suciu, D. F.; Wikoff, P. M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. Results indicate that ferritic stainless steels (29-4-2 and SEACURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests.

  2. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  3. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    SciTech Connect

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  4. Biochemical processes for geothermal brine treatment

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  5. SURFACE CONTAINMENT FOR GEOTHERMAL BRINES

    EPA Science Inventory

    This report examines the probability of significant releases of geothermal brine to the surface environment through unplanned or accidental events. It then evaluates the containment measures that may be used to prevent environmental damage. The results indicate that major spills ...

  6. Treatment of geothermal brine

    SciTech Connect

    Gallup, D.L.; Featherstone, J.L.

    1992-03-24

    This patent describes a method of precipitating at least one metal from a brine containing the same. It comprises contacting a brine containing at least one metal selected from the group consisting of iron, zinc, manganese, copper, silver and lead, and at least one scale forming species selected from the group consisting of silica and calcium compounds, with a condensate of steam, derived from the brine, in an amount to provide a mixture having a volume ratio of brine to condensate in the range of about 1:2 to 1:10 for a time sufficient to precipitate at least one of the metals and only a minor amount of the scale forming species.

  7. Geothermal brines and sludges: a new resource

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

    1996-10-01

    Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

  8. Desalination of geothermal brines by means of combustion residues

    SciTech Connect

    Pernklau, E.; Althaus, E.

    1986-01-01

    Geothermal brines with high salinity are frequently encountered. Their commercial utilization, e.g. for heat recovery, is handicapped by scaling and disposal problems. A simple method for attaining a significant reduction of salinity would solve this problem. This paper examines the possibility of desalinating by entrapment of sodium chloride in sodalite. Sodalite is formed by the reaction of a hot brine with materials containing aluminum and silicon, e.g. combustion residues. The authors have reduced the sodium chloride content of a model brine in this manner.

  9. Recovery of base materials from geothermal brines

    SciTech Connect

    Duyvesteyn, W.P.C.

    1993-07-20

    A process is described for the recovery of substantially pure Zn from a reservoir of geothermal brine confined under pressure at elevated temperature at subterranean levels, the brine also containing recoverable and mounts of lead and silver which comprises: tapping and bringing to the earth's surface a portion of the geothermal brine; allowing the brine to flash at atmospheric pressure to produce steam for use in the generation of electrical power; cooling the flashed brine; extracting Pb and Ag from the brine by cementation by adding a metal selected from the group consisting of Zn, Fe and Al to the cooled brine, removing the cemented Pb and Ag from the brine by solid/liquid separation; mixing the brine impoverished in the Pb and Ag with a substantially immiscible anionic solvent selective to the extraction of Zn to produce a spent brine and a Zn loaded anionic extractant; the anionic solvent being dissolved in a diluent of water immiscible organic solvent, recycling the spent brine to the reservoir of geothermal brine; subjecting the Zn-loaded anionic extractant to mixing with an aqueous solution to produce a Zn-loaded aqueous Zn chloride solution, separating the Zn-loaded aqueous solution from the anionic extractant, adjusting the pH of the Zn-containing aqueous solution, if necessary, to a pH sufficient to promote the separation of the Zn by cationic extraction, subjecting the Zn-loaded aqueous solution to extraction with a cationic solvent selective to Zn; the cationic solvent being dissolved in a diluent of a water-immiscible organic solvent, stripping the Zn from the loaded cationic extractant using a sulfuric acid electrolyte solution, the volume ratio of the cationic solvent to the sulfuric acid solution being such as to provide a Zn electrolyte solution of Zn concentration sufficient for the recovery of Zn therefrom, and then electrowinning the Zn from the electrolyte solution to provide a product of substantially pure Zn.

  10. Advanced biochemical processes for geothermal brines: Current developments

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Bajsarowicz, V.; McCloud, M.

    1997-07-07

    A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

  11. Advanced biochemical processes for geothermal brines current developments

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.

    1997-03-10

    A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the R&D effort allowed to identify a combination of biochemical and chemical processes which became a basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource and therefore differs, the emerging technology has to be also flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

  12. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    USGS Publications Warehouse

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  13. Models of Geothermal Brine Chemistry

    SciTech Connect

    Nancy Moller Weare; John H. Weare

    2002-03-29

    Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

  14. Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965

    NASA Astrophysics Data System (ADS)

    Hartmann, M.

    1980-02-01

    The geothermal brine system of the Atlantis II Deep in the Red Sea was reinvestigated hydrographically and chemically in November 1977. A comparison with results from earlier investigations confirms an increase of the hot brine volume, as suggested by the 1972 measurements ( SCHOELL, Bundesanstalt für Bodenforschung, Hannover, 1063 pp. 1974). The rate of increase is evidently parallel to the rate of temperature increase. The salinity of the lower brine was nearly constant during this period. The nearby Discovery Deep brine is evidently unaffected by the changes in the Atlantis II Deep as its temperature was constant within ±0.1°C during this time.

  15. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin.

    PubMed

    Westphal, Anke; Lerm, Stephanie; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2016-04-01

    The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation. PMID:26610802

  16. Corrosion behavior of materials exposed to hypersaline geothermal brine

    SciTech Connect

    McCright, R.D.

    1980-11-20

    The corrosion rate and corrosion attack characteristics were determined for thirteen commercially available materials exposed in a geothermal production well for three months. The materials included carbon steels, Cr-Mo alloy steels, martensitic and ferritic stainless steels, high-nickel alloys, and titanium. The environment at the 1800 ft (600 m) depth of exposure was a single phase high salinity brine. The prevailing temperature was 260{sup 0}C and the prevailing pressure was 630 psi (4.0 MPa) during the exposure period. Results indicated that the carbon steels suffered intense generalized and localized corrosion. Addition of Cr and Mo to steels imparted significant improvement in the corrosion performance in this aggressive environment. Of the stainless steels tested, the most resistant were those containing a few percent molybdenum.

  17. Improved Rare Earth Element Sorption from Simulated Geothermal Brines: Effect of Gassed versus Degassed Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    A study exploring sorption and stripping characteristics of sorption media when simulated geothermal brines are degassed or not degassed. Experiments were done at 70°C. The brines used in this study were formulated by Tusaar. The two brines used/simulated are labeled 1M and 1CF. The data consists of a Word file explaining the results and an Excel file of the data.

  18. Brine treatment test for reinjection on Cerro Prieto geothermal field

    SciTech Connect

    Hurtado, R.; Mercado, S.; Gamino, H. )

    1989-01-01

    Reinjection of disposal brine from the Cerro Prieto Geothermal Power Plant System is attractive mainly because, on top of solving the brine disposal problem, it may significantly contribute to extend the reservoir useful lifetime, through thermal and hydraulic recharge. Because the high concentration of colloidal silica in the disposal brine, laboratory and pilot plant tests were conducted in order to develop the brine treatment process. Addition of 20-40 mg/1 lime to flashed and aged brine for 10-20 minutes yields a clarified brine relatively low in suspended solids (10-30 mg/1) when the over flow rate is 38.5 1/min-m/sup 2/. 1.1 mills/kWh was the estimated cost for treatment of 800 kg/s of separated brine from the Cerro Prieto I power station.

  19. Prospects of the complex development of highly parameter geothermal brines

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2015-06-01

    The high efficiency of complex processing of high-temperature hydrothermal brines with utilization of heat energy in a binary geothermal power plant and subsequent extraction of solved chemical compounds is shown. Promising technological schemes are given, where electric power, which is generated in the binary geothermal power plant, is used in a block to recover chemistry components. The technology for integrated processing of geothermal brines of the chloride-sodium-calcium type is developed, which provides the manufacture not only of marketable products but also of practically overall reagents of processed water that are necessary to realize the technology. Priority areas for development are indicated, and the preliminary estimates for a Berikey geothermal deposit are given. It is shown that only established resources of thermal brines of the Berikey deposit make it possible to produce more than 2000 t of lithium carbonate and, thereby, to completely provide Russian industry requirements for it.

  20. 40 CFR 436.120 - Applicability; description of the salines from brine lakes subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... salines from brine lakes subcategory. 436.120 Section 436.120 Protection of Environment ENVIRONMENTAL... CATEGORY Salines From Brine Lakes Subcategory § 436.120 Applicability; description of the salines from brine lakes subcategory. The provisions of this subpart are applicable to the processing of salines...

  1. Numerical analysis of seawater circulation in carbonate platforms: II. The dynamic interaction between geothermal and brine reflux circulation

    USGS Publications Warehouse

    Jones, G.D.; Whitaker, F.F.; Smart, P.L.; Sanford, W.E.

    2004-01-01

    Density-driven seawater circulation may occur in carbonate platforms due to geothermal heating and / or reflux of water of elevated salinity. In geothermal circulation lateral contrasts in temperature between seawater and platform groundwaters warmed by the geothermal heat flux result in upward convective flow, with colder seawater drawn into the platform at depth. With reflux circulation, platform-top waters concentrated by evaporation flow downward, displacing less dense underlying groundwaters. We have used a variable density groundwater flow model to examine the pattern, magnitude and interaction of these two different circulation mechanisms, for mesosaline platform-top waters (50???) and brines concentrated up to saturation with respect to gypsum (150???) and halite (246???). Geothermal circulation, most active around the platform margin, becomes restricted and eventually shut-off by reflux of brines from the platform interior towards the margin. The persistence of geothermal circulation is dependent on the rate of brine reflux, which is proportional to the concentration of platform-top brines and also critically dependent on the magnitude and distribution of permeability. Low permeability evaporites can severely restrict reflux whereas high permeability units in hydraulic continuity enhance brine transport. Reduction in permeability with depth and anisotropy of permeability (kv < < kh) focuses flow laterally in the shallow subsurface (<1 km), resulting in a horizontally elongated brine plume. Aquifer porosity and dispersivity are relatively minor controls on reflux. Platform brines can entrain surficial seawater when brine generating conditions cease but the platform-top remains submerged, a variant of reflux we term "latent reflux". Brines concentrated up to gypsum saturation have relatively long residence times of at least 100 times the duration of the reflux event. They thus represent a long-term control on post-reflux groundwater circulation, and

  2. Silica scaling in simulated geothermal brines

    SciTech Connect

    Bohlmann, E.G.; Shor, A.J.; Berlinski, P.; Mesmer, R.E.

    1981-04-01

    A 6.3 1/sec (100 GPM) titanium corrosion test loop was modified to provide a dynamic facility for studying the formation of silica deposits, their properties and fates, as a function of brine composition, temperature, and flow conditions. Scale formation was studied in a segmented heat exchanger operating under realistic conditions; the segmented design permitted examination of scale formations in five temperature regimes. The program was terminated after minimal exploratory operation because of reduced sponsor perceptions of the need for concern with scaling problems. The runs which were completed dealt cursorily with brine concentration and pH effects. Results are presented.

  3. Cementation process for minerals recovery from Salton Sea geothermal brines

    SciTech Connect

    Maimoni, A.

    1982-01-26

    The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

  4. Reflux Brines and Saline Groundwater, Murray Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Weaver, T. R.; Swane, I.

    2001-12-01

    Groundwater in the Murray Basin typically becomes more saline along its flowpaths; however, geochemical data, particularly Br/Cl ratios, indicate limited dissolution of salt from the aquifer is occurring. In the southern Murray Basin, recharge of groundwater to the deeper aquifers (Renmark Formation) is generally considered to occur at the highlands at the south basin margin while recharge to the shallow unconfined Parilla Sands aquifer occurs across much of the region. Regionally, discharge of groundwater occurs within the centre of the basin in zones of salt lakes. Groundwater in the regional recharge area of the southern Murray Basin shows dramatic variations in salinity (TDS contents ranging from 650 to >100,000 mg/L) over distances of a few kilometres in both shallow and deep aquifers. While the variation in topography is low (<70 m over 15,000 km2), local recharge and discharge processes control groundwater composition. Fresher groundwater underlies sand ridges that contain freshwater lakes located above the water table. The high salinity areas underlie a major palaeochannel, the Douglas Depression, which forms a topographic low. This depression contains abundant salt lakes and playas that represent local discharge sites for shallow groundwater. Stable isotope data show that the water in the high salinity zones underwent evaporation. Major element data (particularly Mg/Ca/SO4 ratios) indicate that the saline groundwaters have precipitated gypsum. Together the data indicate that brines produced in these saline lakes reflux into the underlying aquifers to depths of up to 180 m. In the semi-arid environment of SE Australia, reflux brines in both local and regional discharge areas are important in controlling the distribution of salinity in the Murray Basin as a whole. The observation that both shallow and deep aquifers show similar chemical trends implies that there is significant vertical interconnection throughout the basin. The confining layers are thin

  5. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  6. Kinetics of silica deposition from simulated geothermal brines

    SciTech Connect

    Bohlmann, E.G.; Mesmer, R.E.; Berlinski, P.

    1980-03-01

    Supersaturated brines were passed through columns packed with several forms of silica (crystalline ..cap alpha.. quartz, polycrystalline ..cap alpha.. quartz, and porous Vycor). Also, silica deposition on ThO/sub 2/ microspheres and titanium powder was studied under controlled conditions of supersaturation, pH, temperature, and salinity. The residence time was varied by adjustments of flow rate and column length. The silica contents of the input and effluent solutions were determined colorimetrically by a molybdate method which does not include polymers without special pretreatment. Essentially identical deposition behavior was observed once the substrate was thoroughly coated with amorphous silica and the BET surface area of the coated particles was taken into account. The reaction rate is not diffusion limited in the columns. The silica deposition is a function of the monomeric Si(OH)/sub 4/ concentration in the brine. The deposition on all surfaces examined was spontaneously nucleated. The dependence on the supersaturation concentration, hydroxide ion concentration, surface area, temperature and salinity were examined. Fluoride was shown to have no effect at pH 5.94 and low salinity. The empirical rate law which describes the data in 1 m NaCl in the pH range 5-7 and temperatures from 60 to 120/sup 0/C is given.

  7. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    SciTech Connect

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  8. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  9. Evolution of high-temperature geothermal brine production pumps

    SciTech Connect

    Ellis, P.F. II )

    1989-01-01

    Geothermal resources with temperatures between 250{degrees} and 360{degrees}F (121{degrees} and 182{degrees}C) are prime candidates for binary-cycle power generation in the United States and abroad, and constitute about 80% of the known power-capable resources in the United States. Initially there were many technological obstacles to exploitation of these resources, with one of the greatest being the absence of reliable high-capacity downwell brine production pumps to supply the required amounts of brine from an economically small group of wells. Early experience revealed many problems with downwell pumps, resulting in a mean-time-to-failure (MTTF) in 1981 of less than 1000 hours for the best available technology. This paper reports how evolutionary advances in pump design and materials selection have resolved most of the early problems, producing third- generation pumps which have run as long as 20,000 hours. Pump life extension practices - greatly enhanced component and assembly quality control, increased care in pump installation, and continuous monitoring of pump performance with swift intervention at the first signs of distress - have essentially eliminated premature failure where implemented, leading to estimated near-term MTTFs of 8000 hours.

  10. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment. PMID:25563165

  11. Developing a Process for Commercial Silica Production from Geothermal Brines

    SciTech Connect

    Bourcier, W; Martin, S; Viani, B; Bruton, C

    2001-04-11

    Useful mineral by-products can be produced from geothermal brines. Although silica has many commercial uses, problems remain in producing a marketable product. We are conducting laboratory and modeling studies aimed at optimizing for rubber additive use, the properties of silica precipitates from Salton Sea and Coso-like geothermal fluids, Our goal is to develop a robust technique for producing silicas that have desirable physical and chemical properties for commercial use, while developing a generic understanding of silica precipitation that will allow extraction to be extended to additional fluid types, and to be easily modified to produce new types of marketable silica. Our experiments start with an acidified geothermal fluid similar to those treated by pH modification technology. Silica precipitation is induced by adding base and/or adding Mg or Ca salts to affect the nature of the precipitate. For the analog Salton Sea fluids, adding base alone caused silica to precipitate fairly rapidly. To date, we have characterized precipitates from experiments in which the final pH varied from 4 to 8, where NaOH and Na{sub 2}C0{sub 3} were added as bases, and CaCl{sub 2} and MgCl{sub 2} were added as salts. SEM photos of the silica precipitates from the Salton Sea and Cos0 fluids show that the silica particles are clusters of smaller silica particles down to the resolution of the SEM (about 80-100 nm in diameter). The particle sizes and surface areas of silicas from the Salton Sea and Coso analog brines are similar to the properties of the Degussa silica commonly used as a rubber additive. An evaluation of the strength of the silica-organic bond as tested by dispersion in oil (polybutadiene) was inconclusive. Neither the Degussa materials nor our laboratory precipitates dispersed readily in nor dispersed down to the fundamental particle size. Preliminary NMR data indicates that the Degussa silica has a smaller degree of silica polymerization (a slightly smaller average

  12. Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NaCl brine

    NASA Astrophysics Data System (ADS)

    Jaafar, M. Z.; Vinogradov, J.; Jackson, M. D.

    2009-11-01

    We present measurements of the streaming potential coupling coefficient in intact sandstone samples saturated with NaCl brines at concentrations up to 5.5 molL-1. The values we record at low salinity are consistent with those reported previously. As brine salinity increases, the coupling coefficient decreases in magnitude, but is still measureable up to the saturated concentration limit. The magnitude of the zeta potential also decreases with increasing salinity, but approaches a constant value at high salinity. This behaviour is not captured by current models of the electrical double layer. Our results suggest that streaming potential measurements may be used to monitor flow in saline subsurface environments such as deep saline aquifers and hydrocarbon reservoirs. However, they were obtained at laboratory temperature. Future work will focus on the effect of elevated temperatures at high salinity.

  13. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    NASA Astrophysics Data System (ADS)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  14. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  15. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  16. Saline groundwaters and brines in the Canadian Shield: Geochemical and isotopic evidence for a residual evaporite brine component

    SciTech Connect

    Bottomley, D.J. ); Gregoire, D.C. ); Raven, K.G. )

    1994-03-01

    Saline Ca-Na/Cl type groundwaters and brines sampled in deep mines over an extensive area of the Canadian Precambrian Shield have elevated Br/Cl ratios which may indicate that the chlorinity of these waters was derived from the infiltration of residual evaporitic brines, remnants of the great marine incursion of the Paleozoic era. Boron concentrations in these waters are generally low (i.e., < [approximately] 2 mg/L) relative to seawater or Alberta Basin Devonian formation waters. However, the [sup 11]B/[sup 10]B ratios of these waters are significantly greater than the average value for continental crustal rocks with the highest values ([approximately]4.19) approaching that of present-day seawater (4.20). Moreover, the boron isotopic ratios generally trend to higher values with increasing chlorinity which supports the conclusion from the Br-Cl relationship that most of the chloride in shield brines is of marine origin, rather than a product of water/rock interactions. If this is correct, crystalline rocks must then be sufficiently permeable on a regional scale to have allowed the brine to infiltrate to depths of several kilometers where it now resides. The presence of saline groundwaters in crystalline has important implications for the Canadian Nuclear Fuel Waste Management Program, which proposes disposal of waste fuel in a repository constructed at a depth of 500-1000 m in plutonic rock.

  17. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  18. On the viscosity of natural hyper-saline solutions and its importance: The Dead Sea brines

    NASA Astrophysics Data System (ADS)

    Weisbrod, Noam; Yechieli, Yoseph; Shandalov, Semion; Lensky, Nadav

    2016-01-01

    The relationship between the density, temperature and viscosity of hypersaline solutions, both natural and synthetic, is explored. An empirical equation of the density-viscosity relationship as a function of temperature was developed for the Dead Sea brine and its dilutions. The viscosity levels of the Dead Sea brine (density of 1.24 ṡ 103 kg/m3; viscosity of 3.6 mPa s at 20 °C) and of the more extremely saline natural brine (density of 1.37 ṡ 103 kg/m3) were found to be ∼3 and ∼10 times greater than that of fresh water, respectively. The combined effect of the above changes in viscosity and density on the hydraulic conductivity is reduction by a factor of 3-7. The chemical composition significantly affects the viscosity of brines with similar densities, whereby solutions with a higher Mg/Na ratio have higher viscosity. This explains the extremely high viscosity of the Dead Sea and related Mg-rich brines in comparison with the much lower values of NaCl and KCl brines with similar density. Possible impacts of the results include reduced settling velocity of grains in hypersaline viscous brines and changing hydraulic dynamics at the freshwater-saltwater and the vicinity of sinkholes.

  19. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  20. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  1. 40 CFR 436.120 - Applicability; description of the salines from brine lakes subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the salines from brine lakes subcategory. 436.120 Section 436.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT...

  2. Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine doped with known mineral concentrations.

  3. Microbial Life in Brines, Evaporites and Saline Sediments: The Search for Life on Mars

    NASA Astrophysics Data System (ADS)

    Mancinelli, Rocco L.

    When water on a planet begins to evaporate the dissolved minerals become more concentrated, form a brine, eventually precipitating out of solution and forming evaporite deposits. The brines and evaporites form a highly saline environment that is hostile to most life forms, but provides an ideal habitat for organisms that are osmophilic, or halophilic. Halophiles are salt "loving" organisms that inhabit environments with salt concentrations ranging from 15 % to saturation. On Earth, representatives of halophiles occur in all three domains of life, the Archaea, Bacteria and Eukarya.

  4. Tests of proprietary chemical additives as antiscalants for hypersaline geothermal brine. Final report

    SciTech Connect

    Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Deutscher, S.B.; Frey, W.P.; Lorensen, L.E.; Snell, E.O.; Lim, R.; Ryon, R.W.; Quong, R.

    1980-01-01

    The Lawrence Livermore Laboratory brine treatment test system has been used to carry out a short-term evaluation of a number of proprietary chemical additives as antiscalants for the hypersaline brine of the Salton Sea Geothermal Field. In addition, a test of sludge seeding was conducted as a technique for scale control. The effect of each additive on the rate of precipitation of silica from the effluent brine at 90/sup 0/C was measured, and scaling rates of brine treated with nine of the additives were measured at 125 and 210/sup 0/C. Corrosion rates of mild steel in the treated brines were estimated using Petrolite linear polarization resistance equipment. None of the additives had a direct effect on the rates of silica precipitation, and none had a beneficial effect on the scale formed at 210/sup 0/C. At 125/sup 0/C, two additives, Drewsperse 747 (Drew Chemical) and SC-210 (Southwest Specialty Chemicals) afforded a marginal degree of scale reduction. The Austral-Erwin additive diminished the adherence of scale formed at points of high velocity fluid flow but increased solids accumulation at other points. Sludge seeding shows some promise because it reduces the degree of silica supersaturation of the brine. Results of analyses of solids precipitated from effluent brines (Woolsey No. 1 and acidified Magmamax No. 1) are presented.

  5. Multicomponent CO2-Brine Simulations of Fluid and Heat Transfer in Sedimentary-Basin Geothermal Systems: Expanding Geothermal Energy Opportunities

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2011-12-01

    In a carbon dioxide plume geothermal (CPG) system, carbon dioxide (CO2) is pumped into existing high-permeability geologic formations that are overlain by a low-permeability caprock. The resulting CO2 plume largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to produce power and/or to provide heat for direct use before being returned to the geologic reservoir. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink. As such, this approach results in a geothermal power plant with a negative carbon footprint. We present results of calculations concerning geothermal power plant efficiencies and energy production rates in both traditional reservoir-based systems and engineered geothermal systems (EGS) when CO2, rather than water, is used as the subsurface working fluid. While our previous studies have examined geologic systems with established CO2 plumes, we focus here on multicomponent (CO2 + brine) systems. Numerical simulations (e.g., Randolph and Saar, Geophysical Research Letters, 2011) indicate that CPG systems provide several times the heat energy recovery of similar water-based systems. Furthermore, the CPG method results in higher geothermal heat extraction efficiencies than both water- and CO2-based EGS. Therefore, CPG should further extend the applicability of geothermal energy utilization to regions with subsurface temperatures and heat flow rates that are even lower than those that may be added due to switching from water- to CO2-based EGS. Finally, simulations at present suggest that multicomponent effects - e.g., buoyant flow as CO2 rises over denser brine - may enhance heat extraction in CPG systems compared to traditional water-based geothermal approaches.

  6. Recovery of energy from geothermal brine and other hot water sources

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  7. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  8. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  9. Zeta potential study of the water treatment of geothermal brines

    SciTech Connect

    Wikoff, P.M.; Suciu, D.F.

    1981-11-01

    Before the cooled geothermal fluid can be used as a coolant in the operation of the 5MW(e) Geothermal Pilot Power Plant, the fluid must be treated to reduce the silica and hardness and to control corrosion. Prior to reinjection, the blowdown must be treated to remove the phosphate (one of the corrosion inhibitors added to the system). The zeta potential study was conducted to study the surface reactions occurring in the flash mixing of the cooled geothermal with magnesium oxide, lime, and polyelectrolyte for silica removal and to determine the optimum polyelectrolyte necessary in the silica reduction system and the reduction of the phosphate in the tower blowdown with ferrous sulfate. The investigation indicates a bridging type adsorption occurs in the silica reduction system. The proposed mechanism is described. The study indicated that between 150 and 250 ppM of magnesium oxide was necessary to achieve this reduction with one ppM of Betz 1125L. This is a substantial savings over the planned value. Investigation of the phosphate reduction system showed that a cationic polymer was necessary to achieve good flocculation and settling.

  10. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    PubMed

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded. PMID:27080408

  11. Mobility of elements during K-metasomatism of volcanic rocks by alkaline, saline brines

    SciTech Connect

    Chapin, C.E. )

    1992-01-01

    Silicic ignimbrites and interbedded mafic lavas of Oligocene age were altered by alkaline, saline brines in the Popotosa basin of the Rio Grande rift near Socorro, New Mexico. Alteration was toward a fine-grained assemblage of adularia + hematite [+-] quartz irrespective of initial rock composition. Elevated [delta][sup 18]O and the occurrence of zeolites, gypsum, and salt casts in overlying play a deposits indicates that the altering fluids were basin brines. Preliminary analysis of secondary inclusions in fractured quartz phenocrysts indicates temperatures near 100 C and salinities near 20 wt. % NaCl equivalent. To test element mobility, pairs of fresh and altered samples from each of 7 ignimbrite units plus 4 samples of interbedded mafic lavas were analyzed by XRF, INAA, and AA. The elements showing the greatest mobility during alteration of ignimbrites are listed below along with their enrichment factors (altered rock/fresh rock). Ignimbrites: enriched--K[sub 2]O 1.99, Rb 1.89, Ba 1.43, As 12.14, Sb 18.30, Pb 1.23; depleted--Na[sub 2]O 0.25, MgO 0.57, CaO 0.27, MnO 0.50, P[sub 2]O[sub 5] 0.75, Sr 0.54, Li 0.57, U 0.78, Br 0.67, Cu 0.90, Zn 0.69. The dramatic enrichment of As and Sb in both ignimbrites and mafic lavas indicates that these elements are highly mobile in oxidizing basin brine systems. K-metasomatism is a common type of alteration in rift basins, detachment terranes, aquifers through which brines have migrated.

  12. Partitioning of Organic Contaminants and Tracer Compounds in a CO2-Brine System at High Salinities

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Kharaka, Y. K.; Rosenbauer, R. J.; Janesko, D.; Trutna, J.

    2011-12-01

    Nonionic chemical species including gases and organic compounds partition between the fluid CO2 phase and the aqueous phase in geologic carbon sequestration systems. The injection and migration of CO2 in geologic carbon sequestration systems covers a wide range of pressure and temperature, so it is important to understand the partitioning of these compounds at various P-T conditions and salinities. Geochemical data is particularly lacking for the partitioning of organic contaminant compounds and tracer compounds between highly saline brines and CO2. Most groundwater is relatively low in organic contaminants; however, groundwater associated with hydrocarbon migration pathways, enhanced oil recovery (EOR), and hydrocarbon storage or extraction can contain high concentrations of known organic contaminants. CO2 injection in these systems may therefore be more likely to result in partitioning of contaminants into the CO2 phase that could, upon migration, represent an important risk to groundwater resources. We present the experimental apparatus and determination of partition coefficients between brine and CO2 for a suite of compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and low molecular weight polynuclear aromatic hydrocarbons (PAHs). In addition, partition coefficients are determined for the important gas phase tracer compounds: SF6 and Krypton covering a P-T envelope consistent with CO2 injection and plume migration to the near surface.

  13. Method for protecting stainless steel pipe and the like in geothermal brine service from stress corrosion cracking, and articles made thereby

    SciTech Connect

    Amend, W.E.; Kitz, K.R.

    1990-08-21

    This patent describes a method for protecting a stainless steel flow-conducting component used in hot geothermal brine service from chloride stress corrosion caused by contact of geothermal brine with an exterior surface of the component. It comprises: thermally coating the exterior surface with a metal having an electrode potential more negative than that of the stainless steel being protected.

  14. The Kinetics of Radioisotope Exchange Between Brine and Rock in a Geothermal System

    NASA Astrophysics Data System (ADS)

    Hammond, Douglas E.; Zukin, Jeffrey G.; Ku, Teh-Lung

    1988-11-01

    A wide range of isotopes in the 238U, 235U, and 232Th decay chains was measured in geothermal brines collected from two production zones at 1898 and 3220 m in the Salton Sea Scientific Drilling Project well. High concentrations of radium, radon, and lead isotopes are generated and maintained by the input of these isotopes from solid phases into brine by both recoil and leaching processes, by the high chloride content of the brine which complexes radium and lead, and by the apparent absence of suitable unoccupied adsorption sites. In contrast, uranium, thorium, actinium, bismuth, and polonium isotopes all have low concentrations due to their efficient sorption from brine to rock. Measurements of short-lived isotopes in these decay series yield insights regarding the mechanisms controlling radioisotope exchange, and they permit estimation of rates of brine-rock interaction. For example, the 228Ac/228Ra activity ratio of 0.2 in brines indicates that the mean residence time of actinium in solution before sorption onto solid surfaces is less than 2.5 hours. If molecular diffusion to fracture walls limits the rate of actinium sorption, the maximum width of the larger fractures in which sampled brine resides is 1-2 cm. However, the mean width of fractures must be only 1-2 µm, in order to account for the recoil input of 223Ra. The ratios of radium isotopes in the brine provide information about the mechanisms of recoil and leaching in transferring radium from rock to brine. Brine/rock concentration ratios [(dpm/g)b/(dpm/g)r] of radium isotopes increase with increasing half-life, so that 223Ra (11 days) = 0.05-0.09, 228Ra (5.8 years) = 0.26-0.40, 226Ra (1600 years) = 0.45-0.97. Two mechanisms could explain this dependence on half-life: (1) input of radium by the alpha recoil process occurs in microfractures and pore spaces, but the rate of diffusion down microfractures is so slow that it diminishes the effect of recoil input of the shorter-lived isotopes to the larger

  15. Advanced biochemical processes for geothermal brines: Annual operating plan, FY 1995

    SciTech Connect

    Premuzic, E.T.

    1995-02-01

    An R and D program to identify methods for the utilization and/or low cost of environmentally acceptable disposal of toxic geothermal residues has been established at the Brookhaven National Laboratory (BNL). Laboratory work has shown that a biochemical process developed at BNL, would meet regulatory costs and environmental requirements. In this work, microorganisms which can convert insoluble species of toxic metals, including radionuclides, into soluble species, have been identified. These organisms serve as models in the development of a biochemical process in which toxic metals present in geothermal residual sludges are converted into water soluble species. The produced solution can be reinjected or processed further to concentrate and recover commercially valuable metals. After the biochemical detoxification of geothermal residual sludges, the end-products are non-toxic and meet regulatory requirements. The overall process is a technically and environmentally acceptable cost-efficient process. It is anticipated that the new biotechnology will reduce the cost of surface disposal of sludges derived from geothermal brines by 25% or better.

  16. Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines

    SciTech Connect

    Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

    1984-03-01

    A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

  17. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  18. The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine

    SciTech Connect

    1982-07-01

    This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not

  19. UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)

    SciTech Connect

    Moeller, N.; Weare, J.H.

    1992-04-01

    DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

  20. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells

  1. Effect of Reservoir-Caprock Interface Dip and Circulation of Produced Fluid on CO2-Based Geothermal Heat Extraction from Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2014-12-01

    CO2-Plume Geothermal (CPG) energy utilization involves injection of CO2 as a working fluid to extract heat from naturally high permeability geologic units. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The CO2 plume can be "tapped" for thermal and/or electric power production in a geothermal power system. In actual systems, the CO2 plume would likely be skewed opposite any likely dip direction of the reservoir-caprock interface. Here, we numerically analyze the characteristics of CO2 plume formation and geothermal heat extraction from geothermal reservoirs with dip. We find that the heat extraction rate and the total amount of heat extracted over time is the same for symmetric and skewed CO2 plume systems when the circular, horizontal production well is arranged according to the CO2 plume distribution around the injection well. We also conduct simulations of CO2 plume formation within a pre-existing groundwater flow field and find that groundwater flow is not capable of skewing the CO2 plume. Furthermore, we investigate the effects of reinjecting small amounts of brine that are produced with the CO2. Brine has a smaller mobility than supercritical CO2 at a given temperature and thus accumulates near the injection well. Such brine accumulation reduces the relative permeability for the CO2 phase, which in turn increases the pore-fluid pressure around the injection well. For this reason, and as injection of two fluid phases is problematic, we recommend removal of any brine from the produced fluid before the cooled CO2 is reinjected into the reservoir. Separated brine may be reinjected into the formation away from the CO2 plume, providing an additional means of controlling and directing the CO2 plume pressure field and flow direction and avoiding the need to treat and dispose of the CO2 near the land surface. In summary, we show that the geothermal heat extraction

  2. Early warning of freshwater salinization due to upward brine displacement by species transport simulations combined with a hydrochemical genesis model

    NASA Astrophysics Data System (ADS)

    Langer, Maria; Kühn, Michael

    2016-04-01

    Shallow groundwater resources could be possibly affected by intruding brines, which are displaced along hydraulically conductive faults as result of subsurface activities like CO2 injection. To avoid salinization of potable freshwater aquifers an early detection of intruding saline water is necessary, especially in regions where an initial geogenic salinization already exists. Our study is based on work of Tillner et al. [1] and Langer et al. [2] who investigated the influence of permeable fault systems on brine displacement for the prospective storage site Beeskow-Birkholz in the Northeast German Basin. With a 3D regional scale model considering the deep groundwater system, they demonstrated that the existence of hydraulically conductive faults is not necessarily an exclusion criterion for potential injection sites, because salinization of shallower aquifers strongly depends on the effective damage zone volume, the initial salinity distribution and overlying reservoirs [2], while permeability of fault zones does not influence salinization of shallower aquifers significantly [1]. Here we extracted a 2D cross section regarding the upper 220 m of the study area mainly represented by shallow freshwater aquifers, but also considering an initial geogenic salinization [3]. We took flow rates of the intruding brines from the previous studies [2] and implemented species transport simulations with the program code SHEMAT [4]. Results are investigated and interpreted with the hydrochemical genesis model GEBAH [5] which has been already applied as early warning of saltwater intrusions into freshwater aquifers and surface water [6]. GEBAH allows a categorization of groundwater by the ion ratios of the dissolved components and offers a first indicative determination for an existence and the intensity of saline water intrusion in shallow groundwater aquifer, independent of the concentration of the solution. With our model we investigated the migration of saline water through a

  3. Modeling of brine migration through fault zones as a result of CO2 injection into a saline aquifer

    NASA Astrophysics Data System (ADS)

    Tillner, E.; Kempka, T.; Nakaten, B.; Jolie, E.; Kühn, M.

    2012-04-01

    Geological storage of CO2 in deep saline aquifers has become a widely considered option for reducing anthropogenic greenhouse gas concentrations. However, these storage operations also bear the risk of CO2 leakage and upward brine migration from deep saline formations into potable groundwater, especially in faulted reservoirs. This study investigates the impact of fault-permeability on upward brine migration as a result of CO2 injection into a saline aquifer. In a first step, we set up a static 3D geological structure model of a prospective CO2 storage site with a size of 40 km x 40 km x 23 m. Faults are implemented as multiple virtual discrete grid cells, allowing to assign individual flow-related petrophysical properties and taking into account the central fault core of low-permeability and the outer damage zone of high permeability. Subsequently, large-scale numerical multi-phase multi-component (CO2, NaCl, H2O) flow simulations were performed on a high performance computing cluster system. The prospective CO2 storage site is located in the Northeast German Basin and is characterized by saline multi-layer aquifers located in the Middle Bunter as a part of an anticline structure originating from salt-tectonic processes. The Middle Bunter, Muschelkalk and Keuper formations were selected to assess brine migration through faults triggered by the injection of 1.7 Mt CO2/year. The NE and SW boundaries of the study area are confined by the Fürstenwalde Gubener and the Lausitzer Abbruch fault systems represented by four discrete faults in the model with a thickness of 20 m each. In order to determine the impacts of fault core and damage zone transmissibility on upward brine migration and pressure elevation in the overburden, different leakage scenarios were investigated taking into account varying fault core and damage zone permeabilities. The undertaken simulation studies underline that detailed knowledge on fault permeability is of uttermost importance for the

  4. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE

    USGS Publications Warehouse

    Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.

    2014-01-01

    Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.

  5. Role of the Capillary Transition Zone on the Dissolution of CO2 into Brine in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Hesse, M. A.

    2014-12-01

    Geologic carbon storage in deep saline reservoirs is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single phase region below the gas-water contact (GWC) and have ignored the over-lying two-phase region where dissolution actually takes place. Our objective is to improve estimates of the long-term dissolution rate of CO2 into brine by including the two-phase region above the gas-water contact in model simulations. In the two-phase model, there is a capillary transition zone above the GWC over which the brine saturation decreases with increasing elevation. Our simulations show that when the capillary fringe height is small, which corresponds to very low entry pressure, assuming CO2-saturated brine in the two-phase region is well-motivated, as has been assumed in analyses of dissolution without the capillary transition. For typical finite entry pressures, the fringe thickness is finite and upwelling convection currents of fresh, un-carbonated brine must extend above the GWC to saturate the brine with CO2. Our results show the long-term dissolution rate can be enhanced by greater than 3 times the dissolution rates derived from ignoring the capillary transition zone. The single-phase, closed-top dissolution rate is recovered in the limit of vanishing entry pressure. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science

  6. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    NASA Astrophysics Data System (ADS)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  7. Brine treatment

    SciTech Connect

    Gallup, D.L.; Doty, H.W.; Wong, M.M.; Wong, C.F.; Featherstone, J.L.; Messer, P.H.

    1993-08-31

    A method is described for treating a corrosive feed geothermal brine containing suspended and dissolved scale forming constituents at least some of which comprise silicon-containing components and some of which comprise at least one recoverable metal selected from the group consisting of copper and metals below copper in the electromotive series said method comprising passing the brine through a conduit packed with at least one metal as high or higher in the electromotive series than copper for a time sufficient for a substantial portion of the recoverable metal to precipitate onto the packing in said conduit, to reduce the corrosivity of the brine, and to stabilize the scale forming constituents of the brine; and discharging from said conduit a treated brine less corrosive than the feed brine and having a substantially reduced scale forming potential.

  8. Zeta Potential of Carbonates in Saline Brines as a Function of NaCl Salinity and Potential Determining Ions: Ca, Mg and SO4

    NASA Astrophysics Data System (ADS)

    Al-Mahrouqi, D.; Vinogradov, J.; Jackson, M.

    2014-12-01

    Measurements of zeta potential are typically obtained using crushed samples and commercial zetameters at ionic strength <1M. However, many natural brines have much higher salinity. This study reports zeta potential values interpreted from streaming potential measurements in two intact carbonate rock samples as a function of brine salinity (up to 5M) and potential determining ions (PDIs: Ca, Mg, SO4). The two samples appear to be identical pure carbonates in XRD analysis but differ in age and provenance. For low salinity NaCl brines (<1M), in which the initial PDI concentration was established during pre-equilibration with the rock samples, the measured (negative) zeta potential decreased in magnitude with increasing NaCl concentration, consistent with published data and reflecting contraction of the electrical double layer. At higher NaCl salinity (>1M) the surface charge polarity was inverted for one rock sample, yet equilibrium Ca and Mg concentrations remained constant (c. 1.3x10-3 and 7x10-5M respectively) and similar for both samples, regardless of NaCl salinity. We suggest charge inversion was caused by differences in SO4 concentration (3x10-4 versus 1.2x10-3M) in the two samples after equilibration. At higher and externally controlled concentrations of Ca (0.1 - 0.42M), the zeta potential was less affected by NaCl salinity and pCa was the dominant control, although the role of SO4 in distinguishing between rock samples remained valid. The iso-electric point was different for the two samples (pCa 1.7 versus 0.5) and lower than any previously published values. Our results suggest that small differences in PDI concentration may invert surface charge polarity at high NaCl concentration; moreover, trace amounts of anhydrite or other minerals that yield aqueous SO4 can significantly modify surface charge in carbonates that otherwise appear identical. These results are important when interpreting the streaming component of SP measurements in carbonates.

  9. Improving the injectability of high-salinity brines for disposal or waterflooding operations

    SciTech Connect

    Raber, E.; Thompson, R.E.; Smith, F.H.

    1981-07-25

    This work is part of a study conducted by Lawrence Livermore National Laboratory (LLNL) to improve the performance of brine injection wells at Gulf Coast Strategic Petroleum Reserve Sites. Our involvement established that granular media filtration, when used with proper chemical pretreatments, provides an effective and economical method for removing particulates from hypersaline brines. This treatment allows for the injection of 200,000 B/D with significantly increased well half-lives of 30 years.

  10. Geochemistry and petrology of surface samples, six boreholes and brines from the Salton Sea geothermal field: A natural analog of a nuclear waste repository in salt: Report No. 3

    SciTech Connect

    Not Available

    1987-05-01

    Cuttings from six wells in the Salton Sea geothermal field, and rocks at outcrop that are correlative in age with those encountered at depth in the wells were analyzed in detail. Mineralogy, petrography, x-ray diffraction, electron microprobe, instrumental neutron activation analysis, fission track radiography, oxygen and stable carbon isotopic, uranium-thorium series disequilibrium, and fluid inclusion analyses are reported. Where fluids were being produced from wells, brine chemistry as well as stable isotope and uranium-thorium series analyses are reported. Particular attention has been paid to defining zones of fluid-rock interaction in which analyses of coexisting geothermal reservoir brine and hydrothermally altered sediments could be acquired. A wide span of temperatures, from surficial to greater than 300/degree/C, and salinities ranging from relatively dilute ground waters up to brines of 25 wt% total dissolved solids, span a range of environments that might be encountered in a waste repository in salt. Progressive hydrothermal alteration, mineral formation and element mobility are documented in the data presented. 52 refs., 25 figs., 49 tabs.

  11. Experimental multi-phase CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.

    2004-01-01

    Long-term CO2 saturated brine-rock experiments were conducted to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration mineral phases within deep-saline aquifers. Experimental results were consistent with theoretical thermodynamic calculations when CO2-saturated brines were reacted with limestone rocks. The CO2-saturated brine-limestone reactions were characterized by compositional and mineralogical-changes in the aquifer fluid and formation rocks that were dependent on initial brine composition as were the changes in formation porosity, especially dissolved sulfate. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone rocks relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions occured on a measurable but kinetically slow time scale at 120??C.

  12. Geochemical assessment of a MgCl2 heat transport fluid to evaluate the feasibility of using geothermal energy from saline systems

    NASA Astrophysics Data System (ADS)

    Moore, K. R.; Hollaender, H. M.

    2015-12-01

    Saline formations have heat conductivity, 2 to 4 times greater than most rocks. Therefore, higher temperatures can be found near salt formations. These higher temperatures create the potential for geothermal electrical energy production at shallower depths. A heat transport fluid is required to bring the geothermal heat to the surface. The heat transport fluid must demonstrate a low affinity for mineral dissolution and precipitation to avoid dissolving the formation and clogging the piping material. Our project aims to evaluate a geothermal system consisting of two boreholes within the geological setting of the Canadian part of the Williston Basin. A saturated MgCl2-brine is used to transport heat. Sophisticated numerical modelling with a reactive transport model is used to evaluate MgCl2-brine as a heat exchange fluid in a halite dominated formation. Since solubility is temperature dependent, the model needs to simulate the dissolution and precipitation of salt minerals due to temperature change. Preliminary results, completed under equilibrium conditions suggest a 90°C range where dissolution and deposition will be slow. These temperatures fall within the 80 to 130°C range present in the salt formations.

  13. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    PubMed Central

    Mirete, Salvador; Mora-Ruiz, Merit R.; Lamprecht-Grandío, María; de Figueras, Carolina G.; Rosselló-Móra, Ramon; González-Pastor, José E.

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment. PMID:26528268

  14. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment.

    PubMed

    Mirete, Salvador; Mora-Ruiz, Merit R; Lamprecht-Grandío, María; de Figueras, Carolina G; Rosselló-Móra, Ramon; González-Pastor, José E

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment. PMID:26528268

  15. pH and salinity evolution of Europa's brines: Raman spectroscopy study of fractional precipitation at 1 and 300 bar.

    PubMed

    Muñoz-Iglesias, Victoria; Bonales, Laura J; Prieto-Ballesteros, Olga

    2013-08-01

    Several lines of evidence indicate the existence of salty liquid water below the icy surface of the satellite Europa. Depending on the chemical composition of the original interior brines, minerals that precipitate will be varied as will be the resulting physicochemical parameters of the evolving solutions such as pH and salinity. These parameters are determinants apropos to the study of the possible habitability of the satellite. In this work, experiments of fractional precipitation by cooling of several brines with different chemical composition (acid, alkaline, and neutral) were performed at 1 and 300 bar. The gradual decrease in temperature leads to mineral precipitation and changes in salinity and pH values. During the experiment, Raman spectroscopy was used to analyze quantitatively the variation of the salt concentration in the aqueous solutions. The obtained laboratory data indicate the manner in which cryomagma differentiation might occur on Europa. These endogenous processes of differentiation require planetary energy, which seems to have been plentiful during Europa's geological history. Ultimately, the dissipation of part of that energy is translated to a higher complexity of the cryopetrology in Europa's crust. From the results, we conclude that fractional differentiation processes of briny cryomagmas produce several types of igneous salty mineral suites on icy moons. PMID:23944292

  16. Niche Limits of Symbiotic Gut Microbiota Constrain the Salinity Tolerance of Brine Shrimp.

    PubMed

    Nougué, Odrade; Gallet, Romain; Chevin, Luis-Miguel; Lenormand, Thomas

    2015-09-01

    Symbiosis generally causes an expansion of the niche of each partner along the axis for which a service is mutually provided. However, for other axes, the niche can be restricted to the intersection of each partner's niche and can thus be constrained rather than expanded by mutualism. We explore this phenomenon using Artemia as a model system. This crustacean is able to survive at very high salinities but not at low salinities, although its hemolymph's salinity is close to freshwater. We hypothesized that this low-salinity paradox results from poor performance of its associated microbiota at low salinity. We showed that, in sterile conditions, Artemia had low survival at all salinities when algae were the only source of carbon. In contrast, survival was high at all salinities when fed with yeast. We also demonstrated that bacteria isolated from Artemia's gut reached higher densities at high salinities than at low salinities, including when grown on algae. Taken together, our results show that Artemia can survive at low salinities, but their gut microbiota, which are required for algae digestion, have reduced fitness. Widespread facultative symbiosis may thus be an important determinant of niche limits along axes not specific to the mutualistic interaction. PMID:26655356

  17. Potential for by-product recovery in geothermal energy operations issue paper

    SciTech Connect

    1982-07-01

    This document identifies and discusses the significant issues raised by the idea of recovering useful by-products from wastes (primarily spent brine) generated during geothermal power production. The physical availability of numerous valuable materials in geothermal brines has captured the interest of geothermal resource developers and other parties ever since their presence was known. The prospects for utilizing huge volumes of highly-saline geothermal brines for electricity generation in the Imperial Valley of California have served to maintain this interest in both private sector and government circles.

  18. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  19. Shaker Table Experiments with Rare Earth Elements Sorption from Geothermal Brine

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  20. Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact

    SciTech Connect

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.

    2006-12-31

    The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral

  1. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  2. (Sulfide-oxide-silicate phase equilibria and associated fluid inclusion properties in the Salton Sea geothermal system, California)

    SciTech Connect

    McKibben, M.A.

    1988-06-01

    Our studies involved petrographic, fluid inclusion, geochemical and stable isotopic studies of drillcores and fluids from the Salton Sea geothermal system. Our initial studies revealed the presence of previously-unrecognized evaporitic anhydrite at depth throughout the geothermal system. The high salinity of the Salton Sea geothermal brines previously had been attributed to low-temperature dissolution of surficial evaporitic deposits by meteoric waters. Our microthermometric studies of halite--containing fluid inclusions in the meta-evaporites indicated that the high salinity of the geothermal brines is derived in part from the hydrothermal metamorphism of relatively deeply-buried salt and evaporites. In addition, our research concentrated on mineralized fractures in drillcores.

  3. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    SciTech Connect

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. ); Medina, V. . Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  4. Biochemical technology for the detoxification of geothermal brines and the recovery of trace metals

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Lian, Hsienjen

    1995-05-01

    Studies conducted at BNL, have shown that a cost-efficient and environmentally acceptable biochemical technology for detoxification of geothermal sludges is most satisfactory, as well as technically achievable. This technology is based on biochemical reactions by which certain extremophilic microorganisms interact with inorganic matrices of geothermal origin. The biochemical treatment of wastes generated by power plants using geothermal energy is a versatile technology adaptable to several applications beyond that of rendering hazardous and/or mixed wastes to non-hazardous by products, which meet regulatory requirements. This technology may be used for solubilization or recovery of a few metals to the isolation of many metals including radionuclides. In the metal recovery mode, an aqueous phase is generated which meets regulatory standards. The resulting concentrate contains valuable trace metals and salts which can be further converted into income generating products which can off-set the initial investment costs associated with the new biotechnology. In this paper, recent developments in this emerging technology will be discussed.

  5. R and D, fabrication and testing of pH and CO/sub 2/ sensors for geothermal brines

    SciTech Connect

    Baxter, R.D.; Clack, P.J.; Phelan, D.M.; Taylor, R.M.

    1987-03-01

    Reduction or elimination of scaling is a mandatory requirement for the operation of geothermal power plants. The use of downhole sampling and subsequent analysis for solution chemistry has many disadvantages. These disadvantages include composition change with cooling, risk of sample contamination, and non real-time indication. The use of in-line sensing of solution chemistry avoids these drawbacks but requires sensors which can survive the extremely harsh environment of brine at high temperatures and elevated pressures. Leeds and Northrup had previously undertaken a contract to develop sensors for pH and pCO/sub 2/ which would withstand these harsh environments. A number of sensors were tested at a field site under actual operating conditions. Field test results indicated that certain facets of the design were inadequate to give accurate long term measurement. The primary areas addressed here are replacement of polymeric seals with anodic bonding where possible, improved methods of lead attachment, improved sealing of the pCO/sub 2/ reference feed-through, H/sub 2/S getter optimization and improved passivation of the sensing head. Each of these areas is addressed in detail in the report along with laboratory test results pertaining to the particular phase.

  6. Modeling upward brine migration through faults as a result of CO2 storage in the Northeast German Basin shows negligible salinization in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Kuehn, M.; Tillner, E.; Kempka, T.; Nakaten, B.

    2012-12-01

    The geological storage of CO2 in deep saline formations may cause salinization of shallower freshwater resources by upward flow of displaced brine from the storage formation into potable groundwater. In this regard, permeable faults or fractures can serve as potential leakage pathways for upward brine migration. The present study uses a regional-scale 3D model based on real structural data of a prospective CO2 storage site in Northeastern Germany to determine the impact of compartmentalization and fault permeability on upward brine migration as a result of pressure elevation by CO2 injection. To evaluate the degree of salinization in the shallower aquifers, different fault leakage scenarios were carried out using a newly developed workflow in which the model grid from the software package Petrel applied for pre-processing is transferred to the reservoir simulator TOUGH2-MP/ECO2N. A discrete fault description is achieved by using virtual elements. A static 3D geological model of the CO2 storage site with an a real size of 40 km x 40 km and a thickness of 766 m was implemented. Subsequently, large-scale numerical multi-phase multi-component (CO2, NaCl, H2O) flow simulations were carried out on a high performance computing system. The prospective storage site, located in the Northeast German Basin is part of an anticline structure characterized by a saline multi-layer aquifer system. The NE and SW boundaries of the study area are confined by the Fuerstenwalde Gubener and the Lausitzer Abbruch fault zones represented by four discrete faults in the model. Two formations of the Middle Bunter were chosen to assess brine migration through faults triggered by an annual injection rate of 1.7 Mt CO2 into the lowermost formation over a time span of 20 years. In addition to varying fault permeabilities, different boundary conditions were applied to evaluate the effects of reservoir compartmentalization. Simulation results show that the highest pressurization within the storage

  7. Brine and gas recovery from geopressured systems. I. Parametric calculations

    SciTech Connect

    Garg, S.K.; Riney, T.D.

    1984-02-01

    A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

  8. Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel

    SciTech Connect

    Benson, S.M.

    1984-08-01

    The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

  9. The total flow concept for geothermal energy conversion

    NASA Technical Reports Server (NTRS)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  10. Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I brine pilot test, Texas, USA

    SciTech Connect

    Kharaka, Dr. Yousif; Thordsen, Dr. James; Hovorka, Dr. Susan; Nance, Dr. H Seay; Cole, David R; Phelps, Tommy Joe; Knauss, Dr. Kevin; Chialvo, Ariel A

    2009-01-01

    Sedimentary basins in general and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such saline aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick C sandstone section of the Frio Formation, a regional aquifer in the U.S. Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m up dip showed a Na-Ca-Cl type brine with ~93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses show CH4 comprised ~95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and in Fe (30 to 1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data coupled with geochemical modeling indicate rapid dissolution of minerals, especially calcite and iron oxyhydroxides caused by lowered pH (initially ~3.0 at subsurface conditions) of the brine in contact with supercritical CO2.

  11. Studies of brine chemistry and scaling at the Salton Sea geothermal field, 1977-1979. Final report

    SciTech Connect

    Harrar, J.E.

    1981-01-01

    Summarized are the results of investigations of brine chemistry, the effects of brine acidification and organic additives on the rate of scale formation and scale composition, and the use of other additives for scale control. A bibliography of reports describing these studies is included. Recommendations are given for techniques and approaches for further testing of additives for silica scale control.

  12. Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS)

    SciTech Connect

    Andre, L.; Spycher, N.; Xu, T.; Pruess, K.; Vuataz, F.-D.

    2005-11-15

    Coupled modelling of fluid flow and reactive transport ingeothermal systems is challenging because of reservoir conditions such ashigh temperatures, elevated pressures and sometimes high salinities ofthe formation fluids. Thermal hydrological-chemical (THC) codes, such asFRACHEM and TOUGHREACT, have been developed to evaluate the long-termhydrothermal and chemical evolution of exploited reservoirs. In thisstudy, the two codes were applied to model the same geothermal reservoir,to forecast reservoir evolution using respective thermodynamic andkinetic input data. A recent (unreleased) TOUGHREACT version allows theuse of either an extended Debye-Hu?ckel or Pitzer activity model forcalculating activity coefficients, while FRACHEM was designed to use thePitzer formalism. Comparison of models results indicate that differencesin thermodynamic equilibrium constants, activity coefficients andkinetics models can result in significant differences in predictedmineral precipitation behaviour and reservoir-porosity evolution.Differences in the calculation schemes typically produce less differencein model outputs than differences in input thermodynamic and kineticdata, with model results being particularly sensitive to differences inion-interaction parameters for highsalinity systems.

  13. Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan: using B-Cl isotopes to interpret fluid sources.

    PubMed

    Musashi, Masaaki; Oi, Takao; Kreulen, Rob

    2015-01-01

    We report chlorine stable isotopic compositions (δ(37)Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ(2)H and δ(18)O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780 m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical results show that the δ(37)Cl values narrowly range between -0.26 and +0.21 ‰ with an analytical precision of ±0.06 ‰. Except for one sample, the samples examined are negative in δ(37)Cl value with varying Cl/B molar ratios from 117 to 1265. A correlation study between the Cl/B molar ratio and the δ(37)Cl/δ(11)B ratio indicates a hyperbola-type mixing of at least two Cl sources in the Ibusuki region. One of them depletes in (37)Cl with a higher value of Cl/B molar ratio; and the other one enriches in (37)Cl with a lower Cl/B molar ratio. The former is chemically identical to that of the deep brine, which is altered seawater through the seawater-hot rock interaction. The latter is chemically similar to gas condensate derived from the high-temperature (890 °C) vent of an island-arc volcano near the Ibusuki region. PMID:25564103

  14. How metalliferous brines line Mexican epithermal veins with silver

    PubMed Central

    Wilkinson, Jamie J.; Simmons, Stuart F.; Stoffell, Barry

    2013-01-01

    We determined the composition of ~30-m.y.-old solutions extracted from fluid inclusions in one of the world's largest and richest silver ore deposits at Fresnillo, Mexico. Silver concentrations average 14 ppm and have a maximum of 27 ppm. The highest silver, lead and zinc concentrations correlate with salinity, consistent with transport by chloro-complexes and confirming the importance of brines in ore formation. The temporal distribution of these fluids within the veins suggests mineralization occurred episodically when they were injected into a fracture system dominated by low salinity, metal-poor fluids. Mass balance shows that a modest volume of brine, most likely of magmatic origin, is sufficient to supply the metal found in large Mexican silver deposits. The results suggest that ancient epithermal ore-forming events may involve fluid packets not captured in modern geothermal sampling and that giant ore deposits can form rapidly from small volumes of metal-rich fluid. PMID:23792776

  15. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. PMID:24903191

  16. Progressive Salinization and Chemical Evolution of the Rio Grande (New Mexico) Driven by Interaction of Deep Brine Leakage with Agricultural Processes

    NASA Astrophysics Data System (ADS)

    Phillips, F. M.; Bastien, E.; Hogan, J. F.; Frisbee, M.

    2008-12-01

    The total dissolved solids content of the Rio Grande increases from 40 mg/L at its headwaters in the San Juan Mountains of Colorado to over 1,000 mg/L at El Paso, Texas, located 1,000 km downstream. Along this path the composition evolves from a Ca-HCO3 dominated water to a Na-(Ca-Mg) SO4-(Cl- HCO3) water. These changes are highly detrimental to use of the water for urban and agricultural purposes, but the causes have not previously been adequately understood. We show that this evolution is driven by the interaction of deep sedimentary brine leakage with geochemical reactions associated with irrigated agriculture processes. All these are modulated by the progression of lithology encountered by the river along its path. The initial water composition in the San Juan Mountains is fixed by classical aluminosilicate incongruent weathering reactions. As the river flows southward it encounters sedimentary basins where Na-Cl-(SO4) brines discharge along faults. Diversion of the water for irrigation and subsequent evapotranspiration concentrate these solutes. Upon entering the vadose zone beneath agricultural fields the waters encounter gypsum, dolomite, and very high pCO2. In this environment, increases in the Ca and HCO3 concentrations are suppressed by dedolomitization, while SO4 increases. After subsequent discharge to agricultural drains, remaining HCO3 is lost by CO2 degassing and additional carbonate minerals are precipitated. The Rio Grande effectively "spirals" through a succession of surface and subsurface pathways that extend over hundreds of kilometers and it is this "geochemical ratchet effect" associated with surface/subsurface exchange that drives the dramatic increase in the salinity of the river.

  17. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Thordsen, J.J.; Hovorka, S.D.; Seay, Nance H.; Cole, D.R.; Phelps, T.J.; Knauss, K.G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na-Ca-Cl type brine with ???93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ???95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5-5.7), pronounced increases in alkalinity (100-3000 mg/L as HCO3) and in Fe (30-1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ???3.0 at subsurface conditions) of the brine in contact with supercritical CO2. These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio "B", composed of a 4-m-thick sandstone and separated from the "C" by ???15 m of shale and siltstone beds. Results obtained from the Frio "B" 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the "B" sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the "B" sandstone. The presence of injected CO2 may

  18. Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions

    NASA Astrophysics Data System (ADS)

    Pauwels, Hélène; Fouillac, Christian; Fouillac, Anne-Marie

    1993-06-01

    Deep boreholes (⩽870 m) in the Upper Rhine Graben produce medium-temperature (120-150°C) saline fluids that circulate through the granitic basement and/or the overlying sedimentary rocks. The salinity of these deep fluids, sampled from both the granite and the sedimentary rock, can be explained by a three-step model: (1) evaporation of seawater which produces a primary brine; li(2) mixing between a dilute fluid and the primary brine; and (3) dissolution of halite by the later fluid. The thermal waters sampled at shallower depths are the result of mixing of the deep saline fluid and surface water. Geothermometer calculations indicate that some of the deep fluids did reach high temperatures (up to 220-260°C). During cooliug, reactions between fluid and rock took place, but the fluids did not have enough time to reach complete equilibrium with the surrounding rock.

  19. Cloning and expression of retinoblastoma-binding protein 4 gene in embryo diapause termination and in response to salinity stress from brine shrimp Artemia sinica.

    PubMed

    Wang, Xiaolu; Yao, Feng; Liang, Xiaoyu; Zhu, Xiaolin; Zheng, Ren; Jia, Baolin; Hou, Lin; Zou, Xiangyang

    2016-10-15

    Retinoblastoma binding protein 4 (RBBP4) is a nuclear protein with four WD-repeat sequences and thus belongs to a highly conserved subfamily of proteins with such domains. This retinoblastoma-binding protein plays an important role in nucleosome assembly and histone modification, which influences gene transcription and regulates cell cycle and proliferation. Artemia sinica (brine shrimp) undergoes an unusual diapause process under stress conditions of high salinity and low temperature. However, the role of RBBP4 in diapause termination of embryo development in A. sinica remains unknown. Here, the full-length cDNA of the As-rbbp4 gene was obtained from A. sinica and found to contain 1411 nucleotides, including a 1281 bp open reading frame (ORF), 63 bp 5'-untranslated region (UTR) and a 67-bp 3'-UTR, which encodes a 427 amino acid (48 kDa) protein. Bioinformatic analysis indicated As-RBBP4 to be mainly located in the nucleus, with a theoretical isoelectric point of 4.79. Protein sequence domain analysis showed that As-RBBP4 is a conserved protein, especially in the WD40 domain. No specificity in expression of this gene was observed in tissues or organs by in situ hybridization. Real-time quantitative PCR and Western blot analyses of As-RBBP4 gene and protein expression, respectively, showed notably high levels at 10 h and a subsequent downward trend. Obvious trends in upregulation of As-RBBP4 were observed under conditions of low temperature and high salinity stress. As-E2F1 and As-CyclinE also presented similar trends as that of As-RBBP4 in Western blots. Analysis of the RBBP4 expression in early embryonic development of A. sinica indicated that this protein plays an important role in diapause termination and cell cycle regulation. PMID:27267406

  20. Improved Water Flooding through Injection Brine Modification

    SciTech Connect

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  1. Manual for the thermal and hdyraulic design of direct contract spray columns for use in extracting heat from geothermal brines

    NASA Astrophysics Data System (ADS)

    Jacobs, H. R.

    1985-06-01

    This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for use in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included.

  2. Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines

    SciTech Connect

    Jacobs, H.R.

    1985-06-01

    This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

  3. Buoyancy effects on upward brine displacement caused by CO2 injection

    SciTech Connect

    Oldenburg, C.M.; Rinaldi, A.

    2010-01-15

    Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the

  4. Recent advances in biochemical technology for the processing of geothermal byproducts

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Lian, L.

    1996-04-01

    Laboratory studies has shown the biochemical technology for treating brines/sludges generated in geothermal electric powerproduction to be promising, cost-efficient, and environmentally acceptable. For scaled-up field use, the new technology depends on the chemistry of the geothermal resources which influences choice of plant design and operating strategy. Latter has to be adaptable to high/low salinity, temperatures, quantity to be processed, and chemistry of brines and byproducts. These variables are of critical and economic importance in areas such as the Geysers and Salton Sea. The brines/sludges can also be converted into useful products. In a joint effort between industrial collaborators and BNL, several engineered processes for treating secondary and other byproducts from geothermal power production are being tested. In terms of field applications, there are several options. Some of these options are presented and discussed.

  5. EOS7Cm: An improved TOUGH2 module for simulating non-isothermal multiphase and multicomponent flow in CO2-H2S-CH4-brine systems with high pressure, temperature and salinity

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao

    2016-09-01

    Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.

  6. Numerical modelling of geothermal and reflux circulation in Enewetak Atoll: Implications for dolomitization

    USGS Publications Warehouse

    Jones, G.; Whitaker, F.; Smart, P.; Sanford, W.

    2000-01-01

    Two types of regional-scale seawater circulation have been proposed to explain the formation of Enewetak Atoll dolomites: geothermal and reflux circulation. We have used a finite element groundwater flow model to examine the pattern, magnitude and dynamic interaction of these two different circulation mechanisms in Enewetak Atoll. Geothermal circulation is concentrated around the atoll-margin whereas refluxing mesosaline brines flow from the atoll interior towards the margin to restrict and eventually shut off geothermal circulation. Refluxing brines of 36-80??? can account for the salinity signature recorded in dolomite fluid inclusions. Distributions of fluid flux and Mg mass-balance calculations suggest that both geothermal and reflux circulation mechanisms could account for the observed distribution of dolomite in Enewetak Atoll. Furthermore, the atoll interior may be extensively dolomitized as observed in other atolls. (C) 2000 Elsevier Science B.V. All rights reserved.Two types of regional-scale seawater circulation have been proposed to explain the formation of Enewetak Atoll dolomites: geothermal and reflux circulation. We have used a finite element groundwater flow model to examine the pattern, magnitude and dynamic interaction of these two different circulation mechanisms in Enewetak Atoll. Geothermal circulation is concentrated around the atoll-margin whereas refluxing mesosaline brines flow from the atoll interior towards the margin to restrict and eventually shut off geothermal circulation. Refluxing brines of 36-80 per mil can account for the salinity signature recorded in dolomite fluid inclusions. Distributions of fluid flux and Mg mass-balance calculations suggest that both geothermal and reflux circulation mechanisms could account for the observed distribution of dolomite in Enewetak Atoll. Furthermore, the atoll interior may be extensively dolomitized as observed in other atolls.

  7. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  8. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  9. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  10. The role of seawater freezing in the formation of subsurface brines

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Starinsky, Avraham; Katz, Amitai; Bein, Amos

    1990-01-01

    Several mechanisms (evaporation, water-rock interaction, ultra-filtration) have been suggested to explain the evolution of ubiquitous Ca-chloride subsurface brines. In the present paper, the freezing of seawater in polar regions, and in even wider areas during glacial periods, is proposed as an additional possible path of brine formation. Four detailed seawater freezing experiments to -14°C (resulting in a concentration factor of about 5) were carried out, and Na, K, Ca, Mg, Sr, Cl, SO 4, and Br were analysed in the residual brines and in the ice. Br and Sr, whose behavior during the freezing of seawater is reported here for the first time, show a conservative behavior throughout the studied temperature range. Our data and earlier literature show that the high salinities, which are common in subsurface brines (>300 g/l), may be obtained by the removal of H 2O as ice in the primary glacial environment. The decrease in the Na/Cl ratio is caused by the crystallization of mirabilite (Na 2SO 4 · 10H 2O), supplemented by hydrohalite (NaCl · 2H 2O). Sulfate is removed both in mirabilite and by bacterial reduction. The brine then migrates to the subsurface, heats-up under the local geothermal gradient, and interacts with the adjacent rocks. At this stage, it may be diluted by meteoric waters, its Mg/Ca ratio decreases (dolomitization and chloritization), the SO 4/Cl ratio varies according to the local gypsum-anhydrite equilibrium conditions, and the Ca/(SO 4 + HCO 3) ratio increases as a result of dolomitization or chloritization. The interaction with rocks in the subsurface may affect both the original 87Sr /86Sr and the 18O /16O ratios of the brine. Although several of the processes which lead to the formation of Ca-chloride brines are common for both the evaporative and the freezing models, the Na-Br-Cl relationship in a given brine can be used to discriminate between the two modes of brine evolution. Several subsurface brines from the Canadian Shield and one brine

  11. Don Juan Pond, Antarctica: near-surface CaCl(2)-brine feeding Earth's most saline lake and implications for Mars.

    PubMed

    Dickson, James L; Head, James W; Levy, Joseph S; Marchant, David R

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from "warm/wet" to "cold/dry" climates. PMID:23378901

  12. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake and implications for Mars

    PubMed Central

    Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R.

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from “warm/wet” to “cold/dry” climates. PMID:23378901

  13. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  14. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  15. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    SciTech Connect

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  16. Brine disposal process for Morcinek coal mine

    SciTech Connect

    Tait, J.H.

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  17. Geothermal Energy Program Overview: Fiscal Year 1991

    SciTech Connect

    Not Available

    1991-12-01

    In FY 1990-1991, the Geothermal Energy Program made significant strides in hydrothermal, geopressured brine, hot dry rock, and magma research, continuing a 20-year tradition of advances in geothermal technology.

  18. Ore transport and deposition in the Red Sea geothermal system: a geochemical model

    USGS Publications Warehouse

    Shanks, Wayne C., III; Bischoff, J.L.

    1977-01-01

    Thermodynamic calculation of distribution of dissolved aqueous species in the Red Sea geothermal brine provides a model of ore transport and deposition in good agreement with observed accumulations of base metal sulfides, anhydrite, and barite. The Red Sea brine is recirculated seawater that acquires high salinity by low-temperature interaction with Miocene evaporites and is subsequently heated to temperatures in excess of 200??C by interaction with recent rift zone intrusive rocks. At temperatures up to 250??C, NaSO-4 and MgSO04 are the dominant sulfur-bearing species. H2S forms by inorganic sulfate reduction at the higher temperatures but is maintained at a uniform concentration of about 2 ppm by the strength of the sulfate complexes. Chloride complexes solubilize metals at the higher temperatures, and thus sulfide and metals are carried together into the Atlantis II Deep. Below 150??C, the brine becomes supersaturated with respect to chalcopyrite, sphalerite, galena, and iron monosulfide due to chloride-complex dissociation. Sulfide precipitation rates, based on the rate of brine influx, are in good agreement with measured sedimentation rates. Anhydrite precipitates as crystalline fissure infillings from high-temperature inflowing brine. Barite forms from partial oxidation of sulfides at the interface between the lower hot brine and the transitional brine layer. ?? 1977.

  19. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  20. Improved purification of brine-shrimp (Artemia saline) (Na+ + K+)-activated adenosine triphosphatase and amino-acid and carbohydrate analyses of the isolated subunits.

    PubMed

    Peterson, G L; Hokin, L E

    1980-10-15

    Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. PMID:6272692

  1. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir. PMID:27240829

  2. Unconventional gas sources. Volume IV. Geopressured brines

    SciTech Connect

    Not Available

    1980-01-01

    The following topics are covered: study objectives, regional geology and prospect evaluation, reservoir engineering, drilling and well costs, production and water disposal facilities, pressure maintenance, geothermal and hydraulic energy assessment, operating expense, economic evaluation, environmental considerations, legal considerations, and risks analysis. The study addresses only sandstone brine reservoirs in the Texas and Louisiana Gulf Coast onshore areas. (MHR)

  3. Volatility of HCl and the thermodynamics of brines during brine dryout

    SciTech Connect

    Simonson, J.M.; Palmer, D.A.

    1997-04-01

    Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.

  4. A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO2-brine-rock systems at high temperatures, pressures and salinities

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Blunt, Martin J.; LaForce, Tara C.

    2013-12-01

    We present a robust and efficient method for calculating chemical equilibria of general multiphase systems. The method is based on a stoichiometric approach, which uses Newton's method to solve a system of mass-action equations coupled with a system of equilibrium constraints. A stabilisation procedure is developed to promote convergence of the calculation when a presupposed phase in the chemical system is absent in the equilibrium state. The formulation of the chemical equilibrium problem is developed by presuming no specific details of the involved phases and species. As a consequence, the method is flexible and general enough so that the calculation can be customised with a combination of thermodynamic models that are appropriate for the problem of interest. Finally, we show the use of the method to solve relevant geochemical equilibrium problems for modelling carbon storage in highly saline aquifers.

  5. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection

    SciTech Connect

    Bischoff, J.L.; Rosenbauer, R.J. )

    1989-09-01

    Various mechanisms have been proposed to explain the salinity variations in vent fluids of sea floor geothermal systems. New experiments reacting diabase and evolved seawater were carried out to reproduce earlier published observations of Cl depletions attributed to formation of an ephemeral Cl-bearing mineral. The absence of any Cl depletions in the present study suggests that the formation of Cl-bearing minerals is not sufficiently widespread to account for the observed salinity variations in the vent fluids. A re-evaluation of both field and laboratory evidence has led to a new model for subseafloor circulation that accounts for salinity variations as well as other chemical and mineralogic observations. In place of a simple single-pass convection system, the authors propose that the sea floor systems consist of two vertically nested convection cells in which a brine layer at depth heats and drives an overlying seawater cell. Such layering of salinities, a process known in fluid mechanics as double-diffusive convection, is an expected result when convection is induced in saline fluids. The process provides for stable high-temperature heat transfer upward from the cracking front adjacent to the magma, and for limited chemical exchange of the brine with the overlying seawater to explain salinity variations and high metal contents in the vent fluids. The brine also provides an effective medium to produce the secondary mineral assemblages observed in rocks from the mid-ocean ridges and ophiolites unsuccessfully produced in laboratory studies using seawater. The brine originates from the two-phase separation of seawater during magmatic/tectonic events and accumulates and remains relatively stable in the region immediately above the magma chamber.

  6. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  7. Lithium brines: A global perspective: Chapter 14

    USGS Publications Warehouse

    Munk, LeeAnn; Hynek, Scott; Bradley, Dwight C.; Boutt, David; Labay, Keith A.; Jochens, Hillary

    2016-01-01

    Lithium is a critical and technologically important element that has widespread use, particularly in batteries for hybrid cars and portable electronic devices. Global demand for lithium has been on the rise since the mid-1900s and is projected to continue to increase. Lithium is found in three main deposit types: (1) pegmatites, (2) continental brines, and (3) hydrothermally altered clays. Continental brines provide approximately three-fourths of the world’s Li production due to their relatively low production cost. The Li-rich brine systems addressed here share six common characteristics that provide clues to deposit genesis while also serving as exploration guidelines. These are as follows: (1) arid climate; (2) closed basin containing a salar (salt crust), a salt lake, or both; (3) associated igneous and/or geothermal activity; (4) tectonically driven subsidence; (5) suitable lithium sources; and (6) sufficient time to concentrate brine. Two detailed case studies of Li-rich brines are presented; one on the longest produced lithium brine at Clayton Valley, Nevada, and the other on the world’s largest producing lithium brine at the Salar de Atacama, Chile.

  8. Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer.

    PubMed

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-03-01

    The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. PMID:23358731

  9. Future Technologies to Enhance Geothermal Energy Recovery

    SciTech Connect

    Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

    2008-07-25

    Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

  10. The Role of Low Salinity Fluids in Metal Enrichment

    NASA Astrophysics Data System (ADS)

    Yardley, B.

    2015-12-01

    In recent decades the importance of brines for ore-formation has been demonstrated for a wide range of deposit types and geological settings. Chloride can reach high concentrations in fluids of diverse origins and it complexes many metals in solution. Nevertheless, there are elements which are preferentially complexed by other ligands and are transported and concentrated in low-Cl fluids. Magmatic fluids normally have Cl as the dominant cation and may be very saline. Transition metal levels in magmatic brines from arc settings in particular are often very high, reflecting strong chloride complexing and associated mineralization is often dominated by metals such as Fe which reach high concentrations in brines. Not all magmatic hydrothermal fluids are brines however, and where Cl is less abundant the composition of the dissolved load can be very different. Because of "salting out" effects, highly saline fluids are relatively low in dissolved gases, whereas low salinity fluids can carry significant loads of CO2, H2S and other volatile species, including B, As, Sb and Hg. Of the volatile species with the potential to complex specific metals only H2S has been investigated in any detail. Arsenic is particularly abundant in some low-salinity fluids, however the possible role of As-complexing in transport of Au or other metals is not known. There is little evidence for enhancement of metal solubility by CO2 under upper crustal conditions, except through lowering of pH, but there is some evidence that CO2-saturated brines may mobilize Ni more effectively than brines alone. Sulfate is an important anion in a range of magmatic and hydrothermal fluids and may be primary or arise from oxidation of magmatic H2S in geothermal systems. Notably, sulfate preferentially forms aqueous complexes with the HREE, and may play a role in HREE-enrichment. Fluids in which Cl does not dominate the dissolved load have potential to cause enrichment in a diverse range of elements, but this is

  11. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE PAGESBeta

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  12. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  13. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  14. Phase relations and adiabats in boiling seafloor geothermal systems

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Pitzer, Kenneth S.

    1985-11-01

    Observations of large salinity variations and vent temperatures in the range of 380-400°C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385°C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415°C, 330 bar. A 400°C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500°C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor.

  15. UNDERSTANDING AND MANAGING RISKS POSED BY BRINES CONTAINING DISSOLVED CARBON DIOXIDE

    EPA Science Inventory

    Geologic disposal of supercritical carbon dioxide in saline aquifers and depleted oil and gas fields will cause large volumes of brine to become saturated with dissolved CO2 at concentrations of 50 g/l or more.  As CO2 dissolves in brine, the brine de...

  16. Geothermal program overview: Fiscal years 1993--1994

    SciTech Connect

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  17. Geopressured-Geothermal Research Program: An Overview

    SciTech Connect

    Fortuna, Raymond; Jelacic, Allan

    1989-04-01

    The geopressured-geothermal resource consists of deeply buried reservoirs of hot brine, under abnormally high pressures, that contain dissolved methane. Geopressured brine reservoirs with pressures approaching the lithostatic load are known to occur both onshore and offshore beneath the Gulf of Mexico coast, along the Pacific west coast, in Appalachia, as well as in deep sedimentary basins elsewhere in the United States. The Department of Energy (DOE) has concentrated its research on the northern Gulf of Mexico sedimentary basin (Figure 1) which consists largely of Tertiary interbedded sandstones and shales deposited in alternating deltaic, fluvial, and marine environments. Thorsen (1964) and Norwood and Holland (1974) describe three generalized depositional facies in sedimentary beds of the Gulf Coast Geosyncline (Figure 2 ): (1) a massive sandstone facies in which sandstone constitutes 50 percent o r more of the sedimentary volume; (2) an alternating sandstone and shale facies in which sandstone constitutes 15 to 35 percent of the sedimentary volume. (3) a massive shale facies in which sandstone constitutes 15 percent or less of the sedimentary volume. In general, at any given location the volume of sandstone decreases with increasing depth. The datum of higher-than-normal fluid pressures is associated with the alternating sandstone and shale facies and the massive shale facies. Faulting and salt tectonics have complicated the depositional patterns and influenced the distribution of geopressured reservoirs (Wallace et a1 1978). The sandstones in the alternating sandstone and shale facies have the greatest potential for geopressured-geothermal energy development. Due to the insulating effect of surrounding shales, temperatures of the geopressured-geothermal brines typically range from 250 F to over 350 F, and under prevailing temperature, pressure, and salinity conditions, the brine contains 20 or more cubic feet of methane per barrel. Wallace et al (1978

  18. Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine

    SciTech Connect

    Bein, A.; Dutton, A.R. )

    1993-06-01

    Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

  19. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime

    NASA Astrophysics Data System (ADS)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2013-04-01

    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  20. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars

    SciTech Connect

    Madden, Megan Elwood; Ulrich, Shannon M; Onstott, Tullis; Phelps, Tommy Joe

    2007-01-01

    Recent observations of CH4 in the Martian atmosphere suggest that CH4 has been added relatively recently. Several mechanisms for recent CH4 release have been proposed including subsurface biological methanogenesis, abiogenic hydrothermal and/or volcanic activity, dissociation of CH4 hydrates, atmospheric photolysis, or addition of organics via bolide impact. This study examines the effects of increasing salinity on gas hydrate stability and compares estimates of the Martian geothermal gradient to CH4 and CO2 hydrate stability fields in the presence of high salinity brines. The results demonstrate that salinity increases alone result in a significant decrease in the predicted hydrate stability zone within the Martian subsurface and may be a driving force in CH4 hydrate destabilization. Active thermal and/or pressure fluctuations are not required in order for CH4 hydrates to be the source of atmospheric CH4.

  1. Brine migration resulting from pressure increases in a layered subsurface system

    NASA Astrophysics Data System (ADS)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  2. Forward Osmosis Brine Drying

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  3. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  4. Biomass production from inland brines

    SciTech Connect

    Reach, C.D. Jr.

    1985-01-01

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  5. Constraining Effects of Brine Leakage from Carbon Sequestration Sites

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; McCray, J. E.

    2011-12-01

    Research has shown that pressure build up associated with injection of CO2 into a deep saline aquifer has the potential to promote brine leakage into overlying formations. In order to understand and quantify chemical changes in an underground source of drinking water (USDW) invaded by deep saline brines, we analyzed over 90,000 brine geochemical data entries from the NETL NATCARB brine database to identify potential brine constituents of concern. Using a variety of statistical methods and EPA regulatory levels or standards (RLS) we narrowed the list of brine constituents of potential concern to USDWs to TDS, thallium, chloride, sulfate and arsenic. Somewhat surprisingly, the distribution of reported pH had a fairly narrow distribution around a median value of 7.4, with over 78% of values complying with EPA recommended secondary standard for drinking water acidity. The pH distribution implies that unlike pure CO2 leakage, far-field brine leakage (i.e., brine not in contact with CO2) is not expected to bear a low-pH signature, thus suggesting use of other means of geochemical monitoring for brine leakage, such as electrical conductivity. Geochemical mixing models of brine and dilute water were used to constrain mixing ratios where RLS values are exceeded for the TDS, thallium and chloride. TDS and chloride exceed the EPA secondary standards at a brine/USDW mixing ratio of 0.012 and 0.459, respectively. The thallium maximum contaminant level (MCL) is exceeded at a brine/USDW mixing ratio of 0.3753, smaller than the chloride mixing ratio. However, sorption and/or desorption processes may alter thallium concentrations along a leakage pathway resulting in lower concentrations in the aquifer than predicted by simple mixing models. While leakage into USDWs has received considerable attention, brine contamination of groundwater used for irrigation of agricultural crops is also an important area of research. Our calculations suggest that almost all crops grown in the United

  6. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface

  7. The formation of natural cryogenic brines

    NASA Astrophysics Data System (ADS)

    Starinsky, Abraham; Katz, Amitai

    2003-04-01

    The source of salts in the Ca-chloridic, hypersaline brines (up to 190 g Cl L -1) occurring in crystalline basement rocks in the Canadian, Fennoscandian and Bohemian Shields and their evolution have been investigated and reported. The Cl-Br-Na relationship indicates that these waters have been concentrated from seawater, by freezing during glacial times. The Na/Cl ratio (0.25 to 0.35) in the more saline fluids is compatible with cooling down to -30°C, where the most saline waters have been concentrated by a factor of 25 to 30 relative to the parent seawater. The brines formed from seawater within cryogenic troughs, along the subarctic continental margins, around ice sheets. The depressions within which the brines formed are the cryogenic analogues of the classic, evaporitic lagoon. One million years suffice to saturate with brine a 2000km-radius by 1km-depth rock volume at an H 2O removal rate of only 2.8 mm/yr. Density-induced brine migration on a continental scale takes place via fissures below the ice. Our calculations, that were performed on a hypothetical ice sheet with dimensions compatible with the Laurentide ice sheet, demonstrate that during 1m.y., a 60m thick cryogenic sediment section could have formed. However, the precipitated minerals (mirabilite and hydrohalite) are repeatedly dispersed by the advance and retreat of the ice sheet, dissolved by melt water-seawater mixtures, and eroded during postglacial uplift, leaving almost no trace in the geological record. The cryogenic brines formed intermittently during and between glacial periods. The repeating advance and retreat of the ice sheets exerted a major control on the direction and intensity of brine flow. The cryogenic concentration of seawater and the migration of brine towards the center of the glaciostatic depression occurred mainly during the build up of the ice sheet, while reversal of the water flow from the center of the cryogenic basin outwards happened upon deglaciation. The flow of the

  8. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  9. Geothermal Energy Program overview

    SciTech Connect

    Not Available

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  10. Harnessing Geothermal Energy from CO2 Enhanced Oil Recovery (EOR) Operations

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2012-12-01

    Recent geotechnical research shows that geothermal heat can be efficiently mined by circulating CO2 through naturally permeable, porous rock formations. This method, called CO2 Plume Geothermal (CPG), targets the same geologic reservoirs that are suitable for deep saline aquifer CO2 sequestration or enhanced oil recovery (EOR). While previous investigations have focused on CO2-based heat mining from saline aquifers, here we present new research that is primarily concerned with EOR reservoirs, specifically those using a CO2 flood. EOR operations provide excellent opportunities for economically-favorable geothermal energy recovery, assuming subsurface temperatures are sufficient, because the majority of costly infrastructure (i.e., wells) is in place. Moreover, the subsurface characteristics that make a site suitable for hydrocarbon recovery -- at least moderate reservoir permeability and porosity, and a low-permeability capping feature -- help ensure that fluid can be circulated for heat extraction and that CO2 will be contained. However, heat extraction from the CO2 + water/brine + hydrocarbon EOR production stream is challenging, requiring fluid separation and multiple binary and/or direct power systems (depending on site-specific fluid composition and conditions). We discuss several scenarios, encompassing multiple power system configurations, for harnessing geothermal energy from CO2 EOR operations. In addition, we present preliminary numerical modeling results for net power production from such EOR operations -- accounting for wide variation in produced fluid temperature, pressure, and composition -- and consider the economic implications of power sales for EOR sites.

  11. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  12. Lithium isotope geochemistry and origin of Canadian shield brines.

    PubMed

    Bottomley, D J; Chan, L H; Katz, A; Starinsky, A; Clark, I D

    2003-01-01

    Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources. PMID:14649868

  13. Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy

    USGS Publications Warehouse

    Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.

    1985-01-01

    A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.

  14. Origin and geochemical evolution of the Michigan basin brine

    SciTech Connect

    Wilson, T.P.

    1989-01-01

    Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

  15. Distribution characteristics of boron and lithium in brine of Zhacang Caka salt lake, Xizang (Tibet), China

    NASA Astrophysics Data System (ADS)

    Zheng, Xiyu

    1984-12-01

    1. Composition of the Brine. The specific gravity of its surface brine is from 1.073 to 1.291. Its salinity is 230 350 g/L. It consists of more than 30 elements, such as Na+, K+, Mg++, Ca++, Cl-, SO4 --, HCO3 -, etc. It is also highly mineralized with rich B, Li, and Rb.

  16. Brines and evaporites: analogs for Martian life

    NASA Astrophysics Data System (ADS)

    Mancinelli, R. L.; Fahlen, T. F.; Landheim, R.; Klovstad, M. R.

    2004-01-01

    Data from recent Mars missions suggest that Mars almost certainly had abundant liquid water on its surface at some time in the past. As a result, Mars has emerged as a key solar system target that could have harbored some form of life in the past, and which could perhaps still possess remnants of life in brine-containing permafrost. As Mars lost its atmosphere it became cold and dry. Any remaining water on the surface may have formed saline brine pockets within the permafrost. These brine pockets may either be an "oasis" for an extant Martian biota, or the last refuge of an extinct Martian biota. Eventually, these brine pockets would have dried to form evaporites. Evaporites are deposits that result from the evaporation of saline water, which on earth represent primarily halite (NaCl), gypsum, (CaSO 42H 2O), and anhydrite (CaSO 4). Evaporites that contain bacterial and algal assemblages exist on earth today and are well known in the fossil record. The most likely organism type to survive in a brine or evaporite on earth is a halophile. The objective of this study was to determine the potential of microbes to survive in frozen evaporites. Washed mid-log phase and stationary phase cultures of Haloarcula-G (a species isolated by us during a previous study) and Halobacterium salinarum were either suspended in brine (25% NaCl solution), dried, and then exposed to -20 or -80 °C. For comparison, cultures of Deinococcus radiodurans, Escherichia coli, and Pseudomonas fluorescens were treated similarly, except they were resuspended in 0.5% NaCl solution. Also, to mimic a brine pocket samples of washed mid-log phase cells of each organism were placed in an aqueous solution of 25% NaCl, or in their respective nutrient medium containing 25% NaCl. Periodically, samples of the cells were removed and tested for survival. Data from these experiments suggest that halophiles survive better than non-halophiles under low temperature conditions. These observations would suggest that

  17. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    USGS Publications Warehouse

    Williams, John H.; Kappel, William M.

    2015-01-01

    The specific conductance of the saline water from the shallower fractured zone in the southwest field was about 16,000 microsiemens per centimeter at 25 degrees Celsius (μS/cm at 25°C), and that from the fractured zone in the northeast field was about 65,000 μS/cm at 25°C. The saline waters were characterized by a chemical composition similar to that of deep formation brines collected from oil and gas wells in the Appalachian Basin. About 40 percent of the geothermal wells discharged methane gas to land surface during and (or) following drilling. Sandstone beds at depths of 348 to 378 ft bls are the likely source of the methane gas, which was determined to be early thermogenic in origin.

  18. Geothermal and heavy-oil resources in Texas

    SciTech Connect

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  19. Evaporite diagenesis driven by synsedimentary evolution of brines

    SciTech Connect

    Hovorka, S.D.

    1988-01-01

    Back-reaction of brines has modified cyclic shallow water carbonate-sulfate-halite sequences (Permian) in the Palo Duro basin, Texas Panhandle. Successive parts of regressive evaporite cycles were deposited from progressively more highly evaporated seawater. The reaction of the brine with sediments deposited during earlier parts of each cycle was the major force criving diagenetic reactions and determining the final mineralogy. Normal marine limestones at the base of cycles were dolomitized in the shallow subsurface environments by brines that precipitated brine-pool evaporites in the upper parts of cycles. Gypsum dehydrated to anhydrite at burial depths of 1-2m beneath the brine-pool floor as brine salinity increased toward halite saturation. Diagenetic limpid dolomite and anhydrite replacing halite were probably derived from mixed meteoric and evaporated-marine brines squeezed from mudstone beds during compaction in the shallow subsurface. Anhydrite and halite pervasively cemented and partly replaced carbonates and gypsum. The resulting low permeability limited later diagenetic alteration, so that the early diagenetic textures and mineralogy were preserved in the burial environment. Reduction in permeability occurred before the transgression initiating the next cycle; the only major result of the introduction of seawater into the evaporite environment was dissolution of the last-deposited few meters of halite.

  20. Evaporation of brine from Searles Lake, California

    USGS Publications Warehouse

    Hicks, W.B.

    1917-01-01

    The bed of crystalline salts known as Searles Lake, in southeastern California, contains the most valuable potash-bearing brine known in the United States. This salt body has an exposed surface area estimated at 11 or 12 square miles and an average depth of about 70 feet. For the most part it is firm and compact enough to support a wagon and team even during wet seasons, when it is' sometimes flooded with a thin sheet of water that dissolves the surface salts to a slight extent. The deposit contains in the interstices between the salt crystals a saturated brine the volume of which is estimated to be more than 25 per cent of that of the entire saline mass.

  1. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pH<5 and are the product of evaporation of Dead Sea brine that drain into the sinkholes. The low pH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  2. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  3. Mirabilite solubility in equilibrium sea ice brines

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary

    2016-06-01

    The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the

  4. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  5. Brine stability study

    SciTech Connect

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  6. Investigating Brine Shrimp.

    ERIC Educational Resources Information Center

    Duran, Lena Ballone

    2003-01-01

    Presents a brine shrimp activity designed for students in grades 5-12 to foster authentic scientific inquiry in addition to providing an engaging and exciting avenue for student exploration. Emphasizes that inquiry should be a critical component in the science classroom. (KHR)

  7. Saline fluid flow and hydrocarbon migration and maturation as related to geopressure, Frio Formation, Brazoria County, Texas

    SciTech Connect

    Tyler, N.; Light, M.P.R.; Ewing, T.E.

    1985-01-01

    The Pleasant Bayou geopressured-geothermal test wells in Brazoria County, Texas, display a prominent thermal-maturity anomaly in the Oligocene Anahuac and Frio Formations. Highly geopressured, more-mature shales are interbedded with hydropressured to moderately geopressured sandstones in the upper Frio and Anahuac. In contrast, shales and sandstones in the lower Frio, including the Andrau geopressured-geothermal production zone, are highly geopressured but exhibit lower thermal maturities. Vitrinite-reflectance data, supported by hydrocarbon-maturation data and anomalous concentrations of C/sub 5/ to C/sub 7/ hydrocarbons at Pleasant Bayou, indicate that the upper Frio was subjected to an extended period of hot, extremely saline, basinal fluid flow which caused the above thermal anomaly. Regional salinity studies (Morton and others, 1983) suggest that regional growth faults were the conduits for vertical basinal brine movement at depth. At shallower levels the upwelling waters migrated laterally through permeable sandstone-rich sections such as the upper Frio. Anomalously mature gasoline-range (C/sub 5/-C/sub 7/) hydrocarbons were introduced into the upper Frio by this process. Fluid influx in the lower Frio was probably limited by high geopressure, consequently maturity in the deep Frio section (greater than 14,000 ft) remained consistent with the regional geothermal gradient.

  8. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  9. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  10. Brine production as an exploration tool for water drive gas reservoirs

    SciTech Connect

    Randolph, P.L.

    1982-01-01

    Data from detailed analyses of production from geopressured geothermal aquifers suggest that appropriate brine production tests may well result in production of otherwise undiscoverable hydrocarbons. This paper reviews concepts for the biogenic origin of natural gas, subsurface migration of natural gas, and trapping of that gas in commercially producible reservoirs. Data are presented to demonstrate discovery of free natural gas by brine production from two dry wildcat wells. Finally, conditions under which brine production testing may be a prudent investment are discussed. 5 figures.

  11. Experimental biological effects assessment associated with on-shore brine discharge from the creation of gas storage caverns

    NASA Astrophysics Data System (ADS)

    Quintino, Victor; Rodrigues, Ana Maria; Freitas, Rosa; Ré, Ana

    2008-09-01

    Most of the studies on biological and ecological effects associated with brine discharge into the marine environment are related to the operation of desalination plants, for the production of freshwater. In this study we analysed the biological effects of a brine effluent from a completely different source, produced from the lixiviation of rock salt caves, for the creation of natural gas storage caverns. Lethal and sub-lethal endpoints following exposure to the brine were studied in a range of macrofauna species characteristic of the soft and hard bottom habitats in the vicinity of the discharge area, namely the isopod Eurydice pulchra, the annelids Sabellaria alveolata and Ophelia radiata, the sea-urchin Paracentrotus lividus and the bivalve Mytilus galloprovincialis. In a first series of experiments, brine, with salinity above 300, was diluted in distilled water to a salinity value close to that of the seawater in the discharge area (salinity 36) and, surprisingly, none of the exposed species was able to survive or develop into viable larvae. A second series of experiments exposed the species to brine diluted with seawater, simulating more realistic discharge circumstances. All the tested species at all the measured endpoints (adult survival, larval abnormal development, sperm fertilization success) showed negative biological effects in brine solutes always at a lower salinity than that of a salinity control obtained with concentrated seawater. The sub-lethal experiments with larval development of P. lividus, S. alveolata and M. galloprovincialis, and the fertilization success of P. lividus gave EC 50 values for the brine solute with salinity in the range of 40.9-43.5, whereas the EC 50 values for the concentrated seawater were in the range of salinity 44.2-49.0. It is hypothesised that differences in the ionic composition of the brine cause the inability of the species to tolerate the exposure to brine.

  12. Mars brine formation experiment

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.

    1993-01-01

    The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals.

  13. The Campi Flegrei caldera-hosted high-temperature and high-saline geothermal system in the Southern Italy: the implication of the geothermal resource as derived by the present state of the knowledge through 70 years of volcanological, structural, petrolog

    NASA Astrophysics Data System (ADS)

    Piochi, M.; Di Vito, M. A.; Mormone, A.; De Natale, G.; Tramelli, A.; Troise, C.; Carlino, S.

    2012-04-01

    The Campi Flegrei caldera (Italy) hosts a geothermal system characterized by: i) high thermal gradient (temperature up to 420°C at 3050 m b.s.l.), ii) high temperature (up to ~90-150°C at very shallow depth) fumaroles, iii) multiple meteoric to brine (TDS up to 33 g•l-1; temperature up to 95 °C) aquifers and iv) at least 1500 tonnes per day of CO2 emissions. This area is highly urbanized despite the repeated occurrence of ground deformation phenomena accompanied by seismicity with volcano-tectonic and long-period micro-earthquakes. The caldera has been widely studied by geologist and geophysicists. In particular, since '40s, the caldera has drawn scientific interest for its geothermal capability inducing the companies AGIP (Azienda Geologica Italiana Petroli) and SAFEN (Società Anonima Forze Endogene Napoletane) to drill more than one hundred 80-to-3100 m deep wells. However this experience did not reach the exploitation phase due to technological and communication problems. The geothermal potential (thermal and electric) is evaluated of about 6 GWy. The recent Campi Flegrei Deep Drilling Project [De Natale and Troise, 2011], sponsored by the International Continental Scientific Drilling Program, foresees the realization of medium-to-deep wells in the caldera with the ambition of stimulating interest in geothermal energy exploitation and technology development and, in addition of installing downhole monitoring systems. The geological knowledge of the area is the benchmark for the drilling sites selection. We reconstructed a multi-disciplinary conceptual model updated on the basis of the most recent scientific results and findings. In particular, the constrains (the most important are listed in brackets) comes from: i) boreholes (litho-stratigraphy, aquifer location, depth-related temperature), ii) fieldwork (stratigraphy, location of structural fractures and eruption vents), iii) petrology and melt inclusions (pressure and temperature of magma with

  14. Effects of shield brine on the safe disposal of waste in deep geologic environments

    NASA Astrophysics Data System (ADS)

    Park, Y.-J.; Sudicky, E. A.; Sykes, J. F.

    2009-08-01

    The salinity of groundwater increases with depth in the Canadian Shield (up to 1.3 kg/L of density). The existence of brine can be critically important for the safe geologic disposal of radioactive wastes, as dense brine can significantly retard the upward migration of radionuclides released from repositories. Static and flushing conditions of the deep brine are analyzed using a U-tube analogy model. Velocity reduction due to the presence of dense brine is derived under flushing conditions. A set of illustrative numerical simulations in a two-dimensional cross section is presented to demonstrate that dense brine can significantly influence regional groundwater flow patterns in a shield environment. It is implied from the results that (1) the existence of Shield brine can be an indicator of a hydrogeologically stable environment, (2) activities near ground surface may not perturb the stable groundwater environment in the deep brine region, and thus, (3) the deep brine region can be considered as a candidate geologic site for the safe disposal of waste. In addition to brine, other issues associated with long-term waste disposal, such as geological, glacial and seismic events, may need to be considered for the safe storage of spent nuclear fuel in a shield environment.

  15. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  16. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  17. Origin of the oil-field brines in the Paris basin

    SciTech Connect

    Matray, J.M. ); Fontes, J.C. )

    1990-06-01

    From Br{sup {minus}}/Cl{sup {minus}} ratios coupled with stable-isotope compositions, the components of deep sedimentary brines - namely, primary and secondary brines (from dissolving evaporites) and diluting waters of meteoric origin - can be identified, and in favorable cases, their respective proportions can be quantified. Dilution of primary marine brines (mother liquors of halite) by meteoric waters has occurred in the Dogger and the Keuper aquifers. The presence of highly saline brines (molality of Cl{sup {minus}} = 3.9) in the Rhaetian aquifer may be due to dissolution of primary marine halite by sea water with minor contributions of primary brines. The resulting mixture is diluted by meteoric circulation.

  18. Effect of iron cation on geochemical trapping of CO2 in brine

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Maroto-Valer, Mercedes

    2014-05-01

    Carbon dioxide sequestration using brines has emerged as a promising technology to mitigate the adverse impacts of climate change due to its large storage capacity and favorable chemistries. However, the permanent storage (mineral trapping) of CO2 in brines takes significantly long periods of time as the formation and precipitation of carbonates is very slow .[1]. The main parameters reported to effect on mineral trapping of CO2 sequestration in brines are brine composition, brine pH, system temperature and pressure.[2, 3]. It is suggested that the precipitation of mineral carbonates is mostly dependent on brine pH. Previous studies by the authors concluded that iron in natural brines causes pH instability, but it was not ascertained whether ferric iron or ferrous iron caused pH instability .[4]. Accordingly, the aim of this project is to study synthetic brines mimicking the major ions found in natural brines and including different concentrations of ferric and ferrous iron. Three brines were prepared, as follows: Brine 1 was prepared with ferric Fe3+ iron, Brine 2 prepared with ferrous Fe2+ iron and Brine 3 prepared with no iron. A series of pH stability studies and carbonation reactions were conducted using the above three brines. It is concluded that the ferrous iron causes pH instability, while ferric iron might promote carbonate precipitation. .1. Garcia, S., et al., Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control, 2012. 7: p. 89-97. 2. Liu, Q. and M.M. Maroto-Valer, Investigation of the pH effect of a typical host rock and buffer solution on CO< sub> 2 sequestration in synthetic brines. Fuel Processing Technology, 2010. 91(10): p. 1321-1329. 3. Liu, Q. and M.M. MarotoValer, Parameters affecting mineral trapping of CO2 sequestration in brines. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 211-222. 4. Druckenmiller, M.L. and M.M. Maroto-Valer, Carbon

  19. Combination flash-bottoming cycle geothermal power generation: A case history

    SciTech Connect

    Gallup, D.L.

    1996-12-31

    High- and low-enthalpy, liquid-dominated geothermal resources are commonly exploited by steam flash and binary power cycles, respectively. Cooled brine from both flash and binary power cycles, respectively. Cooled brine from both flash and binary power plants is typically reinjected into the geothermal reservoir to replenish the aquifer, maintain reservoir pressure and to protect the environment. Silica tends to precipitate from geothermal brine at almost every stage of brine processing as the temperature is reduced, either as hydrous, amorphous opal or as metal silicate. Silica scale deposition in flash plants and brine reinjection systems is commonly controlled by disposing of brine at temperatures above which silica/silicate is saturated or only slightly over-saturated. A significant amount of heat remains in high temperature injection brine that may otherwise be extracted. In 1994, binary cycle units comprising 16 MWe were installed at the Bulalo, Philippines geothermal field utilizing flashed waste brine that was previously injected directly to the reservoir. The binary bottoming cycle consists of six energy converters each employing a preheater and a vaporizer. The brine temperature is reduced across the heat exchangers from 450{degree} to 408{degree}. During the heat recovery process, over-saturation of silica in the injection brine increases from < 10 to > 100%, and scaling rates are predicted to increase thirty-fold from 0.1 to 3 mm/yr. Siliceous scaling in heat exchangers, cooled injection brine piping, injection wells and near-wellbore formation is inhibited by acidification of brine sent to the binary plant. The heat recovery process, incorporating silica scale control by pH modification, has successfully operated at the Bulalo field for two years. Silica scaling, as a result of flashing and cooling brine has been reduced to less than 1 mm/yr.

  20. Examination of brine contamination risk to aquatic resources from petroleum development in the Williston Basin

    USGS Publications Warehouse

    Gleason, Robert A.; Thamke, Joanna N.; Smith, Bruce D.; Tangen, Brian A.; Chesley-Preston, Tara; Preston, Todd M.

    2011-01-01

    U.S. Geological Survey scientists and cooperating partners are examining the potential risk to aquatic resources (for example, wetlands, streams) by contamination from saline waters (brine) produced by petroleum development in the Williston Basin of Montana, North Dakota, and South Dakota. The primary goals of this study are to provide a science-based approach to assess potential risk of brine contamination to aquatic systems and to help focus limited monitoring and mitigation resources on the areas of greatest need. These goals will be accomplished through field investigations that quantify brine movement and risk assessments using remotely-sensed and other spatial datasets.

  1. The geothermal area of El Pilar-Casanay, State of Sucre, Venezuela: Geochemical exploration and model

    SciTech Connect

    D'Amore, F.; Gianelli, G.; Corazza, E. . Istituto Internazionale Ricerche Geotermiche)

    1994-06-01

    A geochemical survey was carried out in the El Pilar-Casanay area, State of Sucre, Venezuela, in order to ascertain its geothermoelectric potential. The area is characterized by many natural manifestations with temperatures in the range 80--100 C. The area investigated seems capable of producing high-enthalpy geothermal fluids; a deep reservoir is inferred, composed of a medium salinity (< 5,000 ppm) and neutral brine, with computed temperatures between 250 and 300 C, and with a high CO[sub 2] partial pressure. Second shallower reservoir is assumed to exist, with a temperature of the order of 200--220 C. The deep reservoir is shown to be liquid-dominated, while water and steam occupy the shallow one. The piezometric level (elevation 150 m) regulates the areal distribution of water springs and fumaroles. A partial self-sealing (mineral alteration) along outflows allows accumulation of hot fluids, while recharge is from local meteoric water.

  2. Geophysical imaging reveals brine system beneath an ice-sealed Antarctic lake

    NASA Astrophysics Data System (ADS)

    Dugan, H.; Doran, P. T.; Tulaczyk, S. M.; Mikucki, J.; Arcone, S. A.; Auken, E.; Schamper, C.; Virginia, R. A.

    2014-12-01

    The habitability of polar desert environments on Earth, and other neighboring planets, is dependent on the availability of liquid water. In areas where the surface is frozen, lenses of water present in the subsurface may act as microbial refugia. In the McMurdo Dry Valleys of Antarctica, the presence of highly saline brine in valley lakes raises the potential for the existence of a deep groundwater network. We report on a geophysical study that shows Lake Vida, in Victoria Valley, is nearly frozen, and the remaining brine is confined beneath thick ice. Near surface, bathymetric mapping of grounded lake ice was accomplished from a series of ground penetrating radar surveys. Radar penetration was limited to 20 m. An airborne transient electromagnetic survey (AEM) revealed a low resistivity zone at 30-100 m depth beneath the surface of the lake. Based on previous knowledge of brine chemistry and local geology, this zone is interpreted as brine saturated unconsolidated sediments with a porosity of 23-42%. Brine volume is calculated at 15 to 32 million cubic meters, which is of similar magnitude to the brine volume in nearby saline lakes. The AEM survey provided a means of quantifying the spatial extent of deep subsurface brine in this remote environment, and has provided a new perspective on the potential for subsurface habitats in areas often considered devoid of life.

  3. Response of amphipod assemblages to desalination brine discharge: Impact and recovery

    NASA Astrophysics Data System (ADS)

    de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Sánchez-Lizaso, J. L.

    2016-04-01

    Desalination has become an important industry whose dense, high-salinity effluent has an impact on marine communities. Without adequate dilution, brine remains on the bottom increasing bottom salinity and affecting benthic communities. Amphipods showed high sensitivity to increased salinity produced by desalination brine discharge. A decrease in abundance and diversity of amphipods was detected at the station closest to the outfall, where salinity values reached 53. This salinity was later reduced by including a diffuser at the end of the pipeline. Six months after diffuser installation, amphipod abundance increased. During the first stage of this recovery, species such as Photis longipes recovered their abundance, others such as Microdeutopus versiculatus displayed opportunistic patterns, while others needed more time for recovery, e.g. Harpinia pectinata. These differences may be dependent on the organism living habits.

  4. Ion association in natural brines

    USGS Publications Warehouse

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  5. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  6. Properties of Geopressured Brines and Wells in the Gulf Coast and Opportunities for Industrial/Research Participation

    SciTech Connect

    Wys, J. Nequs- de

    1989-03-21

    Geopressured reservoirs exhibit pressure gradients in excess of the normal hydrostatic gradient. In the Gulf Coast area the normal gradient is 0.465 psi/ft. Pressures may approach lithostatic pressure and have been measured as high as 1.05 psi/ft in the Gulf Coast area. Geopressured basins exist worldwide and in a number of U.S. locations, east, west, north and south. The Gulf Coast area has been studied extensively and is the subject of the DOE geopressured-geothermal research at present. The assumed ranges in resource characteristics include: depth from -12,000 to > -20,000 feet, brine flow rate from 20,000 to 40,000 bpd, temperature from 300 to 400 F, bottomhole pressure from 12,000 to 18,500 psi; salinity from 20,000 to 200,000 mg/L, gas-water ratio from 40 to 80 scf/bbl., and condensate from a trace to production. Energy in the geopressured resource includes gas, thermal, and hydraulic energy. It has been estimated that there are 6,000 quads of methane and 11,000 quads of thermal energy in the Gulf Coast area geopressured-geothermal reservoirs. Estimates run as high as 50,000 quad for the thermal energy (Wallace et al, 1978). Present industrial interest in the Pleasant Bayou and Hulin wells includes: desalination plants, an economic study by a power company for regional use, use of generated electricity by a coalition of towns, aquaculture (catfish farming) research program, and an unsolicited proposal for enhanced oil recovery of heavy oil. Direct uses of the hot brine cover dozens of industries and processes. An example of multiple uses in the USSR is shown. Outside agency interest includes the U.S.G.S., N.S.F., G.R.I., and possibly other areas within DOE. A research spin-off: a sensitive in-line benzene monitor has been designed by USL and will be tested in the near future. An in-line pH monitor is also under development for the harsh conditions of the geopressured-geothermal wells.

  7. Stability of brines on Mars

    NASA Astrophysics Data System (ADS)

    Brass, G. W.

    1980-04-01

    The detection of high chlorine and sulfate abundances and duricrusts on Mars strongly suggests the occasional presence of brines on the Martian surface. Ternary phase diagrams for the likely chloride and sulfate brines indicate that the minimum temperature at which a brine can be stable is near 210 K with a water concentration of approximately 70 wt % and a high concentration of calcium chloride. The dominance of sulfate over chlorine in the Martian regolith suggests precipitation of salts at temperatures higher than the minimum.

  8. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    SciTech Connect

    Ho, K.T.; Burgess, R.M. ); Mitchell, K. . Biology Dept.); Zappala, M. )

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  9. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  10. Halophilic Archaea determined from geothermal steam vent aerosols.

    PubMed

    Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T

    2008-06-01

    Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface. PMID:18331336

  11. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    PubMed

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. PMID:25746960

  12. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  13. Gas content of Gladys McCall reservoir brine

    SciTech Connect

    Hayden, C.G.; Randolph, P.L.

    1987-05-29

    On October 8, 1983, after the first full day of production from Sand No.8 in the Gladys McCall well, samples of separator gas and separator brine were collected for laboratory P-V-T (pressure, volume, temperature) studies. Recombination of amounts of these samples based upon measured rates at the time of sample collection, and at reservoir temperature (290 F), revealed a bubble point pressure of 9200 psia. This is substantially below the reported reservoir pressure of 12,783 psia. The gas content of the recombined fluids was 30.19 SCF of dry gas/STB of brine. In contrast, laboratory studies indicate that 35.84 SCF of pure methane would dissolve in each STB of 95,000 mg/L sodium chloride brine. These results indicate that the reservoir brine was not saturated with natural gas. By early April, 1987, production of roughly 25 million barrels of brine had reduced calculated flowing bottomhole pressure to about 6600 psia at a brine rate of 22,000 STB/D. If the skin factor(s) were as high as 20, flowing pressure drop across the skin would still be only about 500 psi. Thus, some portion of the reservoir volume was believed to have been drawn down to below the bubble point deduced from the laboratory recombination of separator samples. When the pressure in a geopressured geothermal reservoir is reduced to below the bubble point pressure for solution gas, gas is exsolved from the brine flowing through the pores in the reservoir rock. This exsolved gas is trapped in the reservoir until the fractional gas saturation of pore volume becomes large enough for gas flow to commence through a continuous gas-filled channel. At the same time, the gas/brine ratio becomes smaller and the chemistry of the remaining solution gas changes for the brine from which gas is exsolved. A careful search was made for the changes in gas/brine ratio or solution gas chemistry that would accompany pressure dropping below the bubble point pressure. Changes of about the same magnitude as the scatter in

  14. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  15. Auxiliary Heating of Geothermally Preheated Water or CO2 - A Potential Solution for Low- to Moderate-Temperature Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Kong, X.; Garapati, N.; Adams, B. M.; Randolph, J.; Kuehn, T. H.; Saar, M. O.

    2015-12-01

    Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems have higher thermal efficiencies than the brine based systems at low turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  16. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    SciTech Connect

    Chen, J

    1991-07-01

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: very often pH is a critical test because its accuracy lays the foundation for other measurements''. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150[degrees]C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H[sup +] ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  17. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    SciTech Connect

    Chen, J.

    1991-12-31

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: ``very often pH is a critical test because its accuracy lays the foundation for other measurements``. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150{degrees}C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H{sup +} ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  18. Geothermal vegetable dehydration at Brady`s Hot Springs, Nevada

    SciTech Connect

    Lund, J.W.

    1994-07-01

    This article describes the utilization of the Brady`s Springs geothermal resource for heat generation used in the food dehydration process. This geothermal system is located in the Forty-Mile Desert area of Nevada. Geothermal Food Processors, Inc. of Reno, Nevada started construction of the geothermal vegetable dehydration plant in 1978, and the plant started operations in 1979. The industrial process of vegetable dehydration at the plant is described. In July of 1992, the Brady`s Springs geothermal system began being used for power generation by the Brady`s Hot Springs geothermal power plant, operated by Oxbow Power Services, Inc. As a result, the water levels in the food processing plant wells have dropped below usable levels and the geothermal brine is now being supplied by the Oxbow power plant.

  19. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  20. Assessing Radium Activity in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  1. Geothermal well log interpretation state of the art. Final report

    SciTech Connect

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  2. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments.

    PubMed

    Adel, Mustafa; Elbehery, Ali H A; Aziz, Sherry K; Aziz, Ramy K; Grossart, Hans-Peter; Siam, Rania

    2016-01-01

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 10(9) bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. PMID:27596223

  3. Capillarity and wetting of carbon dioxide and brine during drainage in Berea sandstone at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-10-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behavior of this system to pressure, temperature, and brine salinity. We report observations of the impact of reservoir conditions on the capillary pressure characteristic curve and relative permeability of a single Berea sandstone during drainage—CO2 displacing brine—through effects on the wetting state. Eight reservoir condition drainage capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5-20 MPa), temperatures (25-50°C), and ionic strengths (0-5 mol kg-1 NaCl). A ninth measurement using a N2-water system provided a benchmark for capillarity with a strongly water wet system. The capillary pressure curves from each of the tests were found to be similar to the N2-water curve when scaled by the interfacial tension. Reservoir conditions were not found to have a significant impact on the capillary strength of the CO2-brine system during drainage through a variation in the wetting state. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is water wetting and multiphase flow properties invariant across a wide range of reservoir conditions.

  4. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    PubMed Central

    Adel, Mustafa; Elbehery, Ali H. A.; Aziz, Sherry K.; Aziz, Ramy K.; Grossart, Hans-Peter; Siam, Rania

    2016-01-01

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. PMID:27596223

  5. Wettability from Capillarity of CO2-Brine-Rock Systems at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-04-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behaviour of this system to pressure, temperature and brine salinity. We report results of an investigation into the impact of reservoir conditions on wetting through direct observations of their impact on the capillary strength of the system. Eight capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5 to 20 MPa), temperatures (25 to 50 °C) and ionic strengths (0 to 5 M kg-1 NaCl) representative of subsurface reservoirs. A ninth measurement using an N2-water system provided a benchmark for capillarity with a strongly water wet system. The semi-dynamic capillary pressure core flooding technique was used with in situ saturation monitoring. In all cases, the capillarity of the system, scaled by the interfacial tension, were equivalent to the N2-water system within measurement uncertainty. Thus reservoir conditions did not have a significant impact on the capillary strength of the CO2-brine system through a variation in wetting. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is strongly water wetting and invariant across a wide range of reservoir conditions.

  6. Corrosion tests in the Marchwood geothermal borehole

    NASA Astrophysics Data System (ADS)

    Lawrence, P. F.

    1982-03-01

    Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

  7. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  8. Geothermal Research and Development Program

    SciTech Connect

    Not Available

    1993-01-25

    Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

  9. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  10. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  11. Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton-Galesville Formation from the Illinois Basin, USA

    NASA Astrophysics Data System (ADS)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.; Freiburg, Jared T.

    2015-09-01

    Geochemical and isotopic characteristics of deep-seated saline groundwater provide valuable insight into the origin and evolving composition, water-rock interaction, and mixing potential of fossil brines. Such information may yield insight into intra- and interbasinal brine movement and relationships between brine evolution and regional groundwater flow systems. This investigation reports on the δ18O and δD composition and activity values, 87Sr/86Sr ratios and Sr concentrations, and major ion concentrations of the Cambrian-hosted brines of the Mt. Simon Sandstone and Ironton-Galesville Formation and discusses the evolution of these brines as they relate to other intracontinental brines. Brines in the Illinois Basin are dominated by Na-Ca-Cl-type chemistry. The Mt. Simon and overlying Ironton-Galesville brines exhibit total dissolved solids concentrations of ∼195,000 mg/L and ∼66,270 mg/L, respectively. The δD of brine composition of the Mt. Simon ranges from -34‰ to -22‰ (V-SMOW), and the Ironton-Galesville is ∼-53.2‰ (V-SMOW). The δ18O composition of the Mt. Simon brine ranges from -5.0‰ to -2.8‰ (V-SMOW), and the Ironton-Galesville brine is ∼-6.9‰ (V-SMOW). The 87Sr/86Sr values in the Mt. Simon brine range from 0.7110 to 0.7116. The less radiogenic Ironton-Galesville brine has an average 87Sr/86Sr value of 0.7107. Evaluation of δ18O and δD composition and activities and 87Sr/86Sr ratios suggests that the Mt. Simon brine is likely connate seawater and recirculating deep-seated brines that have been diluted with meteoric water and influenced by the dissolution of evaporites with a minimal halite contribution based on Cl/Br ratios. The Ironton-Galesville brine is also likely originally connate seawater that mixed with other brines and meteoric waters, including possibly Pleistocene glacial recharge. The Ca-excess vs. Na-deficiency comparison with the Basinal Fluid Line suggests the Mt. Simon and Ironton-Galesville brines have been

  12. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  13. Solubility of Nd in brine

    SciTech Connect

    Khalili, F.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1993-12-31

    The solubility of Nd(III) has been measured in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl{sub 2}, with an ionic strength of 7.8M (9.4m). The experimental solubility is much less than that estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. The predominant solid compound of Nd (III) at each pcH was determined from X-ray diffraction patterns.

  14. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  15. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  16. Chemical composition of selected Kansas brines as an aid to interpreting change in water chemistry with depth

    USGS Publications Warehouse

    Dingman, R.J.; Angino, E.E.

    1969-01-01

    Chemical analyses of approximately 1,881 samples of water from selected Kansas brines define the variations of water chemistry with depth and aquifer age. The most concentrated brines are found in the Permian rocks which occupy the intermediate section of the geologic column of this area. Salinity decreases below the Permian until the Ordovician (Arbuckle) horizon is reached and then increases until the Precambrian basement rocks are reached. Chemically, the petroleum brines studied in this small area fit the generally accepted pattern of an increase in calcium, sodium and chloride content with increasing salinity. They do not fit the often-predicted trend of increases in the calcium to chloride ratio, calcium content and salinity with depth and geologic age. The calcium to chloride ratio tends to be asymptotic to about 0.2 with increasing chloride content. Sulfate tends to decrease with increasing calcium content. Bicarbonate content is relatively constant with depth. If many of the hypotheses concerning the chemistry of petroleum brines are valid, then the brines studied are anomolous. An alternative lies in accepting the thesis that exceptions to these hypotheses are rapidly becoming the rule and that indeed we still do not have a valid and general hypothesis to explain the origin and chemistry of petroleum brines. ?? 1969.

  17. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    SciTech Connect

    Xu, Tianfu

    2008-09-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO{sub 2} geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation.

  18. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Thordsen, J.J.; Davis, R.A.

    1997-01-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ~2.0 x 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ~3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (~1.0 x 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120??C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ~98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5-10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ~60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  19. Silica recovery and control in Hawaiian geothermal fluids

    SciTech Connect

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  20. Silica recovery and control in Hawaiian geothermal fluids. Final report

    SciTech Connect

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  1. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Data Explorer

    Pete McGrail

    2016-03-14

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The rare earth element uptake testing was conducted at room temperature.

  2. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  3. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  4. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  5. Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

    1997-06-27

    The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

  6. Puna Geothermal Research Facility technology transfer program. Final report, August 23, 1985--August 23, 1989

    SciTech Connect

    Takahashi, P.

    1989-12-31

    The funds were used in a series of small grants to entrepreneurs demonstrating the direct use of geothermal heat supplied by Hawaii`s HGP-A well; this effort was known as the Community Geothermal Technology Program. Summaries are presented of the nine completed projects: fruit dehydration, greenhouse bottom heating, lumber kiln, glass making, cloth dyeing, aquaculture (incomplete), nursery growing media pasteurization, bronze casting, and electrodeposition from geothermal brine.

  7. NICE3: Textile Brine Separation

    SciTech Connect

    Recca, L.

    1999-01-29

    The goal of this project is to demonstrate the significant energy and waste savings that can be realized by using nanofiltration technology to reuse textile dyebath brines. Read this new fact sheet to learn how this new membrane technology can benefit your business.

  8. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  9. Corrosion tests in Hawaiian geothermal fluids

    SciTech Connect

    Larsen-Basse, J.; Lam, Kam-Fai

    1984-01-01

    Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5 tabs.

  10. Thermodynamics of geothermal fluids

    SciTech Connect

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  11. Brine Sampling and Evaluation Program, 1990 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M.; Belski, D.S.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  12. ELVIS: Multi-Electrolyte Aqueous Activity Model for Geothermal Solutions

    NASA Astrophysics Data System (ADS)

    Hingerl, F. F.; Wagner, T.; Driesner, T.; Kulik, D. A.; Kosakowski, G.

    2011-12-01

    High temperature, pressure, and fluid salinities render geochemical modeling of fluid-rock interactions in Enhanced Geothermal Systems a demanding task. Accurate prediction of fluid-mineral equilibria strongly depends on the availability of thermodynamic data and activity models. Typically, the Pitzer activity model is applied for geothermal fluids. A drawback of this model is the large number of parameters required to account for temperature and pressure dependencies, which significantly reduces computational efficiency of reactive transport simulations. In addition, most available parameterizations are valid only at vapor-saturated conditions. As an alternative we implemented the EUNIQUAC local composition model [2] that needs substantially fewer fitting parameters. However, the current EUNIQUAC model design does not include provision for high temperature (>150°C) applications and lacks a formulation for pressure dependence. Therefore, its application to geothermal conditions requires a re-formulation and re-fitting of the model. We developed a new tool termed GEMSFIT that allows generic fitting of activity models (for aqueous electrolyte and non-electrolyte solutions) and equations of state implemented in our geochemical equilibrium solver GEM-Selektor (http://gems.web.psi.ch). GEMSFIT combines a PostgreSQL database for storing and managing the datasets of experimental measurements and interaction parameters, the parallelized genetic algorithm toolbox of MATLAB° for the parameter fitting, and an interface to the numerical kernel of GEM-Selektor to access activity models and perform chemical equilibrium calculations. Benchmarking of the partly re-parameterized EUNIQUAC model against Pitzer revealed that the former is less accurate, which can result in incorrect predictions of mineral precipitation/dissolution. Consequently, we modified the EUNIQUAC model and concurrently introduced a pressure dependence to be able to fit experimental data over wide ranges of

  13. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  14. Chemical Characterization of Brines from Selected Oil Fields, Tabasco, México

    NASA Astrophysics Data System (ADS)

    Méndez-Ortiz, B.; Carrillo-Chavez, A.; Tritlla, J.; Levresse, G.; Gonzalez-Partida, E.; Oviedo-Perez, A.; Martinez-Kepm, H.; Gonzalez-Posadas, F.; Clara-Valdes, L.

    2004-12-01

    Thirteen brine samples were recovered from nine oil-producing wells in the Agave (Cretaceous) and Saramako (Cretaceous and Tertiary) oil fields. These samples were analyzed for major and trace elements as well as O and D isotopic compositions. The goal of this study was to compare the possible links between oil-related brines enclosed within Cretaceous and Tertiary productive horizons that were thought to have similar origin oils. The salinity of the Saramako Cretaceous and Tertiary horizons is very constant, around 30000 ppm, one to six times lower than the salinities found in the Agave Cretaceous Field (from 45000 to 170000 ppm). Major ion chemistry suggests that brines are in equilibrium with the host rock. One of the main difference, besides Mg, resides in the S concentrations, were Agave samples present lower concentrations, probably related to the presence of abundant sulfides in the aquifer's rock. Halogen (Br, Cl) systematics indicates a different origin for the Saramako and Agave brines. The Saramako samples halogen composition plot near normal seawater both in the Na/Cl vs Cl/Br (molar ratios) and the Cl vs Br (ppm) plots. The Agave halogen data scatter near and underneath the seawater evaporation line in the Na/Cl vs Cl/Br (molar ratios), suggesting that these fluids could represent seawater evolved past the point of halite precipitation. The Cl vs Br (ppm) plot indicates that these fluids undergone some degree of mixing with low-salinity fluids, probably seawater. The presence of two different groups of data suggests the compartment of the aquifer. The \\deltaD and \\delta18O data show strong differences between the Saramako and Agave brines. The Saramako brine \\delta18O and \\deltaD isotopic compositions are +2.1% (VSMOW) and -13.8% respectively. The Agave samples have a \\delta18O composition from +4.3% to +6.0% and \\deltaD isotopic composition from -20.0% to -12.6%. Differences in \\delta18O compositions between Saramako and Agave brines indicate

  15. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.

    PubMed

    Hu, Yandi; Ray, Jessica R; Jun, Young-Shin

    2013-01-01

    For sustainable geologic CO(2) sequestration (GCS), a better understanding of the effects of brine cation compositions on mica dissolution, surface morphological change, and secondary mineral precipitation under saline hydrothermal conditions is needed. Batch dissolution experiments were conducted with biotite under conditions relevant to GCS sites (55-95 °C and 102 atm CO(2)). One molar NaCl, 0.4 M MgCl(2), or 0.4 M CaCl(2) solutions were used to mimic different brine compositions, and deionized water was used for comparison. Faster ion exchange reactions (Na(+)-K(+), Mg(2+)-K(+), and Ca(2+)-K(+)) occurred in these salt solutions than in water (H(+)-K(+)). The ion exchange reactions affected bump, bulge, and crack formation on the biotite basal plane, as well as the release of biotite framework ions. In these salt solutions, numerous illite fibers precipitated after reaction for only 3 h at 95 °C. Interestingly, in slow illite precipitation processes, oriented aggregation of hexagonal nanoparticles forming the fibrous illite was observed. These results provide new information for understanding scCO(2)-brine-mica interactions in saline aquifers with different brine cation compositions, which can be useful for GCS as well as other subsurface projects. PMID:22607371

  16. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  17. Parameterization of and Brine Storage in MOR Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Hoover, J.; Lowell, R. P.; Cummings, K. B.

    2009-12-01

    Single-pass parameterized models of high-temperature hydrothermal systems at oceanic spreading centers use observational constraints such as vent temperature, heat output, vent field area, and the area of heat extraction from the sub-axial magma chamber to deduce fundamental hydrothermal parameters such as total mass flux Q, bulk permeability k, and the thickness of the conductive boundary layer at the base of the system, δ. Of the more than 300 known systems, constraining data are available for less than 10%. Here we use the single pass model to estimate Q, k, and δ for all the seafloor hydrothermal systems for which the constraining data are available. Mean values of Q, k, and δ are 170 kg/s, 5.0x10-13 m2, and 20 m, respectively; which is similar to results obtained from the generic model. There is no apparent correlation with spreading rate. Using observed vent field lifetimes, the rate of magma replenishment can also be calculated. Essentially all high-temperature hydrothermal systems at oceanic spreading centers undergo phase separation, yielding a low chlorinity vapor and a high salinity brine. Some systems such as the Main Endeavour Field on the Juan de Fuca Ridge and the 9°50’N sites on the East Pacific Rise vent low chlorinity vapor for many years, while the high density brine remains sequestered beneath the seafloor. In an attempt to further understand the brine storage at the EPR, we used the mass flux Q determined above, time series of vent salinity and temperature, and the depth of the magma chamber to determine the rate of brine production at depth. We found thicknesses ranging from 0.32 meters to ~57 meters over a 1 km2 area from 1994-2002. These calculations suggest that brine maybe being stored within the conductive boundary layer without a need for lateral transport or removal by other means. We plan to use the numerical code FISHES to further test this idea.

  18. Density and distribution of water boatmen and brine shrimp at a major shorebird wintering area in Puerto Rico

    USGS Publications Warehouse

    Tripp, K.J.; Collazo, J.A.

    2003-01-01

    The Cabo Rojo salt flats are an important wintering area for migratory shorebirds. Their quality is intimately related to prey availability, as prey are needed to meet energetic requirements. Understanding prey dynamics is, therefore, a key element of shorebird conservation plans. To this end, we monitored the density and distribution of water-boatmen (Trichocorixa spp.) and brine shrimp (Artemia spp.) in relation to water salinity from September to November of 1994 and 1995. Salinity ranged from 4 to 292 ppt, and gradients were related to hydrological alterations (e.g., salt extraction) and connection to the ocean. Brine shrimp were restricted to areas of highest salinity (??? 106 ppt), whereas water-boatmen to areas of lowest salinity ( 100 ppt. Lowering water salinity did not result in osmolal related mortality. Results underscored the sensitivity of water boatmen to high salinity, particularly when the difference in salinity between the 'source' and 'destination' localities widened. Water boatmen density increased in one lagoon as salinity decreased from 65 to 47 ppt. On the basis of our experiments, local adult survivorship improved and immigration and subsequent survival of adults, if any, was not hindered. The density of nymphs also suggested that hatching occurred concurrently. The foraging value of the salt flats can be enhanced by maintaining salinity at < 65 ppt in selected management units and minimizing differences in salinity concentrations among them.

  19. Impact of Brine Extraction and Well Placement Optimization on Geologic Carbon Storage Capacity Estimation

    NASA Astrophysics Data System (ADS)

    Ganjdanesh, R.; Hosseini, S. A.

    2015-12-01

    Capacity of carbon dioxide storage aquifers depends on a variety of factors including geologic properties and operational designs. The injection well numbers, well spacing and location, open versus closed boundary conditions, and injection with or without extraction of brine are of the parameters that impact the capacity of a storage site. Brine extraction from storage formations has been introduced as an effective strategy for enhancing the storage capacity and mitigating the risk of rapid pressure buildup. It is proposed that extracted brine can be disposed within an overlying formation or will be desalinated at surface facilities. Optimal well placement and rate of CO2 injection/brine extraction control achieving a predefined pressure constraint at the end of a specific period of storage operation. Reservoir simulation study is required to solve the two-phase flow of gas/brine and pressure buildup in the aquifer. Numerical simulation of geological storage using multiple injectors and extractors is costly and time consuming. Instead, analytical simulation can provide the results with a very good accuracy in a fraction of time compared to the numerical simulation. In this study, an analytical solution was implemented for pressure buildup calculation. The analytical model includes the effects of two-phase relative permeability, CO2 dissolution into reservoir brine and formation of a dry-out zone around the wellbore. Through the optimization algorithm coupled with analytical model, the optimal rates and locations of CO2 injectors and brine extractors were estimated, while simultaneously satisfying the pressure constraint to avoid fracture pressure in all injectors. The optimized results of analytical model was verified with a numerical simulator for several reservoir conditions, well configurations and operating constraints. The comparison of the results shows that the analytical model is a reliable tool for preliminary capacity estimation of saline aquifers and

  20. Environmental impacts during geothermal development: Some examples from Central America

    SciTech Connect

    Goff, S.; Goff, F.

    1997-04-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

  1. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake

    PubMed Central

    Murray, Alison E.; Kenig, Fabien; Fritsen, Christian H.; McKay, Christopher P.; Cawley, Kaelin M.; Edwards, Ross; Kuhn, Emanuele; McKnight, Diane M.; Ostrom, Nathaniel E.; Peng, Vivian; Ponce, Adrian; Priscu, John C.; Samarkin, Vladimir; Townsend, Ashley T.; Wagh, Protima; Young, Seth A.; Yung, Pung To; Doran, Peter T.

    2012-01-01

    The permanent ice cover of Lake Vida (Antarctica) encapsulates an extreme cryogenic brine ecosystem (−13 °C; salinity, 200). This aphotic ecosystem is anoxic and consists of a slightly acidic (pH 6.2) sodium chloride-dominated brine. Expeditions in 2005 and 2010 were conducted to investigate the biogeochemistry of Lake Vida’s brine system. A phylogenetically diverse and metabolically active Bacteria dominated microbial assemblage was observed in the brine. These bacteria live under very high levels of reduced metals, ammonia, molecular hydrogen (H2), and dissolved organic carbon, as well as high concentrations of oxidized species of nitrogen (i.e., supersaturated nitrous oxide and ∼1 mmol⋅L−1 nitrate) and sulfur (as sulfate). The existence of this system, with active biota, and a suite of reduced as well as oxidized compounds, is unusual given the millennial scale of its isolation from external sources of energy. The geochemistry of the brine suggests that abiotic brine-rock reactions may occur in this system and that the rich sources of dissolved electron acceptors prevent sulfate reduction and methanogenesis from being energetically favorable. The discovery of this ecosystem and the in situ biotic and abiotic processes occurring at low temperature provides a tractable system to study habitability of isolated terrestrial cryoenvironments (e.g., permafrost cryopegs and subglacial ecosystems), and is a potential analog for habitats on other icy worlds where water-rock reactions may cooccur with saline deposits and subsurface oceans. PMID:23185006

  3. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  4. Observations of Brine Pool Surface Characteristics and Internal Structure Through Remote Acoustic and Structured Light Imaging

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Michel, A.; Wankel, S. D.

    2015-12-01

    Observations and analysis of the surface characteristics and internal structure of deep-sea brine pools are currently limited to discrete in-situ observations. Complementary acoustic and structured light imaging sensors mounted on a remotely operated vehicle (ROV) have demonstrated the ability systematically detect variations in surface characteristics of a brine pool, reveal internal stratification and detect areas of active hydrocarbon activity. The presented visual and acoustic sensors combined with a stereo camera pair are mounted on the 4000m rated ROV Hercules (Ocean Exploration Trust). These three independent sensors operate simultaneously from a typical 3m altitude resulting in visual and bathymetric maps with sub-centimeter resolution. Applying this imaging technology to 2014 and 2015 brine pool surveys in the Gulf of Mexico revealed acoustic and visual anomalies due to the density changes inherent in the brine. Such distinct changes in acoustic impedance allowed the high frequency 1350KHz multibeam sonar to detect multiple interfaces. For instance, distinct acoustic reflections were observed at 3m and 5.5m below the vehicle. Subsequent verification using a CDT and lead line indicated the acoustic return from the brine surface was the signal at 3m, while a thicker muddy and more saline interface occurred at 5.5m, the bottom of the brine pool was not located but is assumed to be deeper than 15m. The multibeam is also capable of remotely detecting emitted gas bubbles within the brine pool, indicative of active hydrocarbon seeps. Bubbles associated with these seeps were not consistently visible above the brine while using the HD camera on the ROV. Additionally, while imaging the surface of brine pool the structured light sheet laser became diffuse, refracting across the main interface. Analysis of this refraction combined with varying acoustic returns allow for systematic and remote detection of the density, stratification and activity levels within and

  5. The Geopressured-Geothermal Resource, research and use

    SciTech Connect

    Negus-de Wys, J.

    1990-01-01

    The Geopressured-Geothermal Resource has an estimated accessible resource base of 5700 quads of gas and 11,000 quads of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured- geothermal wells in Texas and Louisiana. Supporting research in the Geopressured Program includes research on rock mechanics, logging, geologic studies, reservoir modeling, and co-location of brine and heavy oil, environmental monitoring, geologic studies, hydrocarbons associated with the geopressured brines and development of a pH monitor for harsh environments, research support in prediction of reservoir behavior, thermal enhanced oil recovery, direct use, hydraulic and thermal conversion, and use of supercritical processes and pyrolysis in detoxification. The on-going research and well operations are preparing the way to commercialization of the Geopressured-Geothermal Resource is covered in this report. 12 refs., 8 figs., 1 tab.

  6. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  8. Investigation and evaluation of geopressured-geothermal wells. Final report: Beulah Simon No. 2 Well, Vermilion Parish, Louisiana. Volume II. Analytical data

    SciTech Connect

    Dobson, R.J.; Hartsock, J.H.; McCoy, R.L.; Rodgers, J.A.

    1980-07-01

    A compilation of the test data and computer printouts of the various reservoir calculations for the reentry of the Beulah Simon No. 2 well are presented. The data include: bottomhole and surface pressure data, geothermal field test data, pressure buildup model analysis, recombination of produced brine, chemical analyses of brine and gas, and chemical analyses performed by Champion Chemicals, Inc. (MHR)

  9. The Frio Brine Pilot Experiment Managing CO2 Sequestration in a Brine Formation

    NASA Astrophysics Data System (ADS)

    Sakurai, S.

    2005-12-01

    Funded by the U.S. Department of Energy National Energy Technology Laboratory, the Frio Brine Pilot Experiment was begun in 2002. The increase in greenhouse gas emissions, such as carbon dioxide (CO2), is thought to be a major cause of climate change. Sequestration of CO2 in saline aquifers below and separate from fresh water is considered a promising method of reducing CO2 emissions. The objectives of the experiment are to (1) demonstrate CO2 can be injected into a brine formation safely; (2) measure subsurface distribution of injected CO2; (3) test the validity of conceptual, hydrologic, and geochemical models, and (4) develop experience necessary for larger scale CO2 injection experiments. The Bureau of Economic Geology (BEG) is the leading institution on the project and is collaborating with many national laboratories and private institutes. BEG reviewed many saline formations in the US to identify candidates for CO2 storage. The Frio Formation was selected as a target that could serve a large part of the Gulf Coast and site was selected for a brine storage pilot experiment in the South Liberty field, Dayton, Texas. Most wells were drilled in the 1950's, and the fluvial sandstone of the upper Frio Formation in the Oligocene is our target, at a depth of 5,000 ft. An existing well was used as the observation well. A new injection well was drilled 100 ft away, and 30 ft downdip from the observation well. Conventional cores were cut, and analysis indicated 32 to 35 percent porosity and 2,500 md permeability. Detailed core description was valuable as better characterization resulted in design improvements. A bed bisecting the interval originally thought to be a significant barrier to flow is a sandy siltstone having a permeability of about 100 md. As a result, the upper part of the sandstone was perforated. Because of changes in porosity, permeability, and the perforation zone, input for the simulation model was updated and the model was rerun to estimate timing of

  10. Distillation Brine Purification for Resource Recovery Applications

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to life support consumables. The project assessed the use of ion-exchange resins to selectively remove salts from wastewater treatment brines. The resins were then regenerated for additional use. The intention would be to generate a Na/K and CI rich or purified brine that would then be processed into high value chemicals, such as acids, bases, and/or bleach.